【精编】2016-2017年山东省临沂一中高一(上)数学期中试卷带解析答案
山东省临沂市第一中学高一数学期中考试试题_新课标人教A版必修1
高一数学上学期期中考试试题一.选择题(本大题共12小题. 每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知全集U ={1,2,3,4,5},A ={1,2,4},B ={2,3},则(C U A )∩B 是A .{2}B .{3}C .{1,2,3,4}D .{2,3,5} 2.设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=A.[0,2]B.[1,2]C.[0,4]D.[1,4] 3.下列函数中,是奇函数且在区间),0(+∞上为减函数的是A.x y -=3B. 3x y =C. 1-=x yD.xy )21(= 4.函数()lg(2)f x x =+的定义域为A.(2,1)-B.(2,1]-C.[2,1)-D.[2,1]-- 5.己知函数y=x 2的值域是[1,4],则其定义域不.可能是 A.[1,2] B.[-23,2] C.[-2,-1] D.[-2,-1]∪{1} 6.与两个变量之间的关系最接近的是下列关系式中的 A.V=log 2t B.V=-log 2t C. V=2t-2 D. V=12(t 2-1)[]()7.⇔⋅2下列说法不正确的是( )A.方程f(x)=0有实根函数y=f(x)有零点B.-x +3x+5=0有两个不同实根C.y=f(x)在a,b 上满足f(a)f(b)<0,则y=f(x)在a,b 内有零点D.单调函数若有零点,则至多有一个8.函数log (1)a y x =-(0<a <1)的图象大致是( )A B C D 9.已知x 满足方程x x lg )2lg(2=-,则x 的值是( )A . 1 B. 2 C. 1,2 D. -1,2 10.已知函数)2(lg)(>+-=a x a x a x f ,现有21)1(-=f ,则)1(-f = A. 2 B. -2 C. 12- D. 1211.若()1,10lg lg ≠≠=+b a b a 则函数x a x f =)(与x b x g =)(的图象A.关于直线y=x 对称B.关于x 轴对称C.关于y 轴对称D. 关于原点对称12.阅读下列一段材料,然后解答问题:对于任意实数x ,符号[x ]表示 “不超过x 的最大整数”,在数轴上,当x 是整数,[x ]就是x ,当x 不是整数时,[x ]是点x 左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯(Gauss )函数.如[-2]=-2,[-1.5]=-2,[2.5]=2. 求2222222111[log ][log ][log ][log 1][log 2][log 3][log 4]432++++++的值为 A. 0 B. -2 C. -1 D. 1二.填空题(本大题共4小题,每小题4分,共16分) 13.已知8.09.07.02.1,8.0,8.0===c b a ,则a 、b 、c 按从小到大的顺序排列为 ____. 14. 函数22(0)()1(0)x x f x x x -≤⎧=⎨+>⎩,则[(2)]f f -= ___ ;若()10f x =,则x= ______ .15.已知:集合{023}A =,,,定义集合运算A ※A={|,.}x x a b a A b A =+∈∈,则A ※A=_______ . 16.下列四个命题中正确的有 .① 函数y x=-32的定义域是{0}x x ≠; ②lg(2)x =-的解集为{3};③1320x--=的解集为3{1log 2}x x =-; ④lg(1)1x -<的解集是{11}x x <. 三.解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)(1)计算41320.753440.0081(4)16---++-的值.(2)计算211log 522lg 5lg 2lg 502+++的值.{提示22lg 5(lg5)=,log a NaN =}18.(本小题满分12分)已知函数21()1f x x =+,令1()g x f x =(). (1)如图,已知()f x 在区间[)0+∞,的图象,请据此在该坐标系中补全函数()f x 在定义域内的图象,并在同一坐标系中作出函数()g x 的图象.请说明你的作图依据;(2)求证:()()1(0)f x g x x +=≠.19.(本小题满分12分)已知偶函数y=f (x )定义域是[-3,3],当x ≤0时,f (x )=-x 2-2x . (1)写出函数y=f (x )的解析式; (2)写出函数y=f (x )的单调递增区间.20.(本小题满分12分)求函数的值域.21.(本小题满分12分)国家购买某种农产品的价格为120元/担,某征税标准为100元征8元,计划可购m 万担.为了减轻农民负担,决定税率降低x 个百分点,预计收购量可增加x 2个百分点.⑴ 写出税收)(x f (万元)与x 的函数关系式;⑵ 要使此税收在税率调节后达到计划的78%,求此时x 的值.22.函数2()1ax b f x x +=+是定义在(,)-∞+∞上的奇函数,且12()25f =.(1)求实数,a b ,并确定函数()f x 的解析式; (2)用定义证明()f x 在(1,1)-上是增函数;(3)写出()f x 的单调减区间,并判断()f x 有无最大值或最小值?如有,写出最大值或最小值(本小问不需说明理由).数学答案13. b<a<c ;14. 17 、3或-5 ;15.{0,2,3,4,5,6}; 16. ②③ 三.解答题:17.解:(1)原式4133424(0.75)3422(0.3)(2)(2)2-⨯-⨯-=++-3230.32220.30.250.55---=++-=+=.(2) 原式21log 52212lg 52lg 2lg5lg 222=+++⋅log 21(lg5lg 2)221=++⋅=+18.(1)图像如右图. 根据函数是偶函数,图像关于y 轴对称作图. (2)证明:22222211(),1111()() 1.11x g x f x x x x f x g x x x ⎛⎫=== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭∴+=+=++ 19. (1) ⎩⎨⎧≤-->+-=0,20,222x x x x x x y (2) y ∈[-3,1] (3) 递增区间[-3,-1],[0,1]. 20. 解:设223t x x =--+,则221223(1)4,04,log 2,2,t x x x t t y =--+=-++∴<≤∴≥-∴≥-即函数的值域为[2,)-+∞.21解:(1)调节税率后税率为(8-)x %,预计可收购%)21(x m +万担,总为%)21(120x m + 万元,可得)%8%)(21(120)(x x m x f -+= )80(≤<x(2) 计划税收为%,78%8120⨯⨯m 即088422=-+x x )80(≤<x 解得2=x。
山东省临沂市2017届高三上学期期中考试数学(理)试题Word版含答案
高三教学质量检测考试理科数学2016.11本试卷分为选择题和非选择题两部分,共5页,满分150分。
考试时间120分钟. 注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷 (共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中。
只有一项是符合题目要求的。
1.设集合{}{}{}1,2,3,4,5,,,A B M x x a b a A b B ====+∈∈,集合M 真子集的个数为(A)32 (B)31 (C)16 (D)152.若点22sin ,cos 33ππ⎛⎫ ⎪⎝⎭在角α的终边上,则sin α的值为(A)12- (B) 2- (C) 12(D) 2 3.已知()()21sin ,15,145f x x a f g b f g π⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭若,则 (A) 1a b -= (B) 1a b += (C) 0a b -= (D) 0a b +=4.下列说法正确的是(A)命题“若a b ≥,则22a b ≥”的逆否命题为“若22a b ≤,则a b ≤”(B)“1x =”是“2320x x -+=”的必要不充分条件(C)若p q ∧为假命题,则,p q 均为假命题(D)对于命题2:,10p x R x x ∀∈++>,则2000:,10p x R x x ⌝∃∈++≤ 5.已知等差数列{}574680sin 2n a a a xdx a a a π+=++⎰中,,则的值为 (A)8 (B)6 (C)4(D)2 6.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使2DE EF AF BC =,则的值为 (A) 18 (B) 14 (C) 118 (D) 58- 7.若函数)01y a a =>≠且的定义域和值域都是[]0,1,则548log log 65a a += (A)1 (B)2 (C)3 (D)4 8.已知函数()()()1,2,ln x f x x g x x h x x x ==+=+的零点分别为123,,x x x ,则(A) 213x x x << (B) 231x x x << (C) 312x x x << (D) 123x x x <<9.已知函数()()2sin 10,2f x x πωϕωϕ⎛⎫=++>≤ ⎪⎝⎭,其图象与直线1y =-相邻两个交点的距离为π,若()1,123f x x ππ⎛⎫>∀∈- ⎪⎝⎭对恒成立,则ϕ的取值范围是 (A) ,126ππ⎡⎤⎢⎥⎣⎦ (B) ,62ππ⎡⎤⎢⎥⎣⎦ (C) ,123ππ⎡⎤⎢⎥⎣⎦ (D) ,63ππ⎡⎤⎢⎥⎣⎦ 10.已知函数()()232log 2,0,33,,x x k f x x x k x a ⎧-≤<⎪=⎨-+≤≤⎪⎩若存在实数k ,使得函数()f x 的值域为[-1,1],则实数a 的取值范围是(A) 3,12⎡+⎢⎣(B) 2,1⎡+⎣ (C) []1,3 (D )[]2,3理科数学第Ⅱ卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分.把正确答案填写在答题卡给定的横线上.11.已知向量()(),1,2,1,=a m m b a b a =-=⊥且,则_________.12.已知()()1cos 75cos 3023αα+=-,则的值为_________.13.函数()f x 是定义在R 上的奇函数,对任意的x R ∈,满足()()10f x f x ++=,且当0x <<1时,()()5242x f x f f ⎛⎫=-+= ⎪⎝⎭,则_________. 14.在等差数列{}()475,111nn n n a a a b a ===-中,,设,则数列{}n b 的前101项之和101S =________。
山东省临沂市2017届高三上学期期中考试理数试题 Word版含解析
山东省临沂市2017届高三上学期期中考试理数试题第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合错误!未找到引用源。
,集合M真子集的个数为(A)32 (B)31 (C)16 (D)15【答案】D考点:元素与集合2.若点错误!未找到引用源。
在角错误!未找到引用源。
的终边上,则错误!未找到引用源。
的值为(A)错误!未找到引用源。
(B) 错误!未找到引用源。
(C) 错误!未找到引用源。
(D) 错误!未找到引用源。
【答案】A【解析】试题分析:错误!未找到引用源。
,故选A.考点:三角函数的定义3.已知错误!未找到引用源。
,则(A) 错误!未找到引用源。
(B) 错误!未找到引用源。
(C) 错误!未找到引用源。
(D) 错误!未找到引用源。
【答案】B【解析】试题分析:错误!未找到引用源。
,而错误!未找到引用源。
,所以错误!未找到引用源。
,错误!未找到引用源。
,即错误!未找到引用源。
,故选B.考点:函数性质的应用4.下列说法正确的是(A)命题“若错误!未找到引用源。
,则错误!未找到引用源。
”的逆否命题为“若错误!未找到引用源。
,则错误!未找到引用源。
”(B)“错误!未找到引用源。
”是“错误!未找到引用源。
”的必要不充分条件(C)若错误!未找到引用源。
为假命题,则错误!未找到引用源。
均为假命题(D)对于命题错误!未找到引用源。
,则错误!未找到引用源。
【答案】D考点:命题5.已知等差数列错误!未找到引用源。
的值为(A)8 (B)6 (C)4 (D)2【答案】C【解析】试题分析:错误!未找到引用源。
,所以错误!未找到引用源。
,根据等差数列的性质,错误!未找到引用源。
,故选C.考点:1.等差的性质;2.定积分.6.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使错误!未找到引用源。
高一年级第一学期期中考试数学试卷及其参考答案
高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。
2023-2024学年山东省临沂市临沂一中高一(上)期中数学试卷【答案版】
2023-2024学年山东省临沂市临沂一中高一(上)期中数学试卷一、选择题1.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c ∈R ,则下列命题正确的是( ) A .若a >b >0,则ac 2>bc 2 B .若a <b <0,则a +1b <b +1a C .若0<a <b <c ,则ba <b+c a+cD .若a >0,b >0,则b 2a+a 2b≤a +b2.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2﹣1,则M 与N 的大小关系是( ) A .M <NB .M >NC .M =ND .不确定3.因工作需求,张先生的汽车一周需两次加同一种汽油.现张先生本周按照以下两种方案加油(两次加油时油价不一样),甲方案:每次购买汽油的量一定;乙方案:每次加油的钱数一定.问哪种加油的方案更经济?( ) A .甲方案B .乙方案C .一样D .无法确定4.不等式(1﹣x )(2+x )>0的解集为( ) A .{x |x <﹣2或x >1} B .{x |﹣2<x <1}C .{x |x <1或x >2}D .{x |﹣1<x <2}5.下列关于基本不等式的说法正确的是( ) A .若0<x <13,则x (1﹣3x )的最大值为112B .函数y =x 2+3x+3x+1(x >−1)的最小值为2C .已知x +y =1,x >0,y >0,则12x+12y的最小值为54D .若正数x ,y 满足x 2+xy ﹣2=0,则3x +y 的最小值是36.关于x 的一元二次不等式ax 2+bx +c >0解集为{x |﹣2<x <3},不等式cx 2﹣bx +a <0解集是( ) A .(−∞,−12)∪(13,+∞) B .(−∞,−13)∪(12,+∞) C .(−12,13)D .(−13,12)7.不等式(a ﹣2)x 2+(a ﹣2)x ﹣1<0对一切x ∈R 恒成立,则实数a 的取值范围是( ) A .(﹣2,2)B .(﹣2,2]C .(﹣∞,﹣2)∪(2,+∞)D .(﹣∞,﹣2)∪[2,+∞)8.已知a ,b ∈(0,+∞),且a 2+3ab +4b 2=7,则a +2b 的最大值为( )A .2B .3C .2√2D .3√2二、多选题9.下列命题为真命题的是( ) A .若a <b ,1a <1b ,则ab <0B .若a >b >0,c <d <0,e >0,则ea−c>e b−dC .若c >a >b >0,则a c−a>b c−bD .若a >b >c >0,则a b>a+c b+c10.已知正数x ,y 满足x +y =2,则下列说法错误的是( ) A .2√xy 的最大值为2 B .x 2+y 2的最大值为2C .√x +√y 的最小值为2D .4xy x+y的最小值为211.已知关于x 的不等式x 2﹣4x ﹣a ﹣1≥0在x ∈[1,4]上有解,则a 的取值可以是( ) A .﹣6B .﹣5C .﹣1D .012.下列说法正确的是( )A .x +1x(x >0)的最小值是2B .2√x 2+2的最小值是√2C .2√x 2+4的最小值是2D .2−3x −4x 的最大值是2−4√3二、填空题(本题共4小题,每小题0分,共32分.将答案填在题后的横线上) 13.已知x ,y 为正实数,且x +y =2,则1x+1xy的最小值为 .14.已知f(x)=x 3+1x ,若正数m ,n 满足f (2m )+f (n ﹣2)=0,则1m+1n的最小值为 .15.已知函数f (x )=x 2+mx ﹣1,若对于任意x ∈[m ,m +1]都有f (x )<0,则实数m 的取值范围为 . 16.