电磁学计算题题库(附答案)
电磁学题库(附答案)
电磁学题库(附答案)《电磁学》练习题1. 如图所示,两个点电荷+q和-3q,相距为d. 试求: (1) 在它们的连线上电场强度E?0的点与电荷为+q的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U=0的点与电荷为+q的点电荷相距多远?+q d --3q-2. 一带有电荷q=33109 C的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动 5 cm 时,外力作功63105 J,粒子动能的增量为 J.求:(1) 粒子运动过程中电场力作功-E q 多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度.4. 一半径为R的带电球体,其电荷体密度分布为q L d P =Ar (r≤R) ,??=0(r>R)A为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度?均匀分布在半径分别为r1=10 cm和r2=20 cm的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V,试求两球面的电荷面密度?的值. (?0=-/ N2m2 )6. 真空中一立方体形的高斯面,边长a= m,位于图中所示位y a a x 置.已知空间的场强分布为:O Ex=bx , Ey=0 , Ez=0.z a a 常量b=1000 N/(C2m).试求通过该高斯面的电通量.-7. 一电偶极子电荷q= C的两个异号点电荷组成,两电荷相距l= cm.把这电偶极子放在场强大小为E= N/C的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q1= C和q2=- C 的两个点电荷相距20 cm,求离它们都是20 cm处--的电场强度. (真空介电常量?0= C2N1m2 )---9. 边长为b的立方盒子的六个面,分别平行于xOy、yOz 和xOz平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为E?200i?300j .试求穿过各面的电通量.第 1 页共 33 页10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: Ex=bx, Ey=0, Ez=0.高斯面边长a= m,常量b=1000 N/(C2m).试求该闭合面中包含的净电荷.(真空介电常数?0= C22N-12m-2 )11. 有一电荷面密度为?的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布. 12. 如图所示,在电矩为p的电偶极子的电场中,将一电荷为q的点电荷从A 点沿半径为R的圆弧(圆心与电偶极子中心重合,R>>电偶极子正负电荷之间距离)移到B点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E=53104 N/C,方向竖直朝上,把一电荷为q= C的点电荷,置于此电场中的a点,如图所示.求此点电荷在下列过程中-R A ?p B d Ⅲ 45?b 电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b点,ab=45 cm;(2) 沿直线路径Ⅱ向下移到c点,ac=80 cm;(3) 沿曲线路径Ⅲ朝右斜上方向移到d点, ad=260 cm(与水平方向成45°角).a c ⅡⅠ ?E14. 两个点电荷分别为q1=+23107 C和q2=-23107 C,相距 m.求距q1为 m、距q2--为 m处P点的电场强度. (1= Nm2 /C2) 4??0 ?A ?B 15. 图中所示, A、B为真空中两个平行的“无限大”均匀带电平面,A面上电荷面密度?A=- C2m2,B面的电荷面密度?B= 3108 C2m2.试计----算两平面之间和两平面外的电场强度.(真空介电常量?0= C22N-12m-2 )16. 一段半径为a的细圆弧,对圆心的张角为?0,其上均匀分布有正电荷q,如图所示.试以a,q,?0表示出圆心O处的电场强度.A 17. 电荷线密度为?的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB的半径为R,试求圆心O点的场强.第 2 页共 33 页A B q ?0 a O ∞R O B ∞18. 真空中两条平行的“无限长”均匀带电直线相距为a,其电荷线密度分别为-?和+?.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm,其间有一半充以相对介电常量a O x ?r=10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量?0= C22N12m2)---r 20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R的导体球带电.(1) 当球上已带有电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为?r的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A、B的面积都是S,极板间距离为d.接上电源后,A板电势UA=V,B板电势UB=0.现将一带有电荷q、面积也是S而厚度可忽略的导体片C平行插在两极板的中间位置,如图所示,试求导体片C的电势. 24. 一导体球带电荷Q.球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为?r1和?r2,分界面处半径为R,如图所示.求两层介质分界面上的极化电荷面密度. 25. 半径分别为 cm与 cm的两个球形导体,各带电荷 C,两球相距很远.若用细-A d d/2 d/2 q CB V ?r1 R Q R O ?r2 导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.( 第 3 页共 33 页1?9?109N?m2/C2) 4??026. 如图所示,有两根平行放置的长直载流导线.它们的直径为a,反向流过相同大小的电流I,电流在导线内均匀分布.试在图示的坐标系中求出I I x O 15a]内磁感强度的分布. x轴上两导线之间区域[a,2227. 如图所示,在xOy平面(即纸面)内有一载流线圈abcda,其中bc弧和da弧皆为以O为圆心半径R =20 cm的1/4圆弧,ab和cd皆为直线,电流I =20 A,其流向为沿abcda的绕向.设线圈处于B = T,方向与a→b的方向相一致的均匀磁场中,试求:(1) 图中电流元I?l1和I?l2所受安培力?F1和?F2的方向和大小,设?l1 =l2 = mm;-2a 2a a Ib y I?l1 R a O 30°c 45° x R I I?l2d (2) 线圈上直线段ab和cd所受的安培力Fab和Fcd 的大小和方向;(3) 线圈上圆弧段bc弧和da弧所受的安培力Fbc 和Fda的大小和方向.28. 如图所示,在xOy平面(即纸面)内有一载流线圈abcda,其中bc弧和 da弧皆为以O为圆心半径R =20 cm的1/4圆弧,ab和cd皆为直线,电流I =20 A,其流向沿abcda 的绕向.设该线圈处于磁感强度B = T的均匀磁场中,B方向沿x轴正方向.试求:-y I?l1 R a O 30°c 45° x R I I?l2 d I b (1) 图中电流元I?l1和I?l2所受安培力?F1和?F2的大小和方向,设?l1 = ?l2= mm;(2) 线圈上直线段ab和cd所受到的安培力Fab和Fcd 的大小和方向;(3) 线圈上圆弧段bc弧和da弧所受到的安培力Fbc和Fda的大小和方向.29. AA'和CC'为两个正交地放置的圆形线圈,其圆心相重合.AA'线圈半径为 cm,共10匝,通有电流 A;而CC'线圈的半径为 cm,共20匝,通有电流 A.求两线圈公共中心O点的磁感强度的大小和方向.(?0 =4?3107 N2A2) --30. 真空中有一边长为l的正三角形导体框架.另有相互平行并与三角形的 bc边平行的长直导线1和2分别在a 点和b点与三角形导体框架相连(如1 I O a 图).已知直导线中的电流为I,三角形框的每一边长为l,求正三角形中心2 I b e ?点O处的磁感强度B.c 31. 半径为R的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成??角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i,求轴线上的磁感强度.第 4 页共 33 页32. 如图所示,半径为R,线电荷密度为? (>0)的均匀带电的圆线圈,绕过圆 y O R ?心与圆平面垂直的轴以角速度??转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R1和R2,芯子材料的磁导率为?,导线总匝数为N,绕得很密,若线圈通电流I,求. (1) 芯子中的B值和芯子截面的磁通量. (2) 在r R2处的B值.34. 一无限长圆柱形铜导体(磁导率?0),半径为R,通有均匀分布的电流I.今取一矩形平面S (长为1 m,宽为2 R),位置如右图中画斜线部分所示,求通N b R2 R1 I S 1 m 过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R1与电子轨道半径R2的比值.36. 在真空中,电流长直导线1沿底边ac方向经a点流入一电阻均匀的导线构成的正三角形线框,再b点沿平行底边ac方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I,2R b I 2 O 1 I a e c 三角形框的每一边长为l,求正三角形中心O处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,实线表示),AB?EF?R,大圆弧BC的半径为R,小圆弧DE的半径为C I E A BD 60? O R F I ?1R,求圆心O处的磁感强度B的大小和方向. 238. 有一条载有电流I的导线弯成如图示abcda形状.其中ab、cd是直线段,其余为圆弧.两段圆弧的长度和半径分别为l1、R1和l2、R2,且两I a b l2 l1 R1 O c R2 -d ?段圆弧共面共心.求圆心O处的磁感强度B的大小.39. 假定地球的磁场是地球中心的载流小环产生的,已知地极附近磁感强度B为 T,地球半径为R = m.?0 =4?3107 H/m.试用毕奥-萨伐尔定律求该电流环的磁矩大小.-40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩pm与电子轨道运动的动量矩L大小之比,并指出pm和L方向间的关系.(电子电荷为e,电子质量为m)第 5 页共 33 页41. 两根导线沿半径方向接到一半径R = cm的导电圆环上.如图.圆弧ADB是铝导线,铝线电阻率为?1 = ?2m,圆弧ACB是铜导线,铜线电阻率为?2 = ?2m.两种导线截面积相同,圆弧ACB的弧长是圆周长的1/?.直导线在很远处与电源相联,弧ACB上的电流I2 =A,求圆心O点处磁感强度B的大小.(真空磁导率?0 =4?3107 T2m/A)--8-8D I1 R O A C I2 B 42. 一根很长的圆柱形铜导线均匀载有10 A电流,在导线内部作一平面S,S的一个边是导线的中心轴线,另一边是S平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m的一段S平面的磁通量.(真空的磁导率?0 =4?3107 T2m/A,铜的相对磁导率?r ≈1)-S 43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i1和 i2,若i1和i2之间夹角为??,如图,求: (1) 两面之间的磁感强度的值Bi. (2) 两面之外空间的磁感强度的值Bo. (3) 当i1?i2?i,??0时以上结果如何?44. 图示相距为a通电流为I1和I2的两根无限长平行载流直导线.i1 ??i2 a ??(1) 写出电流元I1dl1对电流元I2dl2的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.I1dl1 I1 I2 r12 I2dl245. 一无限长导线弯成如图形状,弯曲部分是一半径为R的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R的长直导线载有电流I,作一宽为R、长为l的假想平面S,如图所示。
(完整版)电磁学题库(附答案)
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
电磁学试题(含答案)
电磁学试题(含答案)⼀、单选题1、如果通过闭合⾯S 的电通量e Φ为零,则可以肯定A 、⾯S 内没有电荷B 、⾯S 内没有净电荷C 、⾯S 上每⼀点的场强都等于零D 、⾯S 上每⼀点的场强都不等于零 2、下列说法中正确的是 A 、沿电场线⽅向电势逐渐降低 B 、沿电场线⽅向电势逐渐升⾼ C 、沿电场线⽅向场强逐渐减⼩ D 、沿电场线⽅向场强逐渐增⼤3、⾼压输电线在地⾯上空m 25处,通有A 1023的电流,则该电流在地⾯上产⽣的磁感应强度为A 、T 104.15-? B 、T 106.15-? C 、T 1025-? D 、T 104.25-? 4、载流直导线和闭合线圈在同⼀平⾯内,如图所⽰,当导线以速度v 向左匀速运动时,在线圈中 A 、有顺时针⽅向的感应电流B 、有逆时针⽅向的感应电C 、没有感应电流D 、条件不⾜,⽆法判断 5、两个平⾏的⽆限⼤均匀带电平⾯,其⾯电荷密度分别为σ+和σ-,则P 点处的场强为A 、02εσ B 、0εσ C 、02εσ D 、0 6、⼀束α粒⼦、质⼦、电⼦的混合粒⼦流以同样的速度垂直进⼊磁场,其运动轨迹如图所⽰,则其中质⼦的轨迹是 A 、曲线1 B 、曲线2C 、曲线3D 、⽆法判断7、⼀个电偶极⼦以如图所⽰的⽅式放置在匀强电场E中,则在电场⼒作⽤下,该电偶极⼦将A 、保持静⽌B 、顺时针转动C 、逆时针转动D 、条件不⾜,⽆法判断 8、点电荷q 位于边长为a 的正⽅体的中⼼,则通过该正⽅体⼀个⾯的电通量为 A 、0 B 、εqC 、04εq D 、06εq 9、长直导线通有电流A 3=I ,另有⼀个矩形线圈与其共⾯,如图所⽰,则在下列哪种情况下,线圈中会出现逆时针⽅向的感应电流? A 、线圈向左运动 B 、线圈向右运动 C 、线圈向上运动 D 、线圈向下运动10、下列说法中正确的是A 、场强越⼤处,电势也⼀定越⾼σ+ σ-P3IB 、电势均匀的空间,电场强度⼀定为零C 、场强为零处,电势也⼀定为零D 、电势为零处,场强⼀定为零11、关于真空中静电场的⾼斯定理0εi Sq S d E ∑=??,下述说法正确的是:A. 该定理只对有某种对称性的静电场才成⽴;B. i q ∑是空间所有电荷的代数和;C. 积分式中的E⼀定是电荷i q ∑激发的;D. 积分式中的E是由⾼斯⾯内外所有电荷激发的。
