解耦控制系统
第七章 解耦控制系统
pij 第一放大系数(开环增益) qij 第二放大系数(闭环增益)
2. 相对增益与相对增益矩阵
第一放大系数pij (开环增益) 指耦合系统中,除Uj到Yi通道外,其它通道 全部断开时所得到的Uj到Yi通道的静态增益; 即,调节量 Uj 改变了 Uj 所得到的 Yi 的变化 量 Yi 与 Uj 之比,其它调节量 Uk ( k≠j )均 不变。 pij可表示为:
通过计算过程的微分分别计算出第一放大系数和 第二放大系数,从而得到相对增益矩阵。
另一种方法是增益矩阵计算法
先计算第一放大系数,再由第一放大系数直接计 算第二放大系数,从而得到相对增益矩阵。
2. 相对增益与相对增益矩阵
增益矩阵计算法
即由第一放大系数直接计算第二放大系数。
2. 相对增益与相对增益矩阵
的根所决定。即特征方程的根具有负实部, 两个关联回路是稳定的。
1. 耦合过程及其要解决的问题
通常认为,在一个多变量被控过程中,如果每一个被控
变量只受一个控制变量的影响,则称为无耦合过程,其分 析和设计方法与单变量过程控制系统完全一样。
存在耦合的多变量过程控制系统的分析与设计中需要解决 的主要问题: 1. 如何判断多变量过程的耦合程度? 2. 如何最大限度地减少耦合程度? 3. 在什么情况下必须进行解耦设计,如何设计?
1. 耦合过程及其要解决的问题
稳定性如何判别?
1. 耦合过程及其要解决的问题
当两个回路有关联时,则闭环稳定性由特征方程:
Q(s) [1 G11 (s)Gc1 (s)][1 G22 (s)Gc 2 (s)] G12 (s)G21 (s)Gc1 (s)Gc 2 (s) 0
式中
K 22 h11 K11 K 22 K12 K 21
解耦控制的基本原理
解耦控制的基本原理解耦控制是一种常见的设计原则和方法,它旨在将复杂的系统分解成独立的模块,以降低系统的耦合度,提高可维护性和可扩展性。
本文将从解耦控制的基本原理、实现方法、应用场景等方面进行介绍和分析。
一、解耦控制的基本原理解耦控制的基本原理是通过降低模块之间的依赖程度,使得系统中的各个模块可以独立地进行开发、测试和维护。
具体来说,解耦控制主要包括以下几个方面的原理:1. 模块化设计:将系统划分为多个模块,每个模块负责处理特定的功能或任务。
模块之间通过定义清晰的接口进行通信,而不是直接依赖于具体的实现细节。
2. 松耦合:模块之间的依赖关系应尽量降低,使得修改一个模块不会对其他模块产生影响。
常见的实现方式包括使用接口、回调函数等。
3. 单一职责原则:每个模块应该只负责一个特定的功能或任务,避免一个模块承担过多的责任,以减少模块之间的依赖。
4. 分层架构:将系统划分为多个层次,每个层次负责不同的功能。
上层的模块只依赖于下层模块的接口,而不依赖于具体的实现。
二、解耦控制的实现方法解耦控制的实现方法多种多样,根据具体的应用场景和需求可以选择不同的方法。
以下是一些常用的实现方法:1. 接口隔离原则:定义清晰的接口,每个模块只依赖于自己需要的接口,而不依赖于其他模块不需要的接口。
这样可以避免模块之间的不必要的耦合。
2. 依赖注入:通过将依赖关系的创建和管理交给外部容器来实现解耦。
模块只需要声明自己需要的依赖,由外部容器来负责注入具体的实现对象。
3. 事件驱动:模块之间通过发布-订阅模式进行通信,一个模块发生的事件会被其他模块接收并进行相应的处理。
这样可以实现模块之间的解耦。
4. 消息队列:模块之间通过消息队列进行通信,一个模块将消息发送到队列中,其他模块从队列中获取消息并进行相应的处理。
消息队列可以实现模块之间的异步解耦。
三、解耦控制的应用场景解耦控制在软件开发中有着广泛的应用场景,下面列举几个常见的场景:1. 分布式系统:在分布式系统中,各个节点之间需要进行通信和协作。
过程控制系统多变量解耦控制系统
过程控制系统多变量解耦控制系统过程控制系统多变量解耦控制系统(Multivariable Decoupling Control System)是一种能够同时控制多个相关变量的控制系统。
