新人教数学 7年级下:作业7 §5.3 平行线的性质(一)
平行线的性质(1)——平行线的性质
①如果∠1=∠C,
那么__∥__(
)
② 如果∠AB1=∠CBD 同位角相等,两直线平行 E
那么__∥__(
)A 4 1
③ 如果∠E2C+∠BB=D180内°错,角相等,两直线平行 3 2
B
那么__∥__(
)
CD EC BD 同旁内角互补,两直线平行
问题 通过上题可知平行线的判定方法是什么?
1.同位角相等 2.内错角相等 3.同旁内角互补
试说明∠A+∠D=180o.请补全下面的解答过程,括号
内填写依据.
F C
解: ∵ AB∥DE( 已知 )
D
∴∠A= _∠__C_P_D_ (两直线平行,同位角相等)
∵AC∥DF( 已知)
B
A
E P
图2
∴∠D+ _∠__C_P_D__=180o (两直线平行,同旁内角互补)
∴∠A+∠D=180o( 等量代换)
说明∠A=∠D.请补全下面的解答过程,括号内填写依据.
解: ∵ AB∥DE( 已知 )
∴∠A=_∠__C__P_E_ ( 两直线平行,同位角相等)
∵AC∥DF( 已知 )
∴∠D=_∠__C__P_E( 两直线平行,同位角相等)
∴∠A=∠D ( 等量代换 )
D
A
F C
P E
B 图1
5.(2)有这样一道题:如图2,若AB∥DE , AC∥DF,
65
度数
78
c
观察 ∠1~ ∠8中,哪些是同位角?它们的度数 之间有什么关系?说出你的猜想:
a
21
34
b
65
78
c
猜想 两条平行线被第三条直线所截,同位角_相_等_.
人教版七年级数学下册第五章《平行线的性质1
2、问题探索 问当下题直图2线)A,B前与面C所D不发平现行的时式(子如都
不成立。这说明只有AB∥CD 时,前面的式子才能成立.
如果改变AB和CD的 位置关系,即直线AB 与CD不平行,那么你 刚才发现的结论
还成立吗?请同学们 动手画出图形,并用 量角器量一量各角的 大小,验证一下你的 A 结论.
教学内容
平行线的性质
教学目标
1、知识目标:使学生理解平行线的性质,能初步运用平行 线的性质进行有关计算.
2、能力目标:通过本节课的教学,培养学生的概括能力和 “观察-猜想-证明”的科学探索方法,培养学生的辩证思 维能力和逻辑思维能力.
3、情感目标:培养学生的主体意识,向学生渗透讨论的数 学思想,培养学生思维的灵活性和广阔性.
还有一些说不出名字的角, 如 ∠1与 ∠6等,书上没有 定义.
E
A
41 32
B
C
8ห้องสมุดไป่ตู้ 76
D
F
∠1= ∠5, ∠ 2=∠6, ∠ 3=∠7, ∠4= ∠8;
∠2= ∠8, ∠3=∠5, ∠ 1=∠7, ∠4=∠6;
∠2+ ∠5=180°, ∠3+ ∠8=180°, ∠1+ ∠6=180°, ∠4+ ∠7=180°;
问题4
(1)具有相等关系的两个 角,有的是同位角,有的 是内错角,如∠1与 ∠5等
(都1是)同具位有角相; 等∠2关与系∠的8等 两都角是内有错怎角样。的还位有置一些关说 系回不∠呢答出7,名?)∠字(4的与请角∠甲,6组等如.同∠学1与 ((22))互具有补互的补两关角系又的有两个 怎角样,的有位的是置同关旁系内呢角?,如 (∠请2与乙∠组5同等都学是回同答旁)内角;
七年级数学下册 5.3 平行线的性质 (新版)新人教版
C
D
⇒ ∠1 = ∠2
2
说一说
请你来说一说
判定定理和性质定理有什么区别?
判定定理
性质定理
条件
结论
条件
结论
同位角相等 两直线平行 两直线平行 同位角相等
性质定理
分析
由“线”定“角”
由“线”的位置关系(平行)
定“角”的数量关系(相等)
判定定理
由“角”定“线” 由“角”的数量关系(相等)
定“线”的位置关系(平行)
请你做一做 做一做
如图梯子的各条横档互相平行, ∠1=100°求∠2 的度数。
A
2 3
B
C1
D
请你练一练
如图,已知AE//CF,AB//CD,
∠A=40,求∠C的度数。
解: ∵ AE//CF(已知)
∴ ∠A=∠1 (两直线平行,同位角相等)
又∵AB//CD (知)
A C
∴ ∠1=∠C ∴ ∠A=∠C ∵ ∠A=40
平行线的性质
我们一起来动手
(1)用直尺和三角尺画出两条平行线 a∥b,再画一条截线c,使之与直线a,b 相交,并标出所形成的八个角.
c a
b
(2)测量上面八个角的大小,记录下来.
从中你能发现什么?
