北师大版高中数学必修1第二章测试题

合集下载

北师大高中数学选择性必修第一册第二章圆锥曲线综合测试题

北师大高中数学选择性必修第一册第二章圆锥曲线综合测试题

北师大高中数学选择性必修第一册第二章圆锥曲线综合测试题(原卷版)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是()A.C.2.双曲线-y2=1的焦点坐标是()A.(-,0),(,0)B.(-2,0),(2,0)C.(0,-),(0,)D.(0,-2),(0,2)3.已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点的距离之和取得最小值时,点P的坐标为()A.C.(1,2)D.(1,-2)4.设椭圆=1(a>b>0)的两焦点为F1,F2,若椭圆上存在点P,使∠F1PF2=120°,则椭圆的离心率e的最小值为()A.C.5.已知双曲线的方程为=1,双曲线右焦点F到双曲线渐近线的距离为()A.1B.C. D.26.已知椭圆=1的上焦点为F,M是椭圆上一点,点A(2,0),当点M在椭圆上运动时,|MA|+|MF|的最大值为()A.4B.6C.8D.107.点P是直线l:x=-3上一动点,点F(3,0),点Q为PF的中点,点M满足MQ⊥PF,=λ(λ∈R),过点M作圆(x-3)2+y2=1的切线,切点为S,则|MS|的最小值是()A.2B.3C.2D.48.已知椭圆C:=1(a>b>0)的左、右焦点分别是F1(-c,0),F2(c,0),若离心率e=(e≈0.618),则称椭圆C为“黄金椭圆”.下列有三个命题:①在黄金椭圆C中,a,b,c成等比数列;②在黄金椭圆C中,若上顶点、右顶点分别为E,B,则∠F1EB=90°;③在黄金椭圆C中,以A(-a,0),B(a,0),D(0,-b),E(0,b)为顶点的菱形ADBE的内切圆经过焦点F1,F2.正确命题的个数是()A.0B.1C.2D.3二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若方程=1所表示的曲线为C,则下面四个命题中错误的是()A.若C为椭圆,则1<t<3B.若C为双曲线,则t>3或t<1C.曲线C可能是圆D.若C为椭圆,且长轴在y轴上,则1<t<210.已知双曲线=1(a>0,b>0)的左焦点为F1,与x轴的两个交点分别为A1,A2,P为双曲线上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系可能为()A.相交B.外切C.外离D.内切11.已知双曲线E:=1(m>0)的一条渐近线方程为x+3y=0,则下列说法正确的是()A.E的焦点在x轴上B.m=C.E的实轴长为6D.E的离心率为12.已知抛物线x2=y的焦点为F,M(x1,y1),N(x2,y2)是抛物线上两点,则下列结论正确的是()A.点F的坐标为B.若直线MN过点F,则x1x2=-C.若=λ,则|MN|的最小值为D.若|MF|+|NF|=,则线段MN的中点P到x轴的距离为三、填空题:本题共4小题,每小题5分,共20分.13.已知点F为椭圆Γ:=1的左焦点,点P为椭圆Γ上任意一点,点O为坐标原点,则的最大值为6.14.F是抛物线C:y2=4x的焦点,P是C上且位于第一象限内的点,点P在C的准线上的射影为Q,且|PQ|=2,则△PQF外接圆的方程为+(y-1)=2.15.双曲线C的渐近线方程为y=±x,一个焦点为F(0,-8),则该双曲线的标准方程为1.已知点A(-6,0),若点P为C上一动点,且P点在x轴上方,当点P的位置变化时,△PAF的周长的最小值为28.16.求椭圆+y2=1关于点M(3,5)对称的曲线方程0y)1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知点A(-,0)和B(,0),动点C到A,B两点的距离之差的绝对值为2,点C的轨迹与直线y=x-2交于D,E两点,求线段DE的长.18.(12分)已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A 作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)若过点M作MN⊥F A,垂足为N,求点N的坐标.19.(12分)已知点M(-2,0),N(2,0),点P满足:直线PM的斜率为k1,直线PN的斜率为k2,且k1·k2=-.(1)求点P(x,y)的轨迹C的方程;(2)过点F(1,0)的直线l交曲线C于A,B两点,问在x轴上是否存在点Q,使得为定值?若存在,求出点Q的坐标;若不存在,请说明理由.20.(12分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A,B,a=2b,点E在C上,E在x轴上的射影为C的右焦点F,且|EF|=.(1)求椭圆C的方程;(2)若M,N是C上异于A,B的不同两点,满足BM⊥BN,直线AM,BN交于点P,求证:点P在定直线上.21.(12分)已知点P是椭圆C:=1(a>b>0)上一点,F1、F2分别是椭圆的左、右焦点,|PF1|+|PF2|=4.(1)求椭圆C的标准方程;(2)设直线l不经过P点且与椭圆C相交于A,B两点.若直线PA与直线PB的斜率之和为1,问:直线l是否过定点?证明你的结论.22.(12分)已知椭圆C:=1(a>b>0)的离心率为,F1、F2分别是椭圆的左、右焦点,P是椭圆上一点,且△PF1F2的周长是6.(1)求椭圆C的方程;(2)设直线l经过椭圆的右焦点F2且与C交于不同的两点M,N,试问:在x轴上是否存在点Q,使得直线QM与直线QN的斜率的和为定值?若存在,请求出点Q的坐标;若不存在,请说明理由.北师大高中数学选择性必修第一册第二章圆锥曲线综合测试题(解析版)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是(B)A.C.解析:由题意可得b=c,所以a=c,所以离心率e=.2.双曲线-y2=1的焦点坐标是(B)A.(-,0),(,0)B.(-2,0),(2,0)C.(0,-),(0,)D.(0,-2),(0,2)解析:∵双曲线方程为-y2=1,∴焦点坐标可设为(±c,0).∵c2=a2+b2=3+1=4,c=2,∴焦点坐标为(±2,0).故选B.3.已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点的距离之和取得最小值时,点P的坐标为(A)A.C.(1,2)D.(1,-2)解析:已知Q(2,-1)在抛物线y2=4x的内部,而抛物线上的点到焦点的距离等于到准线的距离,所以点P到点Q(2,-1)的距离与点P到抛物线焦点的距离之和的最小值为点Q到准线x=-1的距离,则点P的纵坐标为-1,代入抛物线方程y2=4x,得x=,故点P的坐标为.故选A.4.设椭圆=1(a>b>0)的两焦点为F1,F2,若椭圆上存在点P,使∠F1PF2=120°,则椭圆的离心率e的最小值为(C)A.C.解析:当P是椭圆的上下顶点时,∠F1PF2最大,∴120°≤∠F1PF2<180°,∴60°≤∠F1PO<90°,∴sin60°≤sin∠F1PO<sin90°,∵|F1P|=a,|F1O|=c,∴<1,则椭圆的离心率e的最小值为.故选C.5.已知双曲线的方程为=1,双曲线右焦点F到双曲线渐近线的距离为(C)A.1B.C. D.2解析:由题意知,双曲线的右焦点为F(,0),双曲线的渐近线方程为y=±x,即±x-2y=0,所以点F(,0)到渐近线的距离d=,故选C.6.已知椭圆=1的上焦点为F,M是椭圆上一点,点A(2,0),当点M在椭圆上运动时,|MA|+|MF|的最大值为(D)A.4B.6C.8D.10解析:如图所示,设椭圆的下焦点为F',则|AF|=|AF'|=4,|MF|+|MF'|=2a=6,∵|MA|-|MF'|≤|AF'|,当且仅当A,F',M共线且F'在线段AM上时等号成立,∴|MA|+|MF|=|MA|+6-|MF'|≤|AF'|+6=4+6=10,故选D.7.点P是直线l:x=-3上一动点,点F(3,0),点Q为PF的中点,点M满足MQ⊥PF,=λ(λ∈R),过点M作圆(x-3)2+y2=1的切线,切点为S,则|MS|的最小值是(C)A.2B.3C.2D.4解析:设M(x,y),易得=(3,0),由=λ,得P(-3,y),由点Q为PF的中点知Q,又∵QM⊥PF,∴直线QM与直线PF斜率的乘积为-1,即=-1,得y2=12x,∴M的轨迹是抛物线,∴x≥0.|MS|====2.当x=0时,等号成立.故|MS|的最小值为2.8.已知椭圆C:=1(a>b>0)的左、右焦点分别是F1(-c,0),F2(c,0),若离心率e=(e≈0.618),则称椭圆C为“黄金椭圆”.下列有三个命题:①在黄金椭圆C中,a,b,c成等比数列;②在黄金椭圆C中,若上顶点、右顶点分别为E,B,则∠F1EB=90°;③在黄金椭圆C中,以A(-a,0),B(a,0),D(0,-b),E(0,b)为顶点的菱形ADBE的内切圆经过焦点F1,F2.正确命题的个数是(D)A.0B.1C.2D.3解析:e=,得到c=a,结合b2=a2-c2=a2,得b2=ac,所以a,b,c成等比数列,故①正确;|EF1|2=b2+c2,|EB|2=a2+b2,而|F1B|2=(a+c)2=a2+c2+2ac=a2+c2+2b2=|EF1|2+|EB|2,故∠F1EB=90°,②正确;结合题意可知,该圆的圆心为坐标原点,设圆的半径为r,由圆是菱形ADBE的内切圆,结合b2=ac可知r=,代入e=得r=a =c,所以该圆经过焦点F1,F2,③正确.故选D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若方程=1所表示的曲线为C,则下面四个命题中错误的是(AD)A.若C为椭圆,则1<t<3B.若C为双曲线,则t>3或t<1C.曲线C可能是圆D.若C为椭圆,且长轴在y轴上,则1<t<2解析:若t>3,则方程可变形为=1,它表示焦点在y轴上的双曲线;若t<1,则方程可变形为=1,它表示焦点在x轴上的双曲线;若2<t<3,则0<3-t<t-1,故方程=1表示焦点在y轴上的椭圆;若1<t<2,则0<t-1<3-t,故方程=1表示焦点在x轴上的椭圆;若t=2,方程=1即为x2+y2=1,它表示圆,故选AD.10.已知双曲线=1(a>0,b>0)的左焦点为F1,与x轴的两个交点分别为A1,A2,P为双曲线上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系可能为(BD)A.相交B.外切C.外离D.内切解析:设以线段PF1,A1A2为直径的两圆的半径分别为r1,r2,双曲线的右焦点为F2.若P在双曲线左支,如图所示,则|O1O2|=|PF2|=(|PF1|+2a)=|PF1|+a=r1+r2,即圆心距为半径之和,两圆外切.若P在双曲线右支,同理求得|O1O2|=r1-r2,故此时,两圆内切.综上,两圆相切,故选BD.11.已知双曲线E:=1(m>0)的一条渐近线方程为x+3y=0,则下列说法正确的是(AD)A.E的焦点在x轴上B.m=C.E的实轴长为6D.E的离心率为解析:由m>0,可知双曲线E的焦点一定在x轴上,故A正确;根据题意得,所以m=36,故B错误;双曲线E的实轴长为2=2=12,故C错误;双曲线E的离心率e=,故D正确.故选AD.12.已知抛物线x2=y的焦点为F,M(x1,y1),N(x2,y2)是抛物线上两点,则下列结论正确的是(BCD)A.点F的坐标为B.若直线MN过点F,则x1x2=-C.若=λ,则|MN|的最小值为D.若|MF|+|NF|=,则线段MN的中点P到x轴的距离为解析:易知点F的坐标为,选项A错误;根据抛物线的性质知,MN过焦点F时,x1x2=-p2=-,选项B正确;若=λ,则MN过点F,则|MN|的最小值即抛物线通径的长,为2p,即,选项C正确;抛物线x2=y的焦点为,准线方程为y=-,过点M,N,P分别做准线的垂线MM',NN',PP',垂足分别为M',N',P',则有.所以,所以线段,所以线段MN的中点P到x轴的距离为,选项D 正确.故选BCD.三、填空题:本题共4小题,每小题5分,共20分.13.已知点F为椭圆Γ:=1的左焦点,点P为椭圆Γ上任意一点,点O为坐标原点,则的最大值为6.解析:设点P的坐标为(x,y),则-2≤x≤2,由=1,可得y2=3-x2,椭圆Γ的左焦点为F(-1,0),=(x,y),=(x+1,y),则=x(x+1)+y2=x2+x+3-x2=x2+x+3=(x+2)2+2,二次函数f(x)=(x+2)2+2在区间[-2,2]上单调递增,所以,f(x)max=f(2)=×42+2=6.14.F是抛物线C:y2=4x的焦点,P是C上且位于第一象限内的点,点P在C的准线上的射影为Q,且|PQ|=2,则△PQF外接圆的方程为x2+(y-1)2=2.解析:如图,由抛物线方程可知焦点F(1,0),准线方程为x=-1,∵|PQ|=2,∴x P+1=2,即x P=1,则y P=2,∴P(1,2),Q(-1,2),∴FP⊥PQ,即△FPQ为直角三角形,∴△PQF外接圆的圆心为FQ中点,即圆心为(0,1),半径为,∴△PQF外接圆的方程为x2+(y-1)2=2.15.双曲线C的渐近线方程为y=±x,一个焦点为F(0,-8),则该双曲线的标准方程为=1.已知点A(-6,0),若点P为C上一动点,且P点在x轴上方,当点P的位置变化时,△P AF的周长的最小值为28.解析:∵双曲线C的渐近线方程为y=±x,一个焦点为F(0,-8),∴解得a=4,b=4.∴双曲线的标准方程为=1;设双曲线的上焦点为F'(0,8),则|PF|=|PF'|+8,△PAF的周长为|PF|+|PA|+|AF|=|PF'|+|PA|+|AF|+8.当P点在第二象限,且A,P,F'共线时,|PF'|+|PA|最小,最小值为|AF'|=10.而|AF|=10,故△PAF的周长的最小值为10+10+8=28.16.求椭圆+y2=1关于点M(3,5)对称的曲线方程+(10-y)2=1.解析:设所求曲线上任一点P(x,y),关于M(3,5)的对称点为P'.如图,根据中心对称的性质,P,P'关于M(3,5)对称,得P'的坐标是(6-x,10-y),它应在椭圆+y2=1上,于是有+(10-y)2=1,即P点坐标需满足的方程是+(10-y)2=1.故椭圆+y2=1关于点M(3,5)对称的曲线方程为+(10-y)2=1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知点A(-,0)和B(,0),动点C到A,B两点的距离之差的绝对值为2,点C的轨迹与直线y=x-2交于D,E两点,求线段DE的长.解:设点C(x,y),则||CA|-|CB||=2.根据双曲线定义,可知点C的轨迹为双曲线,由2a=2,2c=|AB|=2,得a=1,c=,则b2=2,故点C的轨迹方程为x2-=1.由得x2+4x-6=0,∵Δ>0,∴直线与双曲线有两个交点,设D(x1,y1),E(x2,y2),则x1+x2=-4,x1x2=-6,故|DE|=·|x1-x2|==4.18.(12分)已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A 作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)若过点M作MN⊥F A,垂足为N,求点N的坐标.解:(1)抛物线y2=2px的准线方程为x=-,于是4+=5,∴p=2,∴抛物线方程为y2=4x.(2)由(1)知点A的坐标是(4,4),由题意得B(0,4),M(0,2).又∵F(1,0),∴k FA=.∵MN⊥FA,∴k MN=-.∴FA的方程为y=(x-1),MN的方程为y=-x+2,联立解方程组得∴点N的坐标为.19.(12分)已知点M(-2,0),N(2,0),点P满足:直线PM的斜率为k1,直线PN的斜率为k2,且k1·k2=-.(1)求点P(x,y)的轨迹C的方程;(2)过点F(1,0)的直线l交曲线C于A,B两点,问在x轴上是否存在点Q,使得为定值?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)由题意知,k1=(x≠-2),k2=(x≠2),由k1·k2=-,即(x≠±2),整理得点P(x,y)的轨迹C的方程为=1(x≠±2).(2)假设在x轴上存在点Q(x0,0),使得为定值.当直线l的斜率存在时,设直线l的方程为y=k(x-1)(k≠0),联立方程消去y得(3+4k2)x2-8k2x+4k2-12=0,令A(x1,y1),B(x2,y2),则x1+x2=,x1·x2=,由=(x1-x0,y1),=(x2-x0,y2),所以=(x1-x0)(x2-x0)+y1y2=(x1-x0)(x2-x0)+k2(x1-1)(x2-1)=(1+k2)x1x2-(x0+k2)(x1+x2)+k2+,将x0看成常数,要使得上式为定值,需满足5+8x0=16,即x0=,此时;当直线l的斜率不存在时,可得A,B,Q,所以,综上所述,存在Q,使得为定值.20.(12分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A,B,a=2b,点E在C上,E在x轴上的射影为C的右焦点F,且|EF|=.(1)求椭圆C的方程;(2)若M,N是C上异于A,B的不同两点,满足BM⊥BN,直线AM,BN交于点P,求证:点P在定直线上.解:(1)因为|EF|=,所以.又a=2b,所以a=2,b=1.故椭圆C的方程为+y2=1.(2)设直线BM的方程为y=k(x-2),代入椭圆C的方程,得(1+4k2)x2-16k2x+16k2-4=0,设M(x1,y1)(≠4),则2x1=,解得x1=,y1=,所以M,用-替换k,可得N,所以直线AM的斜率为,直线BN的斜率为-,所以直线AM的方程为y=-(x+2),①直线BN的方程为y=-(x-2).②联立①②得直线AM,BN的交点P的横坐标x P=,所以点P在定直线x=上.21.(12分)已知点P是椭圆C:=1(a>b>0)上一点,F1、F2分别是椭圆的左、右焦点,|PF1|+|PF2|=4.(1)求椭圆C的标准方程;(2)设直线l不经过P点且与椭圆C相交于A,B两点.若直线PA与直线PB的斜率之和为1,问:直线l是否过定点?证明你的结论.解:(1)由|PF1|+|PF2|=4,得a=2,又P在椭圆上,代入椭圆方程有=1,解得b=,所以椭圆C的标准方程为=1.(2)直线l过定点.证明:当直线l的斜率不存在时,A(x1,y1),B(x1,-y1),k1+k2==1,解得x1=-4,不符合题意;当直线l的斜率存在时,设直线l的方程y=kx+m,A(x1,y1),B(x2,y2)由整理得(3+4k2)x2+8kmx+4m2-12=0,x1+x2=,x1x2=,Δ=48(4k2-m2+3)>0.由k1+k2=1,整理得(2k-1)x1x2+(x1+x2)+2m-4=0,即(m-4k)(2m-2k-3)=0.当m=k+时,此时,直线l过P点,不符合题意;当m=4k时,Δ=48(4k2-m2+3)>0有解,此时直线l:y=k(x+4)过定点(-4,0).22.(12分)已知椭圆C:=1(a>b>0)的离心率为,F1、F2分别是椭圆的左、右焦点,P是椭圆上一点,且△PF1F2的周长是6.(1)求椭圆C的方程;(2)设直线l经过椭圆的右焦点F2且与C交于不同的两点M,N,试问:在x轴上是否存在点Q,使得直线QM与直线QN的斜率的和为定值?若存在,请求出点Q的坐标;若不存在,请说明理由.解:(1)由椭圆的定义知△PF1F2的周长为2a+2c,所以2a+2c=6,又因为椭圆C:=1(a>b>0)的离心率e=,所以a=2c,联立解得a=2,c=1,所以b=,所求椭圆方程为=1.(2)假设存在满足条件的点Q(t,0).当直线l的斜率k存在时,设y=k(x-1),联立消y得(3+4k2)x2-8k2x+4k2-12=0.设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,∵k QM+k QN====k·=k·=,∴要使对任意实数k,k QM+k QN为定值,则只有t=4,此时,k QM+k QN=0.当直线l与x轴垂直时,若t=4,也有k QM+k QN=0.故在x轴上存在点Q(4,0),使得直线QM与直线QN的斜率的和为定值0.。

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(含答案解析)

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(含答案解析)

一、选择题1.令[]x 表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=,若函数()[][]32f x x x =-,则函数()f x 在区间[]0,2上所有可能取值的和为( )A .1B .2C .3D .42.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞3.已知函数f (x )满足f (x -1)=2f (x ),且x R ∈,当x ∈[-1,0)时,f (x )=-2x -2x +3,则当x ∈[1,2)时,f (x )的最大值为( ) A .52B .1C .0D .-14.已知,a t 为正实数,函数()22f x x x a =-+,且对任意[]0,x t ∈,都有()f x a ≤成立.若对每一个正实数a ,记t 的最大值为()g a ,若函数()g a 的值域记为B ,则下列关系正确的是( ) A .2B ∈B .12B ∉C .3B ∈D .13B ∉5.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦C .41,152⎡⎤⎢⎥⎣⎦ D .152,4⎡⎤⎢⎥⎣⎦6.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .37.如果()()211f x mx m x =+-+在区间(]1-∞,上为减函数,则m 的取值范围( ) A .103⎛⎤ ⎥⎝⎦,B .103⎡⎤⎢⎥⎣⎦,C .103⎡⎫⎪⎢⎣⎭,D .103⎛⎫ ⎪⎝⎭,8.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( )A .)1,4⎡+∞⎢⎣ B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦9.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1B .0C .-1D .a10.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4 B .有最小值-4C .有最大值-3D .有最小值-311.函数f (x )=x 2+2ln||2x x 的图象大致为( ) A . B .C .D .12.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃二、填空题13.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i A ϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i AB ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+;③设{}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,对任意*i N ∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.14.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________.15.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.16.已知集合{1,A B ==2,3},f :A B →为从集合A 到集合B 的一个函数,那么该函数的值域的不同情况有______种.17.函数2()23||f x x x =-的单调递减区间是________.18.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______.19.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________20.已知函数()2()10f x x ax a =++>,若“()f x 的值域为[)0,+∞”为真命题,则()3f =________. 三、解答题21.已知函数1()(1)1x x a f x a a -=>+,求:(1)判断函数的奇偶性;(2)证明()f x 是R 上的增函数; (3)求该函数的值域.22.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由. 23.已知22()2x af x x -=+. (1)若0a =,证明:()f x在递增,若()f x 在区间(12,1)m m --递增,求实数m 的范围;(2)设关于x 的方程1()f x x=的两个非零实根为1x ,2x ,试问:是否存在实数m ,使得不等式2121m tm x x ++≥-对任意[1,1]a ∈-及[1,1]t ∈-恒成立?如果存在求出m 的范围,如果不存在请说明理由. 24.定义在11,22⎛⎫-⎪⎝⎭上的函数()f x 满足:对任意的11,,22x y ⎛⎫∈- ⎪⎝⎭都有()()()1()()f x f y f x y f x f y ,且当102x <<时,()0f x >.(1)判断()f x 在10,2⎛⎫ ⎪⎝⎭上的单调性并证明; (2)求实数t 的取值集合,使得关于x 的不等式1()02f t x f x ⎛⎫-+> ⎪⎝⎭在11,22⎛⎫- ⎪⎝⎭上恒成立.25.已知函数()()222f x x ax a a =-+∈R .(1)若1a =,[]2,2x ∀∈-,()f x m 成立,求实数m 的取值范围;(2)若0a <,()()1212,0,x x x x ∀∈+∞≠,()()1212||2||f x f x x x ->-成立,求实数a 的最大值;(3)函数()()1g x f x x=+在区间()1,2上单调递减,求实数a 的取值范围.26.已知函数()f x = (1)求()f x 的定义域和值域; (2)设()h x =,若不等式231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据[]x 表示不超过x 的最大整数,分5种情况讨论,分别求出[]x 和[2]x 的值,即可以计算()3[][2]f x x x =-的函数值,相加即可得答案. 【详解】因为[]x 表示不超过x 的最大整数,所以: 当102x <时,有021x <,则[]0x =,则3[]0x =,[2]0x =,此时()0f x =,当112x <时,有122x <,则[]0x =,则3[]0x =,[2]1x =,此时()1f x =-, 当312x <时,有223x <,则[]1x =,则3[]3x =,[2]2x =,此时()1f x =, 当322x <时,有324x <,则[]1x =,则3[]3x =,[2]3x =,此时()0f x =, 当2x =时,24=x ,则[]2x =,则3[]6x =,[2]4x =,此时()2f x =, 函数()f x 在区间[0,2]上所有可能取值的和为011022-+++=; 故选:B . 【点睛】结论点睛:分类讨论思想的常见类型(1)问题中的变量或含有需讨论的参数的,要进行分类讨论的; (2)问题中的条件是分类给出的;(3)解题过程不能统一叙述,必须分类讨论的;(4)涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.2.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.3.B解析:B 【分析】 首先设[)1,2x ∈,利用函数满足的关系式,求函数的解析式,并求最大值.【详解】 设[)1,2x ∈,[)21,0x -∈-,()()()222222323f x x x x x ∴-=----+=-++, ()()()()211214f x f x f x f x -=--=-=⎡⎤⎣⎦,()()()()2211122311444f x f x x x x ∴=-=-++=--+, [)1,2x ∈,()f x ∴在区间[)1,2单调递减,函数的最大值是()11f =.故选:B 【点睛】思路点睛:一般利用函数的周期,对称性求函数的解析式时,一般求什么区间的解析式,就是将变量x 设在这个区间,根据条件,转化为已知区间,再根据关系时,转化求函数()f x 的解析式. 4.A解析:A 【分析】根据函数的特征,要对t 进行分类讨论,求出t 的最大值,再根据a 是正实数,求出()g a 的值域即可判断答案. 【详解】 解:2()2f x x x a =-+∴函数()f x 的图象开口向上,对称轴为1x =①01t <时,()f x 在[0,]t 上为减函数,()(0)max f x f a ==,2()()2min f x f t t t a ==-+ 对任意的[0x ∈,]t ,都有()[f x a ∈-,]a . 22a t t a ∴-≤-+,即2220t t a -+≥,当()()22424120a a ∆=--⨯=-≤,即12a ≥时,01t <,当()()22424120a a ∆=--⨯=->,即102a <<时,11t ≤ ②1t >时,()f x 在[0,1]上为减函数,在[1,]t 上为增函数,则()()11min f x f a a ==-≥-,2(){(0),()}{,2}max f x max f f t max a t t a a ==-+≤,12a ∴≥,且22t t a a -+,即12t < t 的最大值为()g a综上可得,当12a ≥时(]0,2t ∈ 当102a <<时,()0,1t ∈ ∴函数()g a 的值域为(]0,2故选:A . 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.5.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】 易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减, 则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥, 当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.6.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.7.B解析:B 【分析】当m =0时,()f x =1x -,符合题意.当0m ≠时,由题意可得0112m m m>⎧⎪-⎨≥⎪⎩,求得m 的范围.综合可得m 的取值范围. 【详解】当0m =时,()1f x x =-+,满足在区间(]1-∞,上为减函数; 当0m ≠时,由于()()211f x mx m x =+-+的对称轴为12mx m-=,且函数在区间(]1-∞,上为减函数, 则0112m m m>⎧⎪-⎨≥⎪⎩,解得103m <≤.综上可得,103m ≤≤. 故选:B 【点睛】要研究二次型函数单调区间有关问题,首先要注意二次项系数是否为零.当二次项系数不为零时,利用二次函数的对称轴来研究单调区间.8.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.9.C解析:C 【分析】根据分段函数的解析式,代入求值即可. 【详解】因为log ,0(),0a x x x f x a x >⎧=⎨≤⎩,所以11(1)f aa --==, 所以11((1))()log 1a f f f a a--===-,故选:C 【点睛】本题主要考查了利用分段函数的解析式,求函数值,涉及指数函数与对数函数的运算,属于中档题.10.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减,∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.11.B解析:B 【分析】利用奇偶性排除选项C 、D ;利用x →+∞时,()f x →+∞,排除A,从而可得结论. 【详解】 ∵f (-x )=( -x )2+2ln||2()x x --=x 2+2ln||2x x =f (x ),∴f (x )是偶函数,其图象关于y 轴对称,排除C,D ; 又x →+∞时,()f x →+∞,排除A, 故选B . 【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.12.A解析:A 【分析】根据题意,由奇函数的性质可得f (﹣2)=﹣f (2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,再结合函数的奇偶性可得在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合即可得答案. 【详解】根据题意,函数y=f (x )为奇函数,且f (2)=0, 则f (﹣2)=﹣f (2)=0,又由f (x )在(﹣∞,0)上单调递增,则在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0, 又由函数y=f (x )为奇函数,则在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0, 综合可得:不等式f (x )>0的解集(﹣2,0)∪(2,+∞); 故选A . 【点睛】本题考查函数单调性奇偶性的应用,关键是掌握函数的奇偶性与单调性的定义,属于基础题.二、填空题13.①③【分析】根据题目中给的新定义对于或可逐一对命题进行判断举实例证明存在性命题是真命题举反例可证明全称命题是假命题【详解】∵对于定义∴对于①例如集合是正奇数集合是正偶数集合①正确;对于②例如:当时;解析:①③ 【分析】根据题目中给的新定义,对于()*,0i i N A ϕ∈=或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩, ∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*AB A B N ∴=∅=,()()01i i A B A B ϕϕ∴==;,①正确;对于②, 例如:{}{}{}1232341234A B AB ===,,,,,,,,,,当2i =时,()1i A B ϕ⋃=;()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+; ②错误;对于③, {}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,明显地,,A B 均为偶数集,A B ∴≠∅,()1i A B ϕ=,若i 为偶数,则()i A B ∈,则i A ∈且i B ∈;()()1i i A B ϕϕ∴⋅=,则有()()()i i i A B A B ϕϕϕ⋂=;若i 为奇数,此时,()0i A B ϕ=,则i A ∉且i B ∉,()()0,0i i A B ϕϕ==,()()()i i i A B A B ϕϕϕ⋂=∴也成立;③正确∴所有正确结论的序号是:①③; 故答案为:①③ 【点睛】关键点睛:解题关键在于对题目中新定义的理解和应用,结合特殊值法和反证法进行证明,难度属于中档题.14.【分析】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x)=-3x②解上面两个方程即得解【详解】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x) 解析:3x【分析】因为2f (x )+f (-x )=3x ,①,所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,②,解上面两个方程即得解. 【详解】因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 解由①②组成的方程组得f (x )=3x . 故答案为3x 【点睛】本题主要考查函数的解析式的求法,意在考查学生对该知识的理解掌握水平,属于基础题.15.【分析】分别讨论和时结合基本不等式和二次函数的单调性可得的最小值解不等式可得所求范围【详解】函数可得时当且仅当时取得最小值由时若时在递减可得由于的最小值为所以解得;若时在处取得最小值与题意矛盾故舍去 解析:[3,)+∞【分析】分别讨论1x >和1x ≤时,结合基本不等式和二次函数的单调性可得()f x 的最小值,解不等式可得所求范围. 【详解】函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,可得1x >时,()44f x x a a a x =++≥=+,当且仅当2x =时,()f x 取得最小值4a +,由1x ≤时,()()2212f x x a a =-+-,若1a ≥时,()f x 在(]1-∞,递减,可得()()1132f x f a ≥=-, 由于()f x 的最小值为()1f ,所以1324a a -≤+,解得3a ≥; 若1a <时,()f x 在x a =处取得最小值与题意矛盾,故舍去; 综上得实数a 的取值范围是[)3,+∞, 故答案为:[)3,+∞. 【点睛】本题主要考查分段函数的最值求法,考查二次函数的单调性和运用,以及不等式的解法,属于中档题.16.7【分析】根据函数的定义来研究由于函数是一对一或者多对一的对应且在B 中的元素可能没有原像故可以按函数对应的方式分类讨论可分为一对一二对一三对一三类进行讨论得答案【详解】由函数的定义知此函数可以分为三解析:7 【分析】根据函数的定义来研究,由于函数是一对一或者多对一的对应,且在B 中的元素可能没有原像,故可以按函数对应的方式分类讨论.可分为一对一,二对一,三对一三类进行讨论得答案. 【详解】由函数的定义知,此函数可以分为三类来进行研究:若函数的是三对一的对应,则值域为{}1、{}2、{}3三种情况; 若函数是二对一的对应,{}1,2、{}2,3、{}1,3三种情况; 若函数是一对一的对应,则值域为{1,2,3}共一种情况. 综上知,函数的值域的不同情况有7种. 故答案为7. 【点睛】本题考查函数的概念,函数的定义,考查数学的基本思想方法,是中档题.17.【分析】讨论的符号去绝对值得到的分段函数形式根据其函数图象及对称轴即可确定单调递减区间【详解】函数图像如下图示可知的单调递减区间为故答案为:【点睛】本题考查了函数的单调区间利用函数的图象及其对称性确解析:33(,],[0,]44-∞-【分析】讨论x 的符号去绝对值,得到()f x 的分段函数形式,根据其函数图象及对称轴,即可确定单调递减区间 【详解】函数22223,0()23||23,0x x x f x x x x x x ⎧-≥⎪=-=⎨+<⎪⎩图像如下图示可知,()f x 的单调递减区间为33(,],[0,]44-∞- 故答案为:33(,],[0,]44-∞- 【点睛】本题考查了函数的单调区间,利用函数的图象及其对称性确定单调区间,属于简单题18.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集. 【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =, 作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得,所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃. 故答案为:(3,0)(0,3)-⋃. 【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.19.【分析】由函数的定义域得出的取值范围结合分母不等于0可求出的定义域【详解】函数的定义域函数应满足:解得的定义域是故答案为:【点睛】本题考查了求函数定义域的问题函数的定义域是函数自变量的取值范围应满足 解析:[1,1)-【分析】由函数()y f x =的定义域,得出21x +的取值范围,结合分母不等于0,可求出()g x 的定义域. 【详解】函数()y f x =的定义域[1-,3],∴函数(21)()1f xg x x +=-应满足: 121310x x -≤+≤⎧⎨-≠⎩解得11x -≤< ()g x ∴的定义域是[1,1)-.故答案为:[1,1)-. 【点睛】本题考查了求函数定义域的问题,函数的定义域是函数自变量的取值范围,应满足使函数的解析式有意义,是基础题.20.16【分析】二次函数的值域为得到求得值得解【详解】因为的值域为所以则又所以故答案为:16【点睛】二次函数的值域为得到是解题关键解析:16 【分析】二次函数()f x 的值域为[)0,+∞得到240a ∆=-=求得a 值得解 【详解】因为()2()10f x x ax a =++>的值域为[0,)+∞,所以240a ∆=-=,则2a =±.又0a >,所以2,a =.22()21,(3)323116f x x x f ∴=++∴=+⨯+=故答案为:16 【点睛】二次函数()f x 的值域为[)0,+∞得到0∆=是解题关键.三、解答题21.(1)奇函数;(2)证明见解析;(3)()1,1-. 【分析】(1)根据函数奇偶性的定义即可判断函数的奇偶性; (2)结合单调性的定义可证明()f x 是R 上的增函数; (3)根据指数函数的性质即可求该函数的值域. 【详解】解:(1)函数的定义域为R ,则111()()111x x x x xx a a a f x f x a a a ------===-=-+++, 则函数()f x 是奇函数;(2)1122()1111x x x x xa a f x a a a -+-===-+++,1a >,x y a ∴=是增函数,设12x x <,则()()()()()12122121122222211111111x x x x x x x x a a f x f x a a a a a a -⎛⎫⎛⎫-=---=-= ⎪ ⎪++++++⎝⎭⎝⎭, 因为120x x a a <<,所以()()120f x f x -<,即()()12f x f x <, 即2()11xf x a =-+为增函数,即()f x 是R 上的增函数; (3)1122()1111x x x x xa a f x a a a -+-===-+++,1a >, 11x a ∴+>,则1011x a <<+,所以2021x a <<+,即2201x a -<-<+, 所以21111x a -<-<+,即11y -<<,故函数的值域为(1,1)-. 【点睛】 方法点睛:高一阶段求函数的单调性常用的思路有:一、紧扣单调性的定义;二、画出函数的图象,结合图象进行求解;三、结合函数单调性的性质,如增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数.22.(1)()22f x x x =-+;(2)()12-∞,;(3)存在,所求区间为:[]4,0-. 【分析】(1)根据题意,用待定系数法,列方程组,求出解析式;(2)恒成立问题用分离参数法转化为求函数的最值,即可求实数k 的取值范围; (3)对于存在性问题,可先假设存在区间[],m n ,再利用二次函数的单调性,求出m 、n 的值,如果出现矛盾,说明假设不成立,即不存在. 【详解】(1)对于()2f x ax bx c =++,由(1)1f =得到:0a b c ++=①;∵对任意的x ∈R ,(5)(3)f x f x -+=-均成立,取x =3,得:(2)(0)f f = 即42=a b c c ++②又方程()42f x x =-有唯一实数解,得:()()2=2440b a c ∆+--=③①②③联立,解得:1,2,0a b c =-==(其中259a =-舍去) 所以()22f x x x =-+.(2)不等式不等式()2160f x kx k +--<可化为:不等式()22216k x x x -<-+∴当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,∴26()2161=22,21,20x x k x x x x -+<-++--∈+∞记()1622,2(10,)g x x x x -++=∈+∞-,只需()min k g x < 对于()16222g x x x =-++-在(10,)+∞上单调递增,∴()()min =10=12g x g ∴12k <,即k 的取值范围为()12-∞,. (3)假设存在区间[],()m n m n <符合题意。