在传统的控制系统中,通常只有一个控制回路,而多变量解耦控制系统则可以通过多个回路同时对多个变量进行控制,从而实现变量之间的解耦。
在实际的工程应用中,往往需要控制多个相关的变量。
这些变量之间可能存在交互作用,控制其中一个变量可能会对其他变量产生影响。
传统的单变量控制系统无法有效地解决这个问题,因为它们无法考虑到变量之间的相互关系。
多变量解耦控制系统通过建立多个独立的控制回路,每个回路分别控制一个相关变量,从而实现变量之间的解耦。
解耦的目标是使每个回路的输出变量不再受到其他变量的影响,即通过调整每个回路的控制器参数,使得系统变得稳定并能够达到预期的控制效果。
多变量解耦控制系统的设计一般包括两个主要步骤:解耦器设计和控制器设计。
解耦器的作用是抑制变量之间的相互干扰,从而实现变量的解耦。
解耦器通常根据系统的数学模型来设计,通过调整解耦器的参数,可以实现变量之间的解耦效果。
在解耦器设计的基础上,需要设计每个回路的控制器。
控制器的设计一般采用传统的控制方法,如PID控制器或者先进的控制算法。
控制器的目标是为每个回路选择合适的控制参数,使得系统的稳定性和控制精度得到保证。
多变量解耦控制系统在实际应用中具有广泛的应用。
例如,在化工过程中,需要控制多个过程变量,如温度、压力和流量等。
传统的单变量控制方法无法满足工艺的需求,而多变量解耦控制系统可以通过解耦变量之间的相互作用,实现高效的过程控制。
总之,多变量解耦控制系统是一种用于控制多个相关变量的控制系统。
它通过建立多个独立的控制回路,实现变量之间的解耦,并通过调整控制器参数,使得系统达到稳定和预期的控制效果。
在工程应用中,多变量解耦控制系统具有广泛的应用前景,可以提高工艺的控制精度和稳定性,从而实现更高效的过程控制。
(工业过程控制)10.解耦控制
在系统运行过程中,通过动态调整控制参数或策略,实现耦合的 实时解耦。
解耦控制的方法与策略
状态反馈解耦
通过引入状态反馈控制 器,对系统状态进行实 时监测和调整,实现解
耦。
输入/输出解耦
通过合理设计输入和输 出信号,降低变量之间
的耦合程度。
参数优化解耦
通过对系统参数进行优 化调整,改善耦合状况, 实现更好的解耦效果。
通过线性化模型,利用线性控制理论设计控制器,实现系统 解耦。
非线性解耦控制
针对非线性系统,采用非线性控制方法,如滑模控制、反步 法等,实现系统解耦。
状态反馈与动态补偿解耦控制
状态反馈解耦控制
通过状态反馈技术,将系统状态反馈 到控制器中,实现系统解耦。
动态补偿解耦控制
通过动态补偿器对系统进行补偿,消 除耦合项,实现系统解耦。
特点
解耦控制能够简化系统分析和设计过 程,提高系统的可维护性和可扩展性 ,同时降低系统各部分之间的相互影 响,增强系统的鲁棒性。
解耦控制的重要性
01
02
03
提高系统性能
通过解耦控制,可以减小 系统各部分之间的相互干 扰,提高系统的整体性能。
简化系统设计
解耦控制能够将复杂的系 统分解为若干个独立的子 系统,简化系统的分析和 设计过程。
调试和维护困难
耦合问题增加了系统调试和维护的难度,提高了运营成本。
解耦控制在工业过程控制中的实施
建立数学模型
01
对工业过程进行数学建模,明确各变量之间的耦合关系。
选择合适的解耦策略
02
根据耦合程度和系统特性,选择合适的解耦策略,如状态反馈、
输出反馈等。
控制器设计
03
解耦控制实验报告
解耦控制实验报告
实验目的:探究解耦控制在自动控制中的应用,并通过实验验证解耦
控制的有效性。
实验原理:
解耦控制是指将系统的输入与输出之间的耦合关系消除,使得系统能
够更加稳定地工作。
所谓输入与输出之间的耦合关系,即指系统在输入信
号作用下,输出信号会受到输入信号的一些干扰或影响。
解耦控制通过分
别对系统的输入和输出进行调节,达到解耦的效果。
在实际应用中,解耦控制可以提高系统的稳定性、可控性和响应速度,减小系统对干扰的敏感性,并且可以避免系统产生不可预测的输出。
实验设备和材料:
1.电脑
2. MatLab软件
3.控制系统实验中常用的电路组件(如电阻、电容等)
实验步骤:
1. 在MatLab中搭建解耦控制系统的数学模型。
2.根据系统模型,设计合适的控制器。
