信号与系统精品课件例题解答7-7-2
信号与系统7-2卷积定理课件
一般的求法:f (t) f (t) y(t),先求 y(t)的频谱Y ( j)
t y(t)dt Y ( j) Y (0) ()
j
其中:
Y (0)
y(t)dt f (t)dt f (t) f () f ()
t y(t)dt Y ( j) [ f () f ()] ()
3
时域微分和积分性质
时域微分性质
df (t) jF ( j)
dt
时域积分性质
f (n) (t) ( j)n F( j)
当 F(0) F( j) f (t)dt 0 时,
0
t f ( )d F( j)
j
f (n) (t) 1 F ( j ) ( j)n
4
时域微积分性质的公式
已知:
G
(t
)
Sa(
2
)
,根据对偶性:
Sa(
t
2
)
2
G
(
)
将
换成2c,得:
C
Sa(Ct)
G2c
( )
又已知: cos0t [ ( 0 ) (
Sa(Ct)
0 )]
C
G2c
( )
根据频域卷积定理:
f
(t)
1
2
ห้องสมุดไป่ตู้
C
G2C
() [ (
0 )
(
0 )]
f
(t)
2C
[G2C
(
0 )
G2C
(
0 )]
cos
2
t
[
(
2
)
(
2
)]
根据频域卷积定理:
1
cos
信号与系统课后习题参考答案
1试分别指出以下波形是属于哪种信号?题图1-11-2试写出题1-1图中信号的函数表达式。
1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。
题图1-3⑴)2(1-t x ⑵)1(1t x -⑶)22(1+t x⑷)3(2+t x ⑸)22(2-t x ⑹)21(2t x - ⑺)(1t x )(2t x -⑻)1(1t x -)1(2-t x ⑼)22(1t x -)4(2+t x 1-4已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。
题图1-4⑴)12(1+n x ⑵)4(1n x -⑶)2(1n x ⑷)2(2n x -⑸)2(2+n x ⑹)1()2(22--++n x n x⑺)2(1+n x )21(2n x -⑻)1(1n x -)4(2+n x ⑼)1(1-n x )3(2-n x1-5已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。
题图1-51-6试画出下列信号的波形图:⑴)8sin()sin()(t t t x ΩΩ=⑵)8sin()]sin(211[)(t t t x ΩΩ+= ⑶)8sin()]sin(1[)(t t t x ΩΩ+=⑷)2sin(1)(t tt x = 1-7试画出下列信号的波形图:⑴)(1)(t u e t x t -+=⑵)]2()1([10cos )(---=-t u t u t e t x t π⑶)()2()(t u e t x t --=⑷)()()1(t u e t x t --=⑸)9()(2-=t u t x ⑹)4()(2-=t t x δ1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。
⑴)1(1)(2Ω-Ω=Ωj e j X ⑵)(1)(Ω-Ω-Ω=Ωj j e e j X ⑶Ω-Ω---=Ωj j e e j X 11)(4⑷21)(+Ω=Ωj j X 1-9已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。
信号与系统第七章课后答案
7-1 分别绘出下列各序列的图形。 (2)x[n] 2n u[n] (3)x[n] (1/ 2)n u[n] (4)x[n] (2) n u[ n] (1)x[n] (1/ 2)n u[n] 解:
x[ n ]
1
x[n]
1
0 1 2 (1) 3 4
n
0
1
2 3 (2)
x[n]
1
x[n]
-4
-3
-2 (1)
-1
0
n
0
1
2 (2)
3
4
n
x[n]
-4 1 0 1 2 3 4 -3 -2 -1 0
x[n] n
-1
n
