2009年浙江省丽水市数学试题卷及答案
2009年高考浙江数学(理科)试题和参考答案
初中数学知识点归纳总结一、基本运算方法1、配方法所谓配方,就是把一个分析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的使用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和分析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且使用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法和韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的使用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和和积,求这两个数等简单使用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
2009年中考数学试题汇编之三角形与全等三角形试题及答案[1]
2009年中考试题专题之16-三角形与全等三角形试题及答案一、选择题 1.(2009年江苏省)如图,给出下列四组条件: ①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组2.(2009年浙江省绍兴市)如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58°3. (2009年义乌)如图,在ABC 中,90C ∠=。
,EF//AB,150∠=。
,则B ∠的度数为A .50。
B. 60。
C.30。
D. 40。
【关键词】三角形内角度数【答案】D4.(2009年济宁市)如图,△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD 等于A. 100°B. 120°C. 130°D. 150°A BD5、(2009年衡阳市)如图2所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 中点 B .BC 中点 C .AC 中点 D .∠C 的平分线与AB 的交点6、(2009年海南省中考卷第5题)已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50° 7、(2009 黑龙江大兴安岭)如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( ) A .5米 B .10米 C . 15米 D .20米8、(2009年崇左)一个等腰三角形的两边长分别为2和5,则它的周长为( ) A .7 B .9 C .12 D .9或12 9、(2009年湖北十堰市)下列命题中,错误的是( ). A .三角形两边之和大于第三边 B .三角形的外角和等于360° C .三角形的一条中线能将三角形面积分成相等的两部分 D .等边三角形既是轴对称图形,又是中心对称图形10、(09湖南怀化)如图,在Rt ABC △中,90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知10=∠BAE ,则C ∠的度数为( )A .30 B .40 C .50 D .6011、(2009年清远)如图,AB CD ∥,EF AB ⊥于E EF ,交CD 于F ,已知160∠=°,则2∠=( )A .20°B .60°C .30°D .45°A DB12、(2009年广西钦州)如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( ) A .2对 B .3对C .4对D .5对【形ADO13、(2009年甘肃定西)如图4,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD于点E ,且四边形ABCD 的面积为8,则BE =( )A .2B .3C.D.14、(2009年广西钦州)如图,AC =AD ,BC =BD ,则有( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分D .CD 平分∠ACBABCD15、(2009肇庆)如图,Rt ABC △中, 90ACB ∠=°,DE 过点C ,且DE AB ∥,若 55ACD ∠=°,则∠B 的度数是( ) A .35° B .45° C .55° D .65°CDB AEF12A B E21CDBA16、(2009年邵阳市)如图,将Rt △ABC(其中∠B =340,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( ) A.560B.680C.1240D.180017、(2009年湘西自治州)一个角是80°,它的余角是( )A .10°B .100°C .80°D .120°18、(2009河池)如图,在Rt △ABC 中,90∠=A ,AB =AC= E 为AC 的中点,点F 在底边BC 上,且⊥FE BE ,则△CEF 的面积是( )A . 16B . 18C .D .19、(2009柳州)如图所示,图中三角形的个数共有( ) A .1个 B .2个 C .3 个 D .4个20、(2009年牡丹江)如图, ABC △中,CD AB ⊥于D ,一定能确定ABC △为直角三角形的条件的个数是( ) ①1A ∠=∠,②CD DBAD CD=,③290B ∠+∠=°,④345BC AC AB =∶∶∶∶,⑤ACBD AC CD =·· A .1 B .2 C .3 D .4 【21、(2009桂林百色)如图所示,在方格纸上建立的平面直角坐标系中, 将△ABO 绕点O 按顺时针方向旋转90°, 得A B O ''△ ,则点A '的坐标为( ).A .(3,1)B .(3,2)C .(2,3)D .(1,3)22、(2009年长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( )A .4cmB .5cmC .6cmD .13cm 23、(2009年湖南长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长1C ACFAEC D BA可能是( ) A .4cm B .5cm C .6cm D .13cm24、(2009陕西省太原市)如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35°D .40°25、 (2009陕西省太原市)如果三角形的两边分别为3和5,那么连接这个三角形三边中点,所得的三角形的周长可能是( )A .4B .4.5C .5D .5.526、(2009年牡丹江)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS27、(2009年新疆)如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( ) A .50° B .30° C .20° D .15°28、(2009年牡丹江市)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS123C AB B 'A '【29、(2009年包头)已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43B .45C .54D .34【30、(2009年齐齐哈尔市)如图,为估计池塘岸边A B 、的距离,小方在池塘的一侧选取一点O ,测得15OA =米,OB =10米,A B 、间的距离不可能是( ) A .20米 B .15米 C .10米 D .5米31、(2009年台湾)图(三)、图(四)、图(五)分别表示甲、乙、丙三人由A 地到B 地的路线图。
(完整word)2009年浙江省高考数学试卷(理科)答案与解析
2009年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•浙江)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=()A.{x|0≤x<1} B.{x|0<x≤1} C.{x|x<0} D.{x|x>1}【考点】交、并、补集の混合运算.【专题】集合.【分析】欲求两个集合の交集,先得求集合C U B,再求它与Aの交集即可.【解答】解:对于C U B={x|x≤1},因此A∩C U B={x|0<x≤1},故选B.【点评】这是一个集合の常见题,属于基础题之列.2.(5分)(2009•浙江)已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”の()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件の判断.【专题】简易逻辑.【分析】考虑“a>0且b>0”与“a+b>0且ab>0”の互推性.【解答】解:由a>0且b>0⇒“a+b>0且ab>0”,反过来“a+b>0且ab>0”⇒a>0且b>0,∴“a>0且b>0”⇔“a+b>0且ab>0”,即“a>0且b>0”是“a+b>0且ab>0”の充分必要条件,故选C【点评】本题考查充分性和必要性,此题考得几率比较大,但往往与其他知识结合在一起考查.3.(5分)(2009•浙江)设复数z=1+i(i是虚数单位),则+z2=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【考点】复数代数形式の混合运算.【专题】数系の扩充和复数.【分析】把复数z代入表达式化简整理即可.【解答】解:对于,故选D.【点评】本小题主要考查了复数の运算和复数の概念,以复数の运算为载体,直接考查了对于复数概念和性质の理解程度.4.(5分)(2009•浙江)在二项式の展开式中,含x4の项の系数是()A.﹣10 B.10 C.﹣5 D.5【考点】二项式定理.【专题】二项式定理.【分析】利用二项展开式の通项公式求出第r+1项,令xの指数为4求得.【解答】解:对于,对于10﹣3r=4,∴r=2,则x4の项の系数是C52(﹣1)2=10故选项为B【点评】二项展开式の通项是解决二项展开式の特定项问题の工具.5.(5分)(2009•浙江)在三棱柱ABC﹣A1B1C1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB1C1Cの中心,则AD与平面BB1C1C所成角の大小是()A.30°B.45°C.60°D.90°【考点】空间中直线与平面之间の位置关系.【专题】空间位置关系与距离.【分析】本题考查の知识点是线面夹角,由已知中侧棱垂直于底面,我们过D点做BCの垂线,垂足为E,则DE⊥底面ABC,且E为BC中点,则E为A点在平面BB1C1C上投影,则∠ADE即为所求线面夹角,解三角形即可求解.【解答】解:如图,取BC中点E,连接DE、AE、AD,依题意知三棱柱为正三棱柱,易得AE⊥平面BB1C1C,故∠ADE为AD与平面BB1C1C所成の角.设各棱长为1,则AE=,DE=,tan∠ADE=,∴∠ADE=60°.故选C【点评】求直线和平面所成の角时,应注意の问题是:(1)先判断直线和平面の位置关系.(2)当直线和平面斜交时,常用以下步骤:①构造﹣﹣作出或找到斜线与射影所成の角;②设定﹣﹣论证所作或找到の角为所求の角;③计算﹣﹣常用解三角形の方法求角;④结论﹣﹣点明斜线和平面所成の角の值.6.(5分)(2009•浙江)某程序框图如图所示,该程序运行后输出のkの值是()A.4 B.5 C.6 D.7【考点】程序框图.【专题】算法和程序框图.【分析】根据流程图所示の顺序,逐框分析程序中各变量、各语句の作用可知:该程序の作用是计算满足S=≥100の最小项数【解答】解:根据流程图所示の顺序,程序の运行过程中各变量值变化如下表:是否继续循环S K循环前/0 0第一圈是 1 1第二圈是 3 2第三圈是11 3第四圈是2059 4第五圈否∴最终输出结果k=4故答案为A【点评】根据流程图(或伪代码)写程序の运行结果,是算法这一模块最重要の题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算の类型,又要分析出参与计算の数据(如果参与运算の数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析の结果,选择恰当の数学模型③解模.7.(5分)(2009•浙江)设向量,满足:||=3,||=4,•=0.以,,﹣の模为边长构成三角形,则它の边与半径为1の圆の公共点个数最多为()A.3 B.4 C.5 D.6【考点】直线与圆相交の性质;向量の模;平面向量数量积の运算.【专题】平面向量及应用.【分析】先根据题设条件判断三角形为直角三角形,根据三边长求得内切圆の半径,进而看半径为1の圆内切于三角形时有三个公共点,对于圆の位置稍一右移或其他の变化,能实现4个交点の情况,进而可得出答案.【解答】解:∵向量a•b=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1の圆有一个位置是正好是三角形の内切圆,此时只有三个交点,对于圆の位置稍一右移或其他の变化,能实现4个交点の情况,但5个以上の交点不能实现.故选B【点评】本题主要考查了直线与圆の位置关系.可采用数形结合结合の方法较为直观.8.(5分)(2009•浙江)已知a是实数,则函数f(x)=1+asinaxの图象不可能是()A.B.C.D.【考点】正弦函数の图象.【专题】三角函数の图像与性质.【分析】函数f(x)=1+asinaxの图象是一个正弦曲线型の图,其振幅为|a|,周期为,周期与振幅成反比,从这个方向观察四个图象.【解答】解:对于振幅大于1时,三角函数の周期为:,∵|a|>1,∴T<2π,而D不符合要求,它の振幅大于1,但周期反而大于了2π.对于选项A,a<1,T>2π,满足函数与图象の对应关系,故选D.【点评】由于函数の解析式中只含有一个参数,这个参数影响振幅和周期,故振幅与周期相互制约,这是本题の关键.9.(5分)(2009•浙江)过双曲线﹣=1(a>0,b>0)の右顶点A作斜率为﹣1の直线,该直线与双曲线の两条渐近线の交点分别为B、C.若=,则双曲线の离心率是()A.B.C.D.【考点】直线与圆锥曲线の综合问题;双曲线の简单性质.【专题】圆锥曲线の定义、性质与方程.【分析】分别表示出直线l和两个渐近线の交点,进而表示出和,进而根据=求得a和bの关系,进而根据c2﹣a2=b2,求得a和cの关系,则离心率可得.【解答】解:直线l:y=﹣x+a与渐近线l1:bx﹣ay=0交于B(,),l与渐近线l2:bx+ay=0交于C(,),A(a,0),∴=(﹣,),=(,﹣),∵=,∴=,b=2a,∴c2﹣a2=4a2,∴e2==5,∴e=,故选C.【点评】本题主要考查了直线与圆锥曲线の综合问题.要求学生有较高地转化数学思想の运用能力,能将已知条件转化到基本知识の运用.10.(5分)(2009•浙江)定义A﹣B={x|x∈A且x∉B},若P={1,2,3,4},Q={2,5},则Q﹣P=()A.P B.{5} C.{1,3,4} D.Q【考点】集合の包含关系判断及应用.【专题】集合.【分析】理解新の运算,根据新定义A﹣B知道,新の集合A﹣B是由所有属于A但不属于Bの元素组成.【解答】解:Q﹣P是由所有属于Q但不属于Pの元素组成,所以Q﹣P={5}.故选B.【点评】本题主要考查了集合の运算,是一道创新题,具有一定の新意.要求学生对新定义のA﹣B有充分の理解才能正确答.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2009•浙江)设等比数列{a n}の公比,前n项和为S n,则=15.【考点】等比数列の性质.【专题】等差数列与等比数列.【分析】先通过等比数列の求和公式,表示出S4,得知a4=a1q3,进而把a1和q代入约分化简可得到答案.【解答】解:对于,∴【点评】本题主要考查了等比数列中通项公式和求和公式の应用.属基础题.12.(4分)(2009•浙江)若某个几何体の三视图(单位:cm)如图所示,则该几何体の体积是18cm3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】由图可知,图形由两个体积相同の长方体组成,求出其中一个体积即可.【解答】解:由图可知,底下の长方体底面长为3,宽为1,底面积为3×1=3,高为3,因此体积为3×3=9;上面の长方体底面是个正方形,边长为3,高为1,易知与下面の长方体体积相等,因此易得该几何体の体积为9×2=18.【点评】本题考查学生の空间想象能力,是基础题.13.