信号与系统精品课件例题解答7-7-2

合集下载

信号与系统7-2卷积定理课件

信号与系统7-2卷积定理课件

一般的求法:f (t) f (t) y(t),先求 y(t)的频谱Y ( j)
t y(t)dt Y ( j) Y (0) ()
j
其中:
Y (0)
y(t)dt f (t)dt f (t) f () f ()
t y(t)dt Y ( j) [ f () f ()] ()
3
时域微分和积分性质
时域微分性质
df (t) jF ( j)
dt
时域积分性质
f (n) (t) ( j)n F( j)
当 F(0) F( j) f (t)dt 0 时,
0
t f ( )d F( j)
j
f (n) (t) 1 F ( j ) ( j)n
4
时域微积分性质的公式
已知:
G
(t
)
Sa(
2
)
,根据对偶性:
Sa(
t
2
)
2
G
(
)

换成2c,得:
C
Sa(Ct)
G2c
( )
又已知: cos0t [ ( 0 ) (
Sa(Ct)
0 )]
C
G2c
( )
根据频域卷积定理:
f
(t)
1
2
ห้องสมุดไป่ตู้
C
G2C
() [ (
0 )
(
0 )]
f
(t)
2C
[G2C
(
0 )
G2C
(
0 )]
cos
2
t
[
(
2
)
(
2
)]
根据频域卷积定理:
1
cos

信号与系统课后习题参考答案

信号与系统课后习题参考答案

1试分别指出以下波形是属于哪种信号?题图1-11-2试写出题1-1图中信号的函数表达式。

1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。

题图1-3⑴)2(1-t x ⑵)1(1t x -⑶)22(1+t x⑷)3(2+t x ⑸)22(2-t x ⑹)21(2t x - ⑺)(1t x )(2t x -⑻)1(1t x -)1(2-t x ⑼)22(1t x -)4(2+t x 1-4已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。

题图1-4⑴)12(1+n x ⑵)4(1n x -⑶)2(1n x ⑷)2(2n x -⑸)2(2+n x ⑹)1()2(22--++n x n x⑺)2(1+n x )21(2n x -⑻)1(1n x -)4(2+n x ⑼)1(1-n x )3(2-n x1-5已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。

题图1-51-6试画出下列信号的波形图:⑴)8sin()sin()(t t t x ΩΩ=⑵)8sin()]sin(211[)(t t t x ΩΩ+= ⑶)8sin()]sin(1[)(t t t x ΩΩ+=⑷)2sin(1)(t tt x = 1-7试画出下列信号的波形图:⑴)(1)(t u e t x t -+=⑵)]2()1([10cos )(---=-t u t u t e t x t π⑶)()2()(t u e t x t --=⑷)()()1(t u e t x t --=⑸)9()(2-=t u t x ⑹)4()(2-=t t x δ1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。

⑴)1(1)(2Ω-Ω=Ωj e j X ⑵)(1)(Ω-Ω-Ω=Ωj j e e j X ⑶Ω-Ω---=Ωj j e e j X 11)(4⑷21)(+Ω=Ωj j X 1-9已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。

信号与系统第七章课后答案

信号与系统第七章课后答案
第 7 章习题答案
7-1 分别绘出下列各序列的图形。 (2)x[n] 2n u[n] (3)x[n] (1/ 2)n u[n] (4)x[n] (2) n u[ n] (1)x[n] (1/ 2)n u[n] 解:
x[ n ]
1
x[n]
1
0 1 2 (1) 3 4
n
0
1
2 3 (2)
x[n]
1
x[n]
-4
-3
-2 (1)
-1
0
n
0
1
2 (2)
3
4
n
x[n]
-4 1 0 1 2 3 4 -3 -2 -1 0
x[n] n
-1
n
(4)
(3)
7-3
分别绘出下列各序列的图形。 (2) x[n] cos
n 10 5
n (1) x[n] sin 5
1 z2 X (z) ( 1 1 2 z 1 )( 1 2 z 1 ) ( z 1 2 )( z 2 ) X (z) z 1 4 z ( z 1 2 )( z 2 ) 3( z 1 2 ) 3( z 2 )
X (z)
z 4z 3( z 1 2 ) 3 ( z 2 )
N
)
由于 x[n] 、 h[n] 均为因果序列,因此 y[n] 亦为因果序列,根据移位性质可求得
y [ n ] Z 1 [Y ( z )]
1 1 (1 a n 1 ) u [ n ] (1 a n 1 N ) u [ n N ] 1 a 1 a
7-24 计算下列序列的傅里叶变换。
(2)