若存在常数k 和b ,使得函数F (x )和G (x )对其公共定义域上的任意实数x 都满足:F (x )≥kx +b 和G (x )≤kx +b 恒成立(或F (x )≤kx +b 和G (x )≥kx +b 恒成立),则称此直线y =kx +b 为F (x )和G (x )的“隔离直线”.已知函数f (x )=﹣x 2(x ∈R ),g(x)=1x (x >0),若函数f (x )和g (x )之间存在隔离直线y =﹣3x +b ,则实数b 的取值范围是 . 四.解答题17.设函数f (x )=x 2﹣ax +b ,已知不等式f (x )<0的解集是{x |1<x <2}. (1)求不等式bx 2﹣ax +1>0的解集; (2)对任意x 1,x 2∈R ,比较f(x 1+x 22)与f(x 1)+f(x 2)2的大小.18.(1)已知2<a <6,1<b <3,求a ﹣2b ,ab取值范围;(2)已知1≤a +b ≤5,﹣1≤a ﹣b ≤3,求3a ﹣2b 的取值范围. 19.设函数f (x )=ax 2+(b ﹣2)x +3(a ∈R ),(1)若不等式f (x )<0的解集为(1,3),求函数f (x )的解析式; (2)若b =﹣a ﹣3,求不等式f (x )>﹣4x +2的解集. (3)若f (1)=4,b >﹣1,a >0,求1a +a b+1的最小值.20.已知关于x 的不等式kx 2﹣2kx ﹣k +1>0的解集为M . (1)若M =R ,求实数k 的取值范围;(2)若存在两个实数a ,b ,且a <0,b >0,使得M ={x |x <a 或x >b },求实数k 的取值范围; (3)李华说集合M 中可能仅有一个整数,试判断李华的说法是否正确?并说明你的理由.2023-2024学年山东省临沂市临沂一中高一(上)期中数学试卷参考答案与试题解析一、选择题1.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c ∈R ,则下列命题正确的是( ) A .若a >b >0,则ac 2>bc 2 B .若a <b <0,则a +1b <b +1a C .若0<a <b <c ,则ba <b+c a+cD .若a >0,b >0,则b 2a+a 2b≤a +b解:对于A ,若c =0,则ac 2=bc 2=0,故A 错误;对于B ,(a +1b )−(b +1a )=a −b +a−bab =(a −b)(1+1ab ), 由于a <b <0,故a ﹣b <0,1+1ab >0,所以(a +1b )−(b +1a )<0,即a +1b <b +1a,B 正确; 对于C ,ba −b+c a+c=c(b−a)a(a+c),由于0<a <b <c ,故ba−b+c a+c =c(b−a)a(a+c)>0,即b a>b+c a+c,C 错误;对于D ,根据基本不等式,可知b 2a+a +a 2b+b ≥2√b 2a ⋅a +2√a 2b⋅b =2a +2b ,当b 2a=a 且a 2b=b ,即a =b 时取得等号,因此b 2a+a 2b≥a +b ,故D 错误.故选:B .2.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2﹣1,则M 与N 的大小关系是( ) A .M <NB .M >NC .M =ND .不确定解:由M ﹣N =a 1a 2﹣a 1﹣a 2+1=(a 1﹣1)(a 2﹣1)>0,故M >N , 故选:B .3.因工作需求,张先生的汽车一周需两次加同一种汽油.现张先生本周按照以下两种方案加油(两次加油时油价不一样),甲方案:每次购买汽油的量一定;乙方案:每次加油的钱数一定.问哪种加油的方案更经济?( ) A .甲方案B .乙方案C .一样D .无法确定解:设两次加油的油价分别为x ,y (x ,y >0,且x ≠y ),甲方案每次加油的量为a (a >0),乙方案每次加油的钱数为b (b >0), 则甲方案的平均油价为:ax+ay 2a=x+y 2,乙方案的平均油价为:2bbx +by=2xy x+y,因为x+y 2−2xy x+y=(x−y)22(x+y)>0,所以x+y 2>2xy x+y,即乙方案更经济.故选:B .4.不等式(1﹣x )(2+x )>0的解集为( ) A .{x |x <﹣2或x >1} B .{x |﹣2<x <1}C .{x |x <1或x >2}D .{x |﹣1<x <2}解:由(1﹣x )(2+x )>0,得(x ﹣1)(x +2)<0,解得﹣2<x <1, 所以不等式的解集为{x |﹣2<x <1}. 故选:B .5.下列关于基本不等式的说法正确的是( ) A .若0<x <13,则x (1﹣3x )的最大值为112B .函数y =x 2+3x+3x+1(x >−1)的最小值为2C .已知x +y =1,x >0,y >0,则12x+12y的最小值为54D .若正数x ,y 满足x 2+xy ﹣2=0,则3x +y 的最小值是3 解:对于A :由于0<x <13,所以13•3x (1﹣3x )≤13•(3x+1−3x 2)2=112,当且仅当x =16时,等号成立,故A 正确;对于B :由于x >﹣1,故x +1>0,所以y =x 2+3x+3x+1=(x+1)2+(x+1)+1x+1=(x +1)+1x+1+ 1≥2√(x +1)⋅1x+1=2+1=3,当且仅当x =0时,等号成立,故B 错误;对于C :已知x +y =1,x >0,y >0,所以1=x +y ≥2√xy ,整理得1xy≥4,12x+12y≥2√12x ⋅12y =√1xy≥2,当且仅当x =y =12时,等号成立,故C 错误; 对于D :正数x ,y 满足x 2+xy ﹣2=0,整理得y =2x −x ,所以3x +2x −x =2x +2x ≥2√2x ⋅2x=4,当且仅当x =1时取等号,故D 错误. 故选:A .6.关于x 的一元二次不等式ax 2+bx +c >0解集为{x |﹣2<x <3},不等式cx 2﹣bx +a <0解集是( ) A .(−∞,−12)∪(13,+∞) B .(−∞,−13)∪(12,+∞) C .(−12,13)D .(−13,12)解:关于x 的一元二次不等式ax 2+bx +c >0的解集为{x |﹣2<x <3}, ∴a <0,且﹣2,3是一元二次方程ax 2+bx +c =0的两个实数根,∴b a=−(−2+3)=−1,ca=−6,即b =﹣a ,c =﹣6a ,a <0,∴不等式cx 2﹣bx +a <0化为﹣6ax 2﹣ax +a >0, 化为6x 2﹣x ﹣1<0,解得−13<x <12. 因此不等式的解集为{x|−13<x <12}. 故选:D .7.不等式(a ﹣2)x 2+(a ﹣2)x ﹣1<0对一切x ∈R 恒成立,则实数a 的取值范围是( ) A .(﹣2,2)B .(﹣2,2]C .(﹣∞,﹣2)∪(2,+∞)D .(﹣∞,﹣2)∪[2,+∞)解:当a =2时,﹣1<0恒成立,符合题意, 当a ≠2时,依题意得:{a −2<0△=(a −2)2+4(a −2)<0,解得:﹣2<a <2,综上,实数a 的取值范围为(﹣2,2], 故选:B .8.已知a ,b ∈(0,+∞),且a 2+3ab +4b 2=7,则a +2b 的最大值为( ) A .2B .3C .2√2D .3√2解:∵7=(a +2b )2﹣ab =(a +2b )2−12a •2b ≥(a +2b )2−12(a+2b 2)2=7(a+2b)28, 则(a +2b )2≤8,即|a +2b |≤2√2, 又a ,b ∈(0,+∞),所以0<a +2b ≤2√2 当且仅当a =2b =√2时取等号, ∴a +2b 的最大值为2√2. 故选:C . 二、多选题9.下列命题为真命题的是( ) A .若a <b ,1a <1b ,则ab <0B .若a >b >0,c <d <0,e >0,则ea−c>e b−dC .若c >a >b >0,则a c−a>b c−bD .若a >b >c >0,则a b>a+c b+c解:对于A ,若a <b ,1a <1b,则1a−1b=b−a ab<0,所以ab <0,即A 正确;对于B ,若a >b >0,c <d <0,e >0,则a ﹣c >0,b ﹣d >0,b ﹣a <0,c ﹣d <0, 所以e a−c −e b−d =e(b−d)−e(a−c)(a−c)(b−d)=e(b−a+c−d)(a−c)(b−d)<0,所以e a−c<e b−d,即B 错误;对于C ,若c >a >b >0,则c ﹣a >0,c ﹣b >0,a ﹣b >0, 所以a c−a−b c−b=a(c−b)−b(c−a)(c−a)(c−b)=c(a−b)(c−a)(c−b)>0,即C 正确;对于D ,若a >b >c >0,则a ﹣b >0, 所以ab −a+c b+c=a(b+c)−b(a+c)b(b+c)=c(a−b)b(b+c)>0,即D 正确.故选:ACD .10.已知正数x ,y 满足x +y =2,则下列说法错误的是( ) A .2√xy 的最大值为2 B .x 2+y 2的最大值为2C .√x +√y 的最小值为2D .4xy x+y的最小值为2解:因为x +y =2,x >0,y >0,所以2√xy ≤x +y =2,当且仅当x =y =1时取等号,A 正确; x 2+y 2≥2×(x+y 2)2=2,即最小值为2,当且仅当x =y =1时取等号,B 错误; (√x +√y )2=x +y +2√xy ≤2+2=4,当且仅当x =y =1时取等号, 所以√x +√y ≤2,即最大值为2,C 错误;4xy x+y=41x +1y=8(1x +1y)(x+y)=82+y x +x y≤82+2=2,当且仅当x =y =1时取等号,即最大值为2,D 错误.故选:BCD .11.已知关于x 的不等式x 2﹣4x ﹣a ﹣1≥0在x ∈[1,4]上有解,则a 的取值可以是( ) A .﹣6B .﹣5C .﹣1D .0解:不等式x 2﹣4x ﹣a ﹣1≥0在x ∈[1,4]上有解,等价于a ≤(x 2﹣4x ﹣1)max , 设f (x )=x 2﹣4x ﹣1,x ∈[1,4],则f (x )=(x ﹣2)2﹣5,而f (1)=﹣4,f (4)=﹣1, 故f (x )在[1,4]上的最大值为﹣1,故a ≤﹣1,所以a 的取值可以是﹣6,﹣5,﹣1. 故选:ABC .12.下列说法正确的是( )A .x +1x(x >0)的最小值是2B .2√x 2的最小值是√2C .2√x 2+4的最小值是2D .2−3x −4x的最大值是2−4√3解:由基本不等式可知,x >0时,x +1x ≥2,当且仅当x =1x 即x =1时取等号,故A 正确; B :2√x 2+2=√x 2+2≥√2,当x =0时取得等号,故B 正确; C :2√x 2+4=√x 2+4+√x 2+4,令t =√x 2+4,则t ≥2,因为y =t +1t 在[2,+∞)上单调递增,当t =2时,取得最小值52,故C 错误; D :2−(3x +4x )在x <0时,没有最大值,故D 错误. 故选:AB .二、填空题(本题共4小题,每小题0分,共32分.将答案填在题后的横线上) 13.已知x ,y 为正实数,且x +y =2,则1x +1xy 的最小值为 1+√32 . 解:∵x ,y 为正实数,且x +y =2,∴x+y 2=1 ∴1x +1xy=1x+x+y 2xy=12y+32x=12(12y+32x)•(x +y )=1+12(x 2y+3y 2x)≥1+√x 2y ⋅3y2x =1+√32, 当且仅当x2y=3y 2x,即y =√3−1,x =3−√3时取等号,∴1x +1xy的最小值为1+√32.故答案为:1+√32.14.已知f(x)=x 3+1x,若正数m ,n 满足f (2m )+f (n ﹣2)=0,则1m+1n的最小值为32+√2 .解:因为f(x)=x 3+1x定义域为{x |x ≠0}, 且f(−x)=(−x)3+1−x =−(x 3+1x)=−f(x),所以f (x )为奇函数, 因为f (2m )+f (n ﹣2)=0,所以2m +n ﹣2=0,即2m +n =2, 因为m >0,n >0, 所以1m+1n =(1m +1n)(2m +n)⋅12=12(n m+2m n+3)≥32+√2,当且仅当n m=2mn,即m =2−√2,n =2√2−2时取等号.故答案为:32+√2.15.已知函数f (x )=x 2+mx ﹣1,若对于任意x ∈[m ,m +1]都有f (x )<0,则实数m 的取值范围为 (−√22,0) .解:∵二次函数f (x )=x 2+mx ﹣1的图象开口向上,对于任意x ∈[m ,m +1],都有f (x )<0成立,∴{f(m)=2m 2−1<0f(m +1)=(m +1)2+m(m +1)−1<0,即 {−√22<m <√22m(2m +3)<0,解得−√22<m <0,故答案为:(−√22,0).16.若存在常数k 和b ,使得函数F (x )和G (x )对其公共定义域上的任意实数x 都满足:F (x )≥kx +b 和G (x )≤kx +b 恒成立(或F (x )≤kx +b 和G (x )≥kx +b 恒成立),则称此直线y =kx +b 为F (x )和G (x )的“隔离直线”.已知函数f (x )=﹣x 2(x ∈R ),g(x)=1x(x >0),若函数f (x )和g (x )之间存在隔离直线y =﹣3x +b ,则实数b 的取值范围是 [94,2√3] . 解:因为函数f (x )和g (x )之间存在隔离直线y =﹣3x +b , 所以当﹣x 2≤﹣3x +b 时,可得﹣x 2+3x ﹣b ≤0 对任意的x ∈R 恒成立, 则b ≥﹣x 2+3x ,即 b ≥﹣(x −32)2+94, 所以b ≥94,当1x ≥−3x +b 时,可得对x >0恒成立,即3x 2−bx+1x≥0,令t (x )=3x 2﹣bx +1,则有t (x )=3x 2﹣bx +1≥0 对x >0恒成立,所以{b 6>0b 2−12≤0,解得−2√3≤b ≤2√3 或b >0,即b ∈(0,2√3],综上所述,实数b 的取值范围是94≤b ≤2√3.故答案为:[94,2√3].四.解答题17.设函数f (x )=x 2﹣ax +b ,已知不等式f (x )<0的解集是{x |1<x <2}. (1)求不等式bx 2﹣ax +1>0的解集;(2)对任意x 1,x 2∈R ,比较f(x 1+x 22)与f(x 1)+f(x 2)2的大小.解:(1)因为不等式x 2﹣ax +b <0的解集是{x |1<x <2}, 所以x =1,x =2是方程x 2﹣ax +b =0的解, 由韦达定理得:a =3,b =2,故不等式bx 2﹣ax +1>0为2x 2﹣3x +1>0, 解得其解集为{x|x <12或x >1}; (2)由(1)知,f (x )=x 2﹣3x +2, 所以f(x 1+x 22)−f(x 1)+f(x 2)2=(x 1+x 22)2−3⋅x 1+x 22+2−x 12−3x 1+2+x 22−3x 2+22=(x 1+x 22)2−x 12+x 222=−(x 1−x 2)24≤0,所以f(x 1+x 22)≤f(x 1)+f(x 2)2. 18.(1)已知2<a <6,1<b <3,求a ﹣2b ,a b取值范围; (2)已知1≤a +b ≤5,﹣1≤a ﹣b ≤3,求3a ﹣2b 的取值范围.解:(1)因为1<b <3,由不等式的性质可得﹣3<﹣b <﹣1,则﹣6<﹣2b <﹣2, 又2<a <6,故﹣4<a ﹣2b <4. 又13<1b<1,2<a <6,故23<ab<6.综上a ﹣2b ∈(﹣4,4),a b∈(23,6);(2)令3a ﹣2b =m (a +b )+n (a ﹣b ),(m ,n ∈R ),即3a ﹣2b =(m +n )a +(m ﹣n )b , 则{m +n =3m −n =−2,解得{m =12n =52. 则12≤12(a +b)≤52,−52≤52(a −b)≤152,所以−52+12≤52(a −b)+12(a +b)≤152+52,即﹣2≤3a﹣2b ≤10.综上3a ﹣2b ∈[﹣2,10].19.设函数f (x )=ax 2+(b ﹣2)x +3(a ∈R ),(1)若不等式f (x )<0的解集为(1,3),求函数f (x )的解析式; (2)若b =﹣a ﹣3,求不等式f (x )>﹣4x +2的解集. (3)若f (1)=4,b >﹣1,a >0,求1a +a b+1的最小值.解:(1)由不等式f (x )<0的解集为(1,3)可得:方程ax 2+(b ﹣2)x +3=0的两根为1,3且a >0,由根与系数的关系可得:a=1,b=﹣2,所以:f(x)=x2﹣4x+3;(2)由f(x)>﹣4x+2得ax2+(b﹣2)x+3>﹣4x+2,又因为b=﹣a﹣3,所以不等式f(x)>﹣4x+2,化为ax2﹣(a+1)x+1>0,即(x﹣1)(ax﹣1)>0,当a=0时,原不等式变形为﹣x+1>0,解得x<1;当a<0时,1a <1,解得1a<x<1.若a>0,原不等式⇔(x−1a)(x−1)>0.此时原不等式的解的情况应由1a 与1的大小关系决定,故当a=1时,不等式(x−1a)(x−1)>0的解为x≠1;当a>1时,1a <1,不等式(x−1a)(x−1)>0,解得x<1a或x>1;当0<a<1时,1a >1,不等式(x−1a)(x−1)>0⇔x<1或x>1a,综上所述,不等式的解集:当a<0时,{x|1a<x<1};当a=0时,{x|x<1};当0<a<1时,{x|x>1a或x<1};当a=1时,{x|x≠1};当a>1时,{x|x<1a或x>1}.(3)由已知得f(1)=4,a+(b+1)=4,又b>﹣1,则1a +ab+1≥14+2√b+14a⋅ab+1=14+1=54.当且仅当2a=b+1=83时等号成立.20.已知关于x的不等式kx2﹣2kx﹣k+1>0的解集为M.(1)若M=R,求实数k的取值范围;(2)若存在两个实数a,b,且a<0,b>0,使得M={x|x<a或x>b},求实数k的取值范围;(3)李华说集合M中可能仅有一个整数,试判断李华的说法是否正确?并说明你的理由.解:(1)不等式kx2﹣2kx﹣k+1>0的解集M=R,①当k =0时,1>0恒成立,符合题意;②当k ≠0时,则{k >0Δ=4k 2−4k(1−k)<0,解得0<k <12, 综上,实数k 的取值范围为{k |0≤k <12};(2)因为不等式 kx 2﹣2kx ﹣k +1>0 的解集为M ={x |x <a 或x >b },且a <0,b >0,所以关于x 的方程 kx 2﹣2kx ﹣k +1=0 有一正一负两个实数根a ,b ,可得{ k >0Δ=4k 2−4k(1−k)>01−k k <0,解得k >1, 综上,实数k 的取值范围为{k |k >1}.(3)李华的说法不正确,理由如下:若解集M 中仅有一个整数,则有k <0,二次函数 y =kx 2﹣2kx ﹣k +1,开口向下,对称轴为 x =1, 因为不等式 kx 2﹣2kx ﹣k +1>0的解集中仅有一个整数,所以这个整数必为1.则{k −2k −k +1>0−k +1≤0,解得k ∈∅. 即M 中不可能仅有一个整数,李华的说法不正确.。
