[配套K12]2019高考物理一轮复习 第六章 碰撞与动量守恒 第2讲 动量守恒定律 碰撞 爆炸 反冲练习
【配套K12】[学习]2019版高考物理一轮复习 第六章 动量守恒定律 课后分级演练19 碰撞 反冲
课后分级演练(十九) 碰撞 反冲运动【A 级——基础练】1.(多选)A 、B 两个质量相等的球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7 kg·m/s,B 球的动量是5 kg·m/s,A 球追上B 球发生碰撞,则碰撞后A 、B 两球的动量可能值是( )A .p A ′=8 kg·m/s,pB ′=4 kg·m/s B .p A ′=6 kg·m/s,p B ′=6 kg·m/sC .p A ′=5 kg·m/s,p B ′=7 kg·m/sD .p A ′=-2 kg·m/s,p B ′=14 kg·m/s解析:BC 从动量守恒的角度分析,四个选项都正确;从能量角度分析,A 、B 碰撞过程中没有其他形式的能量转化为它们的动能,所以碰撞后它们的总动能不能增加,碰前B 在前,A 在后,碰后如果二者同向,一定仍是B 在前,A 在后,A 不可能超越B ,所以碰后A 的速度应小于B 的速度.A 选项中,显然碰后A 的速度大于B 的速度,这是不符合实际情况的,所以A 错.碰前A 、B 的总动能E k =p 2A 2m +p 2B2m =742m碰后A 、B 的总动能,B 选项中E k ′=p A ′22m +p B ′22m =722m <E k =742m ,所以B 可能.C 选项中E k ′=p A ′22m +p B ′22m =742m=E k ,故C 也可能.D 选项中E k ′=p A ′22m +p B ′22m =2002m >E k =742m,所以D 是不可能的.综上,本题正确选项为B 、C.2.质量为M 的物块以速度v 运动,与质量为m 的静止物块发生正碰,碰撞后二者的动量正好相等.二者质量之比Mm可能为( )A .6B .3C .4D .5解析:B 设碰撞后两物块的动量都为p ,根据动量守恒定律可得总动量为2p ,根据p 2=2mE k 可得碰撞前的总动能E k1=p 22M,碰撞后的总动能E k2=p 22m +p 22M根据碰撞前后的动能关系可得4p 22M ≥p 22m +p22M.3.(2017·北京西城区期末)(多选)冰壶运动深受观众喜爱,图1为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生碰撞,如图 2.若两冰壶质量相等,则碰后两冰壶最终停止的位置下列选项正确的是( )解析:BCD 因为两个冰壶质量完全相同,由动量守恒定律易知,B 、C 、D 对,A 错. 4.我国女子短道速滑队在今年世锦赛上实现女子3 000 m接力三连冠.观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出.在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则( )A .甲对乙的冲量一定等于乙对甲的冲量B .甲、乙的动量变化一定大小相等方向相反C .甲的动能增加量一定等于乙的动能减少量D .甲对乙做多少负功,乙对甲就一定做多少正功解析:B 在甲、乙相互作用的过程中,系统的动量守恒,即甲对乙和乙对甲的冲量大小相等,方向相反,甲、乙的动量变化一定大小相等方向相反,选项B 正确,A 错误.由E k=p 22m和W =ΔE k 可知,选项C 、D 均错误. 5.如图所示,质量为M 的小船在静止水面上以速率v0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为( )A .v 0+m M vB .v 0-m M vC .v 0+m M(v 0+v )D .v 0+m M(v 0-v )解析:C 以向右为正方向,据动量守恒定律有(M +m )v 0=-mv +Mv ′,解得v ′=v 0+m M(v 0+v ),故选C.6.(多选)(2017·天津和平质量调查)几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!完全相同的水球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则可以判断的是( )A .子弹在每个水球中的速度变化相同B .子弹在每个水球中运动的时间不同C .每个水球对子弹的冲量不同D .子弹在每个水球中的动能变化相同解析:BCD 恰好能穿出第4个水球,即末速度v =0,逆向看子弹由右向左做初速度为零的匀加速直线运动,则自左向右子弹通过四个水球的时间比为(2-3)∶(3-2)∶(2-1)∶1,则B 正确.由于加速度a 恒定,由at =Δv ,可知子弹在每个水球中的速度变化不同,A 项错误.因加速度恒定,则每个水球对子弹的阻力恒定,则由I =ft 可知每个水球对子弹的冲量不同,C 项正确.由动能定理有ΔE k =fx ,f 相同,x 相同,则ΔE k 相同,D 项正确.7.(2017·安徽江南十校联考)如图所示,一个质量为m 的物块A 与另一个质量为2m 的物块B 发生正碰,碰后B 物块刚好能落入正前方的沙坑中.假如碰撞过程中无机械能损失,已知物块B 与地面间的动摩擦因数为0.1,与沙坑的距离为0.5 m ,g 取10 m/s 2,物块可视为质点.则A 碰撞前瞬间的速度为( )A .0.5 m/sB .1.0 m/sC .1.5 m/sD .2.0 m/s解析:C 碰后物块B 做匀减速直线运动,由动能定理有-μ·2mgx =0-12·2mv 22,得v 2=1 m/s.A 与B 碰撞过程中动量守恒、机械能守恒,则有mv 0=mv 1+2mv 2,12mv 20=12mv 21+12·2mv 22,解得v 0=1.5 m/s ,则C 项正确. 8.(2016·北京丰台区质检)如图所示,两质量分别为m1和m 2的弹性小球A 、B 叠放在一起,从高度为h 处自由落下,h 远大于两小球半径,落地瞬间,B 先与地面碰撞,后与A 碰撞,所有的碰撞都是弹性碰撞,且都发生在竖直方向、碰撞时间均可忽略不计.已知m 2=3m 1,则A 反弹后能达到的高度为( )A .hB .2hC .3hD .4h解析:D 所有的碰撞都是弹性碰撞,所以不考虑能量损失.设竖直向上为正方向,根据机械能守恒定律和动量守恒定律可得,(m 1+m 2)gh =12(m 1+m 2)v 2,m 2v -m 1v =m 1v 1+m 2v 2,12(m 1+m 2)v 2=12m 1v 21+12m 2v 22,12m 1v 21=m 1gh 1,将m 2=3m 1代入,联立可得h 1=4h ,选项D 正确.9.如图所示,光滑水平直轨道上有三个滑块A 、B 、C ,质量分别为m A =m C =3m B ,A 、B 用细绳连接,中间有一压缩的轻弹簧(弹簧与滑块不拴接).开始时A 、B 以共同速度v 0运动,C 静止.某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起最终三滑块之间距离不变.求B 与C 碰撞前B 的速度及最终的速度.解析:对A 、B 被弹开过程由动量守恒有:(m A +m B )v 0=m A v A +m B v B ,对B 、C 碰撞过程由动量守恒有:m B v B =(m B +m C )v C由题意知三个滑块最终速度相同v A =v C 解得最终速度v A =v C =4v 07;B 与C 碰撞前B 的速度v B =16v 07. 答案:碰撞前B 的速度为16v 07 最终的速度为4v 0710.(2017·东营模拟)如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务.某时刻甲、乙都以大小为v 0=2 m/s 的速度相向运动,甲、乙和空间站在同一直线上且可视为质点.甲和他的装备总质量为M 1=90 kg ,乙和他的装备总质量为M 2=135 kg ,为了避免直接相撞,乙从自己的装备中取出一质量为m =45 kg 的物体A 推向甲,甲迅速接住A 后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,且安全“飘”向空间站.