(4分)(2009•浙江)若实数x,y满足不等式组,则2x+3yの最小值是4.【考点】简单线性规划.【专题】不等式の解法及应用.【分析】先由约束条件画出可行域,再求出可行域各个角点の坐标,将坐标逐一代入目标函数,验证即得答案.【解答】解:如图即为满足不等式组の可行域,由图易得:当x=2,y=0时,2x+3y=4;当x=1,y=1时,2x+3y=5;当x=4,y=4时,2x+3y=20,因此,当x=2,y=0时,2x+3y有最小值4.故答案为4【点评】在解决线性规划の小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点の坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.14.(4分)(2009•浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区の电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下の部分0.568 50及以下の部分0.288超过50至200の部分0.598 超过50至200の部分0.318超过200の部分0.668 超过200の部分0.388若某家庭5月份の高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付の电费为148.4元(用数字作答)【考点】分段函数の解析式求法及其图象の作法.【专题】函数の性质及应用.【分析】先计算出高峰时间段用电の电费,和低谷时间段用电の电费,然后把这两个电费相加.【解答】解:高峰时间段用电の电费为50×0.568+150×0.598=28.4+89.7=118.1 (元),低谷时间段用电の电费为50×0.288+50×0.318=14.4+15.9=30.3 (元),本月の总电费为118.1+30.3=148.4 (元),故答案为:148.4.【点评】本题考查分段函数の函数值の求法,体现了分类讨论の数学思想,属于中档题.15.(4分)(2009•浙江)观察下列等式:观察下列等式:C+C=23﹣2,C+C+C=27+23,C+C+C+C=211﹣25,C+C+C+C+C=215+27,…由以上等式推测到一个一般结论:对于n∈N*,C+C+C+…+C=24n﹣1+(﹣1)n22n﹣1.【考点】二项式定理の应用.【专题】二项式定理.【分析】通过观察类比推理方法结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1【解答】解:结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1,因此对于n∈N*,C4n+11+C4n+15+C4n+19+…+C4n+14n+1=24n﹣1+(﹣1)n22n﹣1.故答案为24n﹣1+(﹣1)n22n﹣1【点评】本题考查观察、类比、归纳の能力.16.(4分)(2009•浙江)甲、乙、丙3人站到共有7级の台阶上,若每级台阶最多站2人,同一级台阶上の人不区分站の位置,则不同の站法总数是336.【考点】排列、组合及简单计数问题.【专题】排列组合.【分析】由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果.【解答】解:由题意知本题需要分组解决,∵对于7个台阶上每一个只站一人有A73种;若有一个台阶有2人另一个是1人共有C31A72种,∴根据分类计数原理知共有不同の站法种数是A73+C31A72=336种.故答案为:336.【点评】分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到步骤完整﹣﹣完成了所有步骤,恰好完成任务.17.(4分)(2009•浙江)如图,在长方形ABCD中,AB=2,BC=1,E为DCの中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABC,在平面ABD内过点D作DK⊥AB,K为垂足,设AK=t,则tの取值范围是(,1).【考点】平面与平面垂直の性质;棱锥の结构特征.【专题】空间位置关系与距离;空间角;立体几何.【分析】此题の破解可采用二个极端位置法,即对于F位于DCの中点时与随着F点到C 点时,分别求出此两个位置のt值即可得到所求の答案【解答】解:此题の破解可采用二个极端位置法,即对于F位于DCの中点时,可得t=1,随着F点到C点时,当C与F无限接近,不妨令二者重合,此时有CD=2因CB⊥AB,CB⊥DK,∴CB⊥平面ADB,即有CB⊥BD,对于CD=2,BC=1,在直角三角形CBD中,得BD=,又AD=1,AB=2,再由勾股定理可得∠BDA是直角,因此有AD⊥BD再由DK⊥AB,可得三角形ADB和三角形AKD相似,可得t=,因此tの取值の范围是(,1)故答案为(,1)【点评】考查空间图形の想象能力,及根据相关の定理对图形中の位置关系进行精准判断の能力.三、解答题(共5小题,满分72分)18.(14分)(2009•浙江)在△ABC中,角A、B、C所对应の边分别为a、b、c,且满足=,•=3.(Ⅰ)求△ABCの面积;(Ⅱ)若b+c=6,求aの值.【考点】二倍角の余弦;平面向量数量积の运算;余弦定理.【专题】解三角形.(Ⅰ)利用二倍角公式利用=求得cosA,进而求得sinA,进而根据【分析】求得bcの值,进而根据三角形面积公式求得答案.(Ⅱ)根据bc和b+cの值求得b和c,进而根据余弦定理求得aの值.【解答】解:(Ⅰ)因为,∴,又由,得bccosA=3,∴bc=5,∴(Ⅱ)对于bc=5,又b+c=6,∴b=5,c=1或b=1,c=5,由余弦定理得a2=b2+c2﹣2bccosA=20,∴【点评】本题主要考查了解三角形の问题.涉及了三角函数中の倍角公式、余弦定理和三角形面积公式等,综合性很强.19.(14分)(2009•浙江)在1,2,3…,9,这9个自然数中,任取3个数.(Ⅰ)求这3个数中,恰有一个是偶数の概率;(Ⅱ)记ξ为这三个数中两数相邻の组数,(例如:若取出の数1、2、3,则有两组相邻の数1、2和2、3,此时ξの值是2).求随机变量ξの分布列及其数学期望Eξ.【考点】等可能事件の概率;离散型随机变量及其分布列;离散型随机变量の期望与方差;组合及组合数公式.【专题】概率与统计.【分析】(I)由题意知本题是一个古典概型,试验发生包含の所有事件是从9个数字中选3个,而满足条件の事件是3个数恰有一个是偶数,即有一个偶数和两个奇数.根据概率公式得到结果.(2)随机变量ξ为这三个数中两数相邻の组数,则ξの取值为0,1,2,当变量为0时表示不包含相邻の数,结合变量对应の事件写出概率和分布列,算出期望.【解答】解:(I)由题意知本题是一个古典概型,试验发生包含の所有事件是C93,而满足条件の事件是3个数恰有一个是偶数共有C41C52记“这3个数恰有一个是偶数”为事件A,∴;(II)随机变量ξ为这三个数中两数相邻の组数,则ξの取值为0,1,2,当变量为0时表示不包含相邻の数P(ξ=0)=,P(ξ=1)=,P(ξ=2)=∴ξの分布列为ξ0 1 2p∴ξの数学期望为.【点评】本题考查离散型随机变量の分布列,求离散型随机变量の分布列和期望是近年来理科高考必出の一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.20.(14分)(2009•浙江)如图,平面PAC⊥平面ABC,△ABC是以AC为斜边の等腰直角三角形,E,F,O分别为PA,PB,ACの中点,AC=16,PA=PC=10.(Ⅰ)设G是OCの中点,证明:FG∥平面BOE;(Ⅱ)证明:在△ABO内存在一点M,使FM⊥平面BOE,并求点M到OA,OBの距离.【考点】直线与平面平行の判定;点、线、面间の距离计算.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】由于PAC⊥平面ABC,△ABC是以AC为斜边の等腰直角三角形,O为ACの中点,AC=16,PA=PC=10,所以PO、OB、OC是两两垂直の三条直线,因此可以考虑用空间向量解决:连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x轴,y轴,z轴,建立空间直角坐标系O﹣xyz,对于(I),只需证明向量FG与平面BOEの一个法向量垂直即可,而根据坐标,平面の一个法向量可求,从而得证;对于(II),在第一问の基础上,课设点Mの坐标,利用FM⊥平面BOE求出Mの坐标,而其道OA、OBの距离就是点M 横纵坐标の绝对值.【解答】证明:(I)如图,连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x 轴,y轴,z轴,建立空间直角坐标系O﹣xyz,则O(0,0,0),A(0,﹣8,0),B(8,0,0),C(0,8,0),P(0,0,6),E(0,﹣4,3),F(4,0,3),(3分)由题意得,G(0,4,0),因,因此平面BOEの法向量为,)得,又直线FG不在平面BOE内,因此有FG∥平面BOE.(6分)(II)设点Mの坐标为(x0,y0,0),则,因为FM⊥平面BOE,所以有,因此有,即点Mの坐标为(8分)在平面直角坐标系xoy中,△AOBの内部区域满足不等式组,经检验,点Mの坐标满足上述不等式组,所以在△ABO内存在一点M,使FM⊥平面BOE,由点Mの坐标得点M到OA,OBの距离为.(12分)【点评】本题考查直线与平面の平行の判定以及距离问题,建立了空间坐标系,所有问题就转化为向量の运算,使得问题简单,解决此类问题时要注意空间向量の使用.21.(15分)(2009•浙江)已知椭圆C1:(a>b>0)の右顶点A(1,0),过C1の焦点且垂直长轴の弦长为1.(Ⅰ)求椭圆C1の方程;(Ⅱ)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处の切线与C1交于点M,N.当线段APの中点与MNの中点の横坐标相等时,求hの最小值.【考点】圆锥曲线の综合;椭圆の标准方程.【专题】圆锥曲线の定义、性质与方程;圆锥曲线中の最值与范围问题.【分析】(I)根据题意,求出a,bの值,然后得出椭圆の方程.(II)设出M,N,Pの坐标,将直线代入椭圆,联立方程组,根据△判断最值即可.【解答】解:(I)由题意得,∴,所求の椭圆方程为,(II)不妨设M(x1,y1),N(x2,y2),P(t,t2+h),则抛物线C2在点P处の切线斜率为y'|x=t=2t,直线MNの方程为y=2tx﹣t2+h,将上式代入椭圆C1の方程中,得4x2+(2tx﹣t2+h)2﹣4=0,即4(1+t2)x2﹣4t(t2﹣h)x+(t2﹣h)2﹣4=0,因为直线MN与椭圆C1有两个不同の交点,所以有△1=16[﹣t4+2(h+2)t2﹣h2+4]>0,设线段MNの中点の横坐标是x3,则,设线段PAの中点の横坐标是x4,则,由题意得x3=x4,即有t2+(1+h)t+1=0,其中の△2=(1+h)2﹣4≥0,∴h≥1或h≤﹣3;当h≤﹣3时有h+2<0,4﹣h2<0,因此不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0不成立;因此h≥1,当h=1时代入方程t2+(1+h)t+1=0得t=﹣1,将h=1,t=﹣1代入不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0成立,因此hの最小值为1.【点评】本题考查圆锥图象の综合利用,椭圆方程の应用,通过构造一元二次方程,利用根の判别式计算,属于中档题.22.(15分)(2009•浙江)已知函数f(x)=x3﹣(k2﹣k+1)x2+5x﹣2,g(x)=k2x2+kx+1,其中k∈R.(Ⅰ)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求kの取值范围;(Ⅱ)设函数是否存在k,对任意给定の非零实数x1,存在惟一の非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求kの值;若不存在,请说明理由.【考点】利用导数研究函数の单调性;函数の单调性与导数の关系.【专题】导数の综合应用.【分析】(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,先求导数:p′(x),因p(x)在区间(0,3)上不单调,得到p′(x)=0在(0,3)上有实数解,且无重根,再利用分离参数の方法得出,最后再利用导数求出此函数の值域即可;(II)先根据题意得出当k=0时不合题意,因此k≠0,下面讨论k≠0の情形,分类讨论:(ⅰ)当x1>0时,(ⅱ)当x1<0时,最后综合(ⅰ)(ⅱ)即可得出k值.【解答】解析:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,p′(x)=3x2+2(k﹣1)x+(k+5),因p(x)在区间(0,3)上不单调,所以p′(x)=0在(0,3)上有实数解,且无重根,由p′(x)=0得k(2x+1)=﹣(3x2﹣2x+5),∴,令t=2x+1,有t∈(1,7),记,则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所以有h(t)∈[6,10),于是,得k∈(﹣5,﹣2],而当k=﹣2时有p′(x)=0在(0,3)上有两个相等の实根x=1,故舍去,所以k∈(﹣5,﹣2);(II)当x<0时有q′(x)=f′(x)=3x2﹣2(k2﹣k+1)x+5;当x>0时有q′(x)=g′(x)=2k2x+k,因为当k=0时不合题意,因此k≠0,下面讨论k≠0の情形,记A=(k,+∞),B=(5,+∞)(ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增,所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B,因此有k≥5,(ⅱ)当x1<0时,q′(x)在(﹣∞,0)上单调递减,所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B,因此k≤5,综合(ⅰ)(ⅱ)k=5;当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0,使得q′(x2)=q′(x1)成立,因为q′(x)在(0,+∞)上单调递增,所以x2の值是唯一の;同理,∀x1<0,即存在唯一の非零实数x2(x2≠x1),要使q′(x2)=q′(x1)成立,所以k=5满足题意.【点评】本题主要考查导函数の正负与原函数の单调性之间の关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题の综合能力,属于中档题.。
丽水市2009第一学期九年级数学第一次月考教学质量检测试题卷