信号与系统教程习题解析(前七章)

信号与系统教程习题解析(前七章)
故响应 2f t f t ↔ y t 2 1 e e
2e
第2章
连续时间信号
2-1 设有如下函数f t ,试分别画出它们的波形。 (a) f t 2ε t 1 2ε t 2 (b) f t sinπt ∙ ε t ε t 6 解 (a)和(b)的波形如图 p2-1 所示。
2
图 p2-1
2-2 试用阶跃函数的组合表示题 2-2 图所示信号。 解 (a) f t ε t 2ε t 1 ε t 2
信号与系统的频域分析
4-1 求题 4-1 图所示周期信号的三角函数形式的傅里叶级数表示式。
题 4-1(a) 图
解 对于周期锯齿波信号,在周期( 0,T )内可表示为
ft
A T
t
T
At T
A
a
1 T
f t dt
1 T
At T
A dt
A T
t 2T
t
A 2
∵ ω T 2π, ∴ sinnω tdt
cosnω tdt 0
⇒t
2f
t

j
dF ω dω
2F ω
df t dt
↔ jωF ω

t
df t dt

j
d
jωF ω dω
4-9 对于如题 4-9 图所示的三角波,试求其频谱函数。
13
题 4-9 图
解 过原点的三角波函数是偶函数,其表达式为
ft
A1
|t| τ
,
|t|
0,
|t|

fte
dt 2
A1
t τ
cosωtdt
2A
1 ω
sinωt|
1 τ

信号与系统第七章课后习题答案

信号与系统第七章课后习题答案


k 1
z
1
k
1 z 1 z
0 z
F( z )
k 1
f (k )z k

k
[(k 1) (k 2)]z k z2 z 1 z

k 1
z k z 1 z 1
例 7.1- 2 已知无限长因果序列f(k)=akε(k)。求f(k)
d d k f ( k ) ( z ) ( z ) F ( z ) z dz dz
d d d z k f ( k ) ( z ) z F ( z ) dz dz dz
|a|<|z|<|b|
Im[z]
Im[z] |a |
Im[z]
|a | o Re[z] o Re[z] o
|a|
Re[z] |b |
(a)
(b)
(c)
图 7.1-1 例7.1-2、例7.1-3、例7.1-4图
7.1.3 常用序列的双边Z变换
(1) f (k ) (k )。
F ( z)
k
例 7.2-3 已知
1 k 1 f (k ) 3 (k 1), 2
k
求f(k)的双边Z变换及其收敛域。 解 令f1(k)=3k+1ε(k+1),则有
1 f ( k ) f1 ( k ) 2
z z2 由于 F1 ( z ) Z [ f1 (k )] z z3 z3
k
(k ) z k 1

(2) f1 (k ) (k m), f 2 (k ) (k m), m为正整数.

