最新-【数学】湖南省长沙市一中2018学年高二上学期期
湖南省长沙市一中高二数学上学期第一次月考(理)
长沙市一中09-10学年上学期第一次阶段性考试高二数学(理科)试卷(本试卷共21题,满分150分,时量120分钟)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知双曲线,19422=-y x 那么其焦点坐标为( )A .(0,,B .,(C .(0,,D ., ( 2. 命题“∃0x ∈R ,02x ≤0”的否定是 ( )A .∃0x ∉R, 02x>0 B .∃0x ∈R, 02x >0C .∀x ∈R, 2x≤0 D .∀x ∈R, 2x>03. 已知P 是△ABC 所在平面外一点,点O 是点P 在平面ABC 上的射影.若PA =PB =PC ,则O是△ABC 的A.外心B.内心C.重心D.垂心 4.平面内有定点A 、B 及动点P ,设命题甲是“|PA |+|PB |是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的椭圆”,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若,l ααβ⊥⊥,则l β⊂B .若//,//l ααβ,则l β⊂C .若,//l ααβ⊥,则l β⊥D .若//,l ααβ⊥,则l β⊥6.设P 为椭圆12222=+by a x )0(>>b a 上一点,F 1、F 2为焦点,如果∠PF 1F 2=60º,∠PF 2F 1=30º,则椭圆的离心率为( )A .22 B .23 C D 17. 若关于x 320kx k -+=有且只有一个不同的实数根,则实数k 的取值范围是 A .5(,]12-∞ B .53(,]124 C .3(,)4+∞ D .53{}(,)124⋃+∞8.已知a ≠b ,且a 2sin θ+a cos θ-4π=0 ,b 2sin θ+b cos θ-4π=0,则连接(a ,a 2),(b ,b 2)两点的直线与单位圆221x y +=的位置关系是( ) A .相交B .相切C .相离D .不能确定二、填空题:本大题共7小题,每小题5分,共35分,把答案填在对应题号后的横线上.9. 命题“若f(x)正弦函数,则f(x)是周期函数”的逆命题是 命题(填“真”或“假”).10.椭圆71622y x +=1的左、右焦点分别为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为 .11.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则直线AB 的一般式方程是 .12.双曲线221mx y +=的虚轴长是实轴长的2倍,则m = .13.以椭圆221133x y +=的焦点为焦点,以直线12y x =±为渐近线的双曲线方程为 .14.设1F 、2F 分别是椭圆22154x y +=的左、右焦点. 若P 是该椭圆上的一个动点,则21PF ⋅的最大值为 .15.已知椭圆42x +32y =1上有n 个不同的P 1,P 2,P 3,……P n ,设椭圆的右焦点为F ,数列{|FP n |}的公差不小于11004的等差数列,则n 的最大值为 .长沙市一中2009-2010年度上学期第一次阶段性考试高二数学(理科)答卷(本试卷共21题,满分150分,时量120分钟)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共7小题,每小题5分,共35分,把答案填在对应题号后的横线上.9.10. 11. 12.13. 14. 15.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16. (本小题满分12分) 设F1、F2分别为椭圆C:22221x ya b+=(a>b>0)的左、右焦点,若椭圆C 上的点A(1,32)到F1,F2两点的距离之和等于4,求椭圆C的方程和焦点坐标、离心率.17.(本小题满分12分)一个圆切直线0106:1=--y x l 于点)1,4(-P ,且圆心在直线035:2=-y x l 上.(Ⅰ)求该圆的方程; (Ⅱ)求经过原点的直线被圆截得的最短弦的长.18.(本小题满分12分) 焦点在x 轴上的双曲线过点P (- 3),且点Q (0,5)与两焦点的连线互相垂直,(Ⅰ)求此双曲线的标准方程;(Ⅱ)过双曲线的右焦点倾斜角为45º的直线与双曲线交于A 、B 两点,求|AB|的长.19.(本小题满分13分)设命题p :函数21()lg()16f x ax x a =-+的定义域为R ;命题q :不a x <+对一切正实数x 均成立,若“p q ∨”为真命题,“p q ∧”为假命题,求实数a 的取值范围.20.(本小题满分13分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点. (Ⅰ)证明:面PAD ⊥面PCD ;(Ⅱ)求PC 与面PAD 所成的角的正切; (Ⅲ)求二面角M-AC-B 的正切.21.(本小题满分13分) 已知定点)01(,-C 及椭圆5322=+y x ,过点C 的动直线与椭圆相交于A B ,两点.(Ⅰ)若线段AB 中点的横坐标是12-,求直线AB 的方程; (Ⅱ)在x 轴上是否存在点M ,使M A MB --→--→⋅为常数?若存在,求出点M 的坐标;若不存在,请说明理由.附加题(5分):椭圆22162x y +=的左焦点为F ,过左准线与x 轴的交点M 任作一条斜率不为零的直线l 与椭圆交于不同的两点A 、B ,点A 关于x 轴的对称点为C .(Ⅰ)求证:CF FB λ--→--→= (λ∈R );(Ⅱ)求MBC ∆面积S 的最大值.湖南省长沙市第一中学高二上学期第一次阶段性考试数学(理科)答卷(本试卷共21题,满分150分,时量120分钟)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一二、填空题:本大题共7小题,每小题5分,共35分,把答案填在对应题号后的横线上.9.假 10. 16 11. x+3y=0 12. 14- 13.22182x y -=14. 4 15. 2009三、解答题:本大题共6小题,共75分。
湖南省长沙市2024-2025学年高二上学期期中考试数学试题含答案
2024年下学期期中检测试题高二数学(答案在最后)时量:120分钟分值:150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{}n a 满足6786a a a ++=,则7a 等于()A.1B.2C.4D.8【答案】B 【解析】【分析】利用等差数列的性质进行求解.【详解】 6787736,2a a a a a ++==∴=故选:B2.若圆224820x y x y m +-++=的半径为2,则实数m 的值为()A.-9B.-8C.9D.8【答案】D 【解析】【分析】由圆的一般方程配方得出其标准方程,由半径为2得出答案.【详解】由224820x y x y m +-++=,得22(2)(4)202x y m -++=-,所以2r ==,解得8m =.故选:D.3.若抛物线22(0)y px p =>的焦点与椭圆22195x y +=的一个焦点重合,则该抛物线的准线方程为()A.1x =-B.1x =C.2x =D.2x =-【答案】D 【解析】【分析】先求出椭圆的焦点坐标即是抛物线的焦点坐标,即可求出准线方程.【详解】∵椭圆22195x y +=的右焦点坐标为(2,0),∴抛物线的焦点坐标为(2,0),∴抛物线的准线方程为2x =-,故选:D.4.空气质量指数是评估空气质量状况的一组数字,空气质量指数划分为[)0,50、[)50,100、[)100,150、[)150,200、[)200,300和[]300,500六档,分别对应“优”、“良”、“轻度污染”、“中度污染”、“重度污染”和“严重污染”六个等级.如图是某市2月1日至14日连续14天的空气质量指数趋势图,则下面说法中正确的是().A.这14天中有5天空气质量为“中度污染”B.从2日到5日空气质量越来越好C.这14天中空气质量指数的中位数是214D.连续三天中空气质量指数方差最小是5日到7日【答案】B 【解析】【分析】根据折线图直接分析各选项.【详解】A 选项:这14天中空气质量为“中度污染”有4日,6日,9日,10日,共4天,A 选项错误;B 选项:从2日到5日空气质量指数逐渐降低,空气质量越来越好,B 选项正确;C 选项:这14天中空气质量指数的中位数是179214196.52+=,C 选项错误;D 选项:方差表示波动情况,根据折线图可知连续三天中波动最小的是9日到11日,所以方程最小的是9日到11日,D 选项错误;故选:B.5.已知双曲线C :22x a -22y b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为A.220x -25y =1B.25x -220y =1C.280x -220y =1D.220x -280y =1【答案】A 【解析】【详解】由题意得,双曲线的焦距为10,即22225a b c +==,又双曲线的渐近线方程为by x a=0bx ay ⇒-=,点1(2)P ,在C 的渐近线上,所以2a b =,联立方程组可得,所以双曲线的方程为22=1205x y -.考点:双曲线的标准方程及简单的几何性质.6.定义22⨯行列式12142334a a a a a a a a =-,若函数22cos sin ()πcos 22x xf x x -=⎛⎫+ ⎪⎝⎭,则下列表述正确的是()A.()f x 的图象关于点(π,0)中心对称B.()f x 的图象关于直线π2x =对称C.()f x 在区间π,06⎡⎤-⎢⎥⎣⎦上单调递增 D.()f x 是最小正周期为π的奇函数【答案】C 【解析】【分析】由行列式运算的定义,结合三角恒等变换,求出()f x 解析式,AB 选项关于函数图象的对称性,代入检验即可判断;整体代入验证单调性判断选项C ;公式法求最小正周期,检验函数奇偶性判断选项D.【详解】由题中所给定义可知,22ππ()cos sin 2cos 222cos 223f x x x x x x x ⎛⎫⎛⎫=--+=+=- ⎪ ⎪⎝⎭⎝⎭,π(π)2cos103f ==≠,点(π,0)不是()f x 图象的对称中心,故A 错误;ππ2cos 1223f ⎛⎫=-=-≠± ⎪⎝⎭,直线π2x =不是()f x 图象的对称轴,故B 错误;π,06x ⎡⎤∈-⎢⎥⎣⎦时,π2ππ2,333x ⎡⎤⎢⎥-⎣-∈⎦-,2ππ,33⎡⎤--⎢⎥⎣⎦是余弦函数的单调递增区间,所以()f x 在区间π,06⎡⎤-⎢⎥⎣⎦上单调递增,故C 正确;()f x 的最小正周期2ππ2T ==,但(0)0f ≠,所以函数不是奇函数,故D 错误.故选:C7.已知ABC V 中,6AB =,4AC =,60BAC ∠=︒,D 为BC 的中点,则AD =()A.25B.19C.D.【答案】C 【解析】【分析】由题意可得:1()2AD AB AC =+,结合向量的数量积运算求模长.【详解】由题意可得:16,4,64122AB AC AB AC ==⋅=⨯⨯=uu u r uuu r uu u r uuu r ,因为D 为BC 的中点,则1()2AD AB AC =+,两边平方得,()22212194AD AB AC AB AC =++⋅=,即AD =uuu r .故选:C.8.已知椭圆:2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,P 是C 上一点,且2PF x ⊥轴,直线1PF 与椭圆C 的另一个交点为Q ,若11||4||PF F Q =,则椭圆C 的离心率为()A.255B.2C.155D.217【答案】D 【解析】【分析】由2PF x ⊥轴可得:22||b PF a=,不妨设点2(,)b P c a ,设0(Q x ,0)y ,由11||4||PF F Q =,解得0x 、0y ,代入椭圆方程化简即可求解.【详解】解:由2PF x ⊥轴可得:22||b PF a=,不妨设点2(,)b P c a ,设0(Q x ,0)y ,由11||4||PF F Q =,得032c x =-,204b y a =-,代入椭圆方程得:222291416c b a a+=,结合222a b c =+,化简上式可得:2237c a =,所以椭圆的离心率为7c e a ==,故选:D .二、多项选择题:本题共3小题,每小题6分,18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9.设i 为虚数单位,下列关于复数z 的命题正确的有()A.2025i 1=-B.若1z ,2z 互为共轭复数,则12=z z C.若1z =,则z 的轨迹是以原点为圆心,半径为1的圆D.若复数1(1)i =++-z m m 为纯虚数,则1m =-【答案】BCD 【解析】【分析】A 选项,利用复数的乘方运算得到A 正确;B 选项,设1i z a b =+,2i z a b =-,则12=z z ;C 选项,由复数的几何意义得到C 正确;D 选项,根据纯虚数的定义得到方程,求出1m =-.【详解】对于A :()()1012101220252i i i 1i i =⋅=-⋅=,A 错;对于B :令1i z a b =+,2i,,R z a b a b =-∈,1z =,2z =所以12=z z ,故B 正确;对于C :1z =,故z 的轨迹是以原点为圆心,半径为1的圆,C 正确;对于D :若复数1(1)i =++-z m m 为纯虚数,则10,10m m +=-≠,即1m =-,故D 正确.故选:BCD10.如图,正方体1111ABCD A B C D -的棱长为1,E 是棱CD 上的动点(含端点).则下列结论正确的是()A.三棱锥11A B D E -的体积为定值B.11EB AD ⊥C.存在某个点E ,使直线1A E 与平面ABCD 所成角为60o D.二面角11E A B A --的平面角的大小为π4【答案】BD 【解析】【分析】A.根据等体积法的等高等底即可判断;B.结合正方体的性质,由垂影必垂斜即可判断;C.结合正方体的性质即可判断;D.根据二面角的平面角定义即可判断.【详解】对于选项A :三棱锥11E AB D -的底面积为定值,高变化,体积不为定值,故选项A 不正确;对于选项B :1,B E 两点在平面11ADD A 上的射影分别为1,A D ,即直线1B E 在平面11ADD A 上的射影为1A D ,而11A D AD ⊥,根据三垂线定理可得11EB AD ⊥.故选项B 正确;对于选项C :因为1A A ⊥平面ABCD ,直线1A E 与平面ABCD 所成角为1AEA ∠,当点E 和点D 重合时,1A E 在平面ABCD 射影最小,这时直线1A E 与平面ABCD 所成角θ最大值为π4,故选项C 不正确;对于选项D :二面角11E A B A --即二面角11D A B A --,因为111DA A B ⊥,111AA A B ⊥,1DA ⊂平面11E AB ,1AA ⊂平面11AA B ,所以1DA A ∠即为二面角11E A B A --的平面角,在正方形11ADD A 中,1π4DA A ∠=,所以二面角11E A B A --的大小为π4,故选项D 正确.故选:BD.11.数学中的数形结合也可以组成世间万物的绚丽画面,一些优美的曲线是数学形象美、对称美、和谐美的产物,曲线()32222:16C x y x y +=为四叶玫瑰线,下列结论正确的有()A.方程()()32222160x y x y xy +=<,表示的曲线在第二和第四象限;B.曲线C 上任一点到坐标原点O 的距离都不超过2;C.曲线C 构成的四叶玫瑰线面积大于4π;D.曲线C 上有5个整点(横、纵坐标均为整数的点).【答案】AB 【解析】【分析】本题首先可以根据0xy <判断出A 正确,然后根据基本不等式将()3222216x y x y +=转化为224x y +≤,即可判断出B 正确,再然后根据曲线C 构成的面积小于以O 为圆心、2为半径的圆O 的面积判断出C 错误,最后根据曲线C 上任一点到坐标原点O 的距离都不超过2以及曲线C 的对称性即可判断出D 错误.【详解】A 项:因为0xy <,所以x 、y 异号,在第二和第四象限,故A 正确;B 项:因为222x y xy +≥,当且仅当x y =时等号成立,所以222x yxy ≤+,()()22232222222161642x y x y x y x y ⎛⎫++=≤=+ ⎪⎝⎭,即224x y +≤2£,故B 正确;C 项:以O 为圆心、2为半径的圆O 的面积为4π,显然曲线C 构成的四叶玫瑰线面积小于圆O 的面积,故C 错误;D 项:可以先讨论第一象限内的图像上是否有整点,因为曲线C 上任一点到坐标原点O 的距离都不超过2,所以可将()0,0、()2,0、()1,0、()1,1、()0,1、()0,2代入曲线C 的方程中,通过验证可知,仅有点()0,0在曲线C 上,故结合曲线C 的对称性可知,曲线C 仅经过整点()0,0,故D 错误,故选:AB.【点睛】本题是创新题,考查学生从题目中获取信息的能力,考查基本不等式的应用,考查数形结合思想,体现了综合性,是中档题.三、填空题:本题共4小题,每小题5分,共20分.12.圆22250x y x +--=与圆222440x y x y ++--=的交点为A ,B ,则公共弦AB 所在的直线的方程是________.【答案】4410x y -+=【解析】【分析】两圆相减得到公共弦所在的直线的方程.【详解】由题意可知圆22250x y x +--=与圆222440x y x y ++--=相交,两圆方程相减得,2222244441025x x y x y x x y y ++=--+--+--=-,故公共弦AB 所在的直线的方程是4410x y -+=.故答案为:4410x y -+=13.若数列{}n a 满足111n nd a a +-=(*n ∈N ,d 为常数),则称数列{}n a 为“调和数列”,已知正项数列1n b ⎧⎫⎨⎬⎩⎭为“调和数列”,且12202220220b b b +++= ,则12022b b 的最大值是________.【答案】100【解析】【分析】根据题设易知正项数列{}n b 为等差数列,公差为d ,应用等差数列前n 项和公式得1202220b b +=,应用基本不等式求12022b b 最大值.【详解】由题意,正项数列1n b ⎧⎫⎨⎬⎩⎭为“调和数列”,则1n n d b b +=-(d 为常数),所以正项数列{}n b 为等差数列,公差为d ,则()120221220222022202202b b b b b +++==⨯+ ,则1202220b b +=,则2212022120222010022b b b b +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭(当且仅当0122110b b ==时等号成立),所以12022b b 的最大值是100.故答案为:10014.如图,在四棱锥P ABCD -中,顶点P 在底面的投影O 恰为正方形ABCD 的中心且AB =,设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为____________.【答案】643π.【解析】【分析】根据题意有=B AN MN N MN BM ≥++,动点M 恰为PD 的中点即4BP BD ==,及可求出PO =,则可求出外接球的半径,方可求出其表面积.【详解】由题意知=B AN MN N MN BM ≥++当BM PD ⊥时BM 最小,因为M 为PD 的中点,故而为PD 的中点,即=4BP BD =,2BO =PO ∴=,设外接球的半径为r ,则22)4r r =+.解得433r =.故外接球的表面积为26443r ππ=.【点睛】本题考查锥体的外接球表面积,求出其外接球的半径,即可得出答案,属于中档题.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.已知数列{}n a 是等差数列,n S 是{}n a 的前n 项和,84a =,1122S =-.(1)求数列{}n a 的通项公式;(2)求n S 的最小值.【答案】(1)320n a n =-(2)-57【解析】【分析】根据等差数列的通项公式和前n 项和公式列方程组求出117,3,a d =-⎧⎨=⎩即可得,(2)由通项公式可求得当6n ≤时,0n a <,从而可得当6n =时,n S 取到最小值,进而可求出其最小值【小问1详解】设数列 的公差为d ,则8111174115522a a d S a d =+=⎧⎨=+=-⎩,解得1173a d =-⎧⎨=⎩,所以1(1)320n a a n d n =+-=-.【小问2详解】令3200n a n =->,解得203n >,所以当6n ≤时,0n a <.故当6n =时,n S 取到最小值,为6161557S a d =+=-.16.已知公差不为零的等差数列{}n a 的前n 项和为n S ,若10110S =,且1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)若3n an n b a =+,求数列{}n b 的前n 项和.【答案】(1)2n a n=(2)199(1)8n n n +-++【解析】【分析】(1)设出公差,利用题意得到方程组,求出首项和公差,得到通项公式;(2)29nn b n =+,利用分组求和,结合等差数列和等比数列求和公式得到答案.【小问1详解】根据{}n a 为等差数列,设公差为0d ≠.10110S =,即11101045a d =+①,1a ,2a ,4a 成等比数列∴2214a a a =⋅,()()21113∴+=+a d a a d ②,由①②解得:122a d =⎧⎨=⎩,∴数列{}n a 的通项公式为2n a n =.【小问2详解】由232329n a n n n n b a n n =+=+=+,数列{}n b 的前n 项和()()122212999nn n T b b b n =++⋯+=⨯+++++++ ()1919(1)992(1)2198n n n n n n +-+-=⨯+=++-.17.在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD BC ∥,AD AB ⊥,侧面PAB ⊥底面ABCD ,122PA PB AD BC ====,且E ,F 分别为PC ,CD 的中点,(1)证明://DE 平面PAB ;(2)若直线PF 与平面PAB 所成的角为60︒,求平面PAB 与平面PCD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)55【解析】【分析】(1)取PB 中点M ,连接AM ,EM ,通过证明四边形ADEM 为平行四边形,即可证明结论;(2)由直线PF 与平面PAB 所成的角为60︒,可得,,,,GF PG AG BG AB ,建立以G 为原点的空间直角坐标系,利用向量方法可得答案.【小问1详解】取PB 中点M ,连接AM ,EM ,E 为PC 的中点,//ME BC ∴,12ME BC =,又AD //BC ,12AD BC =,//ME AD ∴,ME AD =,∴四边形ADEM 为平行四边形,//DE AM ∴,DE ⊄ 平面PAB ,AM ⊂平面PAB ,//DE ∴平面PAB ;【小问2详解】平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB BC =⊂平面ABCD ,,BC AB BC ⊥∴⊥平面PAB ,取AB 中点G ,连接FG ,则//,FG BC FG ∴⊥平面PAB ,()160,32GPF GF AD BC ∴∠=︒=+=,3tan60,PG PG∴︒=∴=2,1,2PA PB AG GB AB ==∴===,如图以G 为坐标原点,GB 为x 轴,GF 为y 轴,GP 为z轴建立空间直角坐标系,(()(),1,4,0,1,2,0P C D ∴-,(()1,4,,2,2,0PC CD ∴==-- ,设平面PCD 的一个法向量,()1,,n x y z = ,则1140220n PC x y n CD x y ⎧⋅=+-=⎪⎨⋅=--=⎪⎩ ,取1y =,则(1n =- ,平面PAB 的一个法向量可取()20,1,0n = ,设平面PAB 与平面PCD 所成锐二面角为θ,1212cos5n nn nθ⋅∴==,所以平面PAB与平面PCD 所成锐二面角的余弦值55.18.已知抛物线2:2(0)C x py p=>上一点(,6)P m到焦点F的距离为9.(1)求抛物线C的方程;(2)过点F且倾斜角为5π6的直线l与抛物线C交于A,B两点,点M为抛物线C准线上一点,且MA MB⊥,求MAB△的面积.(3)过点(2,0)Q的动直线l与抛物线相交于C,D两点,是否存在定点T,使得TC TD⋅为常数?若存在,求出点T的坐标及该常数;若不存在,说明理由.【答案】(1)212x y=(2)(3)存在定点191,93T⎛⎫⎪⎝⎭,TC TD⋅为常数37081.【解析】【分析】(1)利用抛物线的定义得02pPF y=+,计算出p得抛物线方程;(2)直线方程与抛物线方程联立方程组,求出,A B两点坐标,利用0MA MB⋅=求出M点坐标,求出M 点到直线l的距离和弦长AB,可求MAB△的面积;(3)设()00,T x y,()33,C x y,()44,D x y,过点Q的直线为(2)y k x=-,与抛物线方程联立方程组,利用韦达定理表示出TC TD⋅,求出算式的值与k无关的条件,可得TC TD⋅为定值的常数.【小问1详解】由拋物线的定义得02pPF y=+,解得692p+=,6p=.∴抛物线的方程为212x y=.【小问2详解】设()11,A x y,()22,B x y,由(1)知点(0,3)F,∴直线l的方程为0x +-=.由20,12,x x y ⎧+-=⎪⎨=⎪⎩可得21090y y -+=,则1210y y +=,129y y =,12121061622p p AB AF BF y y y y p ⎛⎫⎛⎫∴=+=+++=++=+= ⎪ ⎪⎝⎭⎝⎭,则不妨取11y =,29y =,则点A ,B的坐标分别为,(-.设点M 的坐标为(,3)t -,则,4)MA t =-uuu r,(,12)MB t =--uuu r ,则)()4120MA MB t t ⋅=--+⨯= ,解得t =-.即(3)M --,又点M 到直线l的距离d =d =,故MAB △的面积12S d AB =⋅=;【小问3详解】设()00,T x y ,()33,C x y ,()44,D x y ,过点Q 的直线为(2)y k x =-,2(2)12y k x x y =-⎧⎨=⎩联立消去y 得:212240x kx k -+=,0∆>时,3412x x k +=,3424x x k =,联立消去x 得:()22241240y k k y k +-+=,234124y y k k +=-,2344y y k =,()()()()30403040TC TD x x x x y y y y ⋅=--+-- ()()22340343403400x x x x x y y y y y x y =-++-+++()2222000024124124k x k k y k k x y =-⋅+--++()()2220000024124412x y k y k x y =-++-++要使()()2220000024124412x y k y k x y -++-++与k 无关,则00241240x y -+=且04120y -=,0199x ∴=,013y =,存在191,93T ⎛⎫ ⎪⎝⎭此时TC TD ⋅ 为定值37081.19.“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学内容,例如:用一张纸片,按如下步骤折纸:步骤1:在纸上画一个圆A ,并在圆外取一定点B ;步骤2:把纸片折叠,使得点B 折叠后与圆A 上某一点重合;步骤3:把纸片展开,并得到一条折痕;步骤4:不断重复步骤2和3,得到越来越多的折痕.你会发现,当折痕足够密时,这些折痕会呈现出一个双曲线的轮廓.若取一张足够大的纸,画一个半径为2的圆A ,并在圆外取一定点,4B AB =,按照上述方法折纸,点B 折叠后与圆A 上的点T 重合,折痕与直线TA 交于点,P P 的轨迹为曲线C .(1)以AB 所在直线为x 轴建立适当的坐标系,求C 的方程;(2)设AB 的中点为O ,若存在一个定圆O ,使得当C 的弦PQ 与圆O 相切时,C 上存在异于,P Q 的点,M N 使得//PM QN ,且直线,PM QN 均与圆O 相切.(i )求证:OP OQ ⊥;(ii )求四边形PQNM 面积的取值范围.【答案】(1)2213y x -=;(2)(i )证明见解析;(ii )[)6,+∞.【解析】【分析】(1)建立平面直角坐标系,根据双曲线定义可得双曲线方程;(2)假设存在符合条件的圆,依据条件,可得四边形PQNM 为菱形,设直线,OP OQ 的斜率分别为1,k k -,将直线,OP OQ 分别与双曲线方程联立求得||,||OP OQ ,通过计算O 到直线PQ 的距离可得定圆的方程.【小问1详解】以AB 所在直线为x 轴,以AB 的中点为坐标原点建立如图所示的平面直角坐标系.则()()2,0,2,0A B -.由折纸方法可知:PB PT =,所以2PB PA PT PA TA AB -=-==<.根据双曲线的定义,C 是以A ,B 为焦点,实轴长为2的双曲线,设其方程为()222210,0,x y a b a b-=>>则1,2a c ===,所以221,3a b ==.故C 的方程为2213y x -=.【小问2详解】(i )假设存在符合条件的圆O ,如图所示:由//PM QN 可得180MPQ NQP ∠+∠=︒,根据切线的性质可知,,MPO OPQ NQO OQP ∠=∠∠=∠,所以90OPQ OQP ∠+∠=︒,即OP OQ ⊥.(ii )分别作,P Q 关于原点O 的对称点,N M '',则,N M ''均在C 上,且四边形PQN M ''为菱形,所以,PM QN ''均与O 相切,所以M '与M 重合,N '与N 重合,所以四边形PQNM 为菱形.显然,直线,OP OQ 的斜率均存在且不为0.设直线,OP OQ 的斜率分别为1,k k-,则直线OP 的方程为y kx =,直线OQ 的方程为1=-y x k .设()()1122,,,P x y Q x y ,则由22,13y kx y x =⎧⎪⎨-=⎪⎩,得()2233k x -=,所以230k ->,且21233x k =-,所以203k <<,且1||OP ==.同理可得:213k >,且||OQ =所以四边形PQNM 的面积2||||S OP OQ =⋅=.设241,43t k t =+<<,故S ==.设1=u t ,则1344u <<,所以S =因为216163y u u =-+-在11,42⎛⎫ ⎪⎝⎭单调递增,在13,24⎛⎫ ⎪⎝⎭单调递减,所以(]0,1y ∈.所以[)6,S ∈+∞.所以四边形PQNM 的面积的取值范围是[)6,+∞.。