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(包含答案解析)

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(包含答案解析)

一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.已知函数()32f x x =-,2()2g x x x =-,(),()()()(),()()g x f x g x F x f x f x g x ≥⎧=⎨<⎩,则( )A .()F x 的最大值为3,最小值为1B .()F x的最大值为2 C .()F x的最大值为7- D .()F x 的最大值为3,最小值为-13.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞4.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-5.已知函数()3221xf x x =-+,且()()20f a f b ++<,则( ) A .0a b +<B .0a b +>C .10a b -+>D .20a b ++<6.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞7.设()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,则()0f x x<的解集是( )A .{2002}xx x -<<<<∣或 B .{22}xx x <->∣或 C .{202}xx x <-<<∣或 D .{202}xx x -<<>∣或 8.若函数()f x =的值域为0,,则实数m 的取值范围是( ) A .()1,4 B .()(),14,-∞⋃+∞C .(][)0,14,+∞ D .[][)0,14,+∞9.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( )A .)1,4⎡+∞⎢⎣B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦10.已知函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭;当4x <时,1f x f x =+()(),则22log 3f +()=A .124 B .112C .18D .3811.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 12.若函数()()12311ax f x x a x x ⎧>⎪=⎨⎪-+≤⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭二、填空题13.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________14.设函数f (x )满足:对任意的x 1,x 2∈R 都有(x 1-x 2)[f (x 1)-f (x 2)]>0,则f (-3)与f (-π)的大小关系是________.15.函数2()23||f x x x =-的单调递减区间是________.16.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ .17.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________. 18.如图,是某个函数的图象,则该函数的解析式y =__________;19.已知函数()1f x x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______.20.已知(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则实数a 的取值范围是_________.三、解答题21.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由.22.已知函数()y f x =是[]1,1-上的奇函数,当10x ≤<时,()2112x f x x =-+. (1)判断并证明()y f x =在[)1,0-上的单调性; (2)求()y f x =的值域.23.已知函数f (x )=x 2+(1-x )·|x -a |. (1)若a =0,解不等式f (x )>3;(2)若函数f (x )在[2a ,a +2]上的最小值为g (a ),求g (a )的解析式. 24.已知函数()y f x =的定义域为D ,若存在区间[],a b D ⊆,使得()[]{}[],,,y y f x x a b a b =∈=,则称区间[],a b 为函数()y f x =的“和谐区间”.(1)请直接写出函数()3f x x =的所有的“和谐区间”;(2)若[]()0,0m m >为函数()312f x x =-的一个“和谐区间”,求m 的值;(3)求函数()22f x x x =-的所有的“和谐区间”.25.已知函数()bf x ax x=+的是定义在()0,∞+上的函数,且图象经过点()1,1A ,()2,1B -.(1)求函数()f x 的解析式;(2)证明:函数()f x 在()0,∞+上是减函数; (3)求函数()f x 在[]2,5的最大值和最小值. 26.已知二次函数2()23=-+f x x x .(Ⅰ)求函数()2log 2y f x =+,1,44x ⎛⎤∈ ⎥⎝⎦的值域;(Ⅱ)若对任意互不相同的21,(2,4)x x ∈,都有()()1212f x f x k x x -<-成立,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭,若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭.【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.C解析:C 【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,如图然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值, 所以由232||2x x x -=-得27x =+或27x =-.结合函数图象可知当27x =-时,函数()F x 有最大值727-,无最小值. 故选:C .【点睛】关键点睛:本题主要考查了函数的图象,以及利用函数求最值,解答本题的关键是在同一坐标系中画出()f x 与()g x 的图象,根据图象得出函数的最值,由232||2x x x -=-得27x =27x =. 3.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题4.A解析:A 【分析】先求出函数()f x 的定义域(0,3),再求出函数(13)f x -的定义域. 【详解】函数(2)f x 的定义域为3(0,)2,则302x <<,所以023x << 所以函数()f x 的定义域为(0,3),则0133x <-<解得2133x -<< 函数(13)f x -的定义域为21(,)33- 故选:A 【点睛】对于抽象函数定义域的求解方法:(1)若已知函数()f x 的定义域为[]a b ,,则复合函数()()f g x 的定义域由不等式()a g x b ≤≤求出;(2)若已知函数()()f g x 的定义域为[]a b ,,则()f x 的定义域为()g x 在[]x a b ∈,上的值域.5.A解析:A 【分析】求得函数的单调性,构造奇函数利用单调性得解由函数单调性性质得:3y x =,21x y =+在R 上单调递增 所以()3221x f x x =-+在R 上单调递增, 令函数()()321121x x g x f x x -=+=-+,()()0g x g x +-=则函数()g x 为奇函数,且在R 上单调递增,故()()20f a f b ++<()()g a g b ⇔<-0a b a b ⇔<-⇔+<. 故选:A 【点睛】构造奇函数利用单调性是解题关键.6.C解析:C 【分析】由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b -≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.7.A解析:A 【分析】 由()0f x x <对0x >或0x <进行讨论,把不等式()0f x x<转化为()0f x >或()0f x <的问题解决,根据()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,把函数值不等式转化为自变量不等式,求得结果. 【详解】 解:()f x 是R 上的奇函数,且在(0,)+∞内是增函数,∴在(,0)-∞内()f x 也是增函数,又(2)0f -=,()20f ∴=,∴当(x ∈-∞,2)(0-⋃,2)时,()0f x <;当(2x ∈-,0)(2⋃,)+∞时,()0f x >;∴()0f x x<的解集是{|20x x -<<或02}x <<. 故选:A . 【点睛】本题考查函数的奇偶性的应用,解决此类问题的关键是理解奇偶函数在关于原点对称的区间的单调性,奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反;8.D解析:D 【分析】 令22(2)1t mx m x =+-+()0,t ∈+∞()22(2)0,1mx m x +-++∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围. 【详解】 令22(2)1t mxm x =+-+,则1y t=的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞,即()22(2)0,1mx m x +-+∈+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()24240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D.9.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.10.A解析:A 【分析】根据232log 34<+<,()()222log 33log 3f f +=+可得,又有23log 34+> 知,符合4?x >时的解析式,代入即得结果.【详解】因为函数f x ()满足当4x ≥时,f x ()=12x⎛⎫ ⎪⎝⎭; 当4x <时,1f x f x =+()(),所()()()()22222log 3log 121log 12log 24f f f f +==+=以=21log 242=124,故选A . 【点睛】本题主要考查分段函数的解析式、对数的运算法则,意在考查灵活应用所学知识解答问题的能力,属于中档题.11.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 123a--=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<.综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;12.C解析:C 【分析】由函数是R 上的减函数,列出不等式,解出实数a 的取值范围. 【详解】因为()f x 是R 上的减函数,故023033a a a a>⎧⎪-<⎨⎪-≥⎩,故2334a <≤,故选:C 【点睛】本题考查函数的单调性的应用,考查分段函数,属于中档题.二、填空题13.100【分析】分析得出得解【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键解析:100 【分析】分析得出(2)()2f x f x -+=得解. 【详解】1()1x f x x +=- 211211(2)()2f x f x x x x x -+∴-+=++=--- ∴135199()()()()100100100100f f f f ++++1199319799101[()()][()()][()()]100100100100100100f f f f f f =+++++ 250100=⨯=故答案为:100. 【点睛】由函数解析式得到(2)()2f x f x -+=是定值是解题关键.14.f(-3)>f(-π)【解析】由得是上的单调递增函数又解析:f (-3)>f (-π)由()()1212()[]0x x f x f x >-- 得()f x 是R 上的单调递增函数,又3(3)()f f ππ>∴>--,-- .15.【分析】讨论的符号去绝对值得到的分段函数形式根据其函数图象及对称轴即可确定单调递减区间【详解】函数图像如下图示可知的单调递减区间为故答案为:【点睛】本题考查了函数的单调区间利用函数的图象及其对称性确解析:33(,],[0,]44-∞-【分析】讨论x 的符号去绝对值,得到()f x 的分段函数形式,根据其函数图象及对称轴,即可确定单调递减区间 【详解】函数22223,0()23||23,0x x x f x x x x x x ⎧-≥⎪=-=⎨+<⎪⎩图像如下图示可知,()f x 的单调递减区间为33(,],[0,]44-∞- 故答案为:33(,],[0,]44-∞- 【点睛】本题考查了函数的单调区间,利用函数的图象及其对称性确定单调区间,属于简单题16.7【解析】由函数的周期为3可得因为若则可得出又根据为奇函数则又可得出又函数是定义在R 上的奇函数可得出从而在中令得出又根据是定义在R 上的奇函数得出从而得到即故从而共7个解解析:7由函数的周期为3可得(3)()f x f x +=,因为(2)0f =, 若(0,6)x ∈,则可得出(5)=(2)0f f =, 又根据()f x 为奇函数,则(-2)=-(2)0f f =, 又可得出(4)=(1)(-2)=0f f f =,又函数()f x 是定义在R 上的奇函数,可得出(0)0f =, 从而(3)=(0)0f f =,在(3)()f x f x +=中, 令32x =-,得出33()()22f f -=,又根据()f x 是定义在R 上的奇函数,得出33()-()22f f -=, 从而得到33()-()22f f =,即3()02f =, 故933()(+3)()=0222f f f ==,从而93()()=(4)(1)(3)(5)(2)022f f f f f f f ======,共7个解.17.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8 【解析】∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a =-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.18.【分析】根据分段函数图象用待定系数法求解即可【详解】当时设函数为当时解得;当时设函数为当时时解得所以故答案为:【点睛】本题考查利用函数图象求解析式考查待定系数法是基础题解析:2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩ 【分析】根据分段函数图象,用待定系数法求解即可.当01x ≤<时,设函数为y kx =,当1x =时2y =,解得2k =; 当13x ≤≤时,设函数为y ax b =+, 当1x =时3y =,3x =时0y =,解得32a =-,92b =. 所以2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩. 故答案为:2,0139,1322x x y x x ≤<⎧⎪=⎨-+≤≤⎪⎩ 【点睛】本题考查利用函数图象求解析式,考查待定系数法,是基础题.19.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增, 所以当[]11,2x ∈时,()1522f x ≤≤, 因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减, 所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥, 只要使()()12min min f x g x ≥即可. 即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .20.【分析】根据分段函数的单调性在各个分段上递增且在衔接点处也要递增列式即可得解【详解】由是上的增函数则:解得故答案为:【点睛】本题考查了分段函数单调性问题考查了一次函数的单调性属于中档题求分段函数递增 解析:[1,6)【分析】根据分段函数的单调性,在各个分段上递增,且在衔接点处也要递增,列式即可得解. 【详解】由(6)4,(1)(),(1)a x a x f x ax x --<⎧=⎨≥⎩是(),-∞+∞上的增函数, 则:60065a a a a ->⎧⎪>⎨⎪-≤⎩,解得16a ≤<,故答案为:[1,6). 【点睛】本题考查了分段函数单调性问题,考查了一次函数的单调性,属于中档题. 求分段函数递增(递减)要注意以下两点: (1)在各个分段上分别递增(递减);(2)在衔接点处也要递增(递减),此处为易错点.三、解答题21.(1)()22f x x x =-+;(2)()12-∞,;(3)存在,所求区间为:[]4,0-. 【分析】(1)根据题意,用待定系数法,列方程组,求出解析式;(2)恒成立问题用分离参数法转化为求函数的最值,即可求实数k 的取值范围; (3)对于存在性问题,可先假设存在区间[],m n ,再利用二次函数的单调性,求出m 、n 的值,如果出现矛盾,说明假设不成立,即不存在. 【详解】(1)对于()2f x ax bx c =++,由(1)1f =得到:0a b c ++=①;∵对任意的x ∈R ,(5)(3)f x f x -+=-均成立,取x =3,得:(2)(0)f f = 即42=a b c c ++②又方程()42f x x =-有唯一实数解,得:()()2=2440b a c ∆+--=③①②③联立,解得:1,2,0a b c =-==(其中259a =-舍去) 所以()22f x x x =-+.(2)不等式不等式()2160f x kx k +--<可化为:不等式()22216k x x x -<-+∴当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,∴26()2161=22,21,20x x k x x x x -+<-++--∈+∞记()1622,2(10,)g x x x x -++=∈+∞-,只需()min k g x < 对于()16222g x x x =-++-在(10,)+∞上单调递增,∴()()min =10=12g x g ∴12k <,即k 的取值范围为()12-∞,. (3)假设存在区间[],()m n m n <符合题意。

新北师大版高中数学必修一第二单元《函数》检测题(含答案解析)(2)

新北师大版高中数学必修一第二单元《函数》检测题(含答案解析)(2)

一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.若函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则实数a 的取值范围是( )A.4,⎡-⎣B.4⎤⎦C .[]3,4-D.⎡⎣3.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦4.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-5.已知函数f (x )的定义域为R ,满足f (x )=2f (x +2),且当x ∈[2-,0) 时,19()4f x x x =++,若对任意的m ∈[m ,+∞),都有1()3f x ≤,则m 的取值范围为( ) A .11,5⎡⎫-+∞⎪⎢⎣⎭ B .10,3⎡⎫-+∞⎪⎢⎣⎭C .)5,2⎡-+∞⎢⎣D .11,4⎡⎫-+∞⎪⎢⎣⎭6.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( )A .-1B .0C .1D .47.已知定义在R 上的函数()f x 满足:对任意的[)()1212,2,x x x x ∈+∞≠,有()()21210f x f x x x ->-,且()2f x +是偶函数,不等式()()121f m f x +≥-对任意的[]1,0x ∈-恒成立,则实数m 的取值范围是( )A .[]4,6-B .[]4,3-C .(][),46,-∞-+∞ D .(][),43,-∞-⋃+∞8.已知53()1f x ax bx =++且(5)7,f =则(5)f -的值是( )A .5-B .7-C .5D .79.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( ) A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确10.已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是( ) A .()2,+∞ B .[)(]2,00,2-C .(](),22,-∞-+∞D .()()2,00,2-11.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.函数()()2325f x kx k x =+--在[)1+∞,上单调递增,则k 的取值范围是________. 14.若函数()y f x =的定义域是[0,2],则函数()1g x x =-______. 15.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,若()()11f a f a -=+,则a 的取值范围是___________.16.已知二次函数()()22,f x x ax b a b R =++∈,,M m 分别是函数()f x 在区间[]0,2的最大值和最小值,则M m -的最小值是________17.若函数211x y x -=-的值域是()[),03,-∞+∞,则此函数的定义域是____. 18.已知函数()f x 是R 上的奇函数,()()2g x af x bx =++,若(2)16g =,则(2)g -=______.19.已知函数2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,,则不等式()()f x f x >-的解集为_______________.20.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大2a,则a =______. 三、解答题21.已知函数()2112f x a a x=+-,实数a R ∈且0a ≠. (1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;(2)设0m n <<且0a > 时,()f x 的定义域和值域都是[],m n ,求n m -的最大值; (3)若1≥x 时不等式()22a f x x ≤恒成立,求实数a 的取值范围.22.已知函数1()(1)1x x a f x a a -=>+,求:(1)判断函数的奇偶性;(2)证明()f x 是R 上的增函数; (3)求该函数的值域. 23.设函数12ax y x +=-. (1)当1a =时,在区间[)(]2,22,6-⋃上画出这个函数的图像;(2)是否存在整数a ,使该函数在[4,)+∞上是严格减函数,且当4x ≥时,都有4y ≤,如果存在,求出所有符合条件的a ,若不存在,请说明理由.24.已知函数()f x 对一切x ,y 都有()()()212f x y f y x x y +-=+++成立,且()10f =.(1)求函数()f x 的解析式; (2)若[]1,0x ∈-,函数()()11242f x xx m g x m -⎛⎫=+- ⎪⎝⎭,是否存在实数m 使得函数()g x 的最小值为14,若存在,求m 的值;若不存在的,请说明理由. 25.已知函数()81f x x =-(1)求函数()f x 的定义域并求()2f -,()6f ;(2)已知()4211f a a+=+,求a 的值. 26.若函数f (x )()()2211,02,0b x b x x b x x ⎧-+->⎪=⎨-+-≤⎪⎩,满足对于任意的12x x ≠,都有()()12120f x f x x x ->-成立,g (x )=23x +.(1)求b 的取值范围;(2)当b =2时,写出f [g (x )],g [f (x )]的表达式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.解析:B 【分析】函数()f x 在R 上是增函数,则在两段上分别要单调递增,且在分界点处要满足2138a a -+--≤,从而得到答案.【详解】函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则满足下列条件:(1)()2238y x a x =-+--在(],1-∞递增,2312a -≥,即a ≥a ≤(2)y ax =在()1,+∞递增,则0a >(3)当1x =时满足2138a a -+--≤,解得34a -≤≤综上可得函数()f x 在R 上是增函数,实数a 4a ≤≤ 故选:B. 【点睛】关键点睛:本题考查根据分段函数的单调性求参数的范围,解答本题的关键是分段函数要在定义域内单调递增,则在两段上要分别单调递增,且在分界点出满足2138a a -+--≤,这也时容易出错的地方,属于中档题.3.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。

最新北师大版高中数学必修一第二单元《函数》检测卷(包含答案解析)

最新北师大版高中数学必修一第二单元《函数》检测卷(包含答案解析)

