高三第五次数学小测

合集下载

黑龙江省哈尔滨市第九中学校2024届高三第五次模拟数学试题

黑龙江省哈尔滨市第九中学校2024届高三第五次模拟数学试题

黑龙江省哈尔滨市第九中学校2024届高三第五次模拟数学试题一、单选题1.已知集合{}210,|log 13x A xB x x x ⎧⎫+==≥⎨⎬-⎩⎭,则()R A B ⋂=ð( ) A .[]2,3B . 2,3C .(](),12,∞∞--⋃+D .()2,∞+2.给出下列四个命题,其中正确命题为( )A .“20,1x x x ∀>+>”的否定是“20000,1x x x ∃>+<” B .()2f x x -=在()0,∞+上单调递减C .若0x 为()y f x =的导函数的一个零点,则0x 为函数()f x 的一个极值点D .若()f x 是奇函数,则()00f =3.已知12i -是关于复数z 的方程()20,z mz n m n -+=∈R 的一个根,则m n +=( )A .5B .6C .7D .84.已知圆221:4C x y +=,圆222:4440C x y x y +--+=,两圆的公共弦所在直线方程是( )A .20x y ++=B .20x y +-=C .10x y ++=D .10x y +-=5.已知函数()21ln 93f x x f x ⎛⎫=+- ⎪⎝⎭',则函数在1x =处的切线方程是( )A .992y x =-B .1919y x =-C .29192y x =-D .94722y x =+6.为丰富学生的校园文化生活,哈尔滨市第九中学每年冬天都会在操场上浇筑滑冰场,现欲测量操场两侧C ,D 两点之间的距离,甲同学选定了与C ,D 不共线的12,P P 两处观测点,如图所示,并知12PP a =,设21122112211,2,3,4,5,6DP P CPP P DP PDC PCD PCP ∠=∠∠=∠∠=∠∠=∠∠=∠∠=∠,以下是测量数据的不同方案:①测量1,2,3,4∠∠∠∠;②测量1,2,3,6∠∠∠∠;③测量1,3,5,6∠∠∠∠;④测量1,3,4,6∠∠∠∠.若甲同学选择的方案能唯一确定C ,D 两点之间的距离,则这样方案的个数有( )A .1个B .2个C .3个D .4个7.已知有4个数据的平均值为5,方差为4,现加入数据6和10,则这6个数据的新方差为( ) A .73B .133C .6D .108.已知148(,0)x y x y x y+=++>,则x y +的最小值为( )A .B .9C .4D .10二、多选题9.一个袋子中有4个红球,6个绿球,采用不放回方式从中依次随机取出2个球.事件A =“两次取到的球颜色相同”;事件B =“第二次取到红球”;事件C =“第一次取到红球”.下列说法正确的是( ) A .A B ⊆ B .事件B 与事件C 是互斥事件 C .()215P AB =D .()23P B C +=10.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,60DAB ︒∠=,侧面PAD 为正三角形,且平面PAD ⊥平面ABCD ,则下列说法正确的是( )A .异面直线AD 与PB 所成的角为90︒ B .在棱PD 上存在点M 使得//PB 平面ACMC .平面PAB ⊥平面PBCD .二面角P BC A --的大小为45︒11.某曲线C 的方程为224x xy y -+=,下列说法正确的是( )A .曲线C 关于y x =对称B .曲线C 上的点的纵坐标的最大值是2C .曲线C 与直线10x y +-=交于A 、B两点,则AB =D .点(),x y 在曲线C 上,则22x xy y ++的取值范围为4,123⎡⎤⎢⎥⎣⎦三、填空题12.已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =. 13.已知二项式)5nx 的展开式中第3项与第7项的二项式系数相等,则其展开式中5x 的系数为.14.定义[]x 表示不超过x 的最大整数,{}[]x x x =-.例如:[]{}3.24, 3.20.8-=--=,则方程{}210x x x --=的所有实根之和是.四、解答题15.已知A ,B 两点的坐标分别是()()2,0,2,0-,直线AM ,BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的差是4-,记点M 的轨迹为曲线C . (1)求曲线C 的方程.(2)将曲线C 向上平移4个单位得到曲线E ,已知斜率为3的直线l 与曲线E 有两个不同的交点,D E 且满足2OD OE ⋅=u u u r u u u r,求直线l 的方程. 16.已知函数()21e xax x f x +-=.(1)当[)1,1,a x =∈+∞时,求()f x 的值域. (2)当12a >-时,讨论()f x 的单调区间.17.数列{}n a 满足1111,202n n n n a a a a a ++=+-=.(1)求数列{}n a 通项公式. (2)设()cos 1π2n nn b a +=+,求数列{}n b 的前n 项和n S .18.已知ABC V 的内角,,A B C 所对的边分别为a ,b ,c ,若ABC V 内一点P 满足PAB PBC PCA θ∠=∠=∠=,则称点P 为ABC V 的布洛卡点,θ为ABC V 的布洛卡角.如图,已知ABC V 中,,,BC a AC b AB c ===,点P 为ABC V 的布洛卡点,θ为ABC V 的布洛卡角.(1)若b c =,且满足32PB PA =,求cos B 的大小. (2)若ABC V 为锐角三角形.证明:tan tan tan tan tan tan tan tan tan tan A B CA B B C A Cθ=++.19.身份证号码是我国公民最常用的代码,共有18位,其中前17位代码都是0﹣9的数字,第18位代码,又称为校验码,为0﹣9或罗马数字X (值为10),校验码是由前17位数字所决定的,确定规则如下:若某人身份证号为12161718a a a a a L ,在前17位代码已生成的情况下,校验码18a 使得M 除以11所得的余数始终为1,其中17162101216171822222M a a a a a =⨯+⨯++⨯+⨯+⨯L L .例如甲的身份证号为230101************(非实例),则17162122232223202M =⨯+⨯++⨯+⨯+⨯L L . (1)若乙的身份证号前17位是23010120301014231,校验码未知,根据表格中数据求乙身份证号的校验码;(2)丙的身份证号后四位数中有一位记错了,若丙记得自己的身份证号为230101************,已知该错误的身份证号计算得到的M 为11的整数倍,请写出有可能成为他身份证号后四位的所有结果;(3)已知丁的身份证号为23010120301014______ ______1______,若第15和16位数码是随机产生的,设校验码的数值为随机变量X ,求X 的分布列及E (X ).。

2024届河北省承德市3月高三年级第五次调研考试数学试题

2024届河北省承德市3月高三年级第五次调研考试数学试题

2024届河北省承德市3月高三年级第五次调研考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知角α的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合,它的终边过点(3,4)P --,则tan 24πα⎛⎫+ ⎪⎝⎭的值为( )A .247-B .1731-C .247 D .17312.在直角ABC ∆中,2C π∠=,4AB =,2AC =,若32AD AB =,则CD CB ⋅=( )A .18-B .-C .18D .3.若不等式32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,则实数a 的取值范围是( )A .932,2ln 2ln 5⎡⎤⎢⎥⎣⎦B .932,2ln 2ln 5⎛⎫⎪⎝⎭C .932,2ln 2ln 5⎛⎤⎥⎝⎦D .9,2ln 2⎛⎫+∞⎪⎝⎭4.已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为( )A .1B .1或12C .2D .2±5.某校在高一年级进行了数学竞赛(总分100分),下表为高一·一班40名同学的数学竞赛成绩:如图的算法框图中输入的i a 为上表中的学生的数学竞赛成绩,运行相应的程序,输出m ,n 的值,则m n -=( )A .6B .8C .10D .126.已知等差数列{}n a 的前n 项和为n S ,若1512,90a S ==,则等差数列{}n a 公差d =( ) A .2B .32C .3D .47.已知m ,n 是两条不重合的直线,α是一个平面,则下列命题中正确的是( ) A .若//m α,//n α,则//m n B .若//m α,n ⊂α,则//m n C .若m n ⊥,m α⊥,则//n α D .若m α⊥,//n α,则m n ⊥8.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是() A .B .C .D .9.已知各项都为正的等差数列{}n a 中,23415a a a ++=,若12a +,34a +,616a +成等比数列,则10a =( ) A .19B .20C .21D .2210.已知函数()()sin 06f x A x a a A ωπ⎛⎫=+-<< ⎪⎝⎭在区间70,3ωπ⎡⎤⎢⎥⎣⎦有三个零点1x ,2x ,3x ,且123x x x <<,若123523x x x π++=,则()f x 的最小正周期为( ) A .2πB .23πC .πD .43π 11.在边长为3ABCD 中,60BAD ∠=︒,沿对角线BD 折成二面角A BD C --为120︒的四面体ABCD (如图),则此四面体的外接球表面积为( )A.28πB.7πC.14πD.21π12.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有( )A.60种B.70种C.75种D.150种二、填空题:本题共4小题,每小题5分,共20分。

