浙江省杭州市十三中教育集团2013年中考数学二模试卷(含答案)
2013年杭州市下城区数学二模试卷
2013中考模拟(一)数学试卷考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,在答题卡填涂姓名学校的信息及考号.3.必须在答题卡的对应答题位置上答题,写在其他地方无效.一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.如图,是由4个相同小正方体组合而成的几何体,它的左视图是()A.B.C.D.2.如图,已知四条直线a,b,c,d,其中a∥b,c⊥b,且∠1=50°.则∠2=()A.60°B.50°C.40°D.30°3.下列计算或化简正确的是()A.2()a ab ab a---=-B.235a a a+=C+=D3=±4.下列因式分解正确的是()A.222()a b a b-=-B.222168(4)a ab b a b-+=-C.222()a ab b a b++=+D.22()x y xy xy xy x y++=+5.将一个半径为R,圆心角为90°的扇形围成一个圆锥的侧面(无重叠),设圆锥底面半径为r,则R与r的关系正确的是()A.R=8r B.R=6r C.R=4r D.R=2r6.某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,下面是六个兴趣小组的频数分布直方图和扇形统计图.根据图中提供的信息,可得下列问题中不正确...的是()A.七年级共有320人参加了兴趣小组;B.体育兴趣小组对应扇形圆心角的度数为96°;C.美术兴趣小组对应扇形圆心角的度数为72°;D.各小组人数的中位数是56.7.下列说法中正确的是( )A .若式子1-x 有意义,则x >1;B .已知a 、b 、c 、d 都是正实数,且a cb d <,则b d a bcd <++ C .在反比例函数x k y 2-=中,若x >0 时,y 随x 的增大而增大,则k 的取值范围是k >2; D .解分式方程3233x x x =+--的结果是原方程无解.8.二次函数c bx ax y ++=2(a ,b ,c 是常数,a ≠0)图象的对称轴是直线1=x ,其图象的一部分如图所示,对于下列说法:①0abc >;②0<+-c b a ;③03<+c a ;④当31<<-x 时,0>y .其中正确的是( )A .①②B .①④C .②③D .②③④9.如图,在△ABC 中,∠C=90°,AC =BC =4,D 是AB 的中点,点E 、F 分别在AC ,BC 边上运动(点E 不与点A ,C 重合),且保持AE=CF ,连接DE ,DF ,EF .在此运动变化的过程中,有下列结论:①四边形CEDF 有可能成为正方形;②△DFE 是等腰直角三角形;③四边形CEDF 的面积是定值;④点C 到线段EF.其中正确的结论是( )A .①④B .②③C .①②④D .①②③④10.关于x 的方程220x px q --=(p ,q 是正整数),若它的正根小于或等于4,则正根是整数的概率是( )A .512 B .14 C .13D .12 二.认真填一填 (本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算:=-⋅)2(3a a ;=32)2(ab ;12.五位射击运动员在一次射击练习中,每人打10抢,成绩(单位:环)记录如下:97,98,95,97,93.则这组数据的众数是 ;平均数是 ;13.某药品原价是100元,经连续两次降价后,价格变为81元,如果每次降价的百分率是一样的,那么每次降价的百分率是;14.如图,AB 是⊙O 的直径,AE 交⊙O 于点F 且与⊙O 的切线CD 互相垂直,垂足为D ,连结AC ,OC ,CB .有下列结论:①∠1=∠2;②OC ∥AE ;③AF =OC ;④△ADC ∽△ACB .其中结论正确的是 (写出序号); 15.在面积为12的平行四边形ABCD 中,过点A 作直线BC 的垂线交BC 于点E ,过点A 作直线CD 的垂线交CD 于点F ,若AB =4,BC =6,则CE +CF 的值为 ;16.在平面坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…,按这样的规律进行下去,第2013个正方形的面积为 .三.全面答一答 (本题有8个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本小题6分) 先化简,再求值:ab a a b ab a -÷--)2(2,其中a =sin60°,b =tan60°.18.(本小题8分)设函数12++=bx ax y ,其中a 可取的值是-1,0,1,b 可取的值是-1,1,2:(1)当a ,b 分别取何值时所得函数有最小值?请直接写出满足条件的这些函数和相应的最小值;(2)如果a 在-1,0,1三个数中随机抽取一个,b 在-1,1,2中随机抽取一个,共可得到多少个不同的函数解析式?在这些函数解析式中任取一个,求取到当x >0时y 随x 增大而减小的函数的概率.19.(本小题8分)(1)在图1中,求作△ABC 外接圆(尺规作图,不写作法保留痕迹);(2)如图2,若△ABC 的内心为O ,且BA =BC =8,sinA 43=,求△ABC 的内接圆半径.20.(本小题10分)如图,正方形ABCD 的边长为3,将正方形ABCD 绕点A 顺时针旋转角度α(0°<α<90°),得到正方形AEFG ,FE 交线段DC 于点Q ,FE 的延长线交线段BC 于点P ,连结AP ,AQ .(1)求证:△ADQ ≌△AEQ ;(2)求证:PQ =DQ +PB ;(3)当∠1=∠2时,求PQ 的长.21.(本小题10分)某商店采购甲、乙两种型号的电风扇,共花费15000元,所购进甲型电风扇的数量不少于乙型数量的2倍,但不超过乙型数量的3倍.现已知甲型每台进价150元,乙型每台进价300元,并且销售甲型每台获得利润30元,销售乙型每台获得利润75元.设商店购进乙型电风扇x 台.(1)商店共有多少种采购电风扇方案?(2)若商店将购进的甲、乙两种型号的电风扇全部售出,写出此商店销售这两种电风扇所获得的总利润y (元)与购进乙型电风扇的台数x (台)之间的函数关系式;(3)商店怎样的采购方案所获得的利润最大?求出此时利润最大值.22.(本小题12分)如图,在R t △AOB 中,已知AO =6,BO =8,点E 从A 点出发,向O 点移动,同时点F 从O 点出发沿OB -BA 向点A 移动,点E的速度为每秒1个单位,点F 的速度为每秒3个单位,当其中一点到达终点时,另一点随即停止移动.设移动时间为x 秒:(1)当x =2时,求△AEF 的面积;(2)当EF ∥BO 时,求x 的值;(3)设△AEF 的面积为y ,求出y 关于x 的函数关系式.23.(本小题12分)如图,已知抛物线)0(2≠++=a c bx ax y 的图象经过原点O ,交x 轴于点A ,其顶点B 的坐标为(3,3-).(1)直接写出抛物线的解析式及点A 的坐标;(2)设抛物线上的点Q ,使△QAO 与△AOB 相似(不全等),求出点Q 的坐标;(3)在(2)的条件下,已知点M (0,连结QM 并延长交抛物线另一点R ,在直线QR下方的抛物线上找点P ,当△PQR 面积最大时,求点P 的坐标及S △PQR 的最大值.。
2013杭州二模含自选
浙江省杭州市2013届高三第二次教学质检检测数学(理)试题一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知i 是虚数单位,则11i ii i++=+( )A .1322i -+ B .1322i - C .3122i + D .3122i -2.已知集合⎭⎬⎫⎩⎨⎧∈=-∈=)2,0(,sin )sin(πθθθπk Z k A ⎭⎬⎫⎩⎨⎧∈=+∈=)2,0(,cos )cos(πθθθπk Z k B ,则=⋂B A C Z )(A.{}Z n n k k ∈=,2B. {}Z n n k k ∈-=,12 C.{}Z n n k k ∈=,4 D.{}Z n n k k ∈-=,143.设P 为函数x x f πsin )(=的图象上的一个最高点,Q 为函数x x g πcos )(=的图象上的一个最低点,则|PQ|最小值是( )A .442+πB .2 C.2D .4.设直线:)0(:≠+=m m kx y l ,双曲线)0,0(1:2222>>=-b a by a x C ,则“bk a =-”是“直线l 与双曲线C 恰有一个公共点“的( )A .充分不必要条件B .必要不充分条件C .充分条件D .既不充分也不必要条件5.若存在实数x ,y 使不等式组⎪⎩⎪⎨⎧≤-+≤+-≥-060230y x y x y x 与不等式02≤+-m y x 都成立,则实数m的取值范围是( ) A .m≥0 B . m≤3C .m≥lD .m≥36.设数列{a n }是首项为l 的等比数列,若11{}2n n a a ++是等差数列,则12231111()()22a a a a +++2012201311()2a a +++ 的值等于( ) A . 2012B . 2013C . 3018D . 30197.已知双曲线)0,0(1:2222>>=-b a bx a y C ,A ,B 是双曲线的两个顶点.P 是双曲线上的一点,且与点B 在双曲线的同一支上.P 关于y 轴的对称点是Q.若直线AP ,BQ 的斜率分别是k 1,k 2,且k 1·k 2=45-,则双曲线的离心率是( ) A.5B .94C .32D .958.若函数()(1).xf x x e =+,则下列命题正确的是( )A .对任意21m e <-,都存在R x ∈,使得()f x m < B .对任意21m e>-,都存在R x ∈,使得()f x m < C .对任意21m e <-,方程()f x m =只有一个实根 D .对任意21m e >-,方程()f x m =总有两个实根 9.在直角坐标中,A (3,1),B (-3,-3),C (l .4).P 是AB 和AC夹角平分线上的一点,且AP =2,则AP的坐标是A.(1313-B.(-C.(-D (-10.如图,平面α与平面β交于直线l ,A ,C 是平面α内 不同的两点,B ,D 是平面β内不同的两点,且A ,B . C .D 不在直线l 上,M ,N 分别是线段AB ,CD 的中点,下列判断正确的是( )A .若AB 与CD 相交,且直线AC 平行于l 时,则直线BD与l 可能平行也有可能相交B .若AB ,CD 是异面直线时,则直线MN 可能与l 平行C .若存在异于AB ,CD 的直线同时与直线AC ,MN ,BD都相交,则AB ,CD 不可能是异面直线D .M ,N 两点可能重合,但此时直线AC 与l 不可能相交 二、填空题(本大题共7小题,每小题4分,共28分) 11.已知)(32cos R x x ∈=,则=-)3cos(πx 。
2013中考二模试题数学(三)