一、选择题1.令[]x 表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=,若函数()[][]32f x x x =-,则函数()f x 在区间[]0,2上所有可能取值的和为( )A .1B .2C .3D .42.已知函数()2,125,1x ax x f x ax x ⎧-+≤=⎨->⎩若存在12,x x R ∈,且12x x ≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .4a < B .2a < C .2a > D .R3.如图是二次函数2y ax bx c =++图象的一部分,图象过点()30A -,,对称轴为1x =-,给出下面四个结论:①24b ac >;②21a b -=;③0a b c -+=;④若0y >,则()3,1x ∈-.其中正确的是( ) A .①④B .②④C .①③D .①②③4.下列各函数中,表示相等函数的是( ) A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C .21y x =与1y x =-D .y x =与log xa y a =(0a >且1a ≠)5.已知函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+.设()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =(其中{}max ,p q 表示p ,q中较大值,{}min ,p q 表示p ,q 中较小值),记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=( ) A .16-B .16C .8aD .816a -6.已知函数2()(3)1f x mx m x =--+,()g x mx =,若对于任意实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( ) A .(1,9)B .(3,+)∞C .(,9)-∞D .(0,9)7.若函数()()21225,012,1bb x f x x x b x x -⎧-+<<⎪=⎨⎪+-≥⎩对于任意的实数12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数b 的取值范围为( )A .1,42⎛⎤ ⎥⎝⎦B .[)4,+∞C .[]1,4D .1,2⎛⎫+∞⎪⎝⎭8.若定义运算,,b a b a b a a b≥⎧*=⎨<⎩,则函数()()()2242g x x x x =--+*-+的值域为( )A .(],4-∞B .(],2-∞C .[)1,+∞D .(),4-∞9.已知函数224()3f x x x=-+,()2g x kx =+,若对任意的1[1,2]x ∈-,总存在2[1x ∈,使得12()()g x f x >,则实数k 的取值范围是( ).A .1,12⎛⎫ ⎪⎝⎭B .12,33⎛⎫- ⎪⎝⎭C .1,12⎛⎫-⎪⎝⎭D .以上都不对 10.若函数()f x =0,,则实数m 的取值范围是( ) A .()1,4 B .()(),14,-∞⋃+∞ C .(][)0,14,+∞ D .[][)0,14,+∞11.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( ) A .)1,4⎡+∞⎢⎣B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.函数2()2f x x x =-,()1g x ax =+(0a >),若对任意的[]12,2x ∈-,存在[]22,2x ∈-,使12()()f x g x =,则a 的取值范围是___________.14.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________.15.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.16.已知函数()()1f x a =-[]0,2上是减函数,则实数a 的取值范围是_____.17.已知函数y =f (n),满足f (1)=2,且f (n+1)=3f (n),n ∈N + .则f (3)=____________. 18.已知定义在R 上的函数()f x 满足:①(1)0f =;②对任意x ∈R 的都有()()f x f x -=-;③对任意的12,(0,)x x ∈+∞且12x x ≠时,都有()()12120f x f x x x ->-.记2()3()()1f x f xg x x --=-,则不等式()0g x ≤的解集______.19.定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩,若[4,2)x ∈--时,1()42t f x t ≥-恒成立,则实数t 的取值范围是______.20.已知函数2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,,则不等式()()f x f x >-的解集为_______________. 三、解答题21.设函数()f x 的定义域是(0,)+∞,且对任意的正实数,x y 都有()()()f xy f x f y =+恒成立,已知(2)1f =,且1x >时,()0f x >. (1)求12f ⎛⎫⎪⎝⎭的值; (2)判断()y f x =在(0,)+∞上的单调性,并给出你的证明;(3)解不等式2()(86)1f x f x >--.22.(1)已知)1fx =-()f x 的表达式.(2)已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-,求()f x ,()g x 的表达式.23.已知函数()f x 对一切x ,y 都有()()()212f x y f y x x y +-=+++成立,且()10f =.(1)求函数()f x 的解析式; (2)若[]1,0x ∈-,函数()()11242f x xx m g x m -⎛⎫=+- ⎪⎝⎭,是否存在实数m 使得函数()g x 的最小值为14,若存在,求m 的值;若不存在的,请说明理由. 24.已知2()4xf x x =+,(2,2)x ∈-. (1)用定义判断并证明函数()f x 在(2,2)-上的单调性; (2)若(2)(21)f a f a +>-,求实数a 的取值范围. 25.(1)已知函数()f x =,求()f x 的定义域; (2)已知函数1()2f x x x=-+,依据函数单调性的定义证明()f x 在(0,)+∞上单调递减,并求该函数在[1,3]上的值域. 26.定义在11,22⎛⎫-⎪⎝⎭上的函数()f x 满足:对任意的11,,22x y ⎛⎫∈- ⎪⎝⎭都有()()()1()()f x f y f x y f x f y ,且当102x <<时,()0f x >.(1)判断()f x 在10,2⎛⎫ ⎪⎝⎭上的单调性并证明; (2)求实数t 的取值集合,使得关于x 的不等式1()02f t x f x ⎛⎫-+> ⎪⎝⎭在11,22⎛⎫- ⎪⎝⎭上恒成立.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据[]x 表示不超过x 的最大整数,分5种情况讨论,分别求出[]x 和[2]x 的值,即可以计算()3[][2]f x x x =-的函数值,相加即可得答案. 【详解】因为[]x 表示不超过x 的最大整数,所以:当102x <时,有021x <,则[]0x =,则3[]0x =,[2]0x =,此时()0f x =, 当112x <时,有122x <,则[]0x =,则3[]0x =,[2]1x =,此时()1f x =-, 当312x <时,有223x <,则[]1x =,则3[]3x =,[2]2x =,此时()1f x =, 当322x <时,有324x <,则[]1x =,则3[]3x =,[2]3x =,此时()0f x =, 当2x =时,24=x ,则[]2x =,则3[]6x =,[2]4x =,此时()2f x =, 函数()f x 在区间[0,2]上所有可能取值的和为011022-+++=; 故选:B . 【点睛】结论点睛:分类讨论思想的常见类型(1)问题中的变量或含有需讨论的参数的,要进行分类讨论的; (2)问题中的条件是分类给出的;(3)解题过程不能统一叙述,必须分类讨论的;(4)涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.2.A解析:A 【分析】首先确定1x ≤时()f x 的对称轴2a x =,分别在12a <和12a≥两种情况下,结合二次函数的对称性和数形结合的方式确定不等关系求得结果. 【详解】当1x ≤时,()2f x x ax =-+是开口方向向下,对称轴为2ax =的二次函数, ①当12a<,即2a <时,由二次函数对称性知:必存在12x x ≠,使得()()12f x f x =; ②当12a≥,即2a ≥时,若存在12x x ≠,使得()()12f x f x =,则函数图象需满足下图所示:即125a a -+>-,解得:4a <,24a ∴≤<; 综上所述:4a <. 故选:A. 【点睛】思路点睛:根据()()12f x f x =可知分段函数某一段自身具有对称轴或两个分段的值域有交集,通过函数图象进行分析即可确定结果.3.A解析:A 【分析】由抛物线与x 轴有两个交点,可判定①正确;由对称轴方程为12bx a=-=-,可判定②不正确;由()10f ->,可判定③不正确;由根据函数的对称性和(3)0f -=,可判定④正确. 【详解】由函数2y ax bx c =++的图象,可得函数的图象开口向下,与x 轴有两个交点,所以0a <,240b ac ∆=->,所以①正确; 由对称轴方程为12bx a=-=-,可得2a b =,所以20a b -=,所以②不正确; 由()10f ->,可得0a b c -+>,所以③不正确; 由图象可得(3)0f -=,根据函数的对称性,可得()10f =, 所以0y >,可得31x -<<,所以④正确. 故选:A. 【点睛】识别二次函数的图象应用学会“三看”:一看符号:看二次项系数的符号,它确定二次函数图象的开口方向; 二看对称轴:看对称轴和最值,它确定二次函数图象的具体位置;三看特殊点:看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点、函数图象的最高点或最低点等.4.D解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数21y x =-值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确. 故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.5.A解析:A 【分析】根据()()22()244,()2412f x x a a g x x a a =----=-+-+,由()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =,得到max ()412B g x a ==-+,min ()44A f x a ==--求解.【详解】因为函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+, 所以()()22()244,()2412f x x a a g x x a a =----=-+-+, 如图所示:当2x a =+时,()()44f x g x a ==--,当2=-x a 时,()()412f x g x a ==-+, 因为max ()412g x a =-+,所以()()2max ()412H x g x g x a ≤≤=-+, 因为min ()44f x a =--,所以()()1min ()44H x f x f x a ≥≥=--, 所以44,412A a B a =--=-+, 所以16A B -=-, 故选:A 【点睛】方法点睛:(1)识别二次函数的图象主要从开口方向、对称轴、特殊点对应的函数值这几个方面入手.(2)用数形结合法解决与二次函数图象有关的问题时,要尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样在解题时才不易出错.6.D解析:D 【分析】根据所给条件,结合二次函数的图像与性质,分类讨论,即可得解. 【详解】当0m <时,二次函数2()(3)1f x mx m x =--+的图像开口向下,()g x mx =单调递减,故存在x 使得()f x 与()g x 同时为负,不符题意; 当0m =时,()31f x x =-+,()0g x =显然不成立; 当0m >时,2109m m ∆=-+, 若∆<0,即19m <<时,显然成立,0∆=,1m =或9m =,则1m =时成立,9m =时,13x =-时不成立,若0∆>,即01m <<或9m >,由(0)1f =可得:若要()f x 与()g x 的值至少有一个为正数,如图,则必须有302mm->,解得01m <<, 综上可得:09m <<,故答案为:D. 【点睛】本题考查了二次函数和一次函数的图像与性质,考查了分类讨论思想和计算能力,属于中档题.解决此类问题的关键主要是讨论,涉及二次函数的讨论有: (1)如果平方项有参数,则先讨论; (2)再讨论根的判别式; (3)最后讨论根的分布.7.C解析:C 【分析】根据函数单调性的定义判断出函数()f x 为()0,∞+上的增函数,进而可得出关于实数b 的不等式组,由此可解得实数b 的取值范围. 【详解】对任意的正实数1x 、2x ,当12x x ≠时,()()()12120x x f x f x -->⎡⎤⎣⎦, 不妨设12x x >,则()()120f x f x ->,即()()12f x f x >, 所以,函数()f x 为()0,∞+上的增函数,则()()120212122512b b b b b -<⎧⎪-⎪≤⎨⎪--+≤+-⎪⎩,解得14b ≤≤. 因此,实数b 的取值范围是[]1,4. 故选:C. 【点睛】思路点睛:利用分段函数的单调性求参数范围,应该各支函数在各自的区间内利用单调性以及函数在间断点处端点值的大小关系得出参数的不等式组,从而解得参数的取值范围.8.A解析:A 【分析】根据,,b a b a b a a b ≥⎧*=⎨<⎩可得()g x 的解析式,画出图象可得答案.【详解】由,,b a ba b a a b ≥⎧*=⎨<⎩,得()()()222,[2,1]24224,(1,)(,2)x x g x x x x x x x -+∈-⎧=--+*-+=⎨--+∈+∞⋃-∞-⎩,当[2,1]x ∈-,()2[1,4g x x =-+∈],当(1,)(,2)x ∈+∞-∞-,()2()154g x x =-++<,可得()4g x ≤- 故选:A. 【点睛】本题的关键点是根据已知定义求出函数解析式,然后画出图象求解.9.C解析:C 【分析】根据题意得1min 2min ()()g x f x >,再分别求函数的最小值即可得答案. 【详解】解:∵3]x ∈,∴2[1,3]x ∈, ∴224()3[1,2]f x x x =-∈+. 当0k >时,()[2,22]g x k k ∈-++,所以只需满足:12k <-+,解得01k <<; 当0k =时,()2g x =.满足题意.当0k <时,()[22,2]g x k k ∈-++,所以只需满足:122k <+,解得102k >>-. ∴1,12k ⎛⎫∈- ⎪⎝⎭.故选:C . 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .10.D解析:D 【分析】 令22(2)1t mx m x =+-+,可知()0,t ∈+∞,即()22(2)0,1mx m x +-+∈+∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围. 【详解】 令22(2)1t mx m x =+-+,则1y t=的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞,即()22(2)0,1mx m x +-+∈+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()24240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D.11.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a ⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=.故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.【分析】求出在上的值域再求出在上的值域由可得的范围【详解】所以又所以时因为对任意的存在使所以解得故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:一般地已知函数(1)若总解析:7,2⎡⎫+∞⎪⎢⎣⎭【分析】求出()f x 在[2,2]-上的值域A ,再求出()g x 在[2,2]-上的值域B ,由A B ⊆可得a 的范围. 【详解】2()2f x x x =-2(1)1x =--,[2,2]x ∈-,所以()[1,8]f x ∈-,又0a >,所以[2,2]x ∈-时,()1[21,21]g x ax a a =+∈-++, 因为对任意的[]12,2x ∈-,存在[]22,2x ∈-,使12()()f x g x =,所以211218a a -+≤-⎧⎨+≥⎩,解得72a ≥.故答案为:7,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .14.【分析】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x)=-3x②解上面两个方程即得解【详解】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x) 解析:3x【分析】因为2f (x )+f (-x )=3x ,①,所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,②,解上面两个方程即得解. 【详解】因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 解由①②组成的方程组得f (x )=3x . 故答案为3x 【点睛】本题主要考查函数的解析式的求法,意在考查学生对该知识的理解掌握水平,属于基础题.15.【分析】分别讨论和时结合基本不等式和二次函数的单调性可得的最小值解不等式可得所求范围【详解】函数可得时当且仅当时取得最小值由时若时在递减可得由于的最小值为所以解得;若时在处取得最小值与题意矛盾故舍去 解析:[3,)+∞【分析】分别讨论1x >和1x ≤时,结合基本不等式和二次函数的单调性可得()f x 的最小值,解不等式可得所求范围. 【详解】函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,可得1x >时,()44f x x a a a x =++≥=+,当且仅当2x =时,()f x 取得最小值4a +, 由1x ≤时,()()2212f x x a a =-+-,若1a ≥时,()f x 在(]1-∞,递减,可得()()1132f x f a ≥=-, 由于()f x 的最小值为()1f ,所以1324a a -≤+,解得3a ≥; 若1a <时,()f x 在x a =处取得最小值与题意矛盾,故舍去; 综上得实数a 的取值范围是[)3,+∞, 故答案为:[)3,+∞. 【点睛】本题主要考查分段函数的最值求法,考查二次函数的单调性和运用,以及不等式的解法,属于中档题.16.【分析】根据f (x )定义在02上且4﹣ax≥0即可得出a≤2然后讨论:①1<a≤2时满足条件;②a=1时不合题意;③0<a <1时不合题意;④a=0时不合题意;⑤a <0时满足条件这样即可求出实数a 的取 解析:012a a <<≤或【分析】根据f (x )定义在[0,2]上,且4﹣ax≥0,即可得出a≤2,然后讨论:①1<a≤2时,满足条件;②a=1时,不合题意;③0<a <1时,不合题意;④a=0时,不合题意;⑤a <0时,满足条件,这样即可求出实数a 的取值范围. 【详解】∵f (x )定义在[0,2]上;∴a >2时,x=2时,4﹣ax <0,不满足4﹣ax≥0; ∴a≤2;①1<a≤2时,a ﹣1>0;∴()(1f x a =-[0,2]上是减函数; ②a=1时,f (x )=0,不满足在[0,2]上是减函数; ∴a≠1;③0<a <1时,a ﹣1<0;∵[0,2]上是减函数;∴()(1f x a =-[0,2]上是增函数; ∴0<a <1不合题意;④a=0时,f (x )=﹣2,不满足在[0,2]上是减函数;∴a≠0;⑤a <0时,a ﹣1<0;[0,2]上是增函数;∴()(1f x a =-[0,2]上是减函数; ∴综上得,实数a 的取值范围为012a a <<≤或. 故答案为012a a <<≤或. 【点睛】考查函数定义域的概念,函数单调性的定义及判断.17.18【分析】根据递推关系式依次求f(2)f(3)【详解】因为f(n+1)=3f(n)所以【点睛】本题考查根据递推关系求函数值考查基本求解能力解析:18 【分析】根据递推关系式依次求f (2) ,f (3). 【详解】因为f (n+1)=3f (n),所以(2)3(1)6,(3)3(2)18.f f f f ==== 【点睛】本题考查根据递推关系求函数值,考查基本求解能力.18.【分析】根据题意分析可得函数为奇函数且结合单调性的定义可得在上为增函数结合(1)以及函数奇偶性的性质分析可得与的的取值范围转化为或或可得的取值范围即可得答案【详解】根据题意满足对任意的都有即函数为奇 解析:[]1,0-【分析】根据题意,分析可得函数()f x 为奇函数且(0)0f =,结合单调性的定义可得()f x 在(0,)+∞上为增函数,结合f (1)0=以及函数奇偶性的性质分析可得()0f x >与()0f x <的x 的取值范围,转化为()010f x x <⎧⎨->⎩或()010f x x >⎧⎨-<⎩或()010f x x =⎧⎨-≠⎩,可得x 的取值范围,即可得答案. 【详解】根据题意,()f x 满足对任意x ∈R 的都有()()f x f x -=-,即函数()f x 为奇函数,则有(0)0f =;又由对任意的1x ,2(0,)x ∈+∞且12x x ≠时,总有1212()()0f x f x x x ->-,即函数()f x 在(0,)+∞上为增函数,若f (1)0=,则在区间(0,1)上,()0f x <,在区间(1,)+∞上,()0f x >, 又由()f x 为奇函数,则在区间(,1)-∞-上,()0f x <,在区间(1,0)-上,()0f x >,则()0g x 即2()3()5()()011f x f x f x g x x x --==--,即()010f x x <⎧⎨->⎩或()010f x x >⎧⎨-<⎩或()010f x x =⎧⎨-≠⎩,解可得:10x -,即不等式()0g x 的解集为[1-,0]; 故答案为:[]1,0-. 【点睛】本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于中档题.19.【分析】由分段函数根据单调性求得在的最小值根据求出的最小值将问题转化为解不等式即可得出结果【详解】根据已知当时则当时在处取到最小值当时在处取到最小值所以在时在处取到最小值又因为可知当时在时取到最小值 解析:(,2](0,1]-∞-⋃【分析】由分段函数根据单调性求得()f x 在[0,2)x ∈的最小值,根据(2)2()f x f x +=求出[4,2)x ∈--,()f x 的最小值,将问题转化为min 1()42t f x t≥-解不等式即可得出结果. 【详解】 根据已知,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩, 则当[0,1)x ∈时,()f x 在0.5x =处取到最小值(0.5)0.25f =-, 当[1,2)x ∈时,()f x 在 1.5x =处取到最小值(1.5)1f =-, 所以()f x 在[0,2)x ∈时在 1.5x =处取到最小值(1.5)1f =-, 又因为(2)2()f x f x +=, 可知当[4,2)x ∈--时, ()f x 在 2.5x =-时取到最小值,且(1.5)2(0.5)4( 2.5)f f f =-=-, 则1( 2.5)(1.5)0.254f f -=⨯=-. 为使[4,2)x ∈--,1()42t f x t≥-恒成立, 需11424t t -≤-, 当0t >时,可整理为220t t +-≤, 解得(0,1)t ∈; 当0t <时,可整理为220t t +-≥,解得(,2]t ∈-∞-. 故答案为(,2](0,1]-∞-⋃. 【点睛】本题考查分段函数的应用,考查函数的单调性,将恒成立问题转化为函数的最值问题是解题的关键,属于中档题.20.【分析】由表达式可知函数为奇函数则等价转换为解不等式即可【详解】因为当时则;同理当时又综上所述为奇函数则即当时解得;当时解得故的解集为故答案为:【点睛】方法点睛:本题考查由分段函数解不等式函数奇偶性 解析:()()2,02,-+∞【分析】由表达式可知,函数()f x 为奇函数,则()()f x f x >-等价转换为()0f x >,解不等式即可 【详解】因为2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,,当0x >时,0x -<,则()()()2222f x x x x x -=----=-+,()()f x f x -=-;同理当0x <时,()()()220,22x f x x x x x ->-=---=+,()()f x f x -=-,又()00f =,综上所述()f x 为奇函数,则()()()()f x f x f x f x >-⇔>-,即()20f x >,当0x >时,()2020f x x x >⇔->,解得2x >;当0x <时,()2020f x x x >⇔-->,解得20x -<<,故()()f x f x >-的解集为()()2,02,-+∞故答案为:()()2,02,-+∞【点睛】方法点睛:本题考查由分段函数解不等式,函数奇偶性的判断,常用以下方法: (1)对于分段函数判断奇偶性可用定义法,也可采用数形结合法,结合图象判断; (2)由函数性质解不等式可采用代数法直接运算求解,也可结合函数图象求解.三、解答题21.(1)1-; (2)函数单调递增,证明见解析; (3)3{|14x x <<或3}x >. 【分析】(1)利用赋值法,即可求得所求的函数值,得到答案;(2)首先判定函数为增函数,然后利用函数的单调性的定义和所给条件进行证明即可; (3)利用函数的单调性和所得函数值对应的自变量得到函数不等式,得出不等式组,即可求解. 【详解】(1)由题意,函数()f x 对任意的正实数x ,y 都有()()()f xy f x f y =+恒成立, 令1x y ==,可得(1)(1)(1)f f f =+,所以()10f =, 令12,2x y ==,可得1(1)(2)()2f f f =+,即11()02f +=,解得1()12f =-. (2)函数()f x 为增函数,证明如下: 设12,(0,)x x ∈+∞且12x x <, 令211,x x x y x ==,根据题意,可得2121()()()x f x f f x x +=,即2211()()()x f x f x f x -=, 又由1x >时,()0f x >,因为211x x >,可得21()0x f x >,即21()()0f x f x ->,即21()()f x f x >, 所以函数()y f x =在(0,)+∞上的单调性.(3)由题意和(1)可得11(86)1(86)()[(86)](43)22f x f x f f x f x --=-+=-=-, 又由不等式2()(86)1f x f x >--,即2()(43)f x f x >-,可得243430x x x ⎧>-⎨->⎩,解得314x <<或3x >,即不等式2()(86)1f x f x >--的解集为3{|14x x <<或3}x >. 【点睛】求解函数有关的不等式的方法及策略: 解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 22.(1)2()43(1)f x x x x =-+≥;(2)2()2f x x =-,()g x x =. 【分析】(1)利用换元法求解析式即可;(2)根据函数奇偶性的性质利用方程组法即可求求()f x ,()g x 的表达式.【详解】(1)由)1f x =-,令11t =≥,()21,1t x t =-=-,所以()()()2212143f t t t t t =---=-+, 故()f x 的表达式为:2()43(1)f x x x x =-+≥; (2)由()f x 是偶函数,()g x 是奇函数, 得()()()(),f x f x g x g x -=-=-, 又由2()()2f x g x x x +=+-,(1)得2()()2f x g x x x +-=---,即2()()2f x g x x x =---,(2) 解(1)(2)联立的方程组得:2()2f x x =-,()g x x =,所以()f x ,()g x 的表达式为:2()2f x x =-,()g x x =.【点睛】关键点睛:利用换元法求解析式,根据函数奇偶性的定义利用方程组法是解决本题的关键. 23.(1)()2f x x x =+;(2)不存在,理由见解析.【分析】(1)令1y =,根据题设条件和()10f =,得到()()132f x x x +=++,再结合换元法,即可求得函数的解析式;(2)由(1)得()1112442x x m g x m -⎛⎫+- ⎪⎝⎭=,令12xt ⎛⎫= ⎪⎝⎭,设()()21124y h t t m t m ==+--,其中[]1,2t ∈,结合二次函数的图象与性质,分类讨论,即可得到结论. 【详解】(1)由题意,函数()f x 满足()()()212f x y f y x x y +-=+++成立, 令1y =,可得()()()1132f x f x x +-=⋅++, 因为()10f =,所以()()132f x x x +=++令1t x =+,则1x t =-,可得()()()221312f t t t t t =-+-+=+ 所以函数()f x 的解析式为()2f x x x =+.(2)由(1),可得()2111(1)()241124242x x xx xx m m g x m m +⎛⎫=+-⋅- ⎪⎝⎭-⎛⎫=+- ⎪⎝⎭令12xt ⎛⎫= ⎪⎝⎭,因为[]1,0x ∈-,所以[]1,2t ∈,设函数()()21124y h t t m t m ==+--,[]1,2t ∈, 由函数()y h t =的开口向上,且对称轴()21t m =--, ①当()211m --≤,即12m ≥时,函数()y h t =在区间[]1,2上单调递增, 当1t =时,函数取得最小值,最小值为()min 314y h m ==--, 令3144m --=,解答1m =-,不符合题意(舍去); ②当()212m --≥,即0m ≤时,函数()y h t =在(]1,2单调递减, 当2t =时,函数取得最小值,最小值为()min 1214y h ==-≠,无解; ③当()1212m <--<,即102m <<时, 当2(1)x m =--时,函数取得最小值,最小值为()2min 221y h m m =-+=--, 令2114m --=,此时方程无解, 综上可得,不存在实数m 使得()g x 的最小值14. 【点睛】研究二次函数的最值问题的求解方法和策略:二次函数的最值问题常见类型:(1)轴定区间定的最值;(2)轴动区间定的最值;(3)轴定区间动的最值;影响二次函数的闭区间上的最值的要素和求法:(1)最值与抛物线的开口方向、对称轴位置、闭区间三个要素有关;(2)常结合二次函数在该区间上的单调性或图象求解,在区间的端点或二次函数图象的顶点处取得最值.当开口方向或对称轴位置或区间不确定时要分情况讨论求解. 24.(1)增函数,证明见解析;(2)1,02⎛⎫- ⎪⎝⎭. 【分析】(1)()f x 在(2,2)-上为增函数,任取1x ,2(2,2)x ∈-,且12x x <,化简()()12f x f x -并判断与零的大小关系,得出结论;(2)利用函数的定义域和单调性,列出不等式组,解出实数a 的取值范围. 【详解】(1)()f x 在(2,2)-上为增函数. 证明:任取1x ,2(2,2)x ∈-,且12x x <,所以()()1212221244x x f x f x x x -=-++()()()()21122212444x x x x x x --=++. 因为1222x x -<<<,所以210x x ->,1240x x -<则()()120f x f x -<,即()()12f x f x <,所以函数()f x 在(2,2)-上为增函数.(2)解:由(1)知,()f x 在(2,2)-上单调递增,又(2)(21)f a f a +>-, 所以222,2212,221,a a a a -<+<⎧⎪-<-<⎨⎪+>-⎩解得40,13,223,a a a -<<⎧⎪⎪-<<⎨⎪<⎪⎩ 即102a -<<, 所以a 的取值范围是1,02⎛⎫-⎪⎝⎭. 【点睛】方法点睛:本题考查定义法判断函数的单调性,考查利用函数的单调性解不等式,考查学生计算能力,定义法证明单调性的步骤:取值,在定义域或者给定区间上任意取任取12,x x ,不妨设12x x <;作差,变形,对()()21f x f x -化简,通过因式分解或者配方法等,判断出差值的符号; 定号,确定差值的符号,当符号不确定时,可以分类讨论;判断,根据定义得出结论.25.(1)(,1)(1,5]-∞;(2)单调性证明见解析,值域为17[,1]3--. 【分析】(1)利用偶次根式和分式有意义的条件,列出不等式组,求得函数的定义域;(2)依据减函数的定义,利用取值、作差、判断符号的过程,证得函数的单调减,在区间端点取得最大最小值,得到函数在[1,3]上的值域.【详解】 (1)由5010x x -≥⎧⎨-≠⎩.得5x ≤且1x ≠,故()f x 的定义域为()(]115∞-,,∪; (2)设120x x <<,则()2112121221121212111()2()2()()(2)x x f x f x x x x x x x x x x x x x --=--+-=--+=-+, 因为120x x <<,所以和211210,0x x x x ->>. 所以21121()(2)0x x x x -+>,从而()12()0f x f x ->, 故()f x 在()0,∞+上单调递减,因为()f x 在[1,3]上单调递减,且()11f -=,()1733f -=, 所以该函数在[1,3]上的值域为17[,1]3-- . 【点睛】思路点睛:该题考查的是有关函数的问题,解题思路如下:(1)利用分式和偶次根式有意义的条件,列出不等式组,求得结果,得到函数的定义域; (2)利用函数在某个区间上单调减的定义,证得函数在给定区间上是减函数,求得函数在区间端点处取得最值,得到函数的值域.26.(1)单调递增;证明见解析;(2)14⎧⎫⎨⎬⎩⎭.【分析】(1)首先判断()00f =,再令y x =-,判断函数的奇偶性,再设任意1210,2x x ⎛⎫>∈ ⎪⎝⎭,利用已知条件列式()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅,判断符号,证明函数的单调性;(2)不等式转化为1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭,再利用函数的单调性,去掉“f ”后,求t 的取值范围.【详解】解:(1)令0x y ==,则22(0)(0)1(0)f f f =-,得(0)0f =, 再令y x =-,则()()(0)01()()f x f x f f x f x +-==-⋅-, ∴()()0f x f x +-=,∴()f x 为奇函数, 对任意1210,2x x ⎛⎫>∈ ⎪⎝⎭, 令1x x =,2y x =-,则()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅, ∵当102x <<时,()0f x >, ∴()120f x x ->,()()1210f x f x +>,从而()()120f x f x ->,∴()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增.(2)∵()f x 为奇函数,∴1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭, ∵()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增,且(0)0f =,∴()f x 在11,22⎛⎫- ⎪⎝⎭上单调递增,由题意得: 111222t x -<-<及12t x x ->-在11,22x ⎛⎫∈- ⎪⎝⎭上恒成立, ∴max min11112222x t x ⎛⎫⎛⎫-≤≤+ ⎪ ⎪⎝⎭⎝⎭,得1144t -≤≤①; max 12t x ⎛⎫≥- ⎪⎝⎭,11,22x ⎛⎫∈- ⎪⎝⎭,得14t ≥②, 由①②可知,t 的取值集合是14⎧⎫⎨⎬⎩⎭.【点睛】关键点点睛:本题考查抽象函数证明单调性和奇偶性,以及不等式恒成立求参数的取值范围,一般抽象函数证明单调性和奇偶性时,采用赋值法,利用定义证明,本题不等式恒成立求参数,采用参变分离的方法,转化为求函数的最值.。

新北师大版高中数学必修一第二单元《函数》测试题(有答案解析)(3)

新北师大版高中数学必修一第二单元《函数》测试题(有答案解析)(3)

一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( )A .30a -≤<B .32a --≤≤C .2a ≤-D .0a <3.设0a >且1a ≠,函数221x x y a a =+-在区间[]1,1-上的最大值是14,则实数a 的值为( )A .13或2 B .2或3C .12或2 D .13或3 4.若()f x 是偶函数,其定义域为(,)-∞+∞,且在[0,)+∞上是减函数,则(1)f -与2(22)f a a ++的大小关系是( )A . 2(1)(22)f f a a ->++B .2(1)(22)f f a a -<++C .2(1)(22)f f a a -≥++D . 2(1)(22)f f a a -≤++5.若函数()()21225,012,1bb x f x x x b x x -⎧-+<<⎪=⎨⎪+-≥⎩对于任意的实数12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数b 的取值范围为( )A .1,42⎛⎤ ⎥⎝⎦B .[)4,+∞C .[]1,4D .1,2⎛⎫+∞⎪⎝⎭6.已知函数()3221x f x x =-+,且()()20f a f b ++<,则( ) A .0a b +< B .0a b +> C .10a b -+> D .20a b ++<7.函数()21xf x x =-的图象大致是( )A .B .C .D .8.已知定义在R 上的函数()2||·x f x x e =, (5a f log =, 312b f log ⎛=⎫ ⎪⎝⎭,()ln3c f = ,则a ,b ,c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .c b a >>9.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( ) A .)1,4⎡+∞⎢⎣B .)1,2⎡+∞⎢⎣C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦10.若函数()28,12,1ax x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩为R 上的减函数,则实数a 的取值范围是( )A .()4,+∞B .[)4,+∞C .[]4,6D .()0,∞+11.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1B .0C .-1D .a12.函数f (x )=x 2+2ln||2x x 的图象大致为( ) A . B .C .D .二、填空题13.已知函数()31f x ax bx =-+,若()25f =,则()2f -=______.14.已知()13=f x x ,则不等式(21)f x -()230f x ++>的解集为_________. 15.设函数()42x f x e x =-()g x mx =,若对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立,则实数m 的取值范围是_________.16.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________17.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______.18.已知函数()f x 在定义域(0,)+∞上是单调函数,若对任意(0,)x ∈+∞,都有1()2f f x x ⎡⎤-=⎢⎥⎣⎦,则12020f ⎛⎫⎪⎝⎭的值是______________. 19.已知函数2()2f x x x a =-++,21()7log g x x=+,若对任意1[0,3]x ∈,总存在22,4x ⎡⎤∈⎣⎦,使得12()()f x g x ≤成立,则实数a 的取值范围是___________.20.若4183y x x =--y 的取值范围是________三、解答题21.已知函数2()f x x bx c =++的图象经过坐标原点,且()1y f x =+为偶函数. (1)求函数()f x 的解析式;(2)求证:对于任意的[0,4]x ∈,总有24()2x f x x -≤≤;(3)记函数|()2|y f x x m =--在区间[]0,4的最大值为()G m ,直接写出()G m 的最小值.22.已知22()2x af x x -=+.(1)若0a =,证明:()f x 在递增,若()f x 在区间(12,1)m m --递增,求实数m 的范围;(2)设关于x 的方程1()f x x=的两个非零实根为1x ,2x ,试问:是否存在实数m ,使得不等式2121m tm x x ++≥-对任意[1,1]a ∈-及[1,1]t ∈-恒成立?如果存在求出m 的范围,如果不存在请说明理由.23.已知函数12()12x xa f x -⋅=+是R 上的奇函数(a 为常数),()22.g x x x m m R =-∈+, (1)求实数a 的值;(2)若对任意12[]1x -∈,,总存在2]3[0x ∈,,使得12()()f x g x =成立,求实数m 的取值范围.24.已知函数()()kf x x x R x=+∈,且()()12f f =. (1)求k ;(2)用定义证明()f x 在区间)+∞上单调递增.25.已知二次函数2()1(,)f x ax bx a b R =++∈,x ∈R .(1)若函数()f x 的最小值为(1)0f -=,求()f x 的解析式,并写出单调区间; (2)在(1)的条件下,()f x x k >+在区间[-3,-1]上恒成立,试求k 的取值范围. 26.已知函数6()f x x=,2()1g x x =+. (1)求函数()()f g x 的解析式; (2)关于x 的不等式()()af g x x>解集中正整数解恰有3个,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.B解析:B 【分析】由题得函数在定义域上单增,列出不等式组得解. 【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,01215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B 【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.3.D解析:D 【分析】本题首先可以令x t a =,将函数转化为()212y t =+-并判断出函数的单调性,然后分为01a <<、1a >两种情况进行讨论,根据最大值是14进行计算,即可得出结果. 【详解】令x t a =(0a >、1a ≠),则()222112y t t t =+-=+-, 因为0a >,所以0x t a =>,函数()212y t =+-是增函数, 当01a <<、[]1,1x ∈-时,1,t a a⎡⎤∈⎢⎥⎣⎦,此时2max11214y a ⎛⎫=+-= ⎪⎝⎭,解得13a =或15-(舍去); 当1a >、[]1,1x ∈-时,1,t a a⎡⎤∈⎢⎥⎣⎦,此时()2max 1214y a =+-=,解得3a =或5-(舍去), 综上所述,实数a 的值为13或3, 故选:D. 【点睛】本题考查根据函数的最值求参数,能否通过换元法将函数转化为二次函数是解决本题的关键,考查二次函数单调性的判断和应用,考查分类讨论思想,考查计算能力,是中档题.4.C解析:C 【分析】由()f x 是偶函数,可知(1)(1)f f -=,故只需比较(1)f 与2(22)f a a ++的大小即可,而2222(1)11a a a ++=++≥,再结合函数()f x 的单调性,即可得(1)f 与2(22)f a a ++大小关系.【详解】因为()f x 是偶函数,所以(1)(1)f f -=,又2222(1)11a a a ++=++≥,()f x 在[0,)+∞上是减函数,所以2(22)(1)f a a f ++≤,即2(22)(1)f a a f ++≤-. 故选:C 【点睛】关键点点睛:本题主要考查利用函数的单调性比较大小,关键是借助函数的奇偶性,将要比较的函数值对应的自变量转化到同单调区间上,并且比较它们的大小,再利用单调性作出判断.5.C解析:C【分析】根据函数单调性的定义判断出函数()f x 为()0,∞+上的增函数,进而可得出关于实数b 的不等式组,由此可解得实数b 的取值范围. 【详解】对任意的正实数1x 、2x ,当12x x ≠时,()()()12120x x f x f x -->⎡⎤⎣⎦, 不妨设12x x >,则()()120f x f x ->,即()()12f x f x >, 所以,函数()f x 为()0,∞+上的增函数,则()()120212122512b b b b b -<⎧⎪-⎪≤⎨⎪--+≤+-⎪⎩,解得14b ≤≤. 因此,实数b 的取值范围是[]1,4. 故选:C. 【点睛】思路点睛:利用分段函数的单调性求参数范围,应该各支函数在各自的区间内利用单调性以及函数在间断点处端点值的大小关系得出参数的不等式组,从而解得参数的取值范围.6.A解析:A 【分析】求得函数的单调性,构造奇函数利用单调性得解 【详解】由函数单调性性质得:3y x =,21xy =+在R 上单调递增所以()3221x f x x =-+在R 上单调递增, 令函数()()321121x x g x f x x -=+=-+,()()0g x g x +-=则函数()g x 为奇函数,且在R 上单调递增,故()()20f a f b ++<()()g a g b ⇔<-0a b a b ⇔<-⇔+<. 故选:A 【点睛】构造奇函数利用单调性是解题关键.7.C解析:C 【分析】由1x >时,()0f x <,排除B 、D ;由函数()f x 在区间(0,1)上的单调性,排除A ,即可求解. 【详解】由题意,函数()21xf x x=-有意义,满足210x -≠,解得1x ≠±, 又由当1x >时,()0f x <,排除B ,D ; 当01x <<时,()21xf x x =-, 设1201x x ,则2112212122222121(1)()()()11(1)(1)x x x x x x f x f x x x x x +--=-=----, 因为2221122110,10,10,0x x x x x x ->->+>->,所以21()()0f x f x ->,即12()()f x f x <,所以函数()f x 在(0,1)上单调递增,所以A 不符合,C 符合. 故选:C. 【点睛】知式选图问题的解答方法:从函数的定义域,判定函数图象的左右位置,从函数的值域判断图象的上下位置; 从函数的单调性(有时借助导数),判断函数的图象的变换趋势; 从函数的奇偶性,判断图象的对称性; 从函数的周期性,判断函数的循环往复;从函数的特殊点(与坐标轴的交点,经过的定点,极值点等),排除不和要求的图象.8.A解析:A 【分析】可看出()f x 在(0,)+∞上单调递增,且得出3(log 2)b f =,并且可得出33ln 3log log 2>,根据增函数的定义即可得出a ,b ,c 的大小关系.【详解】0x >时,2()x f x x e =是增函数,且()()f x f x -=,33(log 2)(log 2)b f f ∴=-=,33330log 1log 2log log 31=<<<=,ln3ln 1e >=,∴33ln 3log log 2>>,∴33(ln 3)(log (log 2)f f f >>,c a b ∴>>. 故选:A . 【点睛】解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.9.C解析:C 【分析】由于22()f x x a a =--有绝对值,分情况考虑2x a ≥和2x a <,再由()y f x =是奇函数画出图象,再根据()()f x a f x -≤考虑图象平移结合图形可得答案. 【详解】由题得, 当0x ≥时,22()f x x a a =--,故写成分段函数222222,0(),x a a x a f x x a a x a ⎧-+-≤≤=⎨-->⎩,化简得222,0()2,x x a f x x a x a⎧-≤≤=⎨->⎩, 又()y f x =为奇函数,故可画出图像:又()f x a -可看出()y f x =往右平移a 个单位可得,若()()f x a f x -≤恒成立,则222(2)a a a ≥--,即24a a ≤,又a 为正数,故解得104a <≤. 故选:C . 【点睛】本题主要考查绝对值函数对分段函数的转换,图象的平移,属于中档题.10.C解析:C 【分析】由题意可知二次函数282a y x x =-+在区间(],1-∞上为减函数,函数ay x =在区间()1,+∞上为减函数,且有92aa -≥,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】由于函数()28,12,1ax x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩为R 上的减函数,则二次函数282ay x x =-+在区间(],1-∞上为减函数,该二次函数的图象开口向上,对称轴为直线4ax =,所以,14a ≥; 函数ay x =在区间()1,+∞上为减函数,则0a >,且有92a a -≥. 所以,14092a a a a ⎧≥⎪⎪>⎨⎪⎪-≥⎩,解得46a ≤≤.因此,实数a 的取值范围是[]4,6. 故选:C. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,要注意分析每支函数的单调性以及分界点处函数值的大小关系,考查计算能力,属于中等题.11.C解析:C 【分析】根据分段函数的解析式,代入求值即可. 【详解】因为log ,0(),0a x x x f x a x >⎧=⎨≤⎩,所以11(1)f aa --==, 所以11((1))()log 1a f f f a a--===-,故选:C 【点睛】本题主要考查了利用分段函数的解析式,求函数值,涉及指数函数与对数函数的运算,属于中档题.12.B解析:B 【分析】利用奇偶性排除选项C 、D ;利用x →+∞时,()f x →+∞,排除A,从而可得结论. 【详解】 ∵f (-x )=( -x )2+2ln||2()x x --=x 2+2ln||2x x =f (x ),∴f (x )是偶函数,其图象关于y 轴对称,排除C,D ; 又x →+∞时,()f x →+∞,排除A,【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.二、填空题13.【分析】根据题意令从而得到得到为奇函数整理得到将代入求得的值【详解】设则即为奇函数故即即【点睛】方法点睛:该题考查的是有关函数值的求解问题解题方法如下:(1)构造奇函数;(2)利用奇函数的性质得到进 解析:3-【分析】根据题意,令()()31g x f x ax bx =-=-,从而得到()()3g x ax bx g x -=-+=-,得到()g x 为奇函数,整理得到()()2121f f --=--⎡⎤⎣⎦,将()25f =代入求得()2f -的值.【详解】设()()31g x f x ax bx =-=-,则()()3g x ax bx g x -=-+=-,即()g x 为奇函数,故()()22g g -=-,即()()2121f f --=--⎡⎤⎣⎦, 即()()222523f f -=-+=-+=-. 【点睛】方法点睛:该题考查的是有关函数值的求解问题,解题方法如下: (1)构造奇函数()()31g x f x ax bx =-=-;(2)利用奇函数的性质得到()()22g g -=-,进而求得()()222f f -=-+,得到结果.14.【分析】先利用幂函数性质和奇函数定义判断是R 上单调递增的奇函数再结合奇偶性和单调性解不等式即可【详解】由幂函数性质知时在是增函数故函数在是增函数又定义域是R 而故是R 上的奇函数根据奇函数对称性知在R 上解析:1,2⎛⎫-+∞ ⎪⎝⎭【分析】先利用幂函数性质和奇函数定义判断()f x 是R 上单调递增的奇函数,再结合奇偶性和单调性解不等式即可.由幂函数性质知,01α<<时y x α=在[)0,+∞是增函数,故函数()13=f x x 在[)0,+∞是增函数,又()f x 定义域是R ,而()()()1133=f x x x f x =-=---,故()f x 是R 上的奇函数,根据奇函数对称性知,()f x 在R 上单调递增.故不等式(21)f x -() 230f x ++>即(21)f x -()() 2323f x f x >-+=--,故2123x x ->--,即12x >-,故解集为1,2⎛⎫-+∞ ⎪⎝⎭.故答案为:1,2⎛⎫-+∞ ⎪⎝⎭. 【点睛】 思路点睛:利用函数奇偶性和单调性解不等式问题:(1)()f x 是奇函数,图像关于原点中心对称,利用奇函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可;(2)()f x 是偶函数,图像关于y 轴对称,利用偶函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可.15.【分析】首先判断函数的单调性依题意只需再对参数分三种情况讨论即可求出参数的取值范围;【详解】解:因为在定义域上单调递增又在定义域上单调递减所以根据复合函数的单调性可得在定义域上单调递减所以在定义域上解析:1,2⎛⎫-∞- ⎪⎝⎭【分析】首先判断函数()f x 的单调性,依题意只需()()12min min f x g x >,再对参数m 分三种情况讨论,即可求出参数的取值范围; 【详解】解:因为xy e =、y =42y x =-在定义域上单调递减,所以根据复合函数的单调性可得y =在定义域上单调递减,所以()x f x e =-[]0,1上单调递增,所以()()001min f x f e ===-对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立,则只需()()12min min f x g x >因为()g x mx =,[]1,2x ∈,当0m =时()0g x =,而()1min f x =-,不符合题意; 当0m >时,()g x mx =,在[]1,2x ∈上单调递增,则()()min 1g x g m ==,所以1m <-矛盾,舍去;当0m <时,()g x mx =,在[]1,2x ∈上单调递减,则()()min 22g x g m ==,所以210m m <-⎧⎨<⎩解得12m <- 故m 的取值范围为1,2⎛⎫-∞-⎪⎝⎭故答案为:1,2⎛⎫-∞- ⎪⎝⎭【点睛】本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .16.【分析】当时可得可求出结合可求出时的表达式进而可得出答案【详解】当时;当时所以则所以故答案为:【点睛】本题考查分段函数解析式的求法考查学生的推理能力属于中档题解析:1,023,20x x x x +≤≤⎧⎨---≤<⎩【分析】当[)2,0x ∈-时,可得[)20,2x +∈,可求出(2)3f x x +=+,结合()(2)f x f x =-+,可求出[)2,0x ∈-时,()f x 的表达式,进而可得出答案.【详解】当[]0,2x ∈时,()1f x x =+;当[)2,0x ∈-时,[)20,2x +∈,所以(2)3f x x +=+, 则()(2)3f x f x x =-+=--.所以1,02()3,20x x f x x x +≤≤⎧=⎨---≤<⎩.故答案为:1,023,20x x x x +≤≤⎧⎨---≤<⎩. 【点睛】本题考查分段函数解析式的求法,考查学生的推理能力,属于中档题.17.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集. 【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =, 作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得,所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃. 故答案为:(3,0)(0,3)-⋃. 【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.18.2021【分析】由已知条件利用换元法求出f (x )然后代入计算即可求解【详解】已知函数f (x )在定义域(0+∞)上是单调函数且对任意x ∈(0+∞)都有ff (x )﹣=2可设f (x )﹣=c 故f (x )=+c解析:2021 【分析】由已知条件,利用换元法求出f (x ),然后代入计算即可求解. 【详解】已知函数f (x )在定义域(0,+∞)上是单调函数,且对任意x ∈(0,+∞),都有f [f (x )﹣1x]=2, 可设f (x )﹣1x =c ,故f (x )=1x +c ,且f (c )=c +1c=2(c >0),解可得c =1,f (x )=1x+1, 则f (12020)=2021. 故答案为:2021 【点睛】本题主要考查了利用函数的单调性求函数值,函数解析式的求法,注意函数性质的合理应用,属于中档题.19.【分析】由和的单调性求得它们的最大值由题意可得解不等式可得所求范围【详解】在递增递减可得在递减可得由对任意总存在使得成立可得则解得所以的取值范围是故答案为:【点睛】结论点睛:本题考查不等式的恒成立与解析:13,15⎛⎤-∞-⎥⎝⎦【分析】由()f x 和()g x 的单调性求得它们的最大值,由题意可得()()max max f x g x ≤,解不等式可得所求范围. 【详解】2()2f x x x a =-++在[0]1,递增,[1]3,递减,可得()()11max f x f a ==+, 21()7log g x x=+在⎤⎦递减,可得()max 215g x g ===, 由对任意1[0,3]x ∈,总存在24x ⎤∈⎦,使得12()()f x g x ≤成立,可得()()max max f x g x ≤, 则2115a +≤,解得1315a ≤-, 所以a 的取值范围是13,15⎛⎤-∞- ⎥⎝⎦, 故答案为:13,15⎛⎤-∞- ⎥⎝⎦. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: 一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.20.【分析】首先求出的取值范围令将函数转化为三角函数再根据三角恒等变换及三角函数的性质计算可得;【详解】解:因为所以解得令则所以因为所以所以所以故答案为:【点睛】本题考查函数的值域的计算换元法的应用三角解析:【分析】首先求出x 的取值范围,令242sin x t =+,0,2t π⎡⎤∈⎢⎥⎣⎦将函数转化为三角函数,再根据三角恒等变换及三角函数的性质计算可得; 【详解】解:因为y =所以401830x x -≥⎧⎨-≥⎩解得46x ≤≤,令242sin x t =+,0,2t π⎡⎤∈⎢⎥⎣⎦则y t t ==3t π⎛⎫=+ ⎪⎝⎭所以3y t π⎛⎫=+ ⎪⎝⎭, 因为0,2t π⎡⎤∈⎢⎥⎣⎦,所以5,336t πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以1sin ,132t π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦所以y ∈故答案为:【点睛】本题考查函数的值域的计算,换元法的应用,三角函数及三角恒等变换公式的应用,属于中档题.三、解答题21.(1)2()2f x x x =-;(2)证明见解析;(3),2()4,2m m G m m m -<-⎧=⎨--≥-⎩,()G m的最小值为2. 【分析】(1)由题意得,(0)0f =,再由偶函数的图象关于y 轴对称,求得,b c ,可得出函数的解析式;(2)原问题等价于对于任意的[0,4]x ∈,总有4()20f x x -≤-≤,令222()224(2)4g x x x x x x x =--=-=--,求得()2f x x -的范围,即可得证;(3)2|(2)4||()2|y f x x x m m =----=-,讨论m 的大小并结合二次函数的图象进行分析; 【详解】(1)由题意得,(0)0f =,即0c,所以2()f x x bx =+,()22+2+++(+1)(+1)(1+1)f x x b x x b x b =+=,因为()1y f x =+为偶函数,所以202b+-=,即2b =-, 所以2()2f x x x =-;(2)对于任意的[0,4]x ∈,总有24()2x f x x -≤≤等价于对于任意的[0,4]x ∈,总有4()20f x x -≤-≤,令222()224(2)4g x x x x x x x =--=-=--,则当[][]0,4,()4,0x g x ∈∈-,即对于任意的[0,4]x ∈,总有4()20f x x -≤-≤,故得证;(3)2|(2)4||()2|y f x x x m m =----=-,当4m ≤-时,由(2),因为对于任意的[0,4]x ∈,总有4()20f x x -≤-≤,则此时2(2)40x m ---≥,即有2(2)4,y x m =---,故0x =或4时,y 有最大值,即()G m m =-;当42m -<<-时,如图,由图,可得此时在0x =或4时,y 有最大值,即()G m m =-; 当2m ≥-时,如图或,由图,可得此时在2x =时,y 有最大值,即()4G m m =--, 综上,2()4,2m m G m m m -<-⎧=⎨--≥-⎩;当2m <-时,()2G m >,当2m ≥-时,()2G m ≥, 故()G m 的最小值为2. 【点睛】方法点睛:解决关于二次函数在某区间上的值域时,注意讨论二次函数的对称轴与区间的位置关系,再根据二次函数的单调性得出最值. 22.(1)证明见解析;21232m +<≤;(2)存在;2m ≥或2m ≤-. 【分析】(1)运用单调性的定义,注意取值、作差和变形、定符号和下结论等步骤,可得f (x )在2)递增,由奇函数的性质推得f (x )在(2,2)递增,可得m 的不等式组,解得m 的范围;(2)运用韦达定理和配方,可得|x 1﹣x 2|的最大值,再由m 2+tm ﹣2≥0对任意t ∈[﹣1,1]恒成立,设g (t )=m 2+tm ﹣2=tm +m 2﹣2,由一次函数的单调性可得m 的不等式组,解不等式可得所求范围. 【详解】(1)当0a =时,任取12,2)x x ∈,12x x <, 则()()()()()()()()()()2212212112121222222212212122222222222222x x x x x x x x x x f x f x x x x x x x +-+--⎛⎫⎛⎫-=-== ⎪ ⎪++++++⎝⎭⎝⎭,122)x x <∈()()211220x x x x ∴--<,()()120f x f x ∴-<,即()f x 在2)递增;∵()f x 为R 上的奇函数,∴()f x 在(2,2)递增,又∵()f x 在区间(12,1)m m --递增,则121121m m m m ⎧≤-⎪⎪-≤⎨⎪-<-⎪⎩,解得2132m +<≤(2)由2212x a x x-=+,得220x ax --=,此时280a ∆=+>恒成立,由于1x ,2x 是方程220x ax --=的两实根,所以12122x x a x x +=⎧⎨=-⎩,从而12x x -==11a -≤≤,123x x ∴-=,不等式2121m tm x x ++≥-对任意[1,1]a ∈-及[1,1]t ∈-恒成立,当且仅当213m tm ++≥对任意[1,1]t ∈-恒成立,即220m tm +-≥对任意[1,1]t ∈-恒成立,设22()22g t m tm tm m =+-=+-,则()0g t ≥对任意[1,1]t ∈-恒成立,(1)0(1)0g g ≥⎧∴⎨-≥⎩,即222020m m m m ⎧+-≥⎨-+-≥⎩,解得2m ≥或2m ≤-. 【点睛】方法点睛:证明函数的单调性.定义法:在定义域内任意取值、作差和变形、定符号和下结论;导数法:给函数求导,在定义域内判断导数的正负,若导数为正,则函数递增,若导数为负,则函数递减.23.(1)1;(2)82[,]35-. 【分析】(1)()f x 为R 上的奇函数,由()00f =得解;(2)由“任意[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x =成立”得到等价命题是 “()f x 在[]1,2-上的取值集合是()g x 在[]0,3上的取值集合的子集”,分别求出两个函数的值域得解. 【详解】(1)因为()f x 为R 上的奇函数, 所以()00f =,即102a-=,解得1a = (2)因为[]20,3x ∈,且()g x 在[]0,1上是减函数,在[]1,3上为增函数 所以()g x 在[]0,3上的取值集合为[]1,3m m -+.由122()11221x x xf x -==-+++得()f x 是减函数, 所以()f x 在[]1,2-上是减函数所以()f x 在[]1,2-上的取值集合为31[,]53-.由“任意[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x =成立”()f x 在[]1,2-上的取值集合是()g x 在[]0,3上的取值集合的子集,即[]31[,]1,353m m -⊆-+. 则有315m -≤-,且133m +≥,解得:8235m -≤≤. 即实数m 的取值范围是82[,]35-. 【点睛】探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围;类似的,对于不等式()()0(0)f x g m -≥≤,也可仿效此法.24.(1)2;(2)证明见解析. 【分析】(1)由题得122kk +=+,解方程即得解; (2)利用定义法证明函数在区间)+∞上单调递增. 【详解】(1)由()()12f f =得122k k +=+, 解得2k =,所以()2f x x x=+ (2)21x x ∀>>()()21212122f x f x x x x x ⎛⎫⎛⎫-=+-+ ⎪ ⎪⎝⎭⎝⎭()()()1221212112222x x x x x x x x x x -⎛⎫=-+-=-+ ⎪⎝⎭()()1221122x x x x x x -=-,∵21x x >>,∴210x x ->,212x x >,∴()()210f x f x ->,即()()21f x f x >,所以函数()f x在区间)+∞上单调递增. 【点睛】方法点睛:用定义法判断函数的单调性的一般步骤:①取值,设12,x x D ∈,且12x x <;②作差,求12()()f x f x -;③变形(合并同类项、通分、分解因式、配方等);④判断12()()f x f x -的正负符号;⑤根据函数单调性的定义下结论.25.(1)2(1)2f x x x =++;单调递增区间为[-1,+∞),单调递减区间为(-∞,-1];(2)(-∞,1).【分析】(1)由1x =-时二次函数最小值为0,求出,a b 得函数解析式,写单调区间即可;(2)可转化为21k x x <++在区间[-3,-1]上恒成立,求出21y x x =++最小值即可.【详解】(1)由题意知12(1)10b a f a b ⎧-=-⎪⎨⎪-=-+=⎩,解得12a b =⎧⎨=⎩,∴2(1)2f x x x =++. 由2()(1)f x x =+知函数()f x 的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].(2)由题意知,221x x x k ++>+在区间[-3,-1]上恒成立,即21k x x <++在区间[-3,-1]上恒成立,令2()1g x x x =++,x ∈[-3,-1],由213()()24g x x =++知 g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,故k 的取值范围是(-∞,1).【点睛】 关键点点睛:二次函数的解析式求法,大多用到待定系数法,本题需根据当1x =-时二次函数最小值为0,建立方程组求解,即可求出函数解析式.26.(1)()2()61f x x g =+;(2)249175a ≤<. 【分析】(1)代入函数解析式运算即可得解;(2)转化条件为1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解,结合对勾函数的性质即可得解. 【详解】(1)因为函数6()f x x=,2()1g x x =+,所以()()()2661f g x g x x ==+; (2)由(1)得()()a f g x x >即261a x x >+, 当0x >时,有261x a x <+恰有三个正整数解, 当0a ≤时,不合题意;当0a >时,则1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解, 设不等式1116x x a ⎛⎫>+ ⎪⎝⎭的解集为12(,)x x , 则由函数1y x x =+的性质可得(]12(0,1),3,4x x ∈∈, 所以11111346364a ⎛⎫⎛⎫+<≤+ ⎪ ⎪⎝⎭⎝⎭,解得249175a ≤<, 所以实数a 的取值范围为249175a ≤<. 【点睛】 关键点点睛:解决本题的关键是转化条件为1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解及对勾函数性质的应用.。

