小学数学比和比例问题知识汇总及解析例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学知识总结之比和比例应用题
【求比的问题】
例1 两个同样容器中各装满盐水。第一个容器中盐与水的比是2∶3,第二个容器中盐与水的比是3∶4,把这两个容器中的盐水混合起来,则混合溶液中盐与水的比是
____。
(无锡市小学数学竞赛试题)
则混合溶液中,盐与水的比是:
某电子产品去年按定价的80%出售,能获利20%,由于今年买入价降
(1994年全国小学数学奥林匹克决赛试题)
即:
【比例问题】
例1 甲、乙两包糖的重量比是4∶1,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7∶5 那么两包糖重量的总和是____克。
(1989年全国小学数学奥林匹克初赛试题)
例2 甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分
纯酒精倒入乙容器,使酒精与水混合。第二次将乙容器中的一部分混合液倒入甲容器。
这样甲容器中纯酒精含量为62.5%,乙容器中纯酒精含量为25%,那么,第二次从乙容器倒入甲容器的混合液是____升。
(1991年全国小学数学奥林匹克决赛试题)
讲析:因为现在乙容器中纯酒精含量为25%,所以,乙容器中酒精与水的比为25%∶(1-25%)=1∶3
第一次从甲容器中倒5升纯酒精到乙容器,才使得乙容器中纯酒精与水的比恰好
是5∶15=1∶3
又甲容器中纯酒精含量为62.5%,则甲容器中酒精与水的比为62.5%∶
(1-62.5%)=5∶3
第二次倒后,要使甲容器中纯酒精与水的比为5∶3,不妨把从甲容器中倒入乙容器的混合液中纯酒精作1份,水作3份。那么甲容器中剩下的纯酒精便是11-5=6(升)6升算作4份,这样可恰好配成5∶3。
而第二次从乙容器倒入甲容器的混合液共为1+3=4(份),所以也应是6升。
一.比的意义和性质
(1)比的意义
两个数相除又叫做两个数的比。
“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后
项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值
(2)比的性质
比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
(3)求比值和化简比
求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。(4)比例尺
图上距离:实际距离=比例尺
要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
(5)按比例分配
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比
例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
2 比例的意义和性质
(1)比例的意义
表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
(2)比例的性质
在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。
(3)解比例
根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。
3 正比例和反比例
(1)成正比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)
(2)成反比例的量
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种
量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)
二正反比例问题
【含义】两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应
的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫
做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数
的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反
比例的意义和解比例等知识的综合运用。
【数量关系】判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。
【解题思路和方法】解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和
比例的性质去解应用题。
例1 修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?
例2 张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?
关键:做题效率一定,做题数量与做题时间成正比例关系
例3 孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?