2013中考二模试题数学(三)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标(-a b 2,ab ac 442-)一.仔细选一选 (本题有10个小题,每小题3分,共30分) 1.计算02(2)-+-=( )A .2B .-4C .0D .32 )A .2B .±2C .4D .±4 3.一元二次方程(2)2x x x -=-的解是( )A .1-B .2C .1-或2D .0或2 4.具有下列条件的两个等腰三角形,不能判断它们全等的是( ) A .两腰对应相等 B .底边、一腰对应相等 C .顶角、一腰对应相等 D .一底角、底边对应相等 5.下列事件为不可能事件的是( )A .某个数的相反数等于它本身B .某个数的倒数是0C .某两个负数积大于0D .某两数的和小于0 6.样本数据5,7,7,x 的中位数与平均数相同,则x 的值是( ) A .9 B .5或9 C .7或9 D .5 7.已知△ABC 绕点C 按顺时针方向旋转49º后得到△A 1B 1C ,如果A 1C ⊥BC ,那么∠A +∠B 等于( )A .41ºB .149ºC .139ºD .139º或41º 8.在△ABC 中,∠C =90°,AC =6,BC =8,以C 为圆心,r 为半径画⊙C ,使⊙C 与线段AB 有且只有两个公共点,则 r 的取值范围是( )A .68r ≤≤B .68r ≤<C .2465r <≤ D .2485r <≤9.已知11a a -=-,若a 为整数时,方程组,3562x y a x y a +=⎧⎨-=+⎩ 的解x 为正数,y 为负数,则a 的值为( )A .0或1B .1或-1C .0或-1D .0 10.如图,已知二次函数132312-+=x x y 的图像与x 轴交于A 、B 两点,与y 轴交于点C ,连接AC ,点P 是抛物线上的一个动点,记△APC 的面积为S ,当S =2时,相应的点P 的个数是( ) A .4 个 B .3个 C .2个 D .1个二.认真填一填 (本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.计算:已知:4:3a b =,则3245a ba b+-= ; 12.分解因式222(1)4a a +-= ;13.如图,AB ∥CD ,BE 平分∠ABC ,∠CDE =145º, 则∠C = ;14.若点()22,P m m -在直线y x =-上,则点()1,m m -关于y 轴的对称点坐标是 ;15.已知矩形ABCD 的边AB =4,AD =3,现将矩形ABCD 如图放在直线上,且沿着向右作无滑动地翻滚,当它翻滚到位置1111A B C D 时,计算:(1)顶点A 所经过的路线长为 ;(2)点A 经过的路线与直线所围成的面积为 ;16.如图,⊙O 过四边形ABCD 的四个顶点,已知∠ABCBD=AB+CB,③点O是∠ADC平分线上=90º,BD平分∠ABC,则:①AD=CD,②的点,④222+=,上述结论中正确的编号是.2AB BC CD三.全面答一答(本题有8个小题,共66分)17.(本小题6分)为响应杭州市政府提出的“文明出行,低碳生活”活动,某校组织了以“文明出行,从我做起”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数与成绩进行整理,制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共1200份,请估计该校学生比赛成绩达到90分以上(包含90分)的作品有多少份.18.(本小题8分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=B D.求证:(1)BC =AD ;(2)△OAB 是等腰三角形.19.( 本小题8分)有六张正面分别有数字-3,-1,0,1,5,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面向上,洗匀后从中任取一张,将该卡片上的数字记为a ,求关于x 的分式方程2111111ax x xx -+=+--的解,并求该方程的解不小于12-的概率.20.( 本小题10分)已知在平面直角坐标系中,点A ,B 的坐标分别为A (2,-5),B (5,1).在同一个坐标系内画出满足下列条件的点(保留画图痕迹),并求出该点的坐标.(1)在y轴上找一点C,使得AC+BC的值最小;(2)在x轴上找一点D,使得AD-BD的值最大.21.(本小题10分)如图,两个观察者从A,B两地观测空中C处一个气球,分别测得仰角为45º和60º.已知A,B两地相距30米,延长AB,作CD⊥AD于D,当气球沿着与AB平行的方向飘移到点'C时,在A处又测得气球的仰角为30º,求CD与'CC的长度.(结果保留根号)22.(本小题12分)如图,AB是半圆O的直径,且AB=CDEF内接于半圆,点C,D在AB上,点E,F在半圆上.(1)当矩形CDEF相邻两边FC︰CD︰2时,求弧AF的度数;(2)当四边形CDEF是正方形时:①试求正方形CDEF的边长;②若点G,M在⊙O上,GH⊥AB于H,MN⊥AB于N,且△GDH和△MHN都是等腰直角三角形,求HN的长.23.(本小题12分)已知抛物线32+y经过点A(-1,0),B(3,0),交y轴于点C,M为抛物线ax+=bx的顶点,连接MB.(1)求该抛物线的解析式;(2)在y轴上是否存在点P满足△PBM是直角三角形,若存在,请求出P点的坐标,若不存在,请说明理由;(3)设Q点的坐标为(8,0),将该抛物线绕点Q旋转180°后,点M的对应点为M',求MBM'∠的度数.参考答案一、选择题(每题3分)DBCAB BDCAC二、填空题(每题4分)11.18 12.()()2211+-aa 13.110º 14.(-1,1)或1(2,)2--15.6π;252π+1216.①③④ (注:14、15题只要看到对一个就得2分;16题对一个得1分,对二个得2分,对三个得4分,不论对几个只要出现②得0分)三、解答题17.(6分)(1) 本次抽取了 120 份作品;图略,看关键数字填空正确:评分80分有 42 个人,占总人数 35﹪,评分为60分的占总人数 5﹪;-------4分(各1分)(2) 1200×(30﹪+10﹪)=480份∴该校学生比赛成绩达到90分以上(含90分)的作品有480份. ----2分18.(8分)(1)连接BA,∵AC⊥BC,BD⊥AD,∴在Rt△DAB与Rt△CAB中,AC=DB AB=AB∴Rt△DAB≌Rt△CAB (HL) -----------------------3分∴BC=AD ------------1分 (2)∵Rt△DAB≌Rt△CAB(已证)∴∠CAB=∠DBA ----------------2分 ∴OA=OB ,∴△OAB 是等腰三角形.------------------2分19.(8分)去分母,两边同乘以12-x 得:x x ax --=-+-111----------------2分 解得:21-=a x -------------------------------------2分把相应的a 代入,分别得11111,,,1,,53234-------------2分(没写出这6个不扣分)观察以上解的情况,知满足条件的点有5个,所以概率为---------- 2分20.(10分) (1) C 点如图 -------------2分(或作B 关于y 轴的对称点B ′,连结AB ′交y 轴于点C ) 解得A′B 直线解析式:72376'-=x y B A 或62377AB y x '=-- )∴点C 的坐标为230,7⎛⎫-⎪⎝⎭----------------------------3分(2) D 点如图(作点B 关于x 轴的对称点B′,连结AB’延长交x 轴于D )--2分 (理由:若A ,B′,D 三点不共线,根据三角形两边之差小于第三条边可得:AD -B′D <AB′∴当A ,B′,D 三点共线时,AD -B′D =AB′,此时AD -B′D 有最大值,最大值为AB′的长度. 此时,点D 在直线AB′上)根据题意由A (2,-5),B′(5,-1)代入可得42333AB y x '=-,∴当AD -BD 有最大值时,点D 的坐标为23,04⎛⎫⎪⎝⎭----------3分21.(10分)(1)过点C′作AD 的延长线的垂线,垂足为D′ ----------1分 在Rt△ACD 中,∵∠CAD=45º,则CD =AD =x -----------1分在Rt△BCD 中,∠ CBD=60º,则BD--------------2分∵AD -BD=AB, 即 x=30,∴求得x =CD (45+(米)------2分(未分母有理化不扣分)在Rt△AC′ D′中,tan 30C DAD ''=︒=',∴AD '=45+分∴CC′=A D′-CD =分22.(12分)(1)连结FO ,根据圆的对称性,矩形CDEF 内接于半圆可得CO =OD , ----1分 ∴Rt △COF 中,FC ︰CD 1, ∴∠FO C=60°-------------------2分∴弧AF 的度数为60°----------------------1分 (2)① ∵四边形CDEF 是正方形, ∴FC=2CO ---------------1分∵FC 2+CO 2=()252,解得CO =2, ∴CF=4,正方形的边长为4 ------------------ 3分② 连结OG ,OM ,∵△GDH 和△MHN 都是等腰直角三角形,∴DH=HG ,HN =MN在Rt△OGH 中,222OG HG OH =+,设DH =x ,则()()222522=++x x 解得x =2 或x =-4(舍去)-----------------------------2分在Rt△OMN 中,222ON NM OM +=,设HN =y ,∴()()2225222=+++y y ,解得62±-=y (舍去负值) ∴26-=HN --------------------------2分23.(12分)(1)322++-=x x y ---------------2分(2)设点P 的坐标为(0,y ),① 若∠MPB=90°,过点M 作ME⊥x 轴,MF⊥y 轴,易证Rt△PFM∽Rt△BOP,可得:341y y -= 解得121,3y y ==,∴点P 的坐标为(0,1),(0,3)--------------2分② 若∠PMB=90°,同理,Rt△PFM∽Rt△BEM, ∴4124=-y 解得:27=y ∴点P 的坐标为 ⎪⎭⎫ ⎝⎛27,0-----------------2分 ③ 若∠MBP=90°,同理, Rt△POB∽Rt△BEM ∴432=-y ,解得:23-=y ,∴点P 的坐标为 ⎪⎭⎫ ⎝⎛-23,0--------2分 综上:△PBM 是直角三角形时,P 点的坐标为(0,1),(0,3),70,2⎛⎫ ⎪⎝⎭,30,2⎛⎫- ⎪⎝⎭(3)由题意可知:B (3,0),M(1,4),Q(8,0),点M ,M′关于点Q 中心对称,∴M′ (15,-4),-------------------1分连结M′B ,并延长M′B 交y 轴于点D , 由113M B y x '=-+,可得D (0,1)---------------1分 连结MD ,易证Rt△DFM ≌Rt△DOB∴△DBM 是等腰直角三角形,∠DBM =45°--------1分∴∠MBM'=135°-----------------------1分解法二:过点M′作MB 的垂线交MB 的延长线于点D ,由△MB M′面积计算,转化为已知△面积和底边MB 求高D M′,解得54'=D M 再由104412'22=+=BM , M’D⊥MD, ∴△DB M′是等腰Rt △, ∴ 54'==BD D M∴ ∠M’BD=∠BM’D=45°( 同样4分)。
2013杭州市中考数学试卷