重庆南开中学校2024届高三第五次质检数学试卷+答案

重庆南开中学校2024届高三第五次质检数学试卷+答案

重庆市高2024届高三第五次质量检测数学试题命审单位:重庆南开中学注意事项:1.本试卷满分150分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求1.已知复数()i z a =∈R ,复数z 的共轭复数为z 若3z z ⋅=,则a =( )A.2B. D.82.函数()()sin cos f x x x x =−∈R 的图象的一条对称轴方程是( ) A.π4x =B.π4x =−C.π2x = D.π2x =−3.已知函数()222x xf x −−=,则不等式()()230f x f x −+ 的解集是( )A.(],1∞−B.[)1,∞+C.(],3∞−D.[)3,∞+4.已知()26(21)x x a x ++−展开式中各项系数之和为3,则展开式中x 的系数为( ) A.-10 B.-11 C.-13 D.-155.已知集合{}0,1,2,3,4A =,且,,a b c A ∈,用,,a b c 组成一个三位数,这个三位数满足“十位上的数字比其它两个数位上的数字都大”,则这样的三位数的个数为( ) A.14 B.17 C.20 D.236.已知正三棱台111ABC A B C −的上、下底面的边长分别为6和12,且棱台的侧面与底面所成的二面角为60 ,则此三棱台的体积为( )A. D.7.已知函数()()120(0)xkx x x f x e kx x −−+=−>恰有两个零点,则实数k 的取值范围是( ) A.[)1,e B.()1,1,2e ∞ −∪+ C.1,2e−D.1,12 −8.已知抛物线22(0)y px p =>的焦点为F ,点3,02A p−,点M 在抛物线上,且满足MA MF =,若MAF的面积为p 的值为( )A.3B.4C.D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求全部选对得5分,部分选对得2分,有选错得0分.9.已知n S 为数列{}n a 的前n 项和,112a =,若数列{}n n a S −既是等差数列,又是等比数列,则( )A.{}n a 是等差数列B.ln n a n是等比数列 C.{}n S 为递增数列 D.(){}1n n n a −最大项有两项10.已知圆22:4O x y +=,过直线:3l y x =−上一点P 向圆O 作两切线,切点为A B 、,则( )A.直线AB 恒过定点44,33−C.AB 的最小值为43D.满足PA PB ⊥的点P 有且只有一个 11.某中学为了提高同学们学习数学的兴趣,激发学习数学的热情,在初一年级举办了以“智趣数学,“渝”你相约”为主题的数学文化节活动,活动设置了各种精彩纷呈的数学小游戏,其中有一个游戏就是数学知识问答比赛.比赛满分100分,分为初赛和附加赛,初赛不低于75的才有资格进入附加赛(有参赛资格且未获一等奖的同学都必须参加).奖励规则设置如下:初赛分数在[]95,100直接获一等奖,初赛分数在[)85,95获二等奖,但通过附加赛有15的概率升为一等奖,初赛分数在[)75,85获三等奖,但通过附加赛有13的概率升为二等奖(最多只能升一级,不降级),已知A 同学和B 同学都参加了本次比赛,且A 同学在初赛获得了二等奖,根据B 同学的实力评估可知他在初赛获一、二、三等奖的概率分别为111,,642,已知4,B 获奖情况相互独立.则下列说法正确的有( ) A.B 同学最终获二等奖的概率为13B.B 同学最终获一等奖的概率大于A 同学获一等奖的概率C.B 同学初赛获得二等奖且B 最终获奖等级不低于A 同学的概率为21100D.在B 同学最终获奖等级不低于A 同学的情况下,其初赛获三等奖的概率为41512.如图,在棱长为1的正方体1111ABCD A B C D −中,点P 在侧面11AA D D 内运动(包括边界),Q 为棱DC 中点,则下列说法正确的有( )A.存在点P 满足平面PBD ∥平面11B D CB.当P 为线段1DA 中点时,三棱锥111P A B D −C.若()101DP DA λλ=,则PQ PB −最小值为32D.若QPD BPA ∠∠=,则点P 的轨迹长为2π9三、填空题:本题共4小题,每小题5分,共20分13.已知角α终边上有一点()2,1P ,则πsin 22α+=__________. 14.已知数列{}n a 满足111750,1751n n a a a +==−,若123n n T a a a a =⋅⋅ ,则2024T =__________. 15.已知椭圆22221(0)x y a b a b +=>>的左右焦点分别为()()12,0,,0F c F c −,过椭圆外一点()3,0P c 和上顶点M 的直线交椭圆于另一点N ,若1MF ∥2NF ,则椭圆的离心率为__________.16.平面向量,,a b c 满足||||2,()()1a b c a c b ==−⋅−=−,则a c ⋅ 最大值为__________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.如图,在平面四边形ABCD 中,ACD 为钝角三角形,,AC BC P ⊥为AC 与BD 的交点,若π,4,6ACD AD AC ∠===,且7tan 9BAD ∠=(1)求ADC ∠的大小; (2)求PDC 的面积.18.已知数列{}n a 前n 项和为n S ,且满足__________.①首项*11,,a m n =∀∈N ,均有2m nn S S mn +=+ ②*n ∀∈N ,均有0n a >且()214n n a S −=请从条件①和②中选一个填到题目条件下划线上(若两个都填,以第一个为准),并回答下面问题: (1)求数列{}n a 的通项公式; (2)求数列{}2na n a ⋅前n 项和nT 的表达式19.新能源渗透率是指在一定时期内,新能源汽车销量占汽车总销量的比重.在2022年,新能源汽车的渗透率达到了28.2%,提前三年超过了“十四五”预定的20%的目标.2023年,随着技术进步,新能源车的渗透率还在继续扩大.将2023年1月视为第一个月,得到2023年1-10月,我国新能源汽车渗透率如下表: 月份代码x 1 2 3 4 5 6 7 8 9 10 渗透率%y29323432333436363638(1)假设自2023年1月起的第x 个月的新能源渗透率为%y ,试求y 关于x 的回归直线方程,并由此预测2024年1月的新能源渗透率.(2)为了鼓励大家购买新能源汽车,国家在2024年继续执行新能源车购置税优惠政策:在2024年6月1日前购买的新能源车无需支付购置税,而燃油车需按照车价10%支付购置税.2024年1月小张为自己的客户代付购置税,当月他的客户购买了3辆车价格均为20万元,假设以(1)中预测的新能源渗透率作为当月客户购买新能源车的概率,设小张总共需要代付的购置税为X 万元,求X 的分布列和期望.附:一组数据()()()1122,,,,,n n x y x y x y 的线性回归直线方程ˆˆˆybx a =+的系数公式为:1221ˆˆˆ,ni ii nii x y nxyb ay bx xnx ==−==−−∑∑ 20.如图,斜三棱柱111ABC A B C −中,底面ABC 是边长为a 的正三角形,侧面11ABB A 为菱形,且160A AB ∠= .(1)求证:1AB A C ⊥; (2)若11cos 4A AC ∠=,三棱柱111ABC A B C −的体积为24,求直线1A C 与平面11CBB C 所成角的正弦值.21.已知双曲线22221(0,0)x y a b a b−=>>的一条浙近线方程为y x =,且点P在双曲线上.(1)求双曲线的标准方程;(2)设双曲线左右顶点分别为,A B ,在直线1x =上取一点()()1,0P t t ≠,直线AP 交双曲线右支于点C ,直线BP 交双曲线左支于点D ,直线AD 和直线BC 的交点为Q ,求证:点Q 在定直线上.22.若函数()f x 在定义域内存在两个不同的数12,x x 同时满足()()12f x f x =且()f x 在点()()11,x f x ,()()22,x f x 处的切线斜率相同,则称()f x 为“切合函数”.(1)证明:()326f x x x =−为“切合函数”; (2)若()21ln g x x x x ax e=−+为“切合函数”(其中e 为自然对数的底数),并设满足条件的两个数为12,x x .①求证:2124e x x <;②求证:2123(1)4a x x +<.数学试题参考答案与评分细则题号 1 23 4 5 6 7 8 9101112选项 A BABCCDDBCD ACBCDABD13.35【解析】2π3sin 2cos212sin 25αααα +==−=14.750【解析】2341231111750751,,117501751a a a a a a ====−==−−− 所以{}n a 周期为3,且6741232024121,(1)750a a a T a a =−=−⋅⋅=【解析】法一:因为2F 为1PF 中点,1MF ∥2NF ,所以N 也是PM 中点. 则3,22c b N,代入椭圆方程可得离心率c e a==法二:因为2F 为1PF 中点,1MF ∥2NF ,所以2113,222N a c NF MF x === 用焦半径公式322a a e c −⋅=,解得c e a==16.4【解析】设()()0,0,2,0O OA a == ,向量,a b夹角为θ,则()2cos ,2sin b OB θθ==设(),c x y =,由()()1c a c b −⋅−=− 得: ()()2,02cos ,2sin 1x y x y θθ−−⋅−−=−化简得: 22(1cos )(sin )12cos x y θθθ −++−=−,即(),x y 在一个圆上 而2a c x ⋅= ,所以即求x 的最大值,为c 在a上投影长度最大时,即1cos θ+ 令t=,则(22221cos 32(1)44x t t t θ=++=−+=−−+ 在1t =即π2θ=时取得17.