信号与系统教程习题解析(前七章)

信号与系统教程习题解析(前七章)

题 4-1(a) 图

对于 于周期锯齿波 波信号,在 在周期( 0,T )内可表示 示为 At A f t t T A T T a 1 T f t dt d 1 T At T A dt A T t 2T t A 2 0
∵ω T 2 T 2A 2 T b 2 T
2π, 2 ∴
sinnω tdt t 2 2A T
《信 信号与系 系统教程 程》习题 题解析
第1 章 导论 导
1-1 题 1-1 图示信号中, 图 哪些是连续 续信号?哪 哪些是离散信 信号?哪些 些是周期信号 号? 哪些 些是非周期 期信号?哪些 些是有始信 信号?
题 1-1 图

图(a a)、(c)、( (d)为连续信 信号;(b)为 为离散信号 号;(d)为周 周期信号;其 其余
(a)和(b)的波形如图 p2-1 所示。
2
图 p2-1
2-2 试用 用阶跃函数的组合表示 示题 2-2 图所 所示信号。 解 (a) f t (b) f t ε t ε t 2ε t ε t 1 T ε t ε t 2 2T T
题 2-2 图
2-3 如题 题 2-3 图所示 示f t ,试画 画出如下信 信号的波形。 。 (a) f (b) f t (c) f t (d) f 2t (e) f t/2 (f) f 2t 2
cosn nω tdt A 2A T
a
f t cosnω ω tdt tsinnω ω t nω f t sinnω ω tdt
tcosn nω tdt
cosnω ω tdt
sinnω t dt nω 2 2A T
0 2A A T
tsinn nω tdt
sinnω tdt

信号与系统—第七章习题讲解PPT课件

信号与系统—第七章习题讲解PPT课件

(1)x(n),h(n),见题图731(a) (2)x(n),h(n),见题图731(b)
(3)x(n)anu(n) 0<a<1;h(n)nu(n) 0<<1;a (4)x(n)u(n);h(n)(n2)(n3)
解 :(1)由 图7-3(1 a) 可 知 : x(n) (n) 2 (n 1) (n 2) h(n) (n) (n 1) (n 2) y(n) x(n)* h(n) [ (n) 2 (n 1) (n 2)] *[ (n) (n 1) (n 2)] (n) (n 1) (n 2) 2 (n 1) 2 (n 2) (n 3) (n 2) 2 (n 3) (n 4) (n) 3 (n 1) 4 (n 2) 3 (n 3) (n 4)
解 : (3) (n 4);非 因 果 , 稳 定 (5) u(3 n); 非 因 果 , 不 稳 定 (7) 3n u ( n);非 因 果 , 稳 定 (9) 0.5n u (n); 因 果 , 稳 定
7 30对 应 于 线 性 时 不 变 系 统 : (1)已 知 激 励 为 单 位 阶 跃 信 号 之 零 状 态 响 应 ( 阶 跃 响 应 ) 是 g (n),试 求 冲 击 响 应 h(n); ( 2 )已 知 冲 激 响 应 h ( n ), 试 求 阶 跃 响 应 g ( n )。
(2)单位阶跃信号u(n)可表示为:u(n)(nk) k0
由系统的线性时不变特性可得对(nk)的响应为
h(nk)。故阶跃响应g(n)h(nk)。 k0
731 以 下 各 序 列 中 , x(n)是 系 统 的 激 励 函 数 , h(n)是 线 性 时 不 变 系 统 的 单 位 样 值 响 应 。 分 别 求 出 各 y(n),画 出 y(n) 图 形 ( 用 卷 积 方 法 ) 。

信号与系统课后习题答案汇总

信号与系统课后习题答案汇总

可编辑第一章习题参考解答1.1 绘出下列函数波形草图。

(1) ||3)(t e t x -= (2) ()⎪⎪⎨⎧<≥=02021)(n n n x n n (3) )(2sin )(t t t x επ= (5) )]4()([4cos )(--=-t t t e t x t εεπ (7) t t t t x 2cos )]2()([)(πδδ--= (9) )2()1(2)()(-+--=t t t t x εεε)5- (11) )]1()1([)(--+=t t dt d t x εε (12) )()5()(n n n x --+-=εε (13) ⎰∞--=t d t x ττδ)1()((14) )()(n n n x --=ε 1.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。