高考物理电磁学计算题(三十一)含答案与解析
高考物理电磁学计算题(三十一)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,直角坐标系xOy在竖直平面内,x轴沿水平方向,在第一、四象限区域内存在有匀强电场和匀强磁场,电场强度E=4.0×105N/C,方向沿y轴正方向,磁感应强度B=0.2T,方向与xoy平面垂直向外。
在x轴上的A点处有一足够长、与x轴垂直的荧光屏,交点A与坐标原点O的距离为40.0cm,在OA中点P处有一粒子发射枪(可看作质点),能连续不断的发射速度相同的带正电粒子,粒子质量m=6.4×10﹣27kg,电量q=3.2×10﹣19C.粒子发射枪向x轴方向发射的粒子恰能打到荧光屏的A点处。
若撤去电场,并使粒子发射枪在xoy平面内以角速度ω=2πrad/s逆时针转动(整个装置都处在真空中),求:(1)带电粒子的速度及在磁场中运动的轨迹半径;(2)荧光屏上闪光点范围的长度(结果保留两位有效数字);(3)荧光屏上闪光点从最低点移动到最高点所用的时间(结果保留两位有效数字)。
2.如图,上下放置的两带电金属板,相距为3l,板间有竖直向下的匀强电场E.距上板l 处有一带+q电的小球B,在B上方有带﹣6q电的小球A,他们质量均为m,用长度为l 的绝缘轻杆相连。
已知E=mg/q。
让两小球从静止释放,小球可以通过上板的小孔进入电场中(重力加速度为g)。
求:(1)B球刚进入电场时的速度v1大小;(2)A球刚进入电场时的速度v2大小;(3)B球是否能碰到下金属板?如能,求刚碰到时的速度v3大小。
如不能,请通过计算说明理由。
3.如图所示,质量为m、带电荷量为+q的小物块置于绝缘粗糙水平面上的A点。
首先在如图所示空间施加方向水平向右的匀强电场E,t=0时刻释放物块,一段时间后物块运动到B位置,同时将电场更换为方向水平向左的匀强电场E,物块运动到C点速度恰好减为零,已知A、B间距是B、C间距离的2倍,物块从B点运动到C点所需时间为t,求:(1)物块与水平面间的摩擦力;(2)物块从A点运动到C点的过程中克服摩擦力所做的功。
电磁学练习题(含答案)
一、选择题1、在磁感强度为的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量与的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B . . (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ D ]2、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流为I ,.若载流长直导线1、2以及圆环中的电流在圆心O 点所产生的磁感强度分别用1B 、2B , 3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B ) B = 0,因为021=+B B ,B 3 = 0. (C ) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0.(D ) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(E ) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ D ]3、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度(A) 与L 无关. (B) 正比于L 2.(C) 与L 成正比. (D) 与L 成反比.(E) 与I 2有关. [ D ]4、无限长直圆柱体,半径为R ,沿轴向均匀流有电流.设圆柱体内( r < R )的磁感强度为B i ,圆柱体外( r > R )的磁感强度为B e ,则有(A) B i 、B e 均与r 成正比.(B) B i 、B e 均与r 成反比.(C) B i 与r 成反比,B e 与r 成正比.(D) B i 与r 成正比,B e 与r 成反比. [ D ]5、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) ⎰=⋅0l d B ,且环路上任意一点B = 0.(B) ⎰=⋅0l d B ,且环路上任意一点B ≠0.(C) ⎰≠⋅0l d B ,且环路上任意一点B ≠0.(D) ⎰≠⋅0l d B ,且环路上任意一点B =常量. [ B ]6、按玻尔的氢原子理论,电子在以质子为中心、半径为r 的圆形轨道上运动.如果把这样一个原子放在均匀的外磁场中,使电子轨道平面与垂直,如图所示,则在r 不变的情况下,电子轨道运动的角速度将:(A) 增加. (B) 减小.(C) 不变. (D) 改变方向. [ A ]7、如图所示,一根长为ab 的导线用软线悬挂在磁感强度为的匀强磁场中,电流由a 向b 流.此时悬线张力不为零(即安培力与重力不平衡).欲使ab 导线与软线连接处张力为零则必须:(A) 改变电流方向,并适当增大电流.(B) 不改变电流方向,而适当增大电流.(C) 改变磁场方向,并适当增大磁感强度的大小. (D) 不改变磁场方向,适当减小磁感强度的大小. [ B ]8、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ B ]9、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率μr 为(真空磁导率μ0 =4π×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102(C) 1.99×102 (D) 63.3 [ B ]10、半径为a 的圆线圈置于磁感强度为的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与的夹角α =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关.(B) 与线圈面积成正比,与时间成正比.(C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关. [ A ]11、如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a –U c 为(A) =0,221l B U U b a ω=-. (B) =0,221l B U U b a ω-=-. (C) =2l B ω,221l B U U b a ω=- (D) =2l B ω,221l B U U b a ω-=-. [ B ]12、有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为μ1和μ2.设r 1∶r 2=1∶2,μ1∶μ2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1.(B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1.(C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.(D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. [ C ]13、用导线围成的回路(两个以O 点为心半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过O 点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图所示.如磁场方向垂直图面向里,其大小随时间减小,则(A)→(D)各图中哪个图上正确表示了感应电流的流向?[ B ]二、填空题 14、如图,一个均匀磁场B 只存在于垂直于图面的P 平面右侧,B 的方向垂直于图面向里.一质量为m 、电荷为q 的粒子以速度射入磁场.在图面内与界面P 成某一角度.那么粒子在从磁场中射出前是做半径为______________的圆周运动.如果q > 0时,粒子在磁场中的路径与边界围成的平面区域的面积为S ,那么q < 0时,其路径与边界围成的平面区域的面积是_________________.答案:)(qB mv15、若在磁感强度B =0.0200T 的均匀磁场中,一电子沿着半径R = 1.00 cm 的圆周运动,则该电子的动能E K =________________________eV .(e =1.6 ×10-19 C, m e = 9.11×10-31 kg)答案: 3.51×103参考解: mR B q mv E K 2212222== =5.62×10-16 J=3.51×103 eV16、氢原子中电子质量m ,电荷e ,它沿某一圆轨道绕原子核运动,其等效圆电流的磁矩大小p m 与电子轨道运动的动量矩大小L 之比=Lp m ________________. 答案:me 217、载有恒定电流I 的长直导线旁有一半圆环导线cd ,半圆环半径为b ,环面与直导线垂直,且半圆环两端点连线的延长线与直导线相交,如图.当半圆环以速度沿平行于直导线的方向平移时,半圆环上的感应电动势的大小是____________________.答案:ba b a Iv -+ln 20πμ 18、如图所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由下落,则t 秒末导线两端的电势差=-N M U U ______________________.答案:al a Igt +-ln 20πμ 19、位于空气中的长为l ,横截面半径为a ,用N匝导线绕成的直螺线管,当符 合________和____________________的条件时,其自感系数可表成V I N L 20)/(μ=,其中V 是螺线管的体积.20、一线圈中通过的电流I 随时间t 变化的曲线如图所示.试定性画出自感电动势 L 随时间变化的曲线.(以I 的正向作为 的正向)答案:21、真空中两条相距2a 的平行长直导线,通以方向相同,大小相等的电流I ,O 、P 两点与两导线在同一平面内,与导线的距离如图所示,则O 点的磁场能量密度w m o =___________,P 点的磁场能量密度w mr =__________________.答案: 022、一平行板空气电容器的两极板都是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流为 ________________________.答案:dt dE R /20πε三、计算题23、如图所示,一无限长直导线通有电流I =10 A ,在一处折成夹角θ =60°的折线,求角平分线上与导线的垂直距离均为r =0.1 cm 的P 点处的磁感强度.(μ0 =4π×10-7 H ·m -1)解:P 处的可以看作是两载流直导线所产生的,与的方向相同.)]60sin(90[sin 4)]90sin(60[sin 400 --+--=rI r I πμπμ ]90sin 60[sin 420 +=rI πμ=3.73×10-3 T 方向垂直纸面向上.24、一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m /A ,铜的相对磁导率μr ≈1)解:在距离导线中心轴线为x 与dx x +处,作一个单位长窄条,其面积为dx dS ⋅=1.窄条处的磁感强度所以通过d S 的磁通量为 dx R Ix BdS d r 202πμμ==Φ 通过1m 长的一段S 平面的磁通量为Wb I dx R Ix r R r 600201042-===Φ⎰πμμπμμ 25、 一通有电流I 1 (方向如图)的长直导线,旁边有一个与它共面通有电流I 2 (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23 (如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为方向向右,从x = a 到x = 2a 磁场所作的功为26、螺绕环中心周长l = 10 cm ,环上均匀密绕线圈N = 200匝,线圈中通有电流I = 0.1 A .管内充满相对磁导率μr = 4200的磁介质.求管内磁场强度和磁感强度的大小.解: 200===l NI nI H A/mH H B r μμμ0===1.06 T27、如图所示,有一矩形回路,边长分别为a 和b ,它在xy 平面内以匀速沿x 轴方向移动,空间磁场的磁感强度与回路平面垂直,且为位置的x 坐标和时间t 的函数,即kx t B t x B sin sin ),(0ω =,其中0B ,ω,k 均为已知常数.设在t =0时,回路在x =0处.求回路中感应电动势对时间的关系.解:选沿回路顺时针方向为电动势正方向,电动势是由动生电动势 1和感生电动势 2组成的.设回路在x 位置:∴ kkx a x k t bB cos )(cos cos 02-+=ωωε 设总感应电动势为 ,且 x =v t ,则有∴。
高考物理电磁学计算题(二十四)含答案与解析
高考物理电磁学计算题(二十四)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,虚线框内为某种电磁缓冲车的结构俯视图,缓冲车厢的底部安装电磁铁(图中未画出),能产生竖直向下的匀强磁场,磁场的磁感应强度为B,车厢上有两个光滑水平绝缘导轨PQ、MN,将高强度绝缘材料制成的缓冲滑块K置于导轨上,并可在导轨上无摩擦滑动。
滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab边长为L,假设关闭发动机后,缓冲车厢与滑块K以速度v0与障碍物C碰撞。
滑块K立即停下,此后缓冲车相会受到线圈对它的磁场力而做减速运动,从而实现缓冲,缓冲车厢质量为m,缓冲滑块的质量为m0,车厢与地面间的动摩擦因数为,其他摩擦阻力不计,求:(1)缓冲滑块K的线圈中感应电流的方向和最大安培力的大小;(2)若缓冲车厢向前移动时间t后速度减为零,缓冲车厢与障碍物和线圈的ab边均没有接触,求此过程线圈abcd中通过的电量;(3)接(2)求此过程线圈abcd中产生的焦耳热。