解:(1)在ACD中,由正弦定理得:sin sin sin AD ACADC ACD ADC∠∠∠=⇒==π3ADC ∠∴=或2π3,当π3ADC ∠=时,π2DAC ∠=,与ACD 为钝角三角形不符合,舍去.所以2π3ADC ∠=. (2)由(1)知,ACD 为等腰三角形,()πtan tanπ6,4,tan tan π61tan tan 6BAD DAC DC BAC BAD DAC BAD ∠∠∠∠∠∠−===−=+⋅ ,tan 3AC BC BC AC BAC ∠⊥∴=⋅= ,由1π11ππsin sin 262262DCP PCBDCB S S S DC PC PC CB DC CB ∧+=⇒⋅⋅⋅+⋅=⋅⋅+,可得1πsin 26PDC PC S DC PC =∴=⋅⋅=法二:作DH AC ⊥于H ,则πsin 26DH DC ==, 由PDH PBC ∽得23DP DH PB BC ==,则221ππsin 55262DCP DCB S S CD ==⋅⋅+. 18.解:(1)若选条件①,则令1m =,可得:121n n S S n +−=+,故当2n 时有:()()()()212132113521n n n S S S S S S S S n n −=+−+−++−=++++−=⇒ 221(1)21n n n a S S n n n −=−=−−=−又当11a =也符合上式,所以21na n =− 若选条件②,则由()214n n a S +=可得当2n 时有:()21114n n a S −−+=,两式相减得;()()1120n n n n a a a a +−+−−=,因为0n a >,故有120n n a a −−−= 又由题可求得11a =,所以{}n a 是首项为1,公差为2的等差数列,从而有21na n =− (2)由(1)可知:()212212na n n a n −⋅=−,则()13521123252212n n T n −=×+×+×++− ()357214123252212n n T n +=×+×+×++−两式相减得:()()13521213122222212n n n T n −+−=×+×+++−−()()1212181410522212221433n n n n n −++−=+×−−=−+− −所以2110252939n n n T + =+−⋅19.(1)计算得 5.5,34xy =,所以:122211936105.53466ˆˆˆ0.8,340.85.529.6385105.582.5ni ii nii x y nxyb a y bx xnx ==−−⋅⋅=====−=−⋅=−⋅−∑∑ 则同归直线方程为ˆ0.829.6y x =+,代入13x =得40y = 所以预测2024年1月新能源渗透率为40%; (2)由题意,每个客户购买新能源车的概率为25,燃油车概率为35X 所有可能取值为0,2,4,6则()()321132823360,2512555125P X P X C ======, ()()2323123543274,6551255125P X C P X======所以X 的分布列为所以()365427450182461251251251255E X =⋅+⋅+⋅==(万元). 20.解:(1)证明:取AB 中点O ,连接1,A O CO ,由题知1A AB 为正三角形,而ABC 也是正三角形,1,A O AB CO AB ∴⊥⊥,又1,A O CO O AB ∩=∴⊥ 平面1ACO , 1A C ⊂ 平面11,A CO AB A C ∴⊥(2)111,cos 4A AAB AC a A AC ∠==== , 由余弦定理得2222111132cos 2A C AA AC AA AC A AC a ∠=+−⋅⋅=1AC ∴,又1AO CO ==, 222111,AO CO AC AO CO ∴+∴⊥ 又11,,A O AB AB CO O A O ⊥∩=∴⊥ 平面1,ABC A O CO AB ∴、、两两垂直. 以O 为原点,以,,CO OB OA的方向分别为,,x y z 轴的正方向建立空间直角坐标系如图.因为三棱柱111ABC A B C −的体积为21244ABC V S AO a a =⋅==⇒= , 则()()()((110,2,0,0,2,0,,0,0,,A B C A AC −−−−(()110,2,,2,0CC AA CB ===.设平面11CBB C 的法向最为(),,nx y z =,由120020y n CC n CB y +⋅=⇒ ⋅=+= ′,可取()1,n = ,设向量n 与1AC的夹角为θ,()(11,cos n AC θθ∴⋅=⋅−−=−⇒, ∴直线1A C 与平面11CBB C.21.解:(1)因为渐近线方程为y x =,所以a b =,设双曲线为222x y a −=,代入P得24a =,双曲线的标准力程为224x y −=(2)设直线3:2AP x y t =−,联立双曲线22324x y tx y=−−= 得: 22222291212318244,,299cc t t y y y y x y t t t t t ε+−+−===−=−−;设直线1:2BP x y t =−+,联立双曲线22124x y t x y=−+ −= 得: 22222214412244,,2;11D D D t t y y y y x y t t t t t −−−+−===−+=−− 所以2222224121319,442219C D AD BCD C t ty y t t k k t t x t x tt t −−===−===−+−−− 则()()13:2,:2AD y x BC y x t t=−+=− 设()00,Q x y ,则()()00001232y x t y x t=−+=−,两式相除消t 得00021,123x x x −=−=+ 所以Q 在直线1x =上 另证:设直线()()()2242:22222D D D D D D D D y y x x AD y x x x x x y y −−=+=⋅+=+++, 直线()()()2242:22222C C C C C C C Cy y x x BC y x x x x x y y −+=−=⋅−=−−−,由于BP BD k k =,即2DD y t x =−−,由于AP AC k k =,即23C C y tx =+则()()13:2,:2AD y x BC y x tt=−+=−.后同前证22.解:(1)假设存在12,x x 满足题意,易知()266f x x =−′,由题可得: ()()3322121122112226263f x f x x x x x x x x x ⇔−−⇒++()()221212121266660f x f x x x x x x x ′=⇔−−′=⇒+=⇒=−代入上式可解得()(12,x x =或,故()f x 为“切合函数”(2)由题可知()2ln 1xg x x a e=−++′,因为()g x “切合函数”,故存在不同的12,x x (不妨设120x x <<)使得:()()()()221122211211122221121221121221ln ln 1ln ln :222ln 1ln 12ln ln x x x x x x x x a x x ax x x ax x x e g x g x e e g x g x x x e x x x a x a x x e e −+ =+ −+=−+ −= ⇔⇔ =− =−++=−++ − ′′①先证:2121ln ln x x x x −>−2211ln ln ln x x x x =>−=令t =,则由120x x <<可知1t >,要证上式,只需证: ()211ln 2ln 2ln 0(1)t t t m t t t t l l −>=⇔=−+<>,易知()22(1)0t m t t−−=<′ 故()m t 在()1,∞+单调递减,所以()()10m t m <=,故有2121ln ln x x x x −>− 由上面的221224e e x x <⇒< ②由上面的2式可得:21211ln ln 12x x x x e −−,代入到1式中可得: ()()()()212111221122211211221221212121ln ln ln ln ln ln ln ln ln ln 1222x x x x x x x x x x x x x x x x x x x x x x a x x x x x x x x −+−−−+−=+===−−−− 21212ln 2a x x x x e −−⇒=且由(1)可得2ln 24ln 2e a e >−= (另解:由上面的2式可得2121ln ln 2x x x x e−−=,代入到1式的变形: ()2221211122ln ln x x a x x x x x x e−−=−+,整理后也可得到12ln 2x x a =−)故要证2123(1)4a x x +<,只需证: 2222332(1)(1)0ln 44a a a a a e e e e a a e −− +−<⇔+−+>>设()2232(1)ln 4a a h a e e a a e =+−+>,则即证:()0h a > ()()()()()22321,323212a a a a a a h a e e a h a e e e e ′=+−+=+−′=′−+ ()()222ln ln ,320033a a a e e h a h a e >>∴>⇒>′′⇒>⇒′− 在2ln ,3∞ + 单调递增()()2222ln ln 2ln 10ln 10333h a h h x x e >>=′′′−−>−− ()h a ⇒在2ln ,3∞ + 单调递增()2222ln ln ln ln 20333h a h h e  ⇒>>=−−>  所以原不等式成立 另证:当2ln ,0a e∈时,可用1a e a + 放缩代入证明不等式成立 当()0,a ∞∈+时,可用2112a e a a ++放缩代入证明不等式成立 综上,原不等式成立。