归纳
两条平行线被第三条直线所截, 同位角相等。 简单地说:两直线平行,
同位角相等。
A
1
B 如图 AB//CD
(两直线平行,同位角相等) (等量代换)
∴ ∠C=40
E
F
1
G
B D
请你来探讨
如图,已知∠1= ∠2.若直线b⊥m,
则直线a⊥m.请说明理由.
n
人教版数学七年级下册教案5.3.1《 平行线的性质》
人教版数学七年级下册教案5.3.1《平行线的性质》一. 教材分析《平行线的性质》是人教版数学七年级下册第5章第3节的内容,本节课主要让学生掌握平行线的性质。
教材通过实例引入平行线的性质,然后引导学生通过观察、猜想、证明等过程,掌握平行线的性质。
教材内容紧密联系学生的生活实际,激发学生的学习兴趣,培养学生观察、思考、动手操作的能力。
二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的概念,掌握了直线和射线的性质,能熟练画直线和射线。
但学生对平行线的性质认识不足,需要通过实例来引导他们观察、思考、总结平行线的性质。
三. 教学目标1.知识与技能:让学生掌握平行线的性质,能运用平行线的性质解决实际问题。
2.过程与方法:培养学生观察、思考、动手操作的能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.重点:平行线的性质。
2.难点:如何引导学生观察、思考、总结平行线的性质。
五. 教学方法1.采用问题驱动法,引导学生观察、思考、总结平行线的性质。
2.利用小组合作学习,培养学生团队协作精神,提高学生解决问题的能力。
3.通过实例讲解,使学生能将所学知识应用于实际问题中。
六. 教学准备1.准备相关课件,展示平行线的性质。
2.准备实例,让学生观察、思考、总结平行线的性质。
3.准备练习题,巩固所学知识。
七. 教学过程导入(5分钟)教师通过展示实际生活中的平行线例子,如教室里的黑板、书桌、地板等,引导学生观察并提问:“你们能发现这些平行线有什么特点吗?”学生通过观察,激发学习兴趣,发现问题。
呈现(10分钟)教师展示课件,呈现平行线的性质,引导学生猜想并提问:“你们认为平行线有哪些性质呢?”学生通过观察、思考,提出猜想。
操练(15分钟)教师引导学生进行小组合作学习,让学生通过实际操作,证明平行线的性质。
教师巡回指导,解答学生疑问。
巩固(10分钟)教师呈现练习题,让学生运用所学知识解决问题。
人教版七年级数学下册5.3.1_平行线的性质
结论
?
1.梳理旧知,引出新课
条件
两条平行线
被第三条直
结论
同位角? 内错角? 同旁内角?
线所截
2.动手操作,归纳性质
如图,已知直线 a∥b ,c是截线.
猜一猜∠1和∠2相等吗? a b
c
2 1
心动
不如行动
2.动手操作,归纳性质
c
65°
1 2 65°
a
b
合作交流一
2.动手操作,归纳性质
c
1 2
a b
D
B
C
如图,AB∥CD,∠B=35°, ∠1=75°.求∠A的度数.
解: ∵ AB∥CD,∠B=35°(已知),
∴∠2 = ∠B=35°(两直线平行,内错角相等). ∠ACD = ∠1+ ∠2 = 35°+ 75°= 110°. 又∵ AB∥CD, ∴∠A+
∠
ACD= 180° (两直线平行,同旁内角互补) ,
) )
d
c
2 1
a
b )
4
3
又∵∠ 1 = 470 (
∴∠ 2= 470 (
)
练一练
如图所示,∠1=∠2,∠3=110°,求∠4. 解: ∵∠1=∠2(已知), ∴a//b (内错角相等,两直线平行), 又∵∠3= 110° (已知) ∴∠4=∠3= 110°.
∴∠3=∠4 (两直线平行,同位角相等).
6.应用迁移,拓展升华
已知条件:如图,AB∥CD,∠1=∠2,∠3=∠4. 猜想:∠2和∠3有什么关系,并说明理由; 试说明:PM∥NQ.
答:∠2=∠3. 理由如下: ∵ AB∥CD , ∴ ∠2=∠3(两直线平行,内错角相等).