(设甲、乙距离空间站足够远,本题中的速度均指相对空间站的速度)(1)乙要以多大的速度v (相对于空间站)将物体A 推出?(2)设甲与物体A 作用时间为t =0.5 s ,求甲与A 的相互作用力F 的大小.解析:(1)以甲、乙、A 三者组成的系统为研究对象,系统动量守恒,以乙的方向为正方向,则有:M 2v 0-M 1v 0=(M 1+M 2)v 1以乙和A 组成的系统为研究对象,由动量守恒得:M 2v 0=(M 2-m )v 1+mv代入数据联立解得v 1=0.4 m/s ,v =5.2 m/s.(2)以甲为研究对象,由动量定理得,Ft =M 1v 1-(-M 1v 0)代入数据解得F =432 N. 答案:(1)5.2 m/s (2)432 N 【B 级——提升练】11.(多选)质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A.12mv 2B.mMm +Mv 2 C.12N μmgL D .N μmgL解析:BD 设最终箱子与小物块的速度为v 1,根据动量守恒定律:mv =(m +M )v 1,则动能损失ΔE k =12mv 2-12(m +M )v 21,解得ΔE k =mMm +Mv 2,B 对;依题意,小物块与箱壁碰撞N 次后回到箱子的正中央,相对箱子运动的路程为s =0.5L +(N -1)L +0.5L =NL ,故系统因摩擦产生的热量即为系统损失的动能,ΔE k =Q =N μmgL ,D 对.12.一个人在地面上立定跳远的最好成绩是x ,假设他站在船头要跳上距离在L 远处的平台上,水对船的阻力不计,如图所示.则( )A .只要L <x ,他一定能跳上平台B .只要L <x ,他有可能跳上平台C .只要L =x ,他一定能跳上平台D .只要L =x ,他有可能跳上平台解析:B 若立定跳远时,人离地时速度为v ,如题图从船上起跳时,人离船时速度为v ′.船的速度为v 船,由能量守恒E =12mv 2,E =12mv ′2+12mv 2船.所以v ′<v ,人跳出的距离变小,所以B 正确.13.如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )A.mh M +mB.Mh M +mC.mh cot αM +mD.Mh cot αM +m解析:C 此题属“人船模型”问题,m 与M 组成的系统在水平方向上动量守恒,设m 在水平方向上对地位移为x 1,M 在水平方向对地位移为x 2,因此0=mx 1-Mx 2①且x 1+x 2=h cot α.② 由①②可得x 2=mh cot αM +m,故选C. 14.如图所示,平板车P 的质量为M ,小物块Q 的质量为m ,大小不计,位于平板车的左端,系统原来静止在光滑水平地面上.一不可伸长的轻质细绳长为R ,一端悬于Q 的正上方高为R处,另一端系一质量也为m 的小球(大小不计).今将小球拉至细绳与竖直方向成60°角的位置由静止释放,小球到达最低点时与Q 碰撞的时间极短,且无能量损失,已知Q 离开平板车时速度大小是平板车速度的两倍,Q 与P 之间的动摩擦因数为μ,M ∶m =4∶1,重力加速度为g .求:(1)小球到达最低点与Q 碰撞前瞬间的速度是多大? (2)小物块Q 离开平板车时平板车的速度为多大? (3)平板车P 的长度为多少?解析:(1)小球由静止摆到最低点的过程中,有mgR (1-cos 60°)=12mv 20解得v 0=gR(2)小球与物块Q 相撞时,没有能量损失,动量和机械能都守恒,则mv 0=mv 1+mv Q ,12mv 20=12mv 21+12mv 2Q解得v 1=0,v Q =v 0=gRQ 在平板车上滑行的过程中,有mv Q =Mv +m ·2v则小物块Q 离开平板车时平板车的速度为v =16v Q =gR6(3)由能量守恒定律可知 μmgl =12mv 2Q -12Mv 2-12m (2v )2解得l =7R18μ.答案:(1)gR (2)gR6 (3)7R 18μ15.如图所示,固定的光滑平台左端固定有一光滑的半圆轨道,轨道半径为R ,平台上静止放着两个滑块A 、B ,其质量m A =m ,m B =2m ,两滑块间夹有少量炸药.平台右侧有一小车,静止在光滑的水平地面上,小车质量M =3m ,车长L =2R ,车面与平台的台面等高,车面粗糙,动摩擦因数μ=0.2,右侧地面上有一不超过车面高的立桩,立桩与小车右端的距离为x ,x 在0<x <2R 的范围内取值,当小车运动到立桩处立即被牢固粘连.点燃炸药后,滑块A 恰好能够通过半圆轨道的最高点D ,滑块B 冲上小车.两滑块都可以看做质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个滑块的速度方向在同一水平直线上,重力加速度为g =10 m/s 2.求:(1)滑块A 在半圆轨道最低点C 时受到轨道的支持力F N ; (2)炸药爆炸后滑块B 的速度大小v B ;(3)请讨论滑块B 从滑上小车在小车上运动的过程中,克服摩擦力做的功W f 与s 的关系. 解析:(1)以水平向右为正方向,设爆炸后滑块A 的速度大小为v A ,设滑块A 在半圆轨道运动到达最高点的速度为v AD ,则m A g =m v 2ADR得到v AD =gR滑块A 在半圆轨道上运动过程中, 据动能定理:-m A g ×2R =12m A v 2AD -12m A v 2AC得:v A =v AC =5gR滑块A 在半圆轨道最低点:F N -m A g =m v 2ACR得:F N =m A g +m A v 2ACR=6mg(2)在A 、B 爆炸过程,动量守恒,则m B v B +m A (-v A )=0得:v B =m A m B v A =5gR 2(3)滑块B 滑上小车直到与小车共速,设为v 共 整个过程中,动量守恒:m B v B =(m B +M )v 共 得:v 共=2v B 5=5gR5滑块B 从滑上小车到共速时的位移为x B =v 2共-v 2B-2μg =21R 8小车从开始运动到共速时的位移为x 车=v 2共2μ2mg 3m=34R两者位移之差(即滑块B 相对小车的位移)为: Δx =x B -x 车=15R8<2R ,即滑块B 与小车在达到共速时未掉下小车.当小车与立桩碰撞后小车停止,然后滑块B 以v 共向右做匀减速直线运动,则直到停下来发生的位移为x ′x ′=v 2共2μg =R 2>(L -Δx )=18R所以,滑块B 会从小车上滑离.讨论:当0<x <3R4时,滑块B 克服摩擦力做功为W f =μ2mg (L +x )=4m (2R +x )当3R4≤x ≤2R 时,滑块B 从滑上小车到共速时克服摩擦力做功为 W f1=μ2mgx B =21mR2. 答案:见解析。
高三物理第一轮复习第六章动量第2讲 动量守恒定律及其应用 课件
5.爆炸问题 爆炸与碰撞类似,物体间的相互作用
力很大,且远大于系统所受的外力,所以 系统动量守恒,爆炸过程中位移很小,可 忽略不计,作用后从相互作用前的位置以 新的动量开始运动.
例6、如图所示,A、B、C三个木块的质量 均为m,置于光滑的水平桌面上,B、C之间 有一轻质弹簧,弹簧的两端与木块接触而不
高三物理第一轮复习
一、动量守恒定律
1.内容:如果一个系统不受外力,或者所受
外力的矢量和为零,这个系统的总动
量 保持不变
.
2.常用的表达式
(1)p=p′,系统相互作用前的 总动量 p等于相互作用后的 总动量 p′.
(2)m1v1+m2v2=m1v′1+m2v′2,相互作用的 两个物体组成的系统,作用前的 总动等量
例5、如图所示,甲、乙两船的总质量(包 括船、人和货物)分别为10m、12m,两船沿 同一直线同一方向运动,速度分别为2v0、 v0.为避免两船相撞,乙船上的人将一质量为 m的货物沿水平方向抛向甲船,甲船上的人 将货物接住,求抛出货物的最小速度.(不 计水的阻力).
4v0
例5.如图光滑水平轨道上有三个木块A 、B、C,质量分别为mA=3m、mB=mC= m,开始时B、C均静止,A以初速度v0向 右运动,A与B碰撞后分开,B又与C发生 碰撞并粘在一起,此后A与B间的距离保持 不变.求B与C碰撞前B的速度大小.