3.将控制器与系统连接起来,进行实验。
4.分别对比解耦控制和未解耦控制的结果并进行分析。
实验结果与分析:
在实验中,我们选择了一个典型的控制系统模型进行解耦控制实验。
实验结果显示,在解耦控制的情况下,系统的输出比未解耦控制的情况下更加稳定,且对干扰信号的响应更加迅速。
这说明解耦控制可以有效地降低系统的耦合性,提高系统的控制性能。
实验总结:
通过本次实验,我们深入了解了解耦控制在自动控制中的应用,并验证了解耦控制的有效性。
在实际应用中,解耦控制可以提高系统的稳定性和可控性,减小系统的不确定性和干扰影响,从而使系统能够更加稳定地工作。
因此,解耦控制在自动控制中具有广泛的应用前景。
解耦控制的基本原理
解耦控制的基本原理解耦控制是一种通过拆分控制系统成为多个相对独立的子系统,从而实现对系统的分析、设计和调节的控制策略。
其基本原理是将控制系统分解成互不影响的几个子系统,并用相应的子控制器来单独控制每个子系统的行为。
这样做的好处是可以减少系统的复杂性,提高系统的可调节性和可靠性,同时也方便了系统的分析和优化。
1.系统拆分:将整个控制系统分解为若干个子系统,每个子系统对应一个相对独立的动态行为。
通过这种方式,将控制系统的复杂度分解为多个较简单的子系统,从而减少控制的难度。
2.子系统控制:为每个子系统设计相应的控制器,以独立地控制每个子系统的动态行为。
通过精确地控制每个子系统的输入和输出,可以实现对整个控制系统的有效控制。
3.反馈控制:每个子系统的控制器可以通过反馈控制的方式,根据系统输出与期望输出之间的差异来调整输入信号。
这样可以实时地修正系统的误差,使系统更加稳定和可靠。
4.信息交互:通过适当的信息交互,将各个子系统的状态和参数信息传递给其他子系统,以实现协同工作。
这样可以保证整个控制系统的统一性和一致性。
电力系统是一个由多个发电机、负荷和输电线路组成的复杂网络。
为了保证电力系统的稳定运行,需要对电力系统进行控制和调节。
解耦控制在电力系统中的应用主要包括两个方面:解耦发电机和解耦负荷。
解耦发电机是指将电力系统中的每个发电机视为一个独立的子系统,并为每个发电机设计相应的控制器。
这样可以实现对发电机的独立控制,使各个发电机之间的影响减小,从而提高电力系统的稳定性。
解耦负荷是指将电力系统中的每个负荷视为一个独立的子系统,并为每个负荷设计相应的控制器。
这样可以实现对负荷的独立控制,使各个负荷之间的影响减小,从而提高电力系统的可靠性。
在电力系统中,可以通过测量发电机的频率、电压和功率等参数,并基于这些测量结果进行分析和优化。
通过控制发电机的输入信号,可以调整发电机的输出功率,从而实现电力系统的稳定供电。
类似地,通过测量负荷的功率需求和电压电流等参数,并基于这些测量结果进行分析和优化。
第七章解耦控制系统-(新)
Q H11,H22
是正确的
7.3 解耦控制系统设计
所谓解耦设计,就是设计一个解耦装置,使其中任意一个控制量 的变化只影响其配对的那个被控变量而不影响其他控制回路的被控变 量,即将多变量耦合控制系统分解成若干个相互独立的单变量控制系 统。
一、前馈补偿法
设计方法
D21 (s)
G21 (s) G22 (s)
若采用单位矩阵设计法时,期望的等效过程特性为:
GP (s) G0 s GD s 10 10
则解耦装置的数学模型为:
GD
s
G01 (s)
GP
(s)
M s
K 022 K021
K012 K 011
式中 M (s) Ts 1
采用单位矩阵设计法所得解耦装置要比对角矩阵设计法复杂(多了微 分环节),但期望的等效过程特性却比对角矩阵设计法有很大的改善。
(2)增益矩阵计算法
uu21
h11 y1 h21 y1
h12 y2 h22 y2
h ji
u j yi
yk const (k i)
1 K ij '
为闭环增 益的倒数
Y KU 其中: K Kij Y y1, y2 yn T U u1,u2 un T
U HY H hij
矩阵与矩阵互为逆矩阵 K H 1
第7章 解耦控制系统
本章要点
1)了解多变量耦合控制系统的应用背景及要解决的问 题,熟悉相对增益的概念,掌握相对增益矩阵的计 算方法,学会用相对增益判断系统的耦合程度。