山东省临沂市2017届高三上学期期中考试数学(文)试题Word版含答案
高三教学质量检测考试文科数学2016.11本试卷分为选择题和非选择题两部分,共5页,满分150分。
考试时间120分钟. 注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效.第I 卷 (共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}(){}1,0,1,2,110M N x g x M N =-=+>⋂=,则(A){}01, (B) {}012,, (C) {}1,2 (D) {}101-,,2.命题“()00,x ∃∈+∞,使00ln 2x x =-”的否定是(A) ()0,,ln 2x x x ∀∈+∞≠-(B) ()0,,ln 2x x x ∀∉+∞=-(C) ()0000,,ln 2x x x ∃∈+∞≠-使(D) ()0000,,ln 2x x x ∃∉+∞=-3.下列函数中,既是偶函数又在区间()0,+∞上单调递增的是 (A) 1y x= (B) 1y g x = (C) cos y x = (D) 22x y x =+4.下列命题为真命题的是(A)命题“若x y >,则x y >的逆命题(B)命题“若211x x ≤≤,则”的否命题 (C)命题“若210x x x =-=,则”的否命题 (D)命题“若11a b a b><,则”的逆否命题 5.已知向量()()()1,,0,2,a m b a b b m ==-+⊥且,则等于(A) 2- (B) 1- (C)1 (D)26.已知函数()()121,1,3log ,1,xx f x f f x x ⎧⎛⎫≤⎪ ⎪⎪⎝⎭==⎨⎪>⎪⎩则 (A) 12- (B) 12(C)(D)3 7.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是 (A) 56(B)2 (C) 52 (D)3 8.已知函数()()()sin 0,0f x A x b A ωϕω=++>>的图象如图所示,则()f x 的解析式为(A) ()2sin 263f x x ππ⎛⎫=++ ⎪⎝⎭ (B) ()13sin 236f x x π⎛⎫=-+ ⎪⎝⎭ (C) ()2sin 366f x x ππ⎛⎫=++ ⎪⎝⎭ (D) ()2sin 363f x x ππ⎛⎫=++⎪⎝⎭9.函数()3x y x x e =-的图象大致是10.已知()f x 是定义在()0,+∞上的函数,()()f x f x '是的导函数,且总有()()f x xf x '>,则不等式()()1f x xf >的解集为(A) (),0-∞ (B) ()0,1 (C) ()0,+∞ (D)(1,+∞)第Ⅱ卷 (共100分)二、填空题:本大题共5个小题,每小题5分,共25分。
2016-2017年第一学期高一数学上册期中试题(有答案)
2016-2017年第一学期高一数学上册期中试题(有答案)高一第一学期期中考试数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分共1 0分,考试时间120分钟。
注意事项:答题前考生务必将考场、姓名、班级、学号写在答题纸的密封线内。
选择题每题答案涂在答题卡上,非选择题每题答案写在答题纸上对应题目的答案空格里,答案不写在试卷上。
考试结束,将答题卡和答题纸交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1} B.{1} .{-1,1} D.{-1,0,1}2.函数=1lnx-1的定义域为()A.(1,+∞)B.[1,+∞).(1,2)∪(2,+∞) D.(1,2)∪[3,+∞)3.已知f(x)=fx-,x≥0,lg2-x,x<0,则f(2 016)等于()A.-1 B.0 .1 D.24、若α与β的终边关于x轴对称,则有()A.α+β=90° B.α+β=90°+•360°,∈Z.α+β=2•180°,∈Z D.α+β=180°+•360°,∈Z、设1=409,2=8048,3=(12)-1,则()A.3>1>2B.2>1>3.1>2>3D.1>3>26.在一次数学试验中,运用图形计算器采集到如下一组数据:x-20-100100新标x b1 200300024011202398802则x,的函数关系与下列哪类函数最接近?(其中a,b为待定系数)()A.=a+bxB.=a+bx.=ax2+bD.=a+bx7.定义运算a⊕b=a,a≤b,b,a>b则函数f(x)=1⊕2x的图象是()8、设偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为()A.{x|x<-2,或x>4}B.{x|x<0,或x>4}.{x|x<0,或x>6} D.{x|x<-2,或x>2}9.函数=lg12(x2-x+3)在[1,2]上的值恒为正数,则的取值范围是()A.22<<23B.22<<72.3<<72D.3<<2310 已知1+sinxsx=-12,那么sxsinx-1的值是()A12 B.-12 .2 D.-211.设∈R,f(x)=x2 -x+a(a>0),且f()<0,则f(+1)的值() A.大于0 B.小于0 .等于0D.不确定12、已知函数f(x)=1lnx+1-x,则=f(x)的图象大致为()第Ⅱ卷(非选择题共90分)二、填空题:本大题4小题,每小题分,共20分13.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-)(x-2)<0},且A∩B=(-1,n),则+n=________14 函数f(x)=x+2x在区间[0,4]上的最大值与最小值N的和为__ 1.若一系列函数解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数解析式为=x2,值域为{1,4}的“同族函数”共有________个.16 已知f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则=f(x)的值域为________.三、解答题:本大题共6小题,共70分,解答应写出字说明,证明过程或演算步骤17.(本小题10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},若A∪B =A,求实数a的值.18.(本小题满分12分)已知扇形的圆心角是α,半径为R,弧长为l(1)若α=60°,R=10 ,求扇形的弧长l(2)若扇形的周长是20 ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2 ,求扇形的弧所在的弓形的面积.19.(本小题满分12分)已知定义域为R的函数f(x)=-2x+b2x+1+a是奇函数.(1)求a,b的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-)<0恒成立,求的取值范围.20、(本小题满分12分)已知函数f(x)=4x+•2x+1有且仅有一个零点,求的取值范围,并求出该零点.21.(本小题满分12分)如图,建立平面直角坐标系x,x轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程=x-120(1+2)x2(>0)表示的曲线上,其中与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为32千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.22.(本小题满分12分)设函数f(x)=ax-a-x(a>0且a≠1)是定义域为R的奇函数.(1 )若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;(2)若f(1)=32,且g(x)=a2x+a-2x-4f(x),求g(x)在[1,+∞)上的最小值.高一数学期中测试卷参考答案1.解析:由题意知集合B的元素为1或-1或者B为空集,故a=0或1或-1,选D答案:D2 解析由ln(x-1)≠0,得x-1>0且x-1≠1由此解得x>1且x≠2,即函数=1lnx-1的定义域是(1,2)∪(2,+∞).答案3 解析f(2 016)=f(1)=f(1-)=f(-4)=lg24=2答案 D4 解析:根据终边对称,将一个角用另一个角表示,然后再找两角关系.因为α与β的终边关于x轴对称,所以β=2•180°-α,∈Z,故选答案:解析:1=409=218,2=8048=2144,3=(12)-1=21由于指数函数f(x)=2x在R上是增函数,且18>1>144,所以1>3>2,选D 答案:D6 解析:在坐标系中将点(-2,024),(-1,01),(0,1),(1,202),(2,398),(3,802)画出,观察可以发现这些点大约在一个指数型函数的图象上,因此x与的函数关系与=a+bx最接近.答案:B7 解析:f(x)=1⊕2x=1,x≥0,2x,x<0故选A答案:A8 解析:当x≥0时,令f(x)=2x-4>0,所以x>2又因为函数f(x)为偶函数,所以函数f(x)>0的解集为{x|x<-2,或x>2}.将函数=f(x)的图象向右平移2个单位即得函数=f(x-2)的图象,故f(x -2)>0的解集为{x|x<0,或x>4}.答案:B9 解析:∵lg12(x2-x+3)>0在[1,2]上恒成立,∴0<x2-x+3<1在[1, 2]上恒成立,∴<x+3x>x+2x在[1,2]上恒成立又当1≤x≤2时,=x+3x∈[23,4],=x+2x∈[22,3].∴3<<23答案:D10 解析:设sxsinx-1=t,则1+sinxsx•1t=1+sinxsx•sinx-1sx=sin2x-1s2x=-1,而1+sinxsx=-12,所以t=12故选A答案:A11 解析:函数f(x)=x2-x+a的对称轴为x=12,f(0)=a,∵a>0,∴f(0)>0,由二次函数的对称性可知f(1)=f(0)>0∵抛物线的开口向上,∴由图象可知当x>1时,恒有f(x)>0∵f()<0,∴0<<1∴>0,∴+1>1,∴f(+1)>0答案:A12 解析:(特殊值检验法)当x=0时,函数无意义,排除选项D中的图象,当x=1e-1时,f(1e-1)=1ln1e-1+1-1e-1=-e<0,排除选项A、中的图象,故只能是选项B中的图象.(注:这里选取特殊值x=(1e-1)∈(-1,0),这个值可以直接排除选项A、,这种取特值的技巧在解题中很有用处)答案:B13 答案0 解析由|x+2|< 3,得-3<x+2<3,即-<x<1又A∩B=(-1,n),则(x-)(x-2)<0时必有<x<2,从而A∩B=(-1,1),∴=-1,n=1,∴+n=014 解析:令t=x,则t∈[0,2],于是=t2+2t=(t+1)2-1,显然它在t∈[0,2]上是增函数,故t=2时,=8;t=0时N=0,∴+N=8答案:81 解析:值域为{1,4},则定义域中必须至少含有1,-1中的一个且至少含有2,-2中的一个.当定义域含有两个元素时,可以为{-1,-2},或{-1,2},或{1,-2},或{1,2};当定义域中含有三个元素时,可以为{-1,1,-2},或{-1,1,2},或{1,-2,2},或{-1,-2,2};当定义域含有四个元素时,为{-1,1,-2,2}.所以同族函数共有9个.答案:916 解析:∵f(x)=ax2+bx+3a+b是偶函数,∴其定义域[a-1,2a]关于原点对称,即a-1=-2a,∴a=13∵f(x)=ax2+bx+3a+b是偶函数,即f(-x)=f(x),∴b=0,∴f(x)=13x2+1,x∈[-23,23],其值域为{|1≤≤3127}.答案:{|1≤≤3127}17 答案a=2或a=3解析A={1,2},∵A∪B=A,∴B⊆A,∴B=∅或{1}或{2}或{1,2}.当B=∅时,无解;当B={1}时,1+1=a,1×1=a-1,得a=2;当B={2}时,2+2=a,2×2=a-1,无解;当B={1,2}时,1+2=a,1×2=a-1,得a=3综上:a=2或a=318 【解析】(1)α=60°=π3,l=10×π3=10π3(2)由已知得,l+2R=20,所以S=12lR=12(20-2R)R=10R-R2=-(R-)2+2所以当R=时,S取得最大值2,此时l=10,α=2(3)设弓形面积为S弓.由题知l=2π3S弓=S扇形-S三角形=12×2π3×2-12×22×sin π3=(2π3-3) 2 【答案】(1)10π3 (2)α=2时,S最大为2(3)2π3-3 219 解:(1)因为f(x)是定义在R上的奇函数,所以f(0)=0,即b-1a+2=0ͤb=1,所以f(x)=1-2xa+2x+1,又由f(1)=-f(-1)知1-2a+4=-1-12a+1ͤa=2(2)由(1)知f(x)=1-2x2+2x+1=-12+12x+1,易知f(x)在(-∞,+∞)上为减函数.又因f(x)是奇函数,从而不等式:f(t2-2t)+f(2t2-)<0等价于f(t2-2t)<-f(2t2-)=f(-2t2),因f(x)为减函数,由上式推得:t2-2t>-2t2,即对t∈R有:3t2-2t->0,从而Δ=4+12<0ͤ<-1320 解:∵f(x)=4x+•2x+1有且仅有一个零点,即方程(2x)2+•2x+1=0仅有一个实根.设2x=t(t>0),则t2+t+1=0当Δ=0时,即2-4=0∴=-2时,t=1;=2时,t=-1(不合题意,舍去),∴2x=1,x=0符合题意.当Δ>0时,即>2或<-2时,t2+t+1=0有两正或两负根,即f(x)有两个零点或没有零点.∴这种情况不符合题意.综上可知:=-2时,f(x)有唯一零点,该零点为x=021 解:(1)令=0,得x-120(1+2)x2=0,由实际意义和题设条知x>0,>0,故x=201+2=20+1≤202=10,当且仅当=1时取等号.所以炮的最大射程为10千米.(2)因为a>0,所以炮弹可击中目标⇔存在>0,使32=a-120(1+2)a2成立⇔关于的方程a22-20a+a2+64=0有正根⇔判别式Δ=(-20a)2-4a2(a2+64)≥0⇔a≤6所以当a不超过6(千米)时,可击中目标.22 答案(1) {x|x>1或x<-4}(2)-2解析∵f(x)是定义域为R的奇函数,∴f(0)=0,∴-1=0,∴=1(1)∵f(1)>0,∴a-1a>0又a>0且a≠1,∴a>1∵=1,∴f(x)=ax-a-x当a>1时,=ax和=-a-x在R上均为增函数,∴f(x)在R上为增函数.原不等式可化为f (x2+2x)>f(4-x),∴x2+2x>4-x,即x2+3x-4>0∴x>1或x<-4∴不等式的解集为{x|x>1或x<-4}.(2)∵f(1)=32,∴a-1a=32,即2a2-3a-2=0∴a=2或a=-12(舍去).∴g(x)=22x+2-2x-4(2x-2-x)=(2x-2-x)2-4(2x-2-x)+2令t=h(x)=2x-2-x(x≥1),则g(t)=t2-4t+2∵t=h(x)在[1,+∞)上为增函数(由(1)可知),∴h(x)≥h(1)=32,即t≥32∵g(t)=t2-4t+2=(t-2)2-2,t∈[32,+∞),∴当t=2时,g(t)取得最小值-2,即g(x)取得最小值-2,此时x=lg2(1+2).故当x=lg2(1+2)时,g(x)有最小值-2。