(4)
(3)
7-3
分别绘出下列各序列的图形。 (2) x[n] cos
n 10 5
n (1) x[n] sin 5
1 z2 X (z) ( 1 1 2 z 1 )( 1 2 z 1 ) ( z 1 2 )( z 2 ) X (z) z 1 4 z ( z 1 2 )( z 2 ) 3( z 1 2 ) 3( z 2 )
X (z)
z 4z 3( z 1 2 ) 3 ( z 2 )
N
)
由于 x[n] 、 h[n] 均为因果序列,因此 y[n] 亦为因果序列,根据移位性质可求得
y [ n ] Z 1 [Y ( z )]
1 1 (1 a n 1 ) u [ n ] (1 a n 1 N ) u [ n N ] 1 a 1 a
7-24 计算下列序列的傅里叶变换。
(2)
信号与系统教程习题解析(前七章)
2e
第2章
连续时间信号
2-1 设有如下函数f t ,试分别画出它们的波形。 (a) f t 2ε t 1 2ε t 2 (b) f t sinπt ∙ ε t ε t 6 解 (a)和(b)的波形如图 p2-1 所示。
2
图 p2-1
2-2 试用阶跃函数的组合表示题 2-2 图所示信号。 解 (a) f t ε t 2ε t 1 ε t 2
信号与系统的频域分析
4-1 求题 4-1 图所示周期信号的三角函数形式的傅里叶级数表示式。
题 4-1(a) 图
解 对于周期锯齿波信号,在周期( 0,T )内可表示为
ft
A T
t
T
At T
A
a
1 T
f t dt
1 T
At T
A dt
A T
t 2T
t
A 2
∵ ω T 2π, ∴ sinnω tdt
cosnω tdt 0
⇒t
2f
t
↔
j
dF ω dω
2F ω
df t dt
↔ jωF ω
⇒
t
df t dt
↔
j
d
jωF ω dω
4-9 对于如题 4-9 图所示的三角波,试求其频谱函数。
13
题 4-9 图
解 过原点的三角波函数是偶函数,其表达式为
ft
A1
|t| τ
,
|t|
0,
|t|
Fω
fte
dt 2
A1
t τ
cosωtdt
2A
1 ω
sinωt|
1 τ
信号与系统第七章课后习题答案
k 1
z
1
k
1 z 1 z
0 z
F( z )
k 1
f (k )z k
k
[(k 1) (k 2)]z k z2 z 1 z
k 1
z k z 1 z 1
例 7.1- 2 已知无限长因果序列f(k)=akε(k)。求f(k)
d d k f ( k ) ( z ) ( z ) F ( z ) z dz dz
d d d z k f ( k ) ( z ) z F ( z ) dz dz dz
|a|<|z|<|b|
Im[z]
Im[z] |a |
Im[z]
|a | o Re[z] o Re[z] o
|a|
Re[z] |b |
(a)
(b)
(c)
图 7.1-1 例7.1-2、例7.1-3、例7.1-4图
7.1.3 常用序列的双边Z变换
(1) f (k ) (k )。
F ( z)
k
例 7.2-3 已知
1 k 1 f (k ) 3 (k 1), 2
k
求f(k)的双边Z变换及其收敛域。 解 令f1(k)=3k+1ε(k+1),则有
1 f ( k ) f1 ( k ) 2
z z2 由于 F1 ( z ) Z [ f1 (k )] z z3 z3
k
(k ) z k 1
(2) f1 (k ) (k m), f 2 (k ) (k m), m为正整数.
信号与系统教程习题解析(前七章)
题 4-1(a) 图
解
对于 于周期锯齿波 波信号,在 在周期( 0,T )内可表示 示为 At A f t t T A T T a 1 T f t dt d 1 T At T A dt A T t 2T t A 2 0
∵ω T 2 T 2A 2 T b 2 T
2π, 2 ∴
sinnω tdt t 2 2A T
《信 信号与系 系统教程 程》习题 题解析
第1 章 导论 导
1-1 题 1-1 图示信号中, 图 哪些是连续 续信号?哪 哪些是离散信 信号?哪些 些是周期信号 号? 哪些 些是非周期 期信号?哪些 些是有始信 信号?