2013年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.2.(2013杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6 C.(1﹣m)(1+m)=m2﹣1 D.3.(2013杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C4.(2013杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.405.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长6.(2013杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.7.(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径8.(2013杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.9.(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.10.(2013杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(2013杭州)32×3.14+3×(﹣9.42)= .12.(2013杭州)把7的平方根和立方根按从小到大的顺序排列为.13.(2013杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)14.(2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低录取分数线统计表15.(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD 分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= 4π(平方单位)16.(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm 为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.18.(2013杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.19.(2013杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.20.(2013杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y 轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.21.(2013杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.22.(2013杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.23.(2013杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E 在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.2013年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.(2013杭州市中考数学试卷难度 1 级知识点轴对称图形.编号091 )1.(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.(2013杭州市中考数学试卷难度2 级知识点平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.编号092 )2.(2013杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6 C.(1﹣m)(1+m)=m2﹣1 D.(2013杭州市中考数学试卷难度 2 级知识点平行四边形的性质.编号093 )3.(2013杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C(2013杭州市中考数学试卷难度2 级知识点完全平方公式.编号094 )4.(2013杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40(2013杭州市中考数学试卷难度 2 级知识点条形统计图.编号095 )5.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长(2013杭州市中考数学试卷难度 3 级知识点分式的乘除法编号096 )6.(2013杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.(2013杭州市中考数学试卷难度 3 级知识点直线与圆的位置关系;命题与定理.编号097 )7.(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径(2013杭州市中考数学试卷难度 2 级知识点由三视图判断几何体编号098 )8.(2013杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.(2013杭州市中考数学试卷难度 2 级知识点解直角三角形.编号099 )9.(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.(2013杭州市中考数学试卷难度 5 级知识点二次函数与不等式(组);命题与定理.编号100 )10.(2013杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案(2013杭州市中考数学试卷难度 2 级知识点有理数的混合运算编号101 )11.(2013杭州)32×3.14+3×(﹣9.42)= .0(2013杭州市中考数学试卷难度 3 级知识点实数大小比较编号102 )12.(2013杭州)把7的平方根和立方根按从小到大的顺序排列为.﹣<<(2013杭州市中考数学试卷难度 3 级知识点特殊角的三角函数值;含30度角的直角三角形编号103 )13.(2013杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是③③④(只需填上正确结论的序号)解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:.(2013杭州市中考数学试卷难度 2 级知识点算术平均数编号104 )14.(2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 4.75分杭州市某4所高中最低录取分数线统计表(2013杭州市中考数学试卷难度3 级知识点圆锥的计算;点、线、面、体;圆柱的计算编号105 )15.(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD 分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= 4π(平方单位)(2013杭州市中考数学试卷难度 5 级知识点分类讨论编号106 )16.(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值t=2或3≤t≤7或t=8.(单位:秒)解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.(2013杭州市中考数学试卷难度3 级知识点作图—复杂作图.编号107 )17.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.(2013杭州市中考数学试卷难度 4 级知识点解一元二次方程-公式法;解一元一次不等式组.编号108 )18.(2013杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.(2013杭州市中考数学试卷难度 3 级知识点等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.编号109 )19.(2013杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.解答:证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.(2013杭州市中考数学试卷难度 4 级知识点二次函数的性质;抛物线与x轴的交点编号110 )20.(2013杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y 轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.(2013杭州市中考数学试卷难度4 级知识点游戏公平性.编号111 )21.(2013杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)(2013杭州市中考数学试卷难度 5 级知识点等腰三角形的性质;反比例函数图象上点的坐标特征编号112 )22.(2013杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)(2013杭州市中考数学试卷难度5 级知识点四边形综合题.编号)23.(2013杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E 在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.2013年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.(2013杭州市中考数学试卷难度级知识点编号)1.(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.(2013杭州市中考数学试卷难度级知识点编号)2.(2013杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6 C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.(2013杭州市中考数学试卷难度级知识点编号)3.(2013杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.(2013杭州市中考数学试卷难度级知识点编号)4.(2013杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.专题:计算题.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.(2013杭州市中考数学试卷难度级知识点编号)5.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算2010年~2011年GDP增长率,2011年~2012年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2012年和2008年GDP,可判断出B的正误;根据条形统计图可得2010年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2008~2012年杭州市的GDP 逐年增长.解答:解:A.2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故此选项错误;B.2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;C.2010年杭州市的GDP超过到5500亿元,故此选项错误;D.2008~2012年杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.(2013杭州市中考数学试卷难度级知识点编号)6.(2013杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.专题:计算题.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.