高一上学期期中考试数学试卷含答案(共3套,新课标版)
高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
2.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题....区域书写的答案无效.........,在试题卷....、草稿纸上作答无效........。
3.本卷命题范围:新人教版必修第一册第一章~第四章。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{123}A =,,,{}223B x x x =->,则A B =A .{12},B .∅C .{23},D .{1}2.命题“R x ∃∈,||0x ”的否定是A .R x ∀∈,||0x ≥B .R x ∃∈,||0x <C .R x ∀∈,||0x <D .R x ∃∉,||0x <3.若a b >,则下列不等式中成立的是 A .11<a bB .33a b >C .22a b >D .a b >4.函数y =的定义域为 A .(12)-,B .(02),C .[12)-,D .(12]-,5.某企业一个月生产某种商品x 万件时的生产成本为2()410C x x x =++(万元)。
一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为 A .139万元B .149万元C .159万元D .169万元6.已知集合2{Z |Z}1A x x =∈∈-,则集合A 的真子集的个数为 A .13B .14C .15D .167.若0.33a =,3log 0.3b =,13log 3c =,则a ,b ,c 的大小关系为 A .b c a <<B .c a b <<C .a b c <<D .b a c <<8.若函数()f x 是奇函数,且在定义域R 上是减函数,(2)3f -=,则满足3(3)3f x -<-<的实数x 的取值范围是 A .(15),B .(24),C .(36),D .(25),二、选择题:本题共4小题,每小题5分,共20分。
山东省2016_2017学年高一数学上学期期中联考试题
泰安三中、宁阳二中、新泰二中三校联考2017年高一上学期期中考试数学试题2017.11注意事项:1.答卷前,同学们务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={2,3,4},N ={0,2,3,5},则M ∩N =( ) A .{0,2} B .{2,3} C .{3,4}D .{3,5}2.已知函数()()()2212(3)x x f x x f x ≥⎧+⎪=⎨<+⎪⎩,则()()13f f -=( ) A.7 B.12 C.18 D.273.函数22log (23)y x x =+-的单调递增区间是( ) A.(,3)-∞- B. (,1)-∞- C. (1,)-+∞ D.(1,)+∞ 4.在函数1,,2,1222=+===y x x y x y xy 中,幂函数的个数为( ) A .0 B .1 C .2 D .35.若a =0.521,b =0.531,c =0.541,则a 、b 、c 的大小关系是( ) A .a >b >c B .a <b <c C .a <c <b D .b <c <a6.函数y =ax+2(a >0,且a≠1) 的图象经过的定点坐标是( ) A .(0,1)B .(2,1)C .(-2,0)D .(-2,1)7.函数f (x )=a x与g(x)=-x +a 的图象大致是()8.下列各组函数中表示同一函数的是( )A. x x f =)(与2)()(x x g =B. ||)(x x f =与33)(x x g = C. x e x f ln )(=与xe x g ln )(= D.11)(2--=x x x f 与)1(1)(≠+=x x x g 9.已知函数f (x )=1x 在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于( )A.12 B .-12C .1D .-1 10.定义运算:a*b =⎩⎪⎨⎪⎧a ,a ≤b b ,a>b,如1*2=1,则函数f (x )=(2x )*(2-x )的值域为( )A .RB .(0,+∞)C .(0,1]D .[1,+∞) 11.f (x )为偶函数,且当x≥0时,f (x )≥2,则当x≤0时,有( ) A .f (x )≤2 B .f (x )≥2 C .f (x )≤-2D .f (x )∈R12.下列函数中,在区间(0,2)上是单调递增函数的是( ) A .y = log 21(x+1)B .y = x21C .y =-x 21D .y =⎝ ⎛⎭⎪⎫12x二、填空题(本大题共4小题,每小题5分,共20分)13.设A∪{-1,1}={-1,1},则满足条件的集合A 共有________个. 14.函数y =f (x )(f (x )≠0)的图象与x =1的交点个数是________. 15.设f (x )是R 上的奇函数,且当x ∈[0,+∞)时,f (x )=x (1+3x ), 则f (-1)=________. 16.对于下列结论:①函数y =ax +2(x ∈R)的图象可以由函数y =a x(a >0且a ≠1)的图象平移得到;②函数y =2x与函数y =log 2x 的图象关于y 轴对称; ③方程log 5(2x +1)=log 5(x 2-2)的解集为{-1,3}; ④函数y =ln (1+x )-ln (1-x )为奇函数.其中正确的结论是________.(把你认为正确结论的序号都填上)三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)计算:(1) lg 52+23lg 8+lg 5lg 20+(lg 2)2;(2) 321-2761+1643-2×(832-)-1+52×(452-)-1.18.(12分)已知函数()()1()log 164x x f x +=- (1)求函数()f x 的定义域;(2)求函数()g x =的定义域.19.(12分)若集合A ={x |x 2+x -6=0},B ={x |x 2+x +a =0},且B ⊆A ,求实数a 的取值范围.20.(12分)已知 f (x )为定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数解析式f (x )=14x -a2x (a ∈R). (1)写出f (x )在[0,1]上的解析式; (2)求f (x )在[0,1]上的最大值.21.(12分)已知集合M 是满足下列性质的函数f (x )的全体:在定义域内存在0x , 使得()()()1100f x f x f +=+成立。
2016-2017年山东省临沂一中高一上学期数学期中试卷和解析
2016-2017学年山东省临沂一中高一(上)期中数学试卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则M∩(∁N)=()UA.{2,3,4}B.{2}C.{3}D.{0,1}2.(5分)函数f(x)=﹣x的图象关于()A.x轴对称B.y轴对称C.原点对称D.直线y=x对称3.(5分)函数f(x)=的定义域是()A.(﹣∞,3)B.[2,+∞)C.(2,3) D.[2,3)4.(5分)函数f(x)=lnx+3x﹣10的零点所在的大致范围是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)5.(5分)函数f(x)=|x﹣2|的图象为()A.B.C.D.6.(5分)设lg2=a,lg3=b,则log125=()A.B.C.D.7.(5分)函数y=()的递减区间为()A.(1,+∞)B.(﹣∞,1)C.(﹣∞,﹣1)D.(﹣1,+∞)8.(5分)下列函数为偶函数的是()A.B.f(x)=x3﹣2xC. D.f(x)=x2+19.(5分)下列各组中的两个函数是同一函数的为()(1)y=,y=x﹣5;(2)y=,y=;(3)y=|x|,y=;(4)y=x,y=;(5)y=(2x﹣5)2,y=|2x﹣5|.A.(1),(2)B.(2),(3)C.(3),(5)D.(3),(4)10.(5分)已知指数函数y=a x在[0,1]上的最大值与最小值的差为,则实数a 的值为()A.B.C.或D.411.(5分)若函数f(x)=x2+bx+c满足f(﹣3)=f(1),则()A.f(1)>c>f(﹣1)B.f(1)<c<f(﹣1)C.c>f(﹣1)>f(1)D.c<f(﹣1)<f(1)12.(5分)函数y=lg(﹣a)的图象关于原点对称,则a等于()A.1 B.0 C.﹣1 D.﹣2二、填空题:(本大题共4小题,每小题5分,共20分)y13.(5分)计算:log43•log98=.14.(5分)函数f(x)=,若f(x)=12,则x=.15.(5分)函数f(x)=x2﹣2x+2在区间[0,m]上的最大值为2,最小值为1,则m的取值范围是.16.(5分)给出下列四个命题:①函数y=|x|与函数y=()2表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];④设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根;其中正确命题的序号是(填上所有正确命题的序号)三、解答题:(本大题共6小题,74分.解答应写出文字说明,证明过程或演算步骤.)=17.(12分)(1)计算:﹣(﹣)0++;(2)计算.18.(12分)已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x﹣1﹣2≤6}.(1)求A∩B、(∁U A)∪(∁U B);(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.19.(12分)设函数f(x)=|x2﹣4x+3|,x∈R.(1)在区间[0,4]上画出函数f(x)的图象;(2)写出该函数在R上的单调区间.20.(12分)函数f(x)=a+为定义在R上的奇函数.(1)求a的值;(2)判断函数f(x)在(﹣∞,+∞)的单调性并给予证明.21.(12分)已知函数f(x)=x2﹣2ax+a﹣1在区间[0,1]上有最小值﹣2,求a 的值.22.(10分)函数f(x)=log a(3﹣ax)(a>0,a≠1)(1)当a=3时,求函数f(x)的定义域;(2)若g(x)=f(x)﹣log a(3+ax),请判定g(x)的奇偶性;(3)是否存在实数a,使函数f(x)在[2,3]递增,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.2016-2017学年山东省临沂一中高一(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则M∩(∁N)=()UA.{2,3,4}B.{2}C.{3}D.{0,1}【解答】解:全集U={0,1,2,3,4},M={0,1,2},N={2,3},∴∁U N={0,1,4},∴M∩(∁U N)={0,1}.故选:D.2.(5分)函数f(x)=﹣x的图象关于()A.x轴对称B.y轴对称C.原点对称D.直线y=x对称【解答】解:∵∴﹣,=,可得f(﹣x)=﹣f(x)又∵函数定义域为{x|x≠0}∴函数f(x)在其定义域是奇函数根据奇函数图象的特征,可得函数f(x)图象关于原点对称故选:C.3.(5分)函数f(x)=的定义域是()A.(﹣∞,3)B.[2,+∞)C.(2,3) D.[2,3)【解答】解:由题意得:0<3﹣x≤1,解得:2≤x<3,故选:D.4.(5分)函数f(x)=lnx+3x﹣10的零点所在的大致范围是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【解答】解:函数的定义域为:(0,+∞),有函数在定义域上是递增函数,所以函数至多有一个零点.又∵f(2)=ln2+6﹣10=ln2﹣4<0,f3)=ln3+9﹣10=ln3﹣1>0,∴f(2)•f(e)<0,故在(2,e)上函数存在唯一的零点,∴函数f(x)=lnx+3x﹣10的零点所在的大致范围是(2,3).故选:C.5.(5分)函数f(x)=|x﹣2|的图象为()A.B.C.D.【解答】解:∵f(x)=|x﹣2|,∴当x≤2时,f(x)=﹣x+2,函数为减函数,当x>2时,f(x)=x﹣2,函数为增函数,故选:B.6.(5分)设lg2=a,lg3=b,则log125=()A.B.C.D.【解答】解:∵lg2=a,lg3=b,则log125==.故选:A.7.(5分)函数y=()的递减区间为()A.(1,+∞)B.(﹣∞,1)C.(﹣∞,﹣1)D.(﹣1,+∞)【解答】解:令t=x2+2x﹣3=(x+1)2﹣4,∵∈(0,1),y=,故本题即求二次函数t的增区间.再利用二次函数的性值可得t=(x+1)2﹣4的增区间为(﹣1,+∞),故选:D.8.(5分)下列函数为偶函数的是()A.B.f(x)=x3﹣2xC. D.f(x)=x2+1【解答】解:A,函数的定义域为{x|x≠1},不关于原点对称,非奇非偶函数;B,f(﹣x)=﹣x3+2x=﹣f(x),是奇函数;C,f(x)=x+,f(﹣x)=﹣x﹣=﹣f(x),是奇函数;D,f(﹣x)=(﹣x)2+1=x2+1=f(x),是偶函数.故选:D.9.(5分)下列各组中的两个函数是同一函数的为()(1)y=,y=x﹣5;(2)y=,y=;(3)y=|x|,y=;(4)y=x,y=;(5)y=(2x﹣5)2,y=|2x﹣5|.A.(1),(2)B.(2),(3)C.(3),(5)D.(3),(4)【解答】解:(1)的定义域是{x|x≠﹣3},y=x﹣5的定义域为R,故不是同一函数;(2)的定义域是{x|x≥1},的定义域是{x|x≥1或x≤﹣1},故不是同一函数;(3)两个函数的定义域和对应法则相同,故是同一函数;(4)两个函数的定义域和对应法则相同,故是同一函数;(5)两个函数的对应法则不相同,故不是同一函数.故选:D.10.(5分)已知指数函数y=a x在[0,1]上的最大值与最小值的差为,则实数a 的值为()A.B.C.或D.4【解答】解:当0<a<1时,y=a x在[0,1]上的最大值与最小值分别为1,a,则1﹣a=,得a=;当a>1时,y=a x在[0,1]上的最大值与最小值分别为a,1,则a﹣1=,得a=.∴实数a的值为或.故选:C.11.(5分)若函数f(x)=x2+bx+c满足f(﹣3)=f(1),则()A.f(1)>c>f(﹣1)B.f(1)<c<f(﹣1)C.c>f(﹣1)>f(1)D.c<f(﹣1)<f(1)【解答】解:函数f(x)=x2+bx+c,开口向上,满足f(﹣3)=f(1),函数的对称轴为:x=﹣1.x∈[﹣1,+∞)函数是增函数.x=﹣1时函数取得最小值.f(0)=c.所以:f(1)>c>f(﹣1).故选:A.12.(5分)函数y=lg(﹣a)的图象关于原点对称,则a等于()A.1 B.0 C.﹣1 D.﹣2【解答】解:当x=0时,y=lg(2﹣a)=0,∴a=1,经检验a=1符合题意,故选:A.二、填空题:(本大题共4小题,每小题5分,共20分)y13.(5分)计算:log43•log98=.【解答】解:由对数的运算性质可得log43•lo g98=•=•=,故答案为.14.(5分)函数f(x)=,若f(x)=12,则x=﹣2或2.【解答】解:∵f(x)=,f(x)=12,∴当x≥0时,x(x+4)=12,解得x=2或x=﹣6(舍);当x<0时,x(x﹣4)=12,解得x=﹣2或x=6(舍).∴x=2或x=﹣2.故答案为:﹣2或2.15.(5分)函数f(x)=x2﹣2x+2在区间[0,m]上的最大值为2,最小值为1,则m的取值范围是1≤m≤2.【解答】解:∵f(x)=x2﹣2x+2,∴对称轴x=1,∴f(0)=2,f(1)=1,∵f(x)=x2﹣2x+2在区间[0,m]上的最大值为2,最小值为1∴即求解得:1≤m≤2故答案为:1≤m≤216.(5分)给出下列四个命题:①函数y=|x|与函数y=()2表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];④设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根;其中正确命题的序号是④(填上所有正确命题的序号)【解答】解:①函数y=|x|的定义域为R,函数y=()2定义域为[0,+∞),两函数的定义域不同,不是同一函数,①错误②函数y=为奇函数,但其图象不过坐标原点,②错误③∵函数f(x)的定义域为[0,2],要使函数f(2x)有意义,需0≤2x≤2,即x∈[0,1],故函数f(2x)的定义域为[0,1],错误;④函数f(x)是在区间[a.b]上图象连续的函数,f(a)•f(b)<0,则方程f (x)=0在区间[a,b]上至少有一实根,④正确.故答案为④.三、解答题:(本大题共6小题,74分.解答应写出文字说明,证明过程或演算步骤.)=17.(12分)(1)计算:﹣(﹣)0++;(2)计算.【解答】解:(1)原式==0.4﹣1﹣1+23+0.5=2.5﹣1+8+0.5=10.