湘中名校2024学年高三第五次检测试题数学试题

湘中名校2024学年高三第五次检测试题数学试题

湘中名校2024学年高三第五次检测试题数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知平面α和直线a ,b ,则下列命题正确的是( )A .若a ∥b ,b ∥α,则a ∥αB .若a b ⊥,b α⊥,则a ∥αC .若a ∥b ,b α⊥,则a α⊥D .若a b ⊥,b ∥α,则a α⊥2.已知集合M ={x |﹣1<x <2},N ={x |x (x +3)≤0},则M ∩N =( )A .[﹣3,2)B .(﹣3,2)C .(﹣1,0]D .(﹣1,0)3.已知直三棱柱中111ABC A B C -,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成的角的正弦值为( ).A .32B .105C .155D .634.函数()2cos2cos221x x f x x =+-的图象大致是( ) A . B .C .D .5.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,a ,b ,且()520,02a b a b +=>>,则此三棱锥外接球表面积的最小值为( )A .174πB .214πC .4πD .5π 6.二项式732x x ⎛⎫- ⎪⎝⎭展开式中,1x 项的系数为( ) A .94516- B .18932- C .2164- D .283587.据国家统计局发布的数据,2019年11月全国CPI (居民消费价格指数),同比上涨4.5%,CPI 上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI 上涨3.27个百分点.下图是2019年11月CPI 一篮子商品权重,根据该图,下列结论错误的是( )A .CPI 一篮子商品中所占权重最大的是居住B .CPI 一篮子商品中吃穿住所占权重超过50%C .猪肉在CPI 一篮子商品中所占权重约为2.5%D .猪肉与其他畜肉在CPI 一篮子商品中所占权重约为0.18%8.已知()f x 是定义是R 上的奇函数,满足3322f x f x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,当30,2x ⎛⎫∈ ⎪⎝⎭时, ()()2ln 1f x x x =-+,则函数()f x 在区间[]0,6上的零点个数是( )A .3B .5C .7D .9 9.已知函数2sin ()1x f x x =+.下列命题:①函数()f x 的图象关于原点对称;②函数()f x 是周期函数;③当2x π=时,函数()f x 取最大值;④函数()f x 的图象与函数1y x=的图象没有公共点,其中正确命题的序号是( ) A .①④ B .②③ C .①③④D .①②④10.已知各项都为正的等差数列{}n a 中,23415a a a ++=,若12a +,34a +,616a +成等比数列,则10a =( ) A .19 B .20 C .21 D .2211.已知集合|03x A x Z x ⎧⎫=∈≤⎨⎬+⎩⎭,则集合A 真子集的个数为( ) A .3 B .4C .7D .8 12.若圆锥轴截面面积为23,母线与底面所成角为60°,则体积为( )A .33πB .63π C .233π D .263π 二、填空题:本题共4小题,每小题5分,共20分。

2025届安徽宿州五校高三下学期第五次调研考试数学试题含解析

2025届安徽宿州五校高三下学期第五次调研考试数学试题含解析

2025届安徽宿州五校高三下学期第五次调研考试数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列函数中既关于直线1x =对称,又在区间[1,0]-上为增函数的是( )A .sin y x =π.B .|1|y x =-C .cos y x π=D .e e x x y -=+2.在等差数列{}n a 中,若n S 为前n 项和,911212a a =+,则13S 的值是( )A .156B .124C .136D .1803.运行如图所示的程序框图,若输出的i 的值为99,则判断框中可以填( )A .1S ≥B .2S >C .lg99S >D .lg98S ≥ 4.设a=log 73,13b log 7=,c=30.7,则a ,b ,c 的大小关系是( ) A .a b c << B .c b a << C .b c a << D .b a c <<5.已知函数()222ln 02x x e f x e x x e⎧<≤=⎨+->⎩,,,存在实数123x x x <<,使得()()()123f x f x f x ==,则()12f x x 的最大值为( )A .1eB eC 2eD .21e6.若圆锥轴截面面积为60°,则体积为( )A B C D 7.若直线240x y m ++=经过抛物线22y x =的焦点,则m =( )A .12B .12-C .2D .2-8.设函数()2ln x e f x t x x x x ⎛⎫=-++ ⎪⎝⎭恰有两个极值点,则实数t 的取值范围是( ) A .1,2⎛⎤-∞ ⎥⎝⎦ B .1,2⎛⎫+∞ ⎪⎝⎭C .1,,233e e ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭D .1,,23e ⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭ 9.定义在R 上的偶函数()f x ,对1x ∀,()2,0x ∈-∞,且12x x ≠,有()()21210f x f x x x ->-成立,已知()ln a f π=,12b f e -⎛⎫= ⎪⎝⎭,21log 6c f ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( ) A .b a c >> B .b c a >> C .c b a >> D .c a b >>10.已知点(A 在双曲线()2221010x y b b -=>上,则该双曲线的离心率为( )A .3B .2CD .11.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题;③“2019a >”是“2020a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题.其中真命题的序号为( )A .③④B .①②C .①③D .②④12.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;④乙同学连续九次测验成绩每一次均有明显进步.其中正确的个数为( )A .B .C .D . 二、填空题:本题共4小题,每小题5分,共20分。

陕西省汉中市2022届高三数学上学期第五次质量检测试题 理(含解析)

陕西省汉中市2022届高三数学上学期第五次质量检测试题 理(含解析)
因为 .
所以 的外接圆半径 .
所以 .
因为点S到平面ABC的距离为 , 平面 ,
所以 .即
在 中: .
所以 .
故填: .
【点睛】本题考查球上的点到三角形中心的距离的求法,属于中档题,解题时要认真审题,注意球的性质和空间思维能力的培养.
三、解答题
17.已知函数 .
(I)当 时,求 的值域;
(II)已知 的内角 的对边分别为 , , ,求 的面积.
过A和B做AD⊥l,BE⊥l,
由抛物线的定义可知:丨AF丨=丨AD丨,丨BF丨=丨BE丨,
|AC|=2|AF|,即|AC|=2|AD|,
则∠ACD ,由丨HF丨=p=2,
∴ ,
则丨AF丨=丨AD丨 ,
设直线AB的方程y (x﹣1),
,整理得:3x2﹣10x+3=0,
则x1+x2 ,
由抛物线的性质可知:丨AB丨=x1+x2+p ,
7.已知函数 ( , )的最小正周期是 ,将函数 的图象向左平移 个单位长度后所得的函数图象过点 ,则函数 ( )
A. 有一个对称中心 B. 有一条对称轴
C. 在区间 上单调递减 D. 在区间 上单调递增
【答案】B
【解析】
由题 ,平移后得到的函数是 ,其图象过点 , ,因为 , , ,故选B.
点睛:本题考查的是 的图象及性质.解决本题的关键有两点:一是图象向左平移变换时要弄清是加还是减,是x加减,还是2x加减,另一方面是根据图象过点 确定 的值时,要结合五点及 确定其取值,得到函数的解析式,再判断其对称性和单调性.
【详解】依题意,圆心为 ,设 点的坐标为 ,由两点间距离公式得 ,设 , ,令 解得 ,由于 ,可知当 时, 递增, 时, , 递减,故当 时取得极大值也是最大值为 ,故 ,故 时, 且 ,所以 ,函数单调递减.当 时, , ,当 时, ,即 单调递增,且 ,即 , 单调递增,而 ,故当 时, 函数单调递增,故函数在 处取得极小值也是最小值为 ,故 的最小值为 ,此时 .故选A.

湖北省安陆市第一高级中学2025届高三下学期第五次调研考试数学试题含解析

湖北省安陆市第一高级中学2025届高三下学期第五次调研考试数学试题含解析

湖北省安陆市第一高级中学2025届高三下学期第五次调研考试数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数的图象可能是下面的图象( )A .B .C .D .2.棱长为2的正方体1111ABCD A B C D -内有一个内切球O ,过正方体中两条异面直线AB ,11A D 的中点,P Q 作直线,则该直线被球面截在球内的线段的长为( )A .22B .21-C .2D .13.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( )A .18种B .36种C .54种D .72种4.如图,在ABC ∆中,点Q 为线段AC 上靠近点A 的三等分点,点P 为线段BQ 上靠近点B 的三等分点,则PA PC +=( )A .1233BA BC +B .5799BA BC + C .11099BA BC +D .2799BA BC + 5.已知等差数列{}n a 的前n 项和为n S ,且282,10a a =-=,则9S =( )A .45B .42C .25D .36 6.已知抛物线2:4(0)C y px p =>的焦点为F ,过焦点的直线与抛物线分别交于A 、B 两点,与y 轴的正半轴交于点S ,与准线l 交于点T ,且||2||FA AS =,则||||FB TS =( ) A .25 B .2 C .72 D .3 7.设函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,则函数()y xf x =-'的图象可能是( )A .B .C .D .8.已知函数||()()x x f x x R e =∈,若关于x 的方程()10f x m -+=恰好有3个不相等的实数根,则实数m 的取值范围为( )A .(212),e eB .(20,)2e eC .(11,1)e +D .21,12()e e + 9.已知函22()(sin cos )2cos f x x x x =++,,44x ππ⎡⎤∈-⎢⎥⎣⎦,则()f x 的最小值为( ) A .22- B .1 C .0 D .2-10.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A .203πB .6πC .103πD .163π11.过椭圆()2222:10x y C a b a b +=>>的左焦点F 的直线过C 的上顶点B ,且与椭圆C 相交于另一点A ,点A 在y 轴上的射影为A ',若34FO AA =',O 是坐标原点,则椭圆C 的离心率为( ) A .32 B .33 C .12D .22 12.已知向量0,2a,()23,b x =,且a 与b 的夹角为3π,则x =( ) A .-2 B .2 C .1 D .-1 二、填空题:本题共4小题,每小题5分,共20分。