例4.一颗子弹水平射入置于光滑水平面上的 木块A并留在其中,A、B用一根弹性良好 的轻质弹簧连在一起,如图所示。则在子
弹打击木块A及弹簧被压缩的过程中,对子
弹、两木块和弹簧组成的系统 ( C )
2019版高考物理总复习 第六章 碰撞与动量守恒 能力课 动量和能量观点的综合应用课件.pptx
“滑块—弹簧”模型的解题思路 (1)应用系统的动量守恒。 (2)应用系统的机械能守恒。 (3)应用临界条件:两滑块同速时,弹簧的弹性势能最 大。
5
【变式训练1】 (2017·江西南昌模拟)(多选)如图2甲所示,在光滑水平面 上,轻质弹簧一端固定,物体A以速度v0向右运动压缩弹簧,测得弹簧 的最大压缩量为x。现让弹簧一端连接另一质量为m的物体B(如图乙所 示),物体A以2v0的速度向右压缩弹簧,测得弹簧的最大压缩量仍为x, 则( )
图5 (1)物块在车面上滑行的时间t; (2)要使物块不从小车右端滑出,物块滑上小车左端的速度v0′不超过多少。
11
解析 (1)设物块与小车的共同速度为v,以水平向右的方向为正方向, 根据动量守恒定律有m2v0=(m1+m2)v 设物块与车面间的滑动摩擦力为Ff, 对物块应用动量定理有-Fft=m2v-m2v0,又Ff=μm2g
解得 t=μ(mm1+1vm0 2)g,代入数据得 t=0.24 s。
(2)要使物块恰好不从车面滑出,须物块到车面最右端时与小车有共同的速度, 设其为v′,则m2v0′=(m1+m2)v′
由功能关系有12m2v0′2=12(m1+m2)v′2+μm2gL,代入数据解得 v0′=5 m/s
故要使物体不从小车右端滑出,物块滑上小车左端的速度v0′不超过5 m/s。 答案 (1)0.24 s (2)5 m/s
2
【例1】 如图1所示,质量分别为1 kg、3 kg的滑块A、B位 于光滑水平面上,现使滑块A以4 m/s的速度向右运动,与左 侧连有轻弹簧的滑块B发生碰撞。求二者在发生碰撞的过程 中。
图1 (1)弹簧的最大弹性势能; (2)滑块B的最大速度。
3
解析 (1)当弹簧压缩最短时,弹簧的弹性势能最大,此时滑 块A、B同速。系统动量守恒,以向右为正方向, 由动量守恒定律得 mAv0=(mA+mB)v,解得 v=mmA+Avm0 B=11+×43 m/s=1 m/s 弹簧的最大弹性势能即滑块 A、B 损失的动能 Epm=12mAv20-12(mA+mB)v2=6 J。 (2)当弹簧恢复原长时,滑块B获得最大速度, 由动量守恒定律和能量守恒定律得mAv0=mAvA+mBvm 12mAv20=12mBv2m+12mAv2A,解得 vm=2 m/s,向右。 答案 (1)6 J (2)2 m/s,向右
全国通用近年高考物理一轮复习第六章碰撞与动量守恒高效演练创新预测6.2动量守恒定律及其应用(202
(全国通用版)2019版高考物理一轮复习第六章碰撞与动量守恒高效演练创新预测6.2 动量守恒定律及其应用编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考物理一轮复习第六章碰撞与动量守恒高效演练创新预测6.2 动量守恒定律及其应用)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考物理一轮复习第六章碰撞与动量守恒高效演练创新预测6.2 动量守恒定律及其应用的全部内容。
6。
2 动量守恒定律及其应用高效演练·创新预测1.(多选)如图所示,一男孩站在小车上,并和木箱一起在光滑的水平冰面上向右匀速运动,木箱与小车挨得很近。
现男孩用力向右迅速推开木箱。
在男孩推开木箱的过程中,下列说法正确的是()A.木箱的动量增量等于男孩动量的减少量B.男孩对木箱推力的冲量大小等于木箱对男孩推力的冲量C。
男孩推开木箱后,男孩和小车的速度可能变为零D。
对于小车、男孩和木箱组成的系统,推开木箱前后的总动能不变【解析】选B、C。
由于水平冰面光滑,男孩、小车和木箱组成的系统所受合外力为零,系统动量守恒,在站在小车上的男孩用力向右迅速推出木箱的过程中,木箱的动量增加量等于男孩和小车动量的减少量,故A错误; 男孩对木箱推力和木箱对男孩推力是作用力与反作用力,冲量等大反向,男孩对木箱推力的冲量大小等于木箱对男孩推力的冲量,故B正确;男孩、小车受到与初动量反向的冲量,推开木箱后,男孩和小车的速度可能变为零,故C正确;男孩、小车与木箱三者组成的系统所受合力为零,系统动量守恒,推开木箱的过程不可能是弹性碰撞,推开前后的总动能变化,故D错误。
高考物理一轮复习 第六章 碰撞与动量守恒 第2讲 动量守恒定律及其应用教学案 沪科版-沪科版高三全册
第2讲动量守恒定律及其应用知识排查知识点一动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
2.表达式(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′。
(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向。
3.动量守恒的条件(1)理想守恒:系统不受外力或所受外力的矢量和为零,则系统动量守恒。
(2)近似守恒:系统受到的外力矢量和不为零,但当内力远大于外力时,系统的动量可近似看成守恒。
(3)某一方向上守恒:系统在某个方向上所受外力矢量和为零时,系统在该方向上动量守恒。
知识点二弹性碰撞和非弹性碰撞1.碰撞物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。
2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒。
3.分类动量是否守恒机械能是否守恒弹性碰撞守恒守恒非完全弹性碰撞守恒有损失完全非弹性碰撞守恒损失最多知识点三1.反冲(1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动。
(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力。
实例:发射炮弹、爆竹爆炸、发射火箭等。
(3)规律:遵从动量守恒定律。
2.爆炸(1)爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒。
(2)爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动。
小题速练1.思考判断(1)系统的动量守恒时,机械能也一定守恒。
( )(2)只要系统内存在摩擦力,系统的动量就不可能守恒。
( )(3)动量守恒定律表达式m1v1+m2v2=m1v1′+m2v2′一定是矢量式,应用时一定要规定正方向,且其中的速度必须相对同一个参考系。
( )答案(1)×(2)×(3)√2.下列情形中,满足动量守恒的是( )A.铁锤打击放在铁砧上的铁块,打击过程中,铁锤和铁块的总动量B.子弹水平穿过放在光滑水平桌面上的木块过程中,子弹和木块的总动量C.子弹水平穿过墙壁的过程中,子弹和墙壁的总动量D.棒击垒球的过程中,棒和垒球的总动量解析铁锤打击放在铁砧上的铁块时,铁砧对铁块的支持力大于系统重力,合外力不为零;子弹水平穿过墙壁时,地面对墙壁有水平作用力,合外力不为零;棒击垒球时,手对棒有作用力,合外力不为零;只有子弹水平穿过放在光滑水平面上的木块时,系统所受合外力为零。
2019高考物理课标通用复习第六章 第2节动量守恒定律
作用原理
反冲运动是系统内物体之间的作用力和反作用力产生的效果
动量守恒
反冲运动中系统不受外力或内力远大于外力,所以反冲运动遵循动量守恒定律
机械能增加
反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加
动力学观点
运用牛顿定律结合运动学知识解题,可处理匀变速运动问 题
能量观点
用动能定理和能量守恒观点解题,可处理非匀变速运动问 题
P点左侧轨道光滑
物块A在圆轨道上运动时满足机械能守恒定律
“课后演练·逐级过关”见“课时跟踪检测(二十三)” 普通高中适用作业 “课后演练·逐级过关”见“课时跟踪检测(二十三)” 重点高中适用作业
谢 谢 观 赏
动量观点
用动量守恒观点解题,可处理非匀变速运动问题
动量守恒定律
机械能守恒定律
研究对象
相互作用的物体系统
相互作用的系统(包括地球)
守恒性质
矢量守恒(规定正方向)
标量守恒(不考虑方向性)
关键点
获取信息
物块B碰撞前速为0
与直轨上P处静止的物块B碰撞,碰后粘在一起运动 A、B的碰撞为完全非弹性碰撞
动量守恒
由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒
动能增加
在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加
位置不变
爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动
第
2
节
1 课前回顾·基础速串
2 课堂提能·考点全通 3 课后演练·逐级过关
课 前 回 顾·基础速串
2019高考物理一轮复习第六章碰撞与动量守恒第2讲动量守恒定律碰撞爆炸反冲练习