(北师大版)高中数学必修第一册第二章综合测试02(含答案)

(北师大版)高中数学必修第一册第二章综合测试02(含答案)

第二章综合测试一、单选题(每小题5分,共40分), 1.函数()f x =) A .[]12−,B .(]12−,C .[)2+∞,D .[)1+∞,2.设函数()221121x x f x x x x ⎧−⎪=⎨+−⎪⎩,≤,,>,则()12f f ⎫⎛⎪ ⎪⎝⎭的值为( ) A .1− B .34C .1516D .43.已知()32f x x x =+,则()()f a f a +−=( ) A .0B .1−C .1D .24.幂函数223a a y x −−=是偶函数,且在()0+∞,上单调递减,则整数a 的值是( ) A .0或1B .1或2C .1D .25.函数()34f x ax bx =++(a b ,不为零),且()510f =,则()5f −等于( ) A .10−B .2−C .6−D .146.已知函数22113f x x x x ⎫⎛+=++ ⎪⎝⎭,则()3f =( )A .8B .9C .10D .117.如果函数()2f x x bx c =++对于任意实数t 都有()()22f t f t +=−,那么( ) A .()()()214f f f << B .()()()124f f f << C .()()()421f f f <<D .()()()241f f f <<8.定义在R 上的偶函数()f x 满足对任意的[)()12120x x x x ∈+∞≠,,,有()()21210f x f x x x −−<,且()20f =,则不等式()0xf x <的解集是( )A .()22−,B .()()202−+∞,,C .()()8202−−,,D .()()22−∞−+∞,,二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.定义运算()()a ab a b b a b ⎧⎪=⎨⎪⎩≥□<,设函数()12x f x −=□,则下列命题正确的有( )A .()f x 的值域为[)1+∞,B .()f x 的值域为(]01,C .不等式()()12f x f x +<成立的范围是()0−∞,D .不等式()()12f x f x +<成立的范围是()0+∞,10.关于函数()f x = )A .定义域、值域分别是[]13−,,[)0+∞,B .单调增区间是(]1−∞,C .定义域、值域分别是[]13−,,[]02,D .单调增区间是[]11−,11.函数()f x 是定义在R 上的奇函数,下列命题中是正确命题的是( ) A .()00f =B .若()f x 在[)0+∞,上有最小值1−,则()f x 在(]0−∞,上有最大值1 C .若()f x 在[)1+∞,上为增函数,则()f x 在(]1−∞−,上为减函数 D .若0x >时,()22f x x x =−,则0x <时,()22f x x x =−−12.关于函数()1f x =,有下列结论,正确的结论是( )A .函数是偶函数B .函数在()1−∞−,)上递减 C .函数在()01,上递增D .函数在()33−,上的最大值为1 三、填空题(每小题5分,共20分)13.已知函数()()f x g x ,分别由表给出,则()()2g f =________.14.已知()f x 为R 上的减函数,则满足()11f f x ⎫⎛ ⎪⎝⎭>的实数x 的取值范围为________.15.已知函数()f x 是奇函数,当()0x ∈−∞,时,()2f x x mx =+,若()23f =−,则m 的值为________.16.符号[]x 表示不超过x 的最大整数,如[][]3.143 1.62=−=−,,定义函数:()[]f x x x =−,则下列说法正确的是________. ①()0.80.2f −=;②当12x ≤<时,()1f x x −;③函数()f x 的定义域为R ,值域为[)01,; ④函数()f x 是增函数,奇函数. 四、解答题(共70分)17.(10分)已知一次函数()f x 是R 上的增函数,()()()g x f x x m =+,且()()165f f x x =+. (1)求()f x 的解析式.(2)若()g x 在()1+∞,上单调递增,求实数m 的取值范围.18.(12分)已知()()212021021 2.f x x f x x x x x +−⎧⎪=+⎨⎪−⎩,<<,,≤<,,≥ (1)若()4f a =,且0a >,求实数a 的值.(2)求32f ⎫⎛− ⎪⎝⎭的值.19.(12分)已知奇函数()q f x px r x =++(p q r ,,为常数),且满足()()5171224f f ==,. (1)求函数()f x 的解析式.(2)试判断函数()f x 在区间102⎛⎤⎥⎝⎦,上的单调性,并用函数单调性的定义进行证明.(3)当102x ⎛⎤∈ ⎥⎝⎦,时,()2f x m −≥恒成立,求实数m 的取值范围.20.(12分)大气中的温度随着高度的上升而降低,根据实测的结果,上升到12km 为止,温度的降低大体上与升高的距离成正比,在12km 以上温度一定,保持在55−℃.(1)当地球表面大气的温度是a ℃时,在km x 的上空为y ℃,求a x y 、、间的函数关系式.(2)问当地表的温度是29℃时,3km 上空的温度是多少?21.(12分)已知函数()f x 是定义在[]11−,上的奇函数,且()11f =,对任意[]110a b a b ∈−+≠,,,时有()()0f a f b a b++>成立.(1)解不等式()1122f x f x ⎫⎛+− ⎪⎝⎭<.(2)若()221f x m am −+≤对任意[]11a ∈−,恒成立,求实数m 的取值范围.22.(12分)已知函数()[](]2312324.x x f x x x ⎧−∈−⎪=⎨−∈⎪⎩,,,,,(1)画出()f x 的图象.(2)写出()f x 的单调区间,并指出单调性(不要求证明).(3)若函数()y a f x =−有两个不同的零点,求实数a 的取值范围.第二章综合测试 答案解析一、 1.【答案】B 【解析】选B .由10420x x +⎧⎨−⎩>,≥,得12x −<≤.2.【答案】C【解析】选C .因为()222224f =+−=,所以()211115124416f f f ⎫⎛⎫⎫⎛⎛==−=⎪ ⎪ ⎪ ⎪⎝⎝⎭⎭⎝⎭. 3.【答案】A【解析】选A .()32f x x x =+是R 上的奇函数,故()()f a f a −=−,所以()()0f a f a +−=. 4.【答案】C【解析】选C .因为幂函数223aa y x −−=是偶函数,且在()0+∞,上单调递减, 所以2223023a a a z a a ⎧−−⎪∈⎨⎪−−⎩<,,是偶数.解得1a =. 5.【答案】B【解析】选B .因为()51255410f a b =++=, 所以12556a b +=,所以()()51255412554642f a b a b −=−−+=−++=−+=−. 6.【答案】C【解析】选C .因为22211131f x x x x x x ⎫⎫⎛⎛+=++=++ ⎪ ⎪⎝⎝⎭⎭,所以()21f x x =+(2x −≤或2x ≥),所以()233110f =+=. 7.【答案】A【解析】选A .由()()22f t f t +=−,可知抛物线的对称轴是直线2x =,再由二次函数的单调性,可得()()()214f f f <<.8.【答案】B 【解析】选B .因为()()21210f x f x x x −−<对任意的[)()12120x x x x ∈+∞≠,,恒成立,所以()f x 在[)0+∞,上单调递减,又()20f =, 所以当2x >时,()0f x <;当02x ≤<时,()0f x >, 又()f x 是偶函数,所以当2x −<时,()0f x <; 当20x −<<时,()0f x >,所以()0xf x <的解集为()()202−+∞,,. 二、9.【答案】AC【解析】选AC .根据题意知()10210xx f x x ⎧⎫⎛⎪ ⎪=⎨⎝⎭⎪⎩,≤,,>, ()f x 的图象为所以()f x 的值域为[)1+∞,,A 对; 因为()()12f x f x +<,所以1210x x x +⎧⎨+⎩>≤,或2010x x ⎧⎨+⎩<>,所以11x x ⎧⎨−⎩<≤,或01x x ⎧⎨−⎩<>,所以1x −≤或10x −<<, 所以0x <,C 对. 10.【答案】CD【解析】选CD .由2230x x −++≥可得,2230x x −−≤,解可得,13x −≤≤,即函数的定义域为[]13−,,由二次函数的性质可知,()[]22231404y x x x =−++=−−+∈,,所以函数的值域为[]02,,结合二次函数的性质可知,函数在[]11−,上单调递增,在[]13,上单调递减. 11.【答案】ABD【解析】选ABD .()f x 为R 上的奇函数,则()00f =,A 正确;其图象关于原点对称,且在对称区间上具有相同的单调性,最值相反且互为相反数,所以B 正确,C 不正确;对于D ,0x <时,()()()22022x f x x x x x −−=−−−=+>,,又()()f x f x −=−,所以()22f x x x =−−,即D 正确.12.【答案】ABD【解析】选ABD .函数满足()()f x f x −=,是偶函数;作出函数图象,可知在()1−∞−,,()01,上递减, ()10−,,()1+∞,上递增, 当()33x ∈−,时,()()max 01f x f ==.三、13.【答案】1【解析】由题表可得()()2331f g ==,, 故()()21g f =.14.【答案】()()01−∞+∞,,【解析】因为()f x 在R 上是减函数, 所以11x<,解得1x >或0x <. 15.【答案】12【解析】因为()f x 是奇函数, 所以()()223f f −=−=, 所以()2223m −−=,解得12m =. 16.【答案】①②③【解析】()[]f x x x =−,则()()0.80.810.2f −=−−−=,①正确, 当12x ≤<时,()[]1f x x x x =−=−,②正确,函数()f x 的定义域为R ,值域为[)01,,③正确, 当01x ≤<时,()[]f x x x x =−=; 当12x ≤<时,()1f x x =−, 当0.5x =时,()0.50.5f =; 当 1.5x =时,()1.50.5f =,则()()0.5 1.5f f =,即有()f x 不为增函数,由()()1.50.5 1.50.5f f −==,,可得()()1.5 1.5f f −=,即有()f x 不为奇函数,④错误. 四、17.【答案】(1)由题意设()()0f x ax b a =+>.从而()()()2165f f x a ax b b a x ab b x =++=++=+,所以21655a ab ⎧=⎨+=⎩,,解得41a b =⎧⎨=⎩,或453a b =−⎧⎪⎨=−⎪⎩,(不合题意,舍去). 所以()f x 的解析式为()41f x x =+.(2)()()()()()()()414241g x f x x m x x m x m x m g x =+=++=+++,图象的对称轴为直线418m x +=−. 若()g x 在()1+∞,上单调递增,则4118m +−≤,解得94m −≥,所以实数m 的取值范围为94⎫⎡−+∞⎪⎢⎣⎭,. 18.【答案】(1)若02a <<,则()214f a a =+=, 解得32a =,满足02a <<; 若2a ≥,则()214f a a =−=,解得a =或a =, 所以32a =或a =.(2)由题意,3311222f f f ⎫⎫⎫⎛⎛⎛−=−+=− ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭1111212222f f ⎫⎫⎛⎛=−+==⨯+= ⎪ ⎪⎝⎝⎭⎭.19.【答案】(1)因为()f x 为奇函数,所以()()f x f x −=−,所以0r =.又()()5121724f f ⎧=⎪⎪⎨⎪=⎪⎩,即52172.24p q q p ⎧+=⎪⎪⎨⎪+=⎪⎩,解得212p q =⎧⎪⎨=⎪⎩,,所以()122f x x x =+. (2)()122f x x x =+在区间102⎛⎤⎥⎝⎦,上单调递减. 证明如下:设任意的两个实数12x x ,,且满足12102x x <<≤,则()()()12121211222f x f x x x x x −=−+− ()()()()21211212121214222x x x x x x x x x x x x −−−=−+=.因为12102x x <<≤,所以2112121001404x x x x x x −−>,<<,>, 所以()()120f x f x −>, 所以()122f x x x =+在区间102⎛⎤⎥⎝⎦,上单调递减. (3)由(2)知()122f x x x =+在区间102⎛⎤⎥⎝⎦,上的最小值是122f ⎫⎛= ⎪⎝⎭. 要使当102x ⎛⎤∈ ⎥⎝⎦,时,()2f x m −≥恒成立,只需当102x ⎛⎤∈ ⎥⎝⎦,时,()min 2f x m −≥,即22m −≥,解得0m ≥即实数m 的取值范围为[)0+∞,.20.【答案】(1)由题意知,可设()0120y a kx x k −=≤≤,<,即y a kx =+.依题意,当12x =时,55y =−, 所以5512a k −=+,解得5512a k +=−. 所以当012x ≤≤时,()()5501212x y a a x =−+≤≤. 又当12x >时,55y =−.所以所求的函数关系式为 ()55012125512.x a a x y x ⎧−+⎪=⎨⎪−⎩,≤≤,,> (2)当293a x ==,时,()3295529812y =−+=, 即3km 上空的温度为8℃. 21.【答案】(1)任取[]121211x x x x ∈−,,,<,()()()()()()()()1212121212f x f x f x f x f x f x x x x x +−−=+−=−+−由已知得()()()12120f x f x x x +−+−>, 所以()()120f x f x −<,所以()f x 在[]11−,上单调递增, 原不等式等价于112211121121x x x x ⎧+−⎪⎪⎪−+⎨⎪−−⎪⎪⎩<,≤≤≤≤, 所以106x ≤<,原不等式的解集为106⎫⎡⎪⎢⎣⎭,. (2)由(1)知()()11f x f =≤,即2211m am −+≥,即220m am −≥,对[]11a ∈−,恒成立.设()22g a ma m =−+,若0m =,显然成立;若0m ≠,则()()1010g g −⎧⎪⎨⎪⎩≥≥,即2m −≤或2m ≥,故2m −≤或2m ≥或0m =.22.【答案】(1)由分段函数的画法可得()f x 的图象.(2)单调区间:[]10−,,[]02,,[]24,,()f x 在[]10−,,[]24,上递增,在[]02,上递减. (3)函数()y a f x =−有两个不同的零点, 即为()f x a =有两个实根,由图象可得,当11a −<≤或23a ≤<时,()y f x =与y a =有两个交点,则a 的范围是(][)1123−,,.。

数学北师大版高中必修1北师大版必修1第二章《函数》检测题

数学北师大版高中必修1北师大版必修1第二章《函数》检测题

第二章综合素能检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.下列函数在区间(0,3)内是增函数的是( )A .y =1xB .y =x 12C .y =(13)x D .y =x 2-2x -15 2.设a =0.712 ,b =0.812 ,c =log 30.7,则( )A .c <b <aB .c <a <bC .a <b <cD .b <a <c3.下列各式:①n a n =a ;②(a 2-3a +3)0=1 ③3-3=6-2.其中正确的个数是( )A .0B .1C .2D .34.函数f (x )=3x 21-x+lg(3x +1)的定义域是( ) A .(-13,+∞) B .(-13,1) C .(-13,13) D .(-∞,-13) 5.下列幂函数中过点(0,0),(1,1)的偶函数是( )A .y =x 12 B .y =x 4C .y =x -2D .y =x 136.与函数f (x )=2x 的图象关于直线y =x 对称的曲线C对应的函数为g (x ),则g (12)的值为( ) A. 2 B .1C.12D .-1 7.下列函数中,其定义域与值域相同的是( )A .y =2xB .y =x 2C .y =log 2xD .y =2x8.若函数y =f (x )的定义域是[2,4],则y =f (log 12x )的定义域是( )A .[12,1]B .[116,14] C .[4,16] D .[2,4]9.幂函数y =(m 2-m -1)x m 2-2m -3,当x ∈(0,+∞)时为减函数,则实数m 的值为( )A .m =2B .m =-1C .m =-1或2D .m ≠1±5210.已知f (x n )=ln x ,则f (2)的值为( ) A .ln2 B.1nln2 C.12ln2 D .2ln2 11.(2012·汉中高一检测)如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G (2,12)中,可以是“好点”的个数为( ) A .0个 B .1个C .2个D .3个12.给出四个函数图象分别满足:①f (x +y )=f (x )+f (y );②g (x +y )=g (x )·g (y );③u (x ·y )=u (x )+u (y );④v (x ·y )=v (x )·v (y ).与下列函数图象对应的是( )A .①—a ,②—d ,③—c ,④—bB .①—b ,②—c ,③—a ,④—dC .①—c ,②—a ,③—b ,④—dD .①—d ,②—a ,③—b ,④—c第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.不等式2x 2+2x -4≤12的解集为________. 14.若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则a ,b ,c 的大小关系是______________.15.函数y =lg(4+3x -x 2)的单调增区间为________.16.(2012·全国高考数学山东卷)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2012·德州高一检测)(1)计算:2log 32-log 3329+log 38-25log 53. (2)已知x =27,y =64.化简并计算:5x -23 y 12 -14x -1y 12 -56x 13 y -16.18.(本小题满分12分)(2012·福建省厦门市高一期中)已知函数f(x)=(12)ax,a为常数,且函数的图象过点(-1,2).(1)求a的值;(2)若g(x)=4-x-2,且g(x)=f(x),求满足条件的x 的值.19.(本小题满分12分)已知函数f(x)=log a(x2+1)(a>1).(1)判断f(x)的奇偶性;(2)求函数f(x)的值域.20.(本题满分12分)在已给出的坐标系中,绘出同时符合下列条件的一个函数f(x)的图象.(1)f(x)的定义域为[-2,2];(2)f(x)是奇函数;(3)f(x)在(0,2]上递减;(4)f(x)是既有最大值,也有最小值;(5)f(1)=0.21.(本小题满分12分)函数f(x)=log a(1-x)+log a(x +3),(0<a<1).(1)求函数f(x)的定义域;(2)若函数f(x)的最小值为-2,求a的值.22.(本小题满分12分)f(x)是定义在R上的函数,对x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(-1)=2.(1)求证:f(x)为奇函数;(2)求证:f(x)是R上的减函数;(3)求f(x)在[-2,4]上的最值.详解答案1[答案] B[解析] 由幂函数、指数函数性质即得.2[答案] B[解析] 由幂函数性质有b >a >0>c .3[答案] B[解析] 当n 为偶数时,n a n =|a |,故①错;a 2-3a +3=(a -32)2+34>0,故(a 2-3a +3)0=1,故②对;6-2=33,3-3=-33,故③错.4[答案] B[解析] 由题意知⎩⎪⎨⎪⎧ 1-x >0,3x +1>0,∴-13<x <1. 5[答案] B[解析] y =x 12 定义域不关于原点对称,是非奇非偶函数,y =x -2不过原点,y =x 13 是奇函数.6[答案] D[解析] 依题意,得g (x )=log 2x ,∴g (12)=log 22-1=-1.7[答案] D8[答案] B[解析] 2≤log 2x ≤4,即log 12 14≤log 12 x ≤log 12116, ∴116≤x ≤14,故选B. 9[答案] A[解析] ∵y =(m 2-m -1) x m 2-2m -3为幂函数,∴m 2-m -1=1.解得m =2或m =-1.当m =2时,m 2-2m -3=-3,y =x -3在(0,+∞)上为减函数;当m =-1时,m 2-2m -3=0,y =x 0=1(x ≠0)在(0,+∞)上为常数函数(舍去),∴m =2.10[答案] B[解析] 令t =x n ,则x =t 1n ,f (t )=ln t 1n =1nln t ,则f (2)=1nln2. 11[答案] C[解析] 设此函数为y =a x (a >0,a ≠1),显然不过点M 、P ,若设对数函数为y =log b x (b >0,b ≠1),显然不过N 点,选C.12[答案] D[解析] 显然满足①f (x +y )=f (x )+f (y )的函数应是y =kx 这种类型,故对应的图象应是d ;满足②g (x +y )=g (x )·g (y )应该是指数函数,故对应的图象应是a ;满足③u (x ·y )=u (x )+u (y )的应是对数函数,故对应的图象应是b ;满足④v (x ·y )=v (x )·v (y )的应是幂函数y =x n ,故对应的图象应是c .13[答案] {x |-3≤x ≤1}[解析] 不等式2 x 2+2x -4≤12可化为2 x 2+2x -4≤2-1.即x 2+2x -4≤-1,解得-3≤x ≤1.[答案] b <a <c14[解析] 由x ∈(e -1,1)得-1<ln x <0,从而b =2ln x <ln x =a ,c =ln 3x >ln x =a .15[答案] (-1,32] [解析] 函数y =lg(4+3x -x 2)的增区间即为函数y =4+3x -x 2的增区间且4+3x -x 2>0,因此所求区间为(-1,32].16[答案] 14[解析] 当a >1时,有a 2=4,a -1=m ,此时a =2,m =12,此时g (x )=-x 为减函数,不合题意.若0<a <1,则a -1=4,a 2=m ,故a =14,m =116,检验知符合题意. 17[解析] (1)原式=log 34-log 3329+log 38-52log 53 =log 3(4×932×8)-5 log 59 =log 39-9=2-9=-7.(2)原式=5x -23 y 12 -14-56x -1+13 y 12 -16 =5x -23 ·y 12 524×x -23 ·y 13 =24y 16 又y =64, ∴原式=24×(26) 16 =48.18[解析] (1)由已知得(12)-a =2,解得a =1. (2)由(1)知f (x )=(12)x ,又g (x )=f (x ),则4-x -2=(12)x ,即(14)x -(12)x -2=0,即[(12)x ]2-(12)x -2=0, 令(12)x =t ,则t 2-t -2=0,即(t -2)(t +1)=0,又t >0,故t =2,即(12)x =2,解得x =-1. 19[解析] (1)已知函数f (x )=log a (x 2+1)(a >1),且x 2+1>0恒成立,因此f (x )的定义域为R ,关于坐标原点对称,又f (-x )=log a [(-x )2+1]=log a (x 2+1)=f (x ),所以f (x )为偶函数.(2)∵x 2≥0,∴x 2+1≥1,又∵a >1,∴log a (x 2+1)≥log a 1=0,故f (x )=log a (x 2+1)(a >1)的值域为[0,+∞).20[解析] ∵f (x )是奇函数,∴f (x )的图象关于原点对称,∵f (x )的定义域为[-2,2],∴f (0)=0,由f (x )在(0,2]上递减知f (x )在[-2,0)上递减,由f (1)=0知f (-1)=-f (1)=0,符合一个条件的一个函数的图象如图.[点评] 符合上述条件的函数不只一个,只要画出符合条件的一个即可,再结合学过的一次、二次、幂、指、对函数可知,最简单的为一次函数.下图都是符合要求的.21[解析] (1)要使函数有意义:∵0<a <1,∴log a [-(x +1)2+4]≥log a 4,由log a 4=-2,得a -2=4,∴a =4-12 =12.则有⎩⎪⎨⎪⎧1-x >0x +3>0,解得:-3<x <1,所以定义域为(-3,1).(2)函数可化为:f (x )=log a [(1-x )(x +3)]=log a (-x 2-2x +3)=log a [-(x +1)2+4]∵-3<x <1,∴0<-(x +1)2+4≤4,22[解析] (1)f (x )的定义域为R ,令x =y =0,则f (0)=f (0)+f (0),∴f (0)=0,令y =-x ,则f (x -x )=f (x )+f (-x ),∴f (-x )+f (x )=f (0)=0,∴f (-x )=-f (x ),∴f (x )是奇函数.(2)设x 2>x 1,f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1) ∵x2-x1>0,∴f(x2-x1)<0,∴f(x2)-f(x1)<0,即f(x2)<f(x1),∴f(x)在R上为减函数.(3)∵f(-1)=2,∴f(-2)=f(-1)+f(-1)=4,∵f(x)为奇函数,∴f(2)=-f(-2)=-4,∴f(4)=f(2)+f(2)=-8,∵f(x)在[-2,4]上为减函数,∴f(x)max=f(-2)=4,f(x)min=f(4)=-8.。