2023-2024学年湖南省长沙市长郡中学高二(上)期中数学试卷【答案版】
2023-2024学年湖南省长沙市长郡中学高二(上)期中数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若两个不同平面α,β的法向量分别为u →=(1,2,﹣1),v →=(﹣3,﹣6,3),则( ) A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均不正确2.《莱因德纸草书》(RhindPapyrus )是世界上最古老的数学著作之一,书中有一道这样的题目,请给出答案:把100个面包分给5个人,使每人所得面包个数成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( ) A .53B .103C .56D .1163.若直线y =kx ﹣2与直线y =3x 垂直,则k =( ) A .3B .13C .﹣3D .−134.直三棱柱ABC ﹣A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与NA 所成的角的余弦值为( ) A .−√3010 B .√306C .√3010D .√225.双曲线C 与椭圆x 29+y 24=1有相同的焦点,一条渐近线的方程为x ﹣2y =0,则双曲线C 的标准方程为( ) A .x 24−y 2=1 B .y 29−x 236=1C .x 29−y 236=1 D .y 24−x 2=16.已知抛物线E :x 2=4y 和圆F :x 2+(y ﹣1)2=1,过点F 作直线l 与上述两曲线自左而右依次交于点A ,C ,D ,B ,则|AC |与|BD |的乘积为( ) A .1B .2C .3D .√27.已知数列{a n }满足2a n+1a n +a n+1−3a n =0(n ∈N ∗)且a 1>0.若{a n }是递增数列,则a 1的取值范围是( ) A .(0,12) B .(12,1)C .(0,1)D .(0,√2−1)8.已知椭圆x 2a 2+y 2b 2=1(a >b >0)上一点A 关于原点的对称点为B 点,F 为其右焦点,若AF ⊥BF ,设∠ABF =α,且α∈(π4,π3),则该椭圆的离心率的取值范围是( )A .(√22,√3−1) B .(√22,1)C .(√22,√32)D .(√33,√63)二、选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知m →=(1,a +b ,a −b)(a ,b ∈R )是直线l 的方向向量,n →=(1,2,3)是平面α的法向量,则下列结论正确的是( ) A .若l ∥α,则5a ﹣b +1=0 B .若l ∥α,则a +b ﹣1=0C .若l ⊥α,则a +b ﹣2=0D .若l ⊥α,则a ﹣b ﹣3=010.已知数列{a n }是等比数列,那么下列数列一定是等比数列的是( ) A .{1a n}B .{a n a n +1}C .{lg (a n 2)}D .{a n +a n +1}11.已知p ∈R ,直线l 1:x ﹣py +p ﹣2=0过定点A ,l 2:px +y +2p ﹣4=0过定点B ,l 1与l 2交于点M ,则下列结论正确的是( ) A .l 1⊥l 2B .MA •MB 的最大值是25C .点M 的轨迹方程是x 2+y 2﹣5x =0D .MA +2MB 的最大值为5√512.已知抛物线C :y 2=2px (p >0)的焦点为F ,直线l 与C 交于A (x 1,y 1),B (x 2,y 2)两点,其中点A 在第一象限,点M 是AB 的中点,作MN 垂直于准线,垂足为N ,则下列结论正确的是( ) A .若以AB 为直径作圆M ,则圆M 与准线相切B .若直线l 经过焦点F ,且OA →⋅OB →=−12,则p =4C .若AF →=3FB →,则直线l 的倾斜角为π3D .若以AB 为直径的圆M 经过焦点F ,则|AB||MN|的最小值为√2三、填空题(本大题共4小题,每小题5分,共20分)13.已知⊙M 的圆心为M (3,﹣5),且与直线x ﹣7y +2=0相切,则圆C 的面积为 . 14.如图,在三棱锥O ﹣ABC 中,OA ,OB ,OC 两两垂直,OA =OC =3,OB =2,则直线OB 与平面ABC 所成角的正弦值为 .15.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为C 上一点,且∠F 1PF 2=60°,则当C 的离心率e = 时,满足sin ∠PF 2F 1=3sin ∠PF 1F 2.16.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推. (1)这个数列的第100项为 ;(2)整数N 满足条件:N >1000且该数列的前N 项和为2的整数幂,则最小整数N = . 四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知数列{a n }各项均为正数,且a 1=2,a n+12−2a n+1=a n 2+2a n .(1)证明:{a n }为等差数列,并求出通项公式; (2)设b n =(−1)n a n ,求b 1+b 2+b 3+⋯+b 20.18.(12分)四棱锥P ﹣ABCD 中,BC ∥AD ,BC ⊥平面P AB ,P A =AB =BC =2AD =2,E 为AB 的中点,且PE ⊥EC .(1)求证:BD ⊥平面PEC ; (2)求二面角E ﹣PC ﹣D 的正弦值.19.(12分)已知圆M :x 2+(y ﹣2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点. (1)求四边形QAMB 面积的最小值; (2)若|AB |=4√23,求Q 点的坐标.20.(12分)设抛物线y 2=2px (p >0)的准线为l ,A 、B 为抛物线上两动点,AA '⊥l 于A ',定点K (0,1)使|KA |+|AA '|有最小值√2. (1)求抛物线的方程;(2)当KA →=λKB →(λ∈R 且λ≠1)时,是否存在一定点T 满足TA →⋅TB →为定值?若存在,求出T 的坐标和该定值;若不存在,请说明理由.21.(12分)已知数列{a n},a1=2,a n+1=2−1a n ,数列{b n}满足b1=1,b2nb2n−1=b2n+1b2n=a n.(1)求证:数列{1a n−1}为等差数列,并求出数列{a n}的通项公式;(2)求b2n+1的表达式;(3)求证:1b2+1b4+⋯+1b2n<1.22.(12分)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,焦距为2,上、下顶点分别为B1、B2,A为椭圆上的点,且满足k AB1⋅k AB2=−34.(1)求椭圆C的标准方程;(2)过F1、F2作两条相互平行的直线l1,l2交C于M,N和P,Q,顺次连接构成四边形PQNM,求四边形PQNM面积的取值范围.2023-2024学年湖南省长沙市长郡中学高二(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若两个不同平面α,β的法向量分别为u →=(1,2,﹣1),v →=(﹣3,﹣6,3),则( ) A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均不正确解:∵v →=−3u →,∴v →∥u →.故α∥β. 故选:A .2.《莱因德纸草书》(RhindPapyrus )是世界上最古老的数学著作之一,书中有一道这样的题目,请给出答案:把100个面包分给5个人,使每人所得面包个数成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( ) A .53B .103C .56D .116解:把100个面包分给5个人,使每人所得面包个数成等差数列, 使较大的三份之和的17是较小的两份之和,设分的面包,从小到大依次为a 1,a 2,a 3,a 4,a 5, 依题意得17(a 3+a 4+a 5)=a 1+a 2,故3a 1+9d =7(2a 1+d ),2d =11a 1, 由S 5=5a 3=5(a 1+2d )=100, 得a 1+2d =12a 1=20, 解得a 1=53. 故选:A .3.若直线y =kx ﹣2与直线y =3x 垂直,则k =( ) A .3B .13C .﹣3D .−13解:∵直线y =kx ﹣2与直线y =3x 垂直, ∴3k =﹣1,解得k =−13.故选:D .4.直三棱柱ABC ﹣A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与NA 所成的角的余弦值为( ) A .−√3010B .√306C .√3010D .√22解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA =90°, M ,N 分别是A 1B 1,A 1C 1的中点, 如图,BC 的中点为O ,连结ON ,MN ∥B 1C 1且MN =12B 1C 1=OB ,则MNOB 是平行四边形, BM 与AN 所成角就是∠ANO , ∵BC =CA =CC 1,设BC =CA =CC 1=2,∴CO =1,AO =√5,AN =√5,MB =√B 1M 2+BB 12=√(√2)2+22=√6, 在△ANO 中,由余弦定理可得:cos ∠ANO =AN 2+NO 2−AO 22AN⋅NO =62×√5×√6=√3010.故选:C . 5.双曲线C 与椭圆x 29+y 24=1有相同的焦点,一条渐近线的方程为x ﹣2y =0,则双曲线C 的标准方程为( ) A .x 24−y 2=1 B .y 29−x 236=1C .x 29−y 236=1D .y 24−x 2=1解:由题意双曲线C 与椭圆x 29+y 24=1有相同的焦点,知c =√5,设双曲线的方程为x 2﹣4y 2=λ(λ>0),∴x 2λ−y 2λ4=1,∴λ+λ4=5,∴λ=4.则双曲线C 的标准方程为x 24−y 2=1.故选:A .6.已知抛物线E :x 2=4y 和圆F :x 2+(y ﹣1)2=1,过点F 作直线l 与上述两曲线自左而右依次交于点A ,C ,D ,B ,则|AC |与|BD |的乘积为( ) A .1B .2C .3D .√2解:由抛物线E :x 2=4y 和圆F :x 2+(y ﹣1)2=1,可知抛物线焦点为F (0,1), 设A (x 1,y 1),B (x 2,y 2),设直线的方程为x =m (y ﹣1),由{x =m(y −1)x 2=4y ,得m 2y 2﹣(2m 2+4)y +m 2=0, 则y 1y 2=1,由抛物线的定义可知|AF |=y 1+1,|BF |=y 2+1, ∴|AC |=y 1,|BD |=y 2, ∴|AC |×|BD |=y 1y 2=1,当且仅当y 1=2y 2,即y 1=√2,y 2=√22时取等号.故选:A .7.已知数列{a n }满足2a n+1a n +a n+1−3a n =0(n ∈N ∗)且a 1>0.若{a n }是递增数列,则a 1的取值范围是( ) A .(0,12)B .(12,1)C .(0,1)D .(0,√2−1)解:根据2a n+1a n +a n+1−3a n =0(n ∈N ∗), 可得a n+1=3a n2a n +1, 所以1a n+1=13⋅1a n+23,所以1a n+1−1=13⋅(1a n−1),从而可得数列{1a n+1−1}是以1a 1−1为首项,13为公比的等比数列,所以1a n−1=(1a 1−1)⋅(13)n−1,整理有a n =11+(1a 1−1)(13)n−1,因为a n +1>a n >0, 所以11+(1a 1−1)(13)n>11+(1a 1−1)(13)n−1>0,整理得:(1a 1−1)⋅13<1a 1−1,即0<a 1<1, 故选:C . 8.已知椭圆x 2a 2+y 2b 2=1(a >b >0)上一点A 关于原点的对称点为B 点,F 为其右焦点,若AF ⊥BF ,设∠ABF =α,且α∈(π4,π3),则该椭圆的离心率的取值范围是( ) A .(√22,√3−1) B .(√22,1)C .(√22,√32) D .(√33,√63)解:椭圆x 2a 2+y 2b 2=1(a >b >0)上一点A 关于原点的对称点为B 点,F 为其右焦点,设左焦点为F ′.所以|AF ′|+|AF |=2a ,根据对称关系:四边形AF ′BF 为矩形. 所以|AB |=|FF ′|=2c , 由于AF ⊥BF ,设∠ABF =α, 所以|AF |=2c sin α,|AF ′|=2c cos α, 所以2c sin α+2c cos α=2a , 所以ca =1sinα+cosα=√2sin(α+π4),由于α∈(π4,π3),故α+π4∈(π2,7π12), 所以√2+√64<sin(α+π4)<1, 所以√2sin(α+π4)∈(√22,√3−1),即离心率的范围. 故选:A .二、选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知m →=(1,a +b ,a −b)(a ,b ∈R )是直线l 的方向向量,n →=(1,2,3)是平面α的法向量,则下列结论正确的是( ) A .若l ∥α,则5a ﹣b +1=0 B .若l ∥α,则a +b ﹣1=0C .若l ⊥α,则a +b ﹣2=0D .若l ⊥α,则a ﹣b ﹣3=0解:根据题意,m →=(1,a +b ,a −b)(a ,b ∈R )是直线l 的方向向量,n →=(1,2,3)是平面α的法向量,若l ∥α,则m →⊥n →,则有m →⋅n →=0,即1+2(a +b )+3(a ﹣b )=0,即5a ﹣b +1=0,A 正确,B 错误; 若l ⊥α,则m →∥n →,则有11=a+b 2=a−b 3,变形可得a +b ﹣2=0且a ﹣b ﹣3=0,C 、D 正确. 故选:ACD .10.已知数列{a n }是等比数列,那么下列数列一定是等比数列的是( ) A .{1a n}B .{a n a n +1}C .{lg (a n 2)}D .{a n +a n +1}解:根据题意,{a n }为等比数列,设其公比为q (q ≠0); 对于A ,1a n =1a 1q n−1=1a 1⋅(1q)n−1,∴数列{1a n}是以1a 1为首项,1q为公比的等比数列,故A 正确;对于B ,a n+1a n+2a n a n+1=a n+2a n=q 2,∴数列{a n a n +1}是以a 1a 2为首项,q 2为公比的等比数列,故B 正确;对于C ,当a n =1时,lg(a n 2)=0,数列{lg(a n 2)}不是等比数列,故C 错误;对于D ,当q =﹣1时,a n +a n +1=0,数列{a n +a n +1}不是等比数列,故D 错误. 故选:AB .11.已知p ∈R ,直线l 1:x ﹣py +p ﹣2=0过定点A ,l 2:px +y +2p ﹣4=0过定点B ,l 1与l 2交于点M ,则下列结论正确的是( ) A .l 1⊥l 2B .MA •MB 的最大值是25C .点M 的轨迹方程是x 2+y 2﹣5x =0D .MA +2MB 的最大值为5√5解:对于A ,1•p +(﹣p )•1=0,∴l 1⊥l 2,A 正确; 对于B ,l 1恒过定点A (2,1),l 2恒过定点B (﹣2,4),由选项A 正确可推得,MA 2+MB 2=AB 2=25≥2MA •MB ,MA =MB 时等号成立,∴MA •MB 的最大值是252,B 错误;对于C ,设M (x ,y ),则MA ⊥MB ,MA 2+MB 2=AB 2=52,(x ﹣2)2+(y ﹣1)2+(x +2)2+(y ﹣4)2=25,化简有x 2+y 2﹣5y =0,C 错误;对于D ,设∠MAB =θ,θ∈(0,π2),则MA =5cos θ,MB =5sin θ,∴MA +2MB =5(cosθ+2sinθ)=5√5sin(θ+φ)≤5√5,即MA +2MB 的最大值为5√5,D 正确. 故选:AD .12.已知抛物线C :y 2=2px (p >0)的焦点为F ,直线l 与C 交于A (x 1,y 1),B (x 2,y 2)两点,其中点A 在第一象限,点M 是AB 的中点,作MN 垂直于准线,垂足为N ,则下列结论正确的是( ) A .若以AB 为直径作圆M ,则圆M 与准线相切B .若直线l 经过焦点F ,且OA →⋅OB →=−12,则p =4C .若AF →=3FB →,则直线l 的倾斜角为π3D .若以AB 为直径的圆M 经过焦点F ,则|AB||MN|的最小值为√2解:由抛物线C :y 2=2px (p >0)的焦点为F ,直线l 与C 交于A (x 1,y 1),B (x 2,y 2)两点,其中点A 在第一象限,点M 是AB 的中点,作MN 垂直于准线,垂足为N ,对于A ,当以AB 为直径作圆M ,且AB 经过焦点F 时,|MN|=12(|AF|+|BF|)=12|AB|,此时圆M 与准线相切,当直线l 不经过焦点F 时,圆M 不一定与准线相切,故A 错误;对于B ,过F 的直线l 的方程设为x =my +p2,把直线方程与抛物线方程联立,可得y 2﹣2pmy ﹣p 2=0,y 1y 2=−p 2,x 1x 2=(y 1y 2)24p2=14p 2,OA →⋅OB →=x 1x 2+y 1y 2=14p 2−p 2=−12(p >0),解得p =4,B 正确;对于C ,AF →=(p2−x 1,−y 1),FB →=(x 2−p2,y 2),AF →=3FB →,可得p 2−x 1=3(x 2−p2),﹣y 1=3y 2,又y 1y 2=−p 2,x 1x 2=(y 1y 2)24p 2=14p 2,可求出A(3p 2,√3p),B(p6,−√3p 3),k 1=y 1−y 2x 1−x 2=√3p+√3p33p 2−p 6=√3,∴直线l 的倾斜角为π3,C 正确;对于D ,设AF =a ,BF =b ,由抛物线的定义可得|MN|=12(|AF|+|BF|)=12(a +b),以AB 为直径的圆M 经过焦点F ,∴AF ⊥BF ,|AB|=√a 2+b 2,|AB||MN|=√a 2+b 212(a+b)=√(a+b)2−2ab12(a+b)≥√(a+b)2−(a+b)2212(a+b)=√2,当且仅当a =b 时,即AF =BF 时等号成立,D 正确. 故选:BCD .三、填空题(本大题共4小题,每小题5分,共20分)13.已知⊙M 的圆心为M (3,﹣5),且与直线x ﹣7y +2=0相切,则圆C 的面积为 32π . 解:因为圆M 与直线.x ﹣7y +2=0相切,所以点M (3,﹣5)到直线:x ﹣7y +2=0的距离即为圆M 的半径, 所以r =|3−7×(−5)+2|√1+(−7)=405√2=4√2,圆C 的面积为π×(4√2)2=32π. 故答案为:32π.14.如图,在三棱锥O ﹣ABC 中,OA ,OB ,OC 两两垂直,OA =OC =3,OB =2,则直线OB 与平面ABC 所成角的正弦值为3√1717.解:如图所示,以点O 为坐标原点,建立空间直角坐标系O ﹣xyz ,则A (0,0,3),B (2,0,0),C (0,3,0), 直线OB 的方向向量OB →=(2,0,0), 由于AB →=(2,0,−3),AC →=(0,3,−3), 若m →=(x ,y ,z)是平面ABC 的一个法向量,则{AB →⋅m →=2x −3z =0AC →⋅m →=3y −3z =0, 据此可得m →=(32,1,1), ∴|cos <OB →,m →>|=|OB →⋅m →|OB →||m →||=32×172=3√1717, 故直线OB 与平面ABC 所成角的正弦值为3√1717. 故答案为:3√1717. 15.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为C 上一点,且∠F 1PF 2=60°,则当C 的离心率e = √72时,满足sin ∠PF 2F 1=3sin ∠PF 1F 2. 解:双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为C 上一点,由sin ∠PF 2F 1=3sin ∠PF 1F 2得|PF 1|=3|PF 2|, 由双曲线的定义可得|PF 1|﹣|PF 2|=2|PF 2|=2a , 所以|PF 2|=a ,|PF 1|=3a ;因为∠F 1PF 2=60°,由余弦定理可得4c 2=9a 2+a 2﹣2×3a •a •cos60°, 整理可得4c 2=7a 2,所以e 2=c 2a 2=74,即e =√72.故答案为:√72. 16.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推. (1)这个数列的第100项为 256 ;(2)整数N 满足条件:N >1000且该数列的前N 项和为2的整数幂,则最小整数N = 1897 . 解:对数列进行分组如下: 第一组:20,1个数, 第二组:20,21,2个数, 第三组:20,21,22,3个数, ……,第k +1组:20,21,22,…,2k ,k +1个数; (1)由1+2+3+⋯+k =k(k+1)2≤100可得k ≤13,且1+2+3+⋯+13=91,所以该数列的第100项在第14组的第9个数,即28=256. (2)该数列前k 组的项数和为1+2+3+⋯+k =k(k+1)2, 由题意可知N >1000,即k(k+1)2>1000,解得k ≥45,n ∈N *,即N 出现在第44组之后. 又第k 组的和为20+21+⋯+2k−1=1×(1−2k)1−2=2k −1,所以前k 组的和为1+(1+2)+⋯+(1+2+⋯+2k ﹣1)=(21﹣1)+(22﹣1)+⋯ +(2k ﹣1)=(21+22+⋯+2k )﹣k =2k +1﹣k ﹣2, 设满足条件的N 在第k +1(k ∈N *)组(k ≥44), 且第N 项为第k +1组的第m (m ∈N *)个数, 第k +1组的前m 项和为1+2+22+⋯+2m ﹣1=2m ﹣1,要使该数列的前N 项和为2的整数幂, 即2m ﹣1与﹣k ﹣2互为相反数, 即2m ﹣1=2+k , 所以k =2m ﹣3,由k ≥44,所以2m ﹣3≥44,解之得m ≥6, 取最小值m =6,此时k =26﹣3=61, 对应满足的最小条件为N =61(61+1)2+6=1897. 故答案为:256;1897.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知数列{a n }各项均为正数,且a 1=2,a n+12−2a n+1=a n 2+2a n .(1)证明:{a n }为等差数列,并求出通项公式; (2)设b n =(−1)n a n ,求b 1+b 2+b 3+⋯+b 20.解:(1)证明:因为a 1=2,a n+12−2a n+1=a n 2+2a n , 所以a n+12−a n 2=(a n+1−a n )(a n+1+a n )=2(a n+1+a n ),因为数列{a n }各项均为正数,即a n +1+a n >0, 所以a n +1﹣a n =2,即数列{a n }为等差数列,公差为d =2,首项为a 1=2. 所以a n =2+(n ﹣1)×2=2n ;(2)由(1)知a n=2n,其公差为d=2,所以b n=(−1)n a n=(−1)n⋅2n,所以b1+b2+b3+⋯+b20=(﹣a1+a2)+(﹣a3+a4)+⋯+(﹣a19+a20)=10d=20.18.(12分)四棱锥P﹣ABCD中,BC∥AD,BC⊥平面P AB,P A=AB=BC=2AD=2,E为AB的中点,且PE⊥EC.(1)求证:BD⊥平面PEC;(2)求二面角E﹣PC﹣D的正弦值.(1)证明:因为BC⊥平面P AB,PE⊂平面P AB,所以BC⊥PE,因为PE⊥EC,EC∩BC=C,EC,BC⊂平面BCD,所以PE⊥平面BCD,又BD⊂平面BCD,所以PE⊥BD,因为tan∠ABD=ADAB=12,tan∠BCE=BEBC=12,所以∠ABD=∠BCE,因为∠BCE+∠CEB=90°,所以∠ABD+∠CEB=90°,即BD⊥CE,又PE∩CE=E,PE,CE⊂平面PEC,所以BD⊥平面PEC.