2.如图甲所示为发电机的简化模型,固定于绝缘水平桌面上的金属导轨,处在方向竖直向下的匀强磁场中,导体棒ab在水平向右的拉力F作用下,以水平速度v沿金属导轨向右做匀速直线运动,导体棒ab始终与金属导轨形成闭合回路。
已知导体棒ab的长度恰好等于平行导轨间距l,磁场的磁感应强度大小为B,忽略摩擦阻力。
(1)求导体棒ab运动过程中产生的感应电动势E和感应电流I;(2)从微观角度看,导体棒切割磁感线产生感应电动势是由于导体内部的自由电荷受到沿棒方向的洛伦兹力做功而产生的。
如图乙(甲图中导体棒ab)所示,为了方便,可认为导体棒ab中的自由电荷为正电荷,每个自由电荷的电荷量为q,设导体棒ab中总共有N个自由电荷。
a.求自由电荷沿导体棒定向移动的速率u;b.请分别从宏观和微观两个角度,推导非静电力做功的功率等于拉力做功的功率。
3.环保部门为了监测某化肥厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的流量计。
大学物理电磁学题库及答案
一、选择题:(每题3分) 1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为(A) 2πr 2B . (B) πr 2B .(C) 0. (D) 无法确定的量. [ B ]2、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B . (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ D ]3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为(A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ C ]4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内.(B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b .(D) 方向在环形分路所在平面内,且指向a .(E) 为零.[E ]5、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .[ D ]6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为(A) 01=B ,02=B . (B) 01=B ,l I B π=0222μ. (C) lI B π=0122μ,02=B . (D) l I B π=0122μ,lI B π=0222μ. [ ]7、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为a(A) R 140πμ. (B) R120πμ. (C) 0. (D) R 140μ. [ ] 8、一个电流元l I d 位于直角坐标系原点 ,电流沿z 轴方向 ,点P (x ,y ,z )的磁感强度沿x 轴的分量是:(A) 0.(B) 2/32220)/(d )4/(z y x l Iy ++π-μ.(C) 2/32220)/(d )4/(z y x l Ix ++π-μ.(D) )/(d )4/(2220z y x l Iy ++π-μ. [ ]9、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 3= 0,但021≠+B B . (D) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. [ ]10、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B 、2B 及3B ,则O 点的磁感强度的大小(B) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为021=+B B ,B 3 = 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ]11、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小(C) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0.(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0. (D) B ≠ 0,因为虽然021≠+B B ,但3B ≠ 0. [ ]12、电流由长直导线1沿平行bc 边方向经过a 点流入由电阻均匀的导线构成的正三角形线框,由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).已知直导线上的电流为I ,三角框的每一边长为l .若载流导线1、2和三角框中的电流在三角框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为021=+B B ,B 3= 0. (C) B ≠0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠0,因为虽然B 3= 0,但021≠+B B . [ ]13、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I ,圆环的半径为R ,且a 、b 与圆心O 三点在一直线上.若载流直导线1、2和圆环中的电流在O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点磁感强度的大小为(D) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B . [ ]14、电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B 、2B 、3B ,则圆心处磁感强度的大小(E) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0. (D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B . [ ]15、电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿半径方向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,∠aOb =30°.若长直导线1、2和圆环中的电流在圆心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则圆心O 点的磁感强度大小 (F) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 3= 0,但021≠+B B . (D) B ≠ 0,因为B 3≠ 0,021≠+B B ,所以0321≠++B B B . [ ]16、如图所示,电流由长直导线1沿ab 边方向经a 点流入由电阻均匀的导线构成的正方形框,由c 点沿dc 方向流出,经长直导线2返回电源.设载流导线1、2和正方形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则O 点的磁感强度大小(A) B = 0,因为B1 = B2 = B3 = 0.(B) B = 0,因为虽然B 1≠ 0、B2≠ 0,但021=+B B .B 3 = 0 (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ ]17、 如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B 、2B 、3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B . (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ ]18、在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流i 的大小相等,其方向如图所示.问哪些区域中有某些点的磁感强度B 可能为零?(A) 仅在象限Ⅰ. (B) 仅在象限Ⅱ. (C) 仅在象限Ⅰ,Ⅲ. (D) 仅在象限Ⅰ,Ⅳ.(E) 仅在象限Ⅱ,Ⅳ. [ ]19、如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2.(C) B 1 = 21B 2. (D) B 1 = B 2 /4. [ ]20、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度(A) 与L 无关. (B) 正比于L 2.(C) 与L 成正比. (D) 与L 成反比. (E) 与I 2有关. [ ]21、如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的? (A) I l H L 2d 1=⎰⋅ . (B) I l H L =⎰⋅2d 1 2C q 4(C) I l H L -=⎰⋅3d . (D)I l H L -=⎰⋅4d .[ ]22、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知 (A) 0d =⎰⋅L l B ,且环路上任意一点B = 0. (B) 0d =⎰⋅L l B ,且环路上任意一点B ≠0.(C) 0d ≠⎰⋅Ll B ,且环路上任意一点B ≠0.(D) 0d ≠⎰⋅L l B ,且环路上任意一点B =常量. [ ]23、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径L 的积分⎰⋅L l Bd(A) I 0μ. (B) I 031μ. (C) 4/0I μ. (D) 3/20I μ. [ ]24、若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布(A) 不能用安培环路定理来计算.(B) 可以直接用安培环路定理求出.(C) 只能用毕奥-萨伐尔定律求出.(D) 可以用安培环路定理和磁感强度的叠加原理求出. [ ]25、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则 (A) 回路L 内的∑I 不变,L 上各点的B 不变. (B) 回路L 内的∑I 不变,L 上各点的B 改变. (C) 回路L 内的∑I 改变,L 上各点的B 不变. (D) 回路L 内的∑I 改变,L 上各点的B 改变. [ ]26、距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为(A) 3×10-5 T . (B) 6×10-3 T .(C) 1.9×10-2T . (D) 0.6 T .(已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ]27、在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:L 1 2 I 3 (a) (b)⊙(A) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B = (B) ≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B =. (C) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. (D) ≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. [ ] 28、如图,一个电荷为+q 、质量为m 的质点,以速度v 沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v -从磁场中某一点出来,这点坐标是x = 0 和(A) qB m y v +=. (B) qBm y v 2+=. (C)qB m y v 2-=. (D) qBm y v -=. [ ]29、一运动电荷q ,质量为m ,进入均匀磁场中,(A) 其动能改变,动量不变. (B) 其动能和动量都改变.(C) 其动能不变,动量改变. (D) 其动能、动量都不变. [ ]30、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则(A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 21=,T A ∶T B =1. (C) R A ∶R B =1,T A ∶T B 21=. (D) R A ∶R B =2,T A ∶T B =1. [ ]31、一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生?(A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流. (D) 电子受到洛伦兹力而减速. ]32、一电荷为q 的粒子在均匀磁场中运动,下列哪种说法是正确的?(A) 只要速度大小相同,粒子所受的洛伦兹力就相同.(B) 在速度不变的前提下,若电荷q 变为-q ,则粒子受力反向,数值不变.(C) 粒子进入磁场后,其动能和动量都不变.(D) 洛伦兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆.[ ]×× ×33、一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v .(D) 反比于B ,反比于v .[ ]34、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A) Oa . (B) Ob .(C) Oc . (D) Od . [ ]35、如图所示,在磁感强度为B 的均匀磁场中,有一圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A) F a > F b > F c . (B) F a < F b < F c .(C) F b > F c > F a . (D) F a > F c > F b . [ ]36、如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将 (A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab .(C) 逆时针转动同时离开ab .(D) 逆时针转动同时靠近ab . [ ]37、两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) R r I I 22210πμ. (B) Rr I I 22210μ. (C) rR I I 22210πμ. (D) 0. [ ]38、两根平行的金属线载有沿同一方向流动的电流.这两根导线将:(A) 互相吸引. (B) 互相排斥.(C) 先排斥后吸引. (D) 先吸引后排斥. [ ]39、有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为(A) 2/32IB Na . (B) 4/32IB Na .(C) ︒60sin 32IB Na . (D) 0. [ ]OO r R I 1 I 240、有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y轴上,且线圈可绕y 轴自由转动,则线圈将(A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动.(D) 如何转动尚不能判定. [ ]41、若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明:(A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行.(B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行.(C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直.[ ] 42、图示一测定水平方向匀强磁场的磁感强度B (方向见图)的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m 才能使天平重新平衡.若待测磁场的磁感强度增为原来的3倍,而通过线圈的电流减为原来的21,磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为(A) 6m . (B) 3m /2.(C) 2m /3. (D) m /6.(E) 9m /2. [ ]43、如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将(A) 向着长直导线平移.(B) 离开长直导线平移.(C) 转动. (D) 不动. [ ]44、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=02μ. (C) B = 0. (D) I aB π=0μ. [ ]45、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:BI 1 I I a(A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r . [ ]46、四条平行的无限长直导线,垂直通过边长为a =20 cm 的正方形顶点,每条导线中的电流都是I =20 A ,这四条导线在正方形中心O 点产生的磁感强度为(μ0 =4π×10-7 N ·A -2)(A) B =0. (B) B = 0.4×10-4 T .(C) B = 0.8×10-4 T. (D) B =1.6×10-4 T . [ ]47、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ ] 48、关于稳恒电流磁场的磁场强度H ,下列几种说法中哪个是正确的? (A) H 仅与传导电流有关. (B) 若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零. (C) 若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零. (D) 以闭合曲线L为边缘的任意曲面的H 通量均相等. [ ]49、图示载流铁芯螺线管,其中哪个图画得正确?(即电源的正负极,铁芯的磁性,磁力线方向相互不矛盾.)[ ]50、附图中,M 、P 、O 为由软磁材料制成的棒,三者在同一平面内,当K 闭合后,(A) M 的左端出现N 极. (B) P 的左端出现N 极.(C) O 的右端出现N 极. (D) P 的右端出现N 极.[ ]51、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率μr 为(真空磁导率μ 0 =4π×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102 (C) 1.99×102 (D) 63.3 [ ]52、磁介质有三种,用相对磁导率μr 表征它们各自的特性时,(A) 顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1.(B) 顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1.a M O P(C) 顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1.(D) 顺磁质μr <0,抗磁质μr <1,铁磁质μr >0. [ ]53、顺磁物质的磁导率:(A) 比真空的磁导率略小. (B) 比真空的磁导率略大.(C) 远小于真空的磁导率. (D) 远大于真空的磁导率. [ ]54、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为μr 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的(A) 磁感强度大小为B = μ0 μ r NI .(B) 磁感强度大小为B = μ r NI / l .(C) 磁场强度大小为H = μ 0NI / l .(D) 磁场强度大小为H = NI / l . [ ]55、一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO ′转动,转轴与磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?(A) 把线圈的匝数增加到原来的两倍. (B) 把线圈的面积增加到原来的两倍,而形状不变.(C) 把线圈切割磁力线的两条边增长到原来的两倍.(D) 把线圈的角速度ω增大到原来的两倍.[ ]56、一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是(A) 线圈绕自身直径轴转动,轴与磁场方向平行.(B) 线圈绕自身直径轴转动,轴与磁场方向垂直.(C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移.[ ]57、如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)[ ]B I O (D)I O (C)O (B)58、两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流.(B) 线圈中感应电流为顺时针方向.(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定.[ ]59、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等. [ ]60、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ]61、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱. [ ]62、如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到? (A) 载流螺线管向线圈靠近.(B) 载流螺线管离开线圈. (C) 载流螺线管中电流增大.(D) 载流螺线管中插入铁芯. [ ]63、如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反. (A) 滑线变阻器的触点A 向左滑动. (B) 滑线变阻器的触点A 向右滑动. (C) 螺线管上接点B 向左移动(忽略长螺线管的电阻). (D) 把铁芯从螺线管中抽出. [ ]Ib d b d bcd v v I64、 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A) 2abB | cos ω t |. (B) ω abB(C)t abB ωωcos 21.(D) ω abB | cosω t |. (E) ω abB | sin ω t |. [ ]65、一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B 的方向沿z 轴正方向.如果伏特计与导体平板均以速度v 向y 轴正方向移动,则伏特计指示的电压值为(A) 0.(B) 21v Bl .(C) v Bl . (D) 2v Bl . [ ]66、一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω.(E)B L 221ω. [ ] 67、如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ]68、如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.[ ]69、如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的 --t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势? [ ]B ☜ t O (A) ☜ tO (C) ☜ t O (B) ☜ tO (D)70、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd(A) 不动.(B) 转动. (C) 向左移动. (D) 向右移动.[ ]71、有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.若它们分别流过i 1和i 2的变化电流且ti t i d d d d 21>,并设由i 2变化在线圈1中产生的互感电动势为 12,由i 1变化在线圈2中产生的互感电动势为 21,判断下述哪个论断正确.(A) M 12 = M 21, 21 = 12.(B) M 12≠M 21, 21 ≠ 12.(C) M 12 = M 21, 21 > 12.(D) M 12 = M 21, 21 < 12. [ ]72、已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21. (C) 都大于L 21. (D) 都小于L 21. [ ]73、面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用Φ21表示,线圈2的电流所产生的通过线圈1的磁通用Φ12表示,则Φ21和Φ12的大小关系为: (A) Φ21 =2Φ12. (B) Φ21 >Φ12.(C) Φ21 =Φ12. (D) Φ21 =21Φ12. [ ]74、如图所示的电路中,A 、B 是两个完全相同的小灯泡,其内阻r >>R ,L 是一个自感系数相当大的线圈,其电阻与R 相等.当开关K 接通和断开时,关于灯泡A 和B 的情况下面哪一种说法正确?(A) K 接通时,I A >I B . (B) K 接通时,I A =I B . (C) K 断开时,两灯同时熄灭.(D) K 断开时,I A =I B . [ ]75、用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m =(A) 只适用于无限长密绕螺线管. (B) 只适用于单匝圆线圈.(C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ ] ca b d N M B76、两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为 (A) 221LI .(B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ (C) ∞.(D) 221LI 020ln 2r d I π+μ [ ]77、真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21a I πμμ (B) 200)2(21aI πμμ (C) 20)2(21I a μπ (D) 200)2(21aI μμ [ ] 78、电位移矢量的时间变化率t D d /d 的单位是A )库仑/米2 (B )库仑/秒C )安培/米2 (D )安培•米279、对位移电流,有下述四种说法,请指出哪一种说法正确.(A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的.(C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ ] 80、在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明: (A) 闭合曲线L 上K E 处处相等.(B) 感应电场是保守力场.(C) 感应电场的电场强度线不是闭合曲线.(D) 在感应电场中不能像对静电场那样引入电势的概念. [ ]二、填空题(每题4分)81、一磁场的磁感强度为k c j b i a B ++= (SI),则通过一半径为R ,开口向z轴正方向的半球壳表面的磁通量的大小为____________Wb .82、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ=__________.若通过S 面上某面元S d 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'=_________________.83、在非均匀磁场中,有一电荷为q 的运动电荷.当电荷运动至某点时,其速率为v ,运动方向与磁场方向间的夹角为α ,此时测出它所受的磁力为f m .则该运动电荷所在处的磁感强度的大小为________________.磁力f m 的方向一定垂直________________________________________________________________.84、沿着弯成直角的无限长直导线,流有电流I =10 A .在直角所决定的平面内,距两段导线的距离都是a =20 cm 处的磁感强度B =____________________.(μ0 =4π×10-7 N/A 2)85、在真空中,将一根无限长载流导线在一平面内弯成如图所示的形状,并通以电流I ,则圆心O 点的磁感强度B 的值为_________________.86、电流由长直导线1沿切向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切线流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上,则O 点的磁感强度的大小为______________.87、在真空中,电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环半径为R .a 、b 和圆心O 在同一直线上,则O 处的磁感强度B 的大小为__________________________.88、如图,球心位于O 点的球面,在直角坐标系xOy 和xOz 平面上的两个圆形交线上分别流有相同的电流,其流向各与y 轴和z 轴的正方向成右手螺旋关系.则由此形成的磁场在O 点的方向为________________.89、如图,两根导线沿半径方向引到铁环的上A 、A ′两点,并在很远处与电源相连,则环中心的磁感强度为____________.90、一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电 质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)。