新课程北师大版高中数学必修1第二章《函数》单元测试题[含解答]

新课程北师大版高中数学必修1第二章《函数》单元测试题[含解答]

高中数学必修1第二章《函数》单元测试题一、选择题(本大题共12小题,每小题5分,共60分) 1.若()f x (3)f = ( )A 、2B 、4 C、、10 2.对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来.A 、1个B 、2个C 、3个D 、4个 3.下列各组函数是同一函数的是 ( )①()f x =()g x = ②()f x x =与()g x =③0()f x x =与1()g x x=; ④2()21f x x x =--与2()21g t t t =--. A .①② B 、①③ C 、③④ D 、②④4.二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5.函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6.下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7.若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个xx(1)(2)(3)(4)8.)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、()1()f x f x =-- 9.若函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,则实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥510.设函数x x xf =+-)11(,则)(x f 的表达式为 ( ) A .x x -+11 B . 11-+x x C .x x +-11 D .12+x x11.定义在R 上的函数()f x 对任意两个不等实数,a b 总有()()0f a f b a b->-成立,则必有( )A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 12.下列所给4个图像中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

新北师大版高中数学必修一第二单元《函数》测试卷(有答案解析)

新北师大版高中数学必修一第二单元《函数》测试卷(有答案解析)

一、选择题1.已知函数()2,125,1x ax x f x ax x ⎧-+≤=⎨->⎩若存在12,x x R ∈,且12x x ≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .4a < B .2a < C .2a > D .R 2.下列各函数中,表示相等函数的是( )A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C .1y =与1y x =-D .y x =与log xa y a =(0a >且1a ≠)3.已知函数(1)f x +为偶函数,当0x >时,23()f x x x =+,则(2)f -=( ) A .4-B .12C .36D .804.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦5.对于每个实数x ,设()f x 取24y x =-+,41y x =+,2y x =+三个函数值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值83,最小值1 C .有最大值3,无最小值 D .有最大值83,无最小值 6.定义,min(,),a a ba b b a b≤⎧=⎨>⎩,例如:min(1,2)2--=-,min(2,2)2=,若2()f x x =,2()46g x x x =--+,则()min((),())F x f x g x =的最大值为( )A .1B .8C .9D .107.方程2x =所表示的曲线大致形状为( )A .B .C .D .8.已知定义在R 上的函数()f x 满足:对任意的[)()1212,2,x x x x ∈+∞≠,有()()21210f x f x x x ->-,且()2f x +是偶函数,不等式()()121f m f x +≥-对任意的[]1,0x ∈-恒成立,则实数m 的取值范围是( )A .[]4,6-B .[]4,3-C .(][),46,-∞-+∞ D .(][),43,-∞-⋃+∞9.已知函数224()3f x x x=-+,()2g x kx =+,若对任意的1[1,2]x ∈-,总存在2[13]x ∈,使得12()()g x f x >,则实数k 的取值范围是( ).A .1,12⎛⎫ ⎪⎝⎭B .12,33⎛⎫- ⎪⎝⎭C .1,12⎛⎫-⎪⎝⎭D .以上都不对10.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃11.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( )A.1811B.3 C.4811D.412.若函数()()12311axf x xa x x⎧>⎪=⎨⎪-+≤⎩是R上的减函数,则实数a的取值范围是()A.2,13⎛⎫⎪⎝⎭B.3,14⎡⎫⎪⎢⎣⎭C.23,34⎛⎤⎥⎝⎦D.2,3⎛⎫+∞⎪⎝⎭二、填空题13.()f x为定义在R上的偶函数,2()()2=-g x f x x在区间[0,)+∞上是增函数,则不等式()1246()f x f x x+-+>--的解集为___________.14.已知函数f(x)满足2f(x)+f(-x)=3x,则f(x)=________.15.函数()12xf x=-的定义域是__________.16.已知函数()f x的定义域为[]2,2-,当[]0,2x∈时,()1f x x=+,当[)2,0x∈-时,()(2)f x f x=-+,求()f x=___________17.函数f(x)是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式()cosf xx<0的解集为________.18.已知集合{1,A B==2,3},f:A B→为从集合A到集合B的一个函数,那么该函数的值域的不同情况有______种.19.定义域为R的函数()f x满足(2)2()f x f x+=,当[0,2)x∈时,21.5,[0,1)()0.5,[1,2)xx x xf xx-⎧-∈⎪=⎨-∈⎪⎩,若[4,2)x∈--时,1()42tf xt≥-恒成立,则实数t的取值范围是______.20.已知(6)4,(1)(),(1)a x a xf xax x--<⎧=⎨≥⎩是(),-∞+∞上的增函数,则实数a的取值范围是_________.三、解答题21.已知函数()4f x xx=+.(1)用单调性的定义证明()f x在()0,2上单调递减;(2)判断()f x 在71,2⎡⎤⎢⎥⎣⎦上的单调情况,并求最值.22.已知定义域为R 的函数()y f x =和()y g x =,它们分别满足条件:对mn R ∀∈,,都有()()()f m n f m f n +=+和()()()g m n g m g n +=⋅,且对0,()1x g x ∀>>. (1)求(0),(0)f g 的值; (2)证明函数()y f x =是奇函数;(3)证明0x <时,0()1g x <<,且函数()y g x =在R 上是增函数; (4)试各举出一个符合函数()y f x =和()y g x =的具体函数. 23.已知函数()1f x x x=+. (1)判断函数()f x 的奇偶性;(2)证明:函数()f x 在[)1,+∞上是增函数; (3)求函数()f x 在[]41--,上的最大值与最小值. 24.已知函数()222f x x ax =++,[]5,5x ∈-.(1)当1a =-时,求函数()f x 的最大值和最小值;(2)求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数. (3)求函数()f x 的最小值()g a 的表达式,并求()g a 的最大值. 25.已知函数()21ax bf x x +=+是()1,1-上的奇函数,且12.25f ⎛⎫= ⎪⎝⎭ (1)求()f x 的解析式;(2)判断()f x 的单调性,并加以证明;(3)若实数t 满足()()10f t f t ++>,求t 的取值范围. 26.已知函数()()90f x x x x=+≠. (1)当()3,x ∈+∞时,判断并证明()f x 的单调性; (2)求不等式()()2330f xf x +≤的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【分析】首先确定1x ≤时()f x 的对称轴2a x =,分别在12a <和12a≥两种情况下,结合二次函数的对称性和数形结合的方式确定不等关系求得结果. 【详解】当1x ≤时,()2f x x ax =-+是开口方向向下,对称轴为2ax =的二次函数, ①当12a<,即2a <时,由二次函数对称性知:必存在12x x ≠,使得()()12f x f x =; ②当12a≥,即2a ≥时,若存在12x x ≠,使得()()12f x f x =,则函数图象需满足下图所示:即125a a -+>-,解得:4a <,24a ∴≤<; 综上所述:4a <. 故选:A. 【点睛】思路点睛:根据()()12f x f x =可知分段函数某一段自身具有对称轴或两个分段的值域有交集,通过函数图象进行分析即可确定结果.2.D解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数21y x =值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确.故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.3.D解析:D 【分析】首先根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+,所以有(2)(4)f f -=,结合题中所给的函数解析式,代入求得结果. 【详解】∵函数(1)f x +为偶函数,所以图象关于y 轴对称,即(1)(1)f x f x +=-+, 构造(2)(31)(31)(4)f f f f -=-+=+=,而40>, 所以23(4)4+4=16(14)80f =⨯+=. 故选:D. 【点睛】思路点睛:该题考查的是有关函数的问题,解题思路如下: (1)根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+; (2)根据(1)(1)f x f x +=-+,得到(2)(4)f f -=; (3)结合当0x >时,23()f x x x =+,将4x =代入求得结果.4.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(含答案解析)(1)

(常考题)北师大版高中数学必修一第二单元《函数》测试卷(含答案解析)(1)

一、选择题1.已知函数(1)f x +为偶函数,当0x >时,23()f x x x =+,则(2)f -=( )A .4-B .12C .36D .802.以下说法正确的有( )(1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}3,1AB =;(2)若()f x 是定义在R 上的奇函数,则()00f =; (3)函数1y x=的单调区间是()(),00,-∞⋃+∞; (4)在映射:f A B →的作用下,A 中元素(),x y 与B 中元素()1,3x y --对应,则与B 中元素()0,1对应的A 中元素是()1,2 A .1个B .2个C .3个D .4个3.若函数()f x =[]1,3-上具有单调性,则实数a 的可能取值是( )A .4-B .5C .14D .234.对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零,则x 的取值范围是( ) A .13x <<B .1x <或3x >C .12x <<D .1x <或2x >5.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦C .41,152⎡⎤⎢⎥⎣⎦ D .152,4⎡⎤⎢⎥⎣⎦6.若定义运算,,b a b a b a a b≥⎧*=⎨<⎩,则函数()()()2242g x x x x =--+*-+的值域为( )A .(],4-∞B .(],2-∞C .[)1,+∞D .(),4-∞7.已知函数()f x 是R 上的单调函数,且对任意实数x ,都有()21213xf f x ⎡⎤+=⎢⎥+⎣⎦成立,则()2020f 的值是( ) A .202021- B .202021+C .202020202121+-D .202020202121-+8.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( ) A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确9.已知函数()f x 的定义域为R ,对任意的 12,x x <都有1212()(),f x f x x x -<-且(3)4,f =则(21)2f x x ->的解集为( )A .(2,)+∞B .(1,)+∞C .(0,)+∞D .(1,)-+∞10.如图是定义在区间[]5,5-上的函数()y f x =的图象,则下列关于函数()f x 的说法错误的是( )A .函数在区间[]53-,-上单调递增B .函数在区间[]1,4上单调递增C .函数在区间][3,14,5⎡⎤⋃⎣⎦-上单调递减D .函数在区间[]5,5-上没有单调性11.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( ) A .()()()211f f f <-< B .()()()121f f f <<- C .()()()112f f f <-<D .()()()211f f f <<-12.已知函数()f x 是定义在()0,∞+上的增函数,且()21f =,()()()f xy f x f y =+,则不等式()()23f x f x +-≤( )A .()1,2B .[)1,3C .()2,4D .(]2,4二、填空题13.函数()2f x x a =- 在区间[]1,1-上的最大值()M a 的最小值是__________.14.已知函数()31f x ax bx =-+,若()25f =,则()2f -=______.15.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________16.函数222421x x y x ++=+的值域为_________. 17.函数()12x f x -的定义域是__________. 18.函数2()23||f x x x =-的单调递减区间是________.19.定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩,若[4,2)x ∈--时,1()42t f x t ≥-恒成立,则实数t 的取值范围是______.20.定义在R 上的函数()f x 满足(3)()1f x f x +=+,且[0,1]x ∈时,()6x f x =,(1,3)x ∈时,(1)()f f x x=,则函数()f x 的零点个数为__________. 三、解答题21.已知函数2()7f x x mx m =++-,m R ∈.(1)若()f x 在区间[2,4]上单调递增,求m 的取值范围; (2)求()f x 在区间[1,1]-上的最小值()g m ;22.定义在()0,∞+的函数()f x ,满足()()()f mn f m f n =+,且当1x >时,()0f x >.(1)求证:()()m f f m f n n ⎛⎫=- ⎪⎝⎭(2)讨论函数()f x 的单调性,并说明理由; (3)若()21f =,解不等式()()333f x f x +->.23.(1)已知函数()f x =,求()f x 的定义域; (2)已知函数1()2f x x x=-+,依据函数单调性的定义证明()f x 在(0,)+∞上单调递减,并求该函数在[1,3]上的值域. 24.定义在11,22⎛⎫-⎪⎝⎭上的函数()f x 满足:对任意的11,,22x y ⎛⎫∈- ⎪⎝⎭都有()()()1()()f x f y f x y f x f y ,且当102x <<时,()0f x >.(1)判断()f x 在10,2⎛⎫ ⎪⎝⎭上的单调性并证明; (2)求实数t 的取值集合,使得关于x 的不等式1()02f t x f x ⎛⎫-+> ⎪⎝⎭在11,22⎛⎫- ⎪⎝⎭上恒成立.25.已知a R ∈,函数2()25f x x ax =-+.(1)若不等式()0f x >对任意的x ∈R 恒成立,求实数a 的取值范围; (2)若1a >,且函数()f x 的定义域和值域都是[1,]a ,求实数a 的值; (3)函数()f x 在区间[1,1]a +的最大值为()g a ,求()g a 的表达式.26.已知定义在()0,∞+上的函数()f x 满足:①对任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+;②当且仅当1x >时,()0f x <成立.(1)求()1f ;(2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较1x ,2x 的大小关系,并说明理由; (3)若对任意的[]1,1x ∈-,不等式()()22333310xxxx f f m --⎡⎤+≤+-⎣⎦恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+,所以有(2)(4)f f -=,结合题中所给的函数解析式,代入求得结果. 【详解】∵函数(1)f x +为偶函数,所以图象关于y 轴对称,即(1)(1)f x f x +=-+, 构造(2)(31)(31)(4)f f f f -=-+=+=,而40>, 所以23(4)4+4=16(14)80f =⨯+=. 故选:D. 【点睛】思路点睛:该题考查的是有关函数的问题,解题思路如下: (1)根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+; (2)根据(1)(1)f x f x +=-+,得到(2)(4)f f -=; (3)结合当0x >时,23()f x x x =+,将4x =代入求得结果.2.B解析:B 【分析】 根据AB 为点集,可判断(1)的正误;根据奇函数的性质,可判断(2)的正误;分解反比例函数的单调性,可判断(3)的正误;根据映射的概念,可判断(4)的正误. 【详解】 (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}(3,1)AB =,所以(1)错误;(2)若()f x 是定义在R 上的奇函数,则()00f =,所以(2)正确; (3)函数1y x=的单调区间是(),0-∞和()0,∞+,所以(3)错误; (4)设A 中元素为(,)x y ,由题意可知1031x y -=⎧⎨-=⎩,解得12x y =⎧⎨=⎩,所以A 中元素是()1,2,所以(4)正确;所以正确命题的个数是2个, 故选:B. 【点睛】关键点点睛:该题考查的是有关命题的真假判断,在解题的过程中,关键点是要熟练掌握基础知识,此类题目综合性较强,属于中档题目.3.C解析:C 【分析】令函数()218g x x ax =-++,则只需使当[]1,3x ∈-时,()0g x ≥且单调,然后针对()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩两种情况讨论求解. 【详解】由题意可设()218g x x ax =-++,则当[]1,3x ∈-时,()218g x x ax =-++单调,且()0g x ≥恒成立,因为()218g x x ax =-++的对称轴方程为2ax =, 则()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩,解得617a ≤≤或32a --≤≤,即[][]6,173,2a ∈--,则只有14满足题意. 故选:C . 【点睛】本题考查根据复合函数的单调性求参数的取值范围,解答时注意不仅要使原函数在所给区间上单调,且必须使原函数在所给区间上有意义.4.B解析:B 【分析】将函数()f x 的解析式变形为()2()244f x x a x x =-+-+,并构造函数()2()244g a x a x x =-+-+,由题意得出()()1010g g ⎧->⎪⎨>⎪⎩,解此不等式组可得出实数x 的取值范围 【详解】对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零设()()2244g a x a x x =-+-+,即()0g a >在[]1,1a ∈-上恒成立.()g a 在[]1,1a ∈-上是关于a 的一次函数或常数函数,其图象为一条线段.则只需线段的两个端点在x 轴上方,即()()2215601320g x x g x x ⎧-=-+>⎪⎨=-+>⎪⎩ ,解得3x >或1x < 故选:B 【点睛】关键点睛:本题考查不等式在区间上恒成立问题,解答本题的关键是构造函数()()2244g a x a x x =-+-+,将问题转化为()0g a >在[]1,1a ∈-上恒成立,从而得到()()1010g g ⎧->⎪⎨>⎪⎩,属于中档题.5.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】 易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减, 则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥, 当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.6.A解析:A【分析】 根据,,b a ba b a a b≥⎧*=⎨<⎩可得()g x 的解析式,画出图象可得答案.【详解】由,,b a ba b a a b ≥⎧*=⎨<⎩,得()()()222,[2,1]24224,(1,)(,2)x x g x x x x x x x -+∈-⎧=--+*-+=⎨--+∈+∞⋃-∞-⎩,当[2,1]x ∈-,()2[1,4g x x =-+∈], 当(1,)(,2)x ∈+∞-∞-,()2()154g x x =-++<,可得()4g x ≤- 故选:A. 【点睛】本题的关键点是根据已知定义求出函数解析式,然后画出图象求解.7.D解析:D 【分析】采用换元法可构造方程()21213t f t t =-=+,进而求得()f x 解析式,代入2020x =即可得到结果. 【详解】由()f x 是R 上的单调函数,可设()221xf x t +=+,则()13f t =恒成立, 由()221x f x t +=+得:()221x f x t =-+,()21213t f t t ∴=-=+,解得:1t =,()22112121x x xf x -∴=-=++,()2020202021202021f -∴=+. 故选:D . 【点睛】本题考查函数值的求解问题,解题关键是能够采用换元的方式,利用抽象函数关系式求解得到函数的解析式.8.D解析:D 【分析】可举出反例判断①错误;根据奇偶性的性质可判断②正确,结合选项可得答案. 【详解】①错误,可举反例:21()31xx f x x x ⎧=⎨-+>⎩,230()30121x x g x x x x x +⎧⎪=-+<⎨⎪>⎩,0()20x x h x x x -⎧=⎨>⎩,均不是增函数;但()()f x g x +、()()f x h x +、()()g x h x +均为增函数; 故①错误; ②()()f x g x +,()()f x h x +,()()g x h x +均是奇函数;()()()()[()()]2()f x g x f x h x g x h x f x ∴+++-+=为奇函数;()f x ∴为奇函数;同理,()g x ,()h x 均是奇函数; 故②正确. 故选:D . 【点睛】本题考查增函数的定义,一次函数和分段函数的单调性,举反例说明命题错误的方法,以及奇函数的定义与性质,知道()f x 和()g x 均是奇函数时,()()f x g x ±也是奇函数.9.A解析:A 【分析】由题可得[][]1122()()0f x x f x x ---<,可构造函数()()F x f x x =-是R 上的增函数,原不等式可转化为()()213F x F ->,再结合增函数的性质可求出答案. 【详解】 由题意,[][]121211221122()()()()()()0f x f x x x f x x f x x f x x f x x -<-⇔-<-⇔---<, 因为12,R x x ∈且12,x x <所以函数()()F x f x x =-是R 上的增函数.()3(3)31F f =-=,因为(21)2(21)(21)1f x x f x x ->⇔--->,所以()()213F x F ->, 则213x ->,解得2x >. 故选:A. 【点睛】本题考查了函数的单调性的应用,构造函数()()F x f x x =-是解决本题的关键,属于中档题.10.C解析:C 【详解】由图象可知,函数在[-5,-3]和[1,4]两个区间单调递增,则A 、B 选项是正确的; 又因为函数在[-3,1]和[4,5]两个区间上分别单调递减, 但在区间[-3,1]∪[4,5]上没有单调性,则C 选项错误; 观察函数图象可知函数在[-5,5]上没有单调性,则D 选项正确. 故选C.要知道四个选项中哪个是错误的,考虑先根据函数图象写出函数的单调区间; 根据题意可知,函数在[-5,-3]和[1,4]两个区间单调递增,据此可判断A 、B 选项; 函数在[-3,1]和[4,5]上单调递减,据此判断其余选项,试试吧!11.B解析:B 【分析】由已知得函数f (x )图象关于x=1对称且在(-∞,1]上单调递减,在(1,+∞)上单调递增,从而可判断出大小关系. 【详解】解:∵当x 1,x 2∈(-∞,1](x 1≠x 2)时有(x 1-x 2)(f (x 1)-f (x 2))<0, ∴f (x )在(-∞,1]上单调递减, ∵f (x )=f (2-x ),∴函数f (x )的图象关于x=1对称,则f (x )在∈(1,+∞)上单调递增, ∴f (-1)=f (3)>f (2)>f (1) 即f (-1)>f (2)>f (1) 故选B . 【点睛】本题考查函数的对称性及单调性的应用,解题的关键是函数性质的灵活应用.12.D解析:D 【分析】根据()()()f xy f x f y =+且()21f =可得()42f =,83f ,则()()23f x f x +-≤可化为()()28f x x f -≤⎡⎤⎣⎦,然后根据单调性求解.【详解】根据()()()f xy f x f y =+可得,()()23f x f x +-≤可转化为()23f x x -≤⎡⎤⎣⎦, 又()()()()422222f f f f =+==,所以()()()842213f f f =+=+=,即()()28f x x f -≤⎡⎤⎣⎦,因为()f x 是定义在()0,∞+上的增函数,所以只需满足()28020x x x x ⎧-≤⎪>⎨⎪->⎩,解得:24x <≤.故选:D. 【点睛】本题考查抽象函数的应用,考查利用函数的单调性解不等式,难度一般,根据题目条件将问题灵活转化是关键.二、填空题13.【分析】由题意函数为偶函数分和去掉绝对值然后根据单调性求出最大值再根据单调性求出的最小值【详解】解:由题意函数为偶函数①当时在上单调递增则;②当时当即时在上单调递减则;当即时在上单调递减在上单调递增 解析:12【分析】由题意,函数()2f x x a =-为偶函数,分0a ≤和0a >去掉绝对值,然后根据单调性求出最大值()M a ,再根据单调性求出()M a 的最小值. 【详解】解:由题意,函数()2f x x a =-为偶函数,①当0a ≤时,()2f x x a =-,()f x 在[]0,1上单调递增,则()()()111M a f f a ==-=-;②当0a >时,()22,,x a x x f x a x x ⎧-≤≥⎪=⎨-<<⎪⎩或1≥即1a ≥时,()f x 在[]0,1上单调递减,则()()0M a f a ==;1即01a <<时,()f x在⎡⎣上单调递减,在⎤⎦上单调递增,∵()0f a =,()11f a =-, 由1a a 得112a <<,此时()M a a =;由1a a ≤-得102a <≤,此时()1M a a =-; ∴()11,21,2a a M a a a ⎧-≤⎪⎪=⎨⎪>⎪⎩,∴()min 1122M a M ⎛⎫== ⎪⎝⎭, 故答案为:12. 【点睛】关键点点睛:本题主要考查利用函数的单调性求函数的最值,本题的关键在于分类讨论去掉绝对值,然后再根据单调性求出最值,属于中档题.14.【分析】根据题意令从而得到得到为奇函数整理得到将代入求得的值【详解】设则即为奇函数故即即【点睛】方法点睛:该题考查的是有关函数值的求解问题解题方法如下:(1)构造奇函数;(2)利用奇函数的性质得到进 解析:3-【分析】根据题意,令()()31g x f x ax bx =-=-,从而得到()()3g x ax bx g x -=-+=-,得到()g x 为奇函数,整理得到()()2121f f --=--⎡⎤⎣⎦,将()25f =代入求得()2f -的值.【详解】设()()31g x f x ax bx =-=-,则()()3g x ax bx g x -=-+=-,即()g x 为奇函数,故()()22g g -=-,即()()2121f f --=--⎡⎤⎣⎦, 即()()222523f f -=-+=-+=-. 【点睛】方法点睛:该题考查的是有关函数值的求解问题,解题方法如下: (1)构造奇函数()()31g x f x ax bx =-=-;(2)利用奇函数的性质得到()()22g g -=-,进而求得()()222f f -=-+,得到结果.15.100【分析】分析得出得解【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键解析:100 【分析】分析得出(2)()2f x f x -+=得解.【详解】1()1x f x x +=- 211211(2)()2f x f x x x x x -+∴-+=++=--- ∴135199()()()()100100100100f f f f ++++1199319799101[()()][()()][()()]100100100100100100f f f f f f =+++++ 250100=⨯=故答案为:100. 【点睛】由函数解析式得到(2)()2f x f x -+=是定值是解题关键.16.【分析】将函数变形为关于的方程分析二次项的系数并结合与的关系求解出的取值范围从而值域可求【详解】因为所以所以当即时此时;当即时此时所以综上可知:所以的值域为故答案为:【点睛】易错点睛:利用判别式法求 解析:[]0,4【分析】将函数变形为关于x 的方程,分析二次项的系数并结合∆与0的关系求解出y 的取值范围,从而值域可求. 【详解】因为222421x x y x ++=+,所以222+42yx y x x +=+,所以()22420y x x y -++-=, 当20y -=,即2y =时,此时0x =;当20y -≠,即2y ≠时,此时()216420y ∆=--≥,所以[)(]0,22,4y ∈,综上可知:[]0,4y ∈,所以222421x x y x ++=+的值域为[]0,4, 故答案为:[]0,4. 【点睛】易错点睛:利用判别式法求解函数值域需要注意的事项: (1)原函数中分子分母不能约分; (2)原函数的定义域为实数集R .17.【解析】由得所以所以原函数定义域为故答案为 解析:(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞.18.【分析】讨论的符号去绝对值得到的分段函数形式根据其函数图象及对称轴即可确定单调递减区间【详解】函数图像如下图示可知的单调递减区间为故答案为:【点睛】本题考查了函数的单调区间利用函数的图象及其对称性确解析:33(,],[0,]44-∞- 【分析】讨论x 的符号去绝对值,得到()f x 的分段函数形式,根据其函数图象及对称轴,即可确定单调递减区间 【详解】函数22223,0()23||23,0x x x f x x x x x x ⎧-≥⎪=-=⎨+<⎪⎩图像如下图示可知,()f x 的单调递减区间为33(,],[0,]44-∞- 故答案为:33(,],[0,]44-∞- 【点睛】本题考查了函数的单调区间,利用函数的图象及其对称性确定单调区间,属于简单题19.【分析】由分段函数根据单调性求得在的最小值根据求出的最小值将问题转化为解不等式即可得出结果【详解】根据已知当时则当时在处取到最小值当时在处取到最小值所以在时在处取到最小值又因为可知当时在时取到最小值 解析:(,2](0,1]-∞-⋃【分析】由分段函数根据单调性求得()f x 在[0,2)x ∈的最小值,根据(2)2()f x f x +=求出[4,2)x ∈--,()f x 的最小值,将问题转化为min 1()42t f x t≥-解不等式即可得出结果. 【详解】根据已知,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩, 则当[0,1)x ∈时,()f x 在0.5x =处取到最小值(0.5)0.25f =-, 当[1,2)x ∈时,()f x 在 1.5x =处取到最小值(1.5)1f =-, 所以()f x 在[0,2)x ∈时在 1.5x =处取到最小值(1.5)1f =-, 又因为(2)2()f x f x +=, 可知当[4,2)x ∈--时, ()f x 在 2.5x =-时取到最小值,且(1.5)2(0.5)4( 2.5)f f f =-=-, 则1( 2.5)(1.5)0.254f f -=⨯=-. 为使[4,2)x ∈--,1()42t f x t≥-恒成立, 需11424t t -≤-, 当0t >时,可整理为220t t +-≤, 解得(0,1)t ∈; 当0t <时,可整理为220t t +-≥, 解得(,2]t ∈-∞-. 故答案为(,2](0,1]-∞-⋃. 【点睛】本题考查分段函数的应用,考查函数的单调性,将恒成立问题转化为函数的最值问题是解题的关键,属于中档题.20.【分析】由题意首先结合所给的关系式画出函数图象结合函数图象即可确定函数图象与横轴交点个数可得函数零点的个数【详解】解:由题意可得:(1)时即:结合绘制函数图象如图所示:由图可得函数图象与横轴交点有9 解析:9【分析】由题意首先结合所给的关系式画出函数图象,结合函数图象即可确定函数图象与横轴交点个数,可得函数零点的个数. 【详解】解:由题意可得:f (1)166==,∴(1,3)x ∈时,(1)6()f f x x x==,即:6,01 ()6,13x xf xxx⎧⎪=⎨<<⎪⎩,结合(3)()1f x f x+=+绘制函数图象如图所示:由图可得,函数图象与横轴交点有9个,所以函数()f x的零点个数为9.故答案为:9.【点睛】本题主要考查函数的零点,数形结合的数学思想,函数图象的绘制等知识,函数零点的几种等价形式:函数()()y f x g x=-的零点⇔函数()()y f x g x=-在x轴的交点⇔方程()()0f xg x-=的根⇔函数()y f x=与()y g x=的交点.三、解答题21.(1)[4,)-+∞;(2)226,27(),2246,2m mm mg m mm-≤-⎧⎪+-⎪=--<<⎨⎪-≥⎪⎩.【分析】(1)计算二次函数的对称轴,然后根据单调性可得122m-≤,计算即可.(2)分类讨论112m-≤-,1112m-<-<,112m-≥,分别计算即可.【详解】(1)由题可知,函数2()7f x x mx m=++-()m R∈开口向上,对称轴的方程为2mx =-,若使得函数()f x 在[2,4]上单调递增, 则满足122m -≤,解得4m ≥-,即实数m 的取值范围[4,)-+∞. (2)①当112m -≤-即2m ≥时, 函数()y f x =在区间[1,1]-单调递增,所以函数()y f x =的最小值为()(1)6g m f =-=-; ②当1112m -<-<,即22m -<<时, 函数()y f x =在区间11,2m ⎡⎤--⎢⎥⎣⎦单调递减,在区间1,12m ⎡-⎤⎢⎥⎣⎦上单调递增, 所以函数()y f x =的最小值为21()724m g m f m m ⎛⎫=-=-+- ⎪⎝⎭; ③当112m -≥即2m ≤-时, 函数()y f x =在区间[1,1]-单调递减,所以函数()y f x =的最小值为()(1)26g m g m ==-,综上可得,函数的最小值为226,27(),2246,2m m m m g m m m -≤-⎧⎪+-⎪=--<<⎨⎪-≥⎪⎩. 【点睛】结论点睛:二次函数在区间上的最值问题:(1)动轴定区间;(2)定轴动区间;(3)动轴动区间;对本题属于动轴动区间问题需要讨论对称轴与所给区间位置关系. 22.(1)见解析;(2)见解析;(3)3023x x ⎧⎫<<⎨⎬⎩⎭【分析】(1)由()m f m f n n ⎛⎫=⋅⎪⎝⎭,结合题意即可得结果; (2)利用函数单调性的定义证明即可;(3)将原不等式等价转化为()()324f x f x +>,结合定义域和单调性即可得结果. 【详解】解:(1)由题可得()()m m f m f n f f n n n ⎛⎫⎛⎫=⋅=+ ⎪ ⎪⎝⎭⎝⎭, 即()()m f f m f n n ⎛⎫=- ⎪⎝⎭;(2)任取1x ,()20,x ∈+∞,且12x x <,则211x x >, 由(1)得:()()22110x f x f x f x ⎛⎫-=>⎪⎝⎭,即()()21f x f x >, ()f x ∴在()0,∞+上是增函数;(3)()21f =,()()()2224f f f ∴=+=,()()()3428f f f =+=,()()333f x f x +->, ()()()338f x f x f +>+, ()()324f x f x +>,又()f x 在()0,∞+上为增函数,30,240,324,x x x x +>⎧⎪∴>⎨⎪+>⎩, 解得:0323x <<, 故不等式()()333f x f x +->的解集为3023x x ⎧⎫<<⎨⎬⎩⎭.【点睛】关键点点睛:本题解题的关键是利用()m f m f n n ⎛⎫=⋅ ⎪⎝⎭,再结合题意,即可判断函数单调性和解不等式. 23.(1)(,1)(1,5]-∞;(2)单调性证明见解析,值域为17[,1]3--. 【分析】(1)利用偶次根式和分式有意义的条件,列出不等式组,求得函数的定义域;(2)依据减函数的定义,利用取值、作差、判断符号的过程,证得函数的单调减,在区间端点取得最大最小值,得到函数在[1,3]上的值域. 【详解】 (1)由5010x x -≥⎧⎨-≠⎩.得5x ≤且1x ≠,故()f x 的定义域为()(]115∞-,,∪; (2)设120x x <<, 则()2112121221121212111()2()2()()(2)x x f x f x x x x x x x x x x x x x --=--+-=--+=-+,因为120x x <<,所以和211210,0x x x x ->>. 所以21121()(2)0x x x x -+>,从而()12()0f x f x ->, 故()f x 在()0,∞+上单调递减,因为()f x 在[1,3]上单调递减,且()11f -=,()1733f -=, 所以该函数在[1,3]上的值域为17[,1]3-- . 【点睛】思路点睛:该题考查的是有关函数的问题,解题思路如下:(1)利用分式和偶次根式有意义的条件,列出不等式组,求得结果,得到函数的定义域; (2)利用函数在某个区间上单调减的定义,证得函数在给定区间上是减函数,求得函数在区间端点处取得最值,得到函数的值域.24.(1)单调递增;证明见解析;(2)14⎧⎫⎨⎬⎩⎭.【分析】(1)首先判断()00f =,再令y x =-,判断函数的奇偶性,再设任意1210,2x x ⎛⎫>∈ ⎪⎝⎭,利用已知条件列式()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅,判断符号,证明函数的单调性;(2)不等式转化为1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭,再利用函数的单调性,去掉“f ”后,求t 的取值范围. 【详解】解:(1)令0x y ==,则22(0)(0)1(0)f f f =-,得(0)0f =,再令y x =-,则()()(0)01()()f x f x f f x f x +-==-⋅-,∴()()0f x f x +-=,∴()f x 为奇函数, 对任意1210,2x x ⎛⎫>∈ ⎪⎝⎭, 令1x x =,2y x =-, 则()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅,∵当102x <<时,()0f x >, ∴()120f x x ->,()()1210f x f x +>, 从而()()120f x f x ->, ∴()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增. (2)∵()f x 为奇函数,∴1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭, ∵()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增,且(0)0f =, ∴()f x 在11,22⎛⎫-⎪⎝⎭上单调递增,由题意得: 111222t x -<-<及12t x x ->-在11,22x ⎛⎫∈- ⎪⎝⎭上恒成立, ∴max min11112222x t x ⎛⎫⎛⎫-≤≤+⎪ ⎪⎝⎭⎝⎭,得1144t -≤≤①; max 12t x ⎛⎫≥- ⎪⎝⎭,11,22x ⎛⎫∈- ⎪⎝⎭,得14t ≥②,由①②可知,t 的取值集合是14⎧⎫⎨⎬⎩⎭. 【点睛】关键点点睛:本题考查抽象函数证明单调性和奇偶性,以及不等式恒成立求参数的取值范围,一般抽象函数证明单调性和奇偶性时,采用赋值法,利用定义证明,本题不等式恒成立求参数,采用参变分离的方法,转化为求函数的最值. 25.(1)(a ∈;(2)2;(3)()g a 262,26,2a a a a ->⎧=⎨-⎩. 【分析】(1)利用二次函数的性质列出关系式求解即可.(2)根据二次函数定义域和值域之间的关系进行判断即可. (3)对对称轴分类讨论,得到最大值. 【详解】解:(1)a R ∈,函数2()25f x x ax =-+.开口向上,不等式()0f x >对任意的x ∈R 恒成立,可得:24200a -<,解得(a ∈.(2)函数2()25f x x ax =-+的对称轴为x a =,则函数在[1,]a 上为减函数, 函数的值域为[1,]a ,∴()1f a =,即22251a a -+=,即24a =,解得2a =-(舍)或2a =.(3)函数2()25f x x ax =-+的对称轴为x a =,开口向上,①当12aa +,即2a 时,()f x 在区间[1,1]a +上的最大值为2(1)6f a a +=-; ②2a >时,()f x 在区间[1,1]a +上的最大值为(1)f 62a =-.所以()g a 262,26,2a a a a ->⎧=⎨-⎩. 【点睛】方法点睛:求二次函数的最值或值域时,关键在于确定二次函数的对称轴与所求的区间的关系,也即是二次函数在所求区间上的单调性,利用单调性求得值域. 26.(1)()10f =;(2)12x x >,理由见解析;(3)5m <≤ 【分析】(1)令1x y ==,代入可得(1)f ;(2)记12x kx =,代入已知等式,由12()()f x f x <可得()0f k <,从而有1k >,得结论12x x >;(3)根据函数的性质,不等式变形为()223333100xx x x m --+≥+->恒成立,然后设33x x t -=+后转化为一元二次不等式和一元不次不等式恒成立,再转化为求函数的最值,可求得参数范围. 【详解】(1)令1x y ==,则(1)(1)(1)f f f =+,所以()10f =.(2)12x x >,理由如下:记12x kx =,则()()()122()f x f kx f k f x ==+, 由()()12f x f x <可得:()0f k <,则1k >,故12x x >. (3)由(2)得()223333100xx x x m --+≥+->恒成立,令10332,3xxt -⎡⎤=+∈⎢⎥⎣⎦,则222332x x t -+=-, 原不等式可化为:22100t mt -≥->, 由2210t mt -≥-恒成立可得:min 8m t t ⎛⎫≤+ ⎪⎝⎭,8t t +≥=,当且仅当8t t=,即t =m ≤ 由100mt ->恒成立可得:max 10m t ⎛⎫>⎪⎝⎭,102,3t ⎡⎤∈⎢⎥⎣⎦,则2t =时,max 105t ⎛⎫= ⎪⎝⎭,于是5m >.综上:实数m的取值范围是5m <≤【点睛】方法点睛:本题考查抽象函数的单调性,考查不等式恒成立问题,在解决不等式恒成立时,利用已求得的结论(函数的单调性),把问题进行转化,再用换元法转化为一元二次不等式和一元一次不等式恒成立,然后又由分离参数法转化为求函数的最值.。