(1) ||3)(t e t x -=解 能量有限信号。

信号能量为:(2) ()⎪⎩⎪⎨⎧<≥=02021)(n n n x n n解 能量有限信号。

信号能量为:(3) t t x π2sin )(=解 功率有限信号。

周期信号在(∞-∞,)区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1。

(4) n n x 4sin )(π=解 功率有限信号。

n 4sinπ是周期序列,周期为8。

(5) )(2sin )(t t t x επ= 解 功率有限信号。

由题(3)知,在),(∞-∞区间上t π2sin 的功率为1/2,因此)(2sin t t επ在),(∞-∞区间上的功率为1/4。

如果考察)(2sin t t επ在),0(∞区间上的功率,其功率为1/2。

(6) )(4sin )(n n n x επ=解 功率有限信号。

由题(4)知,在),(∞-∞区间上n 4sinπ的功率为1/2,因此)(4sin n n επ在),(∞-∞区间上的功率为1/4。

信号与系统精品课件例题解答7-7-1

信号与系统精品课件例题解答7-7-1
2 • 2n1 1 u(n 1)
2)方法二 z域法 对差分方程取双边 z变换,得
(1 2z1 )Yzs (z) X (z)

Yzs(z)
1 1 2z1
X(z)
z
1 z1
1 1 2z1
z
2 1 2z1
1 1 z1
因此
yzs (n) Z 1 Yzs (z) 2 • 2n1 u(n 1) u(n 1)
z z2
极点为 z=2,因此, H(z)可能的收敛域为
①当|z|<2 时,
h(n) 2n u(n 1)
h(n)为左边序列→非因果系统 对于非因果系统,要使得系统稳定,极点须在单位圆外。
这里,极点z=2 在单位圆外,所以此时系统为非因果、 稳定系统。
①当|z|>2 时,
h(n) 2n u(n)
h(n)为右边序列→因果系统 极点z=2 在单位圆外,所以此时系统为因果、不稳定系 统。
2)方法一 时域法 由1)的结果知道,满足题设条件的系统单位样值响应为
h(n) 2n u(n)
因此
yzs (n) x(n) h(n) u(n 1) 2n u(n)
n
2n
m
u(
n
1)
m 1
2 • 2n1 1 u(n 1)
例题7.7.1
某LTI离散时间系统的差分方程为
y(n) 2 y(n 1) x(n)
1)求系统函数H(z) 并确定可能的单位样值响应,说明系 统的因果性Байду номын сангаас稳定性。;
2)求由该差分方程确定的因果系统的在 x(n)=u(n+1) 作用 下的零状态响应。
解:
1)由差分方程可得H(z)表达式
H(z)
1 1 2z1

信号与系统课后习题答案第7章

信号与系统课后习题答案第7章

143
第7章 离散信号与系统的Z域分析 144
第7章 离散信号与系统的Z域分析
题图 7.7
145
第7章 离散信号与系统的Z域分析 146
第7章 离散信号与系统的Z域分析
题解图 7.31
147
第7章 离散信号与系统的Z域分析
(2) 由H(z)写出系统传输算子: 对应算子方程和差分方程为
148
7.25 已知一阶、二阶因果离散系统的系统函数分别如下, 求离散系统的差分方程。
111
第7章 离散信号与系统的Z域分析 112
第7章 离散信号与系统的Z域分析 113
第7章 离散信号与系统的Z域分析 114
第7章 离散信号与系统的Z域分析
7.26 已知离散系统如题图7.5所示。 (1) 画出系统的信号流图; (2) 用梅森公式求系统函数H(z); (3) 写出系统的差分方程。
① 或者
② 容易验证式①、②表示同一序列。
57
第7章 离散信号与系统的Z域分析 58
第7章 离散信号与系统的Z域分析 59
第7章 离散信号与系统的Z域分析 60
第7章 离散信号与系统的Z域分析 61
第7章 离散信号与系统的Z域分析
也可以将Yzs(z)表示为
再取Z逆变换,得 ②
自然,式①、②为同一序列。
44
第7章 离散信号与系统的Z域分析 45
第7章 离散信号与系统的Z域分析 46
第7章 离散信号与系统的Z域分析
7.10 已知因果序列f(k)满足的方程如下,求f(k)。
47
第7章 离散信号与系统的Z域分析 48
第7章 离散信号与系统的Z域分析
(2) 已知K域方程为
49