电磁学计算题题库(附答案)
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?d-3q+q2. 一带有电荷q =3×10-9C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5J ,粒子动能的增量为4.5×10-5J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为=Ar (r ≤R ) ,=0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度的值. (0=8.85×10-12C 2 / N ·m 2)6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6C 和q 2=-16.0×10-6C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量0=8.85×10-12 C 2N -1m -2)9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为:E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数=8.85×10-12 C 2·N -1·m -2)11. 有一电荷面密度为的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7C 和q 2=-2×10-7C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度A=-17.7×10-8 C ·m -2,B 面的电荷面密度B=35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量0=8.85×10-12 C 2·N -1·m -2)16. 一段半径为a 的细圆弧,对圆心的张角为0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,0表示出圆心O 处的电场强度.17. 电荷线密度为的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分 EqLdqO xzyaaaaABRⅠⅡ Ⅲ dba45︒cEσAσBA BOa θ0 q A R ∞∞O -λ+λ别为-和+.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点). (2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量r=10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为r的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大? 23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为r 1和r 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)26. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布. 27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I l 1和I l 2所受安培力1F ∆和2F∆的方向和大小,设l 1 = l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I l 1和I l 2所受安培力1F ∆和2F∆的大小和方向,设l 1= l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(=4×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.32. 如图所示,半径为R ,线电荷密度为 (>0)的均匀带电的圆线圈,绕过a b c dO RR x yI I 30° 45° I ∆l 1 I ∆l 2 Ia aIx2aεrdd/2 d/2B C AqR R OQ εr 1εr 2a bc d O RR x yI I 30° 45° I ∆l 1 I ∆l 2abcIIO12 ey OR圆心与圆平面垂直的轴以角速度转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BC R ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39. R =6.37×106 m .=4×10-7H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小.40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB是铝导线,铝线电阻率为1=2.50×10-8·m ,圆弧ACB 是铜导线,铜线电阻率为2=1.60×10-8·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率=4×10-7T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率0=4×10-7T ·m/A ,铜的相对磁导率r≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为,如图,求:(1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
高考物理电磁学计算题(四)含答案与解析
高考物理电磁学计算题(四)组卷老师:莫老师一.计算题(共50小题)1.如图甲所示,用粗细均匀的导线制成的一只单匝圆形金属圈,现被一根绝缘丝线悬挂在竖直平面内处于静止状态,已知金属圈的质量为m=0.1kg,半径为r=0.1m,导线单位长度的阻值为ρ=0.1Ω/m,.金属圈的上半部分处在一方向垂直圈面向里的有界匀强磁场中,磁感应强度B随时间t的变化关系如图乙所示.金属圈下半部分在磁场外.已知从t=0时刻起,测得经过10s丝线刚好被拉断.重力加速度g取10m/s2.求:(1)导体圆中感应电流的大小及方向;(2)丝线所能承受的最大拉力F;(3)在丝线断前的10s时间内金属圈中产生的焦耳热Q.2.如图所示,两平行金属板间距为d,电势差为U,板间电场可视为匀强电场;金属板上方有一磁感应强度为B的匀强磁场.电荷量为+q、质量为m的粒子,由静止开始从正极板出发,经电场加速后射出,从M点进入磁场后做匀速圆周运动,从N点离开磁场.忽略重力的影响.(1)求匀强电场场强E的大小;(2)求粒子从电场射出时速度ν的大小;(3)求M、N两点间距L的大小;保持粒子不变,请你说出一种增大间距L的方法.3.如图所示,光滑的金属导轨间距为L,导轨平面与水平面成α角,导轨下端接有阻值为R的电阻,质量为m,电阻为r的金属细杆ab与绝缘轻质弹簧相连静止在导轨上,弹簧劲度系数为k,上端固定,弹簧与导轨平面平行,整个装置处在垂直于导轨平面斜向上的匀强磁场中,磁感应强度为B.现给杆一沿轨道向下的初速度v0,杆向下运动至速度为零后,再沿轨道平面向上运动达最大速度v1,然后减速为零,再沿轨道平面向下运动,一直往复运动到静止.试求:(1)细杆获得初速度瞬间,通过R的电流大小;(2)当杆速度为v1时离最初静止时位置的距离L1.4.如图所示,静止于A处的带正电粒子,经加速电场加速度后沿图中圆弧虚线通过静电分析器,从P点垂直CN竖直向上进入矩形区域的有界匀强磁场(磁场方向如图所示,其CNQD为匀强磁场的边界).静电分析器通道内有均匀辐向分布的电场,方向如图所示.已知加速电场的电压为U,圆弧虚线的半径为R,粒子质量为m,电荷量为q,QN=2d,PN=3d,粒子重力不计.(1)求粒子在辐向电场中运动时其所在处的电场强度E的大小;(2)若粒子恰好能打在N点,求距形区域QNCD内匀强磁场的磁感应强度B的值;(3)要求带电粒子最终能打在QN上,求磁场感应强度大小B的取值落围及出射点离Q点的最近距离.5.如图,直角坐标系第Ⅰ、Ⅱ象限存在方向垂直纸面向里的匀强磁场,一质量为m,电量为+q的粒子在纸面内以速度v从﹣y轴上的A点(0,﹣L)射入,其方向+x成30°角,粒子离开磁场后能回到A点,(不计重力).求:(1)磁感应强度B的大小;(2)粒子从A点出发到再回到A点的时间.6.如图甲所示,间距为l=0.5 m的两条足够长的平行金属导轨所在平面与水平面的夹角θ=37°,导轨上端接有一个R=0.5Ω的电阻,导轨所在平面可划分为I、Ⅱ、Ⅲ三个区域,两导轨间长度为s1=l m的矩形区域Ⅰ中存在垂直导轨平面向上的匀强磁场,其磁感应强度大小B随时间t的变化关系如图乙所示,长度为s2=3m的区域Ⅱ中无磁场,区域Ⅲ中存在垂直导轨平面向上的匀强磁场,其磁感应强度的大小B0=1 T.在t=0时刻,质量m=l kg且与导轨垂直的金属棒ab从区域I和区域Ⅱ的交界处静止滑下,当金属棒到达区域Ⅱ和区域Ⅲ的交界处CD时,区域Ⅰ中的磁场突然撤去,此后金属棒恰好保持匀速运动.边界CD上方的导轨光滑,边界CD下方的导轨粗糙,不计金属棒与导轨的电阻,金属棒在下滑过程中始终与导轨垂直且接触良好,已知sin37°=0.6,cos37°=0.8.求:(1)金属棒在到达边界CD前的运动过程中,回路中产生的感应电流大小I;(2)金属棒在区域Ⅱ中运动的过程中,电阻产生的焦耳热Q;(3)金属棒与区域Ⅲ中的两导轨之间的动摩擦因数μ.7.如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高,ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长.(1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热.8.一光滑绝缘细直杆MN,长为L,水平固定在匀强电场中,场强大小为B,方向与竖直方向夹角为θ.杆的M端固定一个带负电小球A,电荷量大小为Q;另一带负电的小球B穿在杆上,可自由滑动,电荷量大小为q,质量为m,现将小球B从杆的N端由静止释放,小球B开始向A端运动,已知k为静电力常量,g 为重力加速度,求:(1)小球B对细杆的压力的大小;(2)小球B开始运动时的加速度的大小;(3)小球B速度最大时,离M端的距离.9.如图,两条间距L=0.5m且足够长的平行光滑金属直导轨,与水平地面成α=30°角固定放置,磁感应强度B=0.4T的匀强磁场方向垂直导轨所在的斜面向上,质量m ab=0.1kg、m cd=0.2kg的金属棒ab、cd垂直导轨放在导轨上,两金属棒的总电阻r=0.2Ω,导轨电阻不计.ab在沿导轨所在斜面向上的外力F作用下,沿该斜面以v=2m/s的恒定速度向上运动.某时刻释放cd,cd向下运动,经过一段时间其速度达到最大.已知重力加速度g=10m/s2,求在cd速度最大时,(1)abcd回路的电流强度I以及F的大小;(2)abcd回路磁通量的变化率以及cd的速率.10.如图所示,一足够大的倾角θ=30°的粗糙斜面上有一个粗细均匀的由同种材料制成的金属线框abcd,线框的质量m=0.6kg,其电阻值R=1.0Ω,ab边长L1=1m,bc边长L2=2m,与斜面之间的动摩擦因数μ=.斜面以EF为界,EF上侧有垂直于斜面向上的匀强磁场.一质量为M的物体用绝缘细线跨过光滑定滑轮与线框相连,连接线框的细线与斜面平行且线最初处于松弛状态.现先释放线框再释放物体,当cd边离开磁场时线框即以v=2m/s的速度匀速下滑,在ab边运动到EF位置时,细线恰好被拉直绷紧(时间极短),随即物体和线框一起匀速运动t=1s 后开始做匀加速运动.取g=10m/s2,求:(1)匀强磁场的磁感应强度B;(2)细绳绷紧前,M下降的高度H;(3)系统在线框cd边离开磁场至重新进入磁场过程中损失的机械能△E.11.平行金属板A、B的间距为d,板间加有随时间变化的电压,如图所示.设U0、T为已知,A板上孔O处有静止的带电粒子(不计重力),其电荷量为q,质量为m.在t=0的时刻受AB间电场力的作用而加速向B板运动,途中由于电场方向反向粒子又向O处返回,为使t=T时粒子恰好又回到O点,则:(1)的比值应满足什么条件?(2)粒子返回O点时动能多大?(3)为使带电粒子在由A向B运动过程中不碰到金属板,求U0满足的条件.12.硬质长方形薄塑料绝缘板长为2l(垂直纸面向里的长度)、宽为l(如图),共有2n块,与水平面成45°角按图所示放置,最左边的称为第一块,依次往右第二块、第三块….PQ间的整个空间有水平向右的匀强磁场,同时在PQ间加上电压U(P的电势高于Q的电势,PQ间区域足够宽广),在O点正对塑料板的正中央处从静止释放一个质子(电荷量为e,质量为m),质子与板的碰撞没有动能的损失,并且碰撞后电压消失,接着碰撞后又恢复,如此反复.(sin 37°=0.6,cos 37°=0.8)试求:(1)质子与第一块板碰撞时的速度多大?