丽水市2009第一学期九年级数学第一次月考教学质量检测试题卷一、仔细选一选(本题有11小题,每小题3分,共33分)1、已知点P (x ,y )在函数x xy -+=21的图象上,那么点P 应在平面直角坐标系中的 A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2、若()A a b , ,1()B c a ,两点均在函数1y x=的图像上,且1-<0a <,则b -c 的值为( ) A .正数B .负数C .零D .非负数3、如图,点P 在反比例函数1y x=(x > 0)的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是 A .)0(5>-=x xy B.)0(5>=x x y C. )0(6>-=x x y D.)0(6>=x x y4、已知二次函数2则下列判断中正确的是A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0 D .方程02=++c bx ax 的正根在3与4之间5、已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是6、若()A a b , ,1()B c a ,两点均在函数1y x=的图像上,且1-<0a <,则b -c 的值为( )A .正数B .负数C .零D .非负数7、根据下表中的二次函数2的自变量与函数y 的对应值,可判断该二次函数的图象与轴A .只有一个交点B .有两个交点,且它们分别在轴两侧C .有两个交点,且它们均在y 轴同侧 D .无交点8、如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回.点P 在运动过程中速度大小不变.则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为P(第3题)A .(第8题)9、已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c , 2a+b ,2a -b 中,其值大于0的个数为( ) A .2 B 3 C 、4 D 、510、.在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )A .22y x x =--+B .22y x x =-+-C .22y x x =-++D .22y x x =++ 11、如图,正△AOB 的顶点A 在反比例函数y =3x(x >0)的图象上, 则点B 的坐标为( )A .(2,0)B .(3,0)C .(23,0)D .(32,0) 二、填空题:本题共6小题,满分28分.12、请写出符合以下三个条件的一个函数的解析式 .①过点(3,1);②在第一象限内y 随x 的增大而减小;③当自变量的值为2时,函数值小于2. 13、如图,网格中的每个四边形都是菱形.如果格点三角形ABC 的面积为S ,按照如图所示方式得到的格点三角形A 1B 1C 1的面积是7S ,格点三角形A 2B 2C 2的面积是19S ,那么格点三角形A 3B 3C 3的面积14、在平面直角坐标系中,有A (3,-2),B (4,2)两点,现另取一点C (1,n ),当n = 时,AC + BC 的值最小.15、对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++的值是★16.如图,抛物线2y ax bx c =++与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则(1)abc 0(填“>”或“<”);(1)a 的取值范围是17 已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为18 已知点A ,B 的坐标分别为(1,0),(2,0).若二次函数3)3(2+-+=x a x y 的图像与线段AB 只有一个交点,则a 的取值范围是 三、解答题(本题有8小题,共69分)19、(本题满分10分)如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标是(12)-,. (1)求点B 的坐标;(2)求过点A O B 、、的抛物线的表达式;(3)连接AB ,在(2)中的抛物线上求出点P ,使得ABP ABO S S =△△.B 3(第13题)(第19题图)20、(本题满分6分)如图,点P 的坐标为(2,23),过点P 作x 轴的平行线交y 轴于点A ,交双曲线xky =(x>0)于点N ;作PM ⊥AN 交双曲线xky =(x>0)于点M ,连结AM.已知PN=4. (1)求k 的值.(3分)(2)求△APM 的面积.(3分)21、(本题满分14分)如图,已知直线 交坐标轴于B A ,两点,以线段AB 为边向上作正方形ABCD ,过点C D ,A ,的抛物线与直线另一个交点为E . (1)请直接写出点D C ,的坐标; (2)求抛物线的解析式;(3)若正方形以每秒5个单位长度的速度沿射线AB 下滑,直至顶点D 落在x 轴上时停止.设正方形落在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,同时D 停止,求抛物线上E C , 两点间的抛物线弧所扫过的面积.22.、(本题满分10分)已知点A 、B 分别是x 轴、y 轴上的动点,点C 、D 是某个函数图像上的点,当四边形ABCD (A 、B 、C 、D 各点依次排列)为正方形时,称这个正方形为此函数图像的伴侣正方形。
2009年高考浙江数学(理科)试题及参考答案
中国广告业是一个朝阳产业,未来的发展空间十分巨大。
1991年至2000年十年间,中国广告经营收入以平均每年增长百分之三十九点七三的速度发展,保持了持续快速增长势头。
至去年底,中国共有广告经营单位七万户,从业人员六十四万人,营业收入七百一十二亿元,分别比前年增长百分之九、百分之九点一三和百分之十四点五七,高于国民经济增长水平。
随着中国经济的快速发展和市场化程序的提高,中国广告产业必将以更快的速度发展。
而广告产业的迅猛发展,对中国国民经济的发展将起到催化作用。
2000年中国广告经营收入仅占国内生产总值百分之零点八,而美国1998年的广告经营收入已占其国内生产总值的百分之二点二,可以预见,未来中国广告产业仍大有可为,存在巨大的发展空间。
广告公司各部门职责概述客户执行总监(AD)◆直接上级:客户总监(副总经理兼)◆直接下级:AM、AE◆主要职责:配合副总经理进行业务执行的管理组织及新业务开发◆直接责任:对业务执行的流程、质量与结果负责◆直接权力:1. 对AM、AE工作的分派、调整权2. 对AM、AE加班及补休的决定权(4小时以内的加班与2小时以内的补休)注:超过以上时间需以文字方式提前申报由副总经理批准。
3. 对AM、AE工作质量的考评与奖惩的动议权4. 对业务执行、策划与创意、设计制作管理的建议与协调权5. 对公司管理问题的监督(批评)与建议权。
注:以上3.4.5.条均以文字方式交到行政部由总经理处理◆直接工作:1. 负责审核每项业务的执行计划,包括:(1)负责AM、AE的工作分派(2)负责审核业务执行的[时间推进计划](3)负责业务执行重点的提示与要求及跟踪督导2. 负责业务的报价与合同3. 负责签发业务执行的策划、创意设计[工作传单]并协调具体执行工作4. 负责业务执行中的收付款审核与督导5. 负责督导、收缴业务流程文件及小组[工作周志]与[月工作报告]6. 负责在每月2日前完成上月业务[月工作报告]上交副总经理7. 参与内部各项业务重要的策划、创意会8. 协助副总经理对AM 、AE及相关策划与创作人员进行业务知识培训9. 协助副总经理组织在每一季度初5日前评选出上季度的“dc之星”交到行政部由总经理审批。
09年浙江省各市县中考数学压轴题精选(一)
09年浙江省各市县中考数学压轴题精选(一)1. 杭州市22. (本小题满分10分)如图,在等腰梯形ABCD 中,∠C=60°,AD ∥BC ,且AD=DC ,E 、F 分别在AD 、DC 的延长线上,且DE=CF ,AF 、BE 交于点P 。
(1)求证:AF=BE ;(2)请你猜测∠BPF 的度数,并证明你的结论。
23. (本小题满分10分)在杭州市中学生篮球赛中,小方共打了10场球。
他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y 比前5场比赛的平均得分x 要高。
如果他所参加的10场比赛的平均得分超过18分 (1)用含x 的代数式表示y ;(2)小方在前5场比赛中,总分可达到的最大值是多少? (3)小方在第10场比赛中,得分可达到的最小值是多少?24. (本小题满分12分)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0)。
(1)若0>a ,且tan ∠POB=91,求线段AB 的长; (2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB=38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式; (3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离。
2. 湖州市22.(本小题10分)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1) 若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?(2) 为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案. 23.(本小题10分)如图,在平面直角坐标系中,直线l ∶y =28x --分别与x 轴,y 轴相交于A B ,两点,点()0P k ,是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作P ⊙. (1)连结PA ,若PA PB =,试判断P ⊙与x 轴的位置关系,并说明理由;(2)当k 为何值时,以P ⊙与直线l 的两个交点和圆心P 为顶点的三角形是正三角形? 24.(本小题12分)已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .直线12y x a =-分别与x 轴,y 轴相交于B C ,两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则()()M N , , , ;(2)如图,将NAC △沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连结CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线22y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.四、自选题:(本题5分)请注意:本题为自选题,供考生选做,自选题得分将计入本学科总分,但考试总分最多为120分.25.若P 为ABC △所在平面上一点,且120APB BPC CPA ∠=∠=∠=°,则点P 叫做ABC △的费马点.(1)若点P 为锐角ABC △的费马点,且60ABC PA PC ∠===°,3,4,则PB 的值为________; (2)如图,在锐角ABC △外侧作等边ACB △′连结BB ′.求证:BB ′过ABC △的费马点P ,且BB ′=PA PB PC ++.(第23题)(备用图) 第(2)题备用图 (第24题) B '3. 嘉兴23.如图,已知一次函数b kx y +=的图象经过)1,2(--A ,)3,1(B 两点,并且交x 轴于点C ,交y轴于点D ,(1)求该一次函数的解析式; (2)求OCD ∠tan 的值; (3)求证:︒=∠135AOB .24.如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?4. 丽水市23.如图,已知在等腰△ABC 中,∠A =∠B =30°,过点C 作CD ⊥AC 交AB 于点D .(1)尺规作图:过A ,D ,C 三点作⊙O (只要求作出图形,保留痕迹,不要求写作法); (2)求证:BC 是过A ,D ,C 三点的圆的切线;(3)若过A ,D ,C 三点的圆的半径为3,则线段BC 上 是否存在一点P ,使得以P ,D ,B 为顶点的三角 形与△BCO 相似.若存在,求出DP 的长;若不存在, 请说明理由.24. 已知直角坐标系中菱形ABCD 的位置如图,C ,D 两点的坐标分别为(4,0),(0,3).现有两动点P ,Q 分别从A ,C 同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒.(1)填空:菱形ABCD 的边长是 ▲ 、面积是 ▲ 、高BE 的长是 ▲ ; (2)探究下列问题:①若点P 的速度为每秒1个单位,点Q 的速度为每秒2个单位.当点Q 在线段BA 上时,求△APQ 的面积S 关于t 的函数关系式,以及S 的最大值;②若点P 的速度为每秒1个单位,点Q 的速度变为每秒k 个单位,在运动过程中,任何时刻都有相应的k 值,使得ABNM (第24题)(第23题)ABCDOxy ABC DE(第24题)△APQ 沿它的一边翻折,翻折前后两个三角形组成的四边 形为菱形.请探究当t =4秒时的情形,并求出k 的值.09年浙江省各市县中考数学压轴题精选(一)答案1. 杭州市22、(本题10分)(1)∵BA=AD ,∠BAE=∠ADF ,AE=DF , ∴△BAE ≌△ADF ,∴BE=AF ; (2)猜想∠BPF=120° . ∵由(1)知△BAE ≌△ADF ,∴∠ABE=∠DAF .∴∠BPF=∠ABE+∠BAP=∠BAE ,而AD ∥BC ,∠C=∠ABC=60°, ∴∠BPF=120° . 23、(本题10分) (1)9191215225++++=x y ;(2)由题意有x x >++++9191215225,解得x <17,所以小方在前5场比赛中总分的最大值应为17×5-1=84分;(3)又由题意,小方在这10场比赛中得分至少为18×10 + 1=181分,设他在第10场比赛中的得分为S ,则有81+(22+15+12+19)+ S ≥181 .解得S≥29,所以小方在第10场比赛中得分的最小值应为29分 .24、(本题12分)(1)设第一象限内的点B (m,n ),则tan ∠POB 91==m n ,得m=9n ,又点B 在函数xy 1= 的图象上,得m n 1=,所以m =3(-3舍去),点B 为)31,3(,而AB ∥x 轴,所以点A (31,31),所以38313=-=AB ;(2)由条件可知所求抛物线开口向下,设点A (a , a ),B (a 1,a ),则AB =a 1- a = 38,所以03832=-+a a ,解得313=-=a a 或 .当a = -3时,点A (―3,―3),B (―31,―3),因为顶点在y = x 上,所以顶点为(-35,-35),所以可设二次函数为35)35(2-+=x k y ,点A 代入,解得k= -43,所以所求函数解析式为35)35(432-+-=x y .同理,当a = 31时,所求函数解析式为35)35(432+--=x y ;(3)设A (a , a ),B (a 1,a ),由条件可知抛物线的对称轴为aa x 212+= .设所求二次函数解析式为:)2)1()(2(59++--=aa x x y .点A (a , a )代入,解得31=a ,1362=a ,所以点P 到直线AB 的距离为3或136 . 2. 湖州市22.(本小题10分)(1) 设家庭轿车拥有量的年平均增长率为x ,则:()2641100x +=,……………2分 解得:11254x ==%,294x =-(不合题意,舍去),……2分 ()100125%125∴+=.…1分 答:该小区到2009年底家庭轿车将达到125辆.……………1分(2) 设该小区可建室内车位a 个,露天车位b 个,则:0.50.1152 2.5a b a b a +=⎧⎨⎩①≤≤②……………2分 由①得:b =150-5a 代入②得:20a 150≤≤7,a Q 是正整数,a ∴=20或21, 当20a =时50b =,当21a =时45b =.……………2分∴方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个. 23.(本小题10分)解:(1)P ⊙与x 轴相切.……1分 直线28y x =--与x 轴交于()40A -,,与y 轴交于()0B ,-8,48OA OB ∴==,, 由题意,8OP k PB PA k =-∴==+,.在Rt AOP △中,()222483k k k +=+∴=-,,……………2分OP ∴等于P ⊙的半径,P ∴⊙与x 轴相切. ……………1分(2)设P ⊙与直线l 交于C D ,两点,连结PC PD ,.当圆心P 在线段OB 上时,作PE CD ⊥于E .PCD Q △为正三角形,13322DE CD PD PE ∴===∴=,,90AOB PEB ABO PBE AOB PEB ∠=∠=∠=∠∴Q °,,△∽△,AO PEAB PB ∴=,22PB PB =∴=,,……………2分 第(1)题第(2)题80822PO BO BP P ⎛⎫∴=-=-∴- ⎪ ⎪⎝⎭,,8k ∴=.……………2分 当圆心P 在线段OB延长线上时,同理可得082P ⎛⎫- ⎪ ⎪⎝⎭,-,82k ∴=--,………2分 ∴当82k =-或82k =--时,以P ⊙与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.24.(本小题12分)(1)()411133M a N aa ⎛⎫--⎪⎝⎭,,,.……………4分(2)由题意得点N 与点N ′关于y 轴对称,N '∴4133a a ⎛⎫-- ⎪⎝⎭,,将N ′的坐标代入22y x x a =-+得21168393a a a a -=++, 10a ∴=(不合题意,舍去),294a =-.……2分 334N ⎛⎫∴- ⎪⎝⎭,,∴点N 到y 轴的距离为3.904A ⎛⎫- ⎪⎝⎭Q ,,N '334⎛⎫⎪⎝⎭,,∴直线AN '的解析式为94y x =-, 它与x 轴的交点为904D ⎛⎫∴ ⎪⎝⎭,,点D 到y 轴的距离为94. 1919918932222416ACN ACD ADCN S S S ∴=+=⨯⨯+⨯⨯=△△四边形.……………2分(3)当点P 在y 轴的左侧时,若ACPN 是平行四边形,则PN 平行且等于AC ,∴把N 向上平移2a -个单位得到P ,坐标为4733a a ⎛⎫- ⎪⎝⎭,,代入抛物线的解析式, 第(2)题备用图得:27168393a a a a -=-+ 10a ∴=(不舍题意,舍去),238a =-,12P ⎛⎫∴- ⎪⎝⎭7,8.