题 1-1 图
解
图(a a)、(c)、( (d)为连续信 信号;(b)为 为离散信号 号;(d)为周 周期信号;其 其余
(a)和(b)的波形如图 p2-1 所示。
2
图 p2-1
2-2 试用 用阶跃函数的组合表示 示题 2-2 图所 所示信号。 解 (a) f t (b) f t ε t ε t 2ε t ε t 1 T ε t ε t 2 2T T
题 2-2 图
2-3 如题 题 2-3 图所示 示f t ,试画 画出如下信 信号的波形。 。 (a) f (b) f t (c) f t (d) f 2t (e) f t/2 (f) f 2t 2
cosn nω tdt A 2A T
a
f t cosnω ω tdt tsinnω ω t nω f t sinnω ω tdt
tcosn nω tdt
cosnω ω tdt
sinnω t dt nω 2 2A T
0 2A A T
tsinn nω tdt
sinnω tdt
信号与系统—第七章习题讲解PPT课件
(1)x(n),h(n),见题图731(a) (2)x(n),h(n),见题图731(b)
(3)x(n)anu(n) 0<a<1;h(n)nu(n) 0<<1;a (4)x(n)u(n);h(n)(n2)(n3)
解 :(1)由 图7-3(1 a) 可 知 : x(n) (n) 2 (n 1) (n 2) h(n) (n) (n 1) (n 2) y(n) x(n)* h(n) [ (n) 2 (n 1) (n 2)] *[ (n) (n 1) (n 2)] (n) (n 1) (n 2) 2 (n 1) 2 (n 2) (n 3) (n 2) 2 (n 3) (n 4) (n) 3 (n 1) 4 (n 2) 3 (n 3) (n 4)
解 : (3) (n 4);非 因 果 , 稳 定 (5) u(3 n); 非 因 果 , 不 稳 定 (7) 3n u ( n);非 因 果 , 稳 定 (9) 0.5n u (n); 因 果 , 稳 定
7 30对 应 于 线 性 时 不 变 系 统 : (1)已 知 激 励 为 单 位 阶 跃 信 号 之 零 状 态 响 应 ( 阶 跃 响 应 ) 是 g (n),试 求 冲 击 响 应 h(n); ( 2 )已 知 冲 激 响 应 h ( n ), 试 求 阶 跃 响 应 g ( n )。
(2)单位阶跃信号u(n)可表示为:u(n)(nk) k0
由系统的线性时不变特性可得对(nk)的响应为
h(nk)。故阶跃响应g(n)h(nk)。 k0
731 以 下 各 序 列 中 , x(n)是 系 统 的 激 励 函 数 , h(n)是 线 性 时 不 变 系 统 的 单 位 样 值 响 应 。 分 别 求 出 各 y(n),画 出 y(n) 图 形 ( 用 卷 积 方 法 ) 。
信号与系统课后习题答案汇总
可编辑第一章习题参考解答1.1 绘出下列函数波形草图。
(1) ||3)(t e t x -= (2) ()⎪⎪⎨⎧<≥=02021)(n n n x n n (3) )(2sin )(t t t x επ= (5) )]4()([4cos )(--=-t t t e t x t εεπ (7) t t t t x 2cos )]2()([)(πδδ--= (9) )2()1(2)()(-+--=t t t t x εεε)5- (11) )]1()1([)(--+=t t dt d t x εε (12) )()5()(n n n x --+-=εε (13) ⎰∞--=t d t x ττδ)1()((14) )()(n n n x --=ε 1.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。
(1) ||3)(t e t x -=解 能量有限信号。
信号能量为:(2) ()⎪⎩⎪⎨⎧<≥=02021)(n n n x n n解 能量有限信号。
信号能量为:(3) t t x π2sin )(=解 功率有限信号。
周期信号在(∞-∞,)区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1。
(4) n n x 4sin )(π=解 功率有限信号。
n 4sinπ是周期序列,周期为8。
(5) )(2sin )(t t t x επ= 解 功率有限信号。
由题(3)知,在),(∞-∞区间上t π2sin 的功率为1/2,因此)(2sin t t επ在),(∞-∞区间上的功率为1/4。