统编人教版数学七年级下册 5.3 平行线的性质
5.3 平行线的性质平行线的性质1.经历观察、操作、想象、推理、交流等活动,进一步增强空间观念、推理能力和有条理地表达的能力.2.经历探索平行直线的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.自学指导:阅读教材第18至19页,完成下列各题.自学反馈1.如果AD∥BC,根据两直线平行,同位角相等可得∠B=∠1.2.如果AB∥CD,根据两直线平行,内错角相等可得∠D=∠1.3.如果AD∥BC,根据两直线平行,同旁内角互补可得∠C+∠D=180°.活动1 复习导入现在同学们已经掌握了利用同位角相等或者内错角相等或者同旁内角互补,判定两条直线a、b,平行的三种方法.在这一节课里,大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?逆向思维,探求新知.活动2 小组合作探究平行线的性质1.学生画图活动:用直尺和三角尺画出两条直线a、b使a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本图5.3-1).2.学生测量这些角的度数,把结果填入表内.3.学生根据测量所得的数据作出猜想:图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想.4.学生验证猜想.学生活动:再任意画一条截线d,同样度量各个角的度数,你的猜想还成立吗?5.师生归纳平行线的性质.平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同旁内角互补,简称为两直线平行,同旁内角互补.分清平行线的判定与性质,并用几何语言进行表达.活动3 议一议如果我们现在只知道“两直线平行,同位角相等”,你能说明“两直线平行,内错角相等”和“两直线平行,同旁内角互补”成立的理由吗?如图,∵a∥b(已知),∴∠1=∠2(两直线平行,同位角相等).又∵∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).(“两直线平行,同旁内角互补”成立的理由让学生自己完成)活动4 幻灯片出示平行线的性质和平行线的判定,让学生进行对比活动5 辨一辨1.如果AD∥BC,根据两直线平行,同位角相等可得∠B=∠1.2.如果AB∥CD,根据两直线平行,内错角相等可得∠1=∠D.3.如果∠B+∠BCD=180°,根据同旁内角互补,两直线平行可得AB∥CD.4.如果∠2=∠4,根据内错角相等,两直线平行可得AD∥BC.5.如果∠3=∠5,根据内错角相等,两直线平行,可得AB∥CD.活动6 例题解析例如图是梯形有上底的一部分.已经量得∠A=115°,∠D=100°,梯形另外两个角各是多少度?解:∵AD∥BC(已知),∴∠A+∠B=180°(两直线平行,同旁内角互补),即∠B=180°-∠A=180°-115°=65°.∵AD∥BC(已知),∴∠D+∠C=180°(两直线平行,同旁内角互补),即∠C=180°-∠D=180°-100°=80°.答:梯形的另外两个角分别为65°、80°.活动7 跟踪训练1.如图,在墙面上安装一管道需经两次拐弯,拐弯后的管道与拐弯前的管道平行.若第一个弯道处∠B=142°,那么第二个弯道处∠C为多少度?为什么?2.如图,已知AB∥CD,AD∥BC.填空:(1)∵AB∥CD(已知),∴∠1=∠D(两直线平行,内错角相等). (2)∵AD∥BC(已知),∴∠2=∠ACB(两直线平行,内错角相等).。
人教版七年级数学下册5.3 平行线的性质
世界著名的意大 利比萨斜塔,建于公 元1173年,为8层圆 柱形建筑,全部用白 色大理石砌成塔高 54.5米.
2
3 2
目前,它与地 面所成的较小
的角 为∠1=85º
1
3
5.3 平行线的性质 5.3.1 平行线的性质
4
复习回顾
平行线的判定方法是什么?
1、同位角相等 2、内错角相等 3、同旁内角互补
25
例1:判断下列五个语句中,哪个是 命题, 哪个不是命题?并说明理由: 1)对顶角相等吗? 2)作一条线段AB=2cm;
3)我爱初一(1)班; 4)两条直线平行,同位角相等; 5)相等的两个角,一定是对顶角;
26
2.命题的组成:命题是由题设(或条 件)和结论两部分组成。题设是已知 事项,结论是由已知事项推出的事项。
D
F G
1 C
2 E
AA
19
3 2
目前,它与 地面所成的 较小的角
为∠1=85º
1
20
思考:如果两条平行直线被第三直线 所截,那么同位角的平分线有什 么关系?请画出图形并说明理由; 内错角的平分线呢?同旁内角的 平分线呢?
21
小结
两直线平行
线的关系
同位角相等
内错角相等
同旁内角互补 性质
判定 角的关系
两直线平行
反过来,如果两条直线平行,同位角、 内错角、同旁内角各有什么关系呢?
5
交流合作,探索发现 猜一猜∠1和∠2相等吗?
a b
心动
1 2
c
不如行动
6
合作交流一
65° c
1 2
65°
a b
7
c
1
a
人教版数学七年级下册5.3.1平行线的性质1
课型:新授上课时间:主备人:陈莹审核人:学科组班级:小组:姓名:评价1:评价2:课题:5.3.1平行线的性质(第1课时)学习内容个性笔记【学习目标】1.掌握两直线平行,同位角、内错角相等,同旁内角互补,并能熟练运用.2.通过独立思考,小组合作,运用猜想、推理的方法,提升自己利用图形分析问题的能力.3.激情投入,全力以赴,培养严谨细致的学习习惯.重点:平行线的性质.难点:根据平行线的性质进行推理.【学习过程】一、知识回顾平行线的判定方法有哪几种?二、自主学习如图,直线a与直线b平行,直线c与它们相交.(1)量一量:用量角器量图中8个角的度数.(2)说一说:由测量的结果,你发现∠1与∠5、∠2与∠6、∠3与∠7、∠4与∠8、∠3与∠6、∠4与∠5、∠3与∠5、∠4与∠6的大小有什么关系?(3)想一想:(2)中的各对角分别是什么角?(4)议一议:两条平行直线被第三条直线所截,所得的同位角、内错角、同旁内角有什么关系?三、课堂探究探究点:平行线的性质问题1:画两条平行线a//b,然后画一条截线c与a、b相交,标出如图所示的角. 度量所形成的8个角的度数,把结果填入下表:角∠1∠2∠3∠4度数角∠5∠6∠7∠8度数观察:∠1~ ∠8中,哪些是同位角?它们的度数之间有什么关系?说出你的猜想.猜想:两条平行线被第三条直线所截,同位角.思考:再任意画一条截线d,同样度量各个角的度数,你的猜想还成立吗?