……2分 当点P 在y 轴的右侧时,若APCN 是平行四边形,则AC 与PN 互相平分,OA OC OP ON ∴==,. P ∴ 与N 关于原点对称,4133P a a ⎛⎫∴- ⎪⎝⎭,,将P 点坐标代入抛物线解析式得:21168393a a a a =++, 10a ∴=(不合题意,舍去),2158a =-,5528P ⎛⎫∴- ⎪⎝⎭,.……………2分 ∴存在这样的点11728P ⎛⎫- ⎪⎝⎭,或25528P ⎛⎫- ⎪⎝⎭,,能使得以P A C N ,,,为顶点的四边形是平行四边形. 四、自选题(本题5分)25.(1)……………2分 (2)证明:在BB '上取点P ,使120BPC ∠=°, 连结AP ,再在PB '上截取PE PC =,连结CE . 120BPC ∠=Q °,60EPC ∴∠=°, PCE ∴△为正三角形,……………1分 60PC CE PCE CEB '∴=∠=∠,°,=120°,ACB 'Q △为正三角形, AC B '∴=C ACB '∠,=60°,PCA ACE ACE ECB '∴∠+∠=∠+∠=60°,PCA ECB '∴∠=∠′, ACP B '∴△≌△CE. APC B '∴∠=∠120CE PA EB '==°,,120APB APC BPC ∴∠=∠=∠=°, P ∴为ABC △的费马点,BB '∴过ABC △的费马点P ,且BB '=EB '+PB PE PA PB PC +=++.…2分 3. 嘉兴23.(1)由⎩⎨⎧+=+-=-b k bk 321,解得⎪⎩⎪⎨⎧==3534b k ,所以3534+=x y ······················ 4分 (2)5(0)4C -,,5(0)3D ,. 在Rt △OCD 中,35=OD ,45=OC , ∴OCD ∠tan 34==OC OD . 8分 (3)取点A 关于原点的对称点(21)E ,, 则问题转化为求证︒=∠45BOE . 由勾股定理可得,5=OE ,5=BE ,10=OB ,∵222BE OE OB +=,B 第(25)题B '∴△EOB 是等腰直角三角形.∴︒=∠45BOE . ∴135AOB ∠=°. 12分24.(1)在△ABC 中,∵1=AC ,x AB =,x BC -=3. ∴⎩⎨⎧>-+->+x x xx 3131,解得21<<x . 4分(2)①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,无解. ②若AB 为斜边,则1)3(22+-=x x ,解得35=x ,满足21<<x . ③若BC 为斜边,则221)3(x x +=-,解得34=x ,满足21<<x . ∴5=x 或4=x . 9分 (3)在△ABC 中,作AB CD ⊥于D ,设h CD =,△ABC 的面积为S ,则xh S 21=.①若点D 在线段AB 上,则x h x h =--+-222)3(1.∴22222112)3(h h x x h x -+--=--,即4312-=-x h x . ∴16249)1(222+-=-x x h x ,即16248222-+-=x x h x . ∴462412222-+-==x x h x S 21)23(22+--=x (423x <≤). ························ 11分 当23=x 时(满足423x <≤),2S 取最大值21,从而S 取最大值2.·················· 13分②若点D 在线段MA 上, 则x h h x =----2221)3(.同理可得,462412222-+-==x x h x S21)23(22+--=x (413x <≤),易知此时22<S . 综合①②得,△ABC 的最大面积为22.14分 4. 丽水市23.(本题10分)解:(1)作出圆心O ,……1分 以点O 为圆心,OA 长为半径作圆.………1分(2)证明:∵CD ⊥AC ,∴∠ACD =90°.∴AD 是⊙O 的直径……………1分 连结OC ,∵∠A =∠B =30°, ∴∠ACB =120°,又∵OA =OC ,∴∠ACO =∠A =30°,……1分 ∴∠BCO =∠ACB -∠ACO =120°-30°=90°.………1分∴BC ⊥OC , ∴BC 是⊙O 的切线. ………………………1分AB NM(第24题-1)BAD N(第24题-2)BA(3)存在. …………………1分 ∵∠BCD =∠ACB -∠ACD =120°-90°=30°, ∴∠BCD =∠B , 即DB =DC . 又∵在Rt △ACD 中,DC=AD 330sin =︒⋅, ∴BD= .…………1分解法一:①过点D 作DP 1// OC ,则△P 1D B ∽△COB ,BOBDCO D P =1, ∵BO =BD +OD =32, ∴P 1D =BOBD×OC =33. ………1分②过点D 作DP 2⊥AB ,则△BDP 2∽△BCO , ∴BCBDOC D P =2, ∵BC =,322=-CO BO ∴13332=⨯=⨯=OC BC BD D P .………………………………………1分 解法二:①当△B P 1D ∽△BCO 时,∠DP 1B =∠OCB =90°. 在Rt △B P 1D 中,DP 1=2330sin =︒⋅BD . ………………1分 ②当△B D P 2∽△BCO 时,∠P 2DB =∠OCB =90°. 在Rt △B P 2D 中, DP 2=130tan =︒⋅BD . ……………1分 24.(本题12分) 解:(1)5 , 24,524………………3分 (2)①由题意,得AP =t ,AQ =10-2t. ………………1分 如图1,过点Q 作QG ⊥AD ,垂足为G ,由QG ∥BE 得 △AQG ∽△ABE ,∴BA QA BE QG =, ∴QG =2548548t-, ………………1分 ∴t t QG AP S 5242524212+-=⋅=(25≤t ≤5). ……1分 ∵6)25(25242+--=t S (25≤t ≤5).∴当t =25时,S 最大值为6.…………………1分 ② 要使△APQ 沿它的一边翻折,翻折前后的两个三角形组成的四边形为菱形,根据轴对称的性质,只需△APQ 为等腰三角形即可.当t =4秒时,∵点P 的速度为每秒1个单位,∴AP =4.………………1分 以下分两种情况讨论: 第一种情况:当点Q 在CB 上时, ∵PQ ≥BE >PA ,∴只存在点Q 1,使Q 1A =Q 1P . 如图2,过点Q 1作Q 1M ⊥AP ,垂足为点M ,Q 1M 交AC 于点F ,则AM =122AP =. 由△AMF ∽△AOD ∽△CQ 1F ,得 4311===AO OD CQ F Q AM FM , ∴23=FM , ∴103311=-=FM MQ F Q . ………………1分 ∴CQ 1=QF 34=225.则11CQ AP t k t =⋅⨯, ∴11110CQ k AP == .……………………………1分第二种情况:当点Q 在BA 上时,存在两点Q 2,Q 3,分别使A P = A Q 2,PA =PQ 3.①若AP =A Q 2,如图3,CB +BQ 2=10-4=6.则21BQ CB AP t k t +=⋅⨯,∴232CB BQ k AP +==.……1分②若PA =PQ 3,如图4,过点P 作PN ⊥AB ,垂足为N ,由△ANP ∽△AEB ,得ABAPAE AN =. ∵AE =5722=-BE AB , ∴AN =2825.∴AQ 3=2AN=5625, ∴BC+BQ 3=10-251942556=则31BQ CB APt k t +=⋅⨯.∴50973=+=AP BQ CB k . ………………………1分综上所述,当t = 4秒,以所得的等腰三角形APQ 沿底边翻折,翻折后得到菱形的k 值为1011或23或5097.。
2009年丽水市高一上数学期末试题及答案(A)卷
浙江省丽水市2008学年第一学期普通高中教学质量监控高一数学试题(A)卷(2009.1)一、选择题(本题共有10小题,每小题5分,满分50分.每小题只有一个符合题目要求) 1.函数()f x =( )A. (],4-∞B. (]0,4C. []0,4D. [)4,+∞ 2. sin120°的值为( ) A.12 B. 12-C. 2D. 2- 3.设11,,1,2,32⎧⎫α∈-⎨⎬⎩⎭,则使函数y x α=为奇函数的所有α的值为( ) A. 1,2,3 B. -1,1,2 C. 1,3 D. -1,1,3 4.设向量,,a b c 是两两不共线向量,下列命题中不正确的是( ) A. ()()a b c a b c ++=++ B. a b b a ⋅=⋅C. ()a b c a c b c +⋅=⋅+⋅D. ()()a b c a b c ⋅⋅=⋅⋅ 5.函数sin()6y x π=-的图像( )A.关于原点对称B.关于y 轴对称C.关于点(,0)6πD.关于直线6x π=对称6.龟兔赛跑讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当他醒来时,发现乌龟快到终点了,于是急忙赶,但为时已晚,乌龟还是先到了终点…用12,S S 分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )7.以知定义在R 上的偶函数()f x 的单调递减区间为[)0,+∞,则下列结论正确的是( ) A. (2)(1)(3)f f f ->> B. (1)(2)(3)f f f >-> C. (2)(3)(1)f f f ->> D. (3)(2)(1)f f f >->现准备用下列四个函数中的一个近似的表示这些数据的规律,其中最接近的一个是( ) A. 22y x =- B. 21(1)2y x =- C. 2log y x = D. 2x y = 9.函数()sin4xf x =,若对任意的实数x ,都有12()()()f x f x f x ≤≤(12,,x x x 属于不同周期), 则12x x -的最小值是( ) A.π B.2π C.4π D.8π10.函数11()22xf x a x =+--在(0,1)上有两个不同的零点,则实数a 的取值范围是( ) A. 10,4⎛⎫ ⎪⎝⎭B. 11,42⎛⎫⎪⎝⎭C. 1,12⎛⎫⎪⎝⎭D. ()1,+∞ 二、填空题(本题有7小题,每小题4分,满分28分) 11.计算: 2328log 8+= .12.已知(2,5)a = (4,)b m =,若a ∥b ,则m = . 13.已知3sin 5α=,3,)22ππα∈(,则tan α= . 14.函数[]2()23,0,3f x x x x =-+∈,则()f x 的值域为 .15.用二分法求方程3250x x --=在区间[]2,3上的近似解,去中点0 2.5x =,那么下一个有解区间为 .16.已知函数()f x 按下表给出,满足(())(3)f f x f >的x 的值为 .17.已知2(tan )1sin f x x =+,则(cos60)f = . 三、解答题(本题有5小题,满分72分)18.(14分)设全集为R ,{}13A x x =|-≤< {}24xB x =|≥.求(1) A B ;(2) ()R A C B19.(14分)设函数()sin(2)(0),()2f x x y f x πϕϕ=+<<=的图像过点(,1).6π(1)求ϕ;(2)画出函数()y f x =在区间[]0,π上的图像; (3)求函数()y f x =的单调增区间.20.(14分)已知()lg(2)f x x a =-且()0.f x = (1)求a 的值;(2)记5(),(3)2f m f n ==,试用,m n 表示6log 12;(3)若将()y f x =的图像向左平移5个单位后,在关于y 轴对称得到()y g x = 的图像,求满足()()f x g x >的x 的取值范围.21.(15分)已知平面内四点,,,,A B C P 满足2,3,60,.AB AC BAC AP AB t BC →→→→→==∠==+(1)求AB AC →→⋅;(2)若:1:2BP PC →→=,求t 的值;(3)求2AP →的最小值.22.(15分)已知函数()f x =(1) 当1a =-时,求函数()2y f x =-的零点;(2) 若()2f x a ≤对任意[]1,1x ∈-恒成立,求a 的取值范围.参考答案一.选择题二.填空题11. 7 12. 10 13.34-14. []2,6 15. []2,2.5 16. 1,3 17. 65三.解答题18.(1) 由已知得{}2B xx =∣≥,{}3A B x x ∴=∣2≤<(2). 由已知得{}2RC B xx =∣<,{}()3RA CB x x ∴=∣<19.(1).把点,16π⎛⎫⎪⎝⎭代入,得1sin(2)6πϕ=⨯+又02πϕ<<,6πϕ∴=(2).略(3). 由已知得222262k x k πππππ-+≤+≤+解得36k x k ππππ-+≤≤+20.(1). 由已知得41a -=()0x x a x - >0ax x ≤3a =(2) 5()lg 22f m == (3)lg3f n == 由换底公式得6lg12lg 2lg 2lg32log 12lg 6lg 2lg3m nm n+++===++ (3). 由已知得()lg(27)g x x =-+()()2327f xg x x x >∴->-+得52x >21.(1) cos 603AB AC AB AC ⋅=⋅⋅= (2). 1t =-或13(提示:先证明 ,,B P C 共线,再分类讨论. P 在线段BC 中间,左边,右边的情况) (3).略22.(1)当1a =-时. ()f x =由已知得()20f x -=得20x x =- ≤ 10x x = > 1x ∴=或2-(2).①当1x =-时2a a -≤,得0a ≥ ②当0x =时,02a ≤,得0a ≥ ③当1x =时,12a a -≤,得13a ≥, 综上所述,13a ≥0x x - ≤20x x x + >。
2009年高考浙江数学(理科)试题及参考答案
浙江理工科考试本试题卷分选择题和非选择题两部分。
全卷共14页,选择题部分1至5页,非选择题部分6至14页。
满分300分,考试时间150分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共126分)注意事项:1.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔写在答题纸上。
2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
选择题部分共21小题,每小题6分,共126分。
相对原子质量(原子量):H 1 C 12 N 14 O 16 Na 23 Cl 35.5 K 39 Mn 55 Fe 56一、选择题(本题共17小题。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.用动、植物成体的体细胞进行离体培养,下列叙述正确的是CO培养箱 B.都须用液体培养基A.都需用2C.都要在无菌条件下进行 D.都可体现细胞的全能性答案C【解析】动、植物成体的体细胞进行离体培养都要在无菌条件下进行,动物成体的体细胞离体培养用液体培养基,不能体现细胞的全能性,植物成体的体细胞离体培养不一定用液体培养基,能体现细胞的全能性。
故C正确。
2.破伤风梭状芽孢杆菌侵入了人体深部的组织细胞并大量繁殖,下列关于该菌的细胞呼吸类型和消灭该菌首先要通过的免疫途径的叙述,正确的是A.无氧呼吸和体液免疫B.无氧呼吸和细胞免疫C.有氧呼吸和体液免疫D.有氧呼吸和细胞免疫答案B【解析】破伤风梭状芽孢杆菌侵入了人体深部的组织细胞并大量繁殖,可见该菌的细胞呼吸类型是无氧呼吸,消灭该菌首先要通过细胞免疫的途径。
故选B。
3.下列关于基因工程的叙述,错误..的是 A .目的基因和受体细胞均可来自动、植物或微生物B .限制性核算内切酶和DNA 连接酶是两类常用的工具酶C .人胰岛素原基因在大肠杆菌中表达的胰岛素原无生物活性D .载体上的抗性基因有利于筛选含重组DNA 的细胞和促进目的基因的表达答案D【解析】基因工程中目的基因和受体细胞均可来自动、植物或微生物;常用的工具酶是限制性核酸内切酶和DNA 连接酶;人胰岛素原基因在大肠杆菌中表达的胰岛素原无生物活性,只有经过一定的物质激活以后,才有生物活性。
浙江省丽水市09—10下学期初中数学毕业考试试卷