(2)解:由(1)得PE⊥AB,因为E为AB的中点,且P A=AB=2,所以PB=2,以E为坐标原点,EB,EP所在直线分别为x轴,z轴,过点E作BC的平行线为y轴,建立空间直角坐标系E﹣xyz,则E (0,0,0),P(0,0,√3),C (1,2,0),D (﹣1,1,0),B (1,0,0), 所以PC →=(1,2,−√3),PD →=(−1,1,−√3),PE →=(0,0,−√3), 设平面PCD 的法向量为m →=(x ,y ,z), 由PC →⋅m →=0,PD →⋅m →=0得,{x +2y −√3z =0−x +y −√3z =0,令x =1,则y =﹣2,z =−√3,所以m →=(1,−2,−√3), 由(1)知,平面PCE 的一个法向量为BD →=(−2,1,0), 所以cos <m →,BD →>=m →⋅BD →|m →||BD →|=8×5=−√105,所以二面角E ﹣PC ﹣D 的正弦值为√155. 19.(12分)已知圆M :x 2+(y ﹣2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点. (1)求四边形QAMB 面积的最小值; (2)若|AB |=4√23,求Q 点的坐标.解:(1)∵圆M :x 2+(y ﹣2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点,∴MA ⊥AQ ,∴S 四边形MAQB =|MA|⋅|QA|=|QA|=√|MQ|2−|MA|2=√|MQ|2−1≥√|MO|2−1=√3. ∴四边形QAMB 面积的最小值为√3.(2)设AB 与MQ 交于P ,则MP ⊥AB ,MB ⊥BQ , ∴|MP|=√1−(223)2=13.在Rt △MBQ 中,|MB |2=|MP ||MQ |,即1=13|MQ|, ∴|MQ |=3,设Q (x ,0),则x 2+22=9, ∴x =±√5, ∴Q(±√5,0).20.(12分)设抛物线y 2=2px (p >0)的准线为l ,A 、B 为抛物线上两动点,AA '⊥l 于A ',定点K (0,1)使|KA |+|AA '|有最小值√2. (1)求抛物线的方程;(2)当KA →=λKB →(λ∈R 且λ≠1)时,是否存在一定点T 满足TA →⋅TB →为定值?若存在,求出T 的坐标和该定值;若不存在,请说明理由.解:(1)不妨设抛物线焦点为F , 此时F(p2,0),因为A 、B 为抛物线上两动点,AA '⊥l 于A ', 所以|AA '|=|AF |,又定点K (0,1)使|KA |+|AA '|有最小值√2, 此时|KA|+|AA′|=|KA|+|AF|≥|KF|=√2, 即|KF|=√(p 2−0)2+(0−1)2=√2, 解得p =2或p =﹣2(舍去), 则抛物线的方程为y 2=4x ; (2)因为KA →=λKB →, 所以K ,A ,B 三点共线,不妨设直线AB 方程为x =t (y ﹣1),A (x 1,y 1),B (x 1,y 1),T (m ,n ), 联立{y 2=4x x =t(y −1),消去x 并整理得y 2﹣4y +4t =0,此时Δ=(4t )2﹣4×4t >0, 解得t <0或t >1,由韦达定理得y 1+y 2=4t ,y 1y 2=4t , 所以x 1=t (y 1﹣1),x 2=t (y 2﹣1),此时TA →⋅TB →=(x 1−m)(x 2−m)+(y 1−n)(y 2−n),因为TA →⋅TB →=[ty 1﹣(m +t )][ty 2﹣(m +t )]+(y 1﹣n )(y 2﹣n ) =(t 2+1)y 1y 2﹣[t (m +t )+n ](y 1+y 2)+(m +t )2+n 2 =4t (1﹣4m )2﹣4t [t (m +t )+n ]+(m +t )2+n 2 =(1﹣4m )t 2+2(2﹣2n +m )t +m 2+n 2, 若存在一定点T 满足TA →⋅TB →为定值, 此时1﹣4m =0且2﹣2n +m =0, 解得m =14,n =98,此时T(14,98),此时TA →⋅TB →=8564. 21.(12分)已知数列{a n },a 1=2,a n+1=2−1a n ,数列{b n }满足b 1=1,b 2n b 2n−1=b 2n+1b 2n=a n .(1)求证:数列{1a n −1}为等差数列,并求出数列{a n }的通项公式; (2)求b 2n +1的表达式; (3)求证:1b 2+1b 4+⋯+1b 2n<1.(1)证明:由a 1=2,a n+1=2−1a n 可知a n+1−1=a n −1a n , ∴1a n+1−1=a n a n −1=1+1a n −1故1a n+1−1−1a n −1=1,又1a 1−1=1,∴数列{1a n −1}是以1为公差,1为首项的等差数列,∴1a n −1=n ,即a n =n+1n . (2)解:由b 2n b 2n−1=b 2n+1b 2n=a n ,有b 2n+1b 2n−1=a n2=(n+1n)2,∴b2n+1=b2n+1b2n−1×b2n−1b2n−3×...×b3b1×b1=(n+1n)2×(nn−1)2×⋯×(21)2×1=(n+1)2,∴b2n+1=(n+1)2.(3)证明:由(2)可得:b2n=b2n+1a n=(n+1)2n+1n=n(n+1),∴1b2+1b4+⋯+1b2n=11×2+12×3+⋯+1n(n+1)=1−12+12−13+⋯+1n−1n+1=1−1n+1<1.22.(12分)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,焦距为2,上、下顶点分别为B1、B2,A为椭圆上的点,且满足k AB1⋅k AB2=−34.(1)求椭圆C的标准方程;(2)过F1、F2作两条相互平行的直线l1,l2交C于M,N和P,Q,顺次连接构成四边形PQNM,求四边形PQNM面积的取值范围.解:(1)由于焦距为2,则c=1,设A(x0,y0),则x02a2+y02b2=1,又B1(0,b),B2(0,﹣b),k AB1⋅k AB2=−34,则k AB1⋅k AB2=y0−bx0⋅y0+bx0=y02−b2x02=−b2a2=−34,∴a2=43b2=43(a2−1),∴a=2,b=√3.即椭圆C 的标准方程为x 24+y 23=1.(2)由对称性可知,四边形PQNM 为平行四边形, 设MN :x =my +1,M (x 1,y 1),N (x 2,y 2),将直线MN 的方程与椭圆方程联立得:(3m 2+4)y 2+6my ﹣9=0. 由根与系数的关系可得,y 1+y 2=−6m 3m 2+4,y 1y 2=−93m 2+4, 则|MN|=√1+m 2|y 1−y 2|=√1+m 2√36m 2(3m 2+4)2+363m 2+4=12(1+m 2)3m 2+4, 设点F 2(1,0)到直线l 1的距离为d ,则d =2√1+m 2,所以四边形PQNM 面积为:S =|MN|d =24√1+m 23m 2+4.设√m 2+1=t ≥1,则S =24t 3t 2+1=243t+1t在t ∈[1,+∞)单调递减,所以S 的取值范围为(0,6].。
湖南省长沙市第一中学2022-2023学年高二上学期入学考试数学试卷含答案
长沙市第一中学2022-2023学年度高二第一学期入学考试数学时量:120分钟满分:150分得分:一、选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求)1.若集合{}4M =<,{}31N x x =≥,则MN =( )A .{}02x x ≤<B .123xx ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163xx ⎧⎫≤<⎨⎬⎩⎭2.已知复数12i z =-(i 为虚数单位),且0z az b ++=,其中a ,b 为实数,则( ) A .1a =,2b =-B .1a =-,2b =C .1a =,2b =D .1a =-,2b =-3.如下图,直线l 的方程是( )A 0y -=B .10x --=C 310y --=D 20y --=4.有2人从一座6层大楼的底层进入电梯,假设每个人自第二层开始在每一层离开电梯是等可能的,则该2人在不同层离开电梯的概率是( ) A .16B .15C .45D .565.在△ABC 中,已知AB =2,AC =3,∠BAC =60°,AM ,BN 分别是BC ,AC 边上的中线,则AM BN ⋅=( ) A .12B .12-C .52D .52-6.已知函数()21xf x x =--,则不等式()0f x >的解集是( ) A .()1,1- B .()(),11,-∞-+∞ C .()0,1D .()(),01,-∞+∞7.在等腰△ABC 中,∠ABC =120°,点O 为底边AC 的中点,将△ABO 沿BO 折起到△DBO 的位置,使二面角D−BO−C 的大小为120°,则异面直线DO 与BC 所成角的余弦值为( )A B C D 8.若不等式()sin 04a x b x π⎛⎫--⋅+≤ ⎪⎝⎭,对[]0,2x π∈恒成立,则()sin a b +和()sin a b -分别等于( )A .2;2B .2;2- C .2-;2- D .2-;2二、选择题(本大题共4个小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分) 9.若110a b<<,则下列结论一定正确的是 A .2ab b < B .22a b <C .1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .a b a b ->+10.今年5月25日工信部部长在“两会部长通道”表示,中国每周大概增加1万多个5G 基站,4月份增加5G 用户700多万人,5G 通信将成为社会发展的关键动力,下图是某机构对我国未来十年5G 用户规模的发展预测图,阅读下图关于下列说法,其中正确的是( ) A .2022年我国5G 用户规模年增长率最高 B .2025年我国5G 用户数规模最大C .从2020年到2026年,我国的5G 用户规模增长两年后,其年增长率逐年下降D .这十年我国的5G 用户数规模,后5年的平均数与方差都分别大于前5年的平均数与方差 11.在通用技术课上,某小组将一个直三棱柱ABC−A 1B 1C 1展开得到平面图如图所示,∠ABC =90°,AA 1=AB ,P 为AB 1的中点,Q 为A 1C 的中点,则在原直三棱柱ABC−A 1B 1C 1中,下列说法正确的是( )A .P ,Q ,C ,B 四点共面 B .A 1C ⊥AB 1C .几何体A−PQCB 和直三棱柱ABC−A 1B 1C 1的体积之比为38D .当BC AB 时,A 1C 与平面ABB 1所成的角为45°12.已知动圆C :()()22cos sin 1x y αα-+-=,[)0,2απ∈,则( )A .圆C 与圆224x y +=相切B .圆C 与直线sin cos 10x y αα+-=相切C .圆C 上一点M 满足CM =(0,1),则M 的轨迹的长度为4πD .当圆C 与坐标轴交于不同的三点时,这三点构成的三角形面积的最大值为1选择题答题卡三、填空题(本大题共4个小题,每小题5分,共20分)13.已知向量a ,b 的夹角为45°,=a 2⋅=a b ,若()λ+⊥a b b ,则λ=________.14.军事飞行人员是国家的特殊人才和宝贵资源,招收和培养飞行员历来受到国家的高度重视,某地区招收海军飞行员,从符合条件的高三学生中随机抽取8人,他们的身高(单位:cm )分别为168,171,172,173,175,175,179,180,则这8名高三学生身高的第75百分位数为________. 15.写出与圆221x y +=和()()223416x y -+-=都相切的一条直线的方程________.16.神舟十三号飞船于2022年4月16日首次实施快速返回技术成功着陆.若由搜救地面指挥中心的提供信息可知:在东风着陆场搜索区域内,A 处的返回舱垂直返回地面.空中分队和地面分队分别在B 处和C 处,如图为其示意图,若A ,B ,C 在同一水平面上的投影分别为A 1,B 1,C ,且在C 点测得B 的仰角为26.6°,在C 点测得A 的仰角为45°,在B 点测得A 的仰角为26.6°,BB 1=7km ,∠B 1A 1C =120°.则CA 1的长为________km.(参考数据:1 tan26.62︒≈)四、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在某公司一次入职面试中,共设有3轮测试,每轮测试设有一道题目,面试者能正确回答两道题目的即可通过面试,累计答错两道题目的即被淘汰.已知李明能正确回答每一道题目的概率均为23,且各轮题目能否正确回答互不影响.(1)求李明不需要进入第三轮测试的概率;(2)求李明通过面试的概率.18.(本小题满分12分)如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.(1)求证:BM ∥平面ADEF ; (2)求证:BC ⊥平面BDE . 19.(本小题满分12分)已知直线1l 的方程为280x y -+=,直线2l 的方程为4310x y +-=.(1)设直线1l 与2l 的交点为P ,求过点P 且在两坐标轴上的截距相等的直线l 的方程;(2)设直线3l 的方程为10ax y ++=,若直线3l 与1l ,2l 不能构成三角形,求实数a 的取值的集合. 20.(本小题满分12分)如图,已知长方形ABCD 中,AB =AD M 为DC 的中点,将△ADM 沿AM 折起,使得平面ADM ⊥平面ABCM .(1)求证:AD ⊥BM ;(2)若点E 是线段DB 上的一动点,问点E 在何位置时,二面角E−AM−D 21.(本小题满分12分) 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2AB AC BA BC CA CB ⋅+⋅=⋅.(1)若cos cos A Bb a=,判断△ABC 的形状并说明理由; (2)若△ABC 是锐角三角形,求sin C 的取值范围.22.(本小题满分12分)已知圆M :()2221x y +-=,点P 是直线l :20x y +=上的一动点,过点P 作圆M 的切线PA ,PB ,切点为A ,B .(1)当切线PA时,求点P的坐标;(2)若△PAM的外接圆为圆N,试问:当P运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由;(3)求线段AB长度的最小值.长沙市第一中学2022-2023学年度高二第一学期入学考试数学时量:120分钟满分:150分得分:一、选择题(本大题共8小题,每小题5分,共40分。
湖南省长沙市第一中学2024-2025学年高二上学期开学考试数学试题(答案)
长沙市第一中学2024—2025学年度高二第一学期入学考试数学时量:120分钟满分:150分一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2Z 34A x x x =∈+<,{}1,2,5B =-,则A B 中元素的个数为()A.1B.4C.6D.7【答案】C 【解析】【分析】首先求解集合A ,再根据并集的定义,即可求解.【详解】因为{}()(){}{}{}2Z 34Z 140Z 413,2,1,0A x x x x x x x x =∈+<=∈-+<=∈-<<=---,{}1,2,5B =-,所以{}3,2,1,0,2,5A B =--- ,有6个元素.故选:C.2.命题“x ∃∈Q ,2tan x ∈Q ”的否定是()A.x ∀∈Q ,2tan x ∉QB.x ∀∈Q ,2tan x ∈QC.x ∃∈Q ,2tan x ∈QD.x ∀∉Q ,2tan x ∈Q【答案】A 【解析】【分析】根据存在量词命题的否定是全称量词命题可得否定命题.【详解】命题“x ∃∈Q ,2tan x ∈Q ”的否定是x ∀∈Q ,2tan x ∉Q .故选:A.3.已知i 是虚数单位,则复数12i1i--的虚部是()A.12-B.12C.32-D.32【答案】A 【解析】【分析】利用复数的四则运算得出结果.【详解】()()()()12i 1i 12i 3i 31i 1i 1i 1i 222-+--===---+,所以复数12i1i --的虚部为12-,故选:A.4.函数()ln e exxx f x -=+的图象大致为()A. B.C. D.【答案】B 【解析】【分析】根据函数()f x 的定义域,排除CD 选项,再由函数()f x 的为偶函数,排除A 选项,即可求解.【详解】由函数()ln e exxx f x -=+,可得其定义域为{}0x x ≠,可排除C 、D 选项,又由()()ln ln e ee exxxxx x f x f x ----===++,所以函数()f x 为偶函数,排除A 选项.故选:B.5.已知0x >,0y >,lg 2lg8lg 2x y+=,则13x y+的最小值是()A.8B.12C.16D.10+【答案】C 【解析】【分析】利用对数的运算法则和基本不等式的性质可得.【详解】解:lg 2lg8lg 2x y +=()lg 28lg 2x y ∴⋅=322x y +∴=31x y ∴+=0x >,0y >()1313333101016y x x y x y x y x y ⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当14x y ==时取等号.故选:C【点睛】本题考查对数的运算法则及基本不等式,属于中档题.6.已知随机事件A ,B ,C 中,A 与B 相互独立,B 与C 对立,且()0.3P A =,()0.6P C =,则()P A B = ()A.0.4B.0.58C.0.7D.0.72【答案】B 【解析】【分析】由公式()()()()P A B P A P B P AB =+- 可知只需求出()(),P B P AB 即可,结合对立减法公式以及独立乘法公式即可求解.【详解】()1()0.4P B P C =-=,()()()0.30.40.12P AB P A P B ==⨯=,所以()()()()0.30.40.120.58P A B P A P B P AB =+-=+-= .故选:B.7.甲、乙、丙、丁四人在一次比赛中只有一人得奖.在问到谁得奖时,四人的回答如下:甲:乙得奖.乙:丙得奖.丙:乙说错了.丁:我没得奖.四人之中只有一人说的与事实相符,则得奖的是()A.甲B.乙C.丙D.丁【答案】D 【解析】【分析】根据各人的说法,讨论四人得奖分析是否只有一人说法与事实相符,即可确定得奖的人.【详解】甲乙丙丁甲得奖乙得奖丙没得奖丁没得奖由上表知:若甲得奖,丙、丁说法与事实相符,则与题设矛盾;若乙得奖,丙、丁说法与事实相符,则与题设矛盾;若丙得奖,乙、丁说法与事实相符,则与题设矛盾;所以丁得奖,只有丙说法与事实相符.故选:D8.设5log 2a =,0.60.5b =,0.50.6c =,则()A.c b a >>B.c a b>> C.b a c>> D.a c b>>【答案】A 【解析】【分析】利用对数函数的单调性和指数函数的单调性分别求出12a <,12b >,即可判断出b a >,再利用作差法比较,c b 的大小关系即可求解.【详解】解:551log 2log 2a =<=,10.620.150.5b ==>,b a ∴>,350.610.52b ⎛⎫== ⎪⎝⎭ ,120.530.65c ⎛⎫== ⎪⎝⎭,10351011264b ⎡⎤⎛⎫⎢⎥∴==⎪⎢⎥⎝⎭⎣⎦,101210324353125c ⎡⎤⎛⎫⎢⎥== ⎪⎢⎥⎝⎭⎣⎦,10102431124270312564200000c b -=-=> ,c b ∴>,c b a ∴>>,故选:A .二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,则下列结论正确的是()A.()f x 的图象向左平移π6个单位长度后得到函数()πsin 23g x x ⎛⎫=+ ⎪⎝⎭的图象B.直线π3x =是()f x 图象的一条对称轴C.()f x 在ππ,42⎡⎤⎢⎣⎦上单调递减D.()f x 的图象关于点5π,012⎛⎫⎪⎝⎭对称【答案】CD 【解析】【分析】利用正弦函数的性质来研究正弦型函数的性质即可.【详解】对于A ,由()f x 的图象向左平移π6个单位得:ππππsin 2=sin 26362f x x x ⎛⎫⎛⎫⎛⎫+=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,与得到函数()πsin 23g x x ⎛⎫=+⎪⎝⎭不相同,故A 错误;对于B ,将π3x =代入得:πππ5πsin 2=sin 3366f ⎛⎫⎛⎫=⨯+ ⎪ ⎪⎝⎭⎝⎭,此时既不是最高点,也不是最低点,所以直线π3x =不是()f x 图象的一条对称轴,故B 错误;对于C ,当ππ,42x ⎡⎤∈⎢⎥⎣⎦时,π2π7π2,636x ⎡⎤+∈⎢⎥⎣⎦,由于sin y x =在π3π,22⎡⎤⎢⎥⎣⎦上递减,而2π7ππ3π,,3622⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,所以()f x 在ππ,42⎡⎤⎢⎥⎣⎦上单调递减,故C 正确;对于D ,将5π12x =代入得:5π5ππsin 2=sinπ012126f ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,此时是函数零点,所以()f x 的图象关于点5π,012⎛⎫⎪⎝⎭对称,故D 正确;故选:CD .10.某学校高一年级学生有900人,其中男生500人,女生400人,为了获得该校高一全体学生的身高信息,现采用样本量按比例分配的分层抽样方法抽取了容量为90的样本,经计算得男生样本的均值为170,方差为19,女生样本的均值为161,方差为28,则下列说法正确的是()参考公式:样本划分为2层,各层的容量、平均数和方差分别为:m ,x ,21s ;n ,y ,22s .记样本平均数为ω,样本方差为2s ,2222212[()][()]m n s s x s y m n m nωω=+-++-++.A.男生样本容量为50 B.每个女生被抽到的概率110C.抽取的样本的均值为165D.抽取的样本的方差为43【答案】ABD 【解析】【分析】根据抽样比即可求解人数判断A ,根据概率公式即可求解B ,根据平均数以及方差的计算公式即可求解CD.【详解】对于A ,男生被抽的人数为5009050900⨯=,故A 正确,对于B ,每个女生被抽到的概率为40090190040010⨯=,故B 正确,对于C166=,故C 错误,对于D ,样本的方差为22254[19(170166)][28(161166)]4399s =+-++-=,故D 正确,故选:ABD11.如图,正方体ABCD A B C D -''''的棱长为4,M 是侧面ADD A ''上的一个动点(含边界),点P 在棱CC '上,且||1PC '=,则下列结论正确的有()A.沿正方体的表面从点A 到点PB.保持PM 与BD '垂直时,点M的运动轨迹长度为C.若保持||PM =,则点M 的运动轨迹长度4π3D.平面AD P '截正方体ABCD A B C D -''''所得截面为等腰梯形【答案】BCD 【解析】【分析】根据平面展开即可判断A ;过P 做平面//PEF 平面ACB ',即可判断B ;根据点M 的轨迹是圆弧,即可判断C ;作出正方体ABCD A B C D -''''被平面AD P '所截的截面即可判断D .【详解】对于A ,将正方体的下面和侧面展开可得如图图形,连接AP ,则AP ==<A 错误;对于B ,如图:DD ' 平面ABCD ,AC ⊂平面ABCD ,∴DD AC '⊥,又AC BD ⊥,DD BD D '= ,DD ',BD ⊂平面DD B ',AC ∴⊥平面DD B ',BD '⊂平面DD B ',AC BD '∴⊥,同理可得BD AB ''⊥,AC AC A '= ,AC ,AB '⊂平面ACB '.BD '∴⊥平面ACB '.∴过点P 作//PG C D '交CD 交于G ,过G 作//GF AC 交AD 交于F ,由//AB C D '',可得//PG AB ',PG ⊂/平面ACB ',AB '⊂平面ACB ',//PG ∴平面ACB ',同理可得//GF平面ACB ',,,PG GF G PG GF ⋂=⊂平面PGF ,则平面//PGF 平面ACB '.设平面PEF 交平面ADD A ''于EF ,则M 的运动轨迹为线段EF ,由点P 在棱CC '上,且||1PC '=,可得||||1DG DF ==,//EF B C'∴34EF AD ==,故B 正确;对于C ,如图:若||PM =,则M 在以P 为球心,为半径的球面上,过点P 作PQ ⊥平面ADD A '',则||1D Q '=,此时||2QM =.∴点M 在以Q 为圆心,2为半径的圆弧上,此时圆心角为2π3.点M 的运动轨迹长度2π4π×2=33,故C 正确;对于D ,如图:延长DC ,D P '交于点H ,连接AH 交BC 于I ,连接PI ,∴平面AD P '被正方体ABCD A B C D -''''截得的截面为AIPD '.~PCH D DH ' ,∴||||||3||||||4PH PC HC D H DD DH ==='',~ICH ADH ,∴||||||3||||||4CI HC IH DA DH AH ===,∴||||||3||||||4PH IH PI D H AH AD ==='',//PI AD '∴,且||||PI AD '≠,∴截面AIPD '为梯形,||||AI PD '===,∴截面AIPD '为等腰梯形,故D 正确.故选:BCD .【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.三、填空题:本题共3小题,每小题5分,共15分.12.已知向量(1,1)a m =- ,(,3)b m m =+,若a b a b ⋅=-⋅ ,则m 的值为________.【答案】1-【解析】【分析】根据向量的数量积的运算公式,得到向量,a b的夹角为πθ=,设(0)b a λλ=< ,结合向量的坐标表示,列出方程组,即可求解.【详解】设向量,a b的夹角为θ,因为a b a b ⋅=-⋅ ,可得cos 1θ=-,因为[0,π]θ∈,所以πθ=,即向量a 与向量b反向,又因为向量(1,1)a m =- ,(,3)b m m =+,设(0)b a λλ=< ,可得)((,13),1m m m λ-+=,可得3m m m λλλ=⎧⎨+=-⎩且0λ<解得1,1m λ=-=-.故答案为:1-.13.如图60°的二面角的棱上有A ,B 两点,直线AC ,BD 分别在二面角两个半平面内,且垂直于AB ,6AC BD ==,8AB =,则CD =__________.【答案】10【解析】【分析】过点B 作BE AC ∥,且6BE AC ==,连接CE ,DE ,先证明BDE V 为等边三角形,从而得到DE ,再证明CE DE ⊥,进而利用勾股定理即可求解.【详解】如图,过点B 作BE AC ∥,且6BE AC ==,连接CE ,DE ,则60DBE ∠=︒,又6BD BE ==,所以BDE V 为等边三角形,所以6DE =,则四边形ABEC 为矩形,即CE AB =,由AC AB ⊥,则EB AB ⊥,又BD AB ⊥,且BD EB B = ,所以AB ⊥平面BDE ,所以CE ⊥平面BDE ,又DE ⊂平面BDE ,所以CE DE ⊥,则由勾股定理得10CD ==.