问题2:如图,已知a//b,那么∠2与∠3相等吗?为什么?问题3:如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?典例精析例 1.如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?课型:新授上课时间:主备人:陈莹审核人:学科组班级:小组:姓名:评价1:评价2:例2:小明在纸上画了一个∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一部分,如果不能延长DC、FE的话,你能帮他设计出多少种方法测出∠A的度数?四、课堂小结平行线的性质几何语言图示两直线平行, 同位角相等两直线平行,内错角相等两直线平行, 同旁内角互补五、当堂达标1.如图,已知平行线AB、CD被直线AE所截(1)从∠1=110°可以知道∠2 是多少度吗,为什么?(2)从∠1=110°可以知道∠3是多少度吗,为什么?(3)从∠1=110°可以知道∠4 是多少度吗,为什么?2.如果有两条直线被第三条直线所截,那么必定有()A.内错角相等B.同位角相等C.同旁内角互补D.以上都不对3.(1)如图1,若AB∥DE , AC∥DF,试说明∠A=∠D.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A=_______ ( )∵AC∥DF( )∴∠D=______ ( )∴∠A=∠D ( )(2)如图2,若AB∥DE , AC∥DF,试说明∠A+∠D=180o.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A= ______ ( )∵AC∥DF( )∴∠D+ _______=180°( )∴∠A+∠D=180°()。
新人教版七年级数学下册5.3.1 第1课时 平行线的性质 1
5.3平行线的性质5.3.1平行线的性质第1课时平行线的性质1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED=180°-65°=115°.方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补.再结合已知条件进行转化.探究点二:平行线与角平分线的综合运用如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠P AG=12°,求∠ABD的度数.解析:先利用GF∥CE,易求∠CAG,而∠P AG=12°,可求得∠P AC=48°.由AP是∠BAC的角平分线,可求得∠BAP =48°,从而可求得∠BAG =∠BAP +∠P AG =48°+12°=60°,即可求得∠ABD 的度数.解:∵FG ∥EC ,∴∠CAG =∠ACE =36°.∴∠P AC =∠CAG +∠P AG =36°+12°=48°.∵AP 平分∠BAC ,∴∠BAP =∠P AC =48°.∵DB ∥FG ,∴∠ABD =∠BAG =∠BAP +∠P AG =48°+12°=60°.方法总结:(1)利用平行线的性质可以得出角之间的相等或互补关系,利用角平分线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.探究点三:平行线性质的探究应用如图,已知∠ABC .请你再画一个∠DEF ,使DE ∥AB ,EF ∥BC ,且DE 交BC 边与点P .探究:∠ABC 与∠DEF 有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC 与∠DEF 的数量关系是相等或互补.理由如下:如图①,因为DE ∥AB ,所以∠ABC =∠DPC .又因为EF ∥BC ,所以∠DEF =∠DPC ,所以∠ABC =∠DEF .如图②,因为DE ∥AB ,所以∠ABC +∠DPB =180°.又因为EF ∥BC ,所以∠DEF =∠DPB ,所以∠ABC +∠DEF =180°.故∠ABC 与∠DEF 的数量关系是相等或互补.方法总结:画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来.三、板书设计平行线的性质⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补求角的大小或说明角之间的数量关系平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学。
人教版七年级下册数学5.3 平行线的性质.docx
5.3 平行线的性质5.3.1 平行线的性质第1课时平行线的性质课前预习:要点感知平行线的性质:性质1:两直线平行,同位角__________;性质2:两直线__________,内错角相等;性质3:两直线平行,__________互补.预习练习1-1 如图,直线a、b被第三条直线c所截,如果a∥b,∠1=70°,那么∠3的度数是__________.1-2如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东__________.1-3如图,AB∥CD,∠1=85°,则∠2=__________.当堂练习:知识点1 平行线的性质1.如图,AB∥CD,∠CDE=140°,则∠A的度数为( )A.140°B.60°C.50°D.40°2.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为( )A.40°B.35°C.50°D.45°3.如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=度.4.如图,AB∥CD,直线EF分别与AB,CD交于点G,H,∠1=50°,求∠2和∠CHG的度数.知识点2 平行线性质的应用5.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是( )A.30°B.45°C.60°D.75°6.探照灯、锅盖天线、汽车灯等都利用了抛物线的一个原理:由它的焦点处发出的光线被反射后将会被平行射出.如图,由焦点O处发出的光线OB,OC经反射后沿与POQ平行的方向射出,已知∠ABO=42°,∠DCO=53°,则∠BOC=__________.7.