福建省龙岩第一中学2024届高三下学期第五次模拟考试数学试题

福建省龙岩第一中学2024届高三下学期第五次模拟考试数学试题

福建省龙岩第一中学2024届高三下学期第五次模拟考试数学试题一、单选题1.已知集合(){}ln 3A x y x ==-,{}22B y y x ==-+,则R A B ⋂=ð( )A . 2,3B .[]2,3C .[)2,3D .(]2,32.勒洛三角形是一种典型的定宽曲线,以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形就是勒洛三角形.在如图所示的勒洛三角形中,已知2AB =,P 为弧AC 上的一点,且π6PBC ∠=,则BP CP ⋅u u u r u u u r 的值为( )A .4B .4C .4-D .4+3.已知函数y =f x 的部分图象如图所示,则()f x 的解析式可能为( ).A .()e 1e 1x xf x +=- B .()e 1e 1x x f x -=+C .()2f xD .()f x =4.高三某班学生每天完成作业所需的时间的频率分布直方图如图,为响应国家减负政策,若每天作业布置量在此基础上减少0.5小时,则减负后完成作业的时间的说法中正确的是( )A .减负后完成作业的时间的标准差减少0.5B .减负后完成作业的时间的方差减少0.25C .减负后完成作业的时间在4小时以上的概率大于10%D .减负后完成作业的时间的中位数在2至2.5之间5.已知i 是虚数单位,a ∈R ,则“()2i 2i a +=”是“21a =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.已知函数()()12x x e f x e=-+,其中e 为自然对数的底数, 2.7182818e =……,则f (x )的零点个数为( ) A .0B .1C .2D .37.已知椭圆2222:1x y E a b+=(0a b >>)的左、右焦点为1F 、2F ,圆2222x y a b +=-与E 的一个交点为P ,直线2PF 与E 的另一个交点为Q ,123tan 4FQF ∠=,则E 的离心率为( )A .35B C .34D 8.随着互联网普及和技术的飞速发展,网络游戏已成为当今社会的一种流行文化,也是青少年学习、娱乐和社交的重要方式.但随着网络游戏的推广发展,一些青少年对其过度依赖,甚至对心理健康产生了不可忽视的影响.“预防网络游戏沉迷,关爱青少年心理健康,已成为亟需破解的现实问题.”某款网络游戏的规则如下:参与者每一局需投一枚游戏币,每局通关的概率为50%,若该局通关,参与者可以赢得两个游戏币.遇到两种情况会自动结束游戏:一种是手中没有游戏币;一种是手中游戏币到预期的N 个.设当参与者手中有n 个(0n N ≤≤)游戏币时,最终手中没有游戏币的概率为()P n ,下列说法错误的是( ) A .()01P =,()0P N =B .记X =参与者通关的局数,在前13局中,() 6.5E X =,() 3.25D X =C .()()()111122P n P n P n +=+- D .若参与者最初手中有20个游戏币,他希望赢到100个,则他输光的概率为45二、多选题9.已知圆锥SO 的侧面积为4π,底面圆的周长为2π,则( ) A .圆锥的母线长为4B .圆锥的母线与底面所成角的正弦值为14CD10.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,则下列说法正确的有( )A .若22tan tan aB b A =,则a b = B .若2cos 22A b c c+=,则此三角形为直角三角形 C .若3,4,6a b B π===,则解此三角形必有两解D .若ABC V 是锐角三角形,则sin sin cos cos A B A B ++> 11.已知函数()(1)ln 1f x m x x x =+-+,下列说法正确的有( )A .当12m =时,则()y f x =在(0,)+∞上单调递增 B .当1m =时,函数()y f x =有唯一极值点C .若函数()y f x =只有两个不等于1的零点12,x x ,则必有121x x ⋅=D .若函数()y f x =有三个零点,则102m <<三、填空题12.将9个相同的球放到3个不同的盒子中,每个盒子至少放一个球,且每个盒子中球的个数互不相同,则不同的分配方法共有种.13.记n S 为数列{}n a 的前n 项和,已知()11,,2,,n n n n n a a n -⎧⎪+=⎨⎪⎩为奇数为偶数则10S =.14.已知正四面体A BCD -的棱长为1,若棱长为a 的正方体能整体放入正四面体A BCD -中,则实数a 的最大值为.四、解答题15.设n S 为等差数列{}n a 的前n 项和,{}n b 是正项等比数列,且11521,3a b a b ===.在①3314a b +=,②1581a b =,③424S S =这三个条件中任选一个,回答下列问题:(1)求数列{}n a 和{}n b 的通项公式;(2)如果()*,m n a b m n =∈N ,写出,m n 的关系式()m f n =,并求(1)(2)(3)(2020)f f f f ++++L 的值.注:如果选择多个条件分别解答,按第一个解答计分.16.如图,四边形ABCD 是圆柱OE 的轴截面,点F 在底面圆O 上,1OB BF ==,点G 是线段BF 的中点(1)证明://EG 平面DAF ;(2)若直线DF 与圆柱底面所成角为45o ,求点G 到平面DEF 的距离.17.PM2.5是指环境空气中直径小于或等于2.5微米的颗粒物.它能较长时间悬浮于空气中,其在空气中含量越高,说明空气污染越严重.城市中的PM2.5成分除扬尘等自然因素外,燃料的燃烧也是一个重要来源.某市环境检测部门为检测燃油车流量对空气质量的影响,在一个检测点统计每日过往的燃油车流量x (单位:辆)和空气中的PM2.5的平均浓度y (单位:3μg/m ).检测人员采集了50天的数据,制成22⨯列联表(部分数据缺失):(1)完成上面的22⨯列联表,并根据小概率值0.005α=的独立性检验,能否认为PM2.5的平均浓度小于3100μg/m 与燃油车日流量小于1500辆有关联?(2)经计算得y 与x 之间的回归直线方程为0.12386ˆ7.x y=-,且这50天的燃油车的日流量x 的标准差249x s =,PM2.5的平均浓度y 的标准差36y s =.若相关系数r 满足0.75r ≥,则判定所求回归直线方程有价值;否则判定其无价值. ①判断该回归直线方程是否有价值;②若这50天的燃油车的日流量x 满足50281 1.2310i i x ==⨯∑,试求这50天的PM2.5的平均浓度y的平均数y (利用四舍五入法精确到0.1). 参考公式:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.回归方程ˆˆˆya bx =+,其中()()()1122211ˆn niii ii i nniii i xx y x y nxyb x x y xnx ====---==--∑∑∑∑,ˆˆay bx =-; 相关系数()()niix x y y r --=∑.参考数据:11.230.024650⨯=,224962001=1548.55≈. 18.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,离心率为12,且经过点31,2⎛⎫ ⎪⎝⎭. (1)求椭圆C 的标准方程;(2)点P 是椭圆C 上不在x 轴上的任意一点,射线12,PF PF 分别与椭圆C 交于点,A B .设121,,PF F PF B PAB V V V 的面积分别为123,,S S S .求证:213221S S S S S S +--为定值. 19.设函数()()()221ln 1f x x x k x x =+-++.(1)当0x ≥时,()0f x ≥恒成立,求k 的最大值;(2)设数列 a n 的通项()()1*1111123n n a n n-=-+++-∈N L ,证明:211ln 24n a n ->+.。

2025届三湘教育联盟高三第五次模拟考试数学试卷含解析

2025届三湘教育联盟高三第五次模拟考试数学试卷含解析

2025届三湘教育联盟高三第五次模拟考试数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设双曲线22:1916x y C -=的右顶点为A ,右焦点为F ,过点F 作平行C 的一条渐近线的直线与C 交于点B ,则AFB △的面积为( )A .3215B .6415C .5D .62.设等比数列{}n a 的前项和为n S ,若2019201680a a +=,则63S S 的值为( )A .32B .12C .78 D .983.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,过2F 作双曲线C 的一条渐近线的垂线,分别交两条渐近线于点A 、B ,过点B 作x 轴的垂线,垂足恰为1F ,则双曲线C 的离心率为( ) A .2BC.D4.已知非零向量a ,b 满足()2a b a -⊥,()2b a b -⊥,则a 与b 的夹角为( ) A .6π B .4π C .3π D .2π 5.已知椭圆C的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为( )A .221255x y +=B .2213616x y +=C .2213010x y += D .2214525x y += 6.一辆邮车从A 地往B 地运送邮件,沿途共有n 地,依次记为1A ,2A ,…n A (1A 为A 地,n A 为B 地).从1A 地出发时,装上发往后面1n -地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达1A ,2A ,…n A 各地装卸完毕后剩余的邮件数记为(1,2,,)k a k n =….则k a 的表达式为( ). A .(1)k n k -+B .(1)k n k --C .()n n k -D .()k n k -7.若()()()32z i a i a R =-+∈为纯虚数,则z =( ) A .163i B .6i C .203i D .208. “哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A .15B .13C .35D .239.若函数()()222cos 137f x x x m x m m =+-+++-有且仅有一个零点,则实数m 的值为( )A .3372-- B .3372-+ C .4- D .210.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞)D .(-∞,-2]11.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = )A .85B .65C .45D .2512.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是( )A .28cmB .212cmC .()2452cmD .()2454cm二、填空题:本题共4小题,每小题5分,共20分。