2)掌握常见的前馈补偿解耦设计方法。
序言
有一些工业过程,它们存在如下一些特点:
1)输入/输出变量在两个及其以上,且相互存在耦合;
解耦控制系统
2.三角矩阵法 三角矩阵法
推导过程略
r 1
WT1(s) WT2(s)
T 1
W21
Y1
解耦器数学模型为
D11 (s ) D (s ) 21 D12 (s ) D22 (s )
r2
T 2
Y2
W22 (s ) W12 (s )W21 (s ) 1 = W11 (s )W22 (s ) W12 (s )W21 (s ) W21 (s ) + W11 (s )W21 (s )
P P2 1 P0 P2 P0 P 1 P0 P2
1
P P d 0 1 P P 2 = 0 1 P P2 p1 P0 P2
2.引入H矩阵
1 设 h ji = qij
用矩阵表示
则
λ ji =
pij qijຫໍສະໝຸດ = pij h jiΛ=P*(P-1)T =(H-1)*HT ( (
W12 (s ) W11 (s )
二、反馈解耦控制
R T
Fd
W Y F
WT
根据串联解耦控制求Fd,再求F 根据串联解耦控制求Fd,再求F
三、前补偿法
前补偿法是在控制器之前(控制对象后) 前补偿法是在控制器之前(控制对象后)进行补偿的。
r1
WT1(s)
W11(s) W21(s) W12(s)
W11(s) W22(s)
Y1
解耦器数学模型为
D11 (s ) D (s ) 21 D12 (s ) D22 (s )
r2
Y2
W22 (s )W11 (s ) 1 = W11 (s )W22 (s ) W12 (s )W21 (s ) W21 (s )W11 (s )
W12 (s )W22 (s ) W11 (s )W22 (s )
解耦控制系统
接计算第二放大系数, 从而得到相对增益矩 阵。
10
相对增益系数的计算方法1
输入输出稳态方程
u1(s)
y1(s) y1 K11u1 K12u2
u2(s)
y2(s) y2 K21u1 K22u2
0
0 Gp22 (s)
Gp11(s)Gp22
(s)
1
Gp12
(s)Gp21(s)
Gp22 (s) Gp21(s)
Gp12 (s)Gp11(s)
Gp11(s)
0
0 Gp22 (s)
Gp11(s)Gp22 (s)
G
p11
(
s)G
p
22
(s)
G
p12
(
s)G
p
21
(s)
Gp11(s)Gp21(s)
G
p11
(
s)G
p
22
(s)
G
p12
(
s)G
p
21
(s)
Gp22 (s)Gp12 (s)
G
p11
(
s)G
p
22
(s)
G
p12
(
s)G
p
21
(s)
Gp11(s)Gp22 (s)
G
p11
(
s)G
p
22
(s)
G
p12
(
s)G
p
21
(s)
29
3.解耦控制系统设计
R1
Gc1(s) Uc1 Gp11(s) Y1
解耦控制系统PPT课件模板
解耦控制系统的未来发展方向
智能化解耦控制
多目标优化解耦控制
利用人工智能和机器学习技术,实现自适 应、自学习的解耦控制策略。
研究如何同时优化多个性能指标,实现更 全面的系统性能提升。
网络化解耦控制
鲁棒性解耦控制
针对网络化控制系统,研究如何实现有效 的解耦控制策略。
多变量系统问题
在许多实际工业过程中,系统常常存在多个输入和输出变量,这些变量之间可 能存在耦合关系,导致系统难以控制。解耦控制系统旨在解决这一问题。
解耦控制系统的定义
控制策略
解耦控制系统是一种通过某种控制策 略,使得多变量系统中的各个变量之 间尽可能减少耦合关系的控制系统。
目的
解耦控制系统的目的是提高系统的可 控制性和可观测性,使得各个输出变 量能够独立地被控制,从而更好地实 现系统的性能优化和稳定运行。
06
结论
解耦控制系统的重要性和意义
提高系统性能 解耦控制系统能够将耦合的多个 过程或子系统进行解耦,从而提 高每个子系统的性能和稳定性。
增强系统可靠性 解耦控制系统能够降低子系统之 间的耦合程度,减少系统故障的 传播和扩散,统的设计能够简化系 统结构,降低系统复杂性和控制 难度,提高系统的可维护性和可 扩展性。