…(6分)(2)原式====.…(12分)18.(12分)已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x﹣1﹣2≤6}.(1)求A∩B、(∁U A)∪(∁U B);(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.【解答】解:(1)∵﹣1≤2x﹣1﹣2≤6,∴1≤2x﹣1≤8,∴1≤2x﹣1≤8,∴1≤x≤4.∴B={x|1≤x≤4}.…(2分)又∵A={x|x<﹣4,或x>2},∴A∩B={x|2<x≤4},…(4分)(C U A)∪(C U B)=C U(A∩B)={x|x≤2,或x>4}…(6分)(2)∵集合M={x|2k﹣1≤x≤2k+1}是集合A={x|x<﹣4,或x>2}的子集∴2k﹣1>2或2k+1<﹣4,…(10分)∴或.即实数k的取值范围为.…(12分)19.(12分)设函数f(x)=|x2﹣4x+3|,x∈R.(1)在区间[0,4]上画出函数f(x)的图象;(2)写出该函数在R上的单调区间.【解答】解:(1)函数f(x)=|x2﹣4x+3|=|(x﹣2)2﹣1|;(列表,描点,作图)(2)根据函数f(x)的图象,不难发现,函数f(x)在x∈(﹣∞,1]上单调递减;函数f(x)在x∈[1,2]上单调递增;函数f(x)在x∈[2,3]上单调递减;函数f(x)在x∈[3,+∞)上单调递增.20.(12分)函数f(x)=a+为定义在R上的奇函数.(1)求a的值;(2)判断函数f(x)在(﹣∞,+∞)的单调性并给予证明.【解答】解:(1)∵函数为定义在R上的奇函数.∴f(0)=0,…(2分)即,解得.…(4分)(2)由(1)知,则,…(5分)函数f(x)在(﹣∞,+∞)上单调递减,给出如下证明:…(6分)证法一:任取x1,x2∈(﹣∞,+∞),且x1<x2,…(7分)则==…(9分)=,…(10分)∵x1<x2,∴x2﹣x1>0,∴,∴,…(11分)又∵,,,∴>0,即f(x2)﹣f(x1)>0,∴f(x2)>f(x1),∴函数f(x)在(﹣∞,+∞)上单调递减.…(12分)证法二:∵∴,…(9分)∵f′(x)<0恒成立,…(11分)故函数f(x)在(﹣∞,+∞)上单调递减.…(12分)21.(12分)已知函数f(x)=x2﹣2ax+a﹣1在区间[0,1]上有最小值﹣2,求a 的值.【解答】解:∵函数f(x)=x2﹣2ax+a﹣1的开口向上,对称轴为x=a,∴①当a≤0时,f(x)区间[0,1]上单调递增,∴f(x)min=f(0)=a﹣1=﹣2,∴a=﹣1;②当a≥1时,f(x)区间[0,1]上单调递减,f(x)min=f(1)=1﹣2a+a﹣1=﹣2,∴a=2;③当0<a<1时,f(x)min=f(a)=a2﹣2a2+a﹣1=﹣2,即a2﹣a﹣1=0,解得a=∉(0,1),∴a=﹣1或a=2.22.(10分)函数f(x)=log a(3﹣ax)(a>0,a≠1)(1)当a=3时,求函数f(x)的定义域;(2)若g(x)=f(x)﹣log a(3+ax),请判定g(x)的奇偶性;(3)是否存在实数a,使函数f(x)在[2,3]递增,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.【解答】解:(1)由题意:f(x)=log3(3﹣3x),∴3﹣3x>0,即x<1,…(2分)所以函数f (x )的定义域为(﹣∞,1).…(3分) (2)易知g (x )=log a (3﹣ax )﹣log a (3+ax ), ∵3﹣ax >0,且3+ax >0, ∴,关于原点对称,…(4分)又∵g (x )=log a (3﹣ax )﹣log a (3+ax )=,∴g (﹣x )==﹣=﹣g (x ),…(5分)∴g (x )为奇函数.…(6分) (3)令u=3﹣ax ,∵a >0,a ≠1,∴u=3﹣ax 在[2,3]上单调递减,…(7分)又∵函数f (x )在[2,3]递增,∴0<a <1,…(8分) 又∵函数f (x )在[2,3]的最大值为1, ∴f (3)=1,…(9分) 即f (3)=log a (3﹣3a )=1, ∴.…(10分)赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。
【全国市级联考】山东省临沂市2017届高三上学期期中考试文数(解析版)
山东省临沂市2017届高三上学期期中考试文数试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合{}(){}1,0,1,2,110M N x g x M N =-=+>⋂=,则 (A){}01,(B) {}012,, (C) {}1,2 (D) {}101-,, 【答案】C考点:集合的运算2.命题“()00,x ∃∈+∞,使00ln 2x x =-”的否定是(A) ()0,,ln 2x x x ∀∈+∞≠-(B) ()0,,ln 2x x x ∀∉+∞=-(C) ()0000,,ln 2x x x ∃∈+∞≠-使(D) ()0000,,ln 2x x x ∃∉+∞=-【答案】A【解析】试题分析:原特称命题的否定是“()2ln ,,0-≠+∞∈∀x x x ”,故选A.考点:特称命题的否定3.下列函数中,既是偶函数又在区间()0,+∞上单调递增的是 (A) 1y x= (B) 1y g x = (C) cos y x = (D) 22x y x =+ 【答案】B【解析】试题分析:A.xy 1=是奇函数,B.x y lg =是偶函数,当0>x 时,x y lg =是增函数,C.x y cos =是偶函数,但在()∞+,0不是单调递增函数,D.x x y 22+=是非奇非偶函数,故选B.考点:函数的简单性质4.下列命题为真命题的是(A)命题“若x y >,则x y >的逆命题(B)命题“若211x x ≤≤,则”的否命题(C)命题“若210x x x =-=,则”的否命题(D)命题“若11a b a b><,则”的逆否命题 【答案】A 考点:四种命题5.已知向量()()()1,,0,2,a m b a b b m ==-+⊥且,则等于(A) 2- (B) 1- (C)1 (D)2【答案】D【解析】试题分析:042)(2=+-=+=⋅+m b b a b b a ,解得2=m ,故选D.考点:向量数量积6.已知函数()()121,1,3log ,1,xx f x f f x x ⎧⎛⎫≤⎪ ⎪⎪⎝⎭==⎨⎪>⎪⎩则(A) 12- (B) 12 (C) (D) 【答案】C【解析】 试题分析:()212log 221-==f ,所以()()33312122121==⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-=-f f f ,故选C. 考点:分段函数求值7.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是 (A) 56(B)2 (C) 52 (D)3【答案】D考点:1.三视图;2.几何体的体积.8.已知函数()()()sin 0,0f x A x b A ωϕω=++>>的图象如图所示,则()f x 的解析式为(A) ()2sin 263f x x ππ⎛⎫=++ ⎪⎝⎭ (B) ()13sin 236f x x π⎛⎫=-+ ⎪⎝⎭ (C) ()2sin 366f x x ππ⎛⎫=++ ⎪⎝⎭ (D) ()2sin 363f x x ππ⎛⎫=++ ⎪⎝⎭【答案】D考点:()b x A y ++=ϕωsin 的图像【方法点睛】本题考查了()b x A y ++=ϕωsin 0.0>>ωA 的图像,函数的最大值b A +,函数的最小值b A +-,解方程组求b A ,,根据周期求ω的值,相邻最高点或是最低点的横坐标的长度是T ,相邻最大值和最小值的横坐标的差值是2T ,有时也会出现T 43等,ωπ2=T ,一般ϕ可通过五点法求解,即带入“五点”中的一个点,求ϕ,有时也可通过图像平移求ϕ.9.函数()3xy x x e =-的图象大致是【答案】B【解析】试题分析:x x y -=3是奇函数,x e y =是偶函数,所以()xe x x y -=3是奇函数,当()1,0∈x 时,03<-x x ,0>x e,所以当()1,0∈x 时,()x e x x y -=30<,观察四个图像,满足条件的只有B,故选B. 考点:函数性质和函数图像【方法点睛】本题考查了函数性质与函数的图像,一般给出函数解析式求函数图像的问题,需从函数定义域或是特殊点考虑函数图像,排除选项,还有一些函数的重要性质,是否具有奇偶性,函数的单调性,以及是否有渐近线,函数在某一段区间是正数还是负数等问题,得到选项.10.已知()f x 是定义在()0,+∞上的函数,()()f x f x '是的导函数,且总有()()f x xf x '>,则不等式()()1f x xf >的解集为(A) (),0-∞ (B) ()0,1 (C) ()0,+∞ (D)(1,+∞)【答案】B考点:1.导数与不等式;2.导数与函数的单调性.【方法点睛】当题设给出与导数有关的不等式,求不等式解集的问题时,需造函数,判断函数的单调性,然后利用函数零点求不等式的解集,一般常见函数的导数形式(1)()[]()()x f x x f x xf '+=',(2)()()()2x x f x x f x x f -'='⎥⎦⎤⎢⎣⎡,(3)()[]()()()()[]x f x f e x f e x f e x f e x x x x '+='+=',(4)()()()()()()x x x x x e x f x f e e x f e x f e x f -'=-'='⎥⎦⎤⎢⎣⎡2,本题()()0<-'x f x f x ,可想到构造(2)的形式,根据函数单调性,零点求不等式的解集.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 11.若0x ≥,则41y x x =++的取值范围为_____________. 【答案】[)∞+,3 【解析】试题分析:0>x ,()311412114114=-+⨯+≥-+++=++=x x x x x x y ,当且仅当141+=+x x ,即1=x 时,取得最小值3,所以函数的取值范围是[)∞+,3.考点:基本不等式12.在△ABC 中,若点E 满足12123,=BE EC AE AB AC λλλλ==++,则_________. 【答案】1 【解析】试题分析:()AB AC AB AB BE AB AE 43+=-+=+=+=所以1434121=+=+λλ,故填:1. 考点:平面向量基本定理13.已知()=sin 84f x x π⎛⎫+⎪⎝⎭的周期为α,且()11cos 2tan ,3sin 2βαββ-+=则的值为_________.【答案】21- 考点:三角函数恒等变形14.已知,x y 满足2,3,2,y x x y z x y x a ≥⎧⎪+≤=+⎨⎪≥⎩且的最大值是其最小值的2倍,则a =___________.如图,AB 为圆O 的直径,点E ,F 在圆O 上,且AB//EF ,AB=2EF ,矩形ABCD 所在的平面和圆O 所在的平面互相垂直.(I)证明:OF //平面BEC ;(Ⅱ)证明:平面ADF ⊥平面BCF .【答案】(Ⅰ)(Ⅱ)详见解析.试题解析:证明:(Ⅰ)AB 为圆O 的直径,EF AB 2=,EF AB //,EF BO EF BO //,=∴,∴四边形OBEF 为平行四边形,BE OF //∴,又⊂BE 平面BEC ,⊄OF 平面BEC ,//OF ∴平面BEC .(Ⅱ) 四边形ABCD 为矩形,AB AD ⊥∴,又 平面ABCD 与圆O 所在平面垂直,且交线为AB ,⊥∴AD 平面ABF ,⊂BF 平面ABF ,BF AD ⊥∴,又AB 为圆O 的直径,BF AF ⊥∴,又A AF AD = ,⊥∴BF 平面ADF ,又⊂BF 平面BCF ,∴平面⊥ADF 平面BCF .考点:1.线面平行;2.面面垂直.19.(本小题满分12分)A△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()2cos cos ,3a c B b C AB BC -=⋅=-.(I)求△ABC 的面积;(II)若sinA :sinC=3:2,求AC 边上的中线BD 的长.【答案】(Ⅰ)233;(Ⅱ)219.试题解析:(Ⅰ)()C b B c a cos cos 2=- ,由正弦定理可化为:()()A C B B C B C B A C B B C A sin sin sin cos cos sin cos sin 2cos sin cos sin sin 2=+=+=⇔=- π<<A 0 ,0sin ≠∴A ,即21cos =B , π<<B 0 ,3π=∴B , 又3-=⋅,得()3cos -=-B ac π,33cos -=-∴πac ,即6=ac ,ABC ∆∴的面积233236213sin 21sin 21=⨯⨯===πac B ac S ,考点:1.正弦定理;2.三角恒等变形;3.向量数量积.20.(本小题满分13分)已知函数()()32123162f x x a x ax a =-++>,且. (I)若函数()3f x x =在处取得极值,求曲线()y f x =在点()()0,0f 处的切线方程; (II)若函数()[]02y f x a =在,上的最小值是2a -,求a 的值. 【答案】(Ⅰ) x y 18=; (Ⅱ)4.【解析】试题分析:(Ⅰ)根据条件可得()03='f ,求a ,再利用导数的几何意义,曲线在0=x 处切线的斜率就是()0f ',这样根据切点坐标和斜率写出切线方程;(Ⅱ)先求函数的导数,并且求函数的极值点,1=x 和a x =,分1=a ,1>a ,和121<<a 三种情况讨论函数的单调性,并且得到函数的最小值,分别令最小值为2a -,求实数a 的值.试题解析:(Ⅰ)()()ax x a x x f 613223++-= , ()()a x a x x f 61662++-='∴3 是函数的极值点, ()03='∴f ,即()06316362=+⨯+-⨯a a ,解得:3=a ,()x x x x f 1812223+-=∴,()182462+-='x x x f ,则()00=f ,()180='f ,所以()x f y =在点()()0,0f 处的切线方程为x y 18=;考点:1.导数的几何意义;2.导数与函数的单调性.【思路点睛】本题考查了导数的综合问题,根据导数求函数的最值,属于中档题型,第一步求函数的导数,并且求函数的极值点,第二步,判断定义域内函数的单调情况,判断函数的最值,本题还需讨论定义域与极值点的关系,两个极值点a 和1的大小比较,以及定义域端点a 2和1比较大小,(因本题给出21>a ,所以不需讨论)从而得到3个区间讨论函数的单调性,比较最小值.21.(本小题满分14分)已知函数()()()2ln 2,2,1f x x x x g x ax ax a =-=-+->. (I)求函数()f x 的单调区间及最小值;(II)证明:()()[)1,f x g x x ≥∈+∞在上恒成立.【答案】(Ⅰ) 单调递增区间为()+∞,e ,单调递减区间为()e ,0,最小值为()e e e e e f -=-=2ln ;(Ⅱ)详见解析.试题解析:(Ⅰ)由题意()x f 的定义域()+∞,0,()x x x x f 2ln -= ,()1ln 21ln -=-+='∴x x x f ,令()0>'x f ,即得:e x >,令()0<'x f ,即01ln <-x 得:e x <<0,∴函数()x f 的单调递增区间为()+∞,e ,单调递减区间为()e ,0, ∴函数()x f 的最小值为()e e e e e f -=-=2ln ,(Ⅱ)令()()()x g x f x h -=,()()x g x f ≥ 在[)+∞,1上恒成立,()[)+∞∈≥∴,1,0min x x h ,()22ln 2+--+=x ax ax x x x h ,()12ln 221ln --+=--++='∴a ax x a ax x x h , 令()[)+∞∈--+=,1,12ln x a ax x x m ,则()a xx m 21+=', 1,1>>a x ,()0>'∴x m ,()x m ∴在[)+∞,1上单调递增,()()11-=≥∴a m x m ,即()1-≥'a x h ,1>a ,01>-∴a ,()0>'∴x h , ()22ln 2+--+=∴x ax ax x x x h 在[)+∞,1上单调递增, ()()01=≥∴h x h ,即()()0≥-x g x f , 故()()x g x f ≥在[)+∞,1上恒成立.考点:1.导数与函数的单调性和最值;2.导数与不等式的证明.:。
2016-2017学年山东省临沂市高三(上)期中数学试卷(理科)(解析版)