某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A=115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.课后作业:8.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是( )A.50°B.45°C.35°D.30°9.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=( )A.60°B.120°C.150°D.180°10.将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的个数是( )A.1个B.2个C.3个D.4个11.如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD=__________.12.如图,点B 、C 、D 在同一条直线上,CE ∥AB ,∠ACB =90°,如果∠ECD =36°,那么∠A =__________.13.如图,EF ∥BC ,AC 平分∠BAF ,∠B=80°.求∠C 的度数.14.如图,已知AB ∥CD,∠B=40°,CN 是∠BCE 的平分线,CM ⊥CN,求∠BCM 的度数.15.如图:已知AB ∥DE ∥CF ,若∠ABC=70°,∠CDE=130°,求∠BCD 的度数.挑战自我16.如图,已知直线l 1∥l 2,且l 3和l 1,l 2分别交于A ,B 两点,点P 在AB 上.(1)试找出∠1,∠2,∠3之间的关系并说出理由;(2)如果点P在A,B两点之间运动,问∠1,∠2,∠3之间的关系是否发生变化?(3)如果点P在A,B两点外侧运动,试探究∠1,∠2,∠3之间的关系(点P和A,B不重合).参考答案课前预习要点感知相等平行同旁内角预习练习1-1 70°1-2 42°1-3 95°当堂训练1.D2.A3.1104.∵AB∥CD,∴∠DHE=∠1=50°.∵∠2=∠DHE,∴∠2=∠1=50°.∵∠2+∠CHG=180°,∴∠CHG=180°-∠2=130°.5.B6.95°7.∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°.课后作业8.D 9.A 10.D 11.60°12.54°13.∵EF∥BC,∴∠BAF=180°-∠B=100°. ∵AC平分∠BAF,∴∠CAF=12∠BAF=50°.∵EF∥BC,∴∠C=∠CAF=50°.14.∵AB∥CD,∴∠BCE+∠B=180°.∵∠B=40°,∴∠BCE=180°-40°=140°.∵CN是∠BCE的平分线,∴∠BCN=12∠BCE=12×140°=70°.∵CM⊥CN,∴∠BCM=90°-70°=20°.15.∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°.又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°.∴∠DCF=50°.∴∠BCD=∠BCF-∠DCF=70°-50°=20°.16.(1)∠1+∠2=∠3.理由:过点P作l1的平行线PQ.∵l1∥l2,∴l1∥l2∥PQ.∴∠1=∠4,∠2=∠5.∵∠4+∠5=∠3,∴∠1+∠2=∠3.(2)∠1+∠2=∠3不变.(3)∠1-∠2=∠3或∠2-∠1=∠3.理由:①当点P在下侧时,如图,过点P作l1的平行线PQ.∵l1∥l2,∴l1∥l2∥PQ.∴∠2=∠4,∠1=∠3+∠4.∴∠1-∠2=∠3.②当点P在上侧时,同理可得∠2-∠1=∠3.第2课时 平行线的性质与判定的综合运用课前预习:预习练习1-1 如图所示,把下面的推理补充完整:①∵∠1+∠α=180°,∴__________(____________________). ②∵∠1=∠γ,∴__________(____________________). ③∵∠β=∠γ,∴__________(____________________). ④∵l 1∥l 2,l 3∥l 2,∴__________(____________________).1-2如图,直线a ,b 与直线c ,d 相交,若∠1=∠2,∠3=70°,则∠4的度数是( ) A.35° B.70° C.90° D.110°当堂练习:知识点1 平行线的性质与判定的综合运用1.如图,直线AB 、CD 相交于点O ,OT ⊥AB 于点O ,CE ∥AB 交CD 于点C ,若∠ECO=30°,则∠DOT=( )A.30°B.45°C.60°D.120°2.如图,已知a ∥b ,小华把三角板的直角顶点放在直线b 上.若∠1=40°,则∠2的度数为( )A.100°B.110°C.120°D.130°3.如图,∠1=∠2,∠A=75°,则∠ADC=__________.4.如图所示,请根据图形填空:∵AB∥CD(已知),∴∠AEF=∠CFN(____________________).∵EG平分∠AEF,FH平分∠CFN(已知),∴∠1=12∠CFN,∠2=12∠AEF(____________________).∴∠1=∠2(____________________).∴EG∥FH(____________________).5.如图,已知∠1=55°,∠2=60°,∠3=55°,求∠4的度数.知识点2 平行线的性质与判定的实际应用6.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是( )A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°7.一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=__________.8.如图,一只船从点A出发沿北偏东60°方向航行到点B,再以南偏西25°方向返回,则∠ABC=__________.9.我们由光的镜面反射可知,当光线射到平面镜上反射后,就有反射角等于入射角,如图所示,∠1=∠2,∠3=∠4,当一束平行光线AB与DE射向水平镜面后被反射,反射后的光线BC与EF平行吗?为什么?课后作业:10.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2等于( )A.60°B.50°C.40°D.30°11.如图,∠1+∠2=180°,∠3=100°,则∠4等于( )A.70°B.80°C.90°D.100°12.