北师大版高一数学必修一第二章函数检测题含答案

北师大版高一数学必修一第二章函数检测题含答案

高一数学必修一第二章检测题一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )=⎩⎨⎧ x 2+1(x <1)-2x +3(x ≥1),则f (f (2))=( ) A .-7 B .2 C .-1 D .5解析: f (2)=-2×2+3=-1,f (f (2))=f (-1)=(-1)2+1=2.答案: B2.下列四个函数:①y =x +1;②y =2x -1;③y =x 2-1;④y =3x .其中定义域与值域相同的是( )A .①②B .①②④C .②③D .①③④解析: ①②定义域、值域均为R ,④定义域、值域均为(-∞,0)∪(0,+∞).而③的定义域为R ,值域为[-1,+∞).答案: B3.函数f (x )=6-x 2x 的图像关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y =x 对称解析: f (x )的定义域为[-3,0)∪(0,3]关于原点对称,且f (-x )=-f (x ),∴f (x )是奇函数,图像关于原点对称.答案: B4.设集合A ={-1,3,5},若f :x →2x -1是集合A 到集合B 的映射,则集合B 可以是( )A .{0,2,3}B .{1,2,3}C .{-3,5}D .{-3,5,9}解析: 注意到题目中的对应法则,将A 中的元素-1代入得-3,3代入得5,5代入得9,故选D.答案: D5.设α∈⎩⎨⎧⎭⎬⎫-1,12,1,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3解析: α=-1时,y =1x 定义域为{x |x ≠0};α=12时,y =x 的定义域为{x |x ≥0}.答案: A6.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)解析: 因为当x ∈[0,+∞)时,f (x )是增函数,所以有f (2)<f (3)<f (π).又f (x )是R 上的偶函数,故f (-2)=f (2),f (-3)=f (3),从而有f (-2)<f (-3)<f (π).答案: A7.设abc >0,二次函数f (x )=ax 2+bx +c 的图像可能是( )解析: A 项,由图像开口向下知a <0,由对称轴位置知-b 2a <0,∴b <0.又∵abc >0,∴c >0.而由图知f (0)=c <0.B 项,由图知a <0,-b 2a >0,∴b >0.又∵abc >0,∴c <0,而由图知f (0)=c >0.C 项,由图知a >0,-b 2a <0,∴b >0.又∵abc >0,∴c >0,而由图知f (0)=c <0.D 项,由图知a >0,-b 2a >0,∴b <0.又∵abc >0,∴c <0,由图知f (0)=c <0.答案: D8.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( )A .-2B .2C .-98D .98解析: 由f (x +4)=f (x ),得f (7)=f (3)=f (-1).又∵f (x )为奇函数,∴f (-1)=-f (1),f (1)=2×12=2,∴f (7)=-2.故选A.答案: A9.若函数f (x )=x 2+bx +c 对任意实数x 都有f (2+x )=f (2-x ),那么( )A .f (2)<f (1)<f (4)B .f (1)<f (2)<f (4)C .f (2)<f (4)<f (1)D .f (4)<f (2)<f (1)解析: 由f (2+x )=f (2-x )可知:函数f (x )的对称轴为x =2,由二次函数f (x )开口方向,可得f (2)最小,又f (4)=f (2+2)=f (2-2)=f (0).在x <2时,y =f (x )为减函数,∵0<1<2,∴f (0)>f (1)>f (2),即f (2)<f (1)<f (4).答案: A10.若函数f (x )为偶函数,且在(0,+∞)上是减函数,又f (3)=0,则f (x )+f (-x )2x<0的解集为( )A .(-3,3)B .(-∞,-3)∪(3,+∞)C .(-3,0)∪(3,+∞)D .(-∞,-3)∪(0,3)解析: ∵f (x )为偶函数,f (-x )=f (x ),故f (x )+f (-x )2x <0可化为f (x )x <0,而f (x )在(0,+∞)上是减函数,且f (3)=0,故当x >3时,f (x )<0,当-3<x <0时,f (x )>0,故f (x )x <0的解集为(-3,0)∪(3,+∞).答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.f (x )=x 1-1-x的定义域是________. 解析: 由题意得⎩⎨⎧1-1-x ≠01-x ≥0,解得x ≤1且x ≠0,故函数的定义域有(-∞,0)∪(0,1].答案: (-∞,0)∪(0,1]12.已知函数f (x ),g (x当g [f (x )]=2时,x =解析: ∵g [f (x )]=2,∴f (x )=2,∴x =1.答案: 113.若f [g (x )]=9x +3,g (x )=3x +1,则f (x )的解析式为________________. 解析: f [g (x )]=f (3x +1)=9x +3=3(3x +1),∴f (x )=3x .答案: f (x )=3x14.已知f (x )=ax 2+bx (ab ≠0),若f (x 1)=f (x 2),且x 1≠x 2,则f (x 1+x 2)=________.解析: f (x )=ax ⎝ ⎛⎭⎪⎫x +b a ∴f ⎝ ⎛⎭⎪⎫-b a =0 由二次函数的性质知x 1+x 2=-b a∴f (x 1+x 2)=0答案: 0三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知二次函数y =f (x )的最大值为13,且f (3)=f (-1)=5,求f (x )的解析式,并求其单调区间.解析: ∵f (3)=f (-1)=5,∴对称轴为x =1,又∵最大值为13,∴开口向下,设为f (x )=a (x -1)2+13(a <0),代入x =-1,∴4a +13=5,∴a =-2,∴f (x )=-2(x -1)2+13.函数在(-∞,1]上单调递增,在[1,+∞)上单调递减.16.(12分)已知函数f (x )=x 2+a x ,且f (1)=2,(1)证明函数f (x )是奇函数;(2)证明f (x )在(1,+∞)上是增函数;(3)求函数f (x )在[2,5]上的最大值与最小值.解析: (1)证明:f (x )的定义域为{x |x ≠0},关于原点对称,因为f (1)=2所以1+a =2,即a =1f (x )=x 2+1x =x +1xf (-x )=-x -1x =-f (x )所以f (x )是奇函数.(2)证明:任取x 1,x 2∈(1,+∞)且x 1<x 2f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2) =(x 1-x 2)·x 1x 2-1x 1x 2∵x 1<x 2,且x 1x 2∈(1,+∞)∴x 1-x 2<0,x 1x 2>1,∴f (x 1)-f (x 2)<0所以f (x )在(1,+∞)上为增函数.(3)由(2)知,f (x )在[2,5]上的最大值为f (5)=265,最小值为f (2)=52.17.(12分)已知函数f (x )=1x 2+1,令g (x )=f ⎝ ⎛⎭⎪⎫1x . (1)如图,已知f (x )在区间[0,+∞)的图像,请据此在该坐标系中补全函数f (x )在定义域内的图像,并说明你的作图依据;(2)求证:f (x )+g (x )=1(x ≠0).解析: (1)∵f (x )=1x 2+1,所以f (x )的定义域为R. 又任意x ∈R ,都有f (-x )=1(-x )2+1=1x 2+1=f (x ),所以f (x )为偶函数,故f (x )的图像关于y 轴对称,补全图像如图所示.(2)证明:∵g (x )=f ⎝ ⎛⎭⎪⎫1x =1⎝ ⎛⎭⎪⎫1x 2+1=x 21+x 2(x ≠0), ∴f (x )+g (x )=11+x 2+x 21+x 2=1+x 21+x 2=1, 即f (x )+g (x )=1(x ≠0).18.(14分)已知函数f (x )=ax 2+(2a -1)x -3在区间⎣⎢⎡⎦⎥⎤-32,2上的最大值为1,求实数a 的值.解析: 当a =0时,f (x )=-x -3,f (x )在⎣⎢⎡⎦⎥⎤-32,2上不能取得1,故a ≠0. ∴f (x )=ax 2+(2a -1)x -3(a ≠0)的对称轴方程为x 0=1-2a 2a .(1)令f ⎝ ⎛⎭⎪⎫-32=1,解得a =-103, 此时x 0=-2320∈⎣⎢⎡⎦⎥⎤-32,2, 因为a <0,f (x 0)最大,所以f ⎝ ⎛⎭⎪⎫-32=1不合适; (2)令f (2)=1,解得a =34,此时x 0=-13∈⎣⎢⎡⎦⎥⎤-32,2, 因为a =34>0,x 0=-13∈⎣⎢⎡⎦⎥⎤-32,2,且距右端点2较远, 所以f (2)最大,合适;(3)令f (x 0)=1,得a =12(-3±22),验证后知只有a =12(-3-22)才合适.综上所述,a =34或a =-12(3+22).。

新北师大版高中数学必修一第二单元《函数》检测卷(包含答案解析)(1)

新北师大版高中数学必修一第二单元《函数》检测卷(包含答案解析)(1)

一、选择题1.令[]x 表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=,若函数()[][]32f x x x =-,则函数()f x 在区间[]0,2上所有可能取值的和为( )A .1B .2C .3D .42.下列各函数中,表示相等函数的是( ) A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C .1y =与1y x =-D .y x =与log xa y a =(0a >且1a ≠)3.已知函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+.设()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =(其中{}max ,p q 表示p ,q中较大值,{}min ,p q 表示p ,q 中较小值),记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=( ) A .16-B .16C .8aD .816a -4.若函数()f x =在[]1,3-上具有单调性,则实数a 的可能取值是( )A .4-B .5C .14D .235.对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零,则x 的取值范围是( ) A .13x <<B .1x <或3x >C .12x <<D .1x <或2x >6.如果函数()()()2121f x a x b x =-+++(其中2b a -≥)在[]1,2上单调递减,则32a b +的最大值为( )A .4B .1-C .23D .67.对于每个实数x ,设()f x 取24y x =-+,41y x =+,2y x =+三个函数值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值83,最小值1 C .有最大值3,无最小值D .有最大值83,无最小值8.若函数()()21225,012,1bb x f x x x b x x -⎧-+<<⎪=⎨⎪+-≥⎩对于任意的实数12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数b 的取值范围为( )A .1,42⎛⎤ ⎥⎝⎦B .[)4,+∞C .[]1,4D .1,2⎛⎫+∞⎪⎝⎭9.已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为( ) A .](2-∞,B .[)2,+∞C .[]24-,D .[]14, 10.设()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,则()0f x x<的解集是( )A .{2002}xx x -<<<<∣或 B .{22}xx x <->∣或 C .{202}xx x <-<<∣或 D .{202}xx x -<<>∣或 11.定义在(0,)+∞上的函数()f x 满足:()()1122120x f x x f x x x -<-且()24f =,则不等式()80f x x->的解集为( ) A .(2,)+∞ B .()0,2C .(0,4)D .(,2)-∞12.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( ) A .1811B .3C .4811D .4二、填空题13.设函数()x f x e =()g x mx =,若对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立,则实数m 的取值范围是_________. 14.函数()()02f x x =-的定义域为______.15.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________16.对于任意的1,32m ⎡⎤∈⎢⎥⎣⎦,不等式224t mt m +>+恒成立,则实数t 的取值范围是________________.17.设函数2222,0(),0x x x f x x x ⎧++=⎨->⎩,若(())2f f a =,则a =___________.18.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________.19.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______.20.已知函数()f x 是R 上的奇函数,()()2g x af x bx =++,若(2)16g =,则(2)g -=______.三、解答题21.已知函数2()7f x x mx m =++-,m R ∈.(1)若()f x 在区间[2,4]上单调递增,求m 的取值范围; (2)求()f x 在区间[1,1]-上的最小值()g m ;22.已知函数()y f x =是定义在R 上的奇函数,且当0x ≥时,()22f x x x =+.(1)求函数()f x 的解析式;(2)指出函数()f x 在R 上的单调性(不需要证明);(3)若对任意实数m ,()()20f m f m t +->恒成立,求实数t 的取值范围.23.已知函数()y f u =的定义域为A ,值域为B .如果存在函数()u g x =,使得函数[]()y f g x =的值域仍为B ,则称()u g x =是函数()y f u =的一个“等值域变换”.(1)若函数2()1y f u u ==+,1()u g x x x==+(x >0),请判断()u g x =是不是函数()y f u =的一个“等值域变换”?并说明理由;(2)已知单调函数()y f u =的定义域为{}12A u u =≤≤,若221()1x ax u g x x x ++==++是函数函数()y f u =的一个“等值域变换”,求实数a 的取值范围.24.已知函数12()12x xa f x -⋅=+是R 上的奇函数(a 为常数),()22.g x x x m m R =-∈+, (1)求实数a 的值;(2)若对任意12[]1x -∈,,总存在2]3[0x ∈,,使得12()()f x g x =成立,求实数m 的取值范围.25.已知函数()y f x =的定义域为D ,若存在区间[],a b D ⊆,使得()[]{}[],,,y y f x x a b a b =∈=,则称区间[],a b 为函数()y f x =的“和谐区间”.(1)请直接写出函数()3f x x =的所有的“和谐区间”;(2)若[]()0,0m m >为函数()312f x x =-的一个“和谐区间”,求m 的值;(3)求函数()22f x x x =-的所有的“和谐区间”.26.已知函数()f x 对一切实数,x y 都有()()f x y f y +-=(21)x x y ++成立,且(1)0f =.(1)求(0)f 的值,及()f x 的解析式;(2)当21x -≤≤时,不等式()(1)5f x a a x -≥-- 恒成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据[]x 表示不超过x 的最大整数,分5种情况讨论,分别求出[]x 和[2]x 的值,即可以计算()3[][2]f x x x =-的函数值,相加即可得答案. 【详解】因为[]x 表示不超过x 的最大整数,所以: 当102x <时,有021x <,则[]0x =,则3[]0x =,[2]0x =,此时()0f x =, 当112x <时,有122x <,则[]0x =,则3[]0x =,[2]1x =,此时()1f x =-, 当312x <时,有223x <,则[]1x =,则3[]3x =,[2]2x =,此时()1f x =, 当322x <时,有324x <,则[]1x =,则3[]3x =,[2]3x =,此时()0f x =, 当2x =时,24=x ,则[]2x =,则3[]6x =,[2]4x =,此时()2f x =, 函数()f x 在区间[0,2]上所有可能取值的和为011022-+++=; 故选:B . 【点睛】结论点睛:分类讨论思想的常见类型(1)问题中的变量或含有需讨论的参数的,要进行分类讨论的; (2)问题中的条件是分类给出的;(3)解题过程不能统一叙述,必须分类讨论的;(4)涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.2.D解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数21y x =-值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确. 故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.3.A解析:A 【分析】根据()()22()244,()2412f x x a a g x x a a =----=-+-+,由()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =,得到max ()412B g x a ==-+,min ()44A f x a ==--求解.【详解】因为函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+, 所以()()22()244,()2412f x x a a g x x a a =----=-+-+, 如图所示:当2x a =+时,()()44f x g x a ==--, 当2=-x a 时,()()412f x g x a ==-+, 因为max ()412g x a =-+,所以()()2max ()412H x g x g x a ≤≤=-+, 因为min ()44f x a =--,所以()()1min ()44H x f x f x a ≥≥=--, 所以44,412A a B a =--=-+, 所以16A B -=-, 故选:A 【点睛】方法点睛:(1)识别二次函数的图象主要从开口方向、对称轴、特殊点对应的函数值这几个方面入手.(2)用数形结合法解决与二次函数图象有关的问题时,要尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样在解题时才不易出错.4.C解析:C 【分析】令函数()218g x x ax =-++,则只需使当[]1,3x ∈-时,()0g x ≥且单调,然后针对()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩两种情况讨论求解. 【详解】由题意可设()218g x x ax =-++,则当[]1,3x ∈-时,()218g x x ax =-++单调,且()0g x ≥恒成立,因为()218g x x ax =-++的对称轴方程为2a x =, 则()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩,解得617a ≤≤或32a --≤≤,即[][]6,173,2a ∈--,则只有14满足题意. 故选:C . 【点睛】本题考查根据复合函数的单调性求参数的取值范围,解答时注意不仅要使原函数在所给区间上单调,且必须使原函数在所给区间上有意义.5.B解析:B 【分析】将函数()f x 的解析式变形为()2()244f x x a x x =-+-+,并构造函数()2()244g a x a x x =-+-+,由题意得出()()1010g g ⎧->⎪⎨>⎪⎩,解此不等式组可得出实数x 的取值范围 【详解】对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零设()()2244g a x a x x =-+-+,即()0g a >在[]1,1a ∈-上恒成立.()g a 在[]1,1a ∈-上是关于a 的一次函数或常数函数,其图象为一条线段.则只需线段的两个端点在x 轴上方,即()()2215601320g x x g x x ⎧-=-+>⎪⎨=-+>⎪⎩,解得3x >或1x < 故选:B 【点睛】关键点睛:本题考查不等式在区间上恒成立问题,解答本题的关键是构造函数()()2244g a x a x x =-+-+,将问题转化为()0g a >在[]1,1a ∈-上恒成立,从而得到()()1010g g ⎧->⎪⎨>⎪⎩,属于中档题.6.C解析:C 【分析】分10a -=、10a -<、10a ->,根据题意可得出关于a 、b 的不等式组,由此可解得32a b +的最大值. 【详解】分以下几种情况讨论:(1)当10a -=时,即当1a =时,()()21f x b x =++在[]1,2上单调递减,可得20b +<,解得2b <-,12b a b -=-≥,可得3b ≥,不合乎题意; (2)当10a -<时,即当1a <时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2121b a +-≤-,可得222b a +≤-,即20a b +≤,可得2b a ≤-,由2b a -≥,可得2a b ≤-, 所以,()()323222436a b b a a b +≤-+⨯-=-+-,当且仅当22b a a b =-⎧⎨=-⎩时,即当2343a b ⎧=-⎪⎪⎨⎪=⎪⎩时,等号成立,则2423232333a b ⎛⎫+≤⨯-+⨯= ⎪⎝⎭; (3)当10a ->时,即当1a >时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2221b a +-≥-,可得42a b +≤,即24b a ≤-,2b a -≥,即2b a ≥+,224a b a ∴+≤≤-,解得0a ≤,不合乎题意.综上所述,32a b +的最大值为23. 故选:C. 【点睛】关键点点睛:根据首项系数为变数的二次函数在区间上的单调性求参数,要对首项系数的符号进行分类讨论,在首项系数不为零的前提下,要根据函数的单调性确定对称轴与区间的位置关系,构建不等式(组)求解.7.D解析:D 【分析】作出函数()f x 的图象,结合图象可得出结论. 【详解】由已知可得(){}min 24,41,2f x x x x =-+++,作出函数()f x 的图象如下图所示:函数()f x 的图象如上图中的实线部分,联立224y x y x =+⎧⎨=-+⎩,解得2383x y ⎧=⎪⎪⎨⎪=⎪⎩,由图象可知,函数()f x 有最大值83,无最小值. 故选:D. 【点睛】关键点点睛:本题考查函数最值的求解,解题的关键就是结合函数()f x 的定义,进而作出函数()f x 的图象,利用图象得出结论.8.C解析:C 【分析】根据函数单调性的定义判断出函数()f x 为()0,∞+上的增函数,进而可得出关于实数b 的不等式组,由此可解得实数b 的取值范围. 【详解】对任意的正实数1x 、2x ,当12x x ≠时,()()()12120x x f x f x -->⎡⎤⎣⎦, 不妨设12x x >,则()()120f x f x ->,即()()12f x f x >, 所以,函数()f x 为()0,∞+上的增函数,则()()120212122512b b b b b -<⎧⎪-⎪≤⎨⎪--+≤+-⎪⎩,解得14b ≤≤. 因此,实数b 的取值范围是[]1,4. 故选:C. 【点睛】思路点睛:利用分段函数的单调性求参数范围,应该各支函数在各自的区间内利用单调性以及函数在间断点处端点值的大小关系得出参数的不等式组,从而解得参数的取值范围.9.C解析:C 【分析】根据题意可得()f x 在[0,)+∞上为减函数,结合奇偶性以及()31f =-可得(|1|)f x f ⇒-|1|3x -,解出x 的取值范围,即可得答案.【详解】函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数, 所以()f x 在(,0)-∞上是增函数,由f (3)1=-,则不等式(1)10(1)1(1)f x f x f x f -+⇒--⇒-(3)(|1|)f x f ⇒-(3)|1|3x ⇒-, 解之可得24x -, 故不等式的解集为[2-,4]. 故选:C . 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.10.A解析:A 【分析】由()0f x x <对0x >或0x <进行讨论,把不等式()0f x x<转化为()0f x >或()0f x <的问题解决,根据()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,把函数值不等式转化为自变量不等式,求得结果. 【详解】 解:()f x 是R 上的奇函数,且在(0,)+∞内是增函数,∴在(,0)-∞内()f x 也是增函数,又(2)0f -=,()20f ∴=,∴当(x ∈-∞,2)(0-⋃,2)时,()0f x <;当(2x ∈-,0)(2⋃,)+∞时,()0f x >;∴()0f x x <的解集是{|20x x -<<或02}x <<. 故选:A . 【点睛】本题考查函数的奇偶性的应用,解决此类问题的关键是理解奇偶函数在关于原点对称的区间的单调性,奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反;11.B解析:B 【分析】构造新函数()()g x xf x =,得出函数()g x 在(0,)+∞为单调递减函数,把()80f x x->,转化为()()220f xf x -<,得到()()2g x g >,结合单调性和定义域,即可求解. 【详解】 由题意,定义在(0,)+∞上的函数()f x 满足()()1122120x f x x f x x x -<-,设()()g x xf x =,可得()()12120g x g x x x -<-,所以函数()g x 在(0,)+∞为单调递减函数,因为()24f =,则()228f =,不等式()80f xx ->,可化为()80xf x x-<,即()80xf x -<,即()()220f xf x -<,即()()2g x g >,可得20x x <⎧⎨>⎩,解得02x <<,所以不等式()80f x x->的解集为()0,2. 故选:B. 【点睛】本题主要考查了利用函数的单调性求解不等式,其中解答中根据已知条件,构造新函数,利用新函数的单调性和特殊点的函数值,得出不等式关系式是解答的关键,着重考查构造思想,以及推理与运算能力.12.C解析:C 【分析】首先根据题意画出()h x 的图象,再根据图象即可得到()h x 的最小值. 【详解】 分别画出2yx ,83y x =,6y x =-的图象, 则函数()h x 的图象为图中实线部分.由图知:函数()h x 的最低点为A ,836y x y x ⎧=⎪⎨⎪=-⎩,解得1848,1111⎛⎫⎪⎝⎭A . 所以()h x 的最小值为4811.故选:C. 【点睛】本题主要考查根据函数的图象求函数的最值,考查了数形结合的思想,属于中档题.二、填空题13.【分析】首先判断函数的单调性依题意只需再对参数分三种情况讨论即可求出参数的取值范围;【详解】解:因为在定义域上单调递增又在定义域上单调递减所以根据复合函数的单调性可得在定义域上单调递减所以在定义域上解析:1,2⎛⎫-∞- ⎪⎝⎭【分析】首先判断函数()f x 的单调性,依题意只需()()12min min f x g x >,再对参数m 分三种情况讨论,即可求出参数的取值范围; 【详解】解:因为xy e =、y =42y x =-在定义域上单调递减,所以根据复合函数的单调性可得y =在定义域上单调递减,所以()x f x e =-[]0,1上单调递增,所以()()001min f x f e ===-对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立, 则只需()()12min min f x g x >因为()g x mx =,[]1,2x ∈,当0m =时()0g x =,而()1min f x =-,不符合题意; 当0m >时,()g x mx =,在[]1,2x ∈上单调递增,则()()min 1g x g m ==,所以1m <-矛盾,舍去;当0m <时,()g x mx =,在[]1,2x ∈上单调递减,则()()min 22g x g m ==,所以210m m <-⎧⎨<⎩解得12m <- 故m 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭故答案为:1,2⎛⎫-∞- ⎪⎝⎭【点睛】本题考查不等式的恒成立与有解问题,可按如下规则转化: 一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .14.且【分析】由中根式内部的代数式大于等于00指数幂的底数不为0联立不等式组求解【详解】由解得且x≠2∴函数的定义域是】且即答案为】且【点睛】本题考查函数的定义域及其求法是基础题解析:{|1x x ≥-且}2x ≠ 【分析】由中根式内部的代数式大于等于0,0指数幂的底数不为0,联立不等式组求解. 【详解】由1020x x +≥⎧⎨-≠⎩,解得1x ≥-且x≠2.∴函数()()02f x x =-的定义域是】{|1x x ≥-且}2x ≠.即答案为】{|1x x ≥-且}2x ≠ 【点睛】本题考查函数的定义域及其求法,是基础题.15.【分析】当时可得可求出结合可求出时的表达式进而可得出答案【详解】当时;当时所以则所以故答案为:【点睛】本题考查分段函数解析式的求法考查学生的推理能力属于中档题解析:1,023,20x x x x +≤≤⎧⎨---≤<⎩【分析】当[)2,0x ∈-时,可得[)20,2x +∈,可求出(2)3f x x +=+,结合()(2)f x f x =-+,可求出[)2,0x ∈-时,()f x 的表达式,进而可得出答案.【详解】当[]0,2x ∈时,()1f x x =+;当[)2,0x ∈-时,[)20,2x +∈,所以(2)3f x x +=+, 则()(2)3f x f x x =-+=--.所以1,02()3,20x x f x x x +≤≤⎧=⎨---≤<⎩.故答案为:1,023,20x x x x +≤≤⎧⎨---≤<⎩. 【点睛】本题考查分段函数解析式的求法,考查学生的推理能力,属于中档题.16.【分析】令由题意得出解出该不等式组即可得出实数的取值范围【详解】对于任意的不等式恒成立即不等式恒成立令则解得或因此实数的取值范围是故答案为:【点睛】本题考查不等式恒成立问题涉及主元思想的应用将问题转 解析:()(),52,-∞-+∞【分析】令()()224f m t m t =-+-,由题意得出()10230f f ⎧⎛⎫>⎪ ⎪⎝⎭⎨⎪>⎩,解出该不等式组,即可得出实数t 的取值范围. 【详解】对于任意的1,32m ⎡⎤∈⎢⎥⎣⎦,不等式224t mt m +>+恒成立,即不等式()2240t m t -+->恒成立,令()()224f m t m t =-+-,则()()()()()()2211524202223324250f t t t t f t t t t ⎧⎛⎫⎛⎫=-+-=-+>⎪ ⎪ ⎪⎝⎭⎝⎭⎨⎪=-+-=-+>⎩, 解得5t <-或2t >,因此,实数t 的取值范围是()(),52,-∞-+∞.故答案为:()(),52,-∞-+∞.【点睛】本题考查不等式恒成立问题,涉及主元思想的应用,将问题转化为一次函数不等式恒成立是解题的关键,考查运算求解能力,属于基础题.17.【分析】先令则求解的值然后再分类讨论求解的值【详解】令则当时有无解当时有解得或所以或当时故无解;当时若则得若则即无解综上所述:故答案为:【点睛】本题考查分段函数的应用考查根据函数值求参难度一般解答时【分析】先令()f a t =,则()2f t =,求解t 的值,然后再分类讨论,求解a 的值. 【详解】令()f a t =,则()2f t =,当0t >时,有22t -=,无解, 当0t ≤时,有2222t t ++=,解得0t =,或2t =-,所以()0f a =或()2f a =-,当()0f a =时,()2222110a a a ++=++>,20a -<,故 ()0f a =无解;当()2f a =-时,若0a >,则22a -=-,得a =若0a ≤,则2222a a ++=-,即2240a a ++=,无解,综上所述:a =【点睛】本题考查分段函数的应用,考查根据函数值求参,难度一般,解答时注意分类讨论思想的运用.18.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8 【解析】∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a =-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.19.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集. 【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =, 作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得,所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃. 故答案为:(3,0)(0,3)-⋃. 【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.20.【分析】分析的奇偶性根据的结果求解出的值【详解】令因为为上的奇函数且也为上的奇函数所以为上的奇函数所以所以且所以故答案为:【点睛】结论点睛:已知(1)当为奇数时且此时为奇函数;(2)当为偶数时为偶函数 解析:12-【分析】分析()()2h x g x =-的奇偶性,根据()()22h h +-的结果求解出()2g -的值. 【详解】令()()()2h x g x af x bx =-=+,因为()f x 为R 上的奇函数,且y bx =也为R 上的奇函数,所以()()2h x g x =-为R 上的奇函数,所以()()220h h +-=, 所以()()22220g g -+--=,且()216g =,所以()212g -=-, 故答案为:12-. 【点睛】结论点睛:已知()(),0nf x x a n Z n =+∈≠,(1)当n 为奇数时,且0a =,此时()f x 为奇函数; (2)当n 为偶数时,()f x 为偶函数.三、解答题21.(1)[4,)-+∞;(2)226,27(),2246,2m m m m g m m m -≤-⎧⎪+-⎪=--<<⎨⎪-≥⎪⎩. 【分析】(1)计算二次函数的对称轴,然后根据单调性可得122m -≤,计算即可. (2)分类讨论112m -≤-,1112m -<-<,112m -≥,分别计算即可. 【详解】(1)由题可知,函数2()7f x x mx m =++-()m R ∈开口向上,对称轴的方程为2mx =-,若使得函数()f x 在[2,4]上单调递增, 则满足122m -≤,解得4m ≥-,即实数m 的取值范围[4,)-+∞. (2)①当112m -≤-即2m ≥时, 函数()y f x =在区间[1,1]-单调递增,所以函数()y f x =的最小值为()(1)6g m f =-=-; ②当1112m -<-<,即22m -<<时, 函数()y f x =在区间11,2m ⎡⎤--⎢⎥⎣⎦单调递减,在区间1,12m ⎡-⎤⎢⎥⎣⎦上单调递增, 所以函数()y f x =的最小值为21()724m g m f m m ⎛⎫=-=-+- ⎪⎝⎭; ③当112m -≥即2m ≤-时, 函数()y f x =在区间[1,1]-单调递减,所以函数()y f x =的最小值为()(1)26g m g m ==-,综上可得,函数的最小值为226,27(),2246,2m m m m g m m m -≤-⎧⎪+-⎪=--<<⎨⎪-≥⎪⎩. 【点睛】结论点睛:二次函数在区间上的最值问题:(1)动轴定区间;(2)定轴动区间;(3)动轴动区间;对本题属于动轴动区间问题需要讨论对称轴与所给区间位置关系.22.(1)()222,02,0x x x f x x x x ⎧-+<=⎨+≥⎩;(2)增函数;(3)14t <-.【分析】(1)当0x <时,0x ->,求出()f x -,根据奇函数得到()f x ; (2)由解析式可直接写出;(3)先根据奇函数的性质化不等式为()()2f m f t m>-,利用单调性脱去“f ”,转化为2t m m <+恒成立,求出2m m +的最小值即可.【详解】(1)当0x <时,0x ->,又()f x 是奇函数, ∴()()()22f x x x f x -=--=-∴()()220f x x x x =-+<,∴()222,02,0x x x f x x x x ⎧-+<=⎨+≥⎩(2)由()f x 的解析式以及二次函数、分段函数的性质可知()f x 为R 上的增函数: (3)由()()210f m f m +->和()f x 是奇函数得()()()22f m f m t f t m>--=-,因为()f x 为R 上的增函数, ∴2m t m >-,221124t m m m ⎛⎫<+=+- ⎪⎝⎭,∴14t <-. 【点睛】方法点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法. 23.(1)不是;证明见详解.(2)∅ 【分析】(1)求出2()1y f u u ==+的值域以及[]()y f g x =的值域,根据题中定义即可判断.(2)根据题意可得221()1x ax g x x x ++=++的值域与u 的取值范围相同,转化为()2211x ax u x x ++=++,从而可得0∆≥,再由12u ≤≤,利用韦达定理即可求解.【详解】(1)1()u g x x x==+(x >0) 不是函数()y f u =的一个“等值域变换”, 证明如下:2()11y f u u ==+≥,()f u ∴的值域为[)1,+∞,又[]22211()13y f g x x x x x ⎛⎫==++=++ ⎪⎝⎭,2212x x +≥=,当且仅当1x =时取等号, []221()35y f g x x x+∴==+≥, 即[]()y f g x =的值域为[)5,+∞, 两函数的值域不同,∴1()u g x x x==+(x >0) 不是函数()y f u =的一个“等值域变换”. (2)()y f u =在定义域[]1,2上为单调函数,∴()y f u =在两端点处取得最值,又221()1x ax u g x x x ++==++是函数函数()y f u =的一个“等值域变换”, ∴[]()y f g x =与()y f u =值域相同,()12g x ∴≤≤,即()g x 的值域与u 的取值范围相同,由2211x ax u x x ++=++得()2211x ax u x x ++=++,()()2110u x a u x u ∴-+-+-=有根,()()22410a u u ∴∆=---≥,即()2232840u a u a +-+-≤,又12u ≤≤,1,2∴是方程()2232840u a u a +-+-=的两个根,228121324123a a a a a -⎧+=-⎧⎪=-⎪⎪∴⇒⇒∈∅⎨⎨-⎪⎪∈∅⨯=⎩⎪⎩, 所以实数a 的取值范围是∅. 【点睛】方法点睛:本题考查了函数的值域求法,常见方法如下: (1)利用函数的单调性求值域. (2)对于分式型的值域利用分离常数法.(3)换元法. (4)数形结合法. (5)判别式法.24.(1)1;(2)82[,]35-. 【分析】(1)()f x 为R 上的奇函数,由()00f =得解;(2)由“任意[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x =成立”得到等价命题是 “()f x 在[]1,2-上的取值集合是()g x 在[]0,3上的取值集合的子集”,分别求出两个函数的值域得解. 【详解】(1)因为()f x 为R 上的奇函数, 所以()00f =,即102a-=,解得1a = (2)因为[]20,3x ∈,且()g x 在[]0,1上是减函数,在[]1,3上为增函数 所以()g x 在[]0,3上的取值集合为[]1,3m m -+.由122()11221x x x f x -==-+++得()f x 是减函数, 所以()f x 在[]1,2-上是减函数所以()f x 在[]1,2-上的取值集合为31[,]53-.由“任意[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x =成立”()f x 在[]1,2-上的取值集合是()g x 在[]0,3上的取值集合的子集,即[]31[,]1,353m m -⊆-+. 则有315m -≤-,且133m +≥,解得:8235m -≤≤. 即实数m 的取值范围是82[,]35-. 【点睛】探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围;类似的,对于不等式()()0(0)f x g m -≥≤,也可仿效此法.25.(1)[]1,0-、[]0,1、[]1,1-;(2)2;(2)[]1,0-和[]1,3-. 【分析】(1)本题可令3x x =,解得0x =或±1,然后根据函数()3f x x =的单调性以及“和谐区间”定义即可得出结果;(2)本题首先可将函数转化为()321,23321,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,然后令312x x -=,解得25x =或2,最后绘出函数图像,结合函数图像即可得出结果; (3)本题可令22x x x -=,解得0x =或3,然后结合函数图像即可得出结果.【详解】(1)函数()3f x x =是增函数,定义域为R , 令3x x =,解得0x =或±1,故函数()3f x x =的所有“和谐区间”为[]1,0-、[]0,1、[]1,1-. (2)因为()312f x x =-,所以()321,23321,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩, 因为[]()0,0m m >为函数()312f x x =-的一个“和谐区间”, 所以可令312x x -=,解得25x =或2, 如图所示,绘出函数图像:结合“和谐区间”的定义易知,当2x =时满足题意,故m 的值为2.(3)函数()22f x x x =-,定义域为R , 令22x x x -=,解得0x =或3,如图所示,绘出函数图像:结合图像易知,函数()f x 的所有“和谐区间”为[]1,0-和[]1,3-.【点睛】关键点点睛:本题考查函数新定义,能否结合题意明确函数新定义的含义是解决本题的关键,在解决函数类的问题时,合理利用函数图像可以给解题带来很大帮助,考查数形结合思想,是中档题.26.(1)()02f =-;()22f x x x =+-;(2)2a ≤. 【分析】(1)通过对抽象函数赋值,令1,1x y =-=进行求解,即得(0)f ;令0y =可消去y ,再结合()0f 的值,即求得解析式;(2)先讨论1x =时不等式恒成立,21x 时,再通过分离参数法求得a 的取值范围即可.【详解】解:(1)令1,1x y =-=,可得()()()01121f f -=--++,又由()10f =,解得()02f =-;令0y =,得()()()01f x f x x -=+,又因()02f =-,解得()22f x x x =+-;(2)当21x -≤≤时,不等式()(1)5f x a a x -≥-- 恒成立,即()213x a x -≤+,若1x =时不等式即04≤,显然成立;若21x 时,10x ->,故231x a x +≤-恒成立,只需2min31x a x ⎛⎫+≤ ⎪-⎝⎭, 设()()()22121434()12111x x x g x x x x x---++===-+----,设(]1,0,3t x t =-∈ 则4()2g t t t=+-是对勾函数,在()0,2递减,在()2,3递增,故2t =时,即1x =-时min ()2g x =,故2a ≤,综上, a 的取值范围为2a ≤.【点睛】方法点睛:抽象函数通常利用赋值法求函数值或者求解析式;二次函数含参恒成立的问题,一般是通过分离参数进行求解,当然也可以根据判别式法进行求解,视具体情况而定.。