2025届四川省高三下学期第五次调研考试数学试题含解析

2025届四川省高三下学期第五次调研考试数学试题含解析

2025届四川省高三下学期第五次调研考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,四边形ABCD 为正方形,延长CD 至E ,使得DE CD =,点P 在线段CD 上运动.设AP x AB y AE =+,则x y +的取值范围是( )A .[]1,2B .[]1,3C .[]2,3D .[]2,42.中,如果,则的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形3.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'2357︒'2413︒'2428︒'2444︒'正切值 0.439 0.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( )C .公元前6000年到公元前4000年D .早于公元前6000年4.已知函数()cos()f x A x ωϕ=+(0A >,0>ω,||2ϕπ<),将函数()f x 的图象向左平移34π个单位长度,得到函数()g x 的部分图象如图所示,则1()3f x =是32123x g π⎛⎫+= ⎪⎝⎭的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知函数2()ln(1)33x x f x x x -=++-,不等式()22(4)50f x f x +++对x ∈R 恒成立,则a 的取值范围为( ) A .[2,)-+∞B .(,2]-∞-C .5,2⎡⎫-+∞⎪⎢⎣⎭D .5,2⎛⎤-∞- ⎥⎝⎦6.已知抛物线2:6C y x =的焦点为F ,准线为l ,A 是l 上一点,B 是直线AF 与抛物线C 的一个交点,若3FA FB =,则||BF =( )A .72B .3C .52D .27.已知函数()f x 的导函数为()f x ',记()()1f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=(n ∈N *). 若()sin f x x x =,则()()20192021f x f x += ( )A .2cos x -B .2sin x -C .2cos xD .2sin x8.已知直线l 320x y ++=与圆O :224x y +=交于A ,B 两点,与l 平行的直线1l 与圆O 交于M ,N 两点,且OAB 与OMN 的面积相等,给出下列直线1l 330x y +-=320x y +-=,③320x -+=,330x y ++=.其中满足条件的所有直线1l 的编号有( ) A .①②B .①④C .②③D .①②④9.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( ) A .甲B .乙C .丙D .丁10.设F 为抛物线24x y =的焦点,A ,B ,C 为抛物线上三点,若0FA FB FC ++=,则|||||FA FB FC ++=( ). A .9B .6C .38D .31611.已知非零向量,a b 满足0a b ⋅=,||3a =,且a 与a b +的夹角为4π,则||b =( ) A .6B.C.D .312.已知抛物线y 2= 4x 的焦点为F ,抛物线上任意一点P ,且PQ ⊥y 轴交y 轴于点Q ,则 PQ PF ⋅的最小值为( ) A .-14B .-12C .-lD .1二、填空题:本题共4小题,每小题5分,共20分。

安徽省“江南十校”2025届高三第五次模拟考试数学试卷含解析

安徽省“江南十校”2025届高三第五次模拟考试数学试卷含解析

安徽省“江南十校”2025届高三第五次模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.棱长为2的正方体1111ABCD A B C D -内有一个内切球O ,过正方体中两条异面直线AB ,11A D 的中点,P Q 作直线,则该直线被球面截在球内的线段的长为( ) A .22B .21-C .2D .12.已知实数,x y 满足线性约束条件1020x x y x y ≥⎧⎪+≥⎨⎪-+≥⎩,则1y x +的取值范围为( )A .(-2,-1]B .(-1,4]C .[-2,4)D .[0,4]3.已知命题P :x R ∀∈,sin 1x ≤,则p ⌝为( ) A .0x R ∃∈,0sin 1x ≥ B .x R ∀∈,sin 1x ≥ C .0x R ∃∈,0sin 1x > D .x R ∀∈,sin 1x >4.函数24y x =-的定义域为A ,集合(){}2log 11B x x =+>,则A B =( )A .{}12x x <≤B .{}22x x -≤≤C .{}23x x -<<D .{}13x x <<5.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km /h ,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km /h 的频率分别为( )A .300,0.25B .300,0.35C .60,0.25D .60,0.356.已知函数()22cos sin 4f x x x π⎛⎫=++⎪⎝⎭,则()f x 的最小值为( ) A .212+B .12C .212-D .214-7.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )A .413B .21313C .926D .313268.已知函数()()1xe a axf x e ⎛⎫=-+ ⎪⎝⎭,若()()0f x x R ≥∈恒成立,则满足条件的a 的个数为( )A .0B .1C .2D .39.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ,且3SB .22S ,且23SC .22S ,且3SD .22S ,且23S10.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是( )A .16B .12C .8D .611.已知函数()eln mxf x m x =-,当0x >时,()0f x >恒成立,则m 的取值范围为( )A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,e e ⎛⎫⎪⎝⎭C .[1,)+∞D .(,e)-∞12.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A .3B .2(51)-C .45D .4二、填空题:本题共4小题,每小题5分,共20分。

江苏省苏北四市2025届高三第五次模拟考试数学试卷含解析

江苏省苏北四市2025届高三第五次模拟考试数学试卷含解析

江苏省苏北四市2025届高三第五次模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3xf x =的两对“线性对称点”,则c 的最大值为( )A .3log 4B .3log 41+C .43D .3log 41-2.某个命题与自然数n 有关,且已证得“假设()*n k k N=∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( )A .当8n =时,该命题不成立B .当8n =时,该命题成立C .当6n =时,该命题不成立D .当6n =时,该命题成立3.已知集合{}1,2,3,4,5,6U =,{}13,5A =,,{}2,3,4B =,则集合()UB A =( )A .{}1,2,6B .{}1,3,6C .{}1,6D .{}64.数列{}n a 满足()*212n n n a a a n +++=∈N ,且1239a a a ++=,48a =,则5a =( )A .212B .9C .172D .75.已知0.212a ⎛⎫= ⎪⎝⎭,120.2b -=,13log 2c =,则( ) A .a b c >>B .b a c >>C .b c a >>D .a c b >>6.过抛物线24y x =的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若3AF =,则直线AB 的斜率为( )A .B .C .D .±7.过双曲线()222210,0x y a b a b-=>>的左焦点作倾斜角为30的直线l ,若l 与y 轴的交点坐标为()0,b ,则该双曲线的标准方程可能为( )A .2212x y -=B .2213x y -=C .2214x y -=D .22132x y -=8.已知全集,,则( )A .B .C .D .9.双曲线2212y x -=的渐近线方程为( )A .32y x =±B .y x =±C .2y x =±D .3y x =±10.已知向量()1,2a =,()2,2b =-,(),1c λ=-,若()//2c a b +,则λ=( ) A .2-B .1-C .12-D .1211.关于函数()sin |||cos |f x x x =+有下述四个结论:( )①()f x 是偶函数; ②()f x 在区间,02π⎛⎫- ⎪⎝⎭上是单调递增函数;③()f x 在R 上的最大值为2; ④()f x 在区间[]2,2ππ-上有4个零点. 其中所有正确结论的编号是( ) A .①②④B .①③C .①④D .②④12.已知函数2()(2)g x f x x =+为奇函数,且(2)3f =,则(2)f -=( )A .2B .5C .1D .3二、填空题:本题共4小题,每小题5分,共20分。

湖北省随州市曾都区随州一中2025届高三下学期第五次调研考试数学试题含解析

湖北省随州市曾都区随州一中2025届高三下学期第五次调研考试数学试题含解析

湖北省随州市曾都区随州一中2025届高三下学期第五次调研考试数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.单位正方体ABCD -1111D C B A ,黑、白两蚂蚁从点A 出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA 1→A 1D 1→‥,黑蚂蚁爬行的路线是AB →BB 1→‥,它们都遵循如下规则:所爬行的第i +2段与第i 段所在直线必须是异面直线(i ∈N *).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( ) A .1B .2C .3D .02.函数()()23ln 1x f x x+=的大致图象是A .B .C .D .3.已知函数f (x )=sin 2x +sin 2(x 3π+),则f (x )的最小值为( ) A .12B .14C .34D .224.△ABC 中,AB =3,BC 13=AC =4,则△ABC 的面积是( )A .33B .332C .3D .325.从抛物线24y x =上一点P (P 点在x 轴上方)引抛物线准线的垂线,垂足为M ,且||5PM =,设抛物线的焦点为F ,则直线MF 的斜率为( )A .2-B .2C .43-D .436.已知函数3ln ()3ln x a x f x a x x=-+-在区间()1,+∞上恰有四个不同的零点,则实数a 的取值范围是( )A .(,3)(3,)e +∞ B .[)0,eC .()2,e +∞D .(,){3}e -∞7.设a ,b 是非零向量,若对于任意的R λ∈,都有a b a b λ-≤-成立,则 A .//a bB .a b ⊥C .()-⊥a b aD .()-⊥a b b8.已知,αβ是空间中两个不同的平面,,m n 是空间中两条不同的直线,则下列说法正确的是( ) A .若,m n αβ⊂⊂,且αβ⊥,则 m n ⊥ B .若,m n αα⊂⊂,且//,//m n ββ,则//αβ C .若,//m n αβ⊥,且αβ⊥,则 m n ⊥ D .若,//m n αβ⊥,且//αβ,则m n ⊥9.已知(0,)απ∈,且tan 2α=,则cos2cos αα+=( )A B C D 10.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( ) A .12B .1-C .±1D .12±11.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为()32222x y x y +=.给出下列四个结论:①曲线C 有四条对称轴;②曲线C 上的点到原点的最大距离为14; ③曲线C 第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为18; ④四叶草面积小于4π. 其中,所有正确结论的序号是( )A .①②B .①③C .①③④D .①②④12.()cos sin xe f x x=在原点附近的部分图象大概是( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