如果考察)(2sin t t επ在),0(∞区间上的功率,其功率为1/2。
(6) )(4sin )(n n n x επ=解 功率有限信号。
由题(4)知,在),(∞-∞区间上n 4sinπ的功率为1/2,因此)(4sin n n επ在),(∞-∞区间上的功率为1/4。
信号与系统精品课件例题解答7-7-1
2)方法二 z域法 对差分方程取双边 z变换,得
(1 2z1 )Yzs (z) X (z)
则
Yzs(z)
1 1 2z1
X(z)
z
1 z1
1 1 2z1
z
2 1 2z1
1 1 z1
因此
yzs (n) Z 1 Yzs (z) 2 • 2n1 u(n 1) u(n 1)
z z2
极点为 z=2,因此, H(z)可能的收敛域为
①当|z|<2 时,
h(n) 2n u(n 1)
h(n)为左边序列→非因果系统 对于非因果系统,要使得系统稳定,极点须在单位圆外。
这里,极点z=2 在单位圆外,所以此时系统为非因果、 稳定系统。
①当|z|>2 时,
h(n) 2n u(n)
h(n)为右边序列→因果系统 极点z=2 在单位圆外,所以此时系统为因果、不稳定系 统。
2)方法一 时域法 由1)的结果知道,满足题设条件的系统单位样值响应为
h(n) 2n u(n)
因此
yzs (n) x(n) h(n) u(n 1) 2n u(n)
n
2n
m
u(
n
1)
m 1
2 • 2n1 1 u(n 1)
例题7.7.1
某LTI离散时间系统的差分方程为
y(n) 2 y(n 1) x(n)
1)求系统函数H(z) 并确定可能的单位样值响应,说明系 统的因果性Байду номын сангаас稳定性。;
2)求由该差分方程确定的因果系统的在 x(n)=u(n+1) 作用 下的零状态响应。
解:
1)由差分方程可得H(z)表达式
H(z)
1 1 2z1
信号与系统课后习题答案第7章
143
第7章 离散信号与系统的Z域分析 144
第7章 离散信号与系统的Z域分析
题图 7.7
145
第7章 离散信号与系统的Z域分析 146
第7章 离散信号与系统的Z域分析
题解图 7.31
147
第7章 离散信号与系统的Z域分析
(2) 由H(z)写出系统传输算子: 对应算子方程和差分方程为
148
7.25 已知一阶、二阶因果离散系统的系统函数分别如下, 求离散系统的差分方程。
111
第7章 离散信号与系统的Z域分析 112
第7章 离散信号与系统的Z域分析 113
第7章 离散信号与系统的Z域分析 114
第7章 离散信号与系统的Z域分析
7.26 已知离散系统如题图7.5所示。 (1) 画出系统的信号流图; (2) 用梅森公式求系统函数H(z); (3) 写出系统的差分方程。
① 或者
② 容易验证式①、②表示同一序列。
57
第7章 离散信号与系统的Z域分析 58
第7章 离散信号与系统的Z域分析 59
第7章 离散信号与系统的Z域分析 60
第7章 离散信号与系统的Z域分析 61
第7章 离散信号与系统的Z域分析
也可以将Yzs(z)表示为
再取Z逆变换,得 ②
自然,式①、②为同一序列。
44
第7章 离散信号与系统的Z域分析 45
第7章 离散信号与系统的Z域分析 46
第7章 离散信号与系统的Z域分析
7.10 已知因果序列f(k)满足的方程如下,求f(k)。
47
第7章 离散信号与系统的Z域分析 48
第7章 离散信号与系统的Z域分析
(2) 已知K域方程为
49
信号与系统简明教程 教学课件 ppt 作者 程正务 习题 27806《信号与系统简明教程》程正务(习题解答)
①+②得 ( y1 y2 )''2( y1 y2 )'3( y1 y2 ) (x1 x2 )'(x1 x2 )
即有 x1 (t) x2 (t) y1 (t) y2 (t) 满足可加性
ky1 ''2ky1 '3ky1 kx1 'kx1 (ky1 )''2(ky1 )'3(ky1 ) (kx1 )'(kx1 )
1-2 判断下面各信号是否是周期信号,如果是周期信号,求出其周期。
(1)
f1 (t)
2 cos(4t
3
)
(2)
f2 (n)
sin( 8n 7
2)
(3) f3 (t) e j(t1)
j ( n )
(4) f 4 (t) e 8
解:(1)T 2 2 (2) 8 n 2k 8 (n 7 k) 取 k 4 得 N 7
信号与系统简明教程习题解答
1-1 分析题 1.1 图中各信号的连续性、周期性和有始性。