如图,∠1=∠2,∠3=40°.则∠4等于( )A.120°B.130°C.140°D.40°13.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于( )A.40°B.50°C.70°D.80°14.如图所示,AB∥CD,∠E=37°,∠C=20°,∠EAB的度数为( )A.57°B.60°C.63°D.123°15.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=__________.16.如图,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.17.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.18.如图,E为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,试说明AC∥DF,并在每步后面批注依据.挑战自我19.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?参考答案课前预习预习练习1-1①l1∥l2同旁内角互补,两直线平行②l3∥l2同位角相等,两直线平行③l3∥l2内错角相等,两直线平行④l1∥l3平行于同一条直线的两条直线平行1-2 D当堂训练1.C2.D3.105°4.两直线平行,同位角相等角平分线定义等量代换同位角相等,两直线平行5.∵∠1=∠3,∴AB∥CD.∴∠AOG=∠4.∵∠2=60°,∴∠AOG=180°-∠2=120°.∴∠4=120°.6.B7.270°8.35°9.BC∥EF.理由如下:∵AB∥DE,∴∠1=∠3(两直线平行,同位角相等).又∵∠1=∠2,∠3=∠4,∴∠2=∠4.∴BC∥EF(同位角相等,两直线平行).课后作业10.B 11.D 12.C 13.C 14.A 15.63°30′16.∵∠1=72°,∠2=72°,∴∠1=∠2.∴a∥b.∴∠3+∠4=180°.∵∠3=60°,∴∠4=120°.17.AD平分∠BAC.理由:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°.∴AD∥EG.∴∠3=∠2,∠E=∠1.∵∠3=∠E,∴∠1=∠2,即AD平分∠BAC.18.∵∠1=∠2(已知),∠4=∠2(对顶角相等),∴∠4=∠1(等量代换).∴DB∥CE(同位角相等,两直线平行).∴∠C=∠ABD(两直线平行,同位角相等).∵∠C=∠D(已知),∴∠D=∠ABD(等量代换).∴AC∥DF(内错角相等,两直线平行).19.(1)理由:过点E作EF∥AB,∴∠B=∠BEF.∵CD∥AB,∴CD∥EF.∴∠D=∠DEF.∴∠B+∠D=∠BEF+∠DEF=∠BED.(2)AB∥CD.(3)∠B+∠D+∠E=360°.(4)∠B=∠D+∠E.(5)∠E+∠G=∠B+∠F+∠D.5.3.2 命题、定理、证明课前预习:要点感知1 __________一件事情的语句叫做命题,命题常可以写成“如果……那么……”的形式,“如果”后面接的部分是__________,“那么”后面接的部分是__________.预习练习1-1下列语句中,是命题的是( )A.有公共顶点的两个角是对顶角B.在直线AB上任取一点CC.用量角器量角的度数D.直角都相等吗1-2 将“两点之间,线段最短”写成“如果……那么……”的形式:______________________________.要点感知2 题设成立,并且结论一定成立的命题叫做__________;题设成立,不能保证结论__________的命题叫做假命题.预习练习2-1下列命题中的真命题是( )A.锐角大于它的余角B.锐角大于它的补角C.钝角大于它的补角D.锐角与钝角之和等于平角要点感知3 经过推理证实为正确并可以作为推理的依据的真命题叫做__________.很多情况下,一个命题的正确性需要经过推理,才能做出判断,这个推理的过程叫做__________.预习练习3-1如图,BD平分∠ABC,若∠BCD=70°,∠ABD=55°.求证:CD∥AB.当堂练习:知识点1 命题的定义1.下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤知识点2 命题的结构2.命题的题设是__________事项,结论是由__________事项推出的事项.3.把“垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式是____________________.4.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;(2)同角的补角相等;(3)两个锐角互余.知识点3 命题的真假及证明5.下列命题中,是真命题的是( )A.若|x|=2,则x=2B.平行于同一条直线的两条直线平行C.一个锐角与一个钝角的和等于一个平角D.任何一个角都比它的补角小6.下列命题中,是假命题的是( )A.相等的角是对顶角B.垂线段最短C.同一平面内,两条直线的位置关系只有相交和平行两种D.两点确定一条直线7.命题“两直线平行,内错角的平分线互相平行”是真命题吗?如果是,请给出证明;如果不是,请举出反例.课后作业:8.下列说法正确的是( )A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.“具有相同字母的项称为同类项”是“同类项”的定义9.下列命题是假命题的是( )A.等角的补角相等B.内错角相等C.两点之间,线段最短D.两点确定一条直线10.下列三个命题:①同位角相等,两直线平行;②两直线和第三条直线相交,同位角相等;③过两点有且只有一条直线.其中真命题有( )A.0个B.1个C.2个D.3个11.把命题“同角的余角相等”改写成“如果……那么……”的形式,正确的是( )A.如果是同角,那么余角相等B.如果两个角相等,那么这两个角是同一个角的余角C.如果是同角的余角,那么相等D.如果两个角是同一个角的余角,那么这两个角相等12.“直角都相等”的题设是____________________,结论是____________________.13.对于下列假命题,各举一个反例写在横线上.(1)“如果ac=bc,那么a=b”是一个假命题.