2025届广西省南宁二中、柳州高中高三下学期第五次调研考试数学试题含解析

2025届广西省南宁二中、柳州高中高三下学期第五次调研考试数学试题含解析

2025届广西省南宁二中、柳州高中高三下学期第五次调研考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .23B .21C .35D .322.已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布()2,N μσ,则()68.26%P μσξμσ-<<+=,()2295.44%P μσξμσ-<<+=.)A .4.56%B .13.59%C .27.18%D .31.74%3.已知函数()()()2ln 14f x ax x ax =-+-,若0x >时,()0f x ≥恒成立,则实数a 的值为( )A .2eB .4eC .2ee - D .4ee - 4.已知函数有三个不同的零点(其中),则的值为( )A .B .C .D .5.如图,在圆锥SO 中,AB ,CD 为底面圆的两条直径,AB ∩CD =O ,且AB ⊥CD ,SO =OB =3,SE 14SB =.,异面直线SC 与OE 所成角的正切值为( )A .222B .53C .1316D .1136.(),0F c -为双曲线2222:1x y E a b-=的左焦点,过点F 的直线与圆22234x y c +=交于A 、B 两点,(A 在F 、B 之间)与双曲线E 在第一象限的交点为P ,O 为坐标原点,若FA BP =,且23100OA OB c ⋅=-,则双曲线E 的离心率为( ) A .5B .52C .52D .57.在正方体1AC 中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,如图所示,下列说法不正确...的是( )A .点F 的轨迹是一条线段B .1A F 与BE 是异面直线C .1A F 与1DE 不可能平行D .三棱锥1F ABD -的体积为定值8.马林●梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p ﹣1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P ﹣1(其中p 是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是( )A .3B .4C .5D .69.为计算23991223242...100(2)S =-⨯+⨯-⨯++⨯-, 设计了如图所示的程序框图,则空白框中应填入( )A .100i <B .100i >C .100i ≤D .100i ≥10.函数2sin 1x xy x +=+的部分图象大致为( )A .B .C .D .11.如图,圆O 是边长为23ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM xBA yBD =+(,)x y ∈R ,则2x y +的最大值为( )A .2B .3C .2D .2212.△ABC 中,AB =3,BC 13=,AC =4,则△ABC 的面积是( )A .33B .332C .3D .32二、填空题:本题共4小题,每小题5分,共20分。

广西省贺州市2025届高三下学期第五次调研考试数学试题含解析

广西省贺州市2025届高三下学期第五次调研考试数学试题含解析

广西省贺州市2025届高三下学期第五次调研考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,则ABC ∆的面积222221()42a b c S ab ⎡⎤⎛⎫+-⎢⎥=- ⎪⎢⎥⎝⎭⎣⎦.根据此公式,若()cos 3cos 0a B b c A ++=,且2222a b c --=,则ABC ∆的面积为( )A .2B .22C .6D .232.设i 是虚数单位,复数1ii+=( ) A .1i -+ B .-1i -C .1i +D .1i -3.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .B .2C .3D .64.已知,a b 为非零向量,“22a b b a =”为“a a b b =”的( ) A .充分不必要条件 B .充分必要条件C .必要不充分条件D .既不充分也不必要条件5.根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于( )A .1B .eC .1e -D .2e -6.已知向量()3,1a =,()3,1b =-,则a 与b 的夹角为( )A .6π B .3π C .23π D .56π 7.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定8.已知ABC ∆中内角,,A B C 所对应的边依次为,,a b c ,若2=1,3a b c C π+==,则ABC ∆的面积为( )ABC .D .9.记n S 为等差数列{}n a 的前n 项和.若25a =-,416S =-,则6a =( ) A .5B .3C .-12D .-1310.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1(,0)F c -,2(,0)F c ,以线段12F F 为直径的圆与双曲线在第二象限的交点为P ,若直线2PF 与圆222:216⎛⎫-+= ⎪⎝⎭c b E x y 相切,则双曲线的渐近线方程是( )A .y x =±B .2y x =±C . y =D .y =11.已知i 是虚数单位,若z211i i=+-,则||z =( )AB.2CD .1012.若实数x ,y 满足条件25024001x y x y x y +-≤⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,目标函数2z x y =-,则z 的最大值为( )A .52B .1C .2D .0二、填空题:本题共4小题,每小题5分,共20分。

广西壮族自治区来宾市2025届高三第五次模拟考试数学试卷含解析

广西壮族自治区来宾市2025届高三第五次模拟考试数学试卷含解析

广西壮族自治区来宾市2025届高三第五次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列函数中,在区间(0,)+∞上单调递减的是( ) A .12y x =B .2x y =C .12log y = xD .1y x=-2.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π3.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了B .乙被录用了C .甲被录用了D .无法确定谁被录用了4.集合{2,1,1},{4,6,8},{|,,}A B M x x a b b B x B =--===+∈∈,则集合M 的真子集的个数是 A .1个B .3个C .4个D .7个5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .32B .323C .16D .1636.已知函数()cos f x x =与()sin(2)(0)g x x ϕϕπ=+<的图象有一个横坐标为3π的交点,若函数()g x 的图象的纵坐标不变,横坐标变为原来的1ω倍后,得到的函数在[0,2]π有且仅有5个零点,则ω的取值范围是( )A .2935,2424⎡⎫⎪⎢⎣⎭ B .2935,2424⎡⎤⎢⎥⎣⎦C .2935,2424⎛⎫⎪⎝⎭ D .2935,2424⎛⎤⎥⎝⎦ 7.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.下列几何体的三视图中,恰好有两个视图相同的几何体是( ) A .正方体 B .球体C .圆锥D .长宽高互不相等的长方体9.如图,在棱长为4的正方体1111ABCD A B C D -中,E ,F ,G 分别为棱 AB ,BC ,1CC 的中点,M 为棱AD 的中点,设P ,Q 为底面ABCD 内的两个动点,满足1//D P 平面EFG ,117DQ =,则PM PQ +的最小值为( )A .321-B .322-C .251-D .252-10.函数sin y x x =+在[]2,2x ππ∈-上的大致图象是( )A .B .C .D .11.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过点1F 的直线与椭圆交于P 、Q 两点.若2PF Q∆的内切圆与线段2PF 在其中点处相切,与PQ 相切于点1F ,则椭圆的离心率为( )A .22B .32C .23D .3312.已知椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为1F ,2F ,上顶点为点A ,延长2AF 交椭圆Г于点B ,若1ABF 为等腰三角形,则椭圆Г的离心率e = A .13B .33C .12D .22二、填空题:本题共4小题,每小题5分,共20分。