详细描述
在能源领域中,解耦控制系统主要用于控制各种能源设备和系统,如风力发电、太阳能发电、火力发电等。通过 解耦控制技术,可以实现能源设备的快速响应和精确控制,提高能源的产出和利用率,降低能耗和环境污染。
04
解耦控制系统的优势与挑战
解耦控制系统的优势
提高系统性能
解耦控制系统能够将复杂系统 分解为多个独立的子系统,从
解耦控制系统
PT
FT
u2
图 6-8 关联严重的控制系统
6.5.2. 相对增益
令某一通道在其它系统均为开环时的放大系数与该一通道在 其它系统均为闭环时的放大系数之比为 λij,称为相对增益, 则 yi u j u λ ij y yi u j 上式中分子项外的下标u表示除了uj以外,其它都保持不变, 即都为开环;分母项外的下标y表示除了yi以外,其它y都保 持不变,即其它系统都为闭环系统。
u y λ y λ
1 1 2
11 21
u λ λ
12 22
2
u1
k11
y1
k21 k12 u2 k22 y2
பைடு நூலகம்
图 6-9 双输入双输出对象静态特性框
被控变量与操纵变量间 正确匹配
串接解耦控 制
控制器的参数整 定 减少控制回路
6.5.4. 串接解耦控制
串接解耦装置D(s)的作用是使G(s)•D(s) 的积 成为对角阵,这样关联就消除了。要求 G(s)D(s)之积为对角阵,对其非零元素又有三 类方法。
对角线矩阵法 单位矩阵法 前馈补偿法
6.5.5.工业应用实例
某乙烯装置裂解炉的解耦控制。它具有四组并 联的裂解炉管,每组炉管对应于8个烧嘴。每 组有燃料油的控制阀。原料油(煤油、柴油等) 经预热至590 0C后进入裂解炉管进行裂解,生 成乙烯、丙烯,丁烯、甲烷、乙烷、丙烷…… 等。为了减少炉管结焦和提高乙烯等产品收率, 需要降低裂解炉管内的油气分压,因此须按一 定的比率加入稀释蒸汽。原料油和稀释蒸汽的 比率应该控制好。
6.5. 解耦控制系统
6.5.1. 系统的关联分析
第七章 解耦控制
❖ 相对增益矩阵为
p11
pn1
p12
pn2
p1n P11
pnn Pn1
P12
Pn2
P1n
1 detP
Pnn
21/72
7.1 相对增益
1、相对增益矩阵中每行或每列的总和均为1
n
ij
j 1
n j 1
pij
Pij det P
1 det P
n j 1
pij Pij
det P det P
r1 _
Kc1gc1
μ1 K11g11
+ + y1
K21g21
K12g12
r2 _
Kc2gc2
μ2 K22g22
+ y2 +
调节器
过程
18/72
2×2关联过程的普遍表示法
7.1 相对增益
y1
y2
k11 k21
k12 k22
1
2
P
1 2
y = Pμ
1 2
K 22 K11K22 K12 K21
1
2
K11
第二放大系数
q11
y1
1
y2
K11
K12 K21 K 22
相对增益
11
1
1 K12 K21
K11K 22
15/72
7.1 相对增益
相对增益ij 的计算,直接根据定义得
11
p11 q11
K11K 22 K11K22 K12 K21
12 21
p12 q12 p21 q21
K12 K21 K11K22 K12 K21
第7章 解耦控制
河北工业大学 控制科学与工程学院
解耦控制的基本原理
解耦控制的基本原理解耦控制是一种常用的软件设计原则,旨在减少系统中各个模块之间的依赖关系,提高系统的灵活性和可维护性。
本文将介绍解耦控制的基本原理,并探讨其在软件开发中的应用。
解耦控制的基本原理是将一个复杂的系统拆分成多个相互独立的模块,各模块之间通过接口进行通信。
这样做的好处是,当一个模块发生变化时,只需要修改该模块的代码,而不会影响到其他模块。
这样可以降低系统的耦合度,使系统更易于维护和扩展。
在软件开发中,解耦控制的应用非常广泛。
首先,在模块化的架构设计中,我们可以将系统划分为多个模块,每个模块负责不同的功能。
通过定义清晰的接口和协议,各个模块之间可以独立开发和测试,最后再进行集成。
这种模块化的设计可以提高开发效率,同时也方便后续的维护和升级。