(2013杭州市中考数学试卷难度级知识点编号)7.(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.(2013杭州市中考数学试卷难度级知识点编号)8.(2013杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.(2013杭州市中考数学试卷难度级知识点编号)9.(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.(2013杭州市中考数学试卷难度级知识点编号)10.(2013杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④ B.错误的命题是②③④C.正确的命题是①② D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案(2013杭州市中考数学试卷难度级知识点编号)11.(2013杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.(2013杭州市中考数学试卷难度级知识点编号)12.(2013杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.(2013杭州市中考数学试卷难度级知识点编号)13.(2013杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.(2013杭州市中考数学试卷难度级知识点编号)14.(2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低录取分数线统计表考点:算术平均数.分析:先算出2011年的平均最低录取分数线和2012年的平均最低录取分数线,再进行相减即可.解答:解:2011年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2012年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.(2013杭州市中考数学试卷难度级知识点编号)15.(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD 分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.(2013杭州市中考数学试卷难度级知识点编号)16.(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm 为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)。
2013杭州中考数学模拟试卷
2013年杭州中考模拟试卷数学 试题卷考生须知:1.本科目试卷分试题卷和答题卷两部分.满分为120分,考试时间100分钟.2.答题前,必须在答题卷的密封区内填写学校、班级和姓名.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)1.1纳米等于1米的10亿分之一,人的一根头发丝的直径约为6万纳米,用科学记数法 表示6万纳米为( )A .4106-⨯ 米B .5106-⨯米C .4106⨯米D .5106⨯米 2.九年级某班在一次考试中对某道单选题的答题情况如图所示:根据以上统计图,下列判断中错误的是( )A .选A 的人有8人B .选B 的人有4人C .选C 的人有26人D .该班共有50人参加考试3.在扇形中,∠AOB =90°,面积为4πcm 2,用这个扇形围成一个圆锥的侧面,这个圆锥 的底面半径为( )A .1cmB .2cmC .15cmD .4cm4.方程032=--x x 的根是 ( )A .x =9B .3=x 1-=xC .x =1D .x 1=9,x 2=15.如果a +b <0,且b >0,那么a 、b 、-a 、-b 的大小关系为( )A .a <b <-a <bB .-b <a <-a <bC .a <-b <-a <bD .a <-b <b <-a6.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( ) A .点M B .格点N C .格点P D .格点Q7.如图,在正方形ABCD 中,E 是CD 的中点,点F 在BC 上,且FC =14BC .图中相似三角形共有( )对. A .1对 B .2对 C .3对D .4对8. 函数x y -=6与函数)0(4 x x y =的图象交于A 、B 两点,设点A 的坐标为 ),(11y x 则边长分别为x 1、y 1的矩形面积和周长分别为( )A .4,12B .4,6C .8,12D .8,69.如图所示,⊙O 的直径EF 为10cm ,弦AB ,CD 分别为6cm 和8cm ,且AB ∥EF ∥CD ,则图中阴影部分的面积和为( )A .252πcm 2B .253πcm 2C .758πcm 2D . 17512πcm 2 10.函数xx y 3+=的图象如图所示,关于该函数, 下列结论正确的是( )A .①③④B .②③④C .②③⑤D .②④⑤①函数图象是轴对称图形;②函数图象是中心对称图形;③当x <1或x >3时,y >4。
2024年浙江省杭州十三中中考数学二模试卷(含答案)
2024年浙江省杭州十三中中考数学二模试卷一、选择题:本题共10小题,每小题3分,共30分。
1.春节期间冰雪旅游大热,泰州的小明同学准备去旅游,考虑温差准备着装时,他查询了当时的气温,泰州的气温是16℃,哈尔滨的气温是−14℃,则此刻两地的温差是( )A. 30℃B. 16℃C. 14℃D. 2℃2.2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为( )A. 0.1×1011B. 1×1010C. 1×1011D. 10×1093.下列计算正确的是( )A. a+2a=3aB. (a+b)2=a2+b2C. (a2)3=a5D. a2⋅a3=a64.中国“二十四节气”已被列入联合国教科文组织人类非物质文化遗产代表作名录,下列四幅作品分别代表“立春”、“立夏”、“芒种”、“大雪”,其中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.5.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球后放回,摇匀后再随机摸出一个小球,两次摸出的小球标号相同的概率为( )A. 12B. 13C. 16D. 196.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中是平行的光线,在空气中也是平行的,如图,∠1+∠2=129°,∠3=102°,则∠4的度数为( )A. 57°B. 54°C. 52°D. 51°7.已知−2<a<−1,则下列结论正确的是( )A. a<1<−a<2B. 1<a<−a<2C. 1<−a<2<aD. −a<1<a<28.如图,扇形的圆心角为120°,点C 在圆弧上,∠ABC =30°,OA =2,阴影部分的面积为( )A. 2π3+ 34B. 2π3C. 2π3− 34D. 2π3− 329.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,设BD =a ,DC =b ,AD =c ,给出下面三个结论:①c 2=ab ;②a +b ≥2c ;③若a >b ,则a >c .上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③10.如图,在平面直角坐标系中,抛物线y 1=a 1(x−ℎ)2+k 与x 轴交于点D 、点E ,过该函数顶点A 与x 轴平行的直线交抛物线y 2=a 2(x−ℎ)2于点B 、点C ,若BC =2DE ,那么a 1和a 2需满足关系( )A. a1= 2a 2B. a 1=− 2a 2C. a 1=−2a 2D. a 1=−4a 2二、填空题:本题共6小题,每小题3分,共18分。
2013年浙江省杭州市中考数学试卷
B、2012年杭州市的GDP约为7900,2008年GDP约为4900,故B选项错误;
C、2010年杭州市的GDP超过到5500亿元,故C选项错误;
D、2008~2012年杭州市的GDP逐年增长,故D选项正确,
15.(4分)(2013•杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|=(平方单位)
16.(4分)(2013•杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心, cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)
三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.
17.(6分)(2013•杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.
C、(1﹣m)(1+m)=1﹣m2,选项错误;
D、正确.
故选D.
【点评】本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.
3.(3分)(2013•杭州)在▱ABCD中,下列结论一定正确的是( )
A.AC⊥BDB.∠A+∠B=180°C.AB=ADD.∠A≠∠C
2013年杭州市中考数学试卷及答案(解析版)
2013年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(2013杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(2013杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(2013杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.专题:计算题.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算2010年~2011年GDP增长率,2011年~2012年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2012年和2008年GDP,可判断出B的正误;根据条形统计图可得2010年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2008~2012年杭州市的GDP 逐年增长.解答:解:A.2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故此选项错误;B.2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;C.2010年杭州市的GDP超过到5500亿元,故此选项错误;D.2008~2012年杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2013杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.专题:计算题.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点 D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(2013杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于() A.B.C.D.