浙江省金华市义乌市2025届高三下学期第五次调研考试数学试题含解析

浙江省金华市义乌市2025届高三下学期第五次调研考试数学试题含解析

浙江省金华市义乌市2025届高三下学期第五次调研考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数为纯虚数(为虚数单位),则实数( )A .-1B .1C .0D .22.已知函数()()0xe f x x a a=->,若函数()y f x =的图象恒在x 轴的上方,则实数a 的取值范围为( )A .1,e ⎛⎫+∞ ⎪⎝⎭B .()0,eC .(),e +∞D .1,1e ⎛⎫⎪⎝⎭3.函数2sin cos ()20x x xf x x =+在[2,0)(0,2]ππ-⋃上的图象大致为( ) A . B .C .D .4.等差数列{}n a 中,已知51037a a =,且10a <,则数列{}n a 的前n 项和n S *()n N ∈中最小的是( )A .7S 或8SB .12SC .13SD .14S5.已知实数0,1a b >>满足5a b +=,则211a b +-的最小值为( ) A .3224+ B .324+ C .326+ D .326+6.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( )A .3B .36C .33D .2337.已知函数()ln ln(3)f x x x =+-,则( ) A .函数()f x 在()0,3上单调递增 B .函数()f x 在()0,3上单调递减 C .函数()f x 图像关于32x =对称 D .函数()f x 图像关于3,02⎛⎫⎪⎝⎭对称 8.集合{|20}N A x x B =-≤=,,则A B =( )A .{}1B .{}1,2C .{}0,1D .{}0,1,29.设双曲线22221x y a b-=(a >0,b >0)的一个焦点为F (c ,0)(c >0),且离心率等于5,若该双曲线的一条渐近线被圆x 2+y 2﹣2cx =0截得的弦长为25,则该双曲线的标准方程为( )A .221205x y -=B .22125100x y -=C .221520x y -=D .221525x y -=10.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .1211.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是( ) A .48B .60C .72D .12012.已知函数()(1)(2)x e f x m x x e -=---(e 为自然对数底数),若关于x 的不等式()0f x >有且只有一个正整数解,则实数m 的最大值为( )A .32e e +B .22e e +C .32e e -D .22e e -二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(改编)当0<x ≤13时,8x <log a x ,则a 的取值范围是( B )A .(0,33)B .(33,1) C .(1,3) D .(3,2)2.将函数y =3x +a的图象C 向左平移一个单位后,得到y =f (x )的图象C 1,若曲线C 1关于原点对称,那么a 的值为 -1 .解析:因为图象C 的对称中心为(-a,0),而C 1的对称中心为(0,0),所以-a =1,即a =-1.3.(2012·福建省莆田市3月质检)如图是定义在[-4,6]上的函数f (x )的图象,若f (-2)=1,则不等式f (-x 2+1)<1的解集是 (-3,3) .解析:由图象知函数f (x )在[-4,1]上为减函数,而-x 2+1≤1,则不等式f (-x 2+1)<1等价于f (-x 2+1)<f (-2),所以-x 2+1>-2,解得-3<x < 3.4.(改编)函数f (x )=(x 2-1)cos 2x 在区间[0,2π]上的零点个数为( B ) A .6 B .5 C .4 D .3解析:由f (x )=(x 2-1)cos 2x =0,得x 2-1=0或cos 2x =0. 由x 2-1=0,得x =1或x =-1(舍去).由cos 2x =0,得2x =k π+π2(k ∈Z ),故x =k π2+π4(k ∈Z ).又因为x ∈[0,2π],所以x =π4,3π4,5π4,7π4.所以零点的个数为1+4=5个,故选B.5.(2012·广东省高州市第三中学高考模拟)在(0,2π)内,使sin x >cos x 成立的x 的取值范围为( C )A .(π4,π2)∪(π,5π4)B .(π4,π)C .(π4,5π4)D .(π4,π)∪(5π4,3π2)解析:在单位圆中画三角函数线,如图所示,要使在(0,2π)内,sin x >cos x ,则x ∈(π4,5π4).5.(2012·湖北省武汉市部分学校新起点调研)如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,已知点A 的纵坐标为45,则cos α= -35.解析:将y =45代入x 2+y 2=1(x <0),得x =-35,于是cos α=-35.2.(2013·安徽省合肥市质检)已知sin(π3-x )=35,则cos(5π6-x )=( C )A.35B.45C .-35D .-45解析:cos(5π6-x )=cos(π2+π3-x )=-sin(π3-x )=-35,选C.3.(2012·西南大学附中第二次月考)已知f (cos x )=sin x ,设x 是第一象限角,则f (sin x )为( B )A.1cos xB .cos xC .sin xD .1-sin x解析:f (sin x )=f [cos(π2-x )]=sin(π2-x )=cos x ,故选B.1.(原创)tan 15°+1tan 15°=( C )A . 2B .2C .4D .2 2解析:tan 15°+1tan 15°=sin 15°cos 15°+cos 15°sin 15°=sin 215°+cos 215°sin 15°cos 15°=2sin 30°=4. 3.(2013·广东省中山市期末)已知sin (π4+θ)=35,则sin 2θ的值为( B )A .-1925B .-725C .-1625D .725解析:sin 2θ=-cos (π2+2θ)=2sin 2(π4+θ)-1=-725.6.(2013·南通市教研室全真模拟)已知π2≤θ≤π,且sin (θ-π6)=12,则cos θ= -1 .解析:由π2≤θ≤π,得π3≤θ-π6≤5π6,且sin (θ-π6)=12,所以π2<θ-π6≤5π6,则cos (θ-π6)=-32,此时cos θ=cos [(θ-π6)+π6]=-32×32-12×12=-1.1.(2013·河南郑州市模拟)函数y =2sin(x +π4)cos(x -π4)图象的一条对称轴是( B )A .x =π8B .x =π4C .x =π2D .x =π解析:因为y =2sin(x +π4)cos(x -π4)=2sin 2(x +π4)=1-cos(2x +π2)=sin 2x +1,由2x =π2知x =π4是其一条对称轴,故选B.2.(2012·三明市高三上期联考)右图是函数y =A sin(ωx +φ)(ω>0)在一个周期内的图象,此函数的解析式可为( B )A .y =2sin(2x +π3)B .y =2sin(2x +2π3)C .y =2sin(x 2-π3)D .y =2sin(2x -π3)解析:由于最大值为2,所以A =2, 又T 2=5π12-(-π12)=π2⇒T =π⇒2πω=π⇒ω=2, 所以y =2sin(2x +φ),将x =-π12代入得sin(-π6+φ)=1,结合点的位置,知-π6+φ=2k π+π2⇒φ=2k π+2π3(k ∈Z ),所以函数的解析式可为y =2sin(2x +2π3),故选B.5.若f (x )=sin(x +π4),x ∈[0,2π],关于x 的方程f (x )=m 有两个不相等实数根x 1,x 2,则x 1+x 2等于( A )A.π2或5π2B.π2C.5π2D .不确定 解析:对称轴x =π4+k π∈[0,2π],得对称轴x =π4或x =5π4,所以x 1+x 2=2×π4=π2或x 1+x 2=2×5π4=5π2,故选A.6.如图是y =sin(ωx +φ)(|φ|<π2)的图象的一部分,则φ= π6,ω= 2 .解析:由图象可知T =π,所以ω=2π=2,当x =-π12时,sin [2×(-π12)+φ]=0,即φ-π6=k π,所以φ=π6+k π,又|φ|<π2,所以φ=π6,故填φ=π6,ω=2.7.(2012·江苏省无锡市五校联考)函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图象如图所示,则f (1)+f (2)+f (3)+…f (2013)= 2+2 .解析:由图可得:T =8,A =2,φ可取0.且f (1)+f (2)+f (3)+f (4)+f (5)+f (6)+f (7)+f (8)=0,所以f (1)+f (2)+…+f (2013)=f (1)+f (2)+f (3)+f (4)+f (5)=2+2.8.已知函数f (x )=a +b sin x +c cos x (b >0)的图象经过点A (0,1),B (π2,1),当x ∈[0,π2]时,f (x )的最大值为22-1.(1)求f (x )的解析式;(2)由f (x )的图象向右平移φ(φ>0)个单位,再向上平移k (k >0)个单位得到一个奇函数y =g (x )的图象,求出一个符合条件的φ与k 的值.解析:(1)由已知得⎩⎪⎨⎪⎧f (0)=a +c =1f (π2)=a +b =1⇒b =c .所以f (x )=a +2b sin(x +π4),最大值为 f (π4)=a +2b =22-1,所以a =-1,b =2,c =2,所以f (x )=22sin(x +π4)-1.(2)取φ=π4,k =1,则平移后得f (x )=22sin x 为奇函数.3.(改编)函数y =sin 2x -sin x +2的最大值是( C ) A .2 B .3 C .4 D .5解析:配方得y =sin 2x -sin x +2=(sin x -12)2+74.显然,当sin x =-1时,y max =4,故选C.4.(2012·广东省六校联合体联考)已知函数f (x )=2cos(ωx -π6)与函数g (x )=3sin(2x +φ)(0<φ<π2)图象的对称中心完全相同,则函数f (x )图象的一条对称轴是( D )A .x =3π4B .x =π2C .x =π4D .x =π12解析:由题意可知两函数的周期相同,所以ω=2,故f (x )=2cos(2x -π6).令2x -π6=k π,k ∈Z ,解得x =π12+12k π,k ∈Z ,所以函数f (x )图象的对称轴是x =π12+12k π,k ∈Z .当k =0时,x =π12,故选D.5.(2012·太原市模拟)已知函数f (x )=sin(ωx -π6)(ω>0)在(0,4π3)上单调递增,在(4π3,2π)上单调递减,则ω=( A )A.12 B .1 C.32 D.43解析:由题意可知函数f (x )当x =4π3时取得最大值,则4ωπ3-π6=2k π+π2,所以ω=32k +12(k ∈Z ),故当k 取0时可得ω=12,故选A.6.设函数f (x )=cos 3x ,若f (x +t )是奇函数,则t 的一个可能值为 π6(满足π6+k π3即可) .解析:因为f (x +t )=cos 3(x +t )=cos(3x +3t )为奇函数,所以令3t =π2+k π,k ∈Z ,可得t =π6+k π3,k ∈Z ,可取其中一个可能值t =π6.8.(2012·陕西省长安第一次模拟)已知函数f (x )=4cos x sin(x +π6)-1.(1)求f (x )的最小正周期;(2)求f (x )在区间[-π6,π4]上的最大值和最小值.解析:(1)因为f (x )=4cos x sin(x +π6)-1=4cos x (32sin x +12cos x )-1=3sin 2x +2cos 2x -1 =3sin 2x +cos 2x=2sin(2x +π6),所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.7.(2012·广东省汕头市测评)△ABC 中,如果(a +b +c )·(b +c -a )=3bc ,那么A 等于 π3. 解析:(a +b +c )(b +c -a )=[(b +c )+a ][(b +c )-a ]=(b +c )2-a 2=3bc , 得b 2+c 2-a 2=bc ,由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12,又0<A <π,所以A =π3.9.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a 2+c 2-b 2=65ac .(1)求2sin 2A +C2+sin 2B 的值;(2)若b =2,求△ABC 的面积的最大值.解析:(1)由已知a 2+c 2-b 22ac =35,所以cos B =35,sin B =1-cos 2B =45,所以2sin 2A +C 2+sin 2B =2cos 2B2+sin 2B=1+cos B +2sin B cos B=1+35+2×35×45=6425. (2)因为b =2,所以a 2+c 2=65ac +4,又因为a 2+c 2≥2ac ,所以2ac ≤65ac +4,所以ac ≤5,所以S △ABC =12ac sin B ≤12×5×45=2.所以△ABC 的面积的最大值为2.。

相关文档
最新文档