《三角形的稳定性》教案设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的稳定性教案
三维目标
1.通过实践活动,使学生进一步掌握三角形的稳定性.
2.培养学生从周围生活中发现数学问题,•运用所学知识解决实际问题的能力.从而使学生体验到数学与日常生活的密切联系.
3.在活动中培养学生知识迁移的能力、创造性思维能力.
教学重点:三角形具有确定性.
教学难点:三角形的稳定性在实际生活中的应用.
教学过程
导入新课
活动1.问题:
通过观察,你发现生活中哪些物体的结构是三角形?
设计意图:从学生生活经验出发,通过学生的观察结果,让学生感知数学与生活的联系.师生行为:学生汇报观察结果:房梁、建筑工地的脚手架、自行车车架、乐谱架、起重机的起重臂等.
(教师播放实物投影)
师:生活中有那么多物体的结构是三角形,为什么要把它们做成三角形呢?
因为三角形具有稳定性.
我们这节课就来研究:三角形的稳定性.
推进新课
活动2.1.以四个同学为一合作小组.
2.探究下列问题:
(1)如图1(1),将三根木条用钉子钉成一个三
角形木架,然后扭动它,•它的形状会改变吗?
(2)如图1(2),将四根木条用钉子钉成一个四边形木架,然后扭动它,•它的形状会改变吗?
设计意图:通过观察、推断、实际操作,获得数学猜想和数学经验,体会数学活动充满探索性和创造性.
师生行为:教师示范钉钉,然后要求小组内要合理分工,密切配合,合作完成,教师巡
视指导.
学生实践后知道:
三角形木架的形状没有改变,而四边形木架的形状发生了变化.
师:由此我们可以验证哪些结论?
生:三角形具有稳定性,而四边形不具有稳定性.
活动3.小组讨论:用什么方法能使这个不稳定的四边形变得稳定呢?
讨论出方案后,再合作完成,比一比哪组的工程师最聪明?
设计意图:通过对问题的反思,获得解决问题的经验,培养学生良好的认知习惯.师生行为:教师到学生中了解讨论与实践的情况.
学生以组来汇报讨论结果,并展示其作品.可能出现多种方法:
方法一:在木条衔接处用粗钉子钉牢.
方法二:沿四边形的对角线加一根木条[如图2①].
方法三:从顶点到对边的顶点加一根木条[如图2②].
方法四:从对边之间加一根木条[如图2③].
方法五:加两根木条[如图2④].
①②③④
学生自己评说各小组的加固方法.
教师适当引导,让学生给“加固”后的四边形框架施加较大外力,验证其牢固程度.说明:(1)当给四边形加一根支架,出现了三角形时,四边形就能稳定.•如方法二、三,但当四边形加了支架后,仍没有出现三角形时,还不会稳固.如方法一、四.(2)方法五的四边形虽然稳定,但多加了木条,会浪费材料的.
活动4.问题
1.如图3,在四边形木架上再钉一木条,将它的一对顶点连接起来,然后扭动它,这对木架的形状还会改变吗?
2.如图4所示,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?
设计意图:通过这两个问题,进一步让学生体会“三角形的稳定性”这一性质在实际中的应用.
师生行为:生:(1)斜钉一根木条的四边形木架的形状不会改变.
(2)斜钉一根木条后,四边形变成两个三角形,由于三角形具有稳定性,•窗框在未安装好之前不会变形.
活动5.实践应用:修理桌椅
1.教师指着准备好的桌椅,提问:有几位老师的桌椅坏了,•谁能帮老师想个办法修好它?
2.以小组为单位讨论,想办法.
设计意图:通过动手操作、主动思考、合作交流的“做数学”的过程,让学生亲自体验用所学知识来解决实际问题的乐趣,从而激发学生学习数学的兴趣.
师生行为:学生想办法,动手操作,教师辅导.
注意:木条的长短要合适,钉的方法要科学.
生:我们的方法是:在桌椅的下边斜着钉根木条就可以了.
师:这是利用了什么知识?
生:三角形的稳定性.
师:好.下面我们来看修理的情况.
(师生共同评出修理成功的小组,帮助失败小组找出原因)
师:通过动手实践,进一步掌握了三角形的特性.
利用三角形的稳定性,可以使物体牢固.
活动6.想一想:
在实际生活中还有哪些地方利用了“三角形的稳定性”来为我们服务?“四边形易变形”是优点还是缺点?生活中又有哪些应用?
设计意图:在学生经历观察、操作后,设计此问题来发展学生用数学的意识,进一步体会三角形的特性在生活中的作用,感受数学的价值.
师生行为:学生回答:利用四边形的不稳定性,可以制造推拉窗门.
课堂小结
本节课你学到了哪些知识?
三角形的稳定性.
布置作业
习题7.1 5、10.
活动与探究
小明家有一个由六条钢管连接而成的钢架ABCDEF(如图5所示),为使这一钢架稳固,他计划用三条钢管连接使它不变形.你能帮助小明想办法来解决这个问题吗?
[过程]让学生思考、探索、进一步理解三角形的稳定性在现实生活中的应用.
[结果](1)可从这六个顶点中的任意一个作对角线,•把这个六边形划分成四个三角形.如图6(1)为其中的一种.
(2)也可以把这个六边形划分为四个三角形,如图6(2)或如图6(3).