信号与系统简明教程 教学课件 ppt 作者 程正务 习题 27806《信号与系统简明教程》程正务(习题解答)

信号与系统简明教程 教学课件 ppt 作者 程正务 习题 27806《信号与系统简明教程》程正务(习题解答)

①+②得 ( y1 y2 )''2( y1 y2 )'3( y1 y2 ) (x1 x2 )'(x1 x2 )
即有 x1 (t) x2 (t) y1 (t) y2 (t) 满足可加性
ky1 ''2ky1 '3ky1 kx1 'kx1 (ky1 )''2(ky1 )'3(ky1 ) (kx1 )'(kx1 )
1-2 判断下面各信号是否是周期信号,如果是周期信号,求出其周期。
(1)
f1 (t)
2 cos(4t
3
)
(2)
f2 (n)
sin( 8n 7
2)
(3) f3 (t) e j(t1)
j ( n )
(4) f 4 (t) e 8
解:(1)T 2 2 (2) 8 n 2k 8 (n 7 k) 取 k 4 得 N 7
信号与系统简明教程习题解答
1-1 分析题 1.1 图中各信号的连续性、周期性和有始性。
f (n)
x(t)
2
A
t
T T 0 2
T
T
2
A
p (t )
1
2Ts
Ts
0
Ts
t
2Ts
1
2
3
1
2
2 5
0
n
12
3
4
5
f (t)
3 2 1
t
0 12 3
题 1.1 图
解:(1)连续、周期、无始无终;(2)离散、非周期、有始无终;(3)连续、非周期、有始有终; (4)连续、非周期、有始无终
x2
(t
)

信号与系统课件:系统的状态变量分析

信号与系统课件:系统的状态变量分析
状态变量,得到状态方程为
输出方程为
系统的状态变量分析 写成矩阵形式,状态方程和输出方程分别为
系统的状态变量分析
2. 并联模拟 由式(7. 2-15b ),系统函数可写为
系统的状态变量分析 即可用 3 个简单的子系统的并联来表示。其中每个简 单子系统的系统函数为
其模拟框图如图 7.2-4 所示。
系统的状态变量分析
(1)可以有效地提供系统内部的信息,使人们能够较为 容易地解决那些与系统内部情况有关的分析设计问题。
(2)状态变量描述法不仅适用于线性非时变的单输入单 输出系统特性的描述,也适用于非线性时变多输入多输出系 统特性的描述。
(3)描述方法规律性强,便于应用计算机技术解决复杂 系统的分析设计问题。
系统的状态变量分析 【例 7.2-1 】 电路如图 7. 2 1 所示,激励为 u s ( t ),
响应为 i (t ),试写出其状态方程和输出方程。
图 7.2-1 例 7. 2-1 用图
系统的状态变量分析
系统的状态变量分析
将式(7. 2-2 )中状态变量的一阶导数放在等式左端,把状态 变量和激励放在等式右端,则可写成
前面几章讨论的分析方法属于输入 输出描述法( Input-OutputDescription ),又称端口分析法,也称外部法。 它主要关心的是系统的激励与响应之间的关系,而不直接涉 及系统的内部情况。这种分析法对于较为简单系统的分析是 合适的。其相应的数学模型是 n 阶微分(或差分)方程。
系统的状态变量分析
系统的状态变量分析 将式(7. 2-12 )最高阶导数项留在等式左边,其余各项移到 等式右边,代入状态变量符号,得
于是,写出其状态方程和输出方程为
系统的状态变量分析 写成矩阵形式,状态方程为