2016-2017学年山东省临沂市高三(上)期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中.只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},集合M真子集的个数为()A.32 B.31 C.16 D.152.(5分)若点(sin,cos)在角α的终边上,则sinα的值为()A.B.C.D.3.(5分)已知f(x)=sin2(x+),若a=f(lg5),b=f(lg),则()A.a+b=0 B.a﹣b=0 C.a+b=1 D.a﹣b=14.(5分)下列说法正确的是()A.命题“若a≥b,则a2≥b2”的逆否命题为“若a2≤b2,则a≤b”B.“x=1”是“x2﹣3x+2=0”的必要不充分条件C.若p∧q为假命题,则p,q均为假命题D.对于命题p:∀x∈R,x2+x+1>0,则¬p:∃x0∈R,x02+x0+1≤05.(5分)已知等差数列{a n}中,a5+a7=sinxdx,则a4+2a6+a8的值为()A.8 B.6 C.4 D.26.(5分)已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使=2,则•的值为()A.B.C.D.7.(5分)函数y=(a>0,a≠1)的定义域和值域都是[0,1],则log a+log a=()A.1 B.2 C.3 D.48.(5分)已知函数f(x)=x﹣﹣1,g(x)=x+2x,h(x)=x+lnx,零点分别为x1,x2,x3,则()A.x1<x2<x3B.x2<x1<x3C.x3<x1<x2D.x2<x3<x19.(5分)已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π,若f(x)>1对∀x∈(﹣,)恒成立,则φ的取值范围是()A.B.C.D.10.(5分)已知函数.若存在实数k使得函数f(x)的值域为[﹣1,1],则实数a的取值范围是()A.B.C.[1,3]D.[2,3]二、填空题:本大题共5个小题,每小题5分,共25分.把正确答案填写在答题卡给定的横线上.11.(5分)已知向量=(m,m﹣1),=(2,1),且⊥,则||=.12.(5分)已知,则cos(30°﹣2α)的值为.13.(5分)函数f(x)是定义在R上的奇函数,对任意的x∈R,满足f(x+1)+f(x)=0,且当0<x<1时,f(x)=2x,则f(﹣)+f(4)=.14.(5分)在等差数列{a n}中,a4=5,a7=11,设b n=(﹣1)n a n,则数列{b n}的前101项之和S101=.15.(5分)若f'(x)是f(x)的导函数,f'(x)>2f(x)(x∈R),f()=e,则f(lnx)<x2的解集为.三、解答题:本大题共6小题,共75分,解答应写出必要的文字说明,证明过程.16.(12分)在平面直角坐标系xOy中,点A(2,0),点B在单位圆上,∠AOB=θ(0<θ<π).(I)若点B(﹣,),求tan(﹣θ)的值;(II)若+=,•=,求cos(+θ)的值.17.(12分)已知函数f(x)=sin(ωx﹣)+b(ω>0),且函数图象的对称中心到对称轴的最小距离为,当x∈[0,]时,f(x)的最大值为1.(I)求函数f(x)的解析式;(Ⅱ)将函数f(x)的图象向右平移个单位长度得到函数g(x)图象,若g(x)﹣3≤m≤g(x)+3在x∈[0,]上恒成立,求实数m的取值范围.18.(12分)设数列{a n}的前n项和为S n,已知S2=6,a n+1=4S n+1,n∈N*.(I)求通项a n;(Ⅱ)设b n=a n﹣n﹣4,求数列{|b n|}的前n项和T n.19.(12分)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax.(I)若函数f(x)在x=3处取得极值,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若a>,函数y=f(x)在[0,2a]上的最小值是﹣a2,求a的值.20.(13分)如图,某旅游区拟建一主题游乐园,该游乐区为五边形区域ABCDE,其中三角形区域ABE 为主题游乐区,四边形区域为BCDE为休闲游乐区,AB、BC,CD,DE,EA,BE为游乐园的主要道路(不考虑宽度).∠BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=3km.(I)求道路BE的长度;(Ⅱ)求道路AB,AE长度之和的最大值.21.(14分)已知函数f(x)=ln(x+1)﹣ax,a∈R.(I)求函数f(x)的单调区间;(Ⅱ)当x>1时,f(x﹣1)≤恒成立,求a的取值范围.2016-2017学年山东省临沂市高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中.只有一项是符合题目要求的.1.(5分)(2016秋•临沂期中)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},集合M 真子集的个数为()A.32 B.31 C.16 D.15【分析】由题意,a∈A,b∈B,可以把a,b的组合列出来,然后就算a+b的值,根据互异性可得集合M,集合中有n个元素,有(2n﹣1)个真子集可得答案.【解答】解:由题意集合A={1,2,3},B={4,5},a∈A,b∈B,那么:a、b的组合有:(1、4),(1、5),(2、4),(2、5),(3、4),(3、5),∵M={x|x=a+b},∴M={5,6,7,8},集合M中有4个元素,有24﹣1=15个真子集.故选:D.【点评】本题考查了集合的运算及集合的子集个数,若一个集合中有n个元素,则它有2n个子集,有(2n ﹣1)个真子集,属于基础题.2.(5分)(2016秋•临沂期中)若点(sin,cos)在角α的终边上,则sinα的值为()A.B.C.D.【分析】由任意角的三角函数定义知先求得该点到原点的距离,再由定义求得.【解答】解:由题意,x=sin=,y=cos=﹣,r=1,∴sinα==﹣.故选:A.【点评】本题主要考查任意角的三角函数的定义,比较基础.3.(5分)(2012•江西)已知f(x)=sin2(x+),若a=f(lg5),b=f(lg),则()A.a+b=0 B.a﹣b=0 C.a+b=1 D.a﹣b=1【分析】由题意,可先将函数f(x)=sin2(x+)化为f(x)=,再解出a=f(lg5),b=f(lg)两个的值,对照四个选项,验证即可得到答案【解答】解:f(x)=sin2(x+)==又a=f(lg5),b=f(lg)=f(﹣lg5),∴a+b=+=1,a﹣b=﹣=sin2lg5故C选项正确故选C【点评】本题考查二倍角的余弦及对数的运算性质,解题的关键是对函数的解析式进行化简,数学形式的化简对解题很重要4.(5分)(2016秋•临沂期中)下列说法正确的是()A.命题“若a≥b,则a2≥b2”的逆否命题为“若a2≤b2,则a≤b”B.“x=1”是“x2﹣3x+2=0”的必要不充分条件C.若p∧q为假命题,则p,q均为假命题D.对于命题p:∀x∈R,x2+x+1>0,则¬p:∃x0∈R,x02+x0+1≤0【分析】根据逆否命题的定义可知A错误;由x2﹣3x+2=0解得x=1,或x=2,则“x=1”是“x2﹣3x+2=0”的充分不必要条件,故B错误;根据真值表可知,若p∧q为假命题,则p真q假,p假q真,或者p,q均为假命题,故C错误;根据命题的否定的定义可知,D正确.【解答】解:对于选项A:原命题的逆否命题为“若a2<b2,则a<b”,故A错误;对于选项B:由x2﹣3x+2=0解得x=1,或x=2,从集合的角度考虑,由于{1}⊊{1,2},则“x=1”是“x2﹣3x+2=0”的充分不必要条件,故B错误;对于选项C:若p∧q为假命题,则p真q假,p假q真,或者p,q均为假命题,故C错误;对于选项D:根据命题的否定的定义,全称命题改为特称命题,再否定结论,故D正确.故选:D【点评】本题只要考查了简易逻辑里的四种命题,充要条件,真值表以及命题的否定等知识点,需熟练掌握概念,能从集合的角度考虑充分必要性.5.(5分)(2016秋•临沂期中)已知等差数列{a n}中,a5+a7=sinxdx,则a4+2a6+a8的值为()A.8 B.6 C.4 D.2【分析】利用微积分基本定理、等差数列的性质即可得出.【解答】解:a5+a7=sinxdx==2=2a6,解得a6=1.利用等差数列的性质可得:a4+2a6+a8=4a6=4.故选:C.【点评】本题考查了微积分基本定理、等差数列的性质,考查了推理能力与计算能力,属于中档题.6.(5分)(2016秋•临沂期中)已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使=2,则•的值为()A.B.C.D.【分析】可画出图形,并连接AE,从而有AE⊥BC,这便得出,并由条件得出,而,代入,进行数量积的运算即可求出该数量积的值.【解答】解:如图,连接AE,则:AE⊥BC;;∴;∴====.故选A.【点评】本题考查向量垂直的充要条件,向量加法的几何意义,向量的数乘运算,以及向量数量积的运算及计算公式.7.(5分)(2016•河南校级二模)函数y=(a>0,a≠1)的定义域和值域都是[0,1],则log a+log a=()A.1 B.2 C.3 D.4【分析】根据函数定义域和值域的关系,判断函数的单调性,结合对数的运算法则进行求解即可.【解答】解:当x=1时,y=0,则函数为减函数,故a>1,则当x=0时,y=1,即y==1,即a﹣1=1,则a=2,则log a+log a=log a(•)=log28=3,故选:C.【点评】本题主要考查对数的基本运算以及函数定义域和值域的应用,比较基础.8.(5分)(2015•信阳模拟)已知函数f(x)=x﹣﹣1,g(x)=x+2x,h(x)=x+lnx,零点分别为x1,x2,x3,则()A.x1<x2<x3B.x2<x1<x3C.x3<x1<x2D.x2<x3<x1【分析】分别确定函数零点的大致范围,即可得到结论.【解答】解:∵f(x)=x﹣﹣1的零点为>1,g(x)=x+2x的零点必定小于零,h(x)=x+lnx的零点必位于(0,1)内,∴x2<x3<x1.故选D.【点评】本题考查函数零点的定义,利用估算方法比较出各函数零点的大致位置是解题的关键.9.(5分)(2016秋•临沂期中)已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π,若f(x)>1对∀x∈(﹣,)恒成立,则φ的取值范围是()A.B.C.D.【分析】由题意可得函数的周期为=π,求得ω=2.再根据当x∈(﹣,)时,sin(2x+φ)>0恒成立,2kπ<2•(﹣)+φ<2•+φ<2kπ+π,由此求得φ的取值范围.【解答】解:函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π,故函数的周期为=π,∴ω=2,f(x)=2sin(2x+φ)+1.若f(x)>1对∀x∈(﹣,)恒成立,即当x∈(﹣,)时,sin(2x+φ)>0恒成立,故有2kπ<2•(﹣)+φ<2•+φ<2kπ+π,求得2kπ+φ<2kπ+,k∈Z,结合所给的选项,故选:D.【点评】本题主要考查正弦函数的周期性、值域,函数的恒成立问题,属于中档题.10.(5分)(2016•成都模拟)已知函数.若存在实数k使得函数f(x)的值域为[﹣1,1],则实数a的取值范围是()A.B.C.[1,3]D.[2,3]【分析】由分段函数知要分类讨论,由y=log2(2﹣x)知≤k≤2,从而求导y′=3x2﹣6x=3x(x﹣2),从而可得a≥2且f(a)=a3﹣3a2+3≤1,从而解得.【解答】解:∵y=log2(2﹣x)的定义域为(﹣∞,2),∴0<k≤2,当x∈[0,k)时,log2(2﹣k)<log2(2﹣x)≤1;又∵log2(2﹣k)≥﹣1,∴0<k≤,∵y=x3﹣3x2+3的导数y′=3x2﹣6x=3x(x﹣2),且y|x=2=﹣1,∴a≥2且f(a)=a3﹣3a2+3≤1,解得,2≤a≤1+;故选B.【点评】本题考查了分段函数的应用及导数的综合应用,同时考查了分类讨论的思想应用.二、填空题:本大题共5个小题,每小题5分,共25分.把正确答案填写在答题卡给定的横线上.11.(5分)(2016秋•临沂期中)已知向量=(m,m﹣1),=(2,1),且⊥,则||=.【分析】根据便可得出,从而可求出m的值,进而得出的坐标,从而可得出的值.【解答】解:∵;∴;∴;∴;∴.故答案为:.【点评】考查向量垂直的充要条件,向量数量积的坐标运算,以及能根据向量坐标求向量长度.12.(5分)(2016•泰安一模)已知,则cos(30°﹣2α)的值为.【分析】利用诱导公式求得sin(15°﹣α)=,再利用二倍角的余弦公式可得cos(30°﹣2α)=1﹣2sin2(15°﹣α),运算求得结果.【解答】解:∵已知,∴sin(15°﹣α)=,则cos(30°﹣2α)=1﹣2sin2(15°﹣α)=,故答案为.【点评】本题主要考查诱导公式,二倍角的余弦公式的应用,属于中档题.13.(5分)(2016秋•临沂期中)函数f(x)是定义在R上的奇函数,对任意的x∈R,满足f(x+1)+f(x)=0,且当0<x<1时,f(x)=2x,则f(﹣)+f(4)=﹣.【分析】根据条件判断函数的周期性,利用函数奇偶性和周期性的关系将条件进行转化进行求解即可.【解答】解:∵f(x)是定义在R上的奇函数,对任意的x∈R,满足f(x+1)+f(x)=0,∴f(x+1)=﹣f(x),则f(x+2)=﹣f(x+1)=f(x),则函数f(x)是周期为2的周期函数,则f(4)=f(0)=0,∵当0<x<1时,f(x)=2x,∴f(﹣)=f(﹣+2)=f(﹣)=﹣f()=﹣=﹣,则f(﹣)+f(4)=﹣+0=﹣,故答案为:﹣.【点评】本题主要考查函数值的计算,根据条件判断函数的周期性,利用是周期性和奇偶性进行转化是解决本题的关键.14.(5分)(2016秋•临沂期中)在等差数列{a n}中,a4=5,a7=11,设b n=(﹣1)n a n,则数列{b n}的前101项之和S101=﹣99.【分析】设等差数列{a n}的公差为d,由a4=5,a7=11,可得,解得a1,d.可得a n.可得b2n+b2n=﹣a2n﹣1+a2n.即可得出数列{b n}的前101项之和S101.﹣1【解答】解:设等差数列{a n}的公差为d,∵a4=5,a7=11,∴,解得a1=﹣1,d=2.∴a n=﹣1+2(n﹣1)=2n﹣3.∴b2n﹣1+b2n=﹣a2n﹣1+a2n=2.则数列{b n}的前101项之和S101=2×50﹣a101=100﹣(2×100﹣1)=﹣99.故答案为:﹣99.【点评】本题考查了等差数列的通项公式与求和关系、分组求和,考查了推理能力与计算能力,属于中档题.15.(5分)(2016秋•临沂期中)若f'(x)是f(x)的导函数,f'(x)>2f(x)(x∈R),f()=e,则f(lnx)<x2的解集为(0,] .【分析】由题意可构造新函数g(x)=,判断g(x)的单调性为R上增函数,所求不等式可转化<1.【解答】解:令g(x)=,g'(x)=>0;∴g(x)在R上是增函数,又e2lnx=x2;∴g()=1;所求不等式⇔<1⇔g(lnx)<g(),lnx<;故可解得:x∈(0,].故答案为:(0,]【点评】本题主要考查了构造新函数,判断函数的单调性以及转化思想应用,属中等题.三、解答题:本大题共6小题,共75分,解答应写出必要的文字说明,证明过程.16.(12分)(2016秋•临沂期中)在平面直角坐标系xOy中,点A(2,0),点B在单位圆上,∠AOB=θ(0<θ<π).(I)若点B(﹣,),求tan(﹣θ)的值;(II)若+=,•=,求cos(+θ)的值.【分析】(Ⅰ)B点坐标为时,可画出图形,从而可得出sinθ,cosθ的值,进而得出tanθ的值,这样根据两角差的正切公式便可求出的值;(Ⅱ)根据条件可得到,从而可表示出的坐标,进行数量积的坐标运算便可由得出cosθ的值,进而求出sinθ的值,从而便可求出的值.【解答】解:(Ⅰ)若,如图:则:;∴;∴;(Ⅱ);∴;∴=;∴;又θ∈(0,π);∴;∴==.【点评】考查单位圆的概念,以及三角函数的定义,弦化切公式,两角差的正切公式,两角和的余弦公式,以及根据点的坐标求向量坐标,向量坐标的加法和数量积运算.17.(12分)(2016秋•临沂期中)已知函数f(x)=sin(ωx﹣)+b(ω>0),且函数图象的对称中心到对称轴的最小距离为,当x∈[0,]时,f(x)的最大值为1.(I)求函数f(x)的解析式;(Ⅱ)将函数f(x)的图象向右平移个单位长度得到函数g(x)图象,若g(x)﹣3≤m≤g(x)+3在x∈[0,]上恒成立,求实数m的取值范围.【分析】(I)由题意可求T=π,利用周期公式可求ω的值,可得解析式f(x)=sin(2x﹣)+b,结合范围2x﹣∈[﹣,],利用正弦函数的有界性解得b的值,从而可求函数f(x)的解析式.(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换可求g(x)=sin(2x﹣)﹣,结合范围2x﹣∈[﹣,],可求范围g(x)=sin(2x﹣)﹣∈[﹣2,1],结合已知可求m的取值范围.