数学试卷Ⅰ一、选择题(本大题有10小题,每小题3分,共30分,请选出各题中一个符合题意的正确选项,将答题卡上相应的位置涂黑,不选、多选、错选,均不给分) 1.下面四个数中,负数是 A .-3 B .0 C .0.2 D .32.如图,D 、E 分别是△ABC 的边AC 和BC 的中点,已知DE =2,则AB = A .1 B .2 C .3 D .4 3.不等式x <2在数轴上表示正确的是A .5分B .6分C .9分D .10分5.已知粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,则取出黄色粉笔的概率是 A .51 B .52 C .53 D .32 6.如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是 A .两个相交的圆 B .两个内切的圆 C .两个外切的圆 D .两个外离的圆 7.下列四个函数图象中,当x >0时,y 随x 的增大而增大的是8.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是 A .2m +3 B .2m +6C .m +3D .m +6(第8题)9.小刚用一张半径为24cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽 略不计),如果做成的圆锥形小丑帽子的底面半径为10cm ,那么这张扇形纸板的面积是A .120πcm2B .240πcm2C .260πcm2D .480πcm210.如图,四边形ABCD 中,∠BAD=∠ACB=90°,AB =AD ,AC=4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是A .2252x y =B .2254x y =C .252x y =D .254x y =试卷Ⅱ说明:本卷有二大题,14小题,共90分.二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式:x 2-9=________.12.若点(4,m)在反比例函数)(08≠=x xy 的图象上,则m 的值是________.13.如图,直线DE 交∠ABC 的边BA 于点D ,若DE ∥BC ,∠B =70°,则∠ADE 的度数是________.14.玉树地震灾区小朋友卓玛从某地捐赠的2种不同款式的书包和2种不同款式的文具盒中,分别取一个书包和一个文具盒进行款式搭配,则不同的搭配的可能有________种. 15.已知,2,,2,2,2,02009201023121S S S S S S a S a ====≠ 则2010S =________.(用含a 的代数式表示).16.如图,△ABC 是⊙O 的内接三角形,点D 是的中点,已知∠AOB =98°,∠COB =120°,则∠ABD 的度数是________.三、解答题(本大题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17.计算:30sin |21|420--++°.18.解方程组⎩⎨⎧=+=-②①.73.32y x y x(第9题)(第10题)(第13题)(第16题)19.已知:如图,E 、F 分别是□ABCD 的边AD 、BC 的中点.求证:AF =CE .20.如图,直线l 与⊙O 相交于A ,B 两点,且与半径OC 垂直,垂足为H ,已知AB =16cm ,cos ∠OBH =54. (1)求⊙O 的半径;(2)如果要将直线l 向下平移到与⊙O 相切的位置,平移的距离应是多少?请说明理由.21.黄老师退休在家,为选择一个合适的时间参观2019年上海世博会,他查阅了5月10日至16日(星期一至星期日)每天的参观人数,得到图1、图2所示的统计图,其中图1是每天参观人数的统计图,图2是5月15日(星期六)这一天上午,中午、下午和晚上四个时间段参观人数的扇形统计图,请你根据统计图解答下面的问题:(1)5月10日至16日这一周中,参观人数最多的是哪一天?有多少人?参观人数最少的又是哪一天?有多少人?(2)5月15日(星期六)这一天,上午的参观人数比下午的参观人数多多少人(精确到1万人)?(3)如果黄老师想尽可能选择参观人数较少的时间去参观世博会,你认为他选择什么时间比较合适?(第19题)(第20题)(第21题)22.如图,方格纸中的小正方形的边长为1,△ABC 和△DEF 的顶点都在方格纸的格点上. (1)判断△ABC 和△DEF 是否相似,并说明理由;(2)P 1,P 2,P 3,P 4,P 5,D 、F 是△DEF 边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC 相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由).23.小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55,为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间,少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留,问: ①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B 的坐标,并求出线段CD 所在直线的函数解析式. 24.△ABC 中,∠A =∠B =30°,AB =32,把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O(如图),△ABC 可以绕点O 作任意角度的旋转.(1)当点B 在第一象限,纵坐标是26时,求点B 的横坐标;(2)如果抛物线y =ax 2+bx +c(a ≠0)的对称轴经过点C ,请你探究;①当553,21,45-=-==c b a 时,A ,B 两点是否都在这条抛物线上?并说明理由;②设am b 2-=,是否存在这样的m 的值,使A 、B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值,若不存在,请说明理由.(第22题) (第23题)(第24题)。
2009年高考浙江数学(文)试题及参考答案
药械药事管理委员会工作制度为加强和规范我院药事管理,指导临床合理用药,确保患者的用药安全,根据《中华人民共和国药品管理法》、《医疗机构药事管理暂行规定》、《处方管理办法》等法律、法规和规章要求,特制定我院药事管理委员会制度。
1、成立医院药事管理委员会,全面负责医院药事管理工作;贯彻落实上级有关部门制定的药政法规等内容;促进合理用药;监督、指导医院科学管理及合理使用药品。
2、院药事管理委员会由药学、临床医学、医疗行政管理、医院感染管理、护理等方面的人员组成。
院长任主任,主管业务副院长及纪委书记任副主任。
3、认真贯彻落实《中华人民共和国药品管理法》、《医疗机构药事管理暂行规定》、《处方管理办法》等法律、法规和规章,制定医院相关制度并监督实施。
4、负责审订医院基本用药目录/处方集,依据临床用药需求定期调整基本用药。
5、负责根据国家有关法律、法规,审批购药渠道,制定本院药物遴选办法,审核、批准新药采购申请,替代及淘汰疗效不确切、不良反应多发和滞销的药物品种。
6、负责制定本院基本用药之外的特殊用药程序和审批方法。
7、负责审核、报批本院医院制剂品种的申报工作。
8、负责加强临床用药管理,规范医师处方行为,落实各项临床用药指导原则。
实行药品用量动态监测及超常预警管理,重点加强对抗菌药物、血液制品、激素类药物和高价位药品的监测管理。
对不合理用药进行用药干预,促进药物合理使用。
9、负责推动开展临床药学工作,促进药物利用研究、不良反应监测、临床药物评价工作。
10、负责定期分析药品管理情况,研究决定药品使用、管理中的重要问题,督促和指导临床及药剂科执行。
11、负责组织宣传合理用药知识,开展对医务人员的合理用药教育,监督、检查临床科室的合理用药情况并持续改进。
12、倡导医务人员因病施治、合理用药、规范调配,纠正不合理用药等违规行为。
药剂科制度1、严格遵守医院的各项规章制度,加强业务学习,提高科室人员的业务素质。
2、严格执行《药品管理法》、《处方管理办法》,坚决执行省网上招标药品采购,保证购进药品的质量,严把药品质量采购验收、保管关,保证临床药品的及时供应。
丽水中考数学考试题及答案
二00九年浙江省初中毕业生学业考试<丽水市卷)数学试卷卷考生须知:1、全卷满分为120分,考试时间为120分钟.2、答题前,请在答题卡上先填写姓名和准考证号,再用铅笔将准考证号和科目对应的括号或方框涂黑.3、请在“答题卷Ⅱ”上填写座位号并在密封线内填写县<市、区)学校、姓名和准考证号.4、本卷答案必须做在答题卷Ⅰ、Ⅱ的相应位置上,做在试卷上无效.答题时,不允许使用计算器.温馨提示:带着愉悦的心情,载着自信与细心,凭着沉着与冷静,迈向理想的彼岸!试卷Ⅰ一、选择题<本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)b5E2RGbCAP1.在下列四个数中,比0小的数是A. 0.5B. -2 C. 1 D.3p1EanqFDPw2.计算:a2·a3=A.a5 B.a6 C.a8 D.a9DXDiTa9E3dA B C D 3.2008年9月27日,神舟七号航天员翟志刚完成中国历史上第一次太空行走,他相对地球行走了5 100 000RTCrpUDGiT M 路程,用科学记数法表示为A .51×105MB .5.1×105MC .5.1×106MD .0.51×107M5PCzVD7HxA 4.如图是护士统计一位甲型H1N1流感疑似病人的体温变化图,这位病人在16时的体温约是A .37.8 ℃B .38℃C .38.7 ℃D .39.1 ℃5.如图,已知圆锥的底面半径为3,母线长为4,则它的侧面积是A.B.C. D. 126.下述美妙的图案中,是由正三角形、正方形、正六边形、正八边形中的三种镶嵌而成的为jLBHrnAILg 7.已知二次函数y =ax2+bx +c(a ≠0>的图象如图所示,给出以下结论: ①a >0.②该函数的图象关于直线对称.③当时,函数y 的值都等于0.其中正确结论的个数是A .3B .2C .1D .0 8.如图,点在反比例函数(x > 0>的图象上,且横坐标为2. 若将点先向右平移两个单位,再向上平移一个单位后所得的像为点.则在第一象限内,经过点的反比例函数图象的解读式是xHAQX74J0X A .B.C.D.9(第3题>时)(第7题>(第5题>·OP(第8题>则组成这个几何体的小正方体最多块数是 A. 9B. 10 C.11 D. 1210.如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2 , l2,l3之间的距离为3 ,则AC 的长是A .B .C .D .7LDAYtRyKfE 试卷Ⅱ说明:本卷有二大题,14小题,共90分,请将本卷的答案或解答过程用钢笔或圆珠笔写在答题卷Ⅱ上.二、填空题<本题有6小题,每小题4分,共24分) 11.当x ▲时,分式没有意义.12.如图,在⊙O 中,∠ABC=40°,则∠AOC =▲度.13.用配方法解方程时,方程的两边同加上▲,使得方程左边配成一个完全平方式.14.如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时<若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是▲. 15.将一副三角板按如图1位置摆放,使得两块三角板(第10题>l 1l 2 l 3ACB(第14题>C(第12题>的直角边AC 和MD 重合.已知AB=AC=8 cm,将 △MED 绕点A(M>逆时针旋转60°后(图2>,两个三角 形重叠<阴影)部分的面积约是▲cm2 (结果 精确到0.1,>.16.如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板<即其边长为前一块被剪掉正三角形纸板边长的)后,得图③,④,…,记第n(n ≥3> 块纸板的周长为Pn ,则Pn-Pn-1=▲.Zzz6ZB2Ltk 三、解答题<本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)dvzfvkwMI117.计算:-.18.已知命题:如图,点A ,D ,B ,E 在同一条直线上,且AD=BE ,∠A=∠FDE ,则△ABC ≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当 条件使它成为真命题,并加以证明.19.一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.rqyn14ZNXI 问题:根据这些信息,请你推测这群学生共有多少人?20.甲、乙两名运动员进行长跑训练,两人距终点的路程y<M )与跑步时间x<分)之间的函数(第18题>(第16题>…① ② ③ ④图象如图所示,根据图象所提供的信息解答问题:EmxvxOtOco (1> 他们在进行▲M 的长跑训练,在0<x <15的时段内,速度较快的人是▲;(2> 求甲距终点的路程y<M )和跑步时间 x<分)之间的函数关系式; (3> 当x=15时,两人相距多少M ?在15<x <20的时段内,求两人速度之差.21.一次测试九年级若干名学生1分钟跳绳次数的频数分布直方图如图.请根据这个直方图回答下面的问题:SixE2yXPq5(1>求参加测试的总人数,以及自左至右最后一组的频率;(2>若图中自左至右各组的跳绳平均次数分别为137次,146次,156次,164次,177次.小丽按以下方法计算参 加测试学生跳绳次数的平均数是:(137+146+156+164+177>÷5=156. 请你判断小丽的算式是否正确,若不正确,写 出正确的算式<只列式不计算);(3>如果测试所得数据的中位数是160次,那么测试次数为160次的学生至少有多少人?22.绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:(1> 按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?(第21题>(次>九年级若干名学生1分钟跳绳次数频数分布直方图频数<人(2>为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台, 且冰箱的数量不少于彩电数量的. 6ewMyirQFL ①请你帮助该商场设计相应的进货方案;②哪种进货方案商场获得利润最大<利润=售价进价),最大利润是多少?23.如图,已知在等腰△ABC 中,∠A=∠B =30°,过点C 作CD ⊥ AC 交AB 于点D.(1>尺规作图:过A ,D ,C 三点作⊙O<只要求作出图形,保留痕迹,不要求写作法);(2>求证:BC 是过A ,D ,C 三点的圆的切线; (3>若过A ,D ,C 三点的圆的半径为,则线段BC 上是否存在一点P ,使得以P ,D ,B 为顶点的三角形与△BCO 相似.若存在,求出DP 的长;若不存在,请说明理由. 24. 已知直角坐标系中菱形ABCD 的位置如图,C ,D 两点的坐标分别为(4,0>,(0,3>.现有两动点P,Q 分别从A,C 同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒.kavU42VRUs (1>填空:菱形ABCD 的边长是▲、面积是▲、高BE 的长是▲; (2>探究下列问题:①若点P 的速度为每秒1个单位,点Q 的速度为每秒2个单位.当点Q 在线段BA 上时,求△APQ 的面积S 关于t 的函数关系式,以及S 的最大值; y6v3ALoS89(第23题>(第24题>②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值.浙江省2009年初中毕业生学业考试<丽水市卷)数学试卷参考答案和评分标准细则一. 选择题<本题共10小题,每小题3分,共30分)二、填空题<本题有6小题,每小题4分,共24分)11.x=0; 12.80; 13.4 ; 14.;15.20.3 16.三、解答题 <本题有8题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)M2ub6vSTnP17.<本题6分)解:原式=5-2+-………………………………4分=3. ………………………………2分0YujCfmUCw18.<本题6分)解:是假命题.