在分布式系统中,解耦控制也非常重要。
分布式系统由多个独立的节点组成,节点之间通过网络进行通信。
为了实现解耦控制,我们可以使用消息队列等中间件来实现节点之间的异步通信。
通过将消息发送到队列中,发送方和接收方之间是解耦的,可以独立进行扩展和修改。
这种解耦控制的设计可以提高系统的可伸缩性和容错性。
在前后端分离的架构中,解耦控制也是非常重要的。
通过将前端和后端拆分成独立的两个模块,前端负责用户界面的展示,后端负责逻辑处理和数据存储。
通过定义良好的接口和协议,前后端之间可以独立开发和测试,最后再进行集成。
这种解耦控制的设计可以提高开发效率,同时也方便前后端的升级和替换。
解耦控制是一种重要的软件设计原则,可以提高系统的灵活性和可维护性。
通过将系统拆分成多个相互独立的模块,并通过接口进行通信,可以降低系统的耦合度,使系统更易于维护和扩展。
在模块化的架构设计、分布式系统和前后端分离的架构中,解耦控制都有着广泛的应用。
因此,掌握解耦控制的原理和方法,对于软件开发人员来说是非常重要的。
第七章 解耦控制
(yi j ) | ur (yi j ) | yr
越大, pij与qij相差越大, 说明别的
回路的闭合与否对yi和µ控制通道影响越大, 即µ对yi的控制 j j 作用越弱。
20
相对增益与耦合程度
◆当通道的相对增益接近于1, 例如0.8<λij <1.2, 则表明其它通 道对该通道的关联作用很小; 无需进行解耦系统设计。 ◆当相对增益小于零或接近于零时, 说明使用本通道调节器不 能得到良好的控制效果. 或者说, 这个通道的变量选配不适当, 应重新选择. ◆当相对增益0.3<λ<0.7或λ>1.5时, 则表明系统中存在着非 常严重的耦合. 需要考虑进行解耦设计或采用多变量控制系统 设计方法.
PC QC
h t/40 - 1 例3. P152例7-1 μ1 p0 p1 h p p2 0 p1 - p2 p1 p0 p2
p1
PT
h
DT
μ2 p1 - p2 p0 p2 p0 p1 p0 p2
p0
p2
μ1
μ2
14
2. 矩阵法 由第一放大系数经过计算得到第二放大系数从而得到相对增 益矩阵
y2为定值, µ 2是变化的
y1 第一放大系数 p11 u1
K11
u2
y2 K 21u1 y1 K11u1 K12 K 22
第二放大系数
相对增益
11
1 K12 K 21 1 K11 K 22
12
相对增益ij的计算,直接根据定义得
p11 K11 K 22 q11 K11 K 22 K12 K 21 p12 K12 K 21 12 q12 K12 K 21 K11 K 22 p K12 K 21 21 21 q21 K12 K 21 K11 K 22 p22 K11 K 22 22 q22 K11 K 22 K12 K 21
工学解耦控制系统
GsDs I diag1,1,,1
(6-30)
即通过解耦,使各个系统的对象特性成1:1的比例环节。 此时解耦装置D(s)为
Ds
D11 s
D21
s
D12 D22
s s
G11s G21s
G12
s
1
G22s
G22 s G21 s
G12 s
G11
s
G11sG22 s G21sG12 s
(6-31)
6.3.4设计中的有关问题 (1). 实践表明,在很多情况下采用静态解耦已能获得相当 好的效果。
对于采用前馈补偿法时,若式(6-32)中G21(s) 和 G态2项2(s相)动近态时项,相采近用,静式态(解6耦-3十3)分中简G单11和(s方)和便G。12(s)的动
(2) 一般地说,需要采用动态解耦时,宜采用超前滞后 环节即 K T1 s 1 的形式。
6.4工业应用实例
在此介绍某乙烯装置裂解炉的解耦控制。它具有四个控制器和四 个控制阀,并配上解耦装置,构成解耦控制系统可以解决问题。 在此而采用一个温度主控制器,另外引入四个偏差设定器,并使 用计算机进行解耦计算,达到了令人满意的结果。
在λ11=0.5时
0.5 0.5
0.5 0.5
图6-1所示压力和流量系统就属此情况。
在λ11=1.2时
1.2 0.2
0.2.