考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(2013杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④ B.错误的命题是②③④C.正确的命题是①② D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(2013杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(2013杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(2013杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低考点:算术平均数.分析:先算出2011年的平均最低录取分数线和2012年的平均最低录取分数线,再进行相减即可.解答:解:2011年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2012年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(2013杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x ﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(2013杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.解答:证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(2013杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y 轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(2013杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.(2013杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,22.已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(2013杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E 在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。
浙江省杭州市2013年中考数学试卷(含答案)
2013年杭州市各类高中招生文化考试数 学(满分120分,考试时间100分钟)参考公式:直棱柱的体积公式:Sh V =(S 为底面积,h 为高);圆锥的全面积(表面积)公式:2r rl S ππ+=全(r 为底面半径,l 为母线长); 圆柱的全面积(表面积)公式:222r rh S ππ+=全(r 为底面半径,h 为高)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 下列“表情图”中,属于轴对称图形的是2. 下列计算正确的是A. 523m m m =+ B. 623m m m =⋅ C. 1)1)(1(2-=+-m m m D.12)1(24-=--m m3. 在□ABCD 中,下列结论一定正确的是A. AC ⊥BDB. ∠A +∠B =180°C. AB =ADD. ∠A ≠∠C 4. 若3=+b a ,7=-b a ,则ab =A. -10B. -40C. 10D. 405. 根据2008~2012年杭州市实现地区生产总值(简称GDP ,单位:亿元)统计图所提供的信息,下列判断正确的是A. 2010~2012年杭州市每年GDP 增长率相同B. 2012年杭州市的GDP 比2008年翻一番C. 2010年杭州市的GDP 未达到5500亿元D. 2008~2012年杭州市的GDP 逐年增长6. 如图,设乙图中阴影部分面积甲图中阴影部分面积=k (0>>b a ),则有A. 2>kB. 21<<kC. 121<<kD. 210<<k7. 在一个圆中,给出下列命题,其中正确的是A. 若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B. 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C. 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D. 若两条弦平行,则这两条弦之间的距离一定小于圆的半径 8. 如图是某几何体的三视图,则该几何体的体积是A. 318B. 354C. 3108D. 3216 9. 在Rt △ABC 中,∠C =90°,若AB =4,sinA =53,则斜边上的高等于A. 2564B. 2548C. 516D. 512 10. 给出下列命题及函数x y =,2x y =和xy 1=的图象①如果21a a a>>,那么10<<a ;②如果aa a 12>>,那么1>a ;③如果a a a>>21,那么01<<-a ;④如果a aa >>12时,那么1-<a 。
2013年杭州中考数学试卷及答案
2013年杭州中考数学试卷及答案2013年杭州市各类高中招生文化考试数 学满分120分,考试时间100分钟参考公式:直棱柱的体积公式:Sh V =(S 为底面积,h 为高); 圆锥的全面积(表面积)公式:2r rl S ππ+=全(r 为底面半径,l 为母线长); 圆柱的全面积(表面积)公式:222r rh S ππ+=全(r 为底面半径,h 为高)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 下列“表情图”中,属于轴对称图形的是2. 下列计算正确的是A. 523m m m =+ B.623m m m =⋅C.1)1)(1(2-=+-m m m D.12)1(24-=--m m3. 在□ABCD 中,下列结论一定正确的是 A.AC⊥BDB. ∠A+∠B=180°C. AB=ADD. ∠A ≠∠C4. 若3=+b a ,7=-b a ,则ab =A. -10B. -40C. 10D. 405. 根据2008~2012年杭州市实现地区生产总值(简称GDP ,单位:亿元)统计图所提供的信息,下列判断正确的是A. 2010~2012年杭州市每年GDP 增长率相同B. 2012年杭州市的GDP 比2008年翻一番C. 2010年杭州市的GDP 未达到5500亿元D. 2008~2012年杭州市的GDP 逐年增长 6. 如图,设乙图中阴影部分面积甲图中阴影部分面积=k (0>>b a ),则有 A.2>k B.21<<kC. 121<<k D.210<<k7. 在一个圆中,给出下列命题,其中正确的是A. 若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B. 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C. 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D. 若两条弦平行,则这两条弦之间的距离一定小于圆的半径8. 如图是某几何体的三视图,则该几何体的体积是 A. 318B. 354C. 3108D.32169. 在Rt △ABC 中,∠C=90°,若AB=4,sinA=53,则斜边上的高等于A. 2564B.2548 C.516D. 51210. 给出下列命题及函数x y =,2x y =和xy 1=的图象 ①如果21a a a >>,那么10<<a ; ②如果aa a12>>,那么1>a ; ③如果aaa >>21,那么01<<-a ; ④如果a aa >>12时,那么1-<a 。
2013杭州中考数学答案详解
2013年杭州市各类高中招生文化考试数学参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案DDBADBCCBA选择题解析1、D2、D3、B4、A5、D解析:由图得,A :2010年到2011年的GDP 增长略大于1000亿元左右,但2011年到2012年的GDP 增长小于1000亿元,故两次增长率必不相同。
B :2012年的GDP 为小于8000亿元,而2008年的GDP 大于4000亿元,所以没有翻一番。
C :2010年GDP 接近6000亿元,图中很显然超过5500亿元 6、B解析:甲阴影部分面积22=-a b ,而乙阴影部分的面积2=-a ab ,则2221-+===+-a b a b bk a ab a a,由图得出<b a ,所以01<<ba,则12<<k 7、C解析:A :如图则A 不正确;B :如图则B 不正确C :如图则C 正确;D :如图则D 不正确8、A解析:由俯视图和主视图易得此图形为正六边形,根据主视图得其六边形的边长为6,而正六边形由6个正三角形所组成,23=6=934正三角形⨯S ,则=936=543正六边形⨯S ,而通过左视图可得2=h ,所以=5432=1083正六边形⋅=⨯V S h9、B解析:通过3sinA 5=,4=AB ,可得出4sinB 5=,125=BC ,如图,过点C 做AB 边的垂线交AB 边于点D ,则根据4sinB 5==CD BC ,125=BC ,得出4825=CD10、A解析:如图分析:交点坐标已给出,由图得① 描述正确。
② 如果21>>a a a,则根据图像可得1>a 或10-<<a ,所以②描述错误。
③ 如果21>>a a a,则根据图像没有这样的a 存在,所以③描述错误。
④ 描述正确。
二、填空题11、0; 12、3777-<<; 13、②③④; 14、4.75; 15、4π; 16、2=t 或37≤≤t 或8=t填空题解析 11、012、3777-<<解析:7的平方根有正负,需注意 13、②③④解析:根据题意,因为=90∠C ,2=AB BC ,则该直角三角形是含30 角的直角三角形,则::1:2:3=BC AB AC ,令1=BC ,2=AB ,=3AC ,作出图形①1sinA =2=BC AB ,②1cos =2=BC B AB ,③3tanA =3=BC AC ,④tan =3=AC B BC ,则答案为②③④。
【VIP专享】2013杭州中考数学试题(含答案)
答案: 【1】. D 注意:A 中代表嘴巴的折线不对称。 2. 下列计算正确的是
A. m3 m2 m5
本资料由<求解答网>提供
2013 年杭州市各类高中招生文化考试
数学
满分 120 分,考试时间 100 分钟 参考公式:
直棱柱的体积公式:V Sh (S 为底面积, h 为高); 圆锥的全面积(表面积)公式: S全 rl r 2 ( r 为底面半径, l 为母线长); 圆柱的全面积(表面积)公式: S全 2rh 2r 2 ( r 为底面半径, h 为高)
D. 40
C. 2010 年杭州市的 GDP 未达到 5500 亿元 D. 2008~2012 年杭州市的 GDP 逐年增长 答案: 【5】. D
k 甲图中阴影部分面积 6. 如图,设 乙图中阴影部分面积 ( a b 0 ),则有
A. k 2
1 k 1 C. 2
答案:
解析:
【6】. B
又 a>b>0 ,
C. (1 m)(1 m) m2 1
答案:
【2】. D 3. 在□ABCD 中,下列结论一定正确的是
A. AC⊥BD
C. AB=AD 答案:
【3】. B
4. 若 a b 3 , a b 7 ,则 ab =
A. -10 答案:
B. -40
【4】. A 解析:a+b=3,a-b=7,解得 a=5,b=-2, a b=5 (-2)=-10 .