故答案为:10.14.若三棱锥的棱长为5,8,21,23,29,t ,其中*N t ∈,则t 的一个取值可以为______.【答案】25(答案不唯一)【解析】【分析】根据三角形的三边关系即可求解范围,进而根据*N t ∈求解.【详解】如图所示的三棱锥中,5,21,23,29,8AB AC BC BD CD =====,在,ABC BCD 中,三边关系符合三角形的边角关系,设AD t =,则1329AC CD AD AC CD AD -<<+⇒<<且2434BD AC AD BD AC AD -<<+⇒<<,因此2429AD <<,由于*N t ∈,故可取25t =,故答案为:25(答案不唯一)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设锐角ABC V 的内角、、A B C 的对边分别为,2sin a b c c A =,,,(1)求角C ;(2)若边7c =,面积为,求ABC V 的周长.【答案】(1)π3;(2)20.【解析】【分析】(1)由正弦定理得到sin 2C =,求出π3C =;(2)由三角形面积得到40ab =,根据余弦定理得到13a b +=,从而得到周长.【小问1详解】由2sin c A 及正弦定理,得2sin sin C A A =,又π02A <<,得sin 0A >,所以3sin 2C =,又C 为锐角,所以π3C =;【小问2详解】由(1)得13sin 24ABC S ab C ab ===△40ab =,由余弦定理,得()()222222cos 22cos 3c a b ab C a b ab ab C a b ab =+-=+--=+-,所以()223169a b c ab +=+=,所以13a b +=,所以ABC V 的周长为13720l a b c =++=+=.16.现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm 和184cm 之间,将测量结果按如下方式分成6组:第1组[)160,164,第2组[)164,168,…,第6组[)180,184,得到如下频率分布直方图.(1)求a 的值并估计这50名男生的身高的第60百分位数;(2)求这50名男生中身高在176cm 以上(含176cm )的人数;(3)从这50名男生身高在176cm 以上(含176cm )的人中任意抽取2人,求该2人中身高恰有1人在180cm 以上(含180cm )的概率.【答案】(1)0.05;169.5(2)6(3)815【解析】【分析】(1)根据频率分布直方图的性质即可求解a 的值,再结合百分位数的定义即可求解结果;(2)根据图表先求出相应的频率,再求出频数即可;(3)根据图表先求出相应区间的人数,再根据古典概型求解概率即可.【小问1详解】由频率分布直方图知,()0.010.020.020.080.0741a +++++⨯=,解得0.05a =.因为()0.050.0740.48+⨯=,0.0840.32⨯=,所以第60百分位数落在[)168,172区间内,设第60百分位数为x ,则()1680.080.12x -⨯=,解得169.5x =,即第60百分位数为169.5.【小问2详解】由图知,身高在176cm 以上(含176cm )的人数频率为0.0340.12⨯=,则身高在176cm 以上(含176cm )的人数为500.126⨯=.【小问3详解】由(2)知,身高在176cm 以上(含176cm )的人数为6,则身高在180cm 以上(含180cm )的人数为1623⨯=,男生中身高在[)176,180内的人数为4,令身高在[)176,180内编号为1,2,3,4,身高在[)180,184内编号为5,6,则样本空间为()()()()(){()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,()()()()()()}3,4,3,5,3,6,4,5,4,6,5,6,所以该2人中身高恰有1人在180cm 以上(含180cm )的概率为815.17.如图,在底面为菱形的四棱锥P ABCD -中,PA ⊥平面ABCD ,60ABC ∠=︒,2PA AB ==,点E ,F 分别为棱BC ,PD 的中点,Q 是线段PC 上的一点.(1)若Q 是直线PC 与平面AEF 的交点,试确定PQ PC 的值;(2)若三棱锥C EQA -的体积为6,求直线AQ 与平面AEF 所成角的正弦值.【答案】(1)23(2)14【解析】【分析】(1)根据线线平行可得平面BNMK //平面AEF ,即可根据中点关系,结合面面平行的性质,即可求解AQH ∠的余弦值,根据AQ 与平面AEF 所成角与AQH ∠互为余角即可求解.(2)根据体积公式可得Q 是PC 中点,进而根据线线垂直证明PD ⊥平面AEF ,即可根据三角形的边角关系,以及余弦定理求解【小问1详解】取PA 中点为K ,取PF 中点M ,过M 作//MN PQ ,连接BN ,由于1//,,2KF AD KF AD =且1//,2BE AD BE AD =,故//,KF BE BE KF =,故四边形BEFK 为平行四边形,故//BK EF ,BK ⊄平面AEF ,EF ⊂平面AEF ,故//BK 平面AEF又//KM AF ,KM ⊄平面AEF ,AF ⊂平面AEF ,故//KM 平面AEF ,,,KM BK K KM BK ⋂=⊂平面BNMK ,故平面BNMK //平面AEF ,由于平面PBC 与平面BNMK 相交于BN ,于平面AEF 相交于EQ ,故//EQ BN ,又//MN PQ ,M 是PF 的中点,N 是BC 的中点,所以,NQ QC NQ PN ==,故Q 是PC 靠近于C 处的三等分点,故23PQ PC =【小问2详解】由于三棱锥C EQA -36,由于60,2ABC AB BC ∠=︒==,故ABC V 为等边三角形,故,3,AE BC AE ⊥=则11111331332326C EQA Q ECA ACE Q Q Q V V S h AE EC h h --===⨯⋅⋅=⨯⨯⋅= ,故1Q h =,即Q 到平面ABCD 的距离为1,由于2PA =,故Q 是PC 中点,由于PA ⊥平面ABCD ,AE ⊂平面ABCD ,故PA AE ⊥,又,//AE BC AD BC ⊥,则AE AD ⊥,,,PA AD A PA AD ⋂=⊂平面PAD ,故AE ⊥平面PAD ,PD ⊂平面PAD ,故AE PD ⊥,又,PA AD F =为中点,故AF PD ⊥,,,AF AE A AF AE ⋂=⊂平面AEF ,故PD ⊥平面AEF ,取CD 的中点H ,连接HQ ,则//HQ PD ,故HQ ⊥平面AEF ,22221111222,2222222AQ PC QH PD ==+===+=,223AH AD DH =-=,则2222231cos 24222AQ QH AH AQH AQ QH +-+-∠===⋅⨯⨯,由于AQH ∠为锐角,且AQ 与平面AEF 所成角与AQH ∠互为余角,因此AQ 与平面AEF 所成角的正弦值为1418.已知函数()sin cos f x a x b x =+,称非零向量(),p a b = 为()f x 的“特征向量”,()f x 为p 的“特征函数”.(1)设函数()ππ2sin cos 36h x x x ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,求函数()h x 的“特征向量”;(2)若函数()f x 的“特征向量”为(3p = ,求当()85f x =且ππ,36x ⎛⎫∈- ⎪⎝⎭时sin x 的值;(3)若)3,1p = 的“特征函数”为()f x ,11π0,6x ⎡⎤∈⎢⎣⎦且方程()()()2230f x a f x a +-+-=存在4个不相等的实数根,求实数a 的取值范围.【答案】(1)13,22⎛⎫- ⎪ ⎪⎝⎭(2433-(3)(]()1,34,5 .【解析】【分析】(1)先利用两角和正余弦公式展开化简函数,再根据特征函数的概念求解即可;(2)由已知可得π4sin 35x ⎛⎫+= ⎪⎝⎭,利用ππsin sin 33x x ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦即可求解;(3)由定义得()f x 并化简(化为一个角的一个三角函数形式),解方程()()()2230f x a f x a +-+-=得()1f x =或()3f x a =-且31a -≠,()1f x =求得两根,然后作出函数()f x ,11π[0,]6x ∈的图象,由图象可得()3f x a =-且31a -≠有两根的的范围.【小问1详解】因为()3131312cos sin cos sin cos sin 222222h x x x x x x x ⎛⎫⎛⎫=---=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以ℎ的“特征向量”为13,22p ⎛⎫=- ⎪ ⎪⎝⎭.【小问2详解】由题意知()πsin 2sin 3f x x x x ⎛⎫==+ ⎪⎝⎭,由()85f x =得π82sin 35x ⎛⎫+= ⎪⎝⎭,π4sin 35x ⎛⎫+= ⎪⎝⎭,因为ππ,36x ⎛⎫∈- ⎪⎝⎭,ππ0,32x ⎛⎫+∈ ⎝⎭,所以π3cos 35x ⎛⎫+= ⎪⎝⎭,所以ππ1π3π433sin sin sin cos 33232310x x x x ⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【小问3详解】()πcos 2sin6f x x x x ⎛⎫=+=+ ⎪⎝⎭,当11π0,6x ⎡⎤∈⎢⎥⎣⎦时,ππ,2π66x ⎡⎤+∈⎢⎥⎣⎦.由()()()2230f x a f x a +-+-=得()()()()()130f x f x a ---=,所以()1f x =或()3f x a =-,由()1f x =,即π1sin 62x ⎛⎫+= ⎪⎝⎭,而11π0,6x ⎡⎤∈⎢⎥⎣⎦,解得0x =或2π3x =,即()1f x =在11π0,6x ⎡⎤∈⎢⎥⎣⎦上有两个根,因为方程()()()2230f x a f x a +-+-=在11π0,6x ⎡⎤∈⎢⎥⎣⎦上存在4个不相等的实数根,所以当且仅当()3f x a =-且31a -≠在11π0,6x ⎡⎤∈⎢⎥⎣⎦上有两个不等实根,在同一坐标系内作出函数=在11π0,6x ⎡⎤∈⎢⎥⎣⎦上的图像和直线3y a =-,因为方程()()34f x a a =-≠在11π0,6x ⎡⎤∈⎢⎥⎣⎦上有两个不等实根,即当且仅当函数=在11π0,6x ⎡⎤∈⎢⎥⎣⎦上的图像和直线()34y a a =-≠有两个公共点,由图像可知:230a -<-≤或132a <-<,解得13a <£或45a <<,所以实数G 的取值范围是(]()1,34,5⋃.个公式,还考查了三角函数中的方程的根的问题.19.在空间直角坐标系O xyz -中,已知向量(,,)u a b c = ,点0000(,,)P x y z .若平面α以u 为法向量且经过点0P ,则平面α的点法式方程可表示为000()()()0a x x b y y c z z -+-+-=,一般式方程可表示为0ax by cz d +++=.(1)若平面1α:210x y --=,平面1β:3210y z -+=,直线l 为平面1α和平面1β的交线,求直线l 的一个方向向量;(2)已知集合{(,,)|||1,||1,||1}P x y z x y z =≤≤≤,{(,,)|||||||2}Q x y z x y z =++≤,{(,,)|||||2,||||2,||||2}T x y z x y y z z x =+≤+≤+≤.记集合Q 中所有点构成的几何体的体积为1V ,P Q ⋂中所有点构成的几何体的体积为2V ,集合T 中所有点构成的几何体为W .(ⅰ)求1V 和2V 的值;(ⅱ)求几何体W 的体积3V 和相邻两个面(有公共棱)所成二面角的余弦值.【答案】(1)()1,2,3(2)(ⅰ)1323V =;2203V =;(ⅱ)316V =,12-【解析】【分析】(1)根据直线l 满足方程,对y 进行合理取值两次,求出,x z 即可求解;(2)(ⅰ)根据分析得到P Q '' 为截去三棱锥4123Q Q Q Q -所剩下的部分,然后用割补法求解体积即可;(ⅱ)利用题目中给定的定义求出法向量,结合面面角的向量法求解即可.【小问1详解】直线l 是两个平面210x y --=与3210y z -+=的交线,所以直线l 上的点满足2103210x y y z --=⎧⎨-+=⎩,不妨设1y =,则1,2x z ==,不妨设3y =,则2,5x z ==,∴直线l 的一个方向向量为:()()21,31,521,2,3---=;【小问2详解】(ⅰ)记集合Q ,P Q ⋂中所有点构成的几何体的体积分别为1V ,2V ,考虑集合Q 的子集{(,,)|2,0,0,0}Q x y z x y z x y z '=++≤≥≥≥,即为三个坐标平面与2x y z ++=转成的四面体,四面体四个顶点分别为(0,0,0),(2,0,0),(0,2,0),(0,0,2),此四面体的体积为1142(22)323Q V '=⨯⨯⨯⨯=,由对称性知13283Q V V '==,考虑到P 的子集P '构成的几何体为棱长为1的正方体,即{(,,)|01,01,01}P x y z x y z '=≤≤≤≤≤≤,{(,,)|2,0,0,0}Q x y z x y z x y z '=++≤≥≥≥,P Q ''∴ 为截去三棱锥4123Q Q Q Q -所剩下的部分,P '的体积1111P V '=⨯⨯=,三棱锥4123Q Q Q Q -的体积为41231111(11)326Q Q Q Q V -=⨯⨯⨯⨯=,P Q ''∴ 的体积为412315166P Q P Q Q Q Q V V V '''-=-=-= ,∴由对称性知22083P Q V V ''== .(ⅱ)①记集合T 中所有点构成的几何体为W,如图,其中,正方体ABCD LIJM -即为集合P 所构成的区域,E ABCD -构成了一个正四棱锥,其中E 到面ABCD 的距离为2,1412233E ABCD V -=⨯⨯⨯=,W ∴的体积34686163P E ABCD V V V -=+=+⨯=.②由题意面EBC 的方程为20x z +-=,由题干定义知其法向量为1(1,0,1)n = ,面ECD 方程为20y z +-=,由题干定义知其法向量为2(0,1,1)n = ,1212121cos ,2||||n n n n n n ⋅∴<>==⋅ ,由图知两个相邻面所成的角为钝角,∴所成二面角的余弦值为:12-.【点睛】方法点睛:关于直线的方向向量求法,求出直线上的两个点坐标即可求解;求体积利用割补法,把不规则转规则进行求解:解决二面角的余弦值,利用空间向量来解决.。
2018-2019学年湖南省湖南师范大学附属中学高二上学期期中考试数学(理)试题 解析版
绝密★启用前湖南省湖南师范大学附属中学2018-2019学年高二上学期期中考试数学(理)试题一、单选题1.不等式x2-5x+6<0的解集是A.{x|-2<x<3} B.{x|-3<x<2}C.{x|2<x<3} D.{x|-3<x<-2}【答案】C【解析】【分析】根据二次不等式的解法得到答案.【详解】不等式x2-5x+6<0等价于(x-2)(x-3)<0,根据二次函数的性质得到,解集是(2,3),故选C【点睛】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集.(2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性.2.在等差数列{an}中,若a5,a7是方程x2-2x-6=0的两根,则{an}的前11项的和为A.22 B.-33 C.-11 D.11【答案】D【解析】【分析】a5,a7是方程x2-2x-6=0的两根,则a5+a7=2, S11==11 a6进而得到结果.【详解】等差数列{a n}中,若a5,a7是方程x2-2x-6=0的两根,则a5+a7=2,∴a6=(a5+a7)=1,∴{a n}的前11项的和为S11==11a6=11×1=11.故选D.【点睛】点睛:本题考查等差数列的通项公式,是基础的计算题,对于等差数列的小题,常用到的方法,其一是化为基本量即首项和公差,其二是观察各项间的脚码关系,即利用数列的基本性质.3.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆面积为A.B.π C.2π D.4π【答案】B【解析】【分析】根据正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.【详解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.故选B.【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.4.设x,y满足约束条件则z=x+y的最大值为()A.0 B.1 C.2 D.3【答案】D【解析】如图,作出不等式组表示的可行域,则目标函数经过时z 取得最大值,故,故选D.点睛:本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.5.若,则下列说法正确的是()A.若,,则B.若,则C.若,则D.若,则【答案】D【解析】【分析】根据不等式的基本性质以及特殊值法判断即可.【详解】A.取a=1,b=-3,c=2,d=1,可知不成立,B.取c=0,显然不成立,C.取a=-3,b=﹣2,显然不成立,D.根据不等式的基本性质,显然成立,综上可得:只有B正确.故选:D.本题考查了不等式的基本性质、举反例否定一个命题的方法,考查了推理能力,属于基础题.6.在△ABC中,若AB=,BC=3,∠C=120°,则AC=()A.1 B.2 C.3 D.4【答案】A【解析】在△ABC中,设A、B、C所对的边分别为a,b,c,则由c2=a2+b2-2ab cos C,得13=9+b2-2×3b×,即b2+3b-4=0,解得b=1(负值舍去),即AC=1.故选A. 7.已知数列{an}满足:a1=-13,a6+a8=-2,且an-1=2an-an+1(n≥2),则数列的前13项和为A.B.-C.D.-【答案】B【解析】【分析】根据题干变形可得到数列{a n}为等差数列,再由等差数列的公式得到通项,最终裂项求和即可.【详解】a n-1=2a n-a n+1(n≥2),可得a n+1-a n=a n-a n-1,可得数列{a n}为等差数列,设公差为d,由a1=-13,a6+a8=-2,即为2a1+12d=-2,解得d=2,则a n=a1+(n-1)d=2n-15.,即有数列的前13项和为=×=-.故选B.这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。
湖南省长沙市第一中学2022-2023学年高二下学期期中数学试题
(1)证明:△ ABC 为直角三角形; (2)求直线 BM 和平面 MNC 所成角的正弦值.
21.已知函数 f (x) ex cos x mx, x 0, .
(1)若函数 f x 在 0, π 上单调递减,求实数 m 的取值范围;
湖南省长沙市第一中学 2022-2023 学年高二下学期期中数学 试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.设 z 1 i (其中 i 为虚数单位),则 1 ( ) z
A. 1 1 i 22
B. 1 1 i 22
C. 1 1 i 22
2.已知 f x 2x a 2x 为奇函数,则 f 1 的值为( )
A. 3 2
B.1
C. 3 2
3.已知an 是等比数列,且 a2来自 0 .若 a3a5 4 ,则 a4 ( )
A.±2
B.2
C.-2
D. 1 1 i 22
D. 5 2
D.4
4.已知圆锥的侧面积为 S1 ,底面积为 S2 ,底面半径为 r,且 S1 2S2 ,若底面半径同为
x)(x ax2, ?
2), x x
0 0
.(1)若 a
0 ,则
f
x
1的解集为
______________;(2)若关于 x 的不等式 f x 0 的解集为2, ,则实数 a 的取值范
围为______________.
五、解答题
17.等差数列an 满足 a2 6 , a4 a5 27 .等比数列bn 为递增数列,且 b1 , b2 , b3 2,3,4,5,8. (1)求数列 an 和 bn 的通项公式; (2)删去数列bn 中的 bak 项(其中 k 1,2,3,…,保持剩余项的顺序不变,组成新数 列cn,求数列cn 的前 10 项和T10 .
湖南省长沙市第一中学、长沙市一中城南中学等多校2023-2024学年高二下学期期中考试数学试题
湖南省长沙市第一中学、长沙市一中城南中学等多校2023-2024学年高二下学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知复数z=−2+5i,则i z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.某种袋装大米的质量X(单位:kg)服从正态分布N25,σ2,且P X>25.1=0.05.若某商场购入500袋这种大米,则该种袋装大米的质量在24.9kg∼25.1kg的袋数约为()A.300 B.350 C.400 D.4503.已知AB⊥AC, AB=2,则AB⋅BC=()A.0 B.2 C.−4D.44.已知方程mx2+2m−1y2=1表示焦点在y轴上的椭圆,则m的取值范围是()A.0,12B.12,1C.1,+∞D.0,15.某单位五一放假,安排甲、乙等五人值班五天,每人值班一天.若甲、乙都至少需要三天的连休假期,则不同的值班安排共有()A.60种B.66种C.72种D.78种6.在人工智能神经网络理论中,根据不同的需要,可以设置不同的激活神经单元的函数,其中函数tanℎ是比较常用的一种,其解析式为tanℎx=e x−e−xe x+e−x.关于函数tanℎx,下列结论正确的是()A.tanℎx是偶函数B.tanℎx是单调递增函数C.方程tanℎx=2有唯一解D.tanℎx≥0恒成立7.今天是星期天,则137天后是()A.星期五B.星期六C.星期天D.星期一8.已知正四棱锥外接球的半径为3,内切球的半径为1,则该正四棱锥的高为()A.4+3B.4+2C.4±3D.4±2二、多选题9.若集合D含有n个元素,则称D为n元集,D的子集中含有m m≤n个元素的子集叫做D的m元子集.已知集合A=−1,0,1,B=−2,1,2,则()A.A∩B是2元集B.A∪B的2元子集有10个C.xy|x∈A,y∈B是5元集D.x,y|x∈A,y∈B是x,y|x2+y2≤5,x∈Z,y∈Z的9元子集10.已知随机变量X服从二项分布B4,p,p∈0,1,下列判断正确的是()A.若E X=1,则D X=34B.P X=0=p−14C.若D X=34,则E X=1D.P X=2的最大值为3811.边长为2个单位长度的正方形ABCD如图1所示.将正方形ABCD向右平移1个单位长度,再向上平移1个单位长度,得到正方形EFGH,正方形ABCD和EFGH的组合图形如图2所示.将正方形EFGH向右平移1个单位长度,再向上平移1个单位长度,得到正方形CIJK,正方形ABCD,EFGH和CIJK的组合图形如图3所示.依此类推,得到图n n∈N+,则()A.图3中矩形的个数为11B.图4中矩形的个数为19C.图10中矩形的个数为81D.图1至图20中所有知形的个数之和为1732三、填空题12.记△ABC的内角A,B,C的对边分别为a,b,c,且2c=ab,A=B,则cos C=. 13.设一组样本数据x1,x2,⋯,x10的平均值是1,且x12,x22,⋯,x102的平均值是3,则数据x1,x2,⋯,x10的方差是.14.做一个容积为250πm3的圆柱形封闭容器,要求所用材料最省,则该容器的底面半径为m,表面积为m2.四、解答题15.如图,在四边形ABCD中,AD⊥AB,AB=AD,平面ABCD与半圆弧AB所在的平面垂直,E是AB上异于A,B的点.(1)证明:△BDE是直角三角形.(2)若E是AB上更靠近B的三等分点,求平面BDE与平面ABCD夹角的余弦值.16.已知数列a n的前n项和为S n,a1=1,a n>0,且2a n S n+1−2a n+1S n=a n a n+1.(1)证明:数列S na n是等差数列.(2)求a n的通项公式.(3)若b n=2n2a n+12a n+1+1,数列b n的前n项和为T n,证明:T n<13.17.已知F为抛物线C:y2=2px p>0的焦点,第一象限内的点P在C上,点P的纵坐标等于横坐标的4倍,且PF=54.(1)求C的方程;(2)若斜率存在的直线l与C交于异于P的A,B两点,且直线PA的斜率与直线PB的斜率之积为16,证明:l过定点.18.京剧被誉为中国文化的瑰宝.每个脸谱都有其独特的象征意义,是京剧中不可或缺的一个组成部分.某商店售卖的京剧脸谱娃娃共有三种款式,有直接购买和盲盒购买两种方式.若直接购买京剧脸谱娃娃,则每个京剧脸谱娃娃售价54元,可选定款式;若盲盒购买京剧脸谱娃娃,则每个盲盒售价27元,盲盒中的一款京剧脸谱娃娃是随机的.(1)甲采用盲盒购买的方式,每次购买一个盲盒并打开,若买到的京剧脸谱娃娃中出现相同款式,则停止购买.用ξ表示甲购买盲盒的个数,求ξ的分布列.(2)乙计划收集一套京剧脸谱娃娃(三种款式各一个),先购买盲盒,每次购买一个盲盒并打开(乙最多购买3个盲盒),若未集齐一套京剧脸谱娃娃,再直接购买没买到的款式,以购买费用的期望值为决策依据,问乙应购买多少个盲盒?19.已知函数f x=e ax+bx2−x(a>0,b>0),且曲线y=f x在点1,f1处的切线经过点0,−b.(1)求a;(2)求f x的单调区间;>ln c+1.(3)若b=1,f ln c=2d,证明:f e d2。
长沙市第一中学2018-2019学年度高二第二学期第一次阶段性检测理科数学参考答案
长沙市第一中学 学年度高二第二学期第一次阶段性检测 数学 理科 参考答案
一 选择题 题号 答案 二 填空题 " $ ! + ! % $ # # " % ! & " & ! " " "$或" ##" ! $ $ $# " ' 三 解答题 # 槡 & "0! 1 & 2 3 4 # # 槡 # 解析 圆 的参数方程为 可得圆心为 !槡 " ( ! " % % ! # # # 槡 & 4 5 6 '0! 1 ' " , # $ , % , & . ' . ( ) / * , " + " " / " # .
【全国百强名校】长沙市一中高二入学考试试卷-数学(附答案)
!8!)本小题满分!#分 如图所示#四棱锥0/#$+: 的底面#$+: 是边长为!的菱形#1$+: '&$=#; 是+: 的中点#0#'底面#$+:#0#'槡(! !!"求证&平面 0$;'平面 0#$* !#"求二面角#/$;/0 的大小!
数学试题!一中版"!第!% 页!共"页"
#$!本小题满分!#分 在-#$+中#角#)$)+ 所对的边分别为()))1#且(567#5.67)5$67567$+/1567+ /#(槡(('$! !!"求角+* !#"若-#$+ 的中线+; 的长为!#求-#$+ 的面积的最大值!
!!!!!
!&!在-#$+ 中已知边()1所对的角分别为#$+若('槡%#567#$. (567#+'#567#567$567+.567##则-#$+ 的面积2'!!!!!
数学试题一中版!第!# 页共"页
三解答题本大题共&小题共2$分!解答应写出必要的文字说明证明过 程或演算步骤并写在答题卷相应的位置上
!(!将一枚骰子连续掷两次则点数之和为0的概率为!!!!!!