1.2
(2). 在相对增益阵列中所有元素为正时,称之为正耦合。 当k11与k22同号(都为正或都为负),k12与k21中一正 一负时, 都为ij 正值,且 ≤1,ij 属正耦合系统。
(6-6)
12
21
k12 k 21 k11 k 22 k12 k 21
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28
3. 解耦控制系统设计
0 N11 ( s) N12 ( s) G p11 ( s) G p12 ( s) G p11 ( s) N ( s) N ( s) G ( s) G ( s) 0 G ( s ) p 22 p 22 22 21 p 21
PC FC
u1
PT
FT
u2
图 6-8 关联严重的控制系统
3
1. 耦合过程及其要解决的问题
通常为,在一个多变量被控过程中,如果每一个被控
变量只受一个控制变量的影响,则称为无耦合过程,其分 析和设计方法与单变量过程控制系统完全一样。
存在耦合的多变量过程控制系统的分析与设计中需要解决 的主要问题: 1. 如何判断多变量过程的耦合程度? 2. 如何最大限度地减少耦合程度? 3. 在什么情况下必须进行解耦设计,如何设计?
( 4)
N12 (s) Gp12 (s) / Gp11 (s)
23
3. 解耦控制系统设计
这种方法与前馈控制设计所论述的方法 一样,补偿器对过程特性的依赖性较大。 此外,当输入-输出变量较多时,则不宜 采用此方法。
24
3. 解耦控制系统设计
二 对角阵解耦法
对角阵解耦设计是一种常见的解耦方法。它要 求被控对象特性矩阵与解耦环节矩阵的乘积等 于对角阵。
Yi pij U j
U k const
Uj → Yi的增益 (仅Uj → Yi通道投运, 其他通道不投运)
6
2. 相对增益与相对增益矩阵 第二放大系数qij (闭环增益)
指除所观察的 Uj 到 Yi 通道之外,其它通道均 闭合且保持Yk(k≠j)不变时,Uj到Yi通道之 间的静态增益。 即,只改变被控量Yi所得到的变化量Yi与Uj 的变化量Uj之比。 qij可表示为:
Uc1Gp 21 (s) Uc1N21 (s)Gp 22 (s) 0
Uc 2Gp12 (s) Uc 2 N12 (s)Gp11 (s) 0
( 1)
( 2)
22
3. 解耦控制系统设计 因此,前馈补偿解耦器的传递函数为
N21 (s) Gp 21 (s) / Gp 22 (s)
( 3)
20
3. 解耦控制系统设计 一 、 前馈补偿解耦法
R1 Gc1 ( s ) Uc1
N 21 ( s )
U1
Gp11(s) Gp21(s) Gp12 (s)
Y1
N12 ( s ) R2 Gc 2 ( s )
Uc2
U2
Gp22(s)
Y2
图 带前馈补偿器的全解耦系统
21
3. 解耦控制系统设计
如果要实现对 Uc1与Y2、Uc2与Y1之间的解耦, 根据前馈补偿原理可得,
Yi qij U j
Yk const
Uj → Yi的增益 (不仅Uj → Yi通道投运,其 他通道也投运)
7
2. 相对增益与相对增益矩阵
相对增益ij定义为:
Yi ij qij U j pij
U k const
Yi U j
Yk const
8
2. 相对增益与相对增益矩阵 相对增益矩阵
y p11 1 u1
u2
q11
y1 u1
y2
y2 K 21u1 y1 K11u1 K12 K11 K 22 1 K12 K 21 11 K11 K12 K 21 K 22 1 K11 K 22
2. 相对增益与相对增益矩阵
U1
K11 K 21 K12
G p11 ( s) G p12 ( s) N11 ( s) N12 ( s) 1 0 G ( s) G ( s) N ( s ) N ( s ) 0 1 p 22 22 p 21 21
31
3. 解耦控制系统设计
因此,系统输入输出方程满足如下关系,
25
3. 解耦控制系统设计
R1 Uc1 U1
Y1
Gc1 ( s)
N11 ( s )
N 21 ( s )
Gp11(s) Gp21(s) Gp12 (s)
N12 ( s ) R2 Gc 2 ( s)
Uc2
N 22 (s)
U2
Gp22(s)
Y2
图 双变量解耦系统方框图
26
3. 解耦控制系统设计
根据对角阵解耦设计要求,即
14
2. 相对增益与相对增益矩阵
令:
K 22 h11 K11 K 22 K12 K 21
K12 h12 K11 K 22 K12 K 21