【解答】解:(I)∵函数f(x)=sin(ωx﹣)+b(ω>0),且函数图象的对称中心到对称轴的最小距离为,∴=,可得:T=π,由=π,可得:ω=2,∴f(x)=sin(2x﹣)+b,∵当x∈[0,]时,2x﹣∈[﹣,],∴由于y=sinx在[﹣,]上单调递增,可得当2x﹣=,即x=时,函数f(x)取得最大值f()=sin+b,∴sin+b=1,解得b=﹣,∴f(x)=sin(2x﹣)﹣…6分(Ⅱ)将函数f(x)的图象向右平移个单位长度得到函数解析式为:g(x)=sin[2(x﹣)﹣]﹣=sin(2x﹣)﹣,∵当x∈[0,]时,可得:2x﹣∈[﹣,],g(x)=sin(2x﹣)﹣∈[﹣2,1],∴g(x)﹣3∈[﹣5,﹣2],g(x)+3∈[1,4],∵g(x)﹣3≤m≤g(x)+3在x∈[0,]上恒成立,∴m∈[﹣5,4].【点评】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律,考查了三角函数恒等变换的应用,考查了正弦函数的图象和性质的应用,考查了转化思想和数形结合思想的应用,属于中档题.18.(12分)(2016秋•临沂期中)设数列{a n}的前n项和为S n,已知S2=6,a n+1=4S n+1,n∈N*.(I)求通项a n;(Ⅱ)设b n=a n﹣n﹣4,求数列{|b n|}的前n项和T n.【分析】(I)利用已知条件和变形等式a n=4S n﹣1+1推知数列{a n}是等边数列,根据等比数列的通项公式进行解答;(Ⅱ)利用(I)中的通项公式推知{|b n|}的通项公式.然后由分组求和法来求数列{|b n|}的前n项和T n.【解答】解:(I)∵a n+1=4S n+1,①∴当n≥2时,a n=4S n﹣1+1,②由①﹣②,得a n+1﹣a n=4(S n﹣S n﹣1)=4a n(n≥2),∴当n≥2时,a n+1=5a n(n≥2),∴=5.∵S2=6,a n+1=4S n+1,n∈N*.∴,解得,∴=5,∴数列{a n}是首项a1=1,公比为5的等边数列,∴a n=5n﹣1;(Ⅱ)由题意知|b n|=|5n﹣1﹣n﹣4|,n∈N*.易知,当n≤2时,5n﹣1<n+4;当n≥3时,5n﹣1>n+4.∴当n≤2时,|b n|=n+4﹣5n﹣1;当n≥3时,|b n|=5n﹣1﹣(n+4),∴T1=b1=4,T2=b1+b2=5.当n≥3时,T n=T2+b2+b3+…+b n=5+[52﹣(3+4)+[52﹣(4+4)]+…+[5n﹣1﹣(n+4)]=5+(52+53+…+5n﹣1)﹣[(3+4)+(4+4)+…+(n+4)]=5+﹣=.又∵T1=4不满足上式,T2=5满足上式,∴T n=.【点评】本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意等比数列的定义的灵活运用.19.(12分)(2016秋•临沂期中)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax.(I)若函数f(x)在x=3处取得极值,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若a>,函数y=f(x)在[0,2a]上的最小值是﹣a2,求a的值.【分析】(Ⅰ)求出函数的导数,根据3是函数y=f(x)的极值点,得到关于a的方程,解出a,求出f(x)的解析式,从而求出切线方程即可;(Ⅱ)求出函数的导数,通过讨论a的范围,得到函数f(x)的最小值,求出对应的a的值即可.【解答】解:(Ⅰ)∵f(x)=2x3﹣3(a+1)x2+6ax,∴f′(x)=6x2﹣6(a+1)x+6a,∵3是函数y=f(x)的极值点,∴f′(3)=0,即6×32﹣6(a+1)×3+6a=0,解得:a=3,∴f(x)=2x3﹣12x2+18x,f′(x)=6x2﹣24x+18,则f(0)=0,f′(0)=18,∴y=f(x)在(0,f(0))处的切线方程是:y=18x;(Ⅱ)由(Ⅰ)得:f′(x)=6x2﹣6(a+1)x+6a,∴f′(x)=6(x﹣1)(x﹣a),①a=1时,f′(x)=6(x﹣1)2≥0,∴f(x)min=f(0)=0≠﹣a2,故a=1不合题意;②a>1时,令f′(x)>0,则x>a或x<1,令f′(x)<0,则1<x<a,∴f(x)在[0,1]递增,在[1,a]递减,在[a,2a]递增,∴f(x)在[0,2a]上的最小值是f(0)或f(a),∵f(0)=0≠﹣a2,由f(a)=2a3﹣3(a+1)a2+6a2=﹣a2,解得:a=4;③<a<1时,令f′(x)>0,则有x>1或x<a,令f′(x)<0,则a<x<1,∴f(x)在[0,a]递增,在[a,1]递减,在[1,2a]递增,∴f(x)min=f(1)=2﹣3(a+1)+6a=﹣a2,解得:a=与<a<1矛盾,综上,符合题意的a的值是4.【点评】本题考查了函数的单调性、最值问题,考查导数的意义以及分类讨论思想,是一道中档题.20.(13分)(2016秋•临沂期中)如图,某旅游区拟建一主题游乐园,该游乐区为五边形区域ABCDE,其中三角形区域ABE为主题游乐区,四边形区域为BCDE为休闲游乐区,AB、BC,CD,DE,EA,BE 为游乐园的主要道路(不考虑宽度).∠BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=3km.(I)求道路BE的长度;(Ⅱ)求道路AB,AE长度之和的最大值.【分析】(I)连接BD,由余弦定理可得BD,由已知可求∠CDB=∠CBD=30°,∠CDE=120°,可得∠BDE=90°,利用勾股定理即可得解BE的值.(Ⅱ)设∠ABE=α,由正弦定理,可得AB=4sin(120°﹣α),AE=4sinα,利用三角函数恒等变换的应用化简可得AB+AE=4sin(α+30°),结合范围30°<α+30°<150°,利用正弦函数的性质可求AB+AE的最大值,从而得解.【解答】(本题满分为13分)解:(I)如图,连接BD,在△BCD中,由余弦定理可得:BD2=BD2+CD2﹣2BC•CDcos∠BCD=1+1﹣2×1×1×(﹣)=3,∴BD=,∵BC=CD,∴∠CDB=∠CBD==30°,又∵∠CDE=120°,∴∠BDE=90°,∴在Rt△BDE中,BE===2.…5分(Ⅱ)设∠ABE=α,∵∠BAE=60°,∴∠AEB=120°﹣α,在△ABE中,由正弦定理,可得:,∵=4,∴AB=4sin(120°﹣α),AE=4sinα,∴AB+AE=4sin(120°﹣α)+4sinα=4()+4sinα=2cosα+6sinα=4sin(α+30°),∵0°<α<120°,∴30°<α+30°<150°,∴当α+30°=90°,即α=60°时,AB+AE取得最大值4km,即道路AB,AE长度之和的最大值为4km. (13)分【点评】本题考查余弦定理,考查正弦定理,考查三角函数的化简,考查学生分析解决问题的能力,属于中档题.21.(14分)(2016秋•临沂期中)已知函数f(x)=ln(x+1)﹣ax,a∈R.(I)求函数f(x)的单调区间;(Ⅱ)当x>1时,f(x﹣1)≤恒成立,求a的取值范围.【分析】(I)首先对f(x)求导,分类讨论a判断函数的单调性即可;(II)由题意知:f(x﹣1)﹣=,令g(x)=xlnx﹣a(x2﹣1),x≥1,g'(x)=lnx+1﹣2ax,令h(x)=lnx+1﹣2ax,h'(x)=﹣2a=;利用导数判断函数的单调性从而求出a的取值范围.【解答】解:(I)f(x)的定义域为(﹣1,+∞),f'(x)==;①若a≤0,则f'(x)>0,∴f(x)在(﹣1,+∞)上单调递增;②若a>0,则f'(x)=0得x=,当x∈(﹣1,)时,f'(x)>0,当x∈(,+∞)时,f'(x)<0;∴f(x)在(﹣1,)上单调递增,在(,+∞)上单调递减.综上,当a≤0时,f(x)的单调增区间为(﹣1,+∞);当a>0时,f(x)的单调增区间为(﹣1,),单调减区间为();(II)f(x﹣1)﹣=;令g(x)=xlnx﹣a(x2﹣1),x≥1,g'(x)=lnx+1﹣2ax;令h(x)=lnx+1﹣2ax,h'(x)=﹣2a=;①若a≤0,h'(x)>0,g'(x)在[1,+∞)递增,g'(x)≥g'(1)=1﹣2a≥0;∴g(x)在[1,+∞)上递增,g(x)≥g(1)=0;从而f(x﹣1)﹣≥0,不符合题意.②若0<a<,当x∈(1,)时,h'(x)>0,g'(x)在(1,)上递增,从而g'(x)>g'(1)=1﹣2a>0;所以,g(x)在[1,+∞)递增,g(x)≥g(1)=0;从而f(x﹣1)﹣≥0,不符合题意.③若a≥,h'(x)≤0在[1,+∞)上恒成立,所以g'(x)在[1,+∞)上递减,g'(x)≤g'(1)=1﹣2a≤0;从而g(x)在[1,+∞)递减,所以g(x)≤g(1)=0;∴f(x﹣1)﹣0;综上所以,a的取值范围是[,+∞).【点评】本题主要考查了利用导数研究函数的单调性,以及分类讨论思想的应用,属中等题.。
山东省临沂一中2015-2016学年高一上学期期中考试数学试题
高一数学试题 2015.11说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页。
满分150分,考试时间120分钟。
第I 卷(共60分)一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.设全集{}5,4,3,2,1=U ,{}5,3,1=A ,{}5,2=B ,则()UA B ð为A .{}2B .{}3,1C . {}3D . {}5,4,3,12.设集合A={x|1x e e>},B={x|log 2x<0},则A ∩B 等于 A .{x |x<-1或x>1} B .{x|-1<x<1} C .{x|0<x<1} D .{x|x>1}3(1)a <的结果为A .32a -B .0C .23a -D .23a -+4.设()22(1),0log ,0x x f x x x ⎧+<=⎨≥⎩,则()3f f -⎡⎤⎣⎦=A. 1B. 2C. 4D. 8 5.下列四个图象中,能表示y 是x 的函数图象的个数是A .4 B.3 C.2 D.16.下列函数中,是奇函数且在区间(,0)-∞上为增函数的是A.3y x =+3B. 3x y = C. 1-=x y D.xy e = 7.函数()lg(2)f x x =+的定义域为A.(2,1]-B.(2,1)-C.[2,1)-D.[2,1]-- 8. 设0.20.32,ln 2,log 2a b c ===则,,a b c 的大小关系是A .a b c <<B .c b a <<C .b a c <<D .c a b <<9. 函数f(x)是定义在(-2,2)上的减函数,则不等式()(2)f x f x >-的解集为A .(0 ,1)B .(0 , 2)C .(2 ,+∞)D .(-∞,2)10. 函数f(x)=e x-x1的零点所在的区间是 A.(0,21) B. (21,1) C. (1,23) D. (23,2)11. 某学生离家步行去学校,匀速走了一段路后,由于怕迟到,所以就匀速跑完余下的路程. 在下图中纵轴表示离学校的距离d ,横轴表示出发后的时间t ,则下图中的四个图形中较符合该学生走法的是A .B .C .D .12. 已知函数224,0()4,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若(21)(3)f a f +>,则实数a 的取值范围是A .(,2)(1,) -∞-+∞B . 1(,1)(,)3-∞--+∞C . (1,)+∞D .(,1)-∞第Ⅱ卷 非选择题 (共90分)注意事项:第Ⅱ卷共4页。
临沂市2016-2017学年高一上学期期末学分认定考试数学试题 含答案
高一教学质量抽测试题数学第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合{|13},{|2}A x x B x x =<<=>,则R A C B =A .{|2}x x ≤B .{|23}x x <<C .{|3}x x <D .{|12}x x <≤2、函数()ln(4)f x x =-的定义域为A .(,4]-∞-B .(,4)-∞-C .(0,4]-D .(0,4)-3、已知直线1:210l x y +-=与直线2:0l mx y -=垂直,则m =A .2B .2-C .12D .12- 4、函数()3log 28f x x x =+-的零点所在的区间为A .()1,2B .()2,3C .()3,4D .()5,65、下列结论中正确的是A .//,//,//a b a b αα∴B .//,,//a b a b αα⊂∴C .//,//,//a a αββα∴D .//,,//a a αββα⊂∴6、下列四条直线,其倾斜角最大的是A .230x y ++=B .210x y -+=C .10x y ++=D .10x +=7、正方体的内切球和外接球的表面积之比为A .1:2B .1:3C .1:3D .2:38、某地区植被破坏,土地沙化越来越重,最近三年测得沙漠增加的面积分别为198.5公顷、399,6公顷和793.7公顷,则沙漠增加面积y (公顷)关于年数x 的函数关系较为近似的是A .200y x =B .2100100y x x =+C .1002xy =⨯ D .20.2log y x x =+9、在同一坐标系中,函数()()(0),log a a f x x x g x x =>=的图像可能是10、已知实数,,a b c 满足 3311()2,log ,232x b c -===,则实数,,a b c 的大小关系为 A .a b c << B .a c b << C .b c a << D .b a c <<11、某个几何体的三视图如图(其中正视图中的圆弧是半圆)所示,则该几何体的表面积为A .123π+B .103π+C .124π+D .104π+12、如图,四面体ABCD 中,,E F 分别是,AC BD 的中点,若24,CD AB EF AB ==⊥,则EF 与CD 所成角的度数为A .090B .060C .045D .030第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13、直线l 过点(1,1),(3,)A B m -,且斜率为2,则实数m 的值为14、已知()f x 为偶函数,()()3g x f x x =+,且()210g =,则()2g -= 15、已知直线l ⊥平面α,直线m ⊂平面β,给出下列结论:①若//αβ,则l m ⊥;②若αβ⊥,则//l m ;③若//l m ,则αβ⊥;④若l m ⊥,则//αβ, 其中所有正确结论的序号是16、已知函数()3,223,2x x x f x x -<⎧=⎨-≥⎩,若(())1f f α=,则实数a 的值为三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤已知集合{|121}A x a x a =-<<+,函数()(0)f x ax b a =+≠,且()2141f x x +=+.(1)求()f x ;(2)若集合(){|13}B x f x =<<,且B A ⊆,求实数a 的取值范围.18、(本小题满分12分)已知直线1:(1)2,()l y k x k R =++∈过定点P .(1)求定点P 的坐标;(2)若直线1l 与直线2:3(2)50l x k y --+=平行,求k 的值并求此时两直线间的距离.19、(本小题满分12分)如图,平面SAB 为圆锥的轴截面,O 为底面圆的圆心,M 为母线SB 的中点,N 为底面圆周上的一点,4,6AB SO ==.(1)求该圆锥的侧面积;(2)若直线SO 与MN 所成的角为030,求MN 的长.20、(本小题满分12分)某小商品2016年的价格为15元/件,你那销量为a 件,现经销商计划在2017年该商品的价格降至10元/件到14元/件之间,经调查,顾客的期望价格为7元/件,经市场调查,该商品的价格下降后增加的销售量与定价和顾客期望价格的差成反比,比例系数为k ,该商品的成本价为5元/件.(1)写出该商品价格下降后,经销商的年收益y 与定价x 的函数关系式;(2)设3k a =,当定价为多少时,经销商2017年的收益恰是2016年收益的1.2倍?如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC , 且ABC ∆为等边三角形,16,AA AB D ==为AC 的中点.(1)求证:直线1//AB 平面1BC D ;(2)求证:平面1BC D ⊥平面11ACC A ;(3)求三棱锥1C BC D -的体积.22、(本小题满分12分) 已知函数()()1(1),31x x x a f x a g x a -=>=+. (1)若(2)81g a +=,求实数a 的值,并判断函数()f x 的奇偶性;(2)用定义证明()f x 在R 上的增函数;(3)求函数()f x 的值域.。
(标准)山东省临沂市第一中学2016-2017学年高一上学期期中考试数学试题及答案
临沂市第一中学高一2016-2017学年上学期数学试题2016.11说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页。
满分150分,考试时间120分钟。