………………………………1分以下任一方法均可: ①添加条件:AC=DF. ………………1分 证明:∵AD=BE,∴AD+BD=BE+BD ,即AB=DE. …1分 在△ABC 和△DEF 中, AB=DE , ∠A=∠FDE ,AC=DF , ………………………………………………………2分∴△ABC ≌△DEF(SAS>. ………………………………………………………1分②添加条件:∠CBA=∠E. ……………………………………1分证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE. ………………………………………………1分在△ABC 和△DEF 中,(第18题>∠A=∠FDE,AB=DE,∠CBA=∠E ,……………………………………………………………2分∴△ABC≌△DEF(ASA>. ………………………………………………………1分③添加条件:∠C=∠F. ………………………………………………………………1分证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE. ………………………………………………1分在△ABC和△DEF中,∠A=∠FDE,∠C=∠F ,AB=DE,………………………………………………………………2分∴△ABC≌△DEF(AAS> ………………………………………………………1分19.<本题6分)解法一:设男生有x 人,则女生有<x-1)人. …………………………………………1分根据题意,得x=2(x-1-1> ……………………………………………………2分解得x=4, ………………………………………………………………………1分x-1=3. ………………………………………………………………………1分答:这群学生共有7人. ………………………………………………………1分 解法二:设男生有x 人,女生有y人. ………………………………………………1分根据题意,得……………………………………………………2分解得…………………………………………………………………2分 答:这群学生共有7人. ………………………………………………………1分 20.<本题8分)解:<1)5000…………………………………1分甲………………………………1分 <2)设所求直线的解读式为:y =kx+b(0≤x ≤20>,………1分由图象可知:b=5000,当x=20时,y=0, ∴0=20k+5000,解得k=-250.…1分即y =-250x+5000 (0≤x ≤20>……………1分分)<3)当x=15时,y =-250x+5000=-250×15+5000=5000-3750=1250.…………1分eUts8ZQVRd两人相距:(5000 -1250>-(5000-2000>=750<M) (1)分两人速度之差:750÷(20-15>=150<M/分)………………1分21.<本题8分)解:<1)50 ………………………………………………………………………………1分12÷50=0.24……………………………………………………………………1分<2)不正确.…………………………………………………………………………1分正确的算法:(137×4+146×6+156×8+164×20+177×12>÷50.……………2分<3)∵组距为10,∴第四组前一个边界值为160, ………………………………………………1分又∵第一、二、三组的频数和为18,∴50÷2-18+1=8 ,即次数为160次的学生至少有8人. ……………………2分22.<本题10分)解:(1> (2 420+1 980>×13%=572…………(3分>答: 可以享受政府572元的补贴.(2>①设冰箱采购x台,则彩电采购<40-x)台,根据题意,得………(1分>2 320x+1 900(40-x>≤85 000,x≥(40-x>.解不等式组,得≤x ≤……………(3分>∵x 为正整数. ∴x= 19,20,21.∴该商场共有3种进货方案:方案一:冰箱购买19台,彩电购买21台 方案二:冰箱购买20台,彩电购买20台; 方案三:冰箱购买21台,彩电购买19台. ………(1分>②设商场获得总利润y 元,根据题意,得y=(2 4202 320>x+(1 98040-x>=20x+3 200∵20>0, ∴y 随x 的增大而增大∴当x=21时,y 最大=20×21+3 200=3 620答:方案三商场获得利润最大,最大利润是 3 620元 ………(2分> 23.<本题10分)解:<1)作出圆心O ,………………………………………………………………1分以点O 为圆心,OA 长为半径作圆.…………………………………………1分<2)证明:∵CD ⊥AC,∴∠ACD =90°.∴AD 是⊙O 的直径……………1分 连结OC ,∵∠A=∠B =30°, ∴∠ACB =120°,又∵OA=OC,∴∠ACO=∠A =30°,…………1分∴∠BCO=∠ACB-∠ACO=120°-30°=90°.………………1分∴BC⊥OC,∴BC是⊙O的切线. ……………………………………………1分<3)存在. ……………………………………………………………………………1分∵∠BCD=∠ACB-∠ACD=120°-90°=30°,∴∠BCD=∠B, 即DB=DC.又∵在Rt△ACD中,DC=AD, ∴BD= .……………1分解法一:①过点D作DP1// OC,则△P1D B∽△COB, ,∵BO=BD+OD=,∴P1D=×OC=× =. (1)分②过点D作DP2⊥AB,则△BDP2∽△BCO,∴,∵BC=∴.………………………………………1分解法二:①当△B P1D∽△BCO时,∠DP1B=∠OCB=90°.在Rt△B P1D中,DP1=. ………………1分②当△B D P2∽△BCO时,∠P2DB=∠OCB=90°.在Rt△B P2D中,DP2=. ……………1分24.<本题12分)解:<1) 5 , 24,…………………………………3分<2)①由题意,得AP=t,AQ=10-2t. …………………………………………1分如图1,过点Q 作QG ⊥AD ,垂足为G ,由QG ∥BE 得△AQG ∽△ABE,∴,∴QG=, …………………………1分∴(≤t ≤5>.……1分∵(≤t ≤5>.∴当t=时,S 最大值为6.…………………1分② 要使△APQ 沿它的一边翻折,翻折前后的两个三角形组 成的四边形为菱形,根据轴对称的性质,只需△APQ 为等腰三角形即可.当t=4秒时,∵点P 的速度为每秒1个单位,∴AP=.………………1分以下分两种情况讨论: 第一种情况:当点Q在CB上时,∵PQ ≥BE>PA ,∴只存在点Q1,使Q1A=Q1P.G xy ABCD OE(图1)PQ E Q 1FMODC B Ay x(图2)P如图2,过点Q1作Q1M ⊥AP ,垂足为点M ,Q1M 交AC 于点 F,则AM=.由△AMF ∽△AOD ∽△CQ1F,得 , ∴,∴. ………………1分∴CQ1==.则,∴ (1)分第二种情况:当点Q 在BA 上时,存在两点Q2,Q3,分别使A P= AQ2,PA=PQ3.①若AP=AQ2,如图3,CB+BQ2=10-4=6. 则,∴.……1分②若PA=PQ3,如图4,过点P 作PN ⊥AB ,垂足为N ,由△ANP ∽△AEB,得. ∵AE=, ∴AN =.∴AQ3=2AN=, ∴BC+BQ3=10-则.∴.………………………1分综上所述,当t= 4秒,以所得的等腰三角形APQ沿底边翻折,翻折后得到菱形的k 值为或或.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2009年浙江省丽水市中考试题含答案(word版有答案)
浙江省2009年初中毕业生学业考试(丽水市卷)科 学考生须知:1.全卷满分为150分,考试时间120分钟。
试题卷共8页,有4大题,38小题。
2.本卷答案必须做在答题卷Ⅰ、Ⅱ的相应位置上,做在试题卷上无效。
答题卷Ⅰ共1页,答题卷Ⅱ共4页。
3.请用蓝(或黑)色钢笔或圆珠笔将姓名、准考证号分别填写在答题卷Ⅰ、Ⅱ的相应位置上。
4.本卷可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 Mg-24 Cl-35.5 温馨提示:请认真审题、耐心答题、仔细检查,相信你一定会交出满意的答卷!试 题 卷 Ⅰ请用铅笔将答题卷Ⅰ上的准考证号和学科名称所对应的括号或方框内涂黑,然后开始答题。
一、选择题(本题有20小题,每小题3分,共60分。
请选出各小题中一个符合题意的正确选项,不选、多选、错选均不得分)1.2008年12月,我市被确认为浙江省卫生城市,下列不利于...“创建卫生城市”的行为是 A .按规定停放车辆 B .不随意丢弃废电池 C .回收使用过的塑料、橡胶 D .在绿化带堆放杂物 2.下列事例中,属于运用了重力方向的是3. 二百多年前,英国科学家普里斯特利经过反复实验,得出结论:植物在阳光下能使空气变“好”,是因为植物能释放出“活命空气”。
他所说的“活命空气”应该是 A. 空气 B. 氮气 C. 氧气 D. 二氧化碳4. “一闪一闪亮晶晶,满天都是小星星,挂在天上放光明,好像许多小眼睛。
”童谣中的“星星”多数属于A. 流星B. 恒星C. 行星D. 人造卫星 5. 下列物质的用途,属于利用其化学性质的是6. “日出而作,日落而息”这是历代劳动人民的生活规律,形成这一规律的主要原因是A. 地球的公转B. 地球的自转C.月球的自转D. 正午太阳高度的变化 7. 某家长为临近学业考试的孩子设计了一份晚餐食谱:米饭、炒猪肝、清蒸鲫鱼。
为了均B .用力拉弹簧A .检查相框是否挂正C .往墙上敲钉子D .往前推桌子衡膳食,请补充一种食物使食谱营养更合理 A. 煎鸡蛋B. 稀饭C. 五香牛肉D. 炒青菜8. 2009年3月1日16时13分10秒,嫦娥一号卫星完成定点着陆,撞月成功,中国探月一期工程完美落幕。
浙江省丽水市2008—2009学年八年级数学第一学期期末调研
2008—2009学年第一学期期末调研考试八年级数学(考试时间90分钟,满分120分)题号 一 二 三总分 得分一、 选择题(每小题3分,共18分)下列各题均有四个答案,其中只有一个是正确的,请将正确答案的代号字母填入题后括号内.1.下列图形中,为轴对称图形的是().A .B. C. D. 2.下列计算中,正确的是().A .3412a a a =B .235()a a = C .623a a a ÷= D .333()ab a b -=- 3.点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE =3,则点P 到AB 的距离是( ).A .3B .4C .5D .6 4.已知一次函数b kx y +=的图象经过点A(0,-2)、B(1,0),则k 、b 的值分别为( )A .1,-2B .2,-2C .-2,2D . 2,-15.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度(cm)h 与注水时间(min)t 的函数图象大致为().6.如图,数轴上A B ,两点表示的数分别是12点B 是线段A C 的中点,则点C得分 评卷人A . O (min)t (cm)hB . O (min)t (cm)hC . O (min)t (cm)hD . O (min)t (cm)h 18 19 20 21 22 23 24所表示的数是(). A 21B .12+C .221D .222二、填空题(每小题3分,共33分) .8.国旗上的一颗五角星有_________条对称轴. 9.化简:︱π -3︱=10.2007年4月,全国铁路进行了第六次大提速,提速后的线路时速达200千米.共改造约6000千米的提速线路,总投资约296亿元人民币,那么平均每千米提速线路的投资人民币的数额约是____________元.(用科学记数法,保留两个有效数字) 11.估计30+1的值的整数部分是_____.12.如图,已知AB=AC ,需要添加一个条件 ____________, 可使△ABE 与△ACD 全等.13.用“<”号连接各数︱-3︱,-1.5,7-,可得.14.在平面直角坐标系中,直线13+=x y 向平移个单位,得到直线43-=x y 15.已知等腰三角形一内角为36º,则它的顶角为 ______度. 16.如图,三角形纸片ABC ,10cm 7cm 6cm AB BC AC ===,,,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD , 则AED △的周长为cm .17.如图,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的函数关系.根据图像所给的信息,下列说法中 ①第3分时汽车的速度是40千米/时;②从第3分到第6分,汽车的速度是40千米/时; ③从第3分到第6分,汽车行驶了120千米; ④从第9分到第12分,汽车的速度从60千米/时减少到0千米/时; 正确的有_______________.(只填序号)三、解答题(本大题共7小题,满分69分)得分 评卷人 速度/(千米/时) 时间/分 6040 20 O 3 6 9 12 E F P M N18.因式分解(每小题5分,共10分)(1):29xy x -; (2)8822+-x x .19.计算题(每小题7分,共14分)(1) 22()()a a b a b +-+;(2)先化简,再求值:3(2)(2)()a b a b ab ab -++÷-,其中a=7,b=-120.(8分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内...涂黑两个小正方形,使它们成为轴对称图形.21.(9分) 如图,直线l 是一次函数y kx b =+的图象,点A 、B 在直线l 上.根据图象回答下列问题:(1)写出方程0=+b kx 的解;(2)写出不等式b kx +>1的解集;(3)若直线l 上的点P (a,b )在线段AB 上移动, 则a 、b 应如何取值? 得分 评卷人得分 评卷人方法一 方法二22.(9分)两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD 中,AB AD =,BC DC =,AC 、BD 相交于点O .(1)求证:△ABC ≌△ADC ;(2)求证:AC 是BD 的垂直平分线; (3)如果6AC =,4BD =,求筝形ABCD 的面积.23.(9分)已知△ABC 为正三角形,点M 是射线BC 上任意一点,点N 是射线CA 上任意一点,且BM=,直线BN 与AM 相交于点Q 。
2009年高考浙江数学(理科)试题及参考答案
2009年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页,非选择题部分3至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件互斥,那么棱柱的体积公式如果事件相互独立,那么其中表示棱柱的底面积,表示棱柱的高棱锥的体积公式如果事件在一次试验中发生的概率是,那么次独立重复试验中事件恰好发生次的概率其中表示棱锥的底面积,表示棱锥的高棱台的体积公式球的表面积公式其中S1、S2分别表示棱台的上、下底面积,球的体积公式h表示棱台的高其中表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,,,则( )A.B.C.D.答案:B【解析】对于,因此.2.已知是实数,则“ 且”是“ 且”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:C【解析】对于“ 且”可以推出“ 且”,反之也是成立的3.设(是虚数单位),则( )A.B.C.D.答案:D【解析】对于4.在二项式的展开式中,含的项的系数是( )A.B.C.D.答案:B【解析】对于,对于,则的项的系数是5.在三棱柱中,各棱长相等,侧掕垂直于底面,点是侧面的中心,则与平面所成角的大小是( )A.B.C.D.答案:C【解析】取BC的中点E,则面,,因此与平面所成角即为,设,则,,即有.6.某程序框图如图所示,该程序运行后输出的的值是( )A.B.C.D.答案:A【解析】对于,而对于,则,后面是,不符合条件时输出的.7.设向量,满足:,,.以,,的模为边长构成三角形,则它的边与半径为的圆的公共点个数最多为( )A.B.C.D.答案:C【解析】对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.8.已知是实数,则函数的图象不可能是( )答案:D【解析】对于振幅大于1时,三角函数的周期为,而D不符合要求,它的振幅大于1,但周期反而大于了.9.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是( )A.B.C.D.答案:C【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,,则有,因.10.对于正实数,记为满足下述条件的函数构成的集合:且,有.下列结论中正确的是( )A.若,,则B.若,,且,则C.若,,则D.若,,且,则答案:C【解析】对于,即有,令,有,不妨设,,即有,因此有,因此有.非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
丽水市2009学年第一学期七年级期中教学质量检测 数学试题卷.