第2讲 动量守恒定律 碰撞 爆炸 反冲1.(2015·高考福建卷)如图,两滑块A 、B 在光滑水平面上沿同一直线相向运动,滑块A 的质量为m ,速度大小为2v 0,方向向右,滑块B 的质量为2m ,速度大小为v 0,方向向左,两滑块发生弹性碰撞后的运动状态是( )A .A 和B 都向左运动B .A 和B 都向右运动C .A 静止,B 向右运动D .A 向左运动,B 向右运动解析:选D.选向右为正方向,则A 的动量p A =m ·2v 0=2mv 0,B 的动量p B =-2mv 0.碰前A 、B 的动量之和为零,根据动量守恒,碰后A 、B 的动量之和也应为零,可知四个选项中只有选项D 符合题意.2.2017年7月9日,斯诺克世界杯在江苏无锡落下帷幕,由丁俊晖和梁文博组成的中国A 队在决赛中1比3落后的不利形势下成功逆转,最终以4比3击败英格兰队,帮助中国斯诺克台球队获得了世界杯三连冠.如图为丁俊晖正在准备击球,设在丁俊晖这一杆中,白色球(主球)和花色球碰撞前、后都在同一直线上运动,碰前白色球的动量p A =5 kg ·m/s ,花色球静止,白色球A 与花色球B 发生碰撞后,花色球B 的动量变为p ′B =4 kg ·m/s ,则两球质量m A 与m B 间的关系可能是( )A .mB =m AB .m B =14m AC .m B =16m AD .m B =6m A解析:选A.由动量守恒定律得p A +p B =p ′A +p ′B ,解得p ′A =1 kg ·m/s ,根据碰撞过程中总动能不增加,则有p 2A 2m A ≥p ′2A 2m A +p ′2B 2m B ,代入数据解得m B ≥23m A ,碰后两球同向运动,白色球A 的速度不大于花色球B 的速度,则p ′A m A ≤p ′B m B ,解得m B ≤4m A ,综上可得23m A ≤m B ≤4m A ,选项A 正确. 3.如图所示,在光滑水平面上有一辆质量M =8 kg 的平板小车,车上有一个质量m =1.9 kg 的木块,木块距小车左端6 m(木块可视为质点),车与木块一起以v =1 m/s 的速度水平向右匀速行驶.一颗质量m 0=0.1 kg的子弹以v 0=179 m/s 的初速度水平向左飞,瞬间击中木块并留在其中.如果木块刚好不从车上掉下,求木块与平板小车之间的动摩擦因数μ(g =10 m/s 2).解析:设子弹射入木块后的共同速度为v 1,以水平向左为正方向,则由动量守恒定律有 m 0v 0-mv =(m +m 0)v 1①代入数据解得v 1=8 m/s. 它们恰好不从小车上掉下来,则它们相对平板车滑行s =6 m 时,它们跟小车具有共同速度v 2,则由动量守恒定律有(m +m 0)v 1-Mv =(m +m 0+M )v 2② 由能量守恒定律有Q =μ(m +m 0)gs =12(m +m 0)v 21+12Mv 2-12(m +m 0+M )v 22 ③联立①②③并代入数据解得μ=0.54.答案:0.544.(2015·高考全国卷Ⅱ)两滑块a 、b 沿水平面上同一条直线运动,并发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x 随时间t 变化的图象如图所示.求:(1)滑块a 、b 的质量之比;(2)整个运动过程中,两滑块克服摩擦力做的功与因碰撞而损失的机械能之比.解析:(1)设a 、b 的质量分别为m 1、m 2,a 、b 碰撞前的速度为v 1、v 2.由题给图象得v 1=-2 m/s① v 2=1 m/s ②a 、b 发生完全非弹性碰撞,碰撞后两滑块的共同速度为v .由题给图象得v =23m/s③ 由动量守恒定律得m 1v 1+m 2v 2=(m 1+m 2)v④ 联立①②③④式得m 1∶m 2=1∶8.⑤(2)由能量守恒得,两滑块因碰撞而损失的机械能为ΔE =12m 1v 21+12m 2v 22-12(m 1+m 2)v 2 ⑥ 由图象可知,两滑块最后停止运动.由动能定理得,两滑块克服摩擦力所做的功为W =12(m 1+m 2)v 2⑦ 联立⑥⑦式,并代入题给数据得 W ∶ΔE =1∶2.答案:(1)1∶8 (2)1∶2。
【全国试题总结】2019高考物理一轮复习第6章动量第2节动量守恒定律及其应用教师用书
第2节动量守恒定律及其应用知识点1 动量守恒定律及其表达式1.动量守恒定律的内容一个系统不受外力或所受外力之和为零,这个系统的总动量就保持不变.2.动量守恒的数学表达式(1)p=p′(系统相互作用前总动量p等于相互作用后总动量p′).(2)Δp=0(系统总动量变化为零).(3)Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量增量大小相等,方向相反).知识点2 动量守恒的成立条件1.系统不受外力或所受外力之和为零时,系统的动量守恒.2.系统所受外力之和不为零,但当内力远大于外力时系统动量近似守恒.如碰撞、打击、爆炸等过程,动量均可认为守恒.3.系统所受外力之和不为零,但在某个方向上所受合外力为零或不受外力,或外力可以忽略,则在这个方向上,系统动量守恒.知识点3 碰撞、反冲和爆炸问题1.碰撞(1)概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.(2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的物体组成的系统动量守恒.(3)分类:2.在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开.在相互作用的过程中系统的动能增大,且常伴有其他形式能向动能的转化.3.爆炸问题爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒,爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动.1.正误判断(1)系统所受合外力的冲量为零,则系统动量一定守恒.(√)(2)动量守恒是指系统在初、末状态时的动量相等.(×)(3)在爆炸现象中,动量严格守恒.(×)(4)在碰撞问题中,机械能也一定守恒.(×)(5)动量守恒时,机械能不一定守恒.(√)2.[判断动量是否守恒]如图621所示的装置中,木块B 与水平桌面间是光滑的,子弹A 沿水平方向射入木块后,停在木块内.将弹簧压缩到最短,现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中( )图621A .动量守恒,机械能守恒B .动量不守恒,机械能不守恒C .动量守恒,机械能不守恒D .动量不守恒,机械能守恒B [由于子弹射入木块过程中,二者间存在着摩擦,故此过程机械能不守恒,子弹与木块一起压缩弹簧的过程中,速度逐渐减小到零,所以此过程动量不守恒,故整个过程中动量、机械能均不守恒.]3.[分析系统的动量特点](多选)如图622所示,半径和动能相等的两小球相向而行.甲球质量m 甲大于乙球质量m 乙,水平面是光滑的,两球做对心碰撞以后的运动情况可能是下述哪些情况( )【导学号:】图622A .甲球速度为零,乙球速度不为零B .两球速度都不为零C .乙球速度为零,甲球速度不为零D .两球都以各自原来的速率反向运动AB [首先根据两球动能相等,12m 甲v 2甲=12m 乙v 2乙,得出两球碰前动量大小之比为:p 甲p 乙=m 甲m 乙,因m 甲>m 乙,则p 甲>p 乙,则系统的总动量方向向右.根据动量守恒定律可以判断,碰后两球运动情况可能是A 、B 所述情况,而C 、D 情况是违背动量守恒定律的,故C 、D 情况是不可能的.]4.[动量守恒定律的应用]某同学质量为60 kg ,在军事训练中要求他从岸上以大小为2m/s 的速度跳到一条向他缓缓漂来的小船上,然后去执行任务,小船的质量是140 kg ,原来的速度大小是0.5 m/s ,该同学上船后又跑了几步,最终停在船上,则( )A .人和小船最终静止的水面上B.该过程同学的动量变化量为105 kg·m/sC.船最终的速度是0.95 m/sD.该过程船的动量变化量是70 kg·m/sB [规定人原来的速度方向为正方向.设人上船后,船与人共同速度为v.由题意,水的阻力忽略不计,该同学跳上小船后与小船达到同一速度的过程,人和船组成的系统合外力m人+m船v,解得:v=0.25 m/s,为零,系统的动量守恒,则由动量守恒得:m人v人-m船v船=()方向与船原来的速度方向相反,故A、C错误;该同学动量的变化量:Δp=m人v-m人v人=60×(0.25-2)kg·m/s=-105 kg·m/s,因系统动量过恒,所以船的动量的变化量为105 kg·m/s,故B正确,D错误.]1.方法一:直接由动量守恒的条件判断.方法二:系统所受的合外力是否为零不很明确时,直接看系统的动量是否变化.如果系统的动量增加或减少的话,则系统的动量一定不守恒.[题组通关]1.(多选)木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上,在b上施加向左的水平力使弹簧压缩,如图623所示,当撤去外力后,下列说法中正确的是( )图623A.a尚未离开墙壁前,a和b组成的系统动量守恒B.a尚未离开墙壁前,a和b组成的系统动量不守恒C.a离开墙壁后,a和b组成的系统动量守恒D.a离开墙壁后,a和b组成的系统动量不守恒BC[动量守恒定律的适用条件是不受外力或所受合外力为零.a尚未离开墙壁前,a 和b组成的系统受到墙壁对它们的作用力,不满足动量守恒条件;a离开墙壁后,系统所受合外力为零,动量守恒.]2.