北师大版高中数学必修一 第二章 函数 测试题.docx

北师大版高中数学必修一 第二章 函数 测试题.docx

第二章 函数 测试题(时间:120分钟 满分150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数21)(--=x x x f 的定义域为( ) A .[1,2)∪(2,+∞) B.(1,+∞) C.[1,2) D.[1,+∞)2.下列四组函数,表示同一函数的是 ( ) A. 22)(,)()(x x g x x f == B. 2(1)(),()11x f x g x x x -==-- C. 4)(,22)(2-=-⋅+=x x g x x x f D. 33)(,)(x x g x x f ==3.已知函数()n f y =,满足()81=f ,且()()71+=+n f n f ,n N +∈.则()3f =.( )A . 7B . 15C . 22D . 284.设()f x 是满足f(x+2)=f(x)的奇函数,当01x ≤≤时,()2(1)f x x x =-,则)25(-f =( ) A.12- B.14- C.14 D.12 5.已知函数f (x )的定义域为[1,2],则函数f (2x+1)的定义域为( )A .[3,5]B .[12,1]C .[1,2]D .[0,12]A .个B .个C .个D .个7.下列函数中:①31xy =;②23-=x y ;③24x x y +=;④32x y =是幂函数的个数为 ( )A.1B.2C.3D.48.已知函数()f x 是奇函数,当0x >时,()()1f x x x =+;当0x <时,()f x =( )A. ()1x x --B. ()1x x -C. ()1x x -+D. ()1x x +9.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是 ( )A.{}|303x x x -<<>或B.{}|303x x x <-<<或C.{}|33x x x <->或D.{}|3003x x x -<<<<或10.已知函数2)1(1)(---=x x f ,若2021<<<x x ,则( ) A.11)(x x f > 22)(x x f B.11)(x x f = 22)(x x f C .11)(x x f < 22)(x x f D.无法判断11)(x x f 与 22)(x x f 的大小 二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上) 11.设函数()f x 是定义在(,0)(0,)-∞+∞U 上的奇函数,且当0x >时,1()12f x x =+,则不等式()f x x >的解集用区间表示为_________.12.函数)1(11)(x x x f --=的最大值是 . 13.若()f x 是奇函数,()g x 是偶函数,且1()()1f x g x x +=-,则()f x = . 14.对于定义在R 上的函数()x f ,有如下四个命题:① 若()00=f ,则函数()x f 是奇函数;②若()(),44f f ≠-则函数()x f 不是偶函数; ③ 若()(),40f f <则函数()x f 是R 上的增函数;④若()(),40f f <则函数()x f 不是R 上的减函数.其中正确的命题有______________.(写出你认为正确的所有命题的序号).15.一次研究性课堂上,老师给出函数()1||x f x x =+,甲、乙、丙三位同学在研究此函数的性质时分别给出下列命题:甲:函数()f x 为偶函数;乙:函数)1,1()(-的值域为x f ;丙:若21x x ≠则一定有)()(21x f x f ≠你认为上述三个命题中正确的个数有 个.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)16. (12分)已知函数21()1f x x =-. (1)设()f x 的定义域为A ,求集合A ;(2)判断函数()f x 在(1,+∞)上单调性,并用单调性的定义加以证明.17.(12分)已知函数)(x f 是定义在R 上的偶函数,当0≥x 时,12)(2--=x x x f .(1)求)(x f 的函数解析式,并用分段函数的形式给出;(2)作出函数)(x f 的简图;(3)写出函数)(x f 的单调区间及最值.18.(12分)某商店经销一种奥运纪念品,据预测,在元旦后的20天内的每天销售量(件)与价格(元)均为时间t (天)的函数,且第t 天的销售量近似满足g (t )=80-2t (件),第t 天的价格近似满足1()20|10|2f t t =--(元). (1)试写出该纪念品的日销售额y 与时间t (0≤t ≤20)的函数关系式;(2)求该纪念品的日销售额y 的最大值与最小值.19.(12分)已知函数),(1)(*N b a x b ax x f ∈+-=,21)1(=f 且2)2(<f . (1)求b a ,的值; (2)判断并证明函数)(x f y =在区间),1(+∞-上的单调性.20.(13分)已知函数()2m f x x x=-,且()742f =. (1)求实数m 的值;(2)判定函数()f x 的奇偶性;(3)判断函数()f x 在()0,+∞上的单调性,并给予证明.21.(14分)已知函数2()2(3)12f x x a x a =-+++-,()(12)g x x x a =-+,其中a R ∈.(1)若函数()f x 是偶函数,求函数()f x 在区间[1,3]-上的最小值;(2)用函数的单调性的定义证明:当1a ≤时,()f x 在区间[1,)+∞上为减函数;(3)当[1,3]x ∈-,函数()f x 的图像恒在函数()g x 图像上方,求实数a 的取值范围.参考答案一、选择题1. A 2 . D 3. C 4. A 5.D 6. A 7. B 8.B 9.D 10.C 提示:1.要使函数有意义,需要10,20x x -≥⎧⎨-≠⎩解得函数的定义域为[1,2)∪(2,+∞). 2. A 中()f x 的定义域为[)0,+∞,()g x 的定义域为R ;B 中()f x 的定义域为{}1x x ≠()g x 的定义域为R ;C 中()f x 的定义域为[)2,+∞,()g x 的定义域为(][),22,-∞-⋃+∞;而D 中的(),g x x x R ==∈与()f x 完全相同.3.()2f =8+7=15,()3f =15+7=22,选C.4.5511111()(2)()()2(1)2222222f f f f -=-=-=-=-⨯⨯-=-,故选A. 5.因为原函数的定义域为[1,2],,所以1≤2x+1≤2,得0≤x≤12,函数f (2x+1)的定义域为[0,12].故选D.6.在同一直角坐标系中作出图像,发现有4个交点.故选A.7.由幂函数的定义可知①④是幂函数,故选B.8.设0x <,则0x ->,所以()()1f x x x -=--,又函数()f x 是奇函数,所以()()()1f x f x x x =--=-.9.法1:因为()f x 是奇函数,在(0,)+∞内是增函数,所以在(),0-∞也是增函数,因(3)0f -=,所以()30f =,所以当x ∈(),3-∞-或x ∈(0,3)时,有()0f x <;当x ∈()3,0-或x ∈(3,)+∞时,有()0f x >,所以()0x f x ⋅<的解集为{}|3003x x x -<<<<或法2:由()f x 是奇函数,则()()g x xf x =是偶函数,显然能使()0x f x ⋅<的解集应该是关于原点对称的,由(3)(3)0f f -=-=,且()f x 在(0,)+∞内是增函数,所以x ∈(0,3)时,有()0f x <,也有()0x f x ⋅<,又由对称性可得解集.10. 因为()f x ==,当02x <<时,()f x x ==是增函数,则当2021<<<x x 时,11)(x x f < 22)(x x f . 二、填空题11. (,2)(0,2)-∞-U 12.34 13. 21x x - 1 4. ②④ 15.2 提示:11.因为函数()f x 是定义在(,0)(0,)-∞+∞U 上的奇函数,且当0x >时,1()12f x x =+, 所以当0x <时,-0x >,11()()[()1]122f x f x x x =--=--+=-;由0,112x x x >⎧⎪⎨+>⎪⎩得02x <<;由0,112x x x <⎧⎪⎨->⎪⎩得2x <-,故答案为(,2)(0,2)-∞-U . 12.11)1(11)(2+-=--=x x x x x f ,故当21=x 时34121411)(max =+-=x f . 13.因为1()()1f x g x x +=-,又因为()f x 是奇函数,()g x 是偶函数,所以 ()()11g x f x x -=--,两式相减消去()g x 整理可得.14.①例如2()f x x =满足(0)0f =,但函数()f x 不是奇函数;故①错误;②若()(),44f f ≠-则函数()x f 不是偶函数;正确;③例如2()f x x =,(0)(4)f f <,但函数()f x 在R 上不是增函数;故③错误;④若(0)(4)f f <,则函数()f x 不是R 上的减函数,正确.所以填②④. 15.,01()0,01,01x x x x f x x x x x x⎧>⎪+⎪===⎨+⎪⎪<-⎩因为()()f x f x -=-,所以函数是奇函数,甲错.先研究当x>0时,()1x f x x=+111x =-+.所以()(0,1)f x ∈.所以乙是正确的.由x>0时111x-+是递增的.所以丙是正确的.所以填2. 三、解答题 16.解:(1)由210x -≠,得1x ≠±, 所以函数21()1f x x =-的定义域为{|1}x x ∈≠±R (2)函数21()1f x x =-在(1,)+∞上单调递减. 证明:任取12,(1,)x x ∈+∞,设12x x <, 则210,x x ->12122122222112()()1111(1)(1)x x x x y y x x x x -+-=-=---- . 121,1,x x >>Q 22121210,10,0.x x x x ∴->->+>又12x x <,所以120,x x -< 故210.y y -<因此,函数21()1f x x =-在(1,)+∞上单调递减. 17.解:(1)当0<x 时,0>-x ,则121)(2)()(22-+=----=-x x x x x f )(x f Θ是偶函数 ,12)()(2-+=-=∴x x x f x f .所以2221,0()21,0x x x f x x x x ⎧--≥⎪=⎨+-<⎪⎩. (2)函数)(x f 的简图如图.(3)单调增区间为[]0,1-和)[∞+,1,单调减区间为](1,-∞-和][1,0,当1=x 或1-时,)(x f 有最小值-2 .18.解:(1)1()()(802)(20|10|)(40)(40|10|)2y g t f t t t t t =⋅=-⋅--=--- =(30)(40),(010),(40)(50),(1020).t t t t t t +-<<⎧⎨--⎩≤≤ (2)当0<t <10时,y 的取值范围是[1200,1225],在t =5时,y 取得最大值为1225; 当10≤t ≤20时,y 的取值范围是[600,1200],在t =20时,y 取得最小值为600. 所以第5天,日销售额y 取得最大,为1225元;第20天,日销售额y 取得最小,为600元.答:日销售额y 最大为1225元;最小为600元.19.解:(1)因为212)1(=-=b a f ,21+=b a ,由232)2(<-=b a f ,23<∴b ,又*,N b a ∈∴,1=∴b ,1=a ,11)(+-=x x x f . (2)由(1)得11)(+-=x x x f ,函数在),1(+∞-单调递增. 证明:任取21,x x 且211x x <<-,)1111()()11(11)()(1221221121+-++-=+--+-=-x x x x x x x x x f x f ])1)(1(11)[()1)(1()(2121212121+++-=++-+-=x x x x x x x x x x 0)1)(1(11,0,1212121>+++<-∴<<-x x x x x x Θ, 0])1)(1(11)[(2121<+++-∴x x x x ,即)()(21x f x f <,故函数11)(+-=x x x f 在),1(+∞-上单调递增. 20.解:(1)因为()742f =,所以27442m -=,所以1m =. (2)因为()f x 的定义域为{|0}x x ≠,又()()22f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭, 所以函数()f x 是奇函数.(3)任取120x x >>,则()()()12121212122221f x f x x x x x x x x x ⎛⎫⎛⎫-=---=-+ ⎪ ⎪⎝⎭⎝⎭, 因为120x x >>,所以121220,10x x x x ->+>,所以()()12f x f x >, 所以函数()f x 在()0,+∞上为单调增函数.21.解:(1)Q 函数()f x 是偶函数,()()f x f x ∴-=,222()(3)()122(3)12x a x a x a x a ∴--++⋅-+-=-+++-,(3)3,3a a a ∴-+=+∴=-,2()27f x x ∴=-+ .即函数()f x 的图象是顶点为(0,7),对称轴为y 且开口向下的抛物线, ()f x ∴在区间[1,0]-上递增,在区间[0,3]上递减.又22(3)23711,(1)2(1)75f f =-⨯+=--=-⨯-+=Q , ∴ 函数()f x 在区间[1,3]-上的最小值为11-.(2)设任意12,[1,)x x ∈+∞,且12x x <,则22212211()()[2(3)12][2(3)12]f x f x x a x a x a x a -=-+++---+++- 2212212()(3)()x x a x x =-++-1212()[2()(3)]x x x x a =-+-+ .2112121,0,2()4x x x x x x >≥∴-<+>Q .又121,34,2()(3)0a a x x a ≤∴+≤∴+-+>Q .2121()()0,()()f x f x f x f x ∴-<<即.∴当1a ≤时,函数()f x 在区间[1,)+∞上为减函数.(3)对于[1,3]x ∈-,函数()f x 的图像恒在函数()g x 图像上方,等价不等式 22(3)12x a x a -+++->(12)x x a -+在[1,3]x ∈-上恒成立,即(2)130a x a ++->在[1,3]x ∈-上恒成立,(2)(1)130(2)3130a a a a +⋅-+->⎧∴⎨+⋅+->⎩,解得14a <-, 所以所求实数a 的取值范围为1(,)4-∞-.。

北师大版高中数学必修一 第二章 函数 测试题

北师大版高中数学必修一 第二章 函数 测试题

高中数学学习材料 (灿若寒星 精心整理制作)第二章 函数 测试题(时间:120分钟 满分150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数21)(--=x x x f 的定义域为( ) A .[1,2)∪(2,+∞) B.(1,+∞) C.[1,2) D.[1,+∞) 2.下列四组函数,表示同一函数的是 ( )A. 22)(,)()(x x g x x f == B. 2(1)(),()11x f x g x x x -==-- C. 4)(,22)(2-=-⋅+=x x g x x x f D. 33)(,)(x x g x x f ==3.已知函数()n f y =,满足()81=f ,且()()71+=+n f n f ,n N +∈.则()3f =.( )A . 7B . 15C . 22D . 284.设()f x 是满足f(x+2)=f(x)的奇函数,当01x ≤≤时,()2(1)f x x x =-,则)25(-f =( )A.12-B.14-C.14D.125.已知函数f (x )的定义域为[1,2],则函数f (2x+1)的定义域为( )A .[3,5]B .[12,1]C .[1,2]D .[0,12]6.直线3y =与函数26y x x =-的图象的交点个数为( ) A .4个 B .3个 C .2个 D .1个 7.下列函数中:①31xy =;②23-=x y ;③24x x y +=;④32x y =是幂函数的个数为 ( )A.1B.2C.3D.48.已知函数()f x 是奇函数,当0x >时,()()1f x x x =+;当0x <时,()f x = ( )A. ()1x x --B. ()1x x -C. ()1x x -+D. ()1x x +9.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是 ( )A.{}|303x x x -<<>或B.{}|303x x x <-<<或C.{}|33x x x <->或D.{}|3003x x x -<<<<或10.已知函数2)1(1)(---=x x f ,若2021<<<x x ,则( ) A.11)(x x f > 22)(x x f B.11)(x x f = 22)(x x f C .11)(x x f < 22)(x x f D.无法判断11)(x x f 与 22)(x x f 的大小 二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上) 11.设函数()f x 是定义在(,0)(0,)-∞+∞上的奇函数,且当0x >时,1()12f x x =+,则不等式()f x x >的解集用区间表示为_________. 12.函数)1(11)(x x x f --=的最大值是 .13.若()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x +=-,则()f x = . 14.对于定义在R 上的函数()x f ,有如下四个命题:① 若()00=f ,则函数()x f 是奇函数;②若()(),44f f ≠-则函数()x f 不是偶函数; ③ 若()(),40f f <则函数()x f 是R 上的增函数;④若()(),40f f <则函数()x f 不是R 上的减函数.其中正确的命题有______________.(写出你认为正确的所有命题的序号).15.一次研究性课堂上,老师给出函数()1||xf x x =+,甲、乙、丙三位同学在研究此函数的性质时分别给出下列命题: 甲:函数()f x 为偶函数; 乙:函数)1,1()(-的值域为x f ; 丙:若21x x ≠则一定有)()(21x f x f ≠你认为上述三个命题中正确的个数有 个.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16. (12分)已知函数21()1f x x =-. (1)设()f x 的定义域为A ,求集合A ;(2)判断函数()f x 在(1,+∞)上单调性,并用单调性的定义加以证明.17.(12分)已知函数)(x f 是定义在R 上的偶函数,当0≥x 时,12)(2--=x x x f . (1)求)(x f 的函数解析式,并用分段函数的形式给出; (2)作出函数)(x f 的简图;(3)写出函数)(x f 的单调区间及最值.18.(12分)某商店经销一种奥运纪念品,据预测,在元旦后的20天内的每天销售量(件)与价格(元)均为时间t (天)的函数,且第t 天的销售量近似满足g (t )=80-2t (件),第t 天的价格近似满足1()20|10|2f t t =--(元).(1)试写出该纪念品的日销售额y 与时间t (0≤t ≤20)的函数关系式; (2)求该纪念品的日销售额y 的最大值与最小值. 19.(12分)已知函数),(1)(*N b a x b ax x f ∈+-=,21)1(=f 且2)2(<f .(1)求b a ,的值;(2)判断并证明函数)(x f y =在区间),1(+∞-上的单调性. 20.(13分)已知函数()2m f x x x=-,且()742f =.(1)求实数m 的值;(2)判定函数()f x 的奇偶性;(3)判断函数()f x 在()0,+∞上的单调性,并给予证明.21.(14分)已知函数2()2(3)12f x x a x a =-+++-,()(12)g x x x a =-+,其中a R ∈.(1)若函数()f x 是偶函数,求函数()f x 在区间[1,3]-上的最小值;(2)用函数的单调性的定义证明:当1a ≤时,()f x 在区间[1,)+∞上为减函数; (3)当[1,3]x ∈-,函数()f x 的图像恒在函数()g x 图像上方,求实数a 的取值范围.参考答案一、选择题1. A 2 . D 3. C 4. A 5.D 6. A 7. B 8.B 9.D 10.C 提示:1.要使函数有意义,需要10,20x x -≥⎧⎨-≠⎩解得函数的定义域为[1,2)∪(2,+∞).2. A 中()f x 的定义域为[)0,+∞,()g x 的定义域为R ;B 中()f x 的定义域为{}1x x ≠()g x 的定义域为R ;C 中()f x 的定义域为[)2,+∞,()g x 的定义域为(][),22,-∞-⋃+∞;而D 中的()33,g x x x x R ==∈与()f x 完全相同.3.()2f =8+7=15,()3f =15+7=22,选C.4.5511111()(2)()()2(1)2222222f f f f -=-=-=-=-⨯⨯-=-,故选A.5.因为原函数的定义域为[1,2],,所以1≤2x+1≤2,得0≤x≤12,函数f (2x+1)的定义域为[0,12].故选D.6.在同一直角坐标系中作出图像,发现有4个交点.故选A. 7.由幂函数的定义可知①④是幂函数,故选B.8.设0x <,则0x ->,所以()()1f x x x -=--,又函数()f x 是奇函数,所以()()()1f x f x x x =--=-.9.法1:因为()f x 是奇函数,在(0,)+∞内是增函数,所以在(),0-∞也是增函数,因(3)0f -=,所以()30f =,所以当x ∈(),3-∞-或x ∈(0,3)时,有()0f x <;当x ∈()3,0-或x ∈(3,)+∞时,有()0f x >,所以()0x f x ⋅<的解集为{}|3003x x x -<<<<或法2:由()f x 是奇函数,则()()g x xf x =是偶函数,显然能使()0x f x ⋅<的解集应该是关于原点对称的,由(3)(3)0f f -=-=,且()f x 在(0,)+∞内是增函数,所以x ∈(0,3)时,有()0f x <,也有()0x f x ⋅<,又由对称性可得解集.10. 因为22()1212f x x x x x =--+-=--+,当02x <<时,2()22f x x xx x xx-+=-=--+是增函数,则当2021<<<x x 时,11)(x x f < 22)(x x f . 二、填空题11. (,2)(0,2)-∞- 12. 34 13. 21x x - 1 4. ②④ 15.2提示:11.因为函数()f x 是定义在(,0)(0,)-∞+∞上的奇函数,且当0x >时,1()12f x x =+, 所以当0x <时,-0x >,11()()[()1]122f x f x x x =--=--+=-; 由0,112x x x >⎧⎪⎨+>⎪⎩得02x <<;由0,112x x x <⎧⎪⎨->⎪⎩得2x <-,故答案为(,2)(0,2)-∞-. 12.11)1(11)(2+-=--=x x x x x f ,故当21=x 时34121411)(max =+-=x f . 13.因为1()()1f x g x x +=-,又因为()f x 是奇函数,()g x 是偶函数,所以()()11g x f x x -=--,两式相减消去()g x 整理可得.14.①例如2()f x x =满足(0)0f =,但函数()f x 不是奇函数;故①错误; ②若()(),44f f ≠-则函数()x f 不是偶函数;正确;③例如2()f x x =,(0)(4)f f <,但函数()f x 在R 上不是增函数;故③错误; ④若(0)(4)f f <,则函数()f x 不是R 上的减函数,正确. 所以填②④.15.,01()0,01,01xx x xf x x x x x x⎧>⎪+⎪===⎨+⎪⎪<-⎩因为()()f x f x -=-,所以函数是奇函数,甲错.先研究当x>0时,()1x f x x=+111x =-+.所以()(0,1)f x ∈.所以乙是正确的.由x>0时111x-+是递增的.所以丙是正确的.所以填2. 三、解答题16.解:(1)由210x -≠,得1x ≠±, 所以函数21()1f x x =-的定义域为{|1}x x ∈≠±R (2)函数21()1f x x =-在(1,)+∞上单调递减. 证明:任取12,(1,)x x ∈+∞,设12x x <, 则210,x x ->12122122222112()()1111(1)(1)x x x x y y x x x x -+-=-=---- . 121,1,x x >> 22121210,10,0.x x x x ∴->->+> 又12x x <,所以120,x x -< 故210.y y -< 因此,函数21()1f x x =-在(1,)+∞上单调递减. 17.解:(1)当0<x 时,0>-x , 则121)(2)()(22-+=----=-x x x x x f)(x f 是偶函数 ,12)()(2-+=-=∴x x x f x f .所以2221,0()21,0x x x f x x x x ⎧--≥⎪=⎨+-<⎪⎩.(2)函数)(x f 的简图如图.(3)单调增区间为[]0,1-和)[∞+,1,单调减区间为](1,-∞-和][1,0,当1=x 或1-时,)(x f 有最小值-2 .18.解:(1)1()()(802)(20|10|)(40)(40|10|)2y g t f t t t t t =⋅=-⋅--=---=(30)(40),(010),(40)(50),(1020).t t t t t t +-<<⎧⎨--⎩≤≤(2)当0<t <10时,y 的取值范围是[1200,1225],在t =5时,y 取得最大值为1225; 当10≤t ≤20时,y 的取值范围是[600,1200],在t =20时,y 取得最小值为600. 所以第5天,日销售额y 取得最大,为1225元;第20天,日销售额y 取得最小,为600元.答:日销售额y 最大为1225元;最小为600元.19.解:(1)因为212)1(=-=b a f ,21+=b a ,由232)2(<-=b a f ,23<∴b ,又*,N b a ∈∴,1=∴b ,1=a ,11)(+-=x x x f .(2)由(1)得11)(+-=x x x f ,函数在),1(+∞-单调递增.证明:任取21,x x 且211x x <<-,)1111()()11(11)()(1221221121+-++-=+--+-=-x x x x x x x x x f x f ])1)(1(11)[()1)(1()(2121212121+++-=++-+-=x x x x x x x x x x0)1)(1(11,0,1212121>+++<-∴<<-x x x x x x ,0])1)(1(11)[(2121<+++-∴x x x x ,即)()(21x f x f <,故函数11)(+-=x x x f 在),1(+∞-上单调递增. 20.解:(1)因为()742f =,所以27442m -=,所以1m =.(2)因为()f x 的定义域为{|0}x x ≠,又()()22f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭, 所以函数()f x 是奇函数. (3)任取120x x >>,则()()()12121212122221f x f x x x x x x x x x ⎛⎫⎛⎫-=---=-+ ⎪⎪⎝⎭⎝⎭, 因为120x x >>,所以121220,10x x x x ->+>,所以()()12f x f x >, 所以函数()f x 在()0,+∞上为单调增函数. 21.解:(1)函数()f x 是偶函数,()()f x f x ∴-=,222()(3)()122(3)12x a x a x a x a ∴--++⋅-+-=-+++-,(3)3,3a a a ∴-+=+∴=-, 2()27f x x ∴=-+ .即函数()f x 的图象是顶点为(0,7),对称轴为y 且开口向下的抛物线,()f x ∴在区间[1,0]-上递增,在区间[0,3]上递减.又22(3)23711,(1)2(1)75f f =-⨯+=--=-⨯-+=,∴ 函数()f x 在区间[1,3]-上的最小值为11-.(2)设任意12,[1,)x x ∈+∞,且12x x <,则22212211()()[2(3)12][2(3)12]f x f x x a x a x a x a -=-+++---+++- 2212212()(3)()x x a x x =-++-1212()[2()(3)]x x x x a =-+-+ .2112121,0,2()4x x x x x x >≥∴-<+>.又121,34,2()(3)0a a x x a ≤∴+≤∴+-+>.2121()()0,()()f x f x f x f x ∴-<<即.∴当1a ≤时,函数()f x 在区间[1,)+∞上为减函数.(3)对于[1,3]x ∈-,函数()f x 的图像恒在函数()g x 图像上方,等价不等式22(3)12x a x a -+++->(12)x x a -+在[1,3]x ∈-上恒成立,即(2)130a x a ++->在[1,3]x ∈-上恒成立,(2)(1)130(2)3130a a a a +⋅-+->⎧∴⎨+⋅+->⎩,解得14a <-, 所以所求实数a 的取值范围为1(,)4-∞-.。