K 21 h21 K11 K 22 K12 K 21
1 q hij ji h qij ji
K11 h22 K11 K 22 K12 K 21
ij pij hji
KH I
H K 1
15
ij
pij qij
2. 相对增益与相对增益矩阵
相对增益矩阵 可表示成矩阵 K 中每个元素与 逆矩阵 K-1 的转置矩阵中相应元素的乘积(点 积),即
K (K )
或表示成
1 T
H H
1
T
可见,第二种方法只要知道开环增益矩阵即可 方便地计算出相对增益矩阵。
Y1 ( s) G p11 ( s) Y ( s) 0 2 U c1 ( s) U ( s ) G p 22 ( s) c2 0
27
3. 解耦控制系统设计
假设对象传递矩阵Gp(s)为非奇异阵,即
G p11 ( s ) G p12 ( s ) 0 G p 21 ( s ) G p 22 ( s )
λ11 <0
第二个回路的断开或闭合将会对Y1有相反的作用,两个控制回 路将会以“相互不相容”的方式进行关联,如Y1与U1配对,将 造成闭环系统的不稳定。
17
3. 解耦控制系统设计
在耦合非常严重的情况下,最有效的方法是采 用多变量系统的解耦设计。 解耦的方法: 前馈补偿解耦法 对角阵解耦法 单位矩阵解耦法
4
2. 相对增益与相对增益矩阵
令某一通道在其它系统均为开环时的放大系 数与该一通道在其它系统均为闭环时的放大 系数之比为λij,称为相对增益; 相对增益λij是Uj相对于过程中其他调节量对 该被控量Yi而言的增益( Uj → Yi ); λij定义为
pij ij qij
pij 第一放大系数(开环增益) qij 第二放大系数(闭环增益)
5
2. 相对增益与相对增益矩阵
第一放大系数pij (开环增益) 指耦合系统中,除Uj到Yi通道外,其它通道 全部断开时所得到的Uj到Yi通道的静态增益; 即,调节量 Uj 改变了 Uj 所得到的 Yi 的变化 量 Yi 与 Uj 之比,其它调节量 Uk(k≠j)均 不变。 pij可表示为:
Y1
U 2
K 22
图 双变量静态耦合系统
Y2
12
相对增益系数的计算方法2
即由第一放大系数直接计算第二放大系数。
由图可得
Y1 K11U1 K12 U 2 Y2 K 21U1 K 22 U 2
引入K矩阵,(1)式可写成矩阵形式,即
( 1)
Y1 K11 K12 U1 Y K K U 2 21 22 2
0 G p 22 (s) G p12 (s) G p11 ( s) 1 G p 22 (s) G p11 (s)G p 22 (s) G p12 (s)G p 21 (s) G p 21 ( s) G p11 ( s) 0
G p11 ( s )G p 22 ( s ) G ( s )G p 22 ( s ) G p12 ( s )G p 21 ( s ) p11 G p11 ( s )G p 21 ( s ) G ( s )G ( s ) G ( s )G ( s ) p 22 p12 p 21 p11 G p11 ( s )G p 22 ( s ) G p12 ( s )G p 21 ( s ) G p11 ( s )G p 22 ( s ) G p11 ( s )G p 22 ( s ) G p12 ( s )G p 21 ( s ) G p 22 ( s )G p12 ( s )
解耦控制
est
1
解耦控制
学习内容
1 耦合过程及其要解决的问题 2 相对增益与相对增益矩阵 3 解耦控制系统的设计
2
1. 耦合过程及其要解决的问题
在一个生产装置中,往往需要设置若干个控制回路, 来稳定各个被控变量。在这种情况下,几个回路之间, 就可能相互关联,相互耦合,相互影响,构成多输入多输出的相关(耦合)控制系统。
(2)
2. 相对增益与相对增益矩阵
由(2)式得
K 22 K12 U1 Y1 Y2 K11 K 22 K12 K 21 K11 K 22 K12 K 21 ( 3) K 21 K11 U 2 Y1 Y2 K11 K 22 K12 K 21 K11 K 22 K12 K 21
0 G p11 ( s) G p12 ( s) N11 ( s) N12 ( s) G p11 ( s) G ( s) G ( s) 0 G ( s ) N ( s ) N ( s ) p 22 p 22 22 p 21 21
因此,被控对象的输出与输入变量之间应 满足如下矩阵方程:
16
2. 相对增益与相对增益矩阵 相对增益所反映的耦合特性以及“变量配 对”措施(以2*2过程为例):