信号与系统第7章 习题答案

信号与系统第7章 习题答案
(4) X ( z )
提示:因为收敛域为 z
1 ,所以对应的是左边序列 4
1 az 1 1 , z 1 z a a
1 a 1 az 1 a z 1 a a 2 1 1 a2 X z 1 a 1 a a , 1 1 1 z a z a z a 1 z a 1 1 x n a n a u n a a 10 z 2 (5) X ( z ) , z 1 ( z 1)( z 1)

n
z 1
(7) 2 u ( n)
X z
n
2 n 2 un z n z
n 0


n


1 2 1 z

z , z2
z 2
(8) 2 u ( n)
n
X z
n
n
n 2 u n z n
9 n 10
(11) x( n) Ar cos( n0 ) u ( n)
(0 r 1)
cos0 n cos u n sin 0 n sin u n
y n cos0 n u n cos0 n cos sin 0 n sin u n
7.4 假设 x( n) 的 z 变换表示式如下,问 X ( z ) 可能有多少不同的收敛域,它们分别对应什么 序列?
z 1 (7) X ( z ) , z 6 (1 6 z 1 ) 2
解: (1) X ( z )
n
z 2 (8) X ( z ) , z 1 1 z 2
1 , z 0.5 1 0.5 z 1

信号与系统(第三版)习题详解7章

信号与系统(第三版)习题详解7章

!! ’! 已知双边 ! 变换为
& %" &#’ " # " # " # &## &#$ &#% # $ " &$# %’求原函数 (" "# !! " $ " # $ # &$$ #’求原函数 (" "# $
" # ! $ $ $$ &$$ %’求原函数 (" "# 解 ! 利用部分分式展开 ’将 %" &#表示为 # & & " & %" &#’ # ) # & ## & #$ & #% " #当 $ " &$# % 时 ’ "#是因果序列 ’故有 ("
#
" " # $ "#% ""
"
& ’ &$# $ $ & #$
" " )
所以 "" # " " ) " # $ ")" " $ # # # & " & &" " ( &#$ & ’ &* &$$ ’ !! !! % # # * ’ " # " # $ $$ " $ &#$ $ # &#" &#$ &# # !! !!
第 ! 章 ! 离散信号与系统的 " 域分析
习 题 七 详 解
!! #! 用定义求下列信号的双边 ! 变换及收敛域 ! " # # $!!!!!!!!!! " # " "" # $ " "# "## # "## !" #!" # " " " # $ " #" # $ $ # ##"# % "" "" #" #"#

信号与系统王明泉第七章习题解答

信号与系统王明泉第七章习题解答

第7章离散时间系统的Z域分析7.1 学习要求(1)深刻理解z变换的定义、收敛域及基本性质,会根据z变换的定义和性质求解一些常用序列的z变换,能求解z反变换,深刻理解z变换与拉普拉斯变换得关系;(2)正确理解z变换的应用条件;(3)能用z域分析分析系统,求离散系统的零状态响应、零输入响应、完全响应、单位样值响应;(4)深刻理解系统的单位样值响应与系统函数H(z)之间的关系,并能用系统函数H(z)求解频率响应函数,能用系统函数的分析系统的稳定性、因果性。

7.2 本章重点(1)z变换(定义、收敛域、性质、反变换、应用);(2)z域分析(求解分析系统);(3)系统的频率响应函数。

7.3 本章的知识结构7.4 本章的内容摘要7.4.1 Z变换(1)定义∑∞-∞=-=n nzn x z X )()( 表示为:)()]([z X n x Z =。

(2)收敛域 1.有限长序列12(),()0,x n n n n x n n ≤≤⎧=⎨⎩其他 (1)当0,021>>n n 时,n 始终为正,收敛条件为0>z ; (2)当0,021<<n n 时,n 始终为负,收敛条件为∞<z ;(3)当0,021><n n 时,n 既取正值,又取负值,收敛条件为∞<<z 0。