丽水市2009学年第一学期七年级期中教学质量检测数学试题卷 2009.11(温馨提示:本卷满分:120分,考试时间:100分钟 )一、选择题(本题共17小题,每小题2分,共31分)1、-21的倒数是( ) A 、21- B 、2 C 、-2 D 、212、甲、乙、丙三地的海拔高度为20米,-15米,-10米,那么最高的地方比最低的地方高( ) A 、5米 B 、10米 C 、25米 D 、35米3、下列计算中正确的是( )A 、()11134=-⨯- B 、()932=-- C 、931313=⎪⎭⎫ ⎝⎛-÷ D 、273132-=⎪⎭⎫⎝⎛-÷-4、64的立方根是( )A 、4B 、±4C 、2D 、±25、近似数0.0700的有效数字个数有( )A 、4个B 、3个C 、2个D 、1个 6、若3||=x ,则x 值为( )A 、3B 、-3C 、不确定D 、3或-3 7.实数a, b, c 在数轴上大致位置如图,则a ,b,c 的大小关系是( ) A 、a<b<c B. a<c<b C. b<c<a D. 无法确定 8.计算-32的结果为 ( ) A 、9 B 、-9 C 、6 D 、-69、用四舍五入法对0.04267(保留2个有效数字)取近似值为 ( ) A 、0.040 B 、0.042 C 、0.043 D 、0.0427 10、在71-,-π,0,3.14,2-,0.3,49-,313-中,无理数的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个 11、若xyz <0,则xx +yy +zz +xyzxyz 的值为 ( )A 、0B 、-4C 、4D 、0或-4 12下列各式:2251b a -,121-x ,-25,x1,2y x -,222b ab a +-中单项式的个数有( ) A 、4个 B 、3个 C 、2个 D 、1个13、现定义两种运算“⊕” “*”。
丽水市2009学年第一学期九年级数学试题卷第一次月考教学质量检测卷
丽水市2009学年第一学期第一次月考教学质量检测卷九年级数学试题卷(提示:本卷满分:120分 时间:120分钟) 2009、8一、仔细选一选(本题有10小题,每题3分,共30分)1.抛物线2(2)3y x =-+的对称轴是( )A.直线x = -2 B .直线 x =2 C .直线x = -3 D .直线x =3 2.小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t (秒),,3.如图,一次函数y =kx +b 的图象与反比例函数y = m x的图象交于A 、B 两点.当一次函数的值大于反比例函数的值时,自变量x 的取值范围是( )A .-2<x <1B .0<x <1 C .x <-2和0<x <1 D .-2<x <1和x >14.在一次“寻宝”游戏中,寻宝人找到了如图所示两个标志点A (2,1)、B (4,-1),这两个标志点到“宝藏”点的距离都是10,则“宝藏”点的坐标是( )A .(10,10)B .(-2,1)C .(5,2)或(1,-2) D .(2,-1)或(-2,1)5.如图3,直线m 是一次函数y kx b =+的图象,则k 的值是( )A .1- B .2- C .1D .26.如图4,从矩形纸片AMEF 中剪去矩形BCDM 后,动点P 从点B 出发,沿BC 、CD 、DE 、EF 运动到点F 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图5所示,则图形ABCDEF 的面积是( )A .32B .34C .36D .48和双曲线ky x =(0k >)交于7.如图,直线l上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD 的面积为2S 、△POE 的面积为3S ,则有( )A .123S S S <<B .123S S S >>C . 123S S S =<D .123S S S =>九年级数学问卷—1(共4页)九年级数学问卷—1(共4页),则x 的取值范8.已知正比例函数y =2x 与反比例函数y = 2x的图象相交于A 、B 两点,若A 点的坐标为(1,2),则B 点的坐标为( ) A .(1,-2) B .(-1,2) C .(-1,-2) D .(2,1)9.如图,正△AOB 的顶点A 在反比例函数y =3x(x >0)的图象上,则点B 的坐标为( )A .(2,0)B .(3,0)C .(23,0)D .(32,0)10.二次函数y=ax 2+bx+c(a ≠0)的图像如图所示,下列结论正确的是( ) A.ac <0 B.当x=1时,y >0C.方程ax 2+bx+c=0(a ≠0)有两个大于1的实数根D.存在一个大于1的实数x 0,使得当x <x 0时,y 随x 的增大而减小; 当x >x 0时,y 随x 的增大而增大. 卷 Ⅱ二、填空题 (本题有7小题,每小题4分,共28分)11.如图,在第一象限内作射线OC ,与x 轴的夹角为30o,在射线 OC 上取一点A ,过点A 作AH ⊥x 轴于点H .在抛物线y =x 2 (x >0) 上取点P ,在y 轴上取点Q ,使得以P ,O ,Q 为顶点的三角形与 △AOH 全等,则符合条件的点A 的坐标是 .12已知:点A (m ,m )在反比例函数1y x=的图象上,点B 与点A 关于坐标轴对称,以AB 为边作等边△ABC ,则满足条件的点C 有 个.13.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有 个点.14.如图8,矩形AOBP 的面积为6,反比例函数k y x=的图象经过点P ,那么k 的值为 ;直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图9所示,则关于x 的不等式12k x b k x +>的解为 .图1015.如图10,四边形ABCD 是矩形,A 、B 两点在x 轴的正半轴上,C 、D 两点在抛物线y =-x 2+6x 上.设OA =m (0<m <3),矩形ABCD 的周长为l ,则l 与m 的函数解析式为 . 16.反比例函数1ky x=与一次函数2y x b =-+的图象交于点(23)A ,和点(2)B m ,.由图象可知,x的取值范围为:______________A B C D 图3E D MB A F C图4 (1) (2) (3) (4) (5)…… 图8 1k x b + 班级_________ 学号_________ 姓名__________________ 试场_________ 座位号_________ …………………………………………………密………………………………………封………………………………………………………………17.函数()()1240y x x y x x==>≥0,的图象如图所示,则结论:①两函数图象的交点A 的坐标为()22,; ②当2x >时,21y y >; ③当1x =时,3BC =; ④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小. 其中正确结论的序号是 .三、解答题(本题9个小题,共62分,解答题要求写出证明步骤或解答过程)18.(本题8分)如图,已知矩形OABC 的两边OA ,OC 分别在x 轴,y半轴上,且点B (4,3),反比例函数y = kx图象与BC 交于点D,与AB 交于点E ,其中D (1,3).(1)求反比例函数的解析式及E 点的坐标;(2)若矩形OABC 对角线的交点为F ,请判断点F 是否在此反比例 函数的图象上,并说明理由.19.(本题12分)如图,在平面直角坐标系中,点A (0,6),点B 是x 轴上的一个动点,连结AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90o ,得到线段BC .过点B 作x 轴的垂线交直线AC于点D .设点B 坐标是(t ,0). (1)当t=4时,求直线AB 的解析式;(2)当t >0时,用含t 的代数式表示点C 的坐标及△ABC 的面积;(3)是否存在点B ,使△ABD 为等腰三角形?若存在,请求出所有符合条件的点B 的坐标;若不存在,请说明理由.20..(本题14分)已知:在平面直角坐标系中,抛物线32+-=x ax y (0≠a )交x 轴于A 、B 两点,交y 轴于点C ,且对称轴为直线2x =-.(1)求该抛物线的解析式及顶点D 的坐标;(2)若点P (0,t )是y 轴上的一个动点,请进行如下探究:探究一:如图15,设△P AD 的面积为S ,令W =t ·S ,当0<t <4时,W 是否有最大值?如果有,求出W 的最大值和此时t 的值;如果没有,说明理由;探究二:如图16,是否存在以P 、A 、D 为顶点的三角形与Rt △AOC 相似?如果存在,求点P 的坐标;如果不存在,请说明理由. (参考资料:抛物线)02≠a b21.如图,在平面直角坐标系中,四边形OABC 是梯形,OA ∥BC ,点A 的坐标为(6,0),点B 的坐标为(4,3),点C 在y 轴的正半轴上.动点M 在OA 上运动,从O 点出发到A 点;动点N 在AB 上运动,从A 点出发到B 点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒). (1)求线段AB 的长;当t 为何值时,MN ∥OC ?(2)设△CMN 的面积为S ,求S 与t 之间的函数解析式,并指出自变量t 的取值范围;S 是否有最小值?若有最小值,最小值是多少?(3)连接AC ,那么是否存在这样的t ,使MN 与AC 互相垂直?若存在,求出这时的t 值;若不存在,请说明理由.22(本小题14分)如图,在平面直角坐标系中,点A C 、x 轴上.已知某二次函数的图象经过A 、B 、C 三点,且它的对称轴为直线1x =,点P 为直线BC 下方的二次函数图象上的一个动点(点P 与B 、C 不重合),过点P 作y 轴的平行线交BC 于点F .(1)求该二次函数的解析式;(2)若设点P 的横坐标为m ,用含m 的代数式表示线段PF 的长. (3)求PBC △面积的最大值,并求此时点P 的坐标.23.(附加区. 本题10分),如图,在平面直角坐标系xOy 中,抛物线212y x bx c =-++与x 轴交于A (1,0)、B (5,0)两点.(1)求抛物线的解析式和顶点C 的坐标;(3分)(2)设抛物线的对称轴与x 轴交于点D ,将∠DCB 绕点C 按顺时针方向旋转,角的两边CD和CB 与x 轴分别交于点P 、Q ,设旋转角为α(090α<≤). ①当α等于多少度时,△CPQ 是等腰三角形?(4分) ②设BP t AQ s ==,,求s 与t 之间的函数关系式.(5分)· y O A x 备用图 图16(第22题)(第17题)4x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C D浙江省2009年初中毕业生学业考试(丽水市卷)数学试题卷考生须知:1、全卷满分为120分,考试时间为120分钟.2、答题前,请在答题卡上先填写姓名和准考证号,再用铅笔将准考证号和科目对应的括号或方 框涂黑.3、请在“答题卷Ⅱ”上填写座位号并在密封线内填写县(市、区)学校、姓名和准考证号.4、本卷答案必须做在答题卷Ⅰ、Ⅱ的相应位置上,做在试卷上无效.答题时,不允许使用计算 器.温馨提示:带着愉悦的心情,载着自信与细心,凭着沉着与冷静,迈向理想的彼岸!试 卷 Ⅰ一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.在下列四个数中,比0小的数是 A. 0.5 B. -2 C. 1 D. 3 2.计算:a 2·a 3= A .a 5B .a 6C .a 8D .a 93.2008年9月27日,神舟七号航天员翟志刚完成中国历史上第一次太空行走,他相对地球行走了5 100 000 米路程,用科学记数法表示为 A .51×105米 B .5.1×105米 C .5.1×106米 D .0.51×107米 4.如图是护士统计一位甲型H1N1流感疑似病人的体温变化图,这位病人在16时的体温约是A .37.8 ℃B .38 ℃C .38.7 ℃ D.39.1 ℃5.如图,已知圆锥的底面半径为3,母线长为4,则它的侧面积是A. π24B. π12C.π6D. 126.下述美妙的图案中,是由正三角形、正方形、正六边形、正八边形中的三种镶嵌而成的为7.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论:①a >0.②该函数的图象关于直线1x =对称.(第3题)时)(第5题)·③当13x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是 A .3 B .2 C .1 D .0 8.如图,点P 在反比例函数1y x=(x > 0)的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是 A .)0(5>-=x xy B.)0(5>=x x y C. )0(6>-=x x y D.)0(6>=x x y9.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是 A. 9 B. 10 C. 11 D. 1210.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是 A .172 B .52 C .24 D .7试卷Ⅱ说明:本卷有二大题,14小题,共90分,请将本卷的答案或解答过程用钢笔或圆珠笔写在答题卷Ⅱ上. 二、填空题(本题有6小题,每小题4分,共24分)11.当x ▲ 时,分式x1没有意义.12.如图,在⊙O 中,∠ABC =40°,则∠AOC = ▲ 度.13.用配方法解方程542=-x x 时,方程的两边同加上 ▲ ,使得方程左边配成一个完全平方式.14.