北师大版高中数学必修1第二章函数章末综合测试题【含答案】(1)

北师大版高中数学必修1第二章函数章末综合测试题【含答案】(1)

7、已知偶函数f(x)在区间[0,+∞)上单调增加,则满足f(2x-1)<f()的x的取值范围是(A.(1高中数学必修1第二章函数本章测试题(时间120分钟满分150分)一、选择题(每小题5分,共50分)1、函数y=2x+1+3-4x的定义域为()1313131A.(-,)B.[-,]C.(-∞,]⋃[,+∞)D.(-,0)⋃(0,+∞)24242422、下列对应关系f中,不是从集合A到集合B的映射的是()A.A={x x是锐角},B=(0,1),f:求正弦;B.A=R,B=R,f:取绝对值C.A=R+,B=R,f:求平方;D.A=R,B=R,f:取倒数3、函数y=2x-3的单调增区间是()A.(-∞,-3]B.[32,+∞) C.(-∞,1) D.[-1,+∞)4、已知函数f(x)=x2,那么f(x+1)等于()A.x2+x+2B.x2+1C.x2+2x+2D.x2+2x+15、若函数f(x+1)的定义域是[-2,3],则函数f(2x-1)的定义域是()A.[0,52] B.[-1,4] C.[-5,5] D.[-3,7]6、向高为H的水瓶中注水,注满为止。

如果注水量V与水深h的函数关系式如图所示,那么水瓶的形状是()VO H h(A)(B)(C)(D)132121212,) B.[,) C.(,) D.[,)333323238、定义在[1+a,2]上的偶函数f(x)=ax2+bx-2在区间[1,2]上是()A.增函数B.减函数C.先增后减函数D.先减后增函数)A. 直线 x =-1 对称B. 直线 x =1对称C. 直线 x = 对称D. 直线 x =- 对称12、已知函数 f ( x ) 为奇函数,当 x >0 时, f ( x )=x 2+ ,则当 x <0 时, f ( x ) =__________. (17、已知函数 f ( x )=1+9、已知函数 y =f ( x ) 是偶函数, y =f ( x -2) 在[0,2]上是单调减函数,则下列不等式正确的是 ()A. f (-1)>f (2)>f (0)B. f (-1)<f (0)<f (2)C. f (0)<f (-1)<f (2)D. f (2)<f (-1)<f (0)10、若函数 y =f ( x -1) 是偶函数,则函数 y =f ( x ) 的图像关于 ()1 12 2二、填空题(每小题 5 分,共 30 分)11、若幂函数 f ( x ) 的图像经过(- 2 , 2 ),则 f (4)=______.1 x13、已知 f ( x +1)=x +2 x ,则 f ( x ) =__________.14、函数 f ( x )= -x 2-2 x +3 的单调减区间是__________.15、若函数 f ( x ) = ( x +a)(bx +2a) (常数 a ,b ∈ R )是偶函数,且它的值域为 -∞,4],则该函数的解析式为 f ( x ) =__________.16、张老师给出一个函数 y =f ( x ) ,让三个学生甲、乙、丙各指出这个函数的一个性质.甲:对于 x ∈ R ,都有 f (1+x)=f (1-x) ;乙:在(-∞,0)上为减函数;丙: f (0)<0请写出一个符合条件的函数解析式__________________.三、解答题(第 17、18 题各 10 分,第 19、20、21 题各 12 分,第 22 题 14 分,共 70 分)丨x 丨-x2(-2<x ≤ 2 ).(1)用分段函数的形式表示该函数; (2)画出该函数的图像;(3)写出该函数的值域、单调区间.18.证明函数f(x)=3x+1在[3,5]上单调递减,并求函数在[3,5]的最大值和最小值。

北师大版高中数学必修一第1、2章综合测试题.docx

北师大版高中数学必修一第1、2章综合测试题.docx

高中数学学习材料唐玲出品第一、二章综合测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={x|-2<x<3},则下列结论正确的是()A.2.5∈M B.0⊆MC.∅∈M D.集合M是有限集[答案] A[解析]因为-2<2.5<3,所以2.5是集合M中的元素,即2.5∈M.2.(2014·山东文,2)设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2)C.[1,2) D.(1,4)[答案] C[解析]A={x|x2-2x<0}={x|0<x<2},B={x|1≤x≤4},∴A∩B={x|1≤x≤2},故选C.3.下面四个结论:①偶函数的图像一定与y轴相交;②奇函数的图像一定经过原点;③偶函数的图像关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R).其中正确命题的个数是()A.1B.2C.3D.4[答案] A[解析]偶函数的图像关于y轴对称,但不一定与y轴相交.反例:y=x0,故①错误,③正确.奇函数的图像关于原点对称,但不一定经过原点. 反例:y =x -1,故②错误.若y =f (x )既是奇函数又是偶函数, 由定义可得f (x )=0,但未必x ∈R .反例:f (x )=1-x 2+x 2-1,其定义域为{-1,1},故④错误.∴选A. 4.已知函数f (x )=1+x 21-x 2,则( )A .f (x )是奇函数且f (1x )=-f (x )B .f (x )是奇函数且f (1x )=f (x )C .f (x )是偶函数且f (1x )=-f (x )D .f (x )是偶函数且f (1x )=f (x )[答案] C[解析] f (-x )=1+(-x )21-(-x )2=1+x 21-x 2=f (x ),又f (1x )=1+(1x )21-(1x)2=-(1+x 21-x 2)=-f (x ).故选C.5.f (x )=⎩⎪⎨⎪⎧x 2-1,|x |≥1,1-x 2,|x |<1,f (33)的值为( ) A .-23B .13C.23 D .43[答案] C [解析] ∵|33|<1,则应代入f (x )=1-x 2, 即f (33)=1-13=23. 6.若f [g (x )]=6x +3,且g (x )=2x +1,则f (x )=( ) A .3 B .3x C .6x +3 D .6x +1[答案] B[解析] 由f [g (x )]=f (2x +1)=6x +3=3(2x +1),知f (x )=3x .7.(2013·浙江高考)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( )A .(-2,1]B .(-∞,-4]C .(-∞,1]D .[1,+∞)[答案] C[解析] 本题考查集合的运算,由条件易知∁R S ={x |x ≤-2},T ={x |-4≤x ≤1},所以∁R S ∪T ={x |x ≤1}.8.若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( )A .[0,1)B .[0,1]C .[0,1)∪(1,4]D .(0,1)[答案] A[解析] 由题意知:⎩⎪⎨⎪⎧0≤2x ≤2x ≠1∴0≤x <1,故函数定义域为[0,1).9.已知定义在R 上的奇函数f (x ),在[0,+∞)上单调递减,且f (2-a )+f (1-a )<0,则实数a 的取值范围是( )A .(32,2]B .(32,+∞)C .[1,32)D .(-∞,32)[答案] D[解析] ∵f (x )在[0,+∞)单调递减且f (x )为奇函数,∴f (x )在(-∞,0)上单调递减,从而f (x )在(-∞,+∞)上单调递减,∴f (2-a )<f (a -1), ∴2-a >a -1,∴a <32,故选D.10.如果奇函数y =f (x )(x ≠0)在x ∈(0,+∞)上,满足f (x )=x -1,那么使f (x -1)<0成立的x 的取值范围是( )A .x <0B .1<x <2C .x <2且x ≠0D .x <0或1<x <2[答案] D[解析] x <0时,-x >0.由题设f (-x )=-x -1. 又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=x +1.∴函数y =f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x +1 (x <0)x -1 (x >0),∴不等式f (x -1)<0化为⎩⎪⎨⎪⎧x -1<0x <0,或⎩⎪⎨⎪⎧x -1>0x -2<0. ∴x <0或1<x <2.第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把答案填在题中横线上)11.若⎩⎨⎧⎭⎬⎫(x ,y )⎩⎪⎨⎪⎧x +y =1x -y -3=0⊆{(x ,y )|y =ax 2+1},则a =________.[答案] -12[解析] 由⎩⎪⎨⎪⎧ x +y =1x -y -3=0得⎩⎪⎨⎪⎧x =2y =-1, 由题意知,-1=4a +1, ∴a =-12.12.已知f (x )为偶函数,则f (x )=⎩⎪⎨⎪⎧x +1 -1≤x ≤0,0≤x ≤1.[答案] 1-x[解析] 当x ∈[0,1]时,-x ∈[-1,0], f (-x )=-x +1,又f (x )为偶函数, ∴f (x )=f (-x )=1-x .13.若已知A ∩{-1,0,1}={0,1},且A ∪{-2,0,2}={-2,0,1,2},则满足上述条件的集合A 共有________个.[答案] 4[解析] ∵A ∩{-1,0,1}={0,1}, ∴0,1∈A 且-1∉A .又∵A ∪{-2,0,2}={-2,0,1,2}, ∴1∈A 且至多-2,0,2∈A . 故0,1∈A 且至多-2,2∈A .∴满足条件的A 只能为:{0,1},{0,1,2},{0,1,-2},{0,1,-2,2},共有4个. 14.函数f (x )的定义域为A ,若x 1,x 2∈A ,且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如,函数f (x )=2x +1(x ∈R )是单函数,下列命题:①函数f (x )=x 2(x ∈R )是单函数;②若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ③若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原像; ④函数f (x )在某区间上具有单调性,则f (x )一定是单函数.其中的真命题是________.(写出所有真命题的编号) [答案] ②③[解析] 当f (x )=x 2时,不妨设f (x 1)=f (x 2)=4,有x 1=2,x 2=-2,此时x 1≠x 2,故①不正确;由f (x 1)=f (x 2)时总有x 1=x 2可知,当x 1≠x 2时,f (x 1)≠f (x 2),故②正确;若b ∈B ,b 有两个原像时,不妨设为a 1,a 2,可知a 1≠a 2,但f (a 1)=f (a 2),与题中条件矛盾,故③正确;函数f (x )在某区间上具有单调性时在整定义域上不一定单调,因而f (x )不一定是单函数,故④不正确.故答案为②③.15.函数f (x )对任意正整数a ,b 满足条件f (a +b )=f (a )·f (b ),且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2016)f (2015)的值是________. [答案] 2016[解析] ∵函数f (x )对任意正整数a ,b 都满足f (a +b )=f (a )·f (b ), ∴令a =n ,b =1(n ∈N +),得f (n +1)=f (n )·f (1), 即f (n +1)f (n )=f (1).由n 的任意性得 f (2)f (1)=f (4)f (3)=f (6)f (5)=…=f (2016)f (2015)=f (1). 故f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2016)f (2015)=1008f (1)=1008×2=2016.三、解答题(本大题共6个小题,满分75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)设全集为R ,集合A ={x |3≤x <6},B ={x |2<x <9}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 取值构成的集合. [解析] (1)A ∩B ={x |3≤x <6}. ∵∁R B ={x |x ≤2,或x ≥9},∴(∁R B )∪A ={x |x ≤2或3≤x <6,或x ≥9}. (2)∵C ⊆B ,如图所示:∴⎩⎪⎨⎪⎧a ≥2a +1≤9,解得2≤a ≤8,∴所求集合为{a |2≤a ≤8}.17.(本小题满分12分)二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)当x ∈[-1,1]时,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. [解析] (1)设f (x )=ax 2+bx +c , 则f (x +1)=a (x +1)2+b (x +1)+c .从而,f (x +1)-f (x )=[a (x +1)2+b (x +1)+c ]-(ax 2+bx +c )=2ax +a +b , 又f (x +1)-f (x )=2x ,∴⎩⎪⎨⎪⎧ 2a =2,a +b =0⇒⎩⎪⎨⎪⎧a =1,b =-1又f (0)=c =1,∴f (x )=x 2-x +1. (2)由(1)及f (x )>2x +m ⇒m <x 2-3x +1,令g (x )=x 2-3x +1,x ∈[-1,1],则当x ∈[-1,1]时,g (x )=x 2-3x +1为减函数, ∴当x =1时,g (x )min =g (1)=-1,从而要使不等式m <x 2-3x +1恒成立,则m <-1. 18.(本小题满分12分)已知集合A ={x ∈R |x 2+(p +2)x +1=0},若A ∩R +=∅,求实数p 的取值范围.(其中R +={x ∈R |x >0}).[解析] ∵A ∩R +=∅,R +={x ∈R |x >0},A ={x ∈R |x 2+(p +2)x +1=0}, ∴方程x 2+(p +2)x +1=0没有正实数根,∴Δ=(p +2)2-4<0或⎩⎪⎨⎪⎧Δ=(p +2)2-4≥0-(p +2)<0, 即p (p +4)<0或⎩⎪⎨⎪⎧p (p +4)≥0,p >-2.解得-4<p <0或p ≥0, ∴实数p 的取值范围是p >-4.19.(本小题满分12分)设函数f (x )为奇函数,对任意x ,y ∈R ,都有f (x +y )=f (x )+f (y ),且x >0时,f (x )<0,f (1)=-2.求f (x )在[-3,3]上的最大值和最小值.[解析] 设-3≤x 1<x 2≤3,则x 2-x 1>0, ∵f (x )为奇函数,且当x >0时,f (x )<0, ∴f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1)<0, ∴f (x 2)<f (x 1).∴f (x )在[-3,3]上是减函数.故f (x )max =f (-3)=-f (3)=-[f (1)+f (2)]=-[f (1)+f (1)+f (1)]=6, f (x )min =f (3)=-f (-3)=-6.20.(本小题满分13分)已知定义在R 上的函数f (x )满足:①对任意的x ,y ∈R ,都有f (xy )=f (x )+f (y ); ②当x >1时,f (x )>0.求证: (1)f (1)=0;(2)对任意的x ∈R ,都有f (1x )=-f (x );(3)判断f (x )在(-∞,0)上的单调性. [解析] (1)证明:令x =y =1,则有 f (1)=f (1)+f (1)⇒f (1)=0. (2)对任意x >0,用1x 代替y ,有f (x )+f (1x )=f (x ·1x )=f (1)=0,∴f (1x)=-f (x ).(3)f (x )在(-∞,0)上是减函数. 取x 1<x 2<0,则x 1x 2>1,∴f (x 1x 2)>0,∵f (x 1)-f (x 2)=f (x 1)+f (1x 2)=f (x 1x 2)>0,∴f (x 1)>f (x 2),∴f (x )在(-∞,0)上为减函数.21.(本小题满分14分)已知二次函数f (x )=ax 2+bx +c (a ≠0)(a ,b ,c ∈R ),且同时满足下列条件:①f (-1)=0;②对任意实数x ,都有f (x )-x ≥0;③当x ∈(0,2)时,有f (x )≤(x +12)2.(1)求f (1);(2)求a ,b ,c 的值;(3)当x ∈[-1,1]时,函数g (x )=f (x )-mx (m ∈R )是单调函数,求m 的取值范围. [解析] (1)由f (-1)=0,得a -b +c =0, ①令x =1,有f (1)-1≥0和f (1)≤(1+12)2=1,∴f (1)=1.(2)由f (1)=1得a +b +c =1② 联立①②可得b =a +c =12,由题意知,对任意实数x ,都有f (x )-x ≥0,即ax 2+(a +c )x +c -x ≥0, 即ax 2-12x +c ≥0对任意实数x 恒成立,于是⎩⎪⎨⎪⎧a >0Δ≤0即⎩⎪⎨⎪⎧a >0,14-4ac ≤0.∵c =12-a ,∴⎩⎪⎨⎪⎧ a >014-2a +4a 2≤0⇒⎩⎪⎨⎪⎧a >0(2a -12)2≤0⇒a =14, ∴a =c =14,b =12.(3)由(2)得:g (x )=f (x )-mx =14x 2+12x +14-mx =14[x 2+(2-4m )x +1]∵x ∈[-1,1]时,g (x )是单调的, ∴|-2-4m2|≥1,解得m ≤0或m ≥1. ∴m 的取值范围是(-∞,0]∪[1,+∞).。

北师大版高中数学必修一:第二章 阶段性测试题二 (1)

北师大版高中数学必修一:第二章 阶段性测试题二   (1)

阶段性测试题二 第二章 函 数(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =(x -2)0x +1的定义域为( )A .{x |x ≥1且x ≠2}B .{x |x ≥-1且x ≠2}C .{x |x >-1且x ≠2}D .{x |x >-1}解析:由题意知,⎩⎨⎧x -2≠0,x +1>0,解得x >-1且x ≠2.★答案☆:C 2.函数f (x )=11+x 2(x ∈R )的值域是( ) A .(0,1) B .(0,1] C .[0,1)D .[0,1]解析:x 2≥0,x 2+1≥1,0<1x 2+1≤1. ★答案☆:B3.若a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a ,0},f :x →x 表示把集合M中的元素x 映射到集合N 中仍为x ,则a +b 为( )A .0B .1C .-1D .±1解析:由于映射把集合M 中的元素x 映射到集合N 中仍为x ,而M 和N 中都只有2个元素,故M =N ,故有ba =0且a =1,故b =0,所以a +b =1.★答案☆:B4.偶函数y =ƒ(x )在区间[0,4]上单调递减,则有( )A .ƒ(-1)>f ⎝ ⎛⎭⎪⎫π3>f (-π)B .f ⎝ ⎛⎭⎪⎫π3>f (-1)>f (-π)C .f (-π)>f (-1)>f ⎝ ⎛⎭⎪⎫π3D .f (-1)>f (π)>f ⎝ ⎛⎭⎪⎫π3解析:∵ƒ(x )是偶函数,∴f (-1)=f (1),f (-π)=f (π),又ƒ(x )在[0,4]上单调递减,∴f (1)>f ⎝ ⎛⎭⎪⎫π3>f (π),∴f (-1)>f ⎝ ⎛⎭⎪⎫π3>f (-π).★答案☆:A5.下列函数中,值域为(0,+∞)的是( ) A .y =x B .y =100x +2C .y =2 017xD .y =x 2+x +1解析:在A 中y ∈[0,+∞),在C 中,y 可取负值,在D 中,y =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34≥34,所以排除A 、C 、D ,故选B . ★答案☆:B6.设α∈⎩⎨⎧⎭⎬⎫-1,12,1,3,则使函数y =x α在(0,+∞)内单调递增的所有α值为( )A .12,1,3 B .-1,1 C .-1,3 D .-1,1,3★答案☆:A7.定义在R 上的函数f (x )是偶函数,且f (1-x )=f (1+x ),若x ∈[0,1]时,f (x )=x 2,则f (-3)的值为( )A .-1B .3C .1D .-3 解析:∵f (1-x )=f (1+x ),∴f (-x )=f (2+x ), ∴f (3)=f (2+1)=f (-1).又∵f (x )为偶函数,∴f (-3)=f (3)=f (-1)=f (1)=12=1. ★答案☆:C8.如果偶函数f (x )在 [0,+∞)上是增函数且最小值是2,那么f (x )在(-∞,0)上是( )A .减函数且最小值是2B .减函数且最大值是2C .增函数且最小值是2D .增函数且最大值是2解析:∵偶函数f (x )在[0,+∞)上是增函数且最小值是2,由偶函数在对称区间上具有相反的单调性可知,f (x )在(-∞,0)上是减函数且最小值是2.★答案☆:A 9.函数ƒ(x )=11-x (1-x )的最大值为( )A .34B .43C .45D .54解析:∵1-x (1-x )=1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,∴ƒ(x )=11-x (1-x )≤43,∴最大值为43.★答案☆:B10.如图是二次函数y =ax 2+bx +c 图像的一部分,图像过点A (-3,0),对称轴x =-1.给出下面四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确的是( )A .②④B .①④C .②③D .①③解析:因为图像与x 轴交于两点,所以b 2-4ac >0,①正确;对称轴为x =-1,即-b2a =-1,2a -b =0,②错误;结合图像,当x =-1时,y >0,即a -b +c >0,③错误;由对称轴为x =-1知,b =2a .因为a <0,所以5a <2a ,即5a <b ,④正确,故选B .★答案☆:B第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4小题,每小题5分,共20分.把★答案☆填在题中横线上)11.若幂函数ƒ(x)=(m2-m-5)x m-1在区间(0,+∞)上是增函数,则实数m 的值为________.解析:由m2-m-5=1,得m=-2或m=3.当m=-2时,ƒ(x)=x-3在(0,+∞)上是减函数,不合题意;当m=3时,ƒ(x)=x2,满足题意,故m=3.★答案☆:312.已知y=ƒ(x)是奇函数,若g(x)=ƒ(x)+2,且g(1)=1,则g(-1)=________.解析:∵y=ƒ(x)是奇函数,∴ƒ(-x)=-f(x).又g(x)=ƒ(x)+2,∴g(1)=f(1)+2=1,∴f(1)=-1,∴g(-1)=f(-1)+2=-(-1)+2=3.★答案☆:313.定义在R上的偶函数f(x)满足:对任意x1,x2∈[0,+∞)(x1≠x2),有f(x2)-f(x1)x2-x1<0,设a=f(-2),b=f(1),c=f(3),则a,b,c由小到大依次为________.解析:∵f(x2)-f(x1)x2-x1<0,∴f(x)在[0,+∞)是递减的.又f(x)为偶函数,∴f(-2)=f(2),∴f(3)<f(2)<f(1),即c<a<b.★答案☆:c<a<b14.函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:①函数f(x)=x2(x∈R)是单函数;②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);③若f:A→B为单函数,则对于任意b∈B,它至多有一个原像;④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.其中的真命题是________.(写出所有真命题的编号)★答案☆:②③三、解答题(本大题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)15.(12分)已知函数f (x )=(m 2+2m )xm 2+m -1,m 为何值时,ƒ(x )是: (1)正比例函数; (2)反比例函数; (3)二次函数; (4)幂函数.解:(1)若ƒ(x )为正比例函数,则⎩⎨⎧m 2+m -1=1,m 2+2m ≠0,即⎩⎨⎧m =-2或m =1,m ≠0且m ≠-2,∴m =1.(2)若ƒ(x )为反比例函数,则⎩⎨⎧m 2+m -1=-1,m 2+2m ≠0,∴m =-1.(3)若ƒ(x )为二次函数,则⎩⎨⎧m 2+m -1=2,m 2+2m ≠0,∴m =-1±132.(4)若ƒ(x )为幂函数,则m 2+2m =1,∴m =-1±2. 16.(12分)已知定义在区间(-1,1)上的函数f (x )=ax -b x 2+1是奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定y =f (x )的解析式;(2)判断y =f (x )的单调性并用定义证明. 解:(1)y =f (x )是定义在(-1,1)上的奇函数, ∴f (0)=0,∴b =0.∵f ⎝ ⎛⎭⎪⎫12=25,∴a =1,∴f (x )=x x 2+1. (2)y =ƒ(x )在(-1,1)上单调递增.证明如下:设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1). ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0,又x 21+1>0,x 22+1>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴y =f (x )在(-1,1)上单调递增.17.(12分)已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x .(1)现已画出函数f (x )在y 轴左侧的图像,如图所示,请补出完整函数f (x )的图像,并根据图像写出函数f (x )的增区间;(2)写出函数f (x )的解析式和值域.解:(1)因为函数为偶函数,故图像关于y 轴对称,补出完整函数图像如图:所以f (x )的递增区间是(-1,0),(1,+∞).(2)设x >0,则-x <0,所以f (-x )=x 2-2x ,因为f (x )是定义在R 上的偶函数,所以f (-x )=f (x ),所以x >0时,f (x )=x 2-2x ,故f (x )的解析式为f (x )=⎩⎨⎧x 2+2x ,x ≤0,x 2-2x ,x >0,值域为{y |y ≥-1}.18.(14分)已知定义在R 上的函数f (x )满足:对任意的x ,y ∈R ,都有f (xy )=f (x )+f (y );当x >1时,f (x )>0.(1)求证:f (1)=0;(2)求证:对任意的x ∈R (x ≠0),都有f ⎝ ⎛⎭⎪⎫1x =-f (x );(3)判断f (x )在(-∞,0)上的单调性. 解:(1)证明:令x =y =1,则有 f (1)=f (1)+f (1)⇒f (1)=0.(2)证明:对任意x ≠0,用1x 代替y ,有 f (x )+f ⎝ ⎛⎭⎪⎫1x =f ⎝ ⎛⎭⎪⎫x ·1x =f (1)=0,∴f ⎝ ⎛⎭⎪⎫1x =-f (x ). (3)f (x )在(-∞,0)上是减函数.取x 1<x 2<0,则x 1x 2>1,∴f ⎝ ⎛⎭⎪⎫x 1x 2>0.∵f (x 1)-f (x 2)=f (x 1)+f ⎝ ⎛⎭⎪⎫1x 2=f ⎝ ⎛⎭⎪⎫x 1x 2>0,∴f (x 1)>f (x 2),∴f (x )在(-∞,0)上为减函数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

起航教育高中数学第二章测试题
一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、
若()f x =则(3)f = ( ) A 、2 B 、4 C
、、10 2、对于函数()y f x =,以下说法正确的有 ( )
①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。

A 、1个 B 、2个 C 、3个 D 、4个 3、下列各组函数是同一函数的是 ( )
①()f x =
()g x =②()f x x =
与()g x =③0()f x x =与01
()g x x
=
;④2()21f x x x =--与2()21g t t t =--。

A 、①② B 、①③ C 、③④ D 、①④ 4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25
5、函
数y =的值域为 ( ) A 、[]0,2 B 、[]0,4 C 、(],4-∞ D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )
A 、(1)
B 、(1)、(3)、(4)
C 、(1)、(2)、(3)
D 、(3)、(4) 7、若:f A B →能构成映射,下列说法正确的有 ( )
(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。

A 、1个 B 、2个 C 、3个 D 、4个 8、)(x f 是定义在R 上的奇函数,下列结论中,不正确...
的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、()
1()
f x f x =-- 9、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 10、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )
A 、12a >
B 、12a <
C 、12a ≥
D 、1
2
a ≤ 11、定义在R 上的函数()f x 对任意两个不相等实数,a
b ,总有
()()
0f a f b a b
->-成立,则必有( )
(1) (2) (3)
(4)
A 、函数()f x 是先增加后减少
B 、函数()f x 是先减少后增加
C 、()f x 在R 上是增函数
D 、()f x 在R 上是减函数 12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )
(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

A 、(1)(2)(4)
B 、(4)(2)(3)
C 、(4)(1)(3)
D 、(4)(1)(2) 二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上) 13、已知(0)1,()(1)()f f n nf n n N +==-∈,则(4)f = 。

14、将二次函数22y x =-的顶点移到(3,2)-后,得到的函数的解析式为 。

15、已知()y f x =在定义域(1,1)-上是减函数,且(1)(21)f a f a -<-,则a 的取值范围是 。

16、设2
2 (1)() (12)2 (2)x x f x x x x x +-⎧⎪
=-<<⎨⎪⎩

≥,若()3f x =,则x = 。

三、解答题:(本题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)
17、求下列函数的定义域:(12分) (1
)y (2)1
21
y x =
+-
18、已知(,)x y 在映射f 的作用下的像是(,)x y xy +,求(2,3)-在f 作用下的像和(2,3)-在f 作用下的原像。

(12分)
19、证明:函数2()1f x x =+是偶函数,且在[)0,+∞上是增加的。

(14分)
20、对于二次函数2483y x x =-+-,(16分)
(1)指出图像的开口方向、对称轴方程、顶点坐标;(2)画出它的图像,并说明其图像由24y x =-的图像经过怎样平移得来; (3)求函数的最大值或最小值;(4)分析函数的单调性。

21、设函数)(x f y =是定义在R +上的减函数,并且满足)()()(y f x f xy f +=,131=⎪⎭

⎝⎛f ,
(1)求)1(f 的值, (2)如果2)2()(<-+x f x f ,求x 的取值范围。

(16分)
(1) (2) (3) (4)
北师大版高中数学必修1第二章测试题
参考答案
一、选择题:
ABCDA BCDAB CD
二、填空题:
13、24 14、222(3)221216y x x x =-++=---
15、2
03
a <<
16三、解答题:
17、(1)13,24⎡⎤
-⎢⎥⎣⎦
(2){}|,1,3x x R x x ∈≠-≠-且且
18、(2,3)-在f 作用下的像是(1,6)-;(2,3)-在f 作用下的原像是(3,1)(1,3)--或 19、略
20、(1)开口向下;对称轴为1x =;顶点坐标为(1,1);
(2)其图像由24y x =-的图像向右平移一个单位,再向上平移一个单位得到; (3)函数的最大值为1;
(4)函数在(,1)-∞上是增加的,在(1,)+∞上是减少的。

21、解:(1)令1==y x ,则)1()1()1(f f f +=,∴0)1(=f
(2)∵131=⎪⎭

⎝⎛f ∴
23131)3131(91=⎪⎭

⎝⎛+⎪⎭

⎝⎛=
⨯=⎪⎭

⎝⎛f f f f
∴()()[]⎪⎭⎫
⎝⎛<-=-+91)2(2f x x f x f x f ,又由)(x f y =是定义在R +上的减函数,得:
()⎪⎪⎩
⎪⎪⎨⎧
>->>-0
20
9
12x x x x 解之得:⎪⎪⎭⎫ ⎝⎛+-∈3221,3221x 。

相关文档
最新文档