2.右边序列11(),()0,x n n n x n n n ≥⎧=⎨<⎩ (1)当01>n 时,n 始终为正,由阿贝尔定理可知,其收敛域为1x R z >,1x R 为最小收敛半径;(2)当01<n 时,)(z X 分解为两项级数的和,第一项为有限长序列,其收敛域为∞<z ;第二项为z 的负幂次级数,由阿贝尔定理可知,其收敛域为1x R z >;取其交集得到该右边序列的收敛域为∞<<z R x 1。

3.左边序列2(),()0,x n n n x n n ≤⎧=⎨⎩其他(1)当02<n ,n 始终为负,收敛域为2x R z <,2x R 为最大收敛半径; (2)当02>n ,)(z X 可分解为两项级数的和,第一项为z 的正幂次级数,根据阿贝尔定理,其收敛域为2x R z <,2x R 为最大收敛半径;第二项为有限长序列,其收敛域为0>z ;取其交集,该左边序列的收敛域为20x R z <<。

信号与系统精品课件例题解答7.7

信号与系统精品课件例题解答7.7
信号与系统
§7.7 离散时间系统的 因果性及稳定性
一、因果性的z域体现
一个LTI离散线性时间系统是因果系统的充分必要条件是
h(n) h(n)u(n)
即 h(n)为因果序列。
由于因果序列 z变换的收敛域为|z|>R。系统因果性的充
分必要条件可以用 表示,即系统函数H(z)的收敛域 |z|>R
所以,对于因果系统而言,其系统函数 H(z)的极点分布 在z平面上一个半径有限的圆内。
二、稳定性的z域体现
一个LTI离散线性时间稳定系统时域中的充分必要条件是
h(n) M
n
其中M为有界正值。上式可写作
h(n)
n
上式表明 , h(n)zn 在单位圆|z|=1上是收敛的,根据收
n
敛域的定义,单位圆在 H (z) h(n)zn 的收敛域内。
n
系统为稳定的充要条件是:系统函数H(z)的收敛域包含 单位圆。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题7.7.2 已知某非因果LTI离散时间系统的差分方程为
y(n) 5 y(n 1) 6 y(n 2) x(n)
若x(n)=u(n) ,求响应y(n)。 解: 因为系统是非因果的,故方程两边取双边z变换,得到
Y (z) 1 5z1 6z2 X(z)
H z
1 1 5z1 6z2
4

2n
9 4

3n
u(n
1)
故系统响应为
y(n)
4

2n
9 4

3n
u(n
1)
1 2
u(n)
三、2< |z|<3 ; 由题意知X(z) 的收敛域为|z|>1 ,因此Y(z) 的收敛域为 2<|z|<3 。
将Y(z)重写如下
Y(z)
1z 2
4z
9z 4
z1 z2 z3
1)极点 z=1和z=2在Y(z) 收敛环的内侧,对应右边序列,即
Z 1
1z 2 z 1
4z
z
2
1 2
u(n) 4
2n u n
2)极点z=3 在 收敛环的外侧,对应左边序列,故
Z
1
9z 4 z3

9 4

3n
u(n
1)
故系统响应为
y(n)
1 2
2n2
u
n
9 4

3n
u(n
1)
二、1<|z|<2 ; 由题意知X(z) 的收敛域为|z|>1 ,因此Y(z) 的 收敛域为 1<|z|<2 。
1)极点 z=1在Y(z) 收敛环的内侧,对应右边序列,即
Z 1
z12z1
1 2
u(n)
2)极点 z=2和z=4在收敛环的外侧,对应左边序列,故
Z 1
4z z2
9z 4 z3
z2
z 2z 3
Y (z) X (z)H z
z3
z2 5z 6 z 1
将Y(z)作部分分式分解
Y(z)
1z 2
4z
9z 4
z1 z2 z3
因为是非因果系统,系统函数H(z)的收敛域分三种情况:
一、|z|<1 ; 由题意知X(z) 的收敛域为|z|>1 ,此时两者没有 公共收敛域,Y(z) 不存在。
相关文档
最新文档