B. m3 m2 m6
浙江省杭州市十三中教育集团中考数学二模试题 浙教版
A D BOC 第5题图 杭州市十三中教育集团2012年中考模拟试卷数 学考生须知:1、本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.2、答题时,必须在答题卷密封区内写明校区、考场、座位号、姓名、班级等内容.答题必须书写在各规定区域之内,超出答题区域的答案将被视为无效.一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分) 1.计算16的值为( ) A .±4B .±2C .4D .22.关于近似数3104.2⨯,下列说法正确的是( )A . 精确到十分位,有2个有效数字 B. 精确到百位,有4个有效数字 C. 精确到百位,有2个有效数字 D. 精确到十分位,有4个有效数字 3.如果32=-b a ,那么b a 426+-的值是( ) A. 3 B. 2 C. 1 D. 04.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取 一个球,取得白球的概率与不是白球的概率相同,那么m 与n 的关系是( ) A .m =3,n =5 B .m +n =8 C .m +n =4 D .m =n =45.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,则∠CAD 的度数是( ) A .25° B .60° C .65° D .75°6.一个正多边形绕它的中心旋转36°后,就与原正多边形第一次重合,那么这个正多边形 ( )A.是轴对称图形,但不是中心对称图形;B.是中心对称图形,但不是轴对称图形;C.既是轴对称图形,又是中心对称图形;D.既不是轴对称图形,也不是中心对称图形. 7.有一块边长为a 的正方形铁皮,计划制成一个有盖的长方体铁盒,使得盒盖与相对的盒底都是正方形.如图(1)、(2)给出了两种不同的裁剪方案(其中实线是剪开的线迹,虚线是折叠的线迹,阴影部分是余料),对(1)、(2)两种方案体积描述正确的是( )A. (1)方案大B.(2)方案大C. 一样大D.根据a 的值不同而不同8.若不等式组⎩⎨⎧-≥->b x ax 的解为b x -≥,则下列各式正确的是( )A.b a >B.b a <C.a b ≤D.a b ≥9.如图,平面直角坐标系中,⊙A 的圆心在x 轴上,半径为1,直线l 为y=2x-2,若⊙A 沿x 轴向右运动,当⊙A 与l 有公共点时,点A 移动的最大距离是( ) A.5 B.3 C.52 D.3310.如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1,l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 ( ) A.32B.364 C.4173 D.3212第14题图第16 题图二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 11.3和2-的平方和_________ .12.△ABC 中,AB =4,BC =3,AC =5. 以AB 所在直线为轴旋转一周形成的几何体的全面 积为 .13.当a =_________时,(a 2-4a 2-4a +4- 2a -2)÷a 2+2aa -2无意义.14.如图,函数11-=x y 和函数xy 22=的图像相交于点M (2,m ),N (-1,n ),若21y y > 则x 的取值范围是__________.15在△ABC 中,AB =AC =5,BC =8.⊙O 经过B 、C 两点,且AO=4,则⊙O 的半径长 是 _____________.16.如图,矩形ABCD 中,AB =4,BC =8,E 为CD 的中点,点P 、Q 为BC 上两个动点,①若连结AP 、PE ,则PE+AP 最小值为______;②连结PA 、QE,若PQ =3,当CQ = 时,四边形APQE 的周长最小.三. 全面答一答 (本题有7个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以.17.(本题满分6分) 给出下面四个方程.52,60cos ,1,20=+===+Ox y x xy y x (1) 任意两个方程所组成的方程组是二元一次方程组的概率是多少? (2) 找出一个解是整数的二元一次方程组,并直接写出这个方程组的解. 18.(本题满分8分)如图,已知一次函数b kx y +=的图象经过)1,2(--A ,)3,1(B 两点,并且交x 轴于点C ,交轴于点D.(1)求OCD ∠tan 的值;(2)用尺规作图,作点O关于直线AB的对称点P. (不写作法,保留作图痕迹)19.(本题满分8分)一次测试九年级若干名学生1分钟跳绳次数的频数分布直方图如图(每一组包括前一个边界值,不包括后一个边界值).请根据这个直方图回答下面的问题:(第19题图)跳绳次数(次)九年级若干名学生1分钟跳绳次数 01220864频数B D CAO 1 1y(1) 在频数分布直方图上画出频数分布折线图,并求自左至右最后一组的频率;(2) 若图中自左至右各组的跳绳平均次数分别为137 次,146次,156次,164次,177次.小丽按以下方法 计算参加测试学生跳绳次数的平均数是: (137+146+156+164+177)÷5=156.请你判断小丽的算式是否正确,若不正确,写出 正确的算式(只列式不计算);(3) 如果测试所得数据的中位数是160次,那么测试次数为160次的学生至少有多少人?20.(本题满分10分)已知:如图,在梯形ABCD 中,AD //BC , AB =CD =AD , 点E 在BA 的延长线上,AE=BC ,∠AED=α.(1)求证:BAC ADE ∆≅∆;(2)当ED 平分∠BEC 时,求证:EC BC =.21.(本题满分10分)由于受到手机更新换代的影响,某手机店经销的Iphone4手机二月售价比一月每台降价500元.如果卖出相同数量的Iphone4手机,那么一月销售额为9万元,二月销售额只有8万元. (1)一月Iphone4手机每台售价为多少元?(2)为了提高利润,该店计划三月购进Iphone4s 手机销售,已知Iphone4每台进价为3500元,Iphone4s 每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?(3)该店计划4月对Iphone4的尾货进行销售,决定在二月售价基础上每售出一台Iphone4手机再返还顾客现金a 元,而Iphone4s 按销售价4400元销售,如要使(2)中所有方案获利相同,a 应取何值? 22.(本题满分12分)如图,在△ABC 中,10==AC AB ,BC=12,点D 在AB 边上(点D 与点A ,B 不重合),DE ∥BC 交AC 边于点E ,点F 在线段EC 上,且AE EF 41=,以DE 、EF 为邻边作平行四边形DEFG ,连结BG . (1)求△ABC 的面积;(2)设AE =x ,△DBG 的面积为y ,求y 与x 的函数关系式,并写出x 的取值范围;(3)如果△DBG 是以DB 为腰的等腰三角形,求AD 的值.23.(本题满分12分)已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .直线12y x a =-分别与x 轴,y 轴相交于B C ,两点,并且与直线AM 相交于点N . (1)试用含a 的代数式分别表示点M 与N 的坐标;(2)如图,将直线AN 绕点A 顺时针旋转O 90,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连结CD ,求a 的值和点D 到直线BC 的距离; (3)在抛物线22y x x a =-+(0a <)上是否存在两点P Q 、,线段PQ 经过点()0,1,线段PQ 的中点在y 轴上,GE DCBA F 第22题图C yN ’N若存在,请求出线段PQ的中点坐标;若不存在,请说明理由.杭州市十三中教育集团2012年中考模拟试卷参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 C C D B C C B A A D二.填空题:(本大题6个小题,每小题4分,共24分)11、5 12、 24П 13、0,,2,-2 14、012<<->x x 或 15、 6517或 16、 10; 35三.解答题:(共66分) 17.(1)0.5 (3分)(2) ⎩⎨⎧=+=+5220x y y x (2分) 解为⎩⎨⎧-==34y x (1分)18.(1)34(3分)(2)作图略. (3分)19.解:(1)画出频数分布折线图………………2分24.05012=………………1分 (2)不正确………………1分501217720164815661464137⨯+⨯+⨯+⨯+⨯……………2分(3)8人………………2分20、证明:(1)∵梯形ABCD 中,AD //BC ,∴∠EAD =∠B .∵AE =BC ,AB =AD ,∴△DEA ≌△ABC .……………………(4分) (2)∵∠AED=α,∴∠BCA =∠AED =α.∵AD =CD ,∴∠DCA =∠DAC =∠ACB =α.…………………………(2分)∴∠BCD =∠DCA +∠ACB = 2α.………………………………………(1分)∵ED 平分∠BEC ,∴∠AEC =2∠AED =2α.∵梯形ABCD 中,AD //BC ,AB =CD ,∴∠EAD =∠B=∠BC D = 2α=∠AEC .…………………………(2分)∴CE=BC=AE .………………………………………………………………(1分)21、 (2) (3)22.(1)作BC AH ⊥于H ,在AHB Rt ∆中,53cos ==AB BH B ∵10=AB ,∴6=BH ,∴8=AH ∵AC AB =,∴122==BH BC ,∴4881221=⨯⨯=∆ABC S ………………………(4分) (2)设AH 交DE 、GF 于点M 、N∵BC DE //,∴BC DEAH AM AC AE == ∵x AE =,∴x DE x AM 56,54==………………………………………(1分)∵x AM MN 5141==,∴x NH -=8……………………………………(1分)∴GBCF DGFE DBCG DBG S S S S 梯形平行四边形梯形--=∆ ∴ ()x x x x x x y -⎪⎭⎫⎝⎛+-⋅-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=81256215156548125621 ∴ x x y 562532+-=()80≤<x ………………………………………(2分)(3)作Q BC GQ P BC FP 于,于⊥⊥ 在FPC Rt ∆中,53cos cos ,4510=∠=-=ABC C x FC ∴x PC 436-=, ∴x x x BQ 20964365612-=⎪⎭⎫ ⎝⎛---= ∴ ()2220968⎪⎭⎫ ⎝⎛-+-=x x BG ……………………………………………(2分)在DBG ∆中,x DB -=10,x DG 41= ①若DG DB =,则x x 4110=-,解得8=x …………………………………(1分) ②若BG DB =,则()222096810⎪⎭⎫ ⎝⎛-+-=-x x x 解得()81560021==x x ,舍去 ………………………………………(1分) ∴815608==AD AD 或23、(1)()411133M a N a a ⎛⎫--⎪⎝⎭,,,.--------------------------------- 4分(2)由题意得点N 与点N ′关于y 轴对称,N '∴4133a a ⎛⎫-- ⎪⎝⎭,,ΘN '在22y x x a =-+上 ∴21168393a a a a -=++,10a ∴=(不合题意,舍去),294a =-.-------------------- 6分334N ⎛⎫∴- ⎪⎝⎭,,904A ⎛⎫- ⎪⎝⎭Q ,,N ' 334⎛⎫⎪⎝⎭,,∴直线AN '的解析式为94y x =-, 它与x 轴的交点为)0,49(D ,点D 到BC 的距离为5202754949)2949(=+. 8分 (3) 设)2,(),2,(22a n n n Q a m m m P +-+-设中点坐标()b ,0,则有nm a n n a m m b -+--+-=)2()2(122且有0=+n m ,所以2-=b . 12分。