第I 卷(共60分)一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知全集U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则)(N C M U =A .{}4,3,2B .{}2C .{}3D .{}1,02.函数f (x )=x x -1的图象关于 A.x 轴对称 B.y 轴对称C.原点对称D.直线x -y =0对称3.函数)3(log )(21x x f -=的定义域是A .)3,(-∞B .),2[+∞ C.(2,3)D.[2,3)4.函数103ln )(-+=x x x f 的零点所在的大致范围是 A .(0,1) B . (1,2) C . (2,3) D . (3,4)5.函数2-=x y 的图像是6.设lg 2a =,lg3b =,则5log 12=A .b a a +-21 B .b a a 21+- C .b a a 21++ D .ba a ++21 7.函数322)3(-+=x x y π的递减区间为A .()1,+∞B .)1,(-∞C .(),1-∞-D .),1(+∞-8.下列函数为偶函数的是A .1)3)(1()(24---=x x x x x f B .x x x f 2)(3-=C .x x x f 1)(2+=D .1)(2+=x x f9.下列各组中的两个函数是同一函数的为 ⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵()f x =()F x =⑶x x f 2log 2)(=,2)()(x x g =; ⑷111-+=x x y ,)1)(1(2-+=x x y ; ⑸21)52()(-=x x f ,52)(2-=x x f .A .⑴、⑵B .⑵、⑶C .⑶、⑷D .⑶、⑸10.已知指数函数x a y =在[0,]1上的最大值与最小值的差为21,则实数a 的值为 A .21 B .23 C .21或23 D .411.若函数c bx x x f ++=2)(满足)1()3(f f =-,则 A .)1()1(->>f c f B .)1()1(-<<f c fC .)1()1(f f c >->D .)1()1(f f c <-<12.函数)12lg(a xy --=的图像关于原点对称,则a 等于 A .1 B .0 C .-1 D .-2第Ⅱ卷 非选择题 (共90分)注意事项:第Ⅱ卷共4页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年山东省临沂一中高一(上)期中数学试卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则M∩(∁N)=()UA.{2,3,4}B.{2}C.{3}D.{0,1}2.(5分)函数f(x)=﹣x的图象关于()A.x轴对称B.y轴对称C.原点对称D.直线y=x对称3.(5分)函数f(x)=的定义域是()A.(﹣∞,3)B.[2,+∞)C.(2,3) D.[2,3)4.(5分)函数f(x)=lnx+3x﹣10的零点所在的大致范围是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)5.(5分)函数f(x)=|x﹣2|的图象为()A.B.C.D.6.(5分)设lg2=a,lg3=b,则log125=()A.B.C.D.7.(5分)函数y=()的递减区间为()A.(1,+∞)B.(﹣∞,1)C.(﹣∞,﹣1)D.(﹣1,+∞)8.(5分)下列函数为偶函数的是()A.B.f(x)=x3﹣2xC. D.f(x)=x2+19.(5分)下列各组中的两个函数是同一函数的为()(1)y=,y=x﹣5;(2)y=,y=;(3)y=|x|,y=;(4)y=x,y=;(5)y=(2x﹣5)2,y=|2x﹣5|.A.(1),(2)B.(2),(3)C.(3),(5)D.(3),(4)10.(5分)已知指数函数y=a x在[0,1]上的最大值与最小值的差为,则实数a 的值为()A.B.C.或D.411.(5分)若函数f(x)=x2+bx+c满足f(﹣3)=f(1),则()A.f(1)>c>f(﹣1)B.f(1)<c<f(﹣1)C.c>f(﹣1)>f(1)D.c<f(﹣1)<f(1)12.(5分)函数y=lg(﹣a)的图象关于原点对称,则a等于()A.1 B.0 C.﹣1 D.﹣2二、填空题:(本大题共4小题,每小题5分,共20分)y13.(5分)计算:log43•log98=.14.(5分)函数f(x)=,若f(x)=12,则x=.15.(5分)函数f(x)=x2﹣2x+2在区间[0,m]上的最大值为2,最小值为1,则m的取值范围是.16.(5分)给出下列四个命题:①函数y=|x|与函数y=()2表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];④设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根;其中正确命题的序号是(填上所有正确命题的序号)三、解答题:(本大题共6小题,74分.解答应写出文字说明,证明过程或演算步骤.)=17.(12分)(1)计算:﹣(﹣)0++;(2)计算.18.(12分)已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x﹣1﹣2≤6}.(1)求A∩B、(∁U A)∪(∁U B);(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.19.(12分)设函数f(x)=|x2﹣4x+3|,x∈R.(1)在区间[0,4]上画出函数f(x)的图象;(2)写出该函数在R上的单调区间.20.(12分)函数f(x)=a+为定义在R上的奇函数.(1)求a的值;(2)判断函数f(x)在(﹣∞,+∞)的单调性并给予证明.21.(12分)已知函数f(x)=x2﹣2ax+a﹣1在区间[0,1]上有最小值﹣2,求a 的值.22.(10分)函数f(x)=log a(3﹣ax)(a>0,a≠1)(1)当a=3时,求函数f(x)的定义域;(2)若g(x)=f(x)﹣log a(3+ax),请判定g(x)的奇偶性;(3)是否存在实数a,使函数f(x)在[2,3]递增,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.2016-2017学年山东省临沂一中高一(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知全集U={0,1,2,3,4},M={0,1,2},N={2,3},则M∩(∁N)=()UA.{2,3,4}B.{2}C.{3}D.{0,1}【解答】解:全集U={0,1,2,3,4},M={0,1,2},N={2,3},∴∁U N={0,1,4},∴M∩(∁U N)={0,1}.故选:D.2.(5分)函数f(x)=﹣x的图象关于()A.x轴对称B.y轴对称C.原点对称D.直线y=x对称【解答】解:∵∴﹣,=,可得f(﹣x)=﹣f(x)又∵函数定义域为{x|x≠0}∴函数f(x)在其定义域是奇函数根据奇函数图象的特征,可得函数f(x)图象关于原点对称故选:C.3.(5分)函数f(x)=的定义域是()A.(﹣∞,3)B.[2,+∞)C.(2,3) D.[2,3)【解答】解:由题意得:0<3﹣x≤1,解得:2≤x<3,故选:D.4.(5分)函数f(x)=lnx+3x﹣10的零点所在的大致范围是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【解答】解:函数的定义域为:(0,+∞),有函数在定义域上是递增函数,所以函数至多有一个零点.又∵f(2)=ln2+6﹣10=ln2﹣4<0,f3)=ln3+9﹣10=ln3﹣1>0,∴f(2)•f(e)<0,故在(2,e)上函数存在唯一的零点,∴函数f(x)=lnx+3x﹣10的零点所在的大致范围是(2,3).故选:C.5.(5分)函数f(x)=|x﹣2|的图象为()A.B.C.D.【解答】解:∵f(x)=|x﹣2|,∴当x≤2时,f(x)=﹣x+2,函数为减函数,当x>2时,f(x)=x﹣2,函数为增函数,故选:B.6.(5分)设lg2=a,lg3=b,则log125=()A.B.C.D.【解答】解:∵lg2=a,lg3=b,则log125==.故选:A.7.(5分)函数y=()的递减区间为()A.(1,+∞)B.(﹣∞,1)C.(﹣∞,﹣1)D.(﹣1,+∞)【解答】解:令t=x2+2x﹣3=(x+1)2﹣4,∵∈(0,1),y=,故本题即求二次函数t的增区间.再利用二次函数的性值可得t=(x+1)2﹣4的增区间为(﹣1,+∞),故选:D.8.(5分)下列函数为偶函数的是()A.B.f(x)=x3﹣2xC. D.f(x)=x2+1【解答】解:A,函数的定义域为{x|x≠1},不关于原点对称,非奇非偶函数;B,f(﹣x)=﹣x3+2x=﹣f(x),是奇函数;C,f(x)=x+,f(﹣x)=﹣x﹣=﹣f(x),是奇函数;D,f(﹣x)=(﹣x)2+1=x2+1=f(x),是偶函数.故选:D.9.(5分)下列各组中的两个函数是同一函数的为()(1)y=,y=x﹣5;(2)y=,y=;(3)y=|x|,y=;(4)y=x,y=;(5)y=(2x﹣5)2,y=|2x﹣5|.A.(1),(2)B.(2),(3)C.(3),(5)D.(3),(4)【解答】解:(1)的定义域是{x|x≠﹣3},y=x﹣5的定义域为R,故不是同一函数;(2)的定义域是{x|x≥1},的定义域是{x|x≥1或x≤﹣1},故不是同一函数;(3)两个函数的定义域和对应法则相同,故是同一函数;(4)两个函数的定义域和对应法则相同,故是同一函数;(5)两个函数的对应法则不相同,故不是同一函数.故选:D.10.(5分)已知指数函数y=a x在[0,1]上的最大值与最小值的差为,则实数a 的值为()A.B.C.或D.4【解答】解:当0<a<1时,y=a x在[0,1]上的最大值与最小值分别为1,a,则1﹣a=,得a=;当a>1时,y=a x在[0,1]上的最大值与最小值分别为a,1,则a﹣1=,得a=.∴实数a的值为或.故选:C.11.(5分)若函数f(x)=x2+bx+c满足f(﹣3)=f(1),则()A.f(1)>c>f(﹣1)B.f(1)<c<f(﹣1)C.c>f(﹣1)>f(1)D.c<f(﹣1)<f(1)【解答】解:函数f(x)=x2+bx+c,开口向上,满足f(﹣3)=f(1),函数的对称轴为:x=﹣1.x∈[﹣1,+∞)函数是增函数.x=﹣1时函数取得最小值.f(0)=c.所以:f(1)>c>f(﹣1).故选:A.12.(5分)函数y=lg(﹣a)的图象关于原点对称,则a等于()A.1 B.0 C.﹣1 D.﹣2【解答】解:当x=0时,y=lg(2﹣a)=0,∴a=1,经检验a=1符合题意,故选:A.二、填空题:(本大题共4小题,每小题5分,共20分)y13.(5分)计算:log43•log98=.【解答】解:由对数的运算性质可得log43•log98=•=•=,故答案为.14.(5分)函数f(x)=,若f(x)=12,则x=﹣2或2.【解答】解:∵f(x)=,f(x)=12,∴当x≥0时,x(x+4)=12,解得x=2或x=﹣6(舍);当x<0时,x(x﹣4)=12,解得x=﹣2或x=6(舍).∴x=2或x=﹣2.故答案为:﹣2或2.15.(5分)函数f(x)=x2﹣2x+2在区间[0,m]上的最大值为2,最小值为1,则m的取值范围是1≤m≤2.【解答】解:∵f(x)=x2﹣2x+2,∴对称轴x=1,∴f(0)=2,f(1)=1,∵f(x)=x2﹣2x+2在区间[0,m]上的最大值为2,最小值为1∴即求解得:1≤m≤2故答案为:1≤m≤216.(5分)给出下列四个命题:①函数y=|x|与函数y=()2表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];④设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根;其中正确命题的序号是④(填上所有正确命题的序号)【解答】解:①函数y=|x|的定义域为R,函数y=()2定义域为[0,+∞),两函数的定义域不同,不是同一函数,①错误②函数y=为奇函数,但其图象不过坐标原点,②错误③∵函数f(x)的定义域为[0,2],要使函数f(2x)有意义,需0≤2x≤2,即x∈[0,1],故函数f(2x)的定义域为[0,1],错误;④函数f(x)是在区间[a.b]上图象连续的函数,f(a)•f(b)<0,则方程f (x)=0在区间[a,b]上至少有一实根,④正确.故答案为④.三、解答题:(本大题共6小题,74分.解答应写出文字说明,证明过程或演算步骤.)=17.(12分)(1)计算:﹣(﹣)0++;(2)计算.【解答】解:(1)原式==0.4﹣1﹣1+23+0.5=2.5﹣1+8+0.5=10.…(6分)(2)原式====.…(12分)18.(12分)已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x﹣1﹣2≤6}.(1)求A∩B、(∁U A)∪(∁U B);(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.【解答】解:(1)∵﹣1≤2x﹣1﹣2≤6,∴1≤2x﹣1≤8,∴1≤2x﹣1≤8,∴1≤x≤4.∴B={x|1≤x≤4}.…(2分)又∵A={x|x<﹣4,或x>2},∴A∩B={x|2<x≤4},…(4分)(C U A)∪(C U B)=C U(A∩B)={x|x≤2,或x>4}…(6分)(2)∵集合M={x|2k﹣1≤x≤2k+1}是集合A={x|x<﹣4,或x>2}的子集∴2k﹣1>2或2k+1<﹣4,…(10分)∴或.即实数k的取值范围为.…(12分)19.(12分)设函数f(x)=|x2﹣4x+3|,x∈R.(1)在区间[0,4]上画出函数f(x)的图象;(2)写出该函数在R上的单调区间.【解答】解:(1)函数f(x)=|x2﹣4x+3|=|(x﹣2)2﹣1|;(列表,描点,作图)(2)根据函数f(x)的图象,不难发现,函数f(x)在x∈(﹣∞,1]上单调递减;函数f(x)在x∈[1,2]上单调递增;函数f(x)在x∈[2,3]上单调递减;函数f(x)在x∈[3,+∞)上单调递增.20.(12分)函数f(x)=a+为定义在R上的奇函数.(1)求a的值;(2)判断函数f(x)在(﹣∞,+∞)的单调性并给予证明.【解答】解:(1)∵函数为定义在R上的奇函数.∴f(0)=0,…(2分)即,解得.…(4分)(2)由(1)知,则,…(5分)函数f(x)在(﹣∞,+∞)上单调递减,给出如下证明:…(6分)证法一:任取x1,x2∈(﹣∞,+∞),且x1<x2,…(7分)则==…(9分)=,…(10分)∵x1<x2,∴x2﹣x1>0,∴,∴,…(11分)又∵,,,∴>0,即f(x2)﹣f(x1)>0,∴f(x2)>f(x1),∴函数f(x)在(﹣∞,+∞)上单调递减.…(12分)证法二:∵∴,…(9分)∵f′(x)<0恒成立,…(11分)故函数f(x)在(﹣∞,+∞)上单调递减.…(12分)21.(12分)已知函数f(x)=x2﹣2ax+a﹣1在区间[0,1]上有最小值﹣2,求a 的值.【解答】解:∵函数f(x)=x2﹣2ax+a﹣1的开口向上,对称轴为x=a,∴①当a≤0时,f(x)区间[0,1]上单调递增,∴f(x)min=f(0)=a﹣1=﹣2,∴a=﹣1;②当a≥1时,f(x)区间[0,1]上单调递减,f(x)min=f(1)=1﹣2a+a﹣1=﹣2,∴a=2;③当0<a<1时,f(x)min=f(a)=a2﹣2a2+a﹣1=﹣2,即a2﹣a﹣1=0,解得a=∉(0,1),∴a=﹣1或a=2.22.(10分)函数f(x)=log a(3﹣ax)(a>0,a≠1)(1)当a=3时,求函数f(x)的定义域;(2)若g(x)=f(x)﹣log a(3+ax),请判定g(x)的奇偶性;(3)是否存在实数a,使函数f(x)在[2,3]递增,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.【解答】解:(1)由题意:f(x)=log3(3﹣3x),∴3﹣3x>0,即x<1,…(2分)所以函数f(x)的定义域为(﹣∞,1).…(3分)(2)易知g(x)=log a(3﹣ax)﹣log a(3+ax),∵3﹣ax>0,且3+ax>0,∴,关于原点对称,…(4分)又∵g(x)=log a(3﹣ax)﹣log a(3+ax)=,∴g(﹣x)==﹣=﹣g(x),…(5分)∴g(x)为奇函数.…(6分)(3)令u=3﹣ax,∵a>0,a≠1,∴u=3﹣ax在[2,3]上单调递减,…(7分)又∵函数f(x)在[2,3]递增,∴0<a<1,…(8分)又∵函数f(x)在[2,3]的最大值为1,∴f(3)=1,…(9分)即f(3)=log a(3﹣3a)=1,∴.…(10分)赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC.(1)如图,当∠APB=90°时,若AC=5,PC=,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。