(多选)如图624所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则( )【导学号:】图624A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成系统的动量守恒BCD[如果A、B与平板车上表面间的动摩擦因数相同,弹簧释放后A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力F A向右,F B向左,由于m A∶m B=3∶2,所以F A∶F B =3∶2,则A、B组成系统所受的外力之和不为零,故其动量不守恒,A选项错.对A、B、C 组成的系统,A、B与C间的摩擦力为内力,该系统所受的外力为竖直方向的重力、支持力,它们的合力为零,故该系统的动量守恒,B、D选项正确.若A、B所受摩擦力大小相等,则A、B组成系统的受到的外力之和为零,故其动量守恒,C选项正确.]1.(1)动量守恒(2)机械能不增加(3)速度要合理①若碰前两物体同向运动,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′.②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.2.对反冲现象的三点说明(1)系统内的不同部分在强大内力作用下向相反方向运动,通常用动量守恒来处理.(2)反冲运动中,由于有其他形式的能转变为机械能,所以系统的总机械能增加.(3)反冲运动中平均动量守恒.3.爆炸现象的三个规律(1)动量守恒由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸前后系统的总动能增加.(3)位置不变爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动.[多维探究]●考向1 爆炸与反冲问题1.(多选)有关实际生活中的现象,下列说法正确的是( )A .火箭靠喷出气流的反冲作用而获得巨大速度B .体操运动员在着地时曲腿是为了减小地面对运动员的作用力C .用枪射击时要用肩部抵住枪身是为了减少反冲的影响D .为了减轻撞车时对司乘人员的伤害程度,发动机舱越坚固越好ABC [火箭靠喷出气体,通过反冲获得前进的动力,从而获得巨大速度,A 正确;体操运动员在着地时曲腿是为了延长作用时间来减小地面对运动员的作用力,B 正确;用枪射击时要用肩部抵住枪身是为了减少反冲的影响,C 正确;为了减轻撞车时对司乘人员的伤害程度,需要兼顾延长作用时间,减小作用力,D 错误;故选A 、B 、C.]2.以与水平方向成60°角斜向上的初速度v 0射出的炮弹,到达最高点时因爆炸分成质量分别为m 和2m 的两块,其中质量为2m 的一块沿着原来的方向以2v 0的速度飞行.求:(1)质量较小的那一块弹片速度的大小和方向;(2)爆炸过程中有多少化学能转化为炮弹的动能?【导学号:】【解析】 (1)斜抛的炮弹在水平方向上做匀速直线运动,则炮弹在最高点爆炸前的速度为v 1=v 0cos 60°=v 02设炮弹在最高点爆炸前的速度方向为正方向,由动量守恒定律得3mv 1=2mv 1′+mv 2又v 1′=2v 0解得v 2=-2.5v 0,负号表示速度方向与规定的正方向相反.(2)爆炸过程中转化为动能的化学能等于动能的增量,所以转化为动能的化学能为ΔE =ΔE k =12(2m )v 1′2+12mv 22-12(3m )v 21=274mv 20. 【答案】 (1)2.5v 0,方向与爆炸前炮弹运动的方向相反 (2)274mv 20 ●考向2 碰撞问题3.(多选)如图625甲所示,在光滑水平面上的两小球发生正碰,小球的质量分别为m 1和m 2.图乙为它们碰撞前后的s t 图象.已知m 1=0.1 kg ,由此可以判断( )甲 乙图625A .碰前m 2静止,m 1向右运动B .碰后m 2和m 1都向右运动C .m 2=0.3 kgD .碰撞过程中系统损失了0.4 J 的机械能AC [由图乙可以看出,碰前m 1的位移随时间均匀增加,m 2的位移不变,可知m 2静止,m 1向右运动,故A 正确.碰后一个位移增大,一个位移减小,说明两球运动方向不一致,即B 错误.由图乙可以算出碰前m 1的速度v 1=4 m/s ,碰后的速度v 1′=-2 m/s ,碰前m 2的速度v 2=0,碰后的速度v 2′=2 m/s ,由动量守恒m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,计算得m 2=0.3 kg ,故C 正确.碰撞过程中系统损失的机械能ΔE =12m 1v 21-12m 1v 1′2-12m 2v 2′2=0,因此D 错误.]4.(2015·全国卷Ⅰ)如图626所示,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.图626【解析】 A 向右运动与C 发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方向向右为正,开始时A 的速度为v 0,第一次碰撞后C 的速度为v C 1,A 的速度为v A 1.由动量守恒定律和机械能守恒定律得mv 0=mv A 1+Mv C 1① 12mv 20=12mv 2A 1+12Mv 2C 1 ②联立①②式得 v A 1=m -M m +Mv 0 ③ v C 1=2m m +M v 0 ④如果m >M ,第一次碰撞后,A 与C 速度同向,且A 的速度小于C 的速度,不可能与B 发生碰撞;如果m =M ,第一次碰撞后,A 停止,C 以A 碰前的速度向右运动,A 不可能与B 发生碰撞;所以只需考虑m <M 的情况.第一次碰撞后,A 反向运动与B 发生碰撞.设与B 发生碰撞后,A 的速度为v A 2,B 的速度为v B 1,同样有v A 2=m -M m +M v A 1=⎝ ⎛⎭⎪⎫m -M m +M 2v 0 ⑤根据题意,要求A 只与B 、C 各发生一次碰撞,应有v A 2≤v C 1⑥联立④⑤⑥式得 m 2+4mM -M 2≥0⑦ 解得m ≥(5-2)M⑧另一解m ≤-(5+2)M 舍去所以,m 和M 应满足的条件为 (5-2)M ≤m <M .⑨【答案】 (5-2)M ≤m <M 碰撞问题解题策略1.抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解.2.可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足:v 1=m 1-m 2m 1+m 2v 0、v 2=2m 1m 1+m 2v 0. 当两物体质量相等时,两物体碰撞后交换速度.3.因碰撞过程发生在瞬间,一般认为系统内各物体的速度瞬间发生突变,而物体的位置不变.(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.2.解决动力学问题的三个基本观点●考向1 应用动量的观点解决问题1.(多选)(2017·湛江模拟)如图627所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m =1.0 kg 的小木块A ,同时给A 和B 以大小均为4.0m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,A 始终没有滑离B 板,在小木块A 做加速运动的时间内,木板速度大小可能是( )图627A .2.1 m/sB .2.4 m/sC .2.8 m/sD .3.0 m/sAB [以A 、B 组成的系统为研究对象,系统动量守恒,取水平向右为正方向,从A 开始运动到A 的速度为零过程中,由动量守恒定律得:(M -m )v 0=Mv B 1,代入数据解得:v B 1=2.67m/s.当从开始到A 、B 速度相同的过程中,取水平向右方向为正方向,由动量守恒定律得:(M -m )v 0=(M +m )v B 2,代入数据解得:v B 2=2 m/s ,则在木块A 做加速运动的时间内B 的速度范围为:2 m/s <v B <2.67 m/s ,故选项A 、B 正确.]2.如图628所示,m A =1 kg ,m B =4 kg ,小物块m C =1 kg ,ab 、dc 段均光滑,dc 段足够长;物体A 、B 上表面粗糙,最初均处于静止.最初小物块C 静止在a 点,已知ab 长度L =16 m ,现给小物块C 一个水平向右的瞬间冲量I 0=6 N·s.图628(1)当C 滑上A 后,若刚好在A 的右边缘与A 具有共同的速度v 1(此时还未与B 相碰),求v 1的大小.(2)A 、C 共同运动一段时间后与B 相碰,若已知碰后A 被反弹回来,速度大小为0.2 m/s ,C 最后和B 保持相对静止,求B 、C 最终具有的共同速度v 2.【解析】 (1)对物块C ,由动量定理,取向右为正方向I 0=m C v 0-0,v 0=I 0m C=6 m/s 从C 滑到A 的右边缘的过程中,由于F 合=0,所以A 、C 系统动量守恒,以v 0方向为正,m C v 0=(m C +m A )v 1,所以v 1=3 m/s.(2)以v 0方向为正,A 、C 一起向右运动到与B 相碰后,C 将滑上B 做减速运动,直到与B 达到共同的速度,整个过程动量守恒,有:(mC +m A )v 1=-m A v A +(m B +m C )v 2,所以v 2=1.24m/s.