2013年杭州市十三中教育集团中考二模数学试卷
杭州市十三中教育集团2013年中考模拟考试数 学 试 卷命题人:曹树宏 审核人: 马锦绣 题威 丁新宇考生须知:1、本试卷分试题卷和答题卷两部分. 满分120分, 考试时间100分钟.2、答题时, 不能使用计算器,在答题卷指定位置内写明校名,姓名和班级,填涂考生号.3、所有答案都做在答题卡标定的位置上, 请务必注意试题序号和答题序号相对应.4、参考公式: 抛物线2(0)y ax bx c a =++≠的顶点坐标(-a b 2,ab ac 442-)一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母在答题卡中相应的方框内涂黑. 注意可以用多种不同的方法来选取正确答案. 1.下列运算正确的是( )A .39±=B .5)5(2-=-C . 7)7(2=-D .3)3(2-=-2.某种商品标价为1200元,售出价800元,则最接近打( )折售出A .6折 B . 7折 C . 8折 D . 9折3.从五个点(-2, 6)、(-3,4)、(2,6)、(6,-2)、(4,-2)中任取一点,在双曲线xy 12-=上的概率是( ) A .51B .52C .53 D .544.平行四边形ABCD 中,AC 平分∠DAB ,AB=2,则平行四边形ABCD 的周长为( ) A .4 B .6 C .8 D .12 5.若10,20==c b b a ,则cb ba ++的值为( ) A . 2111B . 1121C .21110D .112106.若点M (x ,y )满足2)(222-+=+y x y x ,则点M 所在象限是( ) A .第一、三象限 B. 第二、四象限 C. 第一、二象限 D. 不能确定7.如图,⊙O 的直径AB=8,P 是圆上任一点(A 、B 除外),∠APB 的平分线交⊙O 于C ,弦EF 过AC 、BC 的中点M 、N ,则EF 的长是( )A .34B .32C .6D .52 8.给出四个命题:①正八边形的每个内角都是135°②半径为1cm 和3cm 的两圆内切,则圆心距为4cm③长度等于半径的弦所对的圆周角为30°④Rt △ABC 中,∠C=90°,两直角边a ,b 分别是方程x 2-7x +12=0的两个根,则它外接圆的半径长为2.5 以上命题正确的有( )A .1个B .2个C . 3个D .4个9.若直角三角形的两条直角边长为a 、b ,斜边长为c ,斜边上的高为h ,则有( )A .2h ab = B.h b a 111=+ C. 222111hb a =+ D. 2222h b a =+ 10.直角坐标系xoy 中,一次函数y=kx+b (kb≠0)的图象过点(1,kb ),且b ≥2,与x 轴、y 轴分别交于A 、B 两点.设△ABO 的面积为S ,则S 的最小值是( )A .45B .1C .18 D . 不存在二、认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11. 点(-1,2)变换为(2,1),请描述一种变换过程 .12.如图,如果你在南京路和中山路交叉口,想去动物园(环西路 与曙光路交叉口),沿街道走的最近距离是 m.13. 数据11,9,7,10,14,7,6,5的中位数是 , 众数是 .14. 在△ABC 中,∠B=45°,cos ∠C=53,AC=5a ,则用含a 的代数式表示AB 是 .(第14题) (第15题) (第16题)15.如图,⊙O 为△ABC 的内切圆,∠C=90°,BO 的延长线交AC 于点D ,若BC =3,CD =1,则⊙O 的半径等于 .16.如图①,在梯形ABCD 中,AD∥BC,∠A=60°,动点P 从A 点出发,以1cm/s 的速度沿着A→B→C→D 的方向不停移动,直到点P 到达点D 后才停止.已知△PAD 的面积S (单位:)与点P 移动的时间t (单位:s )的函数关系式如图②所示,则点P 从开始移动到停止移动一共用了 秒(结果保留根号).三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.化简:)]4(2)[2(m m +---,若m 是任意实数,对化简结果,你发现原式表示的数有什么特点?18.如图是一个圆锥的三视图,求它的母线长和侧面积.(结果保留π)19.在平面直角坐标系中,已知点A (6,33),B (0,33)(1)画一个圆M ,使它经过点A 、B 且与y 轴相切(尺规作图,保留作图痕迹);(2)若圆M 绕原点O 顺时针旋转,旋转角为α(0<α<180°),当圆M 与x 轴相切时,求圆心M 走过的路程.(结果保留π)20.观察下列各图,第①个图中有1个三角形,第②个图中有3个三角形,第③个图中有6个三角形,…… (1)根据这规律可知第④个图中有多少个三角形?第n 个图中有多少个三角形?(用含正整数n 的式子表示);……(2)在(1)中是否存在一个图形,该图形中共有29个三角形?请通过计算说明;21.如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线三角形系数”.(1)若抛物线三角形系数为[-1,b,0]的“抛物线三角形”是等腰直角三角形,求b 的值;(2)若△OAB 是“抛物线三角形”,其中点B 为顶点,抛物线三角形系数为[-2,2m ,0],其中m >0;且四边形ABCD 是以原点O 为对称中心的矩形,求出过O 、C 、D 三个点的抛物线的表达式.22.如图,直角梯形ABCD ,∠DAB=90°,AB ∥CD ,AB=AD ,∠ABC=60°.以AD 为边在直角梯形ABCD 外作等边△ADF ,点E 是直角梯形ABCD 内一点,且∠EAD=∠EDA=15°,连接EB 、EF . (1)求证:EB=EF ;(2)四边形ABEF 是哪一种特殊四边形?(直接写出特殊四边形名称) (2)若EF=6,求直角梯形ABCD 的面积;O y xB A23.如图1,抛物线2y =ax +bx(a >0)与双曲线xky 相交于点A ,B. 已知点A 的坐 标为(1,4),点B 在第三象限内,且OB=22,(O 为坐标原点).(1)求实数k 的值; (2)求实数a,b 的值;(3)如图2,过抛物线上点A 作直线AC ∥x 轴,交抛物线于另一点C ,请直接写出所有满足△EOC ∽△AOB 的点E 的坐标.。
浙江省杭州市十三中教育集团初三中考数学二模试题(无答案)
浙江省杭州市十三中教育集团初三中考数学二模试题(无答案)一、选择题1.4的平方根是( )【A 】±16【B 】±2【C 】-2 【D 】22.柳暗花明春正好,最美人间四月天。
杭州市旅游委员会公布明朗小长假旅游数据,全市共欢迎外地游客238万人次,同比增长2.1%,实现旅游收入24.3亿元。
将24.3亿元用科学计数法表示为( )【A 】0.243×1010元【B 】2.43×109元【C 】2.43×108元【D 】243×107元 3.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠ACO=50°,则∠B 的度数为( )【A 】60° 【B 】50°【C 】40° 【D 】30°4.如图是由5个巨细相同的正方体摆成的立方体图形,它的左视图是( )【A 】 【B 】【C 】 【D 】5、在△ABC 中,若22sin -A +B cos 23-2=0,∠A ,∠B 都是锐角,则∠C 的度数是( ) 【A 】105°【B 】90°【C 】75°【D 】120°6. 不等式组8322x x x a ++⎧⎨+⎩<>的解集是x >3,则a 的取值范畴是( ) 【A 】a ≤2【B 】a ≥2【C 】a ≤1【D 】a >17.无论m 为何值,点A (m ,5﹣2m )不可能在( )【A 】第一象限【B 】第二象限【C 】第三象限 【D 】第四象限8.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB=45°,则折叠后重叠部分的面积为( )【A 】cm 2【B 】cm 2 【C 】cm 2【D 】cm 29. 定义运算:a*b=a(1+b).若a,b 是方程0432=-+m x x (m >0)的两根,则a*a+b*b 的值为( ) 【A 】0【B 】1【C 】2【D 】与m 有关10. 敷衍三个数a,b,c,用M {}c b a ,,表示这三个数的均匀数,用max {}c b a ,,表示这三个数中最大的数,比方:M {}12341,2,333-++-==;{},33,2,1max =-{}(2)max 1,2,2(2)a a a a ≥⎧-=⎨⎩< 若M {}{}224,,2max 4,,2x x x x +=+;则x 的值为( ) 【A 】2或32-【B 】2或3-【C 】2【D 】3- 二、填空题11.分化因式:2x 2-18=_________12.一个多边形的内角和是外角和的2倍,则这个多边形的边数为_________13.如图,圆桌面正上方的灯胆发出的光芒照射桌面后,在地面上形成阴影(圆形)。
2013浙江杭州数学中考卷
2013年杭州市各类高中招生文化考试数 学满分120分,考试时间100分钟参考公式:直棱柱的体积公式:Sh V =(S 为底面积,h 为高);圆锥的全面积(表面积)公式:2r rl S ππ+=全(r 为底面半径,l 为母线长); 圆柱的全面积(表面积)公式:222r rh S ππ+=全(r 为底面半径,h 为高)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 下列“表情图”中,属于轴对称图形的是2. 下列计算正确的是A. 523m m m =+B. 623m m m =⋅C. 1)1)(1(2-=+-m m mD.12)1(24-=--m m3. 在□ABCD 中,下列结论一定正确的是A. AC ⊥BDB. ∠A+∠B=180°C. AB=ADD. ∠A ≠∠C4. 若3=+b a ,7=-b a ,则ab =A. -10B. -40C. 10D. 405. 根据2008~2012年杭州市实现地区生产总值(简称GDP ,单位:亿元)统计图所提供的信息,下列判断正确的是A. 2010~2012年杭州市每年GDP 增长率相同B. 2012年杭州市的GDP 比2008年翻一番C. 2010年杭州市的GDP 未达到5500亿元D. 2008~2012年杭州市的GDP 逐年增长6. 如图,设乙图中阴影部分面积甲图中阴影部分面积=k (0>>b a ),则有A. 2>kB. 21<<kC.121<<k D. 210<<k7. 在一个圆中,给出下列命题,其中正确的是A. 若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B. 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C. 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D. 若两条弦平行,则这两条弦之间的距离一定小于圆的半径8. 如图是某几何体的三视图,则该几何体的体积是 A. 318 B. 354 C. 3108 D. 32169. 在Rt △ABC 中,∠C=90°,若AB=4,sinA=53,则斜边上的高等于 A. 2564 B. 2548 C. 516 D. 512 10. 给出下列命题及函数x y =,2x y =和x y 1=的图象 ①如果21a a a>>,那么10<<a ; ②如果aa a 12>>,那么1>a ; ③如果a a a>>21,那么01<<-a ; ④如果a a a >>12时,那么1-<a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭州市十三中教育集团2013年中考模拟考试
数 学 试 卷
命题人:曹树宏 审核人: 马锦绣 题威 丁新宇
考生须知:
1、本试卷分试题卷和答题卷两部分. 满分120分, 考试时间100分钟.