f (n)
x(t)
2
A
t
T T 0 2
T
T
2
A
p (t )
1
2Ts
Ts
0
Ts
t
2Ts
1
2
3
1
2
2 5
0
n
12
3
4
5
f (t)
3 2 1
t
0 12 3
题 1.1 图
解:(1)连续、周期、无始无终;(2)离散、非周期、有始无终;(3)连续、非周期、有始有终; (4)连续、非周期、有始无终
x2
(t
)
信号与系统课件:系统的状态变量分析
输出方程为
系统的状态变量分析 写成矩阵形式,状态方程和输出方程分别为
系统的状态变量分析
2. 并联模拟 由式(7. 2-15b ),系统函数可写为
系统的状态变量分析 即可用 3 个简单的子系统的并联来表示。其中每个简 单子系统的系统函数为
其模拟框图如图 7.2-4 所示。
系统的状态变量分析
(1)可以有效地提供系统内部的信息,使人们能够较为 容易地解决那些与系统内部情况有关的分析设计问题。
(2)状态变量描述法不仅适用于线性非时变的单输入单 输出系统特性的描述,也适用于非线性时变多输入多输出系 统特性的描述。
(3)描述方法规律性强,便于应用计算机技术解决复杂 系统的分析设计问题。
系统的状态变量分析 【例 7.2-1 】 电路如图 7. 2 1 所示,激励为 u s ( t ),
响应为 i (t ),试写出其状态方程和输出方程。
图 7.2-1 例 7. 2-1 用图
系统的状态变量分析
系统的状态变量分析
将式(7. 2-2 )中状态变量的一阶导数放在等式左端,把状态 变量和激励放在等式右端,则可写成
前面几章讨论的分析方法属于输入 输出描述法( Input-OutputDescription ),又称端口分析法,也称外部法。 它主要关心的是系统的激励与响应之间的关系,而不直接涉 及系统的内部情况。这种分析法对于较为简单系统的分析是 合适的。其相应的数学模型是 n 阶微分(或差分)方程。
系统的状态变量分析
系统的状态变量分析 将式(7. 2-12 )最高阶导数项留在等式左边,其余各项移到 等式右边,代入状态变量符号,得
于是,写出其状态方程和输出方程为
系统的状态变量分析 写成矩阵形式,状态方程为
信号与系统第7章 习题答案
提示:因为收敛域为 z
1 ,所以对应的是左边序列 4
1 az 1 1 , z 1 z a a
1 a 1 az 1 a z 1 a a 2 1 1 a2 X z 1 a 1 a a , 1 1 1 z a z a z a 1 z a 1 1 x n a n a u n a a 10 z 2 (5) X ( z ) , z 1 ( z 1)( z 1)
n
z 1
(7) 2 u ( n)
X z
n
2 n 2 un z n z
n 0
n
1 2 1 z
z , z2
z 2
(8) 2 u ( n)
n
X z
n
n
n 2 u n z n
9 n 10
(11) x( n) Ar cos( n0 ) u ( n)
(0 r 1)
cos0 n cos u n sin 0 n sin u n
y n cos0 n u n cos0 n cos sin 0 n sin u n
7.4 假设 x( n) 的 z 变换表示式如下,问 X ( z ) 可能有多少不同的收敛域,它们分别对应什么 序列?
z 1 (7) X ( z ) , z 6 (1 6 z 1 ) 2
解: (1) X ( z )
n
z 2 (8) X ( z ) , z 1 1 z 2
1 , z 0.5 1 0.5 z 1
信号与系统(第三版)习题详解7章
!! ’! 已知双边 ! 变换为
& %" &#’ " # " # " # &## &#$ &#% # $ " &$# %’求原函数 (" "# !! " $ " # $ # &$$ #’求原函数 (" "# $
" # ! $ $ $$ &$$ %’求原函数 (" "# 解 ! 利用部分分式展开 ’将 %" &#表示为 # & & " & %" &#’ # ) # & ## & #$ & #% " #当 $ " &$# % 时 ’ "#是因果序列 ’故有 ("
#
" " # $ "#% ""
"
& ’ &$# $ $ & #$
" " )
所以 "" # " " ) " # $ ")" " $ # # # & " & &" " ( &#$ & ’ &* &$$ ’ !! !! % # # * ’ " # " # $ $$ " $ &#$ $ # &#" &#$ &# # !! !!