反例:______________________________;(2)“如果a2=b2,则a=b”是一个假命题.反例:______________________________.14.把“等角的余角相等”改写成“如果……那么……”的形式是______________________________,该命题是__________命题(填“真”或“假”).15.如图,已知:AB∥CD,∠B=∠D.求证:BC∥AD.16.把下列命题写成“如果……那么……”的形式,并判断其真假.(1)等角的补角相等;(2)不相等的角不是对顶角;(3)相等的角是内错角.17.(1)如图,请在AB∥CD,∠A=30°,∠CDA=30°三项中选择两个作为条件,一个作为结论,写一个命题:如果__________且__________,那么__________.(2)请说明你写的命题是真命题.18.如图所示,如果已知∠1=∠2,则AB∥CD,这个命题是真命题吗?若不是,请你再添加一个条件,使该命题成为真命题,并说明理由.挑战自我19.阅读下列问题后做出相应的解答.“同位角相等,两直线平行”和“两直线平行,同位角相等”这两个命题的题设和结论在命题中的位置恰好对调,我们把其中一个命题叫做另一个命题的逆命题.请你写出命题“角平分线上的点到角两边的距离相等”的逆命题,并指出逆命题的题设和结论.参考答案课前预习要点感知1判断题设结论预习练习1-1 A1-2如果有两点,那么在连接两点的所有线中,线段最短要点感知2真命题一定成立预习练习2-1 C要点感知3定理证明预习练习3-1 证明:∵BD平分∠ABC,∠ABD=55°,∴∠ABC=2∠ABD=110°.又∵∠BCD=70°,∴∠ABC+∠BCD=180°.∴CD∥AB.当堂训练1.A2.已知已知3.如果两条直线垂直于同一条直线,那么这两条直线平行4.(1)如果在平面上有两个点,那么过这两个点确定一条直线.题设:在平面上有两个点;结论:过这两个点确定一条直线.(2)如果两个角是同角的补角,那么它们相等.题设:两个角是同角的补角;结论:这两个角相等.(3)如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.5.B6.A7.是真命题,证明如下:已知:AB∥CD,BE,CF分别平分∠ABC和∠BCD.求证:BE∥CF.证明:∵AB∥CD,∴∠ABC=∠BCD.∵BE,CF分别是∠ABC,∠BCD的角平分线,∴∠2=12∠ABC,∠3=12∠BCD.∴∠2=∠3.∴BE∥CF.课后作业8.C 9.B 10.C 11.D 12.两个角是直角这两个角相等13.(1)3×0=(-2)×0(2)32=(-3)214.如果两个角是等角的余角,那么这两个角相等真15.证明:∵AB∥CD,∴∠B+∠C=180°.∵∠B=∠D,∴∠D+∠C=180°.∴BC∥AD.16.(1)如果两个角是两个相等的角的补角,那么这两个角相等.是真命题.(2)如果两个角不相等,那么这两个角不是对顶角.是真命题.(3)如果两个角相等,那么这两个角是内错角.是假命题.17.(1)AB∥CD ∠A=30°∠CDA=30°(2)∵AB∥CD,∠A=30°,∴∠CDA=∠A=30°.18.假命题,添加BE∥DF.∵BE∥DF,∴∠EBD=∠FDN.∵∠1=∠2,∴∠ABD=∠CDN.∴AB∥CD.19.逆命题:在角的内部到角两边距离相等的点在这个角的平分线上.题设:在角的内部到角两边距离相等的点;结论:在这个角的平分线上.初中数学试卷桑水出品。
最新人教版数学七年级下册 5-3-1 平行线的性质
A.26° C.52°
B.64° D.128°
-8-
8.如图,直线 l1∥l2,∠α=∠β, ∠1=40°,则∠2=_1_4_0_°___.
-9-
利用平行线的性质时易忽视两直线平行的前提条件而出错
9.已知∠1 和∠2 是同旁内角.若∠1=50°,则∠2 的度数是( D )
A.50°
B.130°
C.50°或 130°
同步考点手册 P7
6.如图,直线 a,b 被直线 c,d 所截,若∠1=∠2,∠3=125°,则∠
4 的度数为( A )
A.55° C.70°
B.60° D.75°
-7-
7.如图,AB∥CD,直线 EF 分别交 AB,CD 于 E,F 两点,∠BEF 的平分线交 CD 于点 G,若∠EFG=52°,则∠EGF 等于( B )
-15-
15.如图,AB∥EF,BC⊥CD 于点 C,∠ABC=30°,∠DEF=45°, 试求∠CDE 的大小.
-16-
解: 如图,过点 C 作 CM∥AB,过点 D 作 DN∥AB.∵AB∥EF,∴
AB∥CM∥DN∥EF,∵∠ABC=30°,∴∠BCM=30°.又∵BC⊥CD,∴∠ BCD=90°,∴∠MCD=∠BCD-∠BCM=90°-30°=60°.∵CM∥DN,∴ ∠MCD=∠1=60°.∵DN∥EF,∴∠2=∠DEF=45°,∴∠CDE=∠1+∠ 2=60°+45°=105°.
Hale Waihona Puke -19-(2)在 AB∥DE 的条件下,你能得出∠B,∠C,∠D 之间的数量关系吗? 并说明理由.
解:∠B+∠C+∠D=360°.理由:如图,过点 C 作 CF∥AB,得∠B +∠1=180°.∵CF∥AB,DE∥AB,∴CF∥DE,∴∠D+∠2=180°,∴∠ B+∠1+∠2+∠D=360°.即∠B+∠BCD+∠D=360°.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业7 §5.3 平行线的性质(一)
典型例题
【例1】(1)(2010北京)如图5-85,已知AB∥CD,EF分别交AB、CD于点E、F,∠1=60°,则∠2=_________度.
(2)(2010浙江)如图5-86,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF 交CD于点G,如果∠1=50°,那么∠2的度数是_________度.
图5-85 图5-86
【解析】(1)∠1与∠2是同位角,根据平行线的性质“两直线平行,同位角相等”求出∠2的大小;(2)根据“两直线平行,问旁内角互补”,先求出∠BEF的大小,再由角平分线的性质,求出∠BEG的大小.最后根据“两直线平行,内错角相等”求得∠2的大小.
【答案】(1)60;(2)65.
【例2】如图5-87.∠1=75°,∠2=75°,∠3=65°,求∠4的度数.
图5-87
【解析】此题可用多种方法求解.先求∠4的同位角或内错角或同旁内角.然后用平行线的性质求∠4的度数.