!0!)已知数列(-满足(!'!(-.!'((-.0则(- 等于!!!!! !%!))已知椭圆+%"#.&##'!与圆 .%#.&#.#槡#%/0槡#&.!$//#
'$$&/&槡#过椭圆+ 的上顶点0 作圆. 的两条切线分别与椭圆+ 相交于#$ 两点不同于0 点则直线0# 与直线0$ 的斜率之积等于
湖南省长沙市2024-2025学年高二上学期10月月考数学试题含答案
湖南2024—2025学年意高二第一学期第一次大徐习数学(答案在最后)时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z=,则z=()A.1i33-B.1i33+ C.12i33- D.12i33+【答案】A【解析】【分析】根据复数的除法运算,即可求出答案.【详解】由题意得11i333z-===-,故选:A2.设集合{}(){}212,ln1A x xB y y x=+≤==+,则A B=()A.[]0,1B.[]3,0- C.[)3,∞-+ D.[)0,+∞【答案】C【解析】【分析】由绝对值不等式解出集合A,再由对数的单调性得到集合B,最后求并集即可;【详解】由题意可得21231x x-≤+≤⇒-≤≤,所以{}3|1A x x=-≤≤,因为211x+≥,所以()2ln10y x=+≥,所以{}|0B y y=≥,所以[)3,A B=-+∞,故选:C.3.)A.2π B.3πC. D.【答案】B【解析】【分析】设圆锥的底面半径为r,根据轴截面面积求出r,结合圆锥侧面积公式,即可求得答案.【详解】设圆锥的底面半径为r,,母线长为2r,1212r r⨯=∴=,则该圆锥的表面积为2π1π123π⨯+⨯⨯=,故选:B4.若角α满足ππcos()2cos()36αα+=-,则πcos(23α-=()A.45- B.35- C.45 D.35【答案】B【解析】【分析】根据给定条件,利用诱导公式求出t n(aπ6α-,再利用二倍角的余弦公式,结合齐次式法求值.【详解】由ππcos()2cos()36αα+=-,得πππcos[()]2cos()266αα+-=-,即ππsin(2cos()66αα--=-,则πtan(26α-=-所以2222ππcos()sin()ππ66cos(2)cos2()ππ36cos()sin()66αααααα----=-=-+-2222π1tan()1(2)36π1(2)51tan()6αα----===-+-+-.故选:B5.已知平面上三个单位向量,,a b c满足()2ac b=+,则a c⋅=()A.12B.2C.14D.34【答案】C【解析】【分析】将()2ac b=+平方后求出78a b⋅=-,再根据数量积的运算律,即可求得答案.【详解】由题意知平面上三个单位向量,,a b c满足()2ac b=+,则()2214a bc==+,即22148488a a b b a b +⋅=++=⋅ ,则78a b ⋅=- ,故()2712222284a c a ab a a b =⋅=⋅++⋅=-⨯=,故选:C6.若函数()f x 在定义域[],a b 上的值域为()(),f a f b ⎡⎤⎣⎦,则称()f x 为“Ω函数”.已知函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”,则实数m 的取值范围是()A.[]4,10 B.[]4,14 C.[]10,14 D.[)10,+∞【答案】C 【解析】【分析】根据“Ω函数”的定义确定()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩的值域为[0,]m ,结合每段上的函数的取值范围列出相应不等式,即可求得答案.【详解】由题意可知()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩的定义域为[0,4],又因为函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”,故其值域为()()[0,4]f f ;而()()00,4f f m ==,则值域为[0,]m ;当02x ≤≤时,()5[0,10]f x x =∈,当24x <≤时,()24f x x x m =-+,此时函数在(2,4]上单调递增,则()(4,]f x m m ∈-,故由函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”可得041010m m ≤-≤⎧⎨≥⎩,解得1014m ≤≤,即实数m 的取值范围是[]10,14,故选:C7.已知,A B 两点的坐标分别为()()0,1,1,0A B ,两条直线1:10l mx y -+=和()2:10l x my m +-=∈R 的交点为P ,则AP BP +的最大值为()A.2B.C.1D.2【答案】D【解析】【分析】由直线所过定点和两直线垂直得到点P 的轨迹,再设ABP θ∠=,结合辅助角公式求出即可;【详解】由题意可得直线1:10l mx y -+=恒过定点()0,1A ,2:10l x my +-=恒过定点()1,0B ,且两直线的斜率之积为1-,所以两直线相互垂直,所以点P 在以线段AB 为直径的圆上运动,AB =,设ABP θ∠=,则,AP BP θθ==,所以π2sin 4AP BP θθθ⎛⎫+=+=+ ⎪⎝⎭,所以当π4θ=时,即0m =时,AP BP +取得最大值2,此时点P 的坐标为()1,1.故选:D.8.已知点P 在椭圆τ:22221x y a b +=(a>b >0)上,点P 在第一象限,点P 关于原点O 的对称点为A ,点P 关于x 轴的对称点为Q ,设3,4PD PQ →→=直线AD 与椭圆τ的另一个交点为B ,若PA ⊥PB ,则椭圆τ的离心率e =()A.12B.2C.2D.3【答案】C 【解析】【分析】设P 的坐标,由题意可得,A Q 的坐标,再由向量的关系求出D 的坐标,求出,AD PA 的斜率,设B 坐标,,P B 在椭圆上,将,P B 的坐标代入椭圆的方程,两式相减所以可得224 PA PB b k k a⋅=-,再由PA PB ⊥可得,a b 的关系,进而求出离心率.【详解】设()11,P x y ,则()()1111,,,A x y Q x y ---,3,4PD PQ →→=,则11,2y D x ⎛⎫- ⎪⎝⎭,设()22,B x y ,则2211222222221 ,1x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得到:()()()()1212121222x x x x y y y y a b +-+-=-,2121221212,,PBAD AB y y x x b k k k x x a y y -+==-⋅=-+即()1211211121124 ,4PA y y y y y y k x x x x x x ++===++,,PA PB ⊥故 1PA PBk k ⋅=-,即2241b a -=-,故2234a c =,故3 2e =.故选:C.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力,属于中档题.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若圆()22260x y x y a a +--+=∈R 上至多存在一点,使得该点到直线3450x y ++=的距离为2,则实数a 可能为()A.5B.6C.7D.8【答案】BCD 【解析】【分析】根据圆的方程确定圆心和半径以及10a <,再结合题意列出相应不等式,即可求得答案.【详解】圆()22260x y x y a a +--+=∈R 即圆()()()221310x y a a -+-=-∈R ,需满足10a <,则圆心为()1,3圆心()1,3到直线3450x y ++=的距离为312545d ++==,要使圆()22260x y x y a a +--+=∈R 上至多存在一点,使得该点到直线3450x y ++=的距离为2,需满足42≥,解得610a ≤<,结合选项可知6,7,8符合题意,故选:BCD10.已知函数()f x 的定义域为(),1f x -R 为偶函数,()1f x +为奇函数,则下列选项正确的是()A.()f x 的图象关于直线1x =-对称B.()f x 的图象关于点()1,0对称C.()31f -=D.()f x 的一个周期为8【答案】ABD 【解析】【分析】根据函数的奇偶性可推出函数的对称性,判断AB ;利用赋值法求出()1f 的值,结合对称性可求()3f ,判断C ;结合函数奇偶性、对称性可推出函数的周期,判断D.【详解】由于函数()f x 的定义域为(),1f x -R 为偶函数,则()()11f x f x --=-,即()()2f x f x --=,则()f x 的图象关于直线1x =-对称,A 正确;又()1f x +为奇函数,则()()11f x f x -+=-+,即()()2f x f x -+=-,故()f x 的图象关于点()1,0对称,B 正确;由于()()11f x f x -+=-+,令0x =,则()()()11,10f f f =-∴=,又()f x 的图象关于直线1x =-对称,故()()310f f -==,C 错误;又()()2f x f x --=,()()2f x f x -+=-,则()()22f x f x --=--+,故()()22f x f x -=-+,即()()4f x f x +=-,则()()8f x f x +=,即()f x 的一个周期为8,D 正确,故选:ABD11.在棱长均为1的三棱柱111ABC A B C -中,1160A AB A AC BAC ∠=∠=∠=,点T 满足1AT xAB y AC z AA =++,其中[],,0,1x y z ∈,则下列说法一定正确的有()A.当点T 为三角形111A B C 的重心时,2x y z ++=B.当1x y z ++=时,AT 的最小值为3C.当点T 在平面11BB C C 内时,x y z ++的最大值为2D.当1x y +=时,点T 到1AA 的距离的最小值为2【答案】BCD 【解析】【分析】将AT 用1,,AB AC AA 表示,再结合1AT xAB y AC z AA =++ 求出,,x y z ,即可判断A ;将AT平方,将()1z x y =-+代入,再结合基本不等式即可判断B ;当点T 在平面11BB C C 内时,则存在唯一实数对(),λμ使得()11BT BB BC BB AC AB λμλμ=+=+- ,再根据1AT xAB y AC z AA =++ ,求出,,x y z ,再根据[],,0,1x y z ∈即可判断C ;求出AT 在1AA方向上的投影,再利用勾股定理结合基本不等式即可判断D.【详解】对于A ,当点T 为三角形111A B C 的重心时,()()11111211323AT A B A C AB AC =⨯+=+,所以1111133A AA A T AB AC A T A =++=+ ,又因为1AT xAB y AC z AA =++ ,所以1,13x y z ===,所以53x y z ++=,故A 错误;对于B ,2222211221222xy AB AC xz AB AA yz AC AA AT x AB y AC z AA +⋅+⋅+++⋅=+222x y z xy xz yz =+++++()()()21x y z xy xz yz xy xz yz =++-++=-++,因为1x y z ++=,所以()1z x y =-+,则()()()1xy xz yz xy x y z xy x y x y ⎡⎤++=++=++-+⎣⎦()()()()()2224x y xy x y x y x y x y +=++-+≤++-+()()223321144333x y x y x y ⎛⎫=-+++=-+-+≤ ⎪⎝⎭,当且仅当23x y +=时取等号,所以()2121133AT xy xz yz =-++≥-= ,所以3AT ≥,所以AT 的最小值为63,故B 正确;对于C ,当点T 在平面11BB C C 内时,则存在唯一实数对(),λμ使得()11BT BB BC BB AC AB λμλμ=+=+-,则()11AT AB BT AB AC AA μμλ=+=-++ ,又因为1AT xAB y AC z AA =++ ,所以1,,x y z μμλ=-==,所以11x y z μμλλ++=-++=+,因为[]0,1z λ=∈,所以[]11,2λ+∈,所以x y z ++的最大值为2,故C 正确;对于D ,当1x y +=时,由A 选项知,()()22222221AT x y z xy xz yz x y z xy x y z z xy z =+++++=++-++=+-+ ,AT 在1AA 方向上的投影为111111AT AA xAB AA y AC AA z AA AA AA ⋅=⋅+⋅+⋅111222x y z z =++=+,所以点T 到1AA的距离d ==因为()2144x y xy +≤=,所以2d =≥=,当且仅当12x y ==时,取等号,所以点T 到1AA的距离的最小值为2,故D 正确.故选:BCD.【点睛】关键点点睛:当点T 在平面11BB C C 内时,则存在唯一实数对(),λμ使得()11BT BB BC BB AC AB λμλμ=+=+- ,再根据1AT xAB y AC z AA =++,求出,,x y z ,是解决C选项的关键.三、填空题:本题共3小题,每小题5分,共15分.12.已知随机事件,A B 满足()()()111,,342P A P B P A B ==+=,则()P AB =____________.【答案】112【解析】【分析】根据随机事件的和事件的概率计算公式,即可求得答案.【详解】由题意可知()()()111,,342P A P B P A B ==+=,故()()()()P A B P A P B P AB +=+-,则()()()()111134212P AB P A P B P A B =+-+=+-=,故答案为:11213.已知正三棱台的高为1,上、下底面边长分别为积为__________.【答案】100π【解析】【分析】分别求得上下底面所在平面截球所得圆的半径,找到球心,求得半径,再由球的表面积公式可得结果.【详解】由题意设三棱台为111ABC A B C -,如图,上底面111A B C所在平面截球所得圆的半径是112332O A =⨯⨯,1(O 为上底面截面圆的圆心)下底面222A B C所在平面截球所得圆的半径是2223432O A =⨯⨯,2(O 为下底面截面圆的圆心)由正三棱台的性质可知,其外接球的球心O 在直线12O O 上,当O 在线段12O O1=,无解;当O 在12O O1=,解得225R =,因此球的表面积是24π4π25100πS R ==⨯=.故答案为:100π14.已知2024是不等式()22log 2321log x x a a+->+的最小整数解,则a 的取值范围为____________.【答案】2021202222a ≤<【解析】【分析】结合分式不等式和对数函数与指数函数互换的性质变形不等式,再分21log a +大于零和小于零时分类讨论即可;【详解】由题意可得012230xa a a >⎧⎪⎪≠⎨⎪->⎪⎩,变形不等式可得()()222222223log 2log 2321log 01log 1log 1log xx a x x a a a a a a-+-+-+-=>+++,当211log 02a a +>⇒>时,有2223log 20x a x a-+->,由指数函数和对数函数的互化并整理可得2223240x x a a -⋅->,即()()2420xxaa -+>,解得24x a >或2x a <-(舍去),从而2log 4x a >,又12a >时2log 41a >,所以要使2024是不等式()22log 2321log x x aa+->+的最小整数解,有22023log42024a ≤<,解得2021202222a ≤<,所以2021202222a ≤<,当211log 002a a +<⇒<<时,注意到20242024323212a ->->,此时,不等式的分子大于零,不符合题意,综上,a 的取值范围为2021202222a ≤<.故答案为:2021202222a ≤<.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布.(1)当漏诊率()0.5%p c =时,求临界值c 和误诊率()q c ;(2)已知一次调查抽取的未患病者样本容量为100,且该项医学指标检查完全符合上面频率分布直方图(图2),临界值99c =,从样本中该医学指标在[]95,105上的未患病者中随机抽取2人,则2人中恰有一人为被误诊者的概率是多少?【答案】(1)97.5c =,() 3.5%q c =(2)815【解析】【分析】(1)由图1,根据漏诊率()0.5%p c =列式求出c ,再由图2求出误诊率()q c ;(2)根据图2求出100个未患病者中,该项医学指标在[]95,105中的人数以及被误诊者的人数,再利用列举法和古典概型的概率公式可求出结果.【小问1详解】依题可知,图1第一个小矩形的面积为50.0020.5%⨯>,所以95100c <<,所以()950.0020.5%c -⨯=,解得97.5c =,()()0.0110097.550.0020.035 3.5%q c =⨯-+⨯==.【小问2详解】由题可知,100个未患病者中,该项医学指标在[]95,105中的有100(0.0100.002)56⨯+⨯=人,其中被误诊者有100(10099)0.0110050.0022⨯-⨯+⨯⨯=人,记随机抽取的2人恰有一人为被误诊者为事件A .分别用a ,b ,c ,d ,E ,F 表示这6人,E ,F 代表被误诊的2人,样本空间{},,,,,,,,,,,,,,ab ac ad aE aF bc bd bE bF cd cE cF dE dF EF Ω=,事件{},,,,,,,A aE aF bE bF cE cF dE dF =,故()15n Ω=,()8n A =,()()()815n A P A n ==Ω,故2人中恰有一人为被误诊者的概率是815.16.已知圆22:80C x y y +-=,过点()2,2P 的直线l 与圆C 交于,A B 两点,点M 满足2OM OA OB =+,其中O 为坐标原点.(1)求点M 的轨迹方程;(2)若CMP !的面积为2,求AB .【答案】(1)()()22132x y -+-=(2)【解析】【分析】(1)设s ,求出圆心坐标,利用CM MP ⊥的数量积为零求出轨迹方程即可;(2)设圆心到直线的距离为d ,由三角形面积公式求出2d ,再利用弦长公式求解即可;【小问1详解】由2OM OA OB =+可得点M 为线段AB 的中点,设s ,圆方程化为标准方程为()22416x y +-=,所以圆心()0,4C ,半径4r=,所以()(),4,2,2CM x y MP x y =-=--,因为CM MP ⊥,所以()(),42,20x y x y -⋅--=,整理可得()()22132x y -+-=,所以点M 的轨迹方程为()()22132x y -+-=,【小问2详解】设圆心到直线的距离为d ,因为M 为AB 的中点,且CM AB ⊥,CMP !的面积为2,CP =所以122d =,即4d =,解得24d =,由弦长公式可得AB ===17.如图,在四棱锥P ABCD -中,底面ABCD是矩形,PA PD ==,PB PC ==90APB CPD ∠=∠=︒,点M ,N 分别是棱BC ,PD 的中点.(1)求证://MN 平面PAB ;(2)若平面PAB ⊥平面PCD ,求直线MN 与平面PCD 所成角的正弦值.【答案】(1)见解析(2)69【解析】【分析】(1)取PA 的中点为Q ,连接NQ ,BQ ,由平面几何知识可得//NQ BM 且NQ BM =,进而可得//MN BQ ,由线面平行的判定即可得证;(2)过点P 作PE AB ⊥交AB 于点E ,作PF CD ⊥交CD 于点F ,连接EF ,取EF 的中点为O ,连接OP ,建立空间直角坐标系后,求出平面PCD 的一个法向量为n 、直线MN 的方向向量MN,利用sin cos n MN n MN n MNθ⋅=⋅=⋅即可得解.【详解】(1)证明:取PA 的中点为Q ,连接NQ ,BQ ,如图:又点N 是PD 的中点,则//NQ AD 且12NQ AD =,又点M 是BC 的中点,底面ABCD 是矩形,则12BM AD =且//BM AD ,∴//NQ BM 且NQ BM =,∴四边形MNQB 是平行四边形,∴//MN BQ ,又MN ⊄平面PAB ,BQ ⊂平面PAB ,∴//MN 平面PAB ;(2)过点P 作PE AB ⊥交AB 于点E ,作PF CD ⊥交CD 于点F ,连接EF ,则PF AB ⊥,PE PF P = ,∴AB ⊥平面PEF ,又AB ⊂平面ABCD ,∴平面PEF ⊥平面ABCD ,∵3PA PD ==,6PB PC ==90APB CPD ∠=∠=︒,∴3AB CD ==,2PE PF ==2BE CF ==,1AE DF ==.设平面PAB ⋂平面PCD l =,可知////l CD AB ,∵平面PAB ⊥平面PCD ,∴90EPF ∠=︒,∴2EF =,取EF 的中点为O ,连接OP 、OM ,则OP ⊥平面ABCD ,1OP =,∴OM 、OF 、OP 两两垂直,以O 为坐标原点,分别以OM ,OF ,OP 所在直线为x ,y ,z 轴建立空间直角坐标系,O xyz -,如图所示,则()0,0,1P ,()2,1,0C ,()1,1,0D -,()2,0,0M ,111,,222N ⎛⎫-⎪⎝⎭,∴()2,1,1PC =- ,()1,1,1PD =--,511,,222MN ⎛⎫=- ⎪⎝⎭,设平面PCD 的一个法向量为(),,n x y z =,则由020n PD x y z n PC x y z ⎧⋅=-+-=⎨⋅=+-=⎩ ,令1y =可得()0,1,1n =r .设直线MN 与平面PCD 所成角为θ,则6sin cos 9n MN n MN n MNθ⋅=⋅===⋅∴直线MN 与平面PCD所成角的正弦值为9.【点睛】本题考查了线面平行的判定及利用空间向量求线面角,考查了空间思维能力与运算求解能力,属于中档题.18.已知P是椭圆C :22221x y a b+=(a >b >0)上一点,以点P 及椭圆的左、右焦点F 1,F 2为顶点的三角形面积为2(1)求椭圆C 的标准方程;(2)过F 2作斜率存在且互相垂直的直线l 1,l 2,M 是l 1与C 两交点的中点,N 是l 2与C 两交点的中点,求△MNF 2面积的最大值.【答案】(1)22184x y +=;(2)49﹒【解析】【分析】(1)由椭圆过的点的坐标及三角形的面积可得a ,b ,c 之间的关系,求出a ,b 的值,进而求出椭圆的标准方程;(2)由题意设直线1l 的方程,与椭圆联立求出两根之和,进而求出交点的中点M 的纵坐标,同理求出N 的纵坐标,进而求出2MNF 面积的表达式,换元由函数的单调性求出其最大值.【小问1详解】由题意可得22222231122a b c c a b ⎧+=⎪⎪⎪⋅=⎨⎪=-⎪⎪⎩,解得:28a =,24b =,∴椭圆的标准方程为:22184x y +=;【小问2详解】由(1)可得右焦点2(2,0)F ,由题意设直线1l 的方程为:2x my =+,设直线与椭圆的交点1(x ,1)y ,2(x ,2)y ,则中点M 的纵坐标为122M y y y +=,联立直线1l 与椭圆的方程222184x my x y =+⎧⎪⎨+=⎪⎩,整理可得:22(2)480m y my ++-=,12242m y y m -+=+,∴222Mmy m -=+,同理可得直线2l 与椭圆的交点的纵坐标2212()21122()N m m y m m-⋅-==++-,∴2221|||||||2MNF M N S MF NF y y =⋅=⋅△22422222(1)2(1)||||2522(1)m m m m m m m m ++==++++222||121m mm m =+⋅++,设0m >,令212m t m+=,则2212MNF S t t=+△,令1()2f t t t =+,2t ,21()2f t t '=-,2t ,()0f t '>恒成立,∴()f t 在[2,)+∞单调递增,∴22241192222MNF S t t ==+⨯+△.∴2MNF 面积的最大值为:49.19.基本不等式是最基本的重要不等式之一,二元基本不等式为122a a +≥.由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.基本不等式可以推广到一般的情形:对于n 个正数12,,...,n a a a ,它们的算术平均数121...1nn n i i a a a A a n n =+++==∑(注:121...nin i aa a a ==+++∑)不小于它们的几何平均数()11121...nnnn ni i G a a a a =⎛⎫== ⎪⎝⎭∏(注:121...ni n i a a a a ==∏),即)12...n n n a a a A G n+++≥≥,当且仅当12...n a a a ===时,等号成立.(1)已知0x y >>,求()1x y x y +-的最小值;(2)已知12,,...,0n a a a >且12...1n a a a +++=.(ⅰ)求证:()()2221111nnniii i a na==-≥-∏∏;(ⅱ)当2024n ≥,求3111nii i i a n a a =++-∑的最小值,其中11n a a +=.【答案】(1)3(2)(ⅰ)证明见解析(ⅱ)421n n -【解析】【分析】(1)直接使用均值不等式即可证明()13x y x y +≥-,再构造取到等号的例子即可;(2)(ⅰ)使用适当的1n +元和1n -元均值不等式,再将所得结果相乘即可;(ⅱ)先研究函数()()()ln 1ln 1f x x x =---+的性质,再利用相应性质得到结果.【小问1详解】由均值不等式得()()()1133x y x y y x y y x y +=+-+≥⋅--.而当2x =,1y =时,有0x y >>,()112321x y x y +=+=--.所以()1x y x y +-的最小值是3.【小问2详解】(ⅰ)由于12,,...,0n a a a >,12...1n a a a +++=,故对1,2,...,i n =,由均值不等式有()()11121112111......1......n i i i i i n i i i i n a a a a a a a a n a a a a a a a +-+-++=++++++++≥+⋅⋅⋅⋅⋅⋅⋅⋅,()()11121112111......1......n i i i n i i n a a a a a a n a a a a a --+-+-=++++++≥-⋅⋅⋅⋅⋅⋅.将二者相乘,得()()2222211121111......nn nii i nia n a a a a a a+--+-≥-⋅⋅⋅⋅⋅⋅⋅.再将该不等式对1,2,...,i n =相乘,即得()()()()()22212112222211111111n n n nn n n n nnn i i i i i i i i a n a n a n a -⋅++-====⎛⎫⎛⎫-≥-=-=- ⎪ ⎪⎝⎭⎝⎭∏∏∏∏.(ⅱ)对01x <<,设()()()ln 1ln 1f x x x =---+.则()1111f x x x'=--+,()()()2211011f x x x ''=+>-+.对01a b <<<,设()()()()()h u f u f b u b f b '=---,01u <<.则()()()h u f u f b '''=-,()()0h u f u ''''=>,所以()h u '在()0,1上递增.所以对0u b <<有()()()0h u f u f b '''=-<,对1b u <<有()()()0h u f u f b '''=->.这表明()h u 在()0,b 上递减,在(),1b 上递增,所以由a b ≠有()()()()()()0f a f b a b f b h a h b '---=>=.这就得到()()()()0f a f b a b f b '--->,同理有()()()()0f b f a b a f a '--->,即()()()()0f a f b a b f a '---<.再设()()()()()()11g t tf a t f b f ta t b =+--+-,01t ≤≤.则()()()()()()1g t f a f b a b f ta t b ''=---+-,()()()()210g t a b f ta t b ''''=--+-<.所以()g t '在[]0,1上递减.而()()()()()00g f a f b a b f b ''=--->,()()()()()10g f a f b a b f a ''=---<.所以一定存在01η<<,使得对0t η<<有()0g t '>,对1t η<<有()0g t '<.故()g t 在[]0,η上递增,在[],1η上递减,而()()010g g ==,结合()g t 的单调性,知对任意01t <<有()0g t >.特别地,有102g ⎛⎫>⎪⎝⎭,即()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭,此即()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.对01b a <<<,同理有()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.而对01a b <=<,显然有()()22f a f b a b f ++⎛⎫= ⎪⎝⎭.综上,对任意(),0,1a b ∈,有()()22f a f b a b f ++⎛⎫≥ ⎪⎝⎭.先证明一个引理:设()12,,...,0,1n a a a ∈,则()()()1212......n nf a f a f a a a a f nn ++++++⎛⎫≥ ⎪⎝⎭.用数学归纳法证明.①当1n =时,结论显然成立.②若结论对n k =成立,则对()122,,...,0,1k a a a ∈,有()()()()()()()()()12212122.........222k k k k k f a f a f a f a f a f a f a f a f a k k k+++++++++++=+1212212122 (1)11222k k k k kk k k a a a a a a a a a a a a f f f f k k k k ++++++++++⎛++++++⎫⎛⎫⎛⎫⎛⎫⎛⎫≥+=+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212212122............22k k k kk k k k a a a a a a a a a a a a k k f f k ++++++++++⎛⎫+ ⎪+++++++⎛⎫≥=⎪ ⎪⎝⎭⎪⎝⎭.从而结论对2n k =也成立.结合①②,可知原结论对无穷多个正整数n 成立.③若结论对1n k =+成立,则对()12,,...,0,1k a a a ∈,有()()()()()()12121212 (1)kk k k a a a f a f a f a f f a f a f a a a a k f k kk k +++⎛⎫++++ ⎪++++++⎛⎫⎝⎭=- ⎪⎝⎭()()()121212.........111k k k a a a f a f a f a f a a a k k f k k k k +++⎛⎫++++ ⎪++++⎛⎫⎝⎭≥⋅ ⎪+⎝⎭1221212.........111k k k k k a a a a a a a a a k k f f k k k k +++++⎛⎫++++ ⎪++++⎛⎫≥⋅-⎪ ⎪+⎝⎭⎪⎝⎭121212 (1)1k kka a a a a a a a a k f f f k k k k k ++++++++++⎛⎫⎛⎫⎛⎫=⋅-= ⎪⎪⎪⎝⎭⎝⎭⎝⎭.从而结论对n k =也成立.由于原结论对无穷多个正整数n 成立,再结合③,即知原结论对任意的正整数n 成立.引理证毕,回到原题.由于我们有()()()21ln 1ln 1ln1f x x x x =---+=-,故1211111ln 122223332111111111e 1nn i i n n nna nnni i i i i i i i i i i i i i a a a n n n n n a a a a a a a =⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪- ⎪⎝⎭ ⎪⎝⎭====++++∏⎛⎫⎛⎫⎛⎫≥===⋅ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭∑∏∏∏()221111ln1111114ln11222222221eeeee111n nni i k i k k f a f a f n n n a n n n n n n n n n n n ===⎛⎫⎛⎫⎛⎫⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑=⋅=⋅≥⋅=⋅=⋅=⋅=-⎛⎫- ⎪⎝⎭.而当121...n a a a n ====时,有2343222111113111111nnni i i i i i a n n n nn n n n a a n n n n n===++===⋅=-----∑∑∑.所以3111ni i i i a n a a =++-∑的最小值是421nn -.【点睛】关键点点睛:本题的关键点在于对全新知识和工具的运用,适当运用工具方可解决问题.。