第 ! 章 ! 离散信号与系统的 " 域分析
习 题 七 详 解
!! #! 用定义求下列信号的双边 ! 变换及收敛域 ! " # # $!!!!!!!!!! " # " "" # $ " "# "## # "## !" #!" # " " " # $ " #" # $ $ # ##"# % "" "" #" #"#
信号与系统王明泉第七章习题解答
第7章离散时间系统的Z域分析7.1 学习要求(1)深刻理解z变换的定义、收敛域及基本性质,会根据z变换的定义和性质求解一些常用序列的z变换,能求解z反变换,深刻理解z变换与拉普拉斯变换得关系;(2)正确理解z变换的应用条件;(3)能用z域分析分析系统,求离散系统的零状态响应、零输入响应、完全响应、单位样值响应;(4)深刻理解系统的单位样值响应与系统函数H(z)之间的关系,并能用系统函数H(z)求解频率响应函数,能用系统函数的分析系统的稳定性、因果性。
7.2 本章重点(1)z变换(定义、收敛域、性质、反变换、应用);(2)z域分析(求解分析系统);(3)系统的频率响应函数。
7.3 本章的知识结构7.4 本章的内容摘要7.4.1 Z变换(1)定义∑∞-∞=-=n nzn x z X )()( 表示为:)()]([z X n x Z =。
(2)收敛域 1.有限长序列12(),()0,x n n n n x n n ≤≤⎧=⎨⎩其他 (1)当0,021>>n n 时,n 始终为正,收敛条件为0>z ; (2)当0,021<<n n 时,n 始终为负,收敛条件为∞<z ;(3)当0,021><n n 时,n 既取正值,又取负值,收敛条件为∞<<z 0。
2.右边序列11(),()0,x n n n x n n n ≥⎧=⎨<⎩ (1)当01>n 时,n 始终为正,由阿贝尔定理可知,其收敛域为1x R z >,1x R 为最小收敛半径;(2)当01<n 时,)(z X 分解为两项级数的和,第一项为有限长序列,其收敛域为∞<z ;第二项为z 的负幂次级数,由阿贝尔定理可知,其收敛域为1x R z >;取其交集得到该右边序列的收敛域为∞<<z R x 1。
3.左边序列2(),()0,x n n n x n n ≤⎧=⎨⎩其他(1)当02<n ,n 始终为负,收敛域为2x R z <,2x R 为最大收敛半径; (2)当02>n ,)(z X 可分解为两项级数的和,第一项为z 的正幂次级数,根据阿贝尔定理,其收敛域为2x R z <,2x R 为最大收敛半径;第二项为有限长序列,其收敛域为0>z ;取其交集,该左边序列的收敛域为20x R z <<。
信号与系统精品课件例题解答7.7
§7.7 离散时间系统的 因果性及稳定性
一、因果性的z域体现
一个LTI离散线性时间系统是因果系统的充分必要条件是
h(n) h(n)u(n)
即 h(n)为因果序列。
由于因果序列 z变换的收敛域为|z|>R。系统因果性的充
分必要条件可以用 表示,即系统函数H(z)的收敛域 |z|>R
所以,对于因果系统而言,其系统函数 H(z)的极点分布 在z平面上一个半径有限的圆内。
二、稳定性的z域体现
一个LTI离散线性时间稳定系统时域中的充分必要条件是
h(n) M
n
其中M为有界正值。上式可写作
h(n)
n
上式表明 , h(n)zn 在单位圆|z|=1上是收敛的,根据收
n
敛域的定义,单位圆在 H (z) h(n)zn 的收敛域内。
n
系统为稳定的充要条件是:系统函数H(z)的收敛域包含 单位圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y(n) 5 y(n 1) 6 y(n 2) x(n)
若x(n)=u(n) ,求响应y(n)。 解: 因为系统是非因果的,故方程两边取双边z变换,得到
Y (z) 1 5z1 6z2 X(z)
H z
1 1 5z1 6z2
4
•
2n
9 4
•
3n
u(n
1)
故系统响应为
y(n)
4
•
2n
9 4
•
3n
u(n
1)
1 2
u(n)
三、2< |z|<3 ; 由题意知X(z) 的收敛域为|z|>1 ,因此Y(z) 的收敛域为 2<|z|<3 。
将Y(z)重写如下
Y(z)
1z 2
4z
9z 4
z1 z2 z3
1)极点 z=1和z=2在Y(z) 收敛环的内侧,对应右边序列,即
Z 1
1z 2 z 1
4z
z
2
1 2
u(n) 4
2n u n
2)极点z=3 在 收敛环的外侧,对应左边序列,故
Z
1
9z 4 z3
9 4
•
3n
u(n
1)
故系统响应为
y(n)
1 2
2n2
u
n
9 4
•
3n
u(n
1)
二、1<|z|<2 ; 由题意知X(z) 的收敛域为|z|>1 ,因此Y(z) 的 收敛域为 1<|z|<2 。
1)极点 z=1在Y(z) 收敛环的内侧,对应右边序列,即
Z 1
z12z1
1 2
u(n)
2)极点 z=2和z=4在收敛环的外侧,对应左边序列,故
Z 1
4z z2
9z 4 z3
z2
z 2z 3
Y (z) X (z)H z
z3
z2 5z 6 z 1
将Y(z)作部分分式分解
Y(z)
1z 2
4z
9z 4
z1 z2 z3
因为是非因果系统,系统函数H(z)的收敛域分三种情况:
一、|z|<1 ; 由题意知X(z) 的收敛域为|z|>1 ,此时两者没有 公共收敛域,Y(z) 不存在。