如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域 为止),两个指针所指区域的数字和为偶数的概率是 ▲ . 15.将一副三角板按如图1位置摆放,使得两块三角板 的直角边AC 和MD 重合.已知AB =AC =8 cm,将 △MED 绕点A (M )逆时针旋转60°后(图2),两个三角 形重叠(阴影)部分的面积约是 ▲ cm 2(结果(第10题)l 1l 2 l 3ACB(第9题)主视图俯视图C(第12题)CBAOP(第8题)精确到0.1,73.13≈).16.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= ▲ .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.计算:1-245-+--︒30sin .18.已知命题:如图,点A ,D ,B ,E 在同一条直线上,且AD =BE , ∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命 题,如果是真命题,请给出证明;如果是假命题,请添加一个..适当 条件使它成为真命题,并加以证明.19.一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍. 问题:根据这些信息,请你推测这群学生共有多少人? 20.甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答问题:(1) 他们在进行 ▲ 米的长跑训练,在0<x <15的时段内,速度较快的人是 ▲ ;(2) 求甲距终点的路程y (米)和跑步时间 x (分)之间的函数关系式;(3) 当x =15时,两人相距多少米?在15<x <20的时段内,求两人速度之差. 21.一次测试九年级若干名学生1分钟跳绳次数的频数分布直方图如图.请根据这个直方图回答下面的问题:(1)求参加测试的总人数,以及自左至右最后一组的频率; (2)若图中自左至右各组的跳绳平均次数分别为137次, 146次,156次,164次,177次.小丽按以下方法计算参FEABCD (第18题)分)(次)九年级若干名学生1分钟跳绳次数频数分布直方图频数(人)(第16题)…① ② ③ ④加测试学生跳绳次数的平均数是:(137+146+156+164+177)÷5=156. 请你判断小丽的算式是否正确,若不正确,写 出正确的算式(只列式不计算);(3)如果测试所得数据的中位数是160次,那么测试次数为160次的学生至少有多少人?22.绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:(1) 按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买 了冰箱、彩电各一台,可以享受多少元的政府补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台, 且冰箱的数量不少于彩电数量的65. ①请你帮助该商场设计相应的进货方案;②哪种进货方案商场获得利润最大(利润=售价 进价),最大利润是多少?23.如图,已知在等腰△ABC 中,∠A =∠B =30°,过点C 作CD ⊥ AC 交AB 于点D .(1)尺规作图:过A ,D ,C 三点作⊙O (只要求作出图形, 保留痕迹,不要求写作法);(2)求证:BC 是过A ,D ,C 三点的圆的切线;(3)若过A ,D ,C 三点的圆的半径为3,则线段BC 上是否存在一点P ,使得以P ,D ,B 为顶点的三角 形与△BCO 相似.若存在,求出DP 的长;若不存在,请说明理由.24. 已知直角坐标系中菱形ABCD 的位置如图,C ,D 两点的坐标分别为(4,0),(0,3).现有两动点P ,Q 分别从A ,C 同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒.(1)填空:菱形ABCD 的边长是 ▲ 、面积是 ▲ 、(第23题)ABCDOxy ABC DE高BE的长是▲;(2)探究下列问题:①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值.浙江省2009年初中毕业生学业考试(丽水市卷)数学试卷参考答案和评分标准细则一.选择题(本题共10小题,每小题3分,共30分)二、填空题(本题有6小题,每小题4分,共24分)11.x =0; 12.80; 13.4 ; 14.157; 15.20.3 16.121-⎪⎭⎫⎝⎛n三、解答题 (本题有8题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17.(本题6分)解:原式=5-2+21-21………………………………4分 =3. ………………………………2分 18.(本题6分)解:是假命题.………………………………1分以下任一方法均可:①添加条件:AC=DF. ………………1分 证明:∵AD=BE,∴AD+BD=BE+BD ,即AB=DE. …1分 在△ABC 和△DEF 中, AB=DE , ∠A=∠FDE ,AC=DF , ………………………………………………………2分 ∴△ABC ≌△DEF(SAS ). ………………………………………………………1分 ②添加条件:∠CBA=∠E. ……………………………………1分 证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE. ………………………………………………1分 在△ABC 和△DEF 中, A=∠FDE , AB=DE ,CBA=∠E , ……………………………………………………………2分 ∴△ABC ≌△DEF(ASA ). ………………………………………………………1分 ③添加条件:∠C=∠F. ………………………………………………………………1分 证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE. ………………………………………………1分 在△ABC 和△DEF 中, ∠A=∠FDE , ∠C=∠F ,AB=DE , ………………………………………………………………2分 ∴△ABC ≌△DEF(AAS ) ………………………………………………………1分FEABCD(第18题)19.(本题6分)解法一:设男生有x 人,则女生有(x -1)人. …………………………………………1分根据题意,得x =2(x -1-1) ……………………………………………………2分 解得x =4, ………………………………………………………………………1分x -1=3. ………………………………………………………………………1分答:这群学生共有7人. ………………………………………………………1分解法二:设男生有x 人,女生有y 人. ………………………………………………1分根据题意,得⎩⎨⎧==-).1-(2,1y x y x ……………………………………………………2分解得⎩⎨⎧==.3,4y x …………………………………………………………………2分答:这群学生共有7人. ………………………………………………………1分 20.(本题8分)解:(1)5000…………………………………1分甲 ………………………………1分 (2)设所求直线的解析式为:y =kx +b (0≤x ≤20), ………1分由图象可知:b =5000,当x =20时,y =0, ∴0=20k +5000,解得k = -250. …1分即y = -250x +5000 (0≤x ≤20) ……………1分(3)当x =15时,y = -250x +5000= -250×15+5000=5000-3750=1250. …………1分两人相距:(5000 -1250)-(5000-2000)=750(米). …………………1分 两人速度之差:750÷(20-15)=150(米/分) ………………1分21.(本题8分)解:(1)50 ………………………………………………………………………………1分12÷50=0.24 ……………………………………………………………………1分 (2)不正确.…………………………………………………………………………1分正确的算法:(137×4+146×6+156×8+164×20+177×12)÷50. ……………2分 (3)∵组距为10,∴第四组前一个边界值为160, ………………………………………………1分 又∵第一、二、三组的频数和为18,∴50÷2-18+1=8 ,即次数为160次的学生至少有8人. ……………………2分22.(本题10分)解:(1) (2 420+1 980)×13%=572 …………(3分)答: 可以享受政府572元的补贴.(2) ①设冰箱采购x 台,则彩电采购(40-x )台,根据题意,得 ………(1分)分)2 320x +1 900(40-x )≤85 000,x ≥65(40-x ).解不等式组,得11218≤x ≤7321 ……………(3分)∵x 为正整数. ∴x = 19,20,21.∴该商场共有3种进货方案:方案一:冰箱购买19台,彩电购买21台 方案二:冰箱购买20台,彩电购买20台;方案三:冰箱购买21台,彩电购买19台. ………(1分) ②设商场获得总利润y 元,根据题意,得 y =(2 420 2 320)x +(1 980 40-x )=20x +3 200∵20>0, ∴y 随x 的增大而增大∴当x =21时,y 最大=20×21+3 200=3 620答:方案三商场获得利润最大,最大利润是3 620元 ………(2分)23.(本题10分)解:(1)作出圆心O , ………………………………………………………………1分以点O 为圆心,OA 长为半径作圆.…………………………………………1分 (2)证明:∵CD ⊥AC ,∴∠ACD =90°.∴AD 是⊙O 的直径……………1分 连结OC ,∵∠A =∠B =30°, ∴∠ACB =120°,又∵OA =OC , ∴∠ACO =∠A =30°,…………1分 ∴∠BCO =∠ACB -∠ACO=120°-30°=90°. ………………1分 ∴BC ⊥OC ,∴BC 是⊙O 的切线. ……………………………………………1分(3)存在. ……………………………………………………………………………1分∵∠BCD =∠ACB -∠ACD =120°-90°=30°, ∴∠BCD =∠B , 即DB =DC .又∵在Rt△ACD 中,DC=AD 330sin =︒⋅, ∴BD……………1分解法一:①过点D 作DP 1// OC ,则△P 1D B ∽△COB , BOBDCO D P =1, ∵BO =BD +OD =32,∴P 1D =BO BD ×OC =33……………………………1分A②过点D 作DP 2⊥AB ,则△BDP 2∽△BCO , ∴BCBDOC D P =2, ∵BC =,322=-CO BO∴13332=⨯=⨯=OC BC BD D P .………………………………………1分 解法二:①当△B P 1D ∽△BCO 时,∠DP 1B =∠OCB =90°.在Rt△B P 1D 中,DP 1=2330sin =︒⋅BD . ………………1分 ②当△B D P 2∽△BCO 时,∠P 2DB =∠OCB =90°. 在Rt△B P 2D 中,DP 2=130tan =︒⋅BD . ……………1分24.(本题12分)解:(1)5 , 24,524…………………………………3分 (2)①由题意,得AP =t ,AQ =10-2t. …………………………………………1分如图1,过点Q 作QG ⊥AD ,垂足为G ,由QG ∥BE 得△AQG ∽△ABE ,∴BAQABE QG =, ∴QG =2548548t-, …………………………1分 ∴t t QG AP S 5242524212+-=⋅=(25≤t ≤5).……1分∵6)25(25242+--=t S (25≤t ≤5).∴当t =25时,S 最大值为6.…………………1分② 要使△APQ 沿它的一边翻折,翻折前后的两个三角形组成的四边形为菱形,根据轴对称的性质,只需△APQ 为等腰三角形即可. 当t =4秒时,∵点P 的速度为每秒1个单位,∴AP =4.………………1分 以下分两种情况讨论:第一种情况:当点Q 在CB 上时, ∵PQ ≥BE >PA ,∴只存在点Q 1,使Q 1A =Q 1P .如图2,过点Q 1作Q 1M ⊥AP ,垂足为点M ,Q 1M 交AC 于点F ,则AM =122AP =.由△AMF ∽△AOD ∽△CQ 1F ,得 4311===AO OD CQ F Q AM FM , ∴23=FM ,∴103311=-=FM MQ F Q . ………………1分∴CQ 1=QF 34=225.则11CQ AP t k t =⋅⨯, ∴11110CQ k AP == .……………………………1分 第二种情况:当点Q 在BA 上时,存在两点Q 2,Q 3,分别使A P = A Q 2,PA =PQ 3.①若AP =A Q 2,如图3,CB +BQ 2=10-4=6.则21BQ CB APt k t +=⋅⨯,∴232CB BQ k AP +==.……1分 ②若PA =PQ 3,如图4,过点P 作PN ⊥AB ,垂足为N , 由△ANP ∽△AEB ,得ABAPAE AN =. ∵AE =5722=-BE AB , ∴AN =2825. ∴AQ 3=2AN=5625, ∴BC+BQ 3=10-251942556=则31BQ CB APt k t +=⋅⨯.∴50973=+=AP BQ CB k . ………………………1分综上所述,当t = 4秒,以所得的等腰三角形APQ 沿底边翻折,翻折后得到菱形的k 值为1011或23或5097.。