2、答题时, 不能使用计算器,在答题卷指定位置内写明校名,姓名和班级,填涂考生号.
3、所有答案都做在答题卡标定的位置上, 请务必注意试题序号和答题序号相对应.
4、参考公式: 抛物线2(0)y ax bx c a =++≠的顶点坐标(-a b 2,a
b a
c 442
-)
一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)
下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母在答题卡中相应的方框内涂黑. 注意可以用多种不同的方法来选取正确答案. 1.下列运算正确的是( )
A .39±=
B .5)5(2-=-
C . 7)7(2=-
D .3)3(2-=-
3.从五个点(-2, 6)、(-3,4)、(2,6)、(6,-2)、(4,-2)中任取一点,在双曲线x
y -=上的概率是( ) A .5
1
B .5
2
C .5
3 D .5
4
4.平行四边形ABCD 中,AC 平分∠DAB ,AB=2,则平行四边形ABCD 的周长为( ) A .4 B .6 C .8 D .12 5.若
10,20==b a ,则b
a +的值为( )
6.若点M (x ,y )满足2)(222-+=+y x y x ,则点M 所在象限是( ) A .第一、三象限 B. 第二、四象限 C. 第一、二象限 D. 不能确定
7.如图,⊙O 的直径AB=8,P 是圆上任一点(A 、B 除外),∠APB 的平分线交⊙O 于C ,弦EF 过AC 、BC 的中点M 、N ,则EF 的长是( )
A .34
B .32
C .6
D .52
8.给出四个命题:
①正八边形的每个内角都是135°
②半径为1cm 和3cm 的两圆内切,则圆心距为4cm ③长度等于半径的弦所对的圆周角为30°
④Rt △ABC 中,∠C=90°,两直角边a ,b 分别是方程x 2
-7x +12=0
的两个根,则它外接圆的半径长为2.5 以上命题正确的有( ) A .1个 B .2个 C . 3个 D .4个
9.若直角三角形的两条直角边长为a 、b ,斜边长为c ,斜边上的高为h ,则有( ) A .2
h ab = B.
h b a 111=+ C. 2221
11h
b a =+ D. 2222h b a =+ 10.直角坐标系xoy 中,一次函数y=kx+b (kb≠0)的图象过点(1,kb ),且b ≥2,与x 轴、y 轴分别交于A 、B 两点.设△ABO 的面积为S ,则S 的最小值是( )
A .4
5 B .1 C .1
8 D . 不存在
二、认真填一填 (本题有6个小题, 每小题4分, 共24分)
要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11. 点(-1,2)变换为(2,1),请描述一种变换过程 .
12.如图,如果你在南京路和中山路交叉口,想去动物园(环西路 与曙光路交叉口),沿街道走的最近距离是 m.
14. 在△ABC 中,∠B=45°,cos ∠C=5
,AC=5a ,则用含a 的代数式表示AB 是 .
(第14题) (第15题) (第16题)
15.如图,⊙O 为△ABC 的内切圆,∠C=90°,BO 的延长线交AC 于点D ,若BC =3,CD =1,则⊙O 的半径等于 .
16.如图①,在梯形ABCD 中,AD∥BC,∠A=60°,动点P 从A 点出发,以1cm/s 的速度沿着A→B→C→D 的方向不停移动,直到点P 到达点D 后才停止.已知△PAD 的面积S (单位:
)
与点P 移动的时间t (单位:s )的函数关系式如图②所示,则点P 从开始移动到停止移动一共用了 秒(结果保留根号).
三、全面答一答(本题有7个小题,共66分)
解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.
17.化简:)]4(2)[2(m m +---,若m 是任意实数,对化简结果,你发现原式表示的数有什么特点?
20.观察下列各图,第①个图中有1个三角形,第②个图中有3个三角形,第③个图中有6个三角形,……
(1)根据这规律可知第④个图中有多少个三角形?第n 个图中有多少个三角形?(用含正整数n 的式子表示);
……
(2)在(1)中是否存在一个图形,该图形中共有29个三角形?请通过计算说明;
21.如果一条抛物线()2
=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两
个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线三角形系数”.
(1)若抛物线三角形系数为[-1,b,0]的“抛物线三角形”是等腰直角三角形,求b 的值; (2)若△OAB 是“抛物线三角形”,其中点B 为顶点,抛物线三角形系数为[-2,2m ,0],其中m >0;且四边形ABCD 是以原点O 为对称中心的矩形,求出过O 、C 、D 三个点的抛物线的表达式.
22.如图,直角梯形ABCD ,∠DAB=90°,AB ∥CD ,AB=AD ,∠ABC=60°.以AD 为边在直角梯形ABCD 外作等边△ADF ,点E 是直角梯形ABCD 内一点,且∠EAD=∠EDA=15°,连接EB 、EF . (1)求证:EB=EF ;
(2)四边形ABEF 是哪一种特殊四边形?(直接写出特殊四边形名称) (2)若EF=6,求直角梯形ABCD 的面积;
23.如图1,抛物线2
y =ax +bx(a >0)与双曲线x
k
y 相交于点A ,B. 已知点A 的坐 标为(1,4),点B 在第三象限内,且OB=22,(O 为坐标原点).
(1)求实数k 的值; (2)求实数a,b 的值;
(3)如图2,过抛物线上点A 作直线AC ∥x 轴,交抛物线于另一点C ,请直接写出所有满足△EOC ∽△AOB 的点E 的坐标.
2013中考杭州十三中教育集团二模数学参考答案及评分标准
一、选择:1-5 CBCCD 6-10 BABCB 二、填空:
11 、不唯一,如绕O 顺时针旋转90度;或先下1,再右3;或先右3,再下1 12、340 13、8,7 14、a 24 15、 4
3
16、 324+ 三、解答题:
17(6分)、化简得2)2(+=m 原式.--------------------------4分 是一个非负数
18(8分)L=13--------------------2分
S 侧面积=65π---------------6分
19(8分)(1)画法正确 4分(其中无痕迹扣1分)
(2)π…….. 2分
或3π…….. 2分 20、(1)10个------------------2分
2
)
1(+n n -----------------4分 (2)不存在…….. 4分(其中过程3分) 21、(1)b=2或—2…….. 5分(其中点坐标求出适当给分) (2)x x y 3222+=……..5分(其中点坐标求出适当给分)
22、(1)证明完整…….. 4分
(2)菱形-------4分(写平行四边形3分) (3)S 梯形=3636-----------------4分
23、(1) k=4…….. 3分
(2)答案a=1,b=3------------5分(其中求出B (-2,-2)给3分) (3) 提示:发现OC ⊥OB,且OC=2OB
所以把三角形AOC 绕O 顺时针旋转90度,再把OA 的像延长一倍得(2,-8) 再作A 关于x 轴对称点,再把OA 的像延长一倍得(8,-2) 所以所求的E 坐标为(8,-2)或(2,-8)各2分,共4分。