【答案】解法—因为∠2与∠5是对顶角,所以∠5=∠2=75°.又因为∠1=75°,所以∠1=∠5.根据同位角相等.两直线平行.可得a∥b.
因为∠3与∠6是邻补角,∠3=65°.
所以∠6=180°-∠3=180°-65°=115°.
根据两直线平行,同位角相等,可得∠4=∠6=115°
解法二因为∠5与∠2是对顶角,所以∠5=∠2=75°。
又因为∠1=75°,所以∠1=∠5
根据同位角相等,两直线平行,可得a∥b.
因为∠7与∠3是对顶角,所以∠7=∠3=65°.
根据两直线平行.同旁内角互补,可得∠4+∠7=180°.
所以∠4=180°-∠7=180°-65°=115°.
解法三因为∠5与∠2是对顶角,所以∠5=∠2=75°.
又∠1=75°,所以∠1=∠5
根据同位角相等.两直线平行,可知a∥b.
因为∠8与∠3是邻补角,所以∠8=180°-∠3=180°-65°=115°.
根据两直线平行,内错角相等,可得∠4=∠8=115°
解法四因为∠5与∠2是对顶角,所以∠5=∠2=75°
又因为∠1=75°,所以∠1=∠5.
根据同位角相等,两直线平行,可知a∥b
根据两直线平行,同位角相等,可得∠9=∠3=65°,
又由∠9与∠4是邻补角,可得∠4=180°-∠9=180°-65°=115°.
【例3】已知,如图5-88,AD⊥BC,EF⊥BC,∠3=∠C,∠1与∠2是什么关系?并说明理由.
图5-88
【解析】本题是对平行线的性质与条件的综合运用.注意:由角的数量关系→直线的位置关系→角的数量关系.在解题过程中,体会平行条件与平行线的性质的转化.
【答案】∠1与∠2相等.
因为AD⊥BC,EF⊥BC,所以∠ADC=∠EFC=90°.
根据同位角相等,两直线平行,可知AD∥EF.
根据两直线平行,同位角相等,可得∠1=∠4.
因为∠3=∠C,根据同位角相等,两直线平行,可得GD//AC.
根据两直线平行,内错角相等,可得∠2=∠4.
又因为∠1=∠4,所以∠1=∠2.
总分100分时间40分钟成绩评定___________
一、填空题(每题5分.共50分)
课前热身
1.如图5-89,若a∥b,∠1=50°,则∠2=__________度.
答案:130°
2.如图5-90,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角∠1=74°,那么吸管与易拉罐下部夹角∠2=____________度.
图5-89 图5-90
答案:74
课上作业
3.如图5-91,已知AB∥CD,EF分别交AB、CD于点E、F,∠1=70°,则∠2的度数为_________. 答案:110°
4.如图5-92,若AB∥EF,BC∥DE,∠B=40°.则∠E=____________.
图5-91 图5-92
答案:140°
5.如图5-93,AD⊥BC,DE∥AC,则∠C与∠ADE的度数之和为_____________.
图5-93 图5-94
答案:90°
6.如图5-94,已知AB∥CD∥EF,∠B=62°,∠D=28°,则BE和ED的位置关系是__________.
答案:垂直
课下作业
7.如图5-95,AB∥CD,EE平分∠ACD交AB于F,∠A=118°,则∠AEC等于_______度. 答案:31
8.如图5-96,AD∥EG∥BC,AC∥EF,则图中与∠1相等的角(不含∠1)有___________个,若∠1=50°,则∠AHG=_______________
图5-95 图5-96
答案:5;130°
9.如图5-97,直线AB、CD与直线EF分别交于E、F点,已知:AB∥CD,∠EFD的平分线FG交AB于点G,∠1=60°15′,则∠2=________________.
图5-97
答案:59.5°
10.如果一个角的两边与另一个角的两边互相平行,则这两个角_______________.
答案:相等或互补
二、选择题(每题5分,共10分)
模拟在线
11.(2010广东)如图5-98,AB∥CD,若∠2=135°,那么∠1的度数是( )
A.30°
B.45°
C.60°
D.75°
答案:B
12.(2010安徽)如图5-99,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,则∠2的度数为( )
图5-98 图5-99
A.35°
B.45°
C.55°
D.125°
答案:A
三、解答题:(每题20分,共40分)
13.(2010浙江)已知:如图5-100,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P.求证∠P =90°.
图5-100
解:∵AB ∥CD ,∵∠BEF+∠DFE=180°
又∵∠BEF 的平分线与∠DFE 的平分线相交于点P ,
∴∠PEF=
21∠BEF.∠PFE=2
1∠DEF ∴∠PEF+∠PFE=21(∠BEF+∠DFE)=90°. ∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.
14.阅读:如图5-101,CE ∥AB ,
∴∠1=∠A ,∠2=∠B.
∴∠ACD=∠1+∠2=∠A+∠B ,这是一个有用的事实,请用这个事实,在如图5-102四边形ABCD 内引一条和边平行的直线,求出∠A+∠B+∠C+∠D 的度数.
图5-101 图5-102
解:过A 作AE ∥DC 交BC 于正(或过D 作DF ∥AB 交BC 于F ,∠A+∠B+∠C+∠D=360°。