(2)为使质子能打在Q板上(正对O点的地方O′点),磁感应强度的最大值B 为多少?(3)在满足(2)的条件下,质子从出发到打在Q上经历了多长的时间?(4)如果当第一次碰完第2n﹣1块时,塑料板全部脱落电压也依然存在,在满足(2)的前提下,质子将打在Q板何处?(以O′为坐标原点,竖直向上为y轴正向,垂直向外为x轴正向,用坐标点表示,计算中取=,=π)13.质谱仪的原理简图如图所示.已知带正电的粒子经电场加速后进入速度选择器,P1、P2两板间的电压为U,间距为d,板间还存在着匀强磁场,磁感应强度大小为B1,方向垂直纸面向外.带电粒子沿直线经速度选择器从狭缝S3垂直MN 进入偏转磁场,该磁场磁感应强度的大小为B2,方向垂直纸面向外.带电粒子经偏转磁场后,打在照相底片上的H点,测得S3、H两点间的距离为l.不计带电粒子的重力.求:(1)速度选择器中电场强度E的大小和方向;(2)带电粒子离开速度选择器时的速度大小v;(3)带电粒子的比荷.14.如图所示,有一水平放置,左右宽度不同的固定光滑导轨MNPQ、M′N′P′Q′,其中左侧导轨MNM′′N宽度为2d,右侧导轨PQP′Q′宽度为d,在MNM′N′、PQP′Q′上分别有一根导体棒ab、cd,单位长度的电阻为r0,导体棒质量均为m,整个装置处于竖直向下的匀强磁场中,磁感应强度为B(图中未画出).在t=0时刻,固定导体棒ab,在导体棒cd上施加一个水平向右的拉力F,使其向右做加速度为a的匀加速运动,在T=t0时撤去外力,随后释放导体棒ab,ab、cd两导体棒均在导轨上运动,假设两侧导轨均足够长,导轨电阻不计,求:(1)外力F随时间变化的关系;(2)在0~t0时间内通过ab棒的电荷量;(3)释放导体棒ab后,cd棒最终速度为v1,求ab棒的最终速度v2及在t0时刻后ab棒上产生的热量Q.15.如图甲所示,直角坐标系xOy中,第二象限内有沿x轴正方向的匀强电场,场强E=1N/C,第一象限内有垂直坐标平面的交变磁场,磁场方向垂直纸面向外为正方向.在x轴上的点A(﹣2m,0)处有一发射装置(没有画出)沿y轴正方向射出一个比荷=100C/kg的带正电的粒子(可视为质点且不计重力),该粒子以v0的速度进入第二象限,从y轴上的点C(0,4m)进入第一象限.取粒子刚进入第一象限的时刻为t=0时刻,第一象限内磁场的磁感应强度按图乙所示规律变化.(g=10m/s2)求:(1)初速度v0大小;(2)粒子出磁场时的位置坐标;(3)粒子在磁场中运动的时间.16.如图所示,在θ=60°的范围内有一方向垂直于xOy平面向外、磁感应强度大小为B的匀强磁场,y轴与OC为该磁场的两边界;一质量为m、电荷量为q的带正电的粒子(不计重力)从y轴的点A(0,L)平行与x轴正方向射入磁场中;(1)若粒子离开磁场后垂直经过x轴,求粒子的初速度大小v1及其在磁场中运动的时间t1;(2)要使粒子在磁场中运动的时间最长,其初速度大小v2应满足什么条件?在这种情况下,粒子在磁场中运动的最长时间t2为多长?(3)若从A点入射的大量同种粒子,均在xoy平面内运动,粒子的入射方向与y轴负方向的夹角为α(0≤α≤90°),为使粒子从OC边离开磁场时的速度方向均与z轴垂直,粒子的入射速度大小v0与α之间应满足怎样的关系式?17.如图,水平边界的匀强磁场上方5m处有一个边长1m的正方形导线框从静止开始下落,已知线框质量为1kg,电阻为R=10Ω,磁感应强度为B=1T,当线框的cd边刚进入磁场时(1)求线框中产生的感应电动势大小;(2)求cd两点间的电势差大小;(3)若线框此时加速度等于0,则线框电阻应该变为多少欧姆.18.如图所示,足够长的光滑水平平行金属轨道宽l=0.4m,处于垂直轨道平面向下的匀强磁场中,磁感应强度B=0.5T.轨道右端接入一灯L,已知L上标有“2V、1W”字样(设灯电阻保持不变),左端有根金属棒搁在水平轨道上,金属棒质量m=0.2kg,在一平行于轨道平面的外力F作用下,从静止开始向右做匀加速直线运动,加速度a=2m/s2.除灯电阻外不考虑其他地方的电阻.(1)画出金属棒运动过程中流过灯L的电流方向;(2)经过多长时间灯L达到正常发光?正常发光时外力F大小?(3)当灯L达到正常发光后,撤去外力,则金属棒做什么运动?19.物理学对电场和磁场的研究促进了现代科学技术的发展,提高了人们的生活水平.(1)现代技术设备中常常利用电场或磁场来改变或控制带电粒子的运动.现有一质量为m、电荷量为e的电子由静止经电压为U的加速电场加速后射出(忽略电子所受重力).a.如图甲所示,若电子从加速电场射出后沿平行极板的方向射入偏转电场,偏转电场可看作匀强电场,板间电压为U′,极板长度为L,板间距为d,求电子射入偏转电场时速度的大小v以及射出偏转电场时速度偏转角θ的正切值;b.如图乙所示,若电子从加速电场射出后沿直径方向进入半径为r的圆形磁场区域,该磁场的磁感应强度大小为B、方向垂直纸面向里.设电子射出磁场时的速度方向与射入时相比偏转了θ′角,请推导说明增大偏转角θ′的方法(至少说出两种).(2)磁场与电场有诸多相似之处.电场强度的定义式E=,请你由此类比,从运动电荷所受的洛伦兹力F出发,写出磁感应强度B的定义式;并从宏观与微洛观统一的思想出发构建一个合适的模型,推理论证该定义式与B=这一定义式的一致性.20.在某生产车间的流水线中,有一装有货物的小车从倾角为θ 的光滑斜坡上下滑,撞击挡板后停下,货物被工人取走(如图1).为了减少小车对挡板的冲击,某同学设想了一个电磁缓冲装置,在小车的底部固定与小车前端平齐、匝数为n、边长为L、总电阻为R 的正方形闭合线框;在斜坡的下端加上宽度同为L 的匀强磁场,磁感应强度为B,方向垂直斜坡向下,如图2所示(小车未画出).若小车和货物的总质量为m1,线框的质量为m2,小车在线框的下边离底部挡板距离为 d 时静止释放,线圈进入磁场后,小车立即做减速运动,已知小车在撞击挡板前已经匀速运动.求:(1)线框刚进入磁场时的速度v 大小和小车匀速运动的速度v2大小;(2)若采用适当粗些的导线绕制线框,保持匝数、边长、形状不变,能否减小小车匀速运动的速度,从而增大缓冲的效果?请说明理由.(3)小车运动过程中线框产生的焦耳热.21.如图甲所示,足够长平行金属导轨MN、PQ固定在水平面上,导轨两端分别连接有电阻R1、R2,R1=6Ω,R2=3Ω,导轨间距为L=1m,导轨放在垂直于水平向下的匀强磁场中,磁场的磁感应强度B=1T.一根长度也为1m的金属棒放在导轨上并与导轨垂直且接触良好,金属棒的电阻为r=2Ω.现给金属棒一个水平向右的拉力F,使金属棒从静止开始运动,结果金属棒两端的电压U的平方,随时间变化的关系如图乙所示,不计导轨电阻,求:(1)t=4s时,金属棒的速度大小;(2)通过电阻R1的电量为0.1C时,金属棒运动的距离.22.如图所示,在竖直平面xoy内有沿y轴负方向的匀强电场,其中第三象限内场强大小为E=,其它三个象限的场强相同但大小未知.在第一、二象限有匀强磁场,方向垂直于坐标平面向里.有一个质量为m、电荷量为q的带电小球,从y轴的p点以初速度v0垂直于y轴进入电场,小球经电场偏转后,从x轴的负半轴上的M点进入磁场做圆周运动,并到达x轴的正半轴上的N点,最后又到达y轴的负半轴上,已知OM=2OP=2ON,重力加速度为g,求:(1)其它三个象限内的电场强度大小;(2)M点的坐标及小球进入第二象限时速度的大小和方向;(3)小球从P点出发到再次到达y轴的负半轴时所经历的时间.23.如图所示,足够长的粗糙绝缘斜面与水平面成θ=37°放置,在斜面上虚线aa′和bb′与斜面底边平行,在aa′b′b围成的区域有垂直斜面向上的有界匀强磁场,磁感应强度为B=1T;现有一质量为m=10g,总电阻为R=1Ω,边长d=0.1m的正方形金属线圈MNPQ,让PQ边与斜面底边平行,从斜面上端静止释放,线圈刚好匀速穿过磁场。
大学电磁学测试题及答案
大学电磁学测试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是麦克斯韦方程组中描述磁场变化产生电场的方程?A. ∇·E = ρ/ε₀B. ∇×E = -∂B/∂tC. ∇·B = 0D. ∇×B = μ₀J + ε₀μ₀∂E/∂t答案:B2. 在真空中,电磁波的传播速度是多少?A. 2.998×10^8 m/sB. 3.0×10^8 m/sC. 3.3×10^8 m/sD. 3.0×10^5 km/s答案:B3. 以下哪个物理量是标量?A. 电场强度B. 磁场强度C. 电荷D. 电流答案:C4. 根据洛伦兹力公式,当一个带电粒子垂直于磁场方向运动时,它受到的力的方向是?A. 与磁场方向相同B. 与磁场方向相反C. 与磁场方向垂直D. 与带电粒子运动方向相同答案:C5. 以下哪种情况会导致电磁波的偏振?A. 电磁波在真空中传播B. 电磁波在介质中传播C. 电磁波通过偏振片D. 电磁波通过非均匀介质答案:C6. 电磁感应定律表明,当磁场变化时,会在导体中产生什么?A. 电流B. 电压C. 电阻D. 电场答案:B7. 根据法拉第电磁感应定律,感应电动势与以下哪个因素成正比?A. 磁场强度B. 磁通量的变化率C. 导体长度D. 导体电阻答案:B8. 以下哪个选项不是电磁波的特性?A. 传播速度B. 波长C. 频率D. 质量答案:D9. 电磁波的波速、波长和频率之间的关系是什么?A. v = λfB. v = 1/(λf)C. v = λ/fD. v = f/λ答案:A10. 以下哪种介质对电磁波的传播速度影响最大?A. 真空B. 空气C. 水D. 玻璃答案:D二、填空题(每题2分,共20分)1. 电磁波的传播不需要______。
答案:介质2. 根据麦克斯韦方程组,电场的散度等于电荷密度除以______。
答案:真空电容率3. 电磁波的波长、频率和波速之间的关系可以用公式______表示。
电磁学题库(附答案)知识分享
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E ϖ的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E ϖϖϖ300200+= .试求穿过各面的电通量.E ϖqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p ϖ的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRϖⅠⅡ Ⅲ dba 45︒cEϖσAσBA BOa θ0 q AR ∞∞ O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λ26. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ϖ∆和2F ϖ∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F ϖ和cd F ϖ的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F ϖ和da F ϖ的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B ϖ方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ϖ∆和2F ϖ∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F ϖ和cd F ϖ的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F ϖ和da F ϖ的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B ϖ.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1 I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B ϖ的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B ϖ的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B ϖ.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B ϖ的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B ϖ的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p ϖ与电子轨道运动的动量矩L ϖ大小之比,并指出m p ϖ和L ϖ方向间的关系.(电子电荷为e ,电子质量为m )41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I ϖ对电流元22d l I ϖ的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
高考物理电磁学计算题(一)含答案与解析
高考物理电磁学计算题(一)组卷老师:莫老师评卷人得分一.计算题(共50小题)1.如图所示,粗糙斜面的倾角θ=37°,半径r=0.5m的圆形区域内存在着垂直于斜面向下的匀强磁场。
一个匝数n=10匝的刚性正方形线框abcd,通过松弛的柔软导线与一个额定功率P=1.25W的小灯泡A相连,圆形磁场的一条直径恰好与线框bc边重合。
已知线框总质量m=2kg,总电阻R0=1.25Ω,边长L>2r,与斜面间的动摩擦因数μ=0.5.从t=0时起,磁场的磁感应强度按B=2﹣t(T)的规律变化。
开始时线框静止在斜面上,在线框运动前,灯泡始终正常发光。
设最大静摩擦力等于滑动摩擦力,(g取10m/s2,sin37°=0.6,cos37°=0.8.π=3.2)求:(1)线框不动时,回路中的感应电动势E;(2)小灯泡正常发光时的电阻R;(3)线框保持不动的时间内,小灯泡产生的热量Q。
2.如图所示为一种“电磁天平”的结构简图,等臂天平的左臂为挂盘,右臂挂有矩形线圈,线圈未通电时天平两臂平衡;已知线圈的水平边长L=0.1m,匝数为N=800,线圈的下底边处于匀强磁场内,磁感应强度B=0.5T,方向垂直于线圈平面向里,线圈中通有方向沿顺时针,大小可在0﹣2A范围内调解的电流I;挂盘放上待测物体后,调解线圈中电流使得天平平衡,测出电流即可测得物体的质量;重力加速度g=10m/s2,试求:该“电磁天平”能够称量的最大质量.3.如图甲所示为发电机的简化模型,固定于绝缘水平桌面上的金属导轨,处在方向竖直向下的匀强磁场中,导体棒ab在水平向右的拉力F作用下,以水平速度v沿金属导轨向右做匀速直线运动,导体棒ab始终与金属导轨形成闭合回路。
已知导体棒ab的长度恰好等于平行导轨间距l,磁场的磁感应强度大小为B,忽略摩擦阻力。