湖南省长沙市第一中学2024-2025学年高二上学期期中考试数学试卷(含解析)
湖南省长沙市第一中学2024-2025学年高二上学期期中考试数学试卷时量:120分钟满分:150分得分______一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则在复平面对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.设直线的倾斜角为,则A. B. C. D.3.如图,在平行六面体中,为与的交点.若,则下列向量中与相等的是A.B. C. D.4.已知数列为等差数列,.设甲:;乙:,则甲是乙的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.假设一水渠的横截面曲线是抛物线形,如图所示,它的渠口宽AB 为2m ,渠深OC 为1.5m ,水面EF 距AB 为0.5m ,则截面图中水面的宽度EF)A.0.816mB.1.33mC.1.50mD.1.63m6.已知圆.与圆外切,则ab 的最大值为1i2iz -=+z :80l x -+=αα=30︒60︒120︒150︒1111ABCD A B C D -M 11A C 11B D AB 1,,a AD b AA c ===BM1122a b c ++1122a b c -++1122a b c --+1122a b c -+{}n a *,,,p q s t ∈N p q s t +=+p q s t a a a a +=+ 2.448≈≈≈221:()(3)9C x a y -++=222:()(1)1C x b y +++=A.2B.C.D.37.若函数在区间上只有一个零点,则的取值范围为A. B. C. D.8.已知分别为椭圆的左、右焦点,椭圆上存在两点A ,B 使得梯形的高为(为该椭圆的半焦距),且,则椭圆的离心率为B.D.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是A.用简单随机抽样从含有50个个体的总体中抽取一个容量为10的样本,某个个体被抽到的概率是0.2B.已知一组数据1,2,m ,6,7的平均数为4,则这组数据的方差是5C.数据27,12,14,30,15,17,19,23的分位数是18D.若样本数据的平均值为8,则数据的平均值为1510.下列四个命题中正确的是A.过定点,且在轴和轴上的截距互为相反数的直线方程为B.过定点的直线与以为端点的线段相交,则直线的斜率的取值范围为或C.定点到圆D.过定点且与圆相切的直线方程为或11.在棱长为2的正方体中,点满足,则A.当时,点到平面B.当时,点到平面52)44()2sin cos sin cos (0)f x x x x x ωωωωω=->π0,2⎛⎫⎪⎝⎭ω14,33⎛⎤ ⎥⎝⎦14,33⎡⎫⎪⎢⎣⎭17,66⎛⎤⎥⎝⎦17,66⎡⎫⎪⎢⎣⎭12,F F 2222:1(0)x y E a b a b+=>>E 12AF F B c c 124AF BF =E 4556m 50%1210,,,x x x 121021,21,,21x x x --- (1,1)P -x y 20x y --=(1,1)P -(3,1),(3,2)M N -k 12k - (32)k …(1,0)Q 22(1)(3)4x y ++-=2-(1,0)Q 22(1)(3)4x y ++-=51250x y +-=1x =1111ABCD A B C D -P 1,,[0,1]AP AC AD λμλμ=+∈0λ=P 11A BC 0μ=P 11A BCC.当时,存在点,使得D.当时,存在点,使得平面PCD 选择题答题卡题号1234567891011得分答案三、填空题:本题共3小题,每小题5分,共15分.12.假设,且与相互独立,则______.13.斜率为1的直线与椭圆相交于A ,B 两点,AB 的中点为,则______.14.已知公差不为0的等差数列的前项和为,若,则的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知的三个内角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求角;(2)若,点满足,且,求的面积.16.(15分)在四棱锥中,底面ABCD 是正方形,若.(1)求证:平面平面ABCD ;(2)求平面ABQ 与平面BDQ 所成夹角的余弦值.17.(15分)已知双曲线的左、右焦点分别为的一条渐近线方程为,且.(1)求的方程;(2)A ,B 为双曲线右支上两个不同的点,线段AB 的中垂线过点,求直线AB 的斜率的取值范围.34μ=P 1BP PC ⊥34λ=P 1BC ⊥()0.3,()0.4P A P B ==A B ()P AB =22143x y +=(,1)M m m ={}n a n n S 457,,{5,0}a S S ∈-n S ABC π22sin 6b aA c+⎛⎫+=⎪⎝⎭C 1a =D 2AD DB = ||CD = ABC Q ABCD -2,3AD QD QA QC ====QAD ⊥2222:1(0,0)x y E a b a b-=>>12,,F F E y =2c =E E (0,4)C18.(17分)已知是数列的前项和,若.(1)求证:数列为等差数列.(2)若,数列的前项和为.(ⅰ)求取最大值时的值;(ⅱ)若是偶数,且,求.19.(17分)直线族是指具有某种共同性质的直线的全体,例如表示过点的直线,直线的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.(1)若圆是直线族的包络曲线,则m ,n 满足的关系式是什么?(2)若点不在直线族的任意一条直线上,求的取值范围和直线族的包络曲线.(3)在(2)的条件下,过曲线上A ,B 两点作曲线的切线,其交点为.若且,B ,C 不共线,探究是否成立?请说明理由.n S {}n a n 1112n n n n S S a a ++-={}n a 12,13n n a c a =-=+{}n c n n T n T n m 2(1)nn n b a=-21mi i b =∑1x ty =+(1,0)221:1C x y +=1(,)mx ny m n +=∈R ()00P x y ,2:(24)4(2)0()a x y a a Ω-++-=∈R 0y ΩE E E 12,l l P (0,1)C A PCA PCB ∠=∠长沙市第一中学2024-2025学年度高二第一学期期中考试数学参考答案一、二、选择题题号1234567891011答案DABADDACACDBDBD1.D 【解析】因为,对应点为,在第四象限.故选D.2.A 【解析】由直线,可得直线的斜率为设直线的倾斜角为,其中,可得,所以.故选A.3.B 【解析】.故选B.4.A 【解析】甲是乙的充分条件;若为常数列,则乙成立推不出甲成立.5.D 【解析】以为原点,OC 为轴,建立如图所示的平面直角坐标系,设扡物线的标准方程为,由题意可得,代入得,得,故抛物线的标准方程为,设,则,则,1i (1i)(2i)13i 2i (2i)(2i)55z ---===-++-13,55⎛⎫- ⎪⎝⎭:80l x +=l k =l α0180α︒︒<…tan α=30α︒=11111111111111222222BM BB B M AA B AB C AA AB ADa b c =+=++=-+=-++ {}n a O y 22(0)x py p =>(1,1.5)B 22x py =13p =13p =223x y =()()0000,0,0F x y x y >>0 1.50.51y =-=200221,0.81633x x =⨯===≈所以截面图中水面的宽度EF 约为,故选D.6.D 【解析】圆的圆心,半径,圆的圆心,半径,依题意,,于是,即,因此,当且仅当时取等号,所以ab 的最大值为3.故选D.7.A 【解析】由,令,则由题意知.8.C 【解析】如图,由,得,则为梯形的两条底边,作于点,由梯形的高为,得,在Rt 中,,则有,即,在中,设,则,,即,解得,在中,,同理,又,所以,即,所以离心率.故选C.0.8162 1.63m ⨯≈221:()(3)9C x a y -++=1(,3)C a -13r =222:()(1)1C x b y +++=2(,1)C b --21r =12124C C r r =+=222()24a b ++=22122224a b ab ab ab ab =+++=…3ab …a b =)22π()sin 2sincos sin 222sin 23f x x x x x x x ωωωωωω⎛⎫=-=-=- ⎪⎝⎭πππ2π362k x k x ωωω-=⇒=+ππππ14,626233ωωωω⎛⎤<+⇒∈ ⎥⎝⎦…214AF BF =12//AF BF 12,AF BF 12AF F B 21F P AF ⊥P 12AF F B c 2PF c =12F PF 122F F c =1230PF F ︒∠=1230AF F ︒∠=12AF F 1AF x =22AF a x =-22221121122cos30AF AF F F AF F F ︒=+-222(2)4a x x c -=+-1AF x ==12BF F 21150BF F ︒∠=2BF =214AF BF = 4=3a =c e a ==9.ACD 【解析】对于A ,一个总体含有50个个体,以简单随机抽样方式从该总体中抽取一个容量为10的样本,则指定的某个个体被抽到的概率为,故A 正确;对于B ,数据1,2,m ,6,7的平均数是,这组数据的方差是,故B 错误;对于C ,,第50百分位数为,故C 正确;对于D ,依题意,,则,故D 正确;故选ACD.10.BD 【解析】对于A ,过点且在轴和轴上的截距互为相反数的直线还有过原点的直线,其方程为错误;对于B ,直线PM ,PN 的斜率分别为,依题意,或,即或,B 正确;对于C ,圆的圆心,半径,定点到圆C 错误;对于D,圆的圆心,半径,过点斜率不存在的直线与圆相切,当切线斜率存在时,设切线方程为,解得,此切线方程为,所以过点且与圆相切的直线方程为或,D 正确;故选BD.11.BD 【解析】在棱长为2的正方体中,建立如图所示的空间直角坐标系,11100.2505⨯== 4,4512674m =⨯----=222222126(14)(24)(44)(64)(74)55s ⎡⎤=-+-+-+-+-=⎣⎦850%4⨯=1719182+=8x =2116115x -=-=(1,1)-x y ,A y x =-2(1)31(1)1,312312PN FM k k ----====----PM k k …FN k k …12k -…32k (2)2:(1)(3)4C x y ++-=(1,3)C -2r =(1,0)Q 2(1)x +2(3)4y +-=22,=22:(1)(3)4C x y ++-=(1,3)C -2r =(1,0)1x =C (1)y k x =-2=512k =-51250x y +-=(1,0)22(1)(3)4x y ++-=51250x y +-=1x =1111ABCD A B C D -则,,设平面的法向是为,则令,得,对于,当时,,点到平面的距离A 错误;对于B ,当时,,点到平面的距离B 正确;对于C ,当时,,则,当时,显然,方程无实根,即BP 与不垂直,C 错误;对于D ,当时,,则,显然,即,由,得,1111(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,0,2),(2,0,2),(2,2;2),(0,2,2)A B C D A B C D 11(2,0,2),(0,2,2)BA BC =-=11A BC (,,)n x y z = 11220,220,n BA x z n BC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩1z =(1,1,1)n =- A 0λ=11(0,2,2),(0,2,2),(0,2,22)AP AD P A P μμμμμμμ===-P 11ABC 11||n A Pd n ⋅=== 0μ=(2,2,0),(2,2;0),(22,2,0)AP AC P BP λλλλλλλ===-P 11ABC 2||||n BP d n ⋅===34μ=133333(2,2,0)0,,2,2,42222AP AC AD λλλλλ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭ 13333112,2,,22,2,,22,2,222222P BP C P λλλλλλ⎛⎫⎛⎫⎛⎫+=-+=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2213135(22)228602242BP C P λλλλλ⎛⎫⎛⎫⋅=-++--=-+= ⎪⎪⎝⎭⎝⎭ 2564802∆=-⨯⨯<1PC 34λ=133333,,0(0,2,2),2,242222AP AC AD μμμμμ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭ 3331,2,2,,2,2,(2,0,0),(0,2,2)2222P DP DC BC μμμμ⎛⎫⎛⎫+=-== ⎪ ⎪⎝⎭⎝⎭10DC BC ⋅= 1BC DC ⊥1122402DP BC μμ⎛⎫⋅=-+= ⎪⎝⎭ 18μ=即当时,,而平面PCD ,因此平面PCD ,D 正确.故选BD.三、填空题12.0.12【解析】由,且与相互独立,得,13.【解析】设直线AB 的方程为,代入椭圆方程,可得,由韦达定理可得,则,则,则,所以.14.-6【解析】取得最小值,则公差或,①当时,,所以,又,所以,所以,故,令,得,所以的最小值为.②当,不合题意.综上所述:的最小值为-6.四、解答题15.【解析】(1),,,,,18μ=1BC DP ⊥,,DC DP D DC DP ⋂=⊂1BC ⊥()0.3,()0.4P A P B ==A B ()()()0.12P AB P A P B ==43-y x b =+22143x y +=22784120x bx b ++-=1287bx x +=-()121427M b x x x =+=-43177M M b y x b b b =+=-+==73b =474733M m x ==-⨯=-n S 40,5d a >=-10a =40a =7470S a ==55S =-535S a =31a =-4310a a d -==>4n a n =-0n a …4n …n S 346S S ==-4745,735a S a =-==-4570,5,0,n a S S S ==-=π2πsin 2sin 2sin 2sin 66sin b a B A A A c C ++⎛⎫⎛⎫+=⇒+= ⎪ ⎪⎝⎭⎝⎭cos )sin sin()2sin A A C A C A ∴+=++sin cos sin sin cos cos sin 2sin A C A C A C A C A +=++sin sin cos 2sin ,(0,π),sin 0A C A C A A A =+∈∴≠ πππ5πcos 2sin 1,,6666C C C C ⎛⎫⎛⎫=+⇒-=-∈- ⎪ ⎪⎝⎭⎝⎭.…………………………………………………………………………………6分(2)由,,,分16.【解析】(1)证明:中,,所以,所以.又平面平面QAD ,所以平面QAD.又平面ABCD ,所以平面平面ABCD .……………………………………………………5分(2)取AD 的中点,因为,所以,且,因为,平面平面ABCD ,平面平面,所以平面ABCD .在平面ABCD 内作,以OD 为轴,OQ 为轴,建立空间直角坐标系,如图所示,则,设平面ABQ 的法向量为,由,ππ2π,623C C ∴-=∴=222()33AD DB CD CA AD CA AB CA CB CA =⇒=+=+=+- 1212,||3333CD CA CB CD CA CB ∴=+∴=+==22214474272b a ab b b ⎛⎫∴++⋅-=⇒+-= ⎪⎝⎭211230(1)(3)03,sin 1322b b b b b S ab C ∴--=⇒+-=⇒=∴==⨯⨯=QCD 2,3CD AD QD QC ====222CD QD QC +=CD QD ⊥,,CD AD AD QD D AD ⊥⋂=⊂QAD QD ⊂,CD ⊥CD ⊂QAD ⊥O QD QA =OQ AD ⊥2OQ ==OQ AD ⊥QAD ⊥QAD ⋂ABCD AD =OQ ⊥Ox AD ⊥y z O xyz -(0,0,0),(0,1,0),(2,1,0),(2,1,0),(0,1,0),(0,0,2)O A B C D Q --()111,,x y z α=(2,0,0),(0,1,2)AB AQ ==得令,得,所以平面ABQ 的一个法向量.设平西BDQ 的法向量为,由,得令,得,所以平面BDQ 的一个法向量.所以所以平面ABQ 与平面BDQ分17.【解析】(1)由题得推出所以双曲线的方程为.……………………………………………………………………4分(2)由题意可知直线AB 斜率存在且,设,设AB 的中点为.由消去并整理得,则,即,,于是点为.11120,20,AB x AQ y z αα⎧⋅==⎪⎨⋅=+=⎪⎩ 11z =-112,0y x ==(0,2,1)α=- ()222,,x y x β=(2,2,0),(0,1,2)BD DQ =-=- 2222220,20,BD x y DQ y x ββ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 21z =222,2y x ==(2,2,1)β= |cos ,αβ〈〉 2222,,b a c c a b ⎧=⎪⎪=⎨⎪=+⎪⎩1,a b ==E 2213y x -=k ≠()()1122:,,,,AB y kx m A x y B x y =+M 22,33y kx m x y =+⎧⎨-=⎩y ()22223230,30k x kmx m k ----=-≠()()()22222(2)4331230km k m m k ∆-+-+-+-=223m k >-()21212121222222326,,223333km m km m x x x x y y k x x m k m k k k k++==-+=++=⋅+=----M 2222234331243,,333M C MC M m y y km m m k k k km k k x kmk---+⎛⎫-=== ⎪--⎝⎭-由中垂线知,所以,解得:.所以由A ,B 在双曲线的右支上可得:,且,且或,所以,即,综上可得,.…………………………………………………………………………15分18.【解析】(1)因为,所以是以为首项,以为公差的等差数列,所以,即①,所以②,由②-①可得,即,所以,所以,所以数列为等差数列.………………………………………………………7分(2)(Ⅰ)由题意知在等差数列中,,故.可得,当时,取最大值.………………………………………………………………………………12分(Ⅱ).………………………………………………………………17分19.【解析】(1)由定义可知,与相切,则圆的圆心到直线的距离等于1,则,即.……………………………………………………4分1MC AB k k ⋅=-231241m k km k-+=-23m k =-22221223303033m m x x m k k k m++=-=->⇒=-<⇒>-12222003km x x k k k +==>⇒>-()()()()()222222221230333403m k k k k k k ∆=+->⇒-+-=-->⇒<24k >24k >2k >(2,)k ∈+∞1112n n n n S S a a ++-=n n S a ⎧⎫⎨⎬⎩⎭111a a =12111(1)22n n S n n a +=+-=12n n n S a+=1122n n n S a +++=1122n n n n a a ++=11111n n a a a a n n +====+ 111(1),n n a n a a na +=+=11n n a a a +-={}n a {}n a 1(1)2n a a n d n =+-=-132n c n =-22(1)11(2)12(6)362n n n T n n n n -=+⨯-=-=--+∴6n =n T 222222212321234521mi m mi b b b b b a a a a a a ==++++=-+-+-++∑ ()()()()22222222123456212m m a a a a a a a a -=-++-++-+++-+ ()21232284m a a a a m m =-++++=+ 1mx ny +=221x y +=1C (0,0)1mx ny +=d 1==221m n +=(2)点不在直线族的任意一条直线上,所以无论取何值时,4)无解.将整理成关于的一元二次方程:.()00,P x y 2:(24)4(2)0(R)a x y a a Ω-++-=∈a (2a -2004(2)0x y a ++-=200(24)4(2)0a x y a -++-=a ()()2000244440a x a y x +-++-=。
湖南省长沙市2023-2024学年高二上学期第一阶段性检测数学试题含答案
长沙市2023-2024学年度高二第一学期第一次阶段性检测数学(答案在最后)时量:120分钟满分:150分一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}{}-1,0,1,2,32,3,0,1U A B ===,,则()U C A B = ()A.∅ B.{}0,1 C.{}0 D.{}1【答案】B 【解析】【分析】求出{1,0,1}AU C =-,即得解.【详解】由题得{1,0,1}A U C =-,所以(){0,1}U C A B =.故选:B2.24x <的一个必要不充分条件是()A.02x <≤B.20x -<< C.22x -≤≤ D.13x <<【答案】C 【解析】【分析】可根据命题特点进行转化,因为24x <化简后为22x -<<,题设需要寻找24x <的一个必要不充分条件,所以相当于寻找x 取值范围比22x -<<更大的范围即可【详解】24x <即22x -<<,因为22x -<<能推出22x -≤≤,而22x -≤≤不能推出22x -<<,所以24x <的一个必要不充分条件是22x -≤≤.答案选C【点睛】本题考查命题条件的推导,需注意两种不同的说法:A 是B 的充分不必要条件⇔B 的必要不充分条件是A ,同理A 是B 的必要不充分条件⇔B 的充分不必要条件是A3.如图,A 、B 为正方体的两个顶点,M 、N 、P 为所在棱的中点,则直线AB 与平面MNP 的位置关系为()A.平行B.垂直C.相交D.直线在平面内【答案】A 【解析】【分析】根据图形,连接CD ,由M 、N 、P 为所在棱的中点结合正方体的结构特征,易得//AB MP ,然后利用线面平行的判定定理判断.【详解】如图所示:连接CD ,则//AB CD ,又因为M 、N 、P 为所在棱的中点,所以//CD MP ,所以//AB MP ,又AB ⊄平面MNP ,MP ⊂平面MNP ,所以直线AB //平面MNP ,故选:A【点睛】本题主要考查线面平行的判定定理以及正方体的结构特征,还考查了转化化归的思想和逻辑推理的能力,属于基础题.4.已知平面向量(2,3)a x =,(1,9)b = ,如果a b ∥,则x =()A.16B.16-C.13D.13-【答案】A 【解析】【分析】根据向量平行满足的坐标关系即可求解.【详解】由a b ∥可得1830x -=,所以16x =,故选:A5.下列一组数据的25%分位数是()2.8,3.6,4.0,3.0,4.8,5.2,4.8,5.7,5.8,3.3A.3.0B.4C.4.4D.3.3【答案】D 【解析】【分析】先把这组数据按从小到大的顺序排列,根据百分位数的定义可得答案.【详解】把该组数据按照由小到大排列,可得:2.8,3.0,3.3,3.6,4.0,4.8,4.8,5.2,5.7,5.8,由1025% 2.5⨯=,不是整数,则第3个数据3.3是25%分位数.故选:D.6.已知1F ,2F 是椭圆2212516x y +=的两个焦点,P 是椭圆上一点,则12PF PF ⋅的最大值是()A.254B.9C.16D.25【答案】D 【解析】【分析】利用椭圆的定义及基本不等式可求答案.【详解】因为1210PF PF +=,所以21212252PF PF PF PF ⎛+⎫⋅≤= ⎪⎝⎭,当且仅当125PF PF ==时,12PF PF ⋅取到最大值.故选:D.7.实数,x y 满足2220x y x ++=,则1y xx --的取值范围是()A.40,3⎡⎤⎢⎥⎣⎦B.4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭C.11,3⎡⎤-⎢⎥⎣⎦D.1(,1],3⎡⎫-∞-⋃+∞⎪⎢⎣⎭【答案】C 【解析】【分析】先对1y x x --化简,令11y t x -=-,则10tx y t -+-=与圆()2211x y ++=有交点,根据点到直线的距离小于等于半径解不等式即可.【详解】()22222011x y x x y ++=⇒++=,()1111111y x y x y x x x -----==----,令11y t x -=-,化简得10tx y t -+-=,所以10tx y t -+-=与圆()2211x y ++=有交点,1≤,解得403t ≤≤,所以111113y x --≤-≤-.故选:C.8.在正四棱锥P ABCD -中,若23PE PB = ,13PF PC =,平面AEF 与棱PD 交于点G ,则四棱锥P AEFG -与四棱锥P ABCD -的体积比为()A.746B.845 C.745D.445【答案】B 【解析】【分析】利用A 、E 、F 、G 四点共面,25PG PD = ,由锥体体积公式,求出P AEFP ABCD V V --和P AGF P ABCD V V --的值,即可得P AEFGP ABCDV V --的值.