【答案】 (1)3 m/s (2)1.24 m/s●考向2 应用动量和能量的观点综合解决问题3.(2016·全国丙卷)如图629所示,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m .两物块与地面间的动摩擦因数均相同.现使a 以初速度v 0向右滑动.此后a 与b 发生弹性碰撞,但b没有与墙发生碰撞.重力加速度大小为g .求物块与地面间的动摩擦因数满足的条件.【导学号:】图629【解析】 设物块与地面间的动摩擦因数为μ.若要物块a 、b 能够发生碰撞,应有 12mv 20>μmgl ①即μ<v 202gl② 设在a 、b 发生弹性碰撞前的瞬间,a 的速度大小为v 1.由能量守恒有12mv 20=12mv 21+μmgl ③设在a 、b 碰撞后的瞬间,a 、b 的速度大小分别为v ′1、v ′2,由动量守恒和能量守恒有mv 1=mv ′1+34mv ′2④ 12mv 21=12mv ′21+12⎝ ⎛⎭⎪⎫34m v ′22 ⑤ 联立④⑤式解得v ′2=87v 1 ⑥由题意知,b 没有与墙发生碰撞,由功能关系可知12⎝ ⎛⎭⎪⎫34m v ′22≤μ34mgl ⑦ 联立③⑥⑦式,可得μ≥32v 20113gl ⑧联立②⑧式,a 与b 发生弹性碰撞,但b 没有与墙发生碰撞的条件32v 20113gl ≤μ<v 202gl. ⑨【答案】 32v 20113gl ≤μ<v 202gl●考向3 动量、能量、牛顿运动定律的综合应用4.(2017·衡阳模拟)如图6210所示,内壁粗糙、半径R =0.4 m 的四分之一圆弧轨道AB 在最低点B 与光滑水平轨道BC 相切.质量m 2=0.2 kg 的小球b 左端连接一轻质弹簧,静止在光滑水平轨道上,另一质量m 1=0.2 kg 的小球a 自圆弧轨道顶端由静止释放,运动到圆弧轨道最低点B 时对轨道的压力为小球a 重力的2倍.忽略空气阻力,重力加速度g 取10 m/s 2.求:图6210(1)小球a 由A 点运动到B 点的过程中,摩擦力做功W f ;(2)小球a 通过弹簧与小球b 相互作用的过程中,弹簧的最大弹性势能E p ;(3)小球a 通过弹簧与小球b 相互作用的整个过程中,弹簧对小球b 的冲量I 的大小.【解析】 (1)小球由释放到最低点的过程中,根据动能定理:m 1gR +W f =12m 1v 21 小球在最低点,根据牛顿第二定律:F N -m 1g =m 1v 21R联立可得:W f =-0.4 J.(2)小球a 与小球b 通过弹簧相互作用,达到共同速度v 2过程中,由动量关系: m 1v 1=(m 1+m 2)v 2由能量转化和守恒:12m 1v 21=12(m 1+m 2)v 22+E p 联立可得:E p =0.2 J.(3)小球a 与小球b 通过弹簧相互作用的整个过程中,a 后来速度为v 3,b 后来速度为v 4,由动量关系:m 1v 1=m 1v 3+m 2v 4由能量转化和守恒:12m 1v 21=12m 1v 23+12m 2v 24 根据动量定理有:I =m 2v 4联立可得:I =0.4 N·s.【答案】 (1)0.4 J (2)0.2 J (3)0.4 N·s力学规律的选用原则1.求解物体某一时刻受力及加速度时,可用牛顿第二定律列式解决,有时也可结合运动学公式列出含有加速度的关系式.2.研究某一物体受到力的持续作用发生运动状态改变的问题时,在涉及时间和速度,不涉及位移和加速度时要首先考虑运用动量定理.在涉及位移、速度,不涉及时间时要首先考虑选用动能定理.3.若研究的对象为相互作用的物体组成的系统,一般考虑用动量守恒定律和机械能守恒定律去解决,但要仔细分析研究的问题是否符合守恒条件.4.在涉及相对位移问题时则优先考虑能量守恒定律,即系统克服摩擦力所做的总功等于系统机械能的减少量,也即转变为系统内能的量.5.在涉及有碰撞、爆炸、打击、绳绷紧等物理现象时,须注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转化.这类问题因作用时间极短,动量守恒定律通常能用得上.。
【配套K12】(全国通用)2019版高考物理一轮复习备考精炼: 第六章 动量 动量守恒定律 微专题5
50 力学三大规律的综合应用[方法点拨] 做好以下几步:①确定研究对象,进行运动分析和受力分析;②分析物理过程,按特点划分阶段;③选用相应规律解决不同阶段的问题,列出规律性方程.1.(2018·广东东莞模拟)如图1所示,某超市两辆相同的手推购物车质量均为m 、相距l 沿直线排列,静置于水平地面上.为节省收纳空间,工人给第一辆车一个瞬间的水平推力使其运动,并与第二辆车相碰,且在极短时间内相互嵌套结为一体,以共同的速度运动了距离l 2,恰好停靠在墙边.若车运动时受到的摩擦力恒为车重的k 倍,忽略空气阻力,重力加速度为g .求:图1(1)购物车碰撞过程中系统损失的机械能;(2)工人给第一辆购物车的水平冲量大小.2.(2017·河北石家庄第二次质检)如图2所示,质量分布均匀、半径为R 的光滑半圆形金属槽,静止在光滑的水平面上,左边紧靠竖直墙壁.一质量为m 的小球从距金属槽上端R 处由静止下落,恰好与金属槽左端相切进入槽内,到达最低点后向右运动从金属槽的右端冲出,小球到达最高点时与金属槽圆弧最低点的距离为74R ,重力加速度为g ,不计空气阻力.求:图2(1)小球第一次到达最低点时对金属槽的压力大小;(2)金属槽的质量.3.(2017·江西上饶一模)如图3所示,可看成质点的A物体叠放在上表面光滑的B物体上,一起以v0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C发生碰撞,碰撞后B、C的速度相同,B、C的上表面相平且B、C不粘连,A滑上C后恰好能到达C板的右端.已知A、B质量相等,C的质量为A的质量的2倍,木板C长为L,重力加速度为g.求:图3(1)A物体与木板C上表面间的动摩擦因数;(2)当A刚到C的右端时,B、C相距多远?4.(2017·河南六市第一次联考)足够长的倾角为θ的光滑斜面的底端固定一轻弹簧,弹簧的上端连接质量为m、厚度不计的钢板,钢板静止时弹簧的压缩量为x0,如图4所示.一物块从钢板上方距离为3x0的A处沿斜面滑下,与钢板碰撞后立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点,O为弹簧自然伸长时钢板的位置.若物块质量为2m,仍从A处沿斜面滑下,则物块与钢板回到O 点时,还具有向上的速度,已知重力加速度为g,计算结果可以用根式表示,求:图4(1)质量为m的物块与钢板碰撞后瞬间的速度大小v1;(2)碰撞前弹簧的弹性势能;(3)质量为2m的物块沿斜面向上运动到达的最高点离O点的距离.5.(2017·山东泰安一模)如图5所示,质量为m1=0.5 kg的小物块P置于台面上的A点并与水平弹簧的右端接触(不拴接),轻弹簧左端固定,且处于原长状态.质量M=1 kg的长木板静置于水平面上,其上表面与水平台面相平,且紧靠台面右端.木板左端放有一质量m2=1 kg的小滑块Q.现用水平向左的推力将P缓慢推至B点(弹簧仍在弹性限度内),撤去推力,此后P沿台面滑到边缘C时速度v0=10 m/s,与长木板左端的滑块Q相碰,最后物块P 停在AC的正中点,Q停在木板上.已知台面AB部分光滑,P与台面AC间的动摩擦因数μ1=0.1,AC间距离L=4 m.Q与木板上表面间的动摩擦因数μ2=0.4,木板下表面与水平面间的动摩擦因数μ3=0.1(g取10 m/s2),求:图5(1)撤去推力时弹簧的弹性势能;(2)长木板运动中的最大速度;(3)长木板的最小长度.6.(2018·河北邢台质检)如图6所示,某时刻质量为m1=50 kg的人站在m2=10 kg的小车上,推着m3=40 kg的铁箱一起以速度v0=2 m/s在水平地面沿直线运动到A点时,该人迅速将铁箱推出,推出后人和车刚好停在A点,铁箱则向右运动到距A点s=0.25 m的竖直墙壁时与之发生碰撞而被弹回,弹回时的速度大小是碰撞前的二分之一,当铁箱回到A点时被人接住,人、小车和铁箱一起向左运动,已知小车、铁箱受到的摩擦力均为地面压力的0.2倍,重力加速度g=10 m/s2,求:图6(1)人推出铁箱时对铁箱所做的功;(2)人、小车和铁箱停止运动时距A点的距离.答案精析1.(1)mkgl (2)m 6gkl解析 (1)设第一辆车碰前瞬间的速度为v 1,与第二辆车碰后的共同速度为v 2.由动量守恒定律有mv 1=2mv 2由动能定理有-2kmg ·l 2=0-12(2m )v 22 则碰撞中系统损失的机械能ΔE =12mv 12-12(2m )v 22 联立以上各式解得ΔE =mkgl(2)设第一辆车推出时的速度为v 0由动能定理有-kmgl =12mv 12-12mv 02 I =mv 0联立解得I =m 6gkl2.(1)5mg (2)(33+833)m 31解析 (1)小球从静止到第一次到达最低点的过程,根据机械能守恒定律有:mg ·2R =12mv 02小球刚到最低点时,根据圆周运动规律和牛顿第二定律有: F N -mg =m v 02R据牛顿第三定律可知小球对金属槽的压力为:F N ′=F N联立解得:F N ′=5mg(2)小球第一次到达最低点至小球到达最高点过程,小球和金属槽水平方向动量守恒,选取向右为正方向,则:mv 0=(m +M )v设小球到达最高点时与金属槽圆弧最低点的高度为h .