(1)求导体棒ab运动过程中产生的感应电动势E和感应电流I;(2)从微观角度看,导体棒切割磁感线产生感应电动势是由于导体内部的自由电荷受到沿棒方向的洛伦兹力做功而产生的。
高考物理电磁学计算题(三十二)含答案与解析
高考物理电磁学计算题(三十二)含答案与解析评卷人得分一.计算题(共40小题)1.有两列简谐横渡a,b在同一介质中沿x轴正方向传播,速度均为v=2.5m/s。
在t=0时,两列波的波峰正好在x=2.5m处重合,如图所示。
(i)求t=0时,两列波的波峰重合的所有位置;(ii)至少经多长时间x=0处的质点位移达到最大值。
2.三峡水电站是我国最大的水力发电站,平均水位落差约100m,水的流量约1.35×104m3/s。
船只通航需要约3500m3/s的流量,其余流量全部用来发电。
水流冲击水轮机发电时,水流减少的势能有20% 转化为电能。
(1)按照以上数据估算,三峡发电站的发电功率最大是多大;(2)本市现行阶梯电价每户每月1挡用电量最高为240kW•h,如果按照本市现行阶梯电价1挡最高用电量计算,三峡电站可以满足多少户家庭生活用电;(3)把抽水蓄能电站产生的电能输送到北京城区。
已知输电功率为P,输电线路的总阻值为R,要使输电线路上损耗的功率小于△P。
a.求输电电压的最小值U;b.在输电功率一定时,请提出两种减少输电过程中功率损耗的方法。
3.甲、乙两列简谐横波传播速率相同,分别沿x轴负方向和正方向传播,t0时刻两列波的前端刚好分别传播到A点和B点,如图所示,已知甲波的频率为5Hz,求:(i)t0时刻之前,平衡位置在x轴上C处的质点已经振动的时间;(ⅱ)以t0时刻为记时零点,在之后的0.9s内,x=0处的质点位移为+6cm的时刻。
4.一列简谐横波沿x轴传播。
t=0和t=0.5s时刻的波形如图中的实线和虚线所示。
(i)若在t=0到0.5s时间内,:x=2m处的质点运动的路程大于0.2m小于0.4m。
则这列波传播的速度多大;写出从t=0时刻开始计时,x=2m处质点的振动方程;(ii)若这列波的传播速度为74m/s,则从t=0时刻开始,x=3m处的质点经过多长时间第2次到达波谷。
5.如图所示,在竖直平面内,水平且平行的Ⅰ、Ⅱ虚线间距为L,其间有垂直纸面向外的匀强磁场,磁感应强度为B.一长为2L、宽为L矩形线框质量为m,电阻为R.开始时,线框下边缘正好与虚线Ⅱ重合,由静止释放。
高考物理电磁学计算题(十)含答案与解析
高考物理电磁学计算题(十)组卷老师:莫老师一.计算题(共50小题)1.如图所示,M、O、N为均匀介质中某一直线上的三个质点,其中O点为简谐横波的波源,起振方向向上,振动周期为0.2s,离平衡位置的最大距离为0.05m.O、N两质点平衡位置之间的距离为3m.从波传播到N点开始计时,此时O恰好位于波谷.t=0.3s时,质点M第一次到达波峰.已知波长2m<λ<5m.(i)求该波波长;(ii)写出质点M振动后的位移随时间变化的关系式.2.如图所示,虚线MO与水平线PQ相交于O点,二者夹角θ=30°,在MO右侧存在电场强度为E,方向竖直向上的匀强电场,MO左侧某个区域存在磁感应强度大小为B,方向垂直纸面向里的匀强磁场,O点在磁场的边界上.现有一群质量为m、电量为+q的带电粒子在纸内以速度v()垂直于MO从O点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向右,不计粒子的重力和粒子间的相互作用力,求:(1)速度最大的粒子距PQ的最大距离;(2)速度最大的粒子自O开始射入磁场至返回水平线PQ所用的时间;(3)磁场区域的最小面积.3.航天飞机在赤道上空圆形轨道由西向东飞,地磁场在航天飞机轨道处的磁应感应强度B=0.50×10﹣4T,沿水平方向由南向北,从航天飞机上发射出的一颗卫星,携带一根长L=20km的金属悬绳与航天飞机相连,航天飞机和卫星间的这条悬绳方向沿地球径向并指向地心,卫星位于航天飞机的正上方,如果航天飞机与卫星的运行速度为7.5km/s.第一宇宙速度为7.9km/s,地球半径为6400km.(1)卫星和航天飞机哪端电势高?(2)求金属悬绳中的感应电动势.(3)估算航天飞机离地面的高度.4.如图所示,在倾角为θ的斜面上,有两条很长、光滑的、间距为L的平行金属导轨固定其上,导轨电阻忽略不计,轨道间分布着条形匀强磁场区域,磁场区域的宽度为d1,磁感应强度为B,方向与导轨平面垂直向下,磁场区域之间的距离为d2,两根质量均为m,电阻为R的导体棒a和b放在导轨上,并与导轨垂直.(设重力加速度为g)(1)若a固定在第2个磁场区域上边,b固定在第1个磁场区域上边,同时释放a、b棒,求:b穿过第1个磁场区域过程中增加的动能△E k;(2)若a进入第2个磁场区域时,b恰好离开第1个磁场区域;此后a离开第2个磁场区域时,b又恰好进入第2个磁场区域,且a、b在任意一个磁场区域或无磁场区域的运动时间均相等,求:b穿过第2个磁场区域过程中,两导体棒产生的总焦耳热Q.(3)对于第(2)问所述的运动情况,求a穿出第k个磁场区域时的速率v.5.如图所示,光滑平行金属导轨的水平部分处于竖直向下的B=4T的匀强磁场中,两导轨间距为L=0.5m,轨道足够长.金属棒a和b的质量都为m=1kg,电阻R a=R b=1Ω.b棒静止于轨道水平部分,现将a棒从h=80cm高处自静止沿弧形轨道下滑,通过C点进入轨道的水平部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不想碰.求a、b两棒的最终速度,以及整个过程中b棒产生的焦耳热(已知重力加速度g=10m/s2).6.如图(a)所示,平行金属板A和B间的距离为d,现在A、B板上加上如图(b)所示的方波形电压,t=0时A板比B板的电势高,电压的正向值为U0,反向值也为U0,现有由质量为m的带正电且电荷量为q的粒子组成的粒子束,从AB的中点O以平行于金属板方向OO'的速度v0=不断射入,所有粒子不会撞到金属板且在AB间的飞行时间均为T,不计重力影响.试求:(1)粒子射出电场时的速度大小及方向;(2)粒子打出电场时位置离O'点的距离范围;(3)若要使打出电场的粒子经某一垂直纸面的圆形区域匀强磁场偏转后,都能到达圆形磁场边界的同一个点,而便于再收集,则磁场区域的最小半径和相应的磁感强度是多大?7.如图所示,粒子源发射比荷不同的带正电粒子(初速度、重力均不计),经加速电场加速后,进入速度选择器,其中水平通过速度选择器的粒子从O点进入一有界匀强磁场,速度选择器中匀强电场的场强为E、匀强磁场的磁感应强度为B1,有界匀强磁场的磁感应强度为B2,方向垂直纸面向外,边界MN与水平方向成30°角.当粒子再次经过MN时和O点的距离为d,求(所有结果均用题中所给已知量表示)(1)水平通过速度选择器的粒子的速度大小?(2)水平通过速度选择器的粒子的比荷?(3)加速电场的电压U?8.如图所示,光滑的水平轨道AB,与半径为R的半圆形光滑轨道BCD相切于B 点,AB水平轨道部分存在水平向右的匀强电场,半圆形光滑轨道在竖直平面内,B为最低点,D为最高点,一质量为m带电量为+q的小球从距B点x=3R的位置在电场力的作用下由静止开始沿AB向右运动并通过最高点,已知E=,求小球经过半圆形轨道最低点B点时对轨道的压力及其通过D点时速度大小.9.如图甲所示,将一倾角θ=37°的粗糙绝缘斜面固定在地面上,空间存在一方向沿斜面向上的匀强电场。
电磁学计算题题库(附答案)
《电磁学》练习题(附答案)E x= bx, E y= 0, E z= 0.高斯面边长a= 0.1 m,常量b= 1000 N/(C • m).试求该闭合面中包含的净电荷.真空介电常数0= 8.85X 10-12 C2• N-1• m-2 )1.如图所示,两个点电荷+ q和一3q,相距为d.试求:11.有一电荷面密度为的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势2 .3 .4 .5 .6 .7 .8 .9 .(1)在它们的连线上电场强度E 0的点与电荷为+ q的点电荷相距多远?(2)若选无穷远处电势为零,两点电荷之间电势U=0的点与电荷为+ 的点电荷相距多远?分布.12.如图所示,在电矩为P的电偶极子的电场中,将一电荷为q的点电荷从A点沿半径为R的圆弧(圆心与电偶极子中心重合,R>>电偶极子正负电荷之+q -3qb—一带有电荷q= 3X 10-9 C的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动 5 cm时,外力作功6X 10-5 J, 粒子动能的增量为4.5X 10-5 J.求:(1)粒子运动过程中电场力作功多少?(2)该电场的场强多大?如图所示,真空中一长为L的均匀带电细直杆,总电荷为试求在直杆延长线上距杆的一端距离为d的P点的电场强度. 半径为R的带电球体,其电荷体密度分布为=Ar (r w R), =0 (r > R)A为一常量.试求球体内外的场强分布.若电荷以相同的面密度均匀分布在半径分别为门=10 cm和间距离)移到B点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E= 5X 104 N/C,方向竖直朝上,把一电荷为q =X 10-8 C的点电荷,置于此电场中的电场力作的功.(1)沿半圆路径I移到右方同高度的沿直线路径n向下移到c点,b 点,ab = 45cm ;ac = 80cm ;a点,如图所示.求此点电荷在下列过程中「2= 20 cm的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V,试求两球面的电荷面密度的值. 真空中一立方体形的高斯面,边长a= 0.1 m,位于图中所示位置.已知空间的场强分布为:E x=bx , E y=0 , E z=0. 常量b= 1000 N/(C • m).试求通过该高斯面的电通量.m2 ) (0= 8.85X 10-12C2 / N -一电偶极子由电荷q= 1.0 X 10-6 C的两个异号点电荷组成,两电荷相距I = 2.0 cm .把这电偶极子放在场强大小为E= 1.0 X 105 N/C的均匀电场中.试求:(1)电场作用于电偶极子的最大力矩.(2)电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 电荷为q1 = 8.0X 10 6 C和q2=—16.0X 10 6 C的两个点电荷相距20 cm,求离它们都是20 cm处的电场强度.(真空介电常量0= 8.85X 10-12C2N-1m-2 )边长为b的立方盒子的六个面,分别平行于xOy、yOz和xOz平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为E 200i 300 j .试求穿过各面的电通量.10.图中虚线所示为一立方形的高斯面,已知空间的场强分布为:d点,ad = 260 cm(与水平方向成45°角).14.两个点电荷分别为q1=+ 2 X 10 7 C和q2 = —2 X 10 7 C,相距0.3 m .求距q1为沿曲线路径川朝右斜上方向移到点的电场强度.15.图中所示, A、面密度A=—17.7 X0.4m、距q2为0.5 1( ---- =9.00 X 109 Nm2 /C2)4 0B为真空中两个平行的“无限大”均匀带电平面, A面上电荷10-8 C • m-2, B 面的电荷面密度 B = 35.4 X 10-8 C - m-2.试计算两平面之间和两平面外的电场强度. (真空介电常量0= 8.85X 10-12 C2• N-1• m-2)16. 一段半径为a如图所示.试以17.电荷线密度为的细圆弧,对圆心的张角为0,其上均匀分布有正电荷a, q, 0表示出圆心O处的电场强度.半圆弧AB的半径为R,试求圆心0点的场强.q,的“无限长”均匀带电细线,弯成图示形状.--OO__OO18.真空中两条平行的“无限长”均匀带电直线相距为a,其电荷线密度分别为—和+ •试求:(1)在两直线构成的平面上,两线间任一点的电场强度(选Ox轴如图所示,两线的中点为原点). 27.如图所示,在xOy平面(即纸面)内有一载流线圈abcda,其中be弧和da(2)两带电直线上单位长度之间的相互吸引力.弧皆为以O为圆心半径R =20 cm的1/4圆弧,ab和cd皆为直线,电流19. 一平行板电容器,极板间距离为10 cm,其间有一半充以相对介电常量I =20 A,其流向为沿abcda的绕向.设线圈处于B = 8.0 x 10-2 T,方向与20 .21 .22 .=10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V时,试分别求空气中和介质中的电位移矢量和电场强度矢量(真空介电常量0= 8.85x 1012 C2• N-1• m-2)若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴, 电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.假想从无限远处陆续移来微量电荷使一半径为(1)当球上已带有电荷q时,再将一个电荷元(2)使球上电荷从零开始增加到Q的过程中, R的导体球带电.此大水滴的电势将为小水滴dq从无限远处移到球上的过程中,外力作多少功?外力共作多少功? 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为r的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A、B的面积都是S,极板间巧/2a7b的方向相一致的均匀磁场中,试求:(1)图中电流元I12 =0.10mm ;线圈上直线段线圈上圆弧段|1和I 12所受安培力F1和F2的方向和大小,设I1 =ab和cd所受的安培力F ab和F cd的大小和方向;bc弧和da弧所受的安培力F bc和F da的大小和方向.28.如图所示,在xOy平面(即纸面)内有一载流线圈abcda,其中bc弧和da弧皆为以O为圆心半径R =20 cm的1/4圆弧,ab和cd皆为直线,电流I =20 A,其流向沿abcda的绕向.设该线圈处于磁感强度 B = 8.0x 10-2 T的均匀磁场中,B方向沿x轴正方向.试求:(1)图中电流元I=0.10mm ;线圈上直线段|1和I 12所受安培力F1和F2的大小和方向,设11 = 12ab和cd所受到的安培力F ab和F cd的大小和方向;距离为d.接上电源后,A板电势U A=V,B板电势U B=0.现线圈上圆弧段bc弧和da弧所受到的安培力F bc和F da的大小和方向. 将一带有电荷q、面积也是S而厚度可忽略的导体片 C平行插在两极板的中间位置,如图所示,试求导体片C的电势.24. 一导体球带电荷Q.球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为r1和r2,分界面处半径为R,如图所示.