【详解】如图所示,设PG PD λ=,由A 、E 、F 、G 四点共面,设AF xAE y AG =+ ,则()()AP PF x AP PE y AP PG +=+++ ,即()12()()33x AP AB AD AP xAP AB AP y AP y AD AP λλ++-=+-++-,得2120133333x x y y AP AB y AD λλ⎛⎫⎛⎫⎛⎫--++-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又AP ,AB ,AD 不共面,则203312033103x y y xy λλ⎧--+=⎪⎪⎪-=⎨⎪⎪-=⎪⎩,解得:2=5λ,即25PG PD = ,设1h ,2h 分别是点F 到平面PAE 和点C 到平面PAB 的距离,则12h PF h PC=,所以1229P AEF F PAE PAE PAE P ABC C PAB PAB PAB V S PF PA h P S E V V V S h S P C A PB PF PE P PB F PC P PC ----⋅===⋅=⋅=⋅⋅=⋅⋅ ,12P ABCP ABCD V V --=,19P AEF P ABCD V V --=,同理,215P AGF F PAG P ADC C PAD PA V PG PF PG PF PC P V V V PA P C D PD ----=⋅=⋅=⋅⋅=,12P ADC P ABCD V --=,115P AGF P ABCD V V --=,11891545P AEFG P AGF P AEF P ABCD P ABCD V V V V V -----+=+==则四棱锥P AEFG -与四棱锥P ABCD -的体积比为845.故选:B【点睛】方法点睛:点共面问题可转化为向量共面问题;求几何体的体积,要注意分割与补形;利用锥体体积公式,棱锥的体积比最终转化为棱长之比.二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个3选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列结论不正确的是().A.过点()1,3A ,()3,1B -的直线的倾斜角为30︒B.直线()()34330m x y m m ++-+=∈R 恒过定点()3,3--C.直线240x y +-=与直线2410x y ++=之间的距离是2D.已知()2,3A ,()1,1B -,点P 在x 轴上,则PA PB +的最小值是5【答案】ABC 【解析】【分析】A 选项,求出过点()1,3A ,()3,1B -的直线的斜率,进而得到倾斜角不为30︒;B 选项,变形后得到方程组,求出恒过点()3,3-;C 选项,直线240x y +-=变形为2480x y +-=,利用两平行线间距离公式求出答案;D 选项,在坐标系中画出点的坐标,利用对称性求出PA PB +的最小值.【详解】A 选项,过点()1,3A ,()3,1B -的直线的斜率为()311132-=--,设直线倾斜角为θ,则1tan 2θ=,由于tan 303︒=,故过点()1,3A ,()3,1B -的直线的倾斜角不为30︒,A 错误;B 选项,直线()()34330m x y m m ++-+=∈R 变形得到()()34330x y x m m +-++=∈R ,令343030x y x +-=⎧⎨+=⎩,解得33x y =-⎧⎨=⎩,故直线()()34330m x y m m ++-+=∈R 恒过点()3,3-,B 错误;C 选项,直线240x y +-=变形为2480x y +-=,故与直线2410x y ++=10==,故C 错误;D 选项,在平面直角坐标系中画出()2,3A ,()1,1B -,两点都在x 轴上方,画出()1,1B -关于x 轴的对称点()1,1D --,连接AD ,与x 轴交于点P ,则AD 即为PA PB +的最小值,则()min5PA PB+==,D 正确.故选:ABC10.已知函数()sin()f x x ωϕ=+(其中0,(π,π)ωϕ>∈-)相邻的两个零点为π5π,36,则()A.函数()f x 的图象的一条对称轴是π6x =B.函数()f x 的图象的一条对称轴是π12x =C.ϕ的值可能是π3D.ϕ的值可能是5π6【答案】BC 【解析】【分析】由5π262π3πT =-=,得到周期,再由1π5π7π23612x ⎛⎫=+= ⎪⎝⎭,得到对称轴方程,然后由π3是零点得到2ππ,Z 3k k ϕ=-∈判断即可.【详解】由5π262π3πT =-=,得2ππT ω==,则2ω=,则1π5π7π23612x ⎛⎫=+= ⎪⎝⎭,所以7π12x =为()f x 的一条对称轴,故()f x 的对称轴可表示为7ππ,Z 122x k k =+⋅∈,故A 错误,B 正确;∵π3是零点,故2ππ,Z 3k k ϕ+=∈,则2ππ,Z 3k k ϕ=-∈(k ∈Z ).故C 正确,D 错误.故选:BC.11.如图,在三棱锥-P ABC 中,2PA AB AC BC ====,若三棱锥-P ABC 的体积为233V =,则下列说法正确的有()A.PA BC⊥B.直线PC 与面PAB 所成角的正弦值为64C.点A 到平面PBC 的距离为233D.三棱锥-P ABC 的外接球表面积28π3S =【答案】ABD 【解析】【分析】A.由体积公式,计算点P 到平面ABC 的距离,即可判断;B.根据垂直关系,构造线面角,即可判断;C.利用等体积转化,即可求解并判断;D.根据外接球的半径公式,即可求解并判断.【详解】设点P 到平面ABC 的距离为h ,三棱锥的体积1133223223V h =⨯⨯⨯⨯=,得2h =,因为2PA =,所以PA ⊥平面ABC ,又BC ⊂平面ABC ,所以PA BC ⊥,故A 正确;因为PA ⊂平面PAB ,所以平面PAB ⊥平面ABC ,且平面PAB ⋂平面ABC AB =,取AB 的中点D ,连结,PD CD ,因为ABC 是等边三角形,所以CD ⊥平面PAB ,CPD ∠为直线PC 与面PAB 所成角,3CD =,2222PC PA AC =+=所以6sin 4CD CPD PC ∠==,故B 正确;PBC 中,22PB PC ==,2BC =,所以BC ()22217-=,12772=⨯=PBC S △,设点A 到平面PBC 的距离为h ',则13733h '=,得2217h '=,故C 错误;如图,过ABC 的中心H 作平面ABC 的垂线,过线段PA 的中点M 作PA 的垂线,两条垂线交于点O ,则点O 到四点,,,P A B C 的距离相等,即点O 是三棱锥外接球的球心,ABC 外接圆的半径3232233r HA ==⨯=,12PA OH ==,所以三棱锥外接球的半径222123PA R r ⎛⎫=+ ⎪⎝⎭,所以外接球的表面积228π34πS R ==,故D 正确.故选:ABD12.已知定义在R 上的函数()f x ,对于给定集合A ,若12,R x x ∀∈,当12x x A -∈时都有()()12f x f x A -∈,则称()f x 是“A 封闭”函数,则下列命题正确的是()A.()3f x x =是“[]1,1-封闭”函数B.定义在R 上函数()f x 都是“{}0封闭”函数C.若()f x 是“{}1封闭”函数,则()f x 一定是“{}k 封闭”函数()*N k ∈D.若()f x 是“[],a b 封闭”函数()*,N a b ∈,则()f x 在区间[],a b 上单调递减【答案】BC 【解析】【分析】特殊值122,1x x ==判断A ;根据定义及函数的性质判断B ;根据定义得到R x ∀∈都有(1)()1f x f x +=+,再判断所给定区间里是否有22()()f x k f x k +-=成立判断C ;举例说明判断D 作答.【详解】对于A :当122,1x x ==时,121[1,1]x x -=∈-,而12()()817[1,1]f x f x -=-=∉-,A 错误;对B :对于集合{}0,12,R x x ∀∈使120x x -=,即12x x =,必有12()()0f x f x -=,所以定义在R 上的函数()f x 都是“{}0封闭”函数,B 正确;对C :对于集合{}1,12,R x x ∀∈使{}121x x -∈,则121x x =+,而()f x 是“{}1封闭”函数,则22(1)()1f x f x +-=,即R x ∀∈都有(1)()1f x f x +=+,对于集合{}k ,12,R x x ∀∈使{}12x x k -∈,则12x x k =+,*N k ∈,而22()(1)1f x k f x k +=+-+,22(1)(2)1f x k f x k +-=+-+,…,22(1)()1f x f x +=+,所以()()()()()()2222221112f x k f x k f x f x k f x k f x k +++-+++=+-++-+++ ,即22()()f x k f x k +=+,故21()()f x f x k -=,()f x 一定是“{}k 封闭”函数()*N k ∈,C 正确;对D ,函数()f x x =,集合[1,2]A =,12,R x x ∀∈,当[]121,2x x m -=∈时,()()[]12121,2f x f x x x m -=-=∈,则函数()f x 是“[1,2]封闭”函数,而函数()f x x =是R 上的增函数,D 错误.故选:BC【点睛】关键点睛:对于C ,根据给定的条件得到R x ∀∈都有(1)()1f x f x +=+,R x ∀∈有()()f x a f x b +=+恒成立,利用递推关系及新定义判断正误.三、填空题:本题共4小题,每小题5分,共20分.13.已知i 是虚数单位,化简2i1i-+的结果为__________.【答案】13i 22-【解析】【分析】利用复数的除法化简可得结果.【详解】()()()()2i 1i 2i 13i 13i 1i 1i 1i 222----===-++-.故答案为:13i 22-.14.甲、乙两人独立地破译一份密码,已知甲、乙能破译的概率分别为23和35,则密码被成功破译的概率为________.【答案】1315【解析】【分析】根据题意,结合相互独立事件的概率乘法公式和互斥事件的概率加法公式,即可求解.【详解】设事件A =“甲能破译密码”,事件B =“乙能破译密码”,则事件A 与B 相互独立,且23(),()35P A P B ==,则密码被成功破译的概率为:()()()()()()()()()P P AB P AB P AB P A P B P A P B P A P B =++=++23232313(1)(1)35353515=⨯+-⨯+⨯-=.故答案为:1315.15.已知圆22:(3)(4)9C x y -+-=和两点(,0),(,0) (0)A m B m m ->,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为_____________.【答案】8【解析】【分析】根据给定条件可得点P 是动圆222x y m +=与圆C 的公共点,再借助两圆的位置关系列式求解即得.【详解】因点P 满足90APB ∠=︒,则点P 在以线段AB 为直径的圆上(除点A ,B 外),即点P 在以原点O 为圆心,m 为半径的圆上,于是得点P 的轨迹方程为:222(0)x y m y +=≠,又圆22:(3)(4)9C x y -+-=的圆心(3,4)C ,半径为3,而点P 在圆C 上,即圆O 与圆C 有公共点,因此有|3|||3m OC m -≤≤+,而||5OC ==,即3535m m +≥⎧⎨-≤⎩,解得28m ≤≤,当且仅当圆O 与圆C 内切时,m =8,圆O 与圆C 外切时,m =2,所以m 的最大值为8.故答案为:816.设函数π()sin (0)4f x x ⎛⎫=+> ⎪⎝⎭ωω在ππ,64⎛⎫ ⎪⎝⎭上恰有两个零点,且()f x 的图象在ππ,64⎛⎫ ⎪⎝⎭上恰有两个最高点,则ω的取值范围是____________.【答案】516925,,3522⎛⎫⎡⎤⋃ ⎪⎢⎥⎝⎭⎣⎦【解析】【分析】结合三角函数的图象,可找到满足条件的π4x ω+所在的区间,解不等式组,可求得结果.【详解】πππππππ(,0(,6446444x x ωωωω∈>∴+∈++ ,()f x 在ππ,64⎛⎫ ⎪⎝⎭上恰有两个零点,恰有两个最高点,πππ2π2π642,Z 5πππ2π+2π3π244k k k k k ωω⎧≤+<+⎪⎪∴∈⎨⎪<+≤+⎪⎩即331212,Z 228+9811k k k k k ωω⎧-≤<+⎪∈⎨⎪<≤+⎩,当0k <时,不符合题意,当0k =时,不等式组为3322911ωω⎧-≤<⎪⎨⎪<≤⎩,不等式无解,当1k =时,不等式组为2127221719ωω⎧≤<⎪⎨⎪<≤⎩,不等式无解,当2k =时,4551,222527.ωω⎧≤<⎪⎨⎪<≤⎩得51252ω<<,当3k =时,6975223335ωω⎧≤<⎪⎨⎪<≤⎩,得69352ω≤≤,当4k ≥时,不等式无解.ω∴∈516925,,3522⎛⎫⎡⎤⋃ ⎪⎢⎥⎝⎭⎣⎦故答案为:516925,,3522⎛⎫⎡⎤⋃ ⎪⎢⎥⎝⎭⎣⎦四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知直线1l :2340x y -+=与直线2l :30x y +-=的交点为M .(1)求过点M 且与直线1l 垂直的直线l 的方程;(2)求过点M 且与直线3l :250x y -+=平行的直线l '的方程.【答案】(1)3270x y +-=;(2)230x y -+=.【解析】【分析】(1)先求两条直线的交点,设所求直线斜率k ,利用点斜式设出直线方程,由点到直线的距离公式求出k ,从而确定直线方程;(2)根据直线平行求出直线的斜率,利用点斜式方程求解即可.【详解】(1)由234030x y x y -+=⎧⎨+-=⎩,解得12x y =⎧⎨=⎩,∴1l ,2l 交点M 坐标为()1,2,∵1l l ⊥,∴直线l 的斜率32k =-,直线l 的方程为()3212y x -=--,即3270x y +-=.(2)∵3//'l l ,∴直线l '的斜率12k =,又l '经过点()1,2M ,∴直线l '的方程为()1212y x -=-,即230x y -+=.18.移动公司在国庆期间推出4G 套餐,对国庆节当日办理套餐的客户进行优惠,优惠方案如下:选择套餐1的客户可获得优惠200元,选择套餐2的客户可获得优惠500元,选择套餐3的客户可获得优惠300元.国庆节当天参与活动的人数统计结果如图所示,现将频率视为概率.(1)求从中任选1人获得优惠金额不低于300元的概率;(2)若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选出2人,求这2人获得相等优惠金额的概率.【答案】(1)56;(2)415.【解析】【分析】(1)选择套餐2和套餐3的客户数除以选择套餐1,2,3的总数即可求解;(2)按照分层抽样计算优惠200元的有1人,获得优惠500元的有3人,获得优惠300元的有2人,再按照古典概型计算即可求解.【详解】(1)设事件A 为“从中任选1人获得优惠金额不低于300元”,则()1501005501501006P A +==++.(2)设事件B 为“从这6人中选出2人,他们获得相等优惠金额”,由题意按分层抽样方式选出的6人中,获得优惠200元的有1人,获得优惠500元的有3人,获得优惠300元的有2人,分别记为:1a ,1b ,2b ,3b ,1c ,2c ,从中选出2人的所有基本事件如下:11a b ,12a b ,13a b ,11a c ,12a c ,12b b ,13b b ,11b c ,12b c ,23b b ,21b c ,22b c ,31b c ,32b c ,12c c ,共15个.其中使得事件B 成立的有12b b ,13b b ,23b b ,12c c ,共4个.则()415P B =.故这2人获得相等优惠金额的概率为415.19.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos 2a c C b b =-.(1)求角B ;(2)已知21b a c =-=,,求ABC 的面积.【答案】(1)π3(2)4【解析】【分析】(1)结合正弦定理及三角恒等变换,化简cos 2a c C b b=-可得cos B 的值,讨论即可得角B (2)结合余弦定理及完全平方公式,可求得ac ,即可由面积公式求得结果【小问1详解】cos ,2cos 22a c C b C a c b b=-∴=- ,由正弦定理可得,2sin cos 2sin sin B C A C =-,即2sin cos 2sin()sin B C B C C =+-,化简可得,sin 2sin cos C C B =,又1πsin 0,cos ,(0,π),23C B B B ≠∴=∈∴= .【小问2详解】在ABC 中,由余弦定理可得,2222cos b c a ac B =+-⋅,2222π()22cos ()3b c a ac ac b c a ac ∴=-+-⋅∴=-+,112,1,3,sin 32224ABC b a c ac S ac B =-=∴=∴=⋅=⨯⨯= .20.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点,OCD 是边长为1的等边三角形,且6A BCD V -=.(1)证明:OA CD ⊥;(2)若2ED AE =,求二面角B EC D --的余弦值.【答案】(1)证明见解析(2)4214-【解析】【分析】(1)根据面面垂直的判定定理证明AO ⊥平面BCD 即可;(2)取CD 的中点G ,BC 的中点F ,连接,OF OG ,根据条件证明,,OA OF OG 两两垂直,分别以,,OF OG OA 为x 轴,y 轴,z 轴建立坐标系,求出平面BEC 和平面ECD 的法向量,根据公式求解即可.【小问1详解】因为AB AD =,O 为BD 的中点,所以AO BD ⊥,又因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AO ⊂平面ABD ,所以AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以OA CD ⊥.【小问2详解】取CD 的中点G ,BC 的中点F ,连接,OF OG ,因为OCD 是边长为1的等边三角形,所以OG CD ⊥,因为//OF CD ,所以OF OG ⊥,由(1)知AO ⊥平面BCD ,所以,,OA OF OG 两两垂直,分别以,,OF OG OA 为x 轴,y 轴,z 轴建立如图所示坐标系,因为OCD 是边长为1的等边三角形,O 为BD 的中点,所以1,120OB OC BOC ==∠= ,则30CBD ∠= ,所以BCD △为直角三角形,BC =,因为6A BCD V -=,所以1111326A BCDV AO AO-=⨯⨯=⇒=,则111,,,,,222222B C D⎛⎫⎛⎫⎛⎫--⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为2ED AE=,即13AE AD=,设(),,E x y z,(),,1AE x y z=-,1,,122AD⎛⎫=--⎪⎪⎝⎭,得132,,663E⎛⎫- ⎪⎪⎝⎭,设平面BEC的法向量为()1,,n x y z=,()2232,,,0,333BE BC⎛⎫=-=⎪⎪⎝⎭,则11002200333n BC yx zn BE x y z=⎧⋅==⎧⎪⇒⇒⎨⎨⎨=⋅=⎩-++=⎪⎪⎩⎩,令1x=,则()11,0,1n=,设平面ECD的法向量为()2,,b cn a=,()22,,,1,0,0333EC CD⎛⎫=-=-⎪⎪⎝⎭,则22002322333a an CDca b cn EC-=⎧⎧=⎧⋅=⎪⎪⎪⇒⇒⎨⎨=+-=⋅=⎪⎪⎩⎩,令2b=,则(20,n=,所以121212cos,14n nn nn n⋅===⋅,由图可知二面角B EC D--为钝角,则二面角B EC D--的余弦值为14-. 21.已知函数()2()log1(0,1)xaf x a kx a a=++>≠为偶函数.(1)求k的值;(2)设函数()()25f x x xg x a a+=-,若[1,2]x∀∈-,()0g x≤恒成立,求a的取值范围.【答案】(1)1k=-(2)(,12⎫⎪⎢⎪⎣⎭U 【解析】【分析】(1)由函数()f x 为R 上的偶函数可得()()11f f -=,即可得解;(2)由(1)得2252()x x g x a a -+=,令x t a =,则2252y t t =-+,则要使[1,2]x ∀∈-,()0g x ≤恒成立,只需要函数x t a =的值域是不等式22520t t -+≤的解集的子集即可,再分01a <<和1a >两种情况讨论即可.【小问1详解】函数()f x 的定义域为R ,因为函数()2()log 1(0,1)x a f x a kx a a =++>≠为偶函数,所以()()11f f -=,即()221log 1log 1a a k a k a ⎛⎫+-=++ ⎪⎝⎭,所以()22222111log 1log 1log 221a a a a a a ak a ⎛⎫⎛⎫+-+=⋅=- ⎪ ⎪+⎝⎭⎭+=⎝,解得1k =-,经检验,符合题意,所以1k =-;【小问2详解】由(1)得()2()log 1x a f x ak =+-,则()2log 12252()25x a x a x x g x a a a a +=--+=,令x t a =,则2252y t t =-+,令22520y t t =-+≤,解得122t ≤≤,要使[1,2]x ∀∈-,()0g x ≤恒成立,只需要函数x t a =的值域是1,22⎡⎤⎢⎥⎣⎦的子集即可,当01a <<时,因为[1,2]x ∈-,所以21,x t a a a ⎡⎤=∈⎢⎥⎣⎦,则2121201a aa ⎧≥⎪⎪⎪≤⎨⎪<<⎪⎪⎩,解得12a ≤<,当1a >时,则21,x t a a a ⎡⎤=∈⎢⎥⎣⎦,则211221a a a ⎧≥⎪⎪≤⎨⎪>⎪⎩,解得1a <≤综上所述,a的取值范围为(2,12⎫⎪⎢⎪⎣⎭U .【点睛】关键点点睛:将[1,2]x ∀∈-,()0g x ≤恒成立,转化为函数x t a =的值域是不等式22520t t -+≤的解集的子集,是解决本题的关键.22.已知圆O 的方程为2216x y +=,直线l 与圆O 交于,R S两点.(1)若坐标原点O 到直线的距离为32,且l 过点(3,0)M ,求直线l 的方程;(2)已知点(4,0)P -,Q 为RS 的中点,若,R S 在x 轴上方,且满足π4OPR OPS ∠+∠=,在圆O 上是否存在定点T ,使得PQT △的面积为定值?若存在,求出PQT △的面积;若不存在,说明理由.【答案】(1)30x -=;(2)存在点(0,4)T ,使PQT S △为定值8.【解析】【分析】(1)设直线l 的方程为:3x my =+,根据原点O 到直线的距离为32,解出m 的值即可;(2)设1122(,),(,)R x y S x y ,直线RS 的方程为:y kx b =+,利用韦达定理及π4OPR OPS ∠+∠=,可得1k =-,(,)(0)22b b Q b >,从而得点Q 的轨迹为(0y x x =<<,设T ππ(4cos ,4sin ),[0,)(,π)(π,2π)44θθθ∈⋃⋃,可得PQT S =π|1]8sin |4b θθ++-,再根据三角函数的性质即可得解.【小问1详解】解:设直线l 的方程为:3x my =+,因为原点O 到直线的距离为32,32=,解得m =,所以直线l的方程为30x ±-=;【小问2详解】解:设1122(,),(,)R x y S x y ,直线RS 的方程为:y kx b =+,由2216x y y kx b⎧+=⎨=+⎩,可得222(1)2160k x kbx b +++-=,则22222244(1)(16)4(1616)0k b k b k b ∆=-+-=-+>,2121222216,11kb b x x x x k k -+=-=++,所以12121222()21b y y kx b kx b k x x b k +=+++=++=+,因为,R S 在x 轴上方,所以120y y +>,所以0b >,又因为Q 为RS 的中点,所以22(,)11kb b Q k k -++,又因为11tan 4y OPR x ∠=+,22tan 4y OPS x ∠=+,所以πtan()tan14OPR OPS ∠+∠==,即12121212441144y y x x y y x x +++=-⋅++,整理得:12211212(4)(4)(4)(4)y x y x x x y y +++=++-,又因为1122,y kx b y kx b =+=+,整理得:221212(21)(44)()8160k k x x k b kb x x b b +-++-++++-=,代入2121222216,11kb b x x x x k k -+=-=++,化简得(1)4(1)b k k k +=+,所以4b k =或1k =-,当4b k =时,直线RS 过定点(4,0)-不符题意,所以1k =-,所以(,0)22b b Q b >,所以点Q 在直线y x =上,即点Q的轨迹为(02y x x =<<,所以直线:PQ 2(4)42by x b =++,即(4)8b y x b =++,(8)40bx b y b -++=且||PQ =,假设存在满足条件的点T ,其坐标为ππ(4cos ,4sin ),[0,(,π)(π,2π)44θθθ∈⋃⋃,则点T 到直线PQ的距离d ==,所以1||2PQT S PQ d =⋅⋅12=1|4cos 4(8)sin 4|24b b b θθ-++==|cos sin 8sin ||(cos sin 1)8sin |b b b b θθθθθθ=--+=-+-π|)1]8sin |4b θθ=++-,π104θ++=,即πcos()42θ+=-,π3π44θ+=,π2θ=时,PQT S △为定值8,此时T 的坐标为(0,4),所以存在点(0,4)T ,使PQT S △为定值8.【点睛】关键点睛:本题的关键是得出点Q的轨迹,为后面设点Q的坐标和求Q的坐标作好铺垫.。
湖南长沙一中2024年高二下学期期末考试数学试题