则有R 2+h 2=(74R )2 根据能量守恒定律有:mgh =12mv 02-12(m +M )v 2 联立解得M =(33+833)m 31.3.(1)4v 0227gL (2)L 3解析 (1)设A 、B 的质量为m ,则C 的质量为2m .B 、C 碰撞过程中动量守恒,令B 、C 碰后的共同速度为v 1,以B 的初速度方向为正方向,由动量守恒定律得:mv 0=3mv 1 解得:v 1=v 03 B 、C 共速后A 以v 0的速度滑上C ,A 滑上C 后,B 、C 脱离,A 、C 相互作用过程中动量守恒,设最终A 、C 的共同速度v 2,以向右为正方向,由动量守恒定律得:mv 0+2mv 1=3mv 2解得:v 2=5v 09在A 、C 相互作用过程中,根据能量守恒定律得:F f L =12mv 02+12×2mv 12-12×3mv 22又F f =μmg解得:μ=4v 0227gL(2)A 在C 上滑动时,C 的加速度a =μmg 2m =2v 0227L A 从滑上C 到与C 共速经历的时间:t =v 2-v 1a =3L v 0B 运动的位移:x B =v 1t =LC 运动的位移x C =(v 1+v 2)t 2=4L 3B 、C 相距:x =x C -x B =L 34.(1)6gx 0sin θ2 (2)12mgx 0sin θ (3)x 02解析 (1)设物块与钢板碰撞前速度为v 0,3mgx 0sin θ=12mv 02 解得v 0=6gx 0sin θ设物块与钢板碰撞后一起运动的速度为v 1,以沿斜面向下为正方向,由动量守恒定律得 mv 0=2mv 1解得v 1=6gx 0sin θ2(2)设碰撞前弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为零,根据机械能守恒定律得E p +12(2m )v 12=2mgx 0sin θ解得E p =12mgx 0sin θ (3)设v 2表示质量为2m 的物块与钢板碰后开始一起向下运动的速度,以沿斜面向下为正方向,由动量守恒定律得2mv 0=3mv 2它们回到O 点时,弹性势能为零,但它们仍继续向上运动,设此时速度为v ,由机械能守恒定律得 E p +12(3m )v 22=3mgx 0sin θ+12(3m )v 2在O 点物块与钢板分离,分离后,物块以速度v 继续沿斜面上升,设运动到达的最高点离O 点的距离为l ,有 v 2=2al2mg sin θ=2ma解得l =x 025.(1)27 J (2)2 m/s (3)3 m解析 (1)小物块P 由B 到C 的过程: W 弹-μ1m 1gL =12m 1v 02-0解得W 弹=27 J E p =W 弹=27 J即撤去推力时弹簧的弹性势能为27 J.(2)小物块P 和滑块Q 碰撞过程动量守恒,以v 0的方向为正方向m 1v 0=-m 1v P +m 2v Q小物块P 从碰撞后到静止-12μ1m 1gL =0-12m 1v P 2 解得v Q =6 m/sQ 在长木板上滑动过程中:对Q :-μ2m 2g =m 2a 1对木板:μ2m 2g -μ3(M +m 2)g =Ma 2解得a 1=-4 m/s 2,a 2=2 m/s 2当滑块Q 和木板速度相等时,木板速度最大,设速度为v ,滑行时间为t . 对Q :v =v Q +a 1t对木板:v =a 2t解得t =1 sv =2 m/s长木板运动中的最大速度为2 m/s(3)在Q 和木板相对滑动过程中Q 的位移:x Q =12(v Q +v )·t木板的位移:x 板=12(0+v )·t 木板的最小长度:L =x Q -x 板解得L =3 m6.(1)420 J (2)0.2 m解析 (1)人推铁箱过程,以v 0的方向为正方向,由动量守恒定律得: (m 1+m 2+m 3)v 0=m 3v 1解得v 1=5 m/s人推出铁箱时对铁箱所做的功为: W =12m 3v 12-12m 3v 02=420 J(2)设铁箱与墙壁相碰前的速度为v 2,箱子再次滑到A 点时速度为v 3,根据动能定理得:从A 到墙:-0.2m 3gs =12m 3v 22-12m 3v 12 解得v 2=2 6 m/s从墙到A :-0.2m 3gs =12m 3v 32-12m 3(12v 2)2 解得v 3= 5 m/s设人、小车与铁箱一起向左运动的速度为v 4,以向左方向为正方向,根据动量守恒定律得:m 3v 3=(m 1+m 2+m 3)v 4解得v 4=255m/s 根据动能定理得:-0.2(m 1+m 2+m 3)gx =0-12(m 1+m 2+m 3)v 42 解得x =0.2 m。
近年届高考物理一轮复习第六章碰撞与动量守恒第二节动量守恒定律碰撞爆炸反冲课后达标新人教版(2021
2019届高考物理一轮复习第六章碰撞与动量守恒第二节动量守恒定律碰撞爆炸反冲课后达标新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考物理一轮复习第六章碰撞与动量守恒第二节动量守恒定律碰撞爆炸反冲课后达标新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考物理一轮复习第六章碰撞与动量守恒第二节动量守恒定律碰撞爆炸反冲课后达标新人教版的全部内容。
第二节动量守恒定律碰撞爆炸反冲(建议用时:60分钟)一、单项选择题1.(高考浙江自选模块)如图所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后()A.甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的动能守恒解析:选C.两木块在光滑水平地面上相碰,且中间有弹簧,则碰撞过程系统的动量守恒,机械能也守恒,故选项A、B错误,选项C正确.甲、乙两木块碰撞前、后动能总量不变,但碰撞过程中有弹性势能,故动能不守恒,只是机械能守恒,选项D错误.2.(2018·泉州检测)有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向水平向右,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向右,则另一块的速度是( ) A.3v0-v B.2v0-3vC.3v0-2v D.2v0+v解析:选C。
在最高点水平方向动量守恒,由动量守恒定律可知,3mv0=2mv+mv′,可得另一块的速度为v′=3v0-2v,对比各选项可知,答案选C。
高考物理一轮复习第六章动量第二讲碰撞、反冲与动量守恒定律课件
热点一
题组突破
解析:(1)从 A 压缩弹簧到 A 与 B 具有相同速度 v1 时,对 A、B 与弹 簧组成的系统,由动量守恒定律得 mv0=2mv1① 此时 B 与 C 发生完全非弹性碰撞,设碰撞后的瞬时速度为 v2,损失 的机械能为 ΔE.对 B、C 组成的系统,由动量守恒定律和能量守恒定 律得 mv1=2mv2②
12mv02=12mv12+μmgl③ 设在 a、b 碰撞后的瞬间,a、b 的速度大小分别为 v1′、v2′, 由动量守恒和能量守恒有 mv1=mv1′+34mv2′④ 12mv12=12mv1′2+12(34m)v2′2⑤ 联立④⑤式解得 v2′=87v1⑥
热点一 题组突破
由题意知,b 没有与墙发生碰撞,由功能关系可知
热点一
解析:本题的碰撞问题要遵循三个规律:动量守恒定律、碰后系统 的机械能不增加和碰撞过程要符合实际情况.本题属于追及碰撞, 题组突破 碰前,后面运动物体的速度一定要大于前面运动物体的速度(否则无 法实现碰撞),碰后,前面物体的动量增大,后面物体的动量减小, 减小量等于增大量,所以 ΔpA<0,ΔpB>0,并且 ΔpA=-ΔpB.据此可 排除选项 D;若 ΔpA=-24 kg·m/s、ΔpB=24 kg·m/s,碰后两球的动 量分别为 pA′=-12 kg·m/s、pB′=37 kg·m/s,根据关系式 Ek=2pm2
热点一 题组突破
1-1.[碰撞现象的分析] (多选)如图所示,动量分别为 pA=12 kg·m/s、pB=13 kg·m/s 的两个小球 A、B 在 光滑的水平面上沿一直线向右运动,经过一 段时间后两球发生正碰,分别用 ΔpA、ΔpB 表示两小球动量的变化 量,则下列选项中可能正确的是( ) A.ΔpA=-3 kg·m/s,ΔpB=3 kg·m/s B.ΔpA=-2 kg·m/s,ΔpB=2 kg·m/s C.ΔpA=- 24 kg·m/s,ΔpB=24 kg·m/s D.ΔpA=3 kg·m/s,ΔpB=-3 kg·m/s
2019届高考物理一轮复习第六章碰撞与动量守恒题型探究课动量守恒中的力学综合问题课件新人教版
答案:(1)4 m/s
22 N (2)45
(3)vn= 9-0.2n(n<45)
动量守恒中的临界问题 【题型解读】 1.动量守恒问题中常见的临界问题 (1)滑块与小车的临界问题: 滑块与小车是一种常见的相互作 用模型.如图所示,滑块冲上小车后,在滑块与小车之间的 摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚 好不滑出小车的临界条件是滑块到达小车末端时, 滑块与小 车的速度相同.