求两层介质分界面上的极化电荷面密度.25.半径分别为1.0 cm与2.0 cm的两个球形导体,各带电荷1.0X 10-8 C, 两球相距很远.若用细导线将两球29. AA/和CC/为两个正交地放置的圆形线圈,其圆心相重合.1相连接.求(1)每个球所带电荷;(2)每球的电势.(——49 109N m2/C2)26.如图所示,有两根平行放置的长直载流导线.它们的直径为a,反向流过相同大小的电流I,电流在导线内均匀分布.试在图示的坐标系中求出x轴上两导线之间区域[丄a, -a]内磁感强度的分布.2 2 2aa N''X I I1 為c A瑶I 2Q x1〔1/ C -<33° cI事yAA/线圈半径为20.0 cm,流10.0 A ;而CC/线圈的半径为10.0 cm,共20匝,通有电流5.0 A .求两线圈公共中心的大小和方向.(0 =4 x 10-7N • A-2)30.真空中有一边长为I的正三角形导体框架.另有相互平行并与三角形的bc边平行的长直导线1和2分别在a点和b点与三角形导体框架相连(如图).已知直导线中的电流为I,三角形框的每一边长为I,求正三角形中心点O处的磁感强度B .共10匝,通O点的磁感31.半径为R的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i,求轴线上的磁感强度.32.如图所示,半径为R,线电荷密度为(>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度转动,求轴线上任一点的B的大小及其方向.33.横截面为矩形的环形螺线管,圆环内外半径分别为R1和R2,芯子材料的磁导率为,导线总匝数为N,绕得很密,若线圈通电流I,求. (1)芯子中的B值和芯子截面的磁通量. N心O点处磁感强度B的大小.(真空磁导率0 =4 X 10-7 T • m/A)42. 一根很长的圆柱形铜导线均匀载有一个边是导线的中心轴线,另一边是10 A电流,在导线内部作一平面S, S的S平面与导线表面的交线,如图所示.试(2)在r < R i和r > R2处的B值.——R2 ;R1 计算通过沿导线长度方向长为1m 的一段S平面的磁通量.(真空的磁导率0r~ 1)34. 一无限长圆柱形铜导体(磁导率0),半径为R,通有均匀分布的电流I .今=4 X 10-7 T • m/A,铜的相对磁导率43.两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i i和取一矩形平面S (长为1 m,宽为2 R),位置如右图中画斜线部分所示,求通i2,若i1和i2之间夹角为,如图,求: 过该矩形平面的磁通量.35.质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R1与电子轨道半径R2的比值.36.在真空中,电流由长直导线1沿底边ac方向经a点流入一由电阻均匀的导线构成的正三角形线框,再由b点沿平行底边ac方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I, 三角形框的每一边长为I,求正三角形中心O处的磁感强度B .37.在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),AB EF R,大圆弧BC的半径为R,小圆弧DE的半径为1-R,求圆心O处的磁感强度B的大小和方向.238.有一条载有电流I的导线弯成如图示abcda形状.其中ab、cd是直线段,其余为圆弧.两段圆弧的长度和半径分别为11、R1 和12、R2,且两段圆弧共面共心.求圆心O处的磁感强度B的大小.39.假定地球的磁场是由地球中心的载流小环产生的, 已知地极附近磁感强度1 1 m60B R(1)两面之间的磁感强度的值B i.两面之外空间的磁感强度的值B o.当i1 i2 i,0时以上结果如何?44.图示相距为a通电流为I1和I2的两根无限长平行载流直导线.(1)写出电流元I1 d 11对电流元12 dl2的作用力的数学表达式;(2)推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为两直线部分平行且与半圆平面垂直,如在导线上通有电流向如图.(半圆导线所在平面与两直导线所在平面垂直处的磁感强度.R的半圆,I,方46.如图,在球面上互相垂直的三个线圈1、2、3,通有相等的电流,dB为6.27X 10-5 T,地球半径为=6.37 X 106 m. 0 =4 X 10-7 H/m .试用毕奥—萨伐尔定律求该电流环的磁矩大小.40.在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩P m与电子轨道运动的动量矩L大小之比, 并指出P m和L方向间的关系.(电子电荷为e,电子质量为m)41.两根导线沿半径方向接到一半径R =9.00 cm的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为 1 =2.50X 10-8• m,圆弧ACB是铜导线,铜线电阻率为2 =1.60X 10-8• m.两种导线截面积相同,圆弧ACB的弧长是圆周长的1/ .直导线在很远处与电源相联,弧ACB上的电流I2 =2.00A,求圆I 4■■I# A I2聞卜初"2I i)求圆心O方向如箭头所示.试求出球心O点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)HI 47. 一根半径为R的长直导线载有电流I,作一宽为R、长为I的假想平面S,如图所示。
高考物理电磁学计算题(三十四)含答案与解析
高考物理电磁学计算题(三十四)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,在平面直角坐标系中,第三象限里有一加速电场,一个电荷量为q、质量为m的带正电粒子(不计重力),从静止开始经加速电场加速后,垂直x轴从A(﹣4L,0)点进入第二象限,在第二象限的区域内,存在着指向O点的均匀辐射状电场,距O点4L处的电场强度大小均为E=,粒子恰好能垂直y轴从C(0,4L)点进入第一象限,如图所示,在第一象限中有两个全等的直角三角形区域I和Ⅱ,充满了方向均垂直纸面向外的匀强磁场,区域I的磁感应强度大小为B0,区域Ⅱ的磁感应强度大小可调,D点坐标为(3L,4L),M点为CP的中点。
粒子运动轨迹与磁场区域相切时认为粒子能再次进入磁场。
从磁场区域I进入第二象限的粒子可以被吸收掉。
求(1)加速电场的电压U;(2)若粒子恰好不能从OC边射出,求区域Ⅱ磁感应强度大小;(3)若粒子能到达M点,求区域Ⅱ磁场的磁感应强度大小的所有可能值。
2.一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示。
图中直径MN的两端分别开有小孔。
筒绕其中心轴以角速度ω0顺时针转动。
一带电粒子从小孔M沿MN方向射入筒内(图中未画出),当筒转过90°时,该粒子恰好从小孔N飞出圆筒。
若粒子在筒内未与筒壁发生碰撞,不计粒子重力。
(1)求带电粒子的比荷;(2)若粒子速率不变,在该截面内,粒子从小孔M射入时的运动方向与MN成30°,粒子仍未与筒壁发生碰撞而从某小孔飞出,求圆筒的角速度ω。
3.如图所示,在水平边界MN上方有磁感应强度大小为B0、方向垂直纸面向外的匀强磁场,磁感应强度为B,O、A是MN上的两点,OA距离为L,PQ是一足够长的挡板,粒子打在挡板上均被吸收,开始时P点与O点重合,∠QON=θ=53°.在OA之间有大量质量为m、电荷量为﹢q且速度相同的粒子,速度方向均垂直边界MN竖直向上,且在纸面内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E ϖ的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2 / N ·m2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6C 和q 2=-16.0×10-6C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E ϖϖϖ300200+= .试求穿过各面的电通量.10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p ϖ的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若E ϖqLqⅡ daσAσBA Bq ∞∞半圆弧AB的半径为R,试求圆心O点的场强.18. 真空中两条平行的“无限长”均匀带电直线相距为a,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm,其间有一半充以相对介电常量εr=10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V时,试分别求空气中和介质中的电位移矢量和电场强度矢量.(真空介电常量ε0=8.85×10-12 C2·N-1·m-2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.)21. 假想从无限远处陆续移来微量电荷使一半径为R的导体球带电.(1) 当球上已带有电荷q时,再将一个电荷元d q从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开始增加到Q的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A、B的面积都是S,极板间距离为d.接上电源后,A板电势U A=V,B板电势U B=0.现将一带有电荷q、面积也是S而厚度可忽略的导体片C平行插在两极板的中间位置,如图所示,试求导体片C的电势.24. 一导体球带电荷Q.球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr1和εr2,分界面处半径为R,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为1.0 cm与2.0 cm的两个球形导体,各带电荷1.0×10-8 C,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/CmN109419⋅⨯=πε)26. 如图所示,有两根平行放置的长直载流导线.它们的直径为a,反向流过相同大小的电流I,电流在导线均匀分布.试在图示的坐标系中求出x轴上两导线之间区域]25,21[aa磁感强度的分布.27. 如图所示,在xOy平面(即纸面)有一载流线圈abcd a,其中bc弧和da弧皆为以O为圆心半径R =20 cm的1/4圆弧,ab和cd皆为直线,电流I =20 A,其流向为沿abcd a的绕向.设线圈处于B = 8.0×10-2 T,方向与a→b的方向相一致的均匀磁场中,试求:(1) 图中电流元I∆l1和I∆l2所受安培力1Fϖ∆和2Fϖ∆的方向和大小,设∆l1 =∆l2 =0.10 mm;(2) 线圈上直线段ab和cd所受的安培力abFϖ和cdFϖ的大小和方向;(3) 线圈上圆弧段bc弧和da弧所受的安培力bcFϖ和daFϖ的大小和方向.28. 如图所示,在xOy平面(即纸面)有一载流线圈abcda,其中b c弧和da弧皆为以O为圆心半径R =20 cm的1/4圆弧,ab和cd皆为直线,电流I =20 A,其流向沿abcda的绕向.设该线圈处于磁感强度B = 8.0×10-2 T的均匀磁场中,Bϖ方向沿x轴正方向.试求:(1) 图中电流元I∆l1和I∆l2所受安培力1Fϖ∆和2Fϖ∆的大小和方向,设∆l1 =∆l2 =0.10 mm;(2) 线圈上直线段ab和cd所受到的安培力abFϖ和cdFϖ的大小和方向;(3) 线圈上圆弧段bc弧和da弧所受到的安培力bcFϖ和daFϖ的大小和方向.29. AA'和CC'为两个正交地放置的圆形线圈,其圆心相重合.AA'线圈半径为20.0 cm,共10匝,通有电流10.0 A;而CC'线圈的半径为10.0 cm,共20匝,通有电流5.0 A.求两线圈公共中心O点的磁感强度的大小和方向.(μ0 =4π×10-7 N·A-2)abcdORRxyII30°45°I∆l1I∆l2abcdORRxyII30°45°I∆l1 I∆l230. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B ϖ.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.32. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B ϖ的大小及其方向.33. 横截面为矩形的环形螺线管,圆环外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B ϖ的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B ϖ.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面,由实线表示),R EF AB ==,大圆弧BC的半径为R ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B ϖ的大小和方向.38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B ϖ的大小.39.,地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小.40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p ϖ与电子轨道运动的动量矩L ϖ大小之比,并指出m p ϖ和L ϖ方向间的关系.(电子电荷为e ,电子质量为m)41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8 Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A) 42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求:(1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I ϖ对电流元22d l I ϖ的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方II I 21d l I 22d l I ϖ向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。