(1)求 A 滑过 Q 点时的速度大小 v 和受到的弹力大小 F; (2)若碰后 AB 最终停止在第 k 个粗糙段上,求 k 的数值; (3)求碰后 AB 滑至第 n 个(n<k)光滑段上的速度 vn 与 n 的关 系式.
解析:(1)物块 A 由初始位置到 Q 的过程,由动能定理得: 1 2 1 2 -mg×2R= mv - mv0 2 2 解得:v=4 m/s. 设在 Q 点物块 A 受到轨道的弹力为 F,受力分析如图所示 mv2 由牛顿第二定律得:mg+F= R
(2)从 A 滑上 C 到“恰好能到达 C 的最高点”的过程中,设 A 到达最高点时 A 和 C 的共同速度为 vC,研究 A 和 C 组成 的系统,在水平方向上由动量守恒定律有 v0 3 m +mvB=2mvC,解得 vC= v0 2 8 由于在此过程中 A 和 C 组成的系统机械能守恒,有
3v02 1 v02 1 2 1 mgR= m + mvB- ×2m 2 2 2 2 8
mv2 解得:F= R -mg=22 N.
(2)由机械能守恒定律知: 物块 A 与 B 碰前的速度仍为 v0=6 m/s. A 与 B 碰撞过程动量守恒,设碰后 A、B 的速度为 v 共 mv0=2mv 共 1 解得 v 共= v0=3 m/s. 2 设 A 与 B 碰后一起运动到停止,在粗糙段运动的路程为 s, 1 由动能定理得-μ×2mgs=0- ×2mv2 共 2
近年年高考物理一轮复习第6章动量和动量守恒定律第2讲动量守恒定律及应用习题新人教版(2021学年)
2019年高考物理一轮复习第6章动量和动量守恒定律第2讲动量守恒定律及应用习题新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考物理一轮复习第6章动量和动量守恒定律第2讲动量守恒定律及应用习题新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考物理一轮复习第6章动量和动量守恒定律第2讲动量守恒定律及应用习题新人教版的全部内容。
第六章第2讲动量守恒定律及应用1.(2017·全国卷Ⅰ)将质量为1。
00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出。
在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)错误!( A )A.30 kg·m/s B.5。
7×102kg·m/sC.6.0×102kg·m/sﻩD.6.3×102kg·m/s[解析] 燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p,根据动量守恒定律,可得p-mv0=0,解得p=mv0=0.050kg×600m/s=30kg·m/s,选项A正确。
2.(多选)(2017·河北衡水中学调研)如图所示,质量分别为m1=1.0kg和m2=2。
0kg的弹性小球a、b,用轻绳紧紧地把它们捆在一起,使它们发生微小的形变。
该系统以速度v=0.10m/s沿光滑水平面向右做直线运动。
某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t=5.0s后,测得两球相距s=4.5m,则下列说法正确的是\x(导学号 21992430)( ABD)A.刚分离时,a球的速度大小为0.7m/sB.刚分离时,b球的速度大小为0.2m/sC.刚分离时,a、b两球的速度方向相同D.两球分开过程中释放的弹性势能为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 动量守恒定律 碰撞 爆炸 反冲
1.
(2015·高考福建卷)如图,两滑块A 、B 在光滑水平面上沿同一直线相向运动,滑块A 的质量为m ,速度大小为2v 0,方向向右,滑块B 的质量为2m ,速度大小为v 0,方向向左,两滑块发生弹性碰撞后的运动状态是
( )
A .A 和
B 都向左运动
B .A 和B 都向右运动
C .A 静止,B 向右运动
D .A 向左运动,B 向右运动
解析:选D.选向右为正方向,则A 的动量p A =m ·2v 0=2mv 0,B 的动量p B =-2mv 0.碰前A 、B 的动量之和为零,根据动量守恒,碰后A 、B 的动量之和也应为零,可知四个选项中只有选项D 符合题意. 2.
2017年7月9日,斯诺克世界杯在江苏无锡落下帷幕,由丁俊晖和梁文博组成的中国A 队在决赛中1比3落后的不利形势下成功逆转,最终以4比3击败英格兰队,帮助中国斯诺克台球队获得了世界杯三连冠.如图为丁俊晖正在准备击球,设在丁俊晖这一杆中,白色球(主球)和花色球碰撞前、后都在同一直线上运动,碰前白色球的动量p A =5 kg ·m/s ,花色球静止,白色球A 与花色球B 发生碰撞后,花色球B 的动量变为p ′B =4 kg ·m/s ,则两球质量m A 与m B 间的关系可能是( )
A .m
B =m A
B .m B =14m A
C .m B =16m A
D .m B =6m A
解析:选A.由动量守恒定律得p A +p B =p ′A +p ′B ,解得p ′A =1 kg ·m/s ,根据碰撞过程中总动能不增
加,则有p 2A 2m A ≥p ′2A 2m A +p ′2B 2m B ,代入数据解得m B ≥23
m A ,碰后两球同向运动,白色球A 的速度不大于花色球B 的速度,则p ′A m A ≤p ′B m B ,解得m B ≤4m A ,综上可得23
m A ≤m B ≤4m A ,选项A 正确. 3.
如图所示,在光滑水平面上有一辆质量M =8 kg 的平板小车,车上有一个质量m =1.9 kg 的木块,木块距小车左端6 m(木块可视为质点),车与木块一起以v =1 m/s 的速度水平向右匀速行驶.一颗质量m 0=0.1 kg 的子弹以v 0=179 m/s 的初速度水平向左飞,瞬间击中木块并留在其中.如果木块刚好不从车上掉下,求木块
与平板小车之间的动摩擦因数μ(g =10 m/s 2).
解析:设子弹射入木块后的共同速度为v 1,以水平向左为正方向,则由动量守恒定律有
m 0v 0-mv =(m +m 0)v 1
①
代入数据解得v 1=8 m/s. 它们恰好不从小车上掉下来,则它们相对平板车滑行s =6 m 时,
它们跟小车具有共同速度v 2,则由动量守恒定律有
(m +m 0)v 1-Mv =(m +m 0+M )v 2
② 由能量守恒定律有
Q =μ(m +m 0)gs =12(m +m 0)v 2
1+12Mv 2-12(m +m 0+M )v 22 ③
联立①②③并代入数据解得μ=0.54.
答案:0.54
4.(2015·高考全国卷Ⅱ)两滑块a 、b 沿水平面上同一条直线运动,并发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x 随时间t 变化的图象如图所示.求:
(1)滑块a 、b 的质量之比;
(2)整个运动过程中,两滑块克服摩擦力做的功与因碰撞而损失的机械能之比.
解析:(1)设a 、b 的质量分别为m 1、m 2,a 、b 碰撞前的速度为v 1、v 2.由题给图象得
v 1=-2 m/s
① v 2=1 m/s ②
a 、
b 发生完全非弹性碰撞,碰撞后两滑块的共同速度为v .由题给图象得
v =23m/s
③ 由动量守恒定律得m 1v 1+m 2v 2=(m 1+m 2)v
④ 联立①②③④式得m 1∶m 2=1∶8. ⑤
(2)由能量守恒得,两滑块因碰撞而损失的机械能为
ΔE =12m 1v 21+12m 2v 22-12(m 1+m 2)v 2 ⑥
由图象可知,两滑块最后停止运动.由动能定理得,两滑块克服摩擦力所做的功为
W =12(m 1+m 2)v 2
⑦
联立⑥⑦式,并代入题给数据得 W ∶ΔE =1∶2.
答案:(1)1∶8(2)1∶2。