长沙市第一中学2023—2024学年度高二第二学期第二次阶段性检测数学时量:120分钟 满分:150分得分__________.一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z 满足()1i 2i z −=+,则复数z 的虚部为( )A.32B.32−C.3i 2D.3i2−2.已知某校高三(1)班有51名学生,春季运动会上,有17名学生参加了田赛项目,有22名学生参加了径赛项目,田赛和径赛都参加的有9名同学,则该班学生中田赛和径赛都没有参加的人数为( )A.25B.23C.21D.193.已知向量()()1,2,2,1ab =,则向量a在向量b上的投影向量的坐标为()A.42,55B.84,55C.48,55D.24,554.已知直线,,a b c 是三条不同的直线,平面,,αβγ是三个不同的平面,下列命题正确的是()A.若,a c b c ⊥⊥,则a ∥bB.若a ∥,b a ∥α,则b ∥αC.若a ∥,b α∥,c a α⊥,且c b ⊥,则c α⊥D.若,βαγα⊥⊥,且a βγ∩=,则a α⊥ 5.若将大小形状完全相同的三个红球和三个白球(除颜色外不考虑球的其他区别)排成一排,则有且只有两个白球相邻的排法有()A.6B.12C.18D.366.若()()21ln 1f xx x=+−,设()()()0.33,ln2,2a f b f c f =−==,则,,a b c 的大小关系为()A.c a b >>B.b c a >>C.a b c>> D.a c b>>7.已知等比数列{}n a 的前n 项和为1631,,872n S a S S ==,若n S λ 恒成立,则λ的最小值为( )A.14 B.13 C.12D.1 8.已知222211228x y x y +=+=,且12120x x y y +=,则()()2212122x x y y +−++的最大值为( ) A.9 B.12 C.36 D.48二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.关于二项式31x 的展开式,下列说法正确的有( )A.有3项B.常数项为3C.所有项的二项式系数和为8D.所有项的系数和为010.已知曲线:44C y y x x =+,则( ) A.曲线C 在第一象限为双曲线的一部分 B.曲线C 的图象关于原点对称 C.直线2y x =与曲线C 没有交点 D.存在过原点的直线与曲线C 有三个交点11.若定义域为R 的函数()f x 不恒为零,且满足等式()()()2xf x x f x =+′,则下列说法正确的是( )A.()00f =B.()f x 在定义域上单调递增C.()f x 是偶函数D.函数()f x ′有两个极值点三、填空题(本题共3小题,每小题5分,共15分)12.某小球可以看作一个质点,沿坚直方向运动时其相对于地面的高度h (单位:m )与时间t (单位:s )存在函数关系()2269h t t t =−++,则该小球在2s t =时的瞬时速度为__________m /s . 13.若随机变量X 服从正态分布()22,N σ,且()30.66P X = ,则(1)P X <=__________.14.在四面体ABCD 中,且3,AB CD AC BD AD BC ======,点,P Q 分别是线段AD ,BC 的中点,若直线PQ ⊥平面α,且α截四面体ABCD 形成的截面为平面区域Ω,则Ω的面积的最大值为__________.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分13分)在ABC 中,内角,,A B C 的对边分别为,,a b c ,且()()cos 12cos b C c B +=−. (1)证明:2a b c +=; (2)若95,cos 16cC=,求ABC 的面积. 16.(本小题满分15分)由四棱柱1111ABCD A B C D −截去三棱锥111D A DC −后得到如图所示的几何体,四边形ABCD 是菱形,4,2,AC BD O ==为AC 与BD 的交点,1B O ⊥平面ABCD .(1)求证:1B O ∥平面11A DC ;(2)若二面角11O A C D −−11A DC 与平面11BCC B 夹角的大小. 17.(本小题满分15分)已知函数()()()ln 1e xf x ax a x =+−. (1)当1a =时,求证:()2f x <−;(2)若()f x 存在两个零点,求实数a 的取值范围. 18.(本小题满分17分)短视频已成为当下宣传的重要手段,某著名景点利用短视频宣传增加旅游热度,为调查某天南北方游客来此景点旅游是否与收看短视频有关,该景点对当天前来旅游的500名游客调查得知,南方游客有300人,因收看短视频而来的280名游客中南方游客有200人.游客短视频合计收看未看 南方游客 北方游客 合计(1)依据调查数据完成如下列联表,并根据小概率值0.001α=的独立性检验,分析南北方游客来此景点旅游是否与收看短视频有关联;(2)为了增加游客的旅游乐趣,该景点设置一款5人传球游戏,每个人得到球后都等可能地传给其余4人之一,现有甲、乙等5人参加此游戏,球首先由甲传出. (i )若*i ∈N ,求经过i 次传递后球回到甲的概率;(ii )已知*m ∈N ,记前m 次传递中球传到乙的次数为X ,求X 的数学期望.参考公式:()()()()22()n ad bc a b c d a c b d χ−=++++,其中n a b c d =+++;若12,,,m Y Y Y 为随机变量,则()11m mi i i i E Y E Y == = ∑∑. 附表:α 0.1 0.05 0.01 0.0050.001 x α2.7063.8416.6357.87910.82819.(本小题满分17分)已知双曲线22:1C x y −=,过()2,0R 的直线l 与双曲线C 的右支交于,P Q 两点. (1)若PQ =l 的方程,(2)设过点R 且垂直于直线l 的直线n 与双曲线C 交于,M N 两点,其中M 在双曲线的右支上. (i )设PMN 和QMN 的面积分别为12,S S ,求12S S +的取值范围;(ii )若M 关于原点对称的点为T ,证明:M 为PQN 的垂心,且,,,P Q N T 四点共圆.长沙市第一中学2023—2024学年度高二第二学期第二次阶段性检测数学参考答案一、二、选择题题号 1 2 3 4 5 6 7 8 9 10 11 答案ACBDBDCCBCDACAD1.A 【解析】()()()()2i 1i 2i13i 1i1i 1i 22z+++===+−−+,故z 的虚部为32.故选:A. 2.C 【解析】设高三(1)班有51名学生组成的集合为U ,参加田赛项目的学生组成的集合为A ,参加径赛项目的学生组成的集合为B ,由题意集合A 有17个元素,B 有22个元素,A B ∩中有9个元素,所以A B ∪有1722930+−=个元素.所以该班学生中田赛和径赛都没有参加的人数为513021−=.故选:C.3.B 【解析】4|||,,5||a b a b a b a b ⋅==〈〉==∣, ∴向量a 在向量b 上的投影向量为484cos ,,555b a a b b⋅⋅=,故选:B. 4.D 【解析】对于A ,若,a c c ⊥⊥,则a b 、可能平行,可能异面,可能相交,故A 错误; 对于B ,若a ∥,b a ∥α,则b ∥α或b α⊂,故B 错误;对于C ,以长方体ABCD A B C D ′−′′′为例,AB ∥平面,A B C D CD ′′′′∥平面,,A B C D BC AB BC CD ⊥′′⊥′′,但BC 与平面A B C D ′′′′不垂直,故C 错误;故选D.5.B 【解析】除颜色外不考虑球的其他区别,将三个白球分成两堆,只有一种分法,大小形状完全相同的三个红球排成一排也只有一种排法,将白球插空有24A 12=种可能,故选:B.6.D 【解析】由题意知()(),00,x ∞∞∈−∪+,由()()21ln ()1f x x f x x −=−+−= −, 所以()f x 为偶函数,当()()()210,,ln 1x f xx x∞∈+=+−单调递增, 因为()()()()0.333,ln2,2a f fb fc f =−===,且00.3112222,0ln2lne 1=<<=<<=,所以0.3ln223<<,所以()()()0.3ln223f f f <<−,即a c b >>.故选:D.7.C 【解析】设等比数列{}n a 的公比为q ,由6387S S =,得()6338S S S −=−, 则()45612318a a a a a a ++=−++,即()()312312318q a a a a a a ++=−++, 因为1230a a a ++≠,所以318q =−,解得12q =−,所以11122n n a − =− ,所以1112211113212nnnS−− ==−−+, 当n 为奇数时,11132nn S=+,所以112n S S = , 当n 为偶数时,1111323nn S=−<,所以()max 12n S =,所以12λ .故选:C.8.C 【解析】依题意,()11,A x y 与()22,B x y 为圆22:8O x y +=上一点,且π2AOB ∠=,得ABO 为等腰直角三角形,设M 为AB 的中点,则点M 在以O 为圆心,2为半径的圆上,即224M M x y +=, 故()()()222222121212122414122M M x x y y x x y y x y ++ +−++=−+=−+, 因为点M 到定点()1,0的距离的最大值为3d =,因此()()2212122x x y y +−++的最大值为36.9.BCD 【解析】对A,因为二项式31x 的展开式中共有4项,故A 错误;对B,二项式31x −的展开式中通项为()33321331C (C (1)03kk k kkkk T xk x −−+ ==−,令3302k −=,得2k =,所以常数项为2203C (1)3x −=,故B 正确; 对C,二项式31x − 中,所有项的二项式系数和为328=,故C 正确; 对D ,令1x =,得310x = ,故D 正确.故选:BCD.10.AC 【解析】当0,0x y > 时,曲线22:14y C x −=,为焦点在y 轴上的双曲线的一部分;当0,0x y <>时,曲线22:14y C x +=,为焦点在y 轴的棈圆的一部分;当0,0x y <<时,曲线22:14y C x −=,为焦点在x 轴上的双曲线的一部分;当0,0x y ><时,曲线C 没有图象.由图象可知,A 正确,B 错误,结合曲线C 的渐近线可知C 正确,D 错误.11.AD 【解析】对于A ,令0x =得()200f =,即()00f =,A 正确;对于B ,若()f x 在定义域上单调递增,当0x <时,()()00f x f <=,令3x =−,得()()3330f f −−−−′=>,即()30f ′−<,与()f x 在定义域上单调递增矛盾,故B 错误; 对于C ,若()f x 是偶函数,则()()f x f x −=,且()()f x f x −=′−′,因为()()()2xf x x f x =+′,所以()()()2xf x x f x −−=+′−−,所以()()()()22x f x x f x +=−+−,即()20xf x =,得0x =或()0f x =,又()00f =,所以()0f x =恒成立,矛盾,故C 错误; 对于D ,当0x ≠时,()()()()221x f x f x f x xx ′+ ==+,记()()()21g x f x f x x ′ ==+ , 则()()()()()222222211g x f x f x f x f x x x x x ′ =−++=−++ ′,所以()()()()22242241xx f x g x f x xx x++ =++=′,令2420x x ++=,解得1222x x =−−=−,因为()f x 不恒为零,所以在12,x x 两边()g x ′异号, 所以12,x x 为()g x 的极值点,所以函数()f x ′有两个极值点,D 正确.故选:AD三、填空题12.-2 【解析】由函数()2269h t t t =−++,可得()46h t t =−+′,则()24262h =−×+=−′, 所以该小球在2s t =时的瞬时速度为-2.故答案为:-2. 13.0.34 【解析】X 服从正态分布()22,N σ,则()(1)(3)1310.660.34P X P X P X <=>=−=−= .故答案为0.34.【解析】四面体ABCD拓展为长方体,如图所示,3,ABAC AD==,设111,,AC a A B b AA c ===,则有22222210,7,? 2,9,a b b c a b c c a +=+==== +=解得因为点,P Q 分别是线段,AD BC 的中点,所以PQ ⊥底面1A BC , 又有直线PQ ⊥平面α,所以α∥底面1A BC ,设平面α与ABC ACD ABD BCD 、、、的交线分别为:,,,MF MH FG GH , 因为α∥底面1,A BC BCD 分别与平面1,A BC α 交于,GH BC ,所以GH ∥BC ,同理FM ∥BC ,所以GH∥FM ,同理FG ∥HM,所以四边形FGHM 为平行四边形,且1FGH A QC ∠∠=,在1Rt A中,1111sin A BAC ACB ACB BC BC ∠∠====, ()11111sin sin π2sin22sin cos A QC A CB A CB A CB A CB ∠∠∠∠∠=−==所以1sin sin FGH A QC∠∠==,设BG k =,则3GD k =−,由GH∥BC,所以3,3GH GD kGH BC BD −==, 由GF∥AD,同理可得3kGF =GF GH +, 因为平行四边形FGHM 围成一个平面区域Ω,面积为S ,2sin 2GF GH S GF GH FGH GH ∠+=⋅⋅=⋅=,当且仅当GF GH ==时取等号..四、解答题15.【解析】(1)法一:根据正弦定理()()cos 12cos sin cos sin 2sin sin cos b C c B B C B C C B +=−⇒+=−,整理得()sin cos sin cos sin 2sin sin sin 2sin B C C B B C B C B C ++=⇒++=,因为πA B C ++=,所以()sin sin sin sin 2sin AB C A B C =+⇒+=, 由正弦定理可得2a b c +=;法二:由()()cos 12cos ,cos cos 2b C c B b C c B b c +=−++=, 由射影定理知cos cos b C c B a +=(因为sin cos sin cos sin B C C B A +=),故2a b c +=. (2)因为9cos 16C =,由余弦定理可得2222cos c a b ab C =+−,即229258a b ab =+−, 又5c =,故10a b +=,从而22525()1008ab a b +=+=,解得24ab =,因为9cos 16C =,所以sin C ,所以11sin 2422ABC S ab C ==× .16.【解析】(1) 四边形ABCD 是菱形,4,2,AC BD O ==为AC 与BD 的交点,1B O ⊥平面ABCD .∴以直线1,,OA OD OB 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()()()()()0,0,0,2,0,0,0,1,0,2,0,0,0,1,0O A B C D −−,设()10,0,B a ,由()110,1,AA BB a ==得()12,1,A a ,由()110,1,CC BB a == 得()12,1,C a −,则()()()11114,0,0,2,0,,0,0,A C DA a OB a =−==,设平面11A DC 的法向量为(),,m x y z =,则1110,40,20,0m A C x x az m DA ⋅=−= ⇒ +=⋅=取1y =,得()0,1,0m = , 11001000m OB a m OB ∴⋅=×+×+×=⇒⊥,又1OB ⊄平面11A DC ,1OB ∴∥平面11A DC .(2)取11A C 的中点()0,1,M a ,则1B M∥OD ,又四边形ABCD 是菱形,1,AC BD B O ⊥⊥平面1,ABCD B O AC ⊥,故AC ⊥面1B MDB ,则11,OM AC OM A C ⊥⊥,又DM ∥1OB ,故11DM A C ⊥.所以OMD ∠为二面角11O AC D −−的平面角.则tan OMD ∠=,得a =,故(()1110,1,,2,1,0BB B C ==−,设平面11BCC B 的法向量为()111,,n x y z =,则11111110,0,20,0n BB y x y n B C ⋅=+=⇒ −+=⋅=取11z =,得()n =− ,cos ,m n ∴, ∴平面11A DC 与平面11BCC B 夹角的余弦值为∴平面11A DC 与平面11BCC B 夹角为π6.法二:(1)将几何体补成四棱柱,用常规法做. (2)找到平面角两分,两个法向量各两分,后面一样.17.【解析】(1)当1a =时,()ln e ,0xf x x x =−>. 先证明:e 1,0x x x >+>,设()e 1xg x x =−−,则()e 10xg x −>′,即()()00g x g >=,即e 1x x >+,类似地有1e ,0ln 1x x x x x −>⇒− ,因此()()()ln e 112xf x x x x =−<−−+=−,证毕. (2)令()()ln 1e 0xax a x +−−=,得()ln e xax ax x +=+, 设()ln g x x x =+,显然()g x 在定义域上单调递增,而e e lne x x x x +=+, 则()()e,e xx g ax g ax=∴=,依题意,方程e x ax =有两个不等的实根,显然0a ≠,故1ex xa =存在两个不同的零点, 设()exxh x =,则()()1e x h x x −=−′,(i )当0a <时,则0x <,此时()h x 在(),0∞−上单调递增,()1h x a=最多一个零点,不合题意; (ii )当0a >时,此时0x >,当01x <<时,()0h x ′>,当1x >时,()0h x ′<,()h x ∴在()0,1上单调递增,在()1,∞+上单调递减,()max1()1eh x h ==,要使()1h x a =有两个零点,则1a ,解得e a >, 综上可知,e a >.18.【解析】(1)将所给数据进行整理,得到如下列联表:游客短视频合计收看未看 南方游客 200 100 300 北方游客 80 120 200 合计280220500 零假设0H :南北方游客来此景点旅游与短视频无关联.220.001500(20012080100)800034.63210.828300200280220231x χ××−×==≈>=×××, 根据小概率值0.001α=的独立性检验,我们推断0H 不成立,即认为南北方游客来此景点旅游与收看短视频有关联,此推断犯错误的概率不大于0.001. (2)(i )设经过i 次传递后回到甲的概率为()()11111,12444i i i i P P P P i −−=−×=−+ ,1111545i i P P − −=−− ,又111055P −=−≠,所以15i P−是首项为15−,公比为14−的等比数列, 所以1111554i iP − =−×−. (ii )方法一:设第i 次传递时甲接到球的次数为i Y ,则i Y 服从两点分布,()i i E Y P =,设前m 次传递中球传到甲的次数为Y ,()123111114144(),155********mm m m i i m i i m m E Y E Y E Y P P P P ==−− ++++−××−+− +∑∑ , 因为()()4m E Y E X −=,所以()111525254mm E X=+−×−.方法二:设第i 次传递时,乙接到球的概率和次数分别为i q 与i X ,则i X 服从两点分布,()i i E X q =,由题可知()1111111,4545i i i i q q q q −− =−−=−−, 又114q =,所以111520q −=,所以15i q−是首项为120,公比为14−的等比数列,1111111,5204554i ii i q q −−=×−=−×−, ()111111441()15514mm m m i i i i i i m E X E X E X q ===−×−−====−×−−∑∑∑,故()111525254mm E X=+−×−.19.【解析】(1)设()()1122,,,P x y Q x y ,直线:2l x my =+,因为直线l 与双曲线右支相交,故11m −<<,联立双曲线方程221x y −=,得()()2221430,Δ43m y my m −++==+,则12122243,11m y y y y m m −+==−−,故2PQ y =−==即4292470m m −+=,解得213m =,或273m =(舍去),因此m=l 的方程为2x y +.(2)(i )若0m =,则22MNa ==, 由(1)可知,PQ =,此时1212S S MN PQ +=⋅=; 当0m ≠时,设()()3344,,,M x y N x y ,直线1:2n x ym=−+, 由(1)同理可知23434222433,1111m m y y y y m m m −−+===−−−,故4MN y =−=注意到1212S S MN PQ +=⋅12=,令()22120,t m m ∞=+−∈+,则12S S +=>,综上可知,12S S +的取值范围是)∞ + .(ii )先证明M 为PQN 的垂心,只需证明0MP NQ ⋅=,注意到,()()MP NQ MR RP NR RQ RP RQ MR NR ⋅=++=⋅+⋅,而()()11222,2,RP RQ x y x y ⋅=−⋅−()()()2121212221x x y y m y y =−−+=+,同理34211MR NR y y m⋅=+ , ()212342111MP NQ m y y y y m⋅=+++()()()22222222213131313101111m m m m m m m m m −+ +++ =+=−=−−−−, 因此MP NQ ⊥,又MN PQ ⊥,故M 为PQN 的垂心,因此180NMP NQP ∠+= , 再证明,,,P Q N T 四点共圆,即只需证明:NTP NMP ∠∠=. 因为,M T 关于原点对称,则22221P T P M P M P M P M PT PMP T P M P M P M P My y y y y y y y y y k k x x x x x x x x x x −−+−−⋅=⋅=⋅==−−+−−, 同理可得1NT NM k k ⋅=; 则11tantan 1111NT PT NM PM PM NMNT PT NM PM NM PMk k k k k k NTP NMP k k k k k k ∠∠−−−====+++,即NTP NMP ∠∠=, 因此180NTP NQP ∠∠+= ,因此,,,P Q N T四点共圆.。
【全国百强名校】长沙市一中高二第1次阶段性考试试卷-数学(附答案)
1.已知命题 狆:狓∈犚,狓2-狓+1>0,则
密 封 线 内 不 要 答 题
A.瓙狆:狓∈犚,狓2-狓+1≤0
C.瓙狆:狓∈犚,狓2-狓+1≤0
B.瓙狆:狓∈犚,狓2-狓+1<0 D.瓙狆:狓∈犚,狓2-狓+1<0
2.在△犃犅犆 中,犃→犅= (2,4),犃→犆= (1,3),则犆→犅=
2(犪5+犪8 )犪5+犪8=18,故 答 案 为 B. 4.D 5.A 【解析】中位数在45到47之间,众数为45,极差为68-12=56,所以选 A. 6.B 【解析】因为“狓狔=1”是“狓=1且狔=1”的 必 要 而 不 充 分 条 件,所 以“狓≠1 或 狔≠1”是“狓狔≠1”
的必要而不充分条件,选 B.
60°,犇犈∥犆犉,犆犇⊥犇犈,犃犇=2,犇犈=犇犆=3,犆犉=6.
(1)求证:犅犉∥平面 犃犇犈;
(2)在
线段
犆犉
上求
一
点犌,使
锐
角
二面
角
犅-犈犌-犇
的
余
弦
值
为
1 4
.
数学试题(一中版)第 6 页(共8页)
21.(本 小 题 满 分 12 分 )
设
数
列
{犪狀
}满
足犪狀+1 犪狀
=狇,且狇≠0,数
用篱笆总长最小?
(2)若
使用
的
篱
笆
总
长
度
为
30
m,求
1 狓
+
2 狔
的
最
小值
.
数学试题(一中版)第 3 页(共8页)
18.(本 小 题 满 分 12 分 ) 在△犃犅犆 中,角 犃,犅,犆 的 对 边 分 别 为 犪,犫,犮,已 知 2(犫2 +犮2 -犪2 ) =犮(犪cos犆+犮cos犃) (1)求 cos犃; (2)若犪=3,△犃犅犆 的面积为 槡215,求犫+犮的值.
2018年湖南省长沙市中考数学试卷及答案解析
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前湖南省长沙市2018年初中毕业会考、高级中等学校招生考试数 学本试卷满分120分,考试时间120分钟.一、 选择题(本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2-的相反数是( ) A .2-B .12-C .2D .122.据统计,2017年长沙市地区生产总值约为10 200亿元,经济总量迈入“万亿俱乐部”,数据10 200用科学记数法表示为 ( ) A .5 0.10210⨯B .310.210⨯C .41.0210⨯D .31.0210⨯ 3.下列计算正确的是( )A .235a a a += B.1-=C .235x x =() D .532m m m ÷=4.下列长度的三条线段,能组成三角形的是 ( )A.4cm ,5cm ,9cmB. 8cm ,8cm ,15cmC.5cm ,5cm ,10cmD. 6cm ,7cm ,14cm 5.下列四个图形中,既是轴对称图形又是中心对称图形的是( ) ABCD6.不等式组20240x x +⎧⎨-⎩>≤的解集在数轴上表示正确的是( )A .B .C .D .7.将下列如图的平面图形绕轴1旋转一周,可以得到的立体图形是( )A B C D8.下列说法正确的是 ( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B 天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,0a ≥”是不可能事件 9.1的值是( )A .在2和3之间B .在3和4之间C .在4和5之间D .在5和6之间10.小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)小明离家的距离y 与时间x 之间的对应关系.根据图象,下列说法正确的是( ) A .小明吃早餐用了25 min B .小明读报用了30 minC .食堂到图书馆的距离为0.8 kmD .小明从图书馆回家的速度为0.8 km/min11.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为 ( )A .7.5 平方千米B .15 平方千米C .75 平方千米D .750 平方千米12.若对于任意非零实数a ,抛物线22y ax ax a =+﹣总不经过点200316P x x (﹣,﹣),则符合条件的点P ( )A .有且只有1个B .有且只有2个C .有且只有3个D .有无穷多个二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 13.化简:111m m m -=-- .14.某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为 度.15.在平面直角坐标系中,将点(23)A '﹣,向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A '的坐标是 .16.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是 . 17.已知关于x 方程230x x a +=-有一个根为1,则方程的另一个根为 .18.如图,点A ,B ,D 在O 上,20A ∠=︒,BC 是O 的切线,B 为切点,OD 的延长线交BC 于点C ,则OCB ∠= 度. 三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)计算:20180134cos45π+︒(﹣)(﹣). 20.(本小题满分6分)先化简,再求值:24a b b a b ab ++-()()-,其中2a =,12b =-. 21.(本小题满分8分)为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分) 请根据图中信息,解答下列问题:(1)本次调查一共抽取了 名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数; (3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员数学试卷 第5页(共24页) 数学试卷 第6页(共24页)估计需准备多少份“一等奖”奖品? 22.(本小题满分8分)为加快城乡对接,建设全域美丽乡村,某地区对A 、B 两地间的公路进行改建.如图,A 、B 两地之间有一座山.汽车原来从A 地到B 地需途径C 地沿折线ACB 行驶,现开通隧道后,汽车可直接沿直线AB 行驶.已知80BC = 千米,45A ∠=︒,30B ∠=︒. (1)开通隧道前,汽车从A 地到B 地大约要走多少千米? (2)开通隧道后,汽车从A 地到B 地大约可以少走多少千米? (结果精确到0.1千米)1.41≈1.73≈)23.(本小题满分9分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5 200元. (1)打折前甲、乙两种品牌粽子每盒分别为多少元? (2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱? 24.(本小题满分9分) 如图,在ABC △中,AD 是边BC 上的中线,BAD CAD ∠=∠,CE AD ∥,CE 交BA 的延长线于点E ,8BC =,3AD =. (1)求CE 的长;(2)求证:ABC △为等腰三角形.(3)求ABC △的外接圆圆心P 与内切圆圆心Q 之间的距离. 25.(本小题满分10分)如图,在平面直角坐标系xOy 中,函数my x=(m 为常数,1m >,0x >)的图象经过点(1)P m ,和(1,)Q m ,直线PQ 与x 轴,y 轴分别交于C ,D 两点,点(,)M x y 是该函数图象上的一个动点,过点M 分别作x 轴和y 轴的垂线,垂足分别为A ,B .(1)求OCD ∠的度数;(2)当3m =,13x <<时,存在点M 使得OPM OCP △△∽,求此时点M 的坐标;(3)当5m =时,矩形OAMB 与OPQ △的重叠部分的面积能否等于4.1?请说明你的理由.26.(本小题满分10分)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”. (1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有 ;②在凸四边形ABCD 中,AB AD =且CB CD ≠,则该四边形 “十字形”.(填“是”或“不是”) (2)如图1,A ,B ,C ,D 是半径为1的O 上按逆时针方向排列的四个动点,AC 与BD 交于点E ,ADB CDB ABD CBD ∠-∠=∠∠-,当2267AC BD +≤≤时,求OE 的取值范围; (3)如图2,在平面直角坐标系xOy 中,抛物线2y ax bx c =++(a ,b ,c 为常数,0a >,0c <)与x 轴交于A ,C 两点(点A 在点C-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共24页) 数学试卷 第8页(共24页)的左侧),B 是抛物线与y 轴的交点,点D 的坐标为0,ac -(),记“十字形”ABCD 的面积为S ,记A O B △,COD △,AOD △,BOC△的面积分别为1S ,2S ,3S ,4S .求同时满足下列三个条件的抛物线的解析式;①=;③“十字形”ABCD的周长为图1 图2湖南省长沙市2018年初中学业水平考试数学答案解析一、选择题 1.【答案】C【解析】根据只有符号不同的两个数互为相反数,可得答案。
湖南省长沙市2024-2025学年高二上学期期中考试数学试卷含答案
2024年下学期高二期中考试数学(答案在最后)命题人:得分:__________本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.时量120分钟.满分150分.第I 卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线120x y +-=的倾斜角是()A.π4B.π2C.3π4D.π32.已知点B 是点()3,4,5A 在坐标平面Oxy 内的射影,则OB等于()A.5D.3.长轴长是短轴长的3倍,且经过点()3,0P 的椭圆的标准方程为()A.2219x y +=B.221819x y +=C.2219x y +=或221819y x += D.2219y x +=或221819x y +=4.已知方程22121x y m m -=++表示双曲线,则m 的取值范围为()A.()2,1-- B.()(),21,∞∞--⋃-+ C.()1,2 D.()(),12,∞∞-⋃+5.在正四棱锥P ABCD -中,4,2,PA AB E ==是棱PD 的中点,则异面直线AE 与PC 所成角的余弦值是() A.612 B.68C.38D.56246.已知椭圆22:195x y C +=的右焦点为,F P 是椭圆上任意一点,点(0,A ,则APF 的周长的最大值为()A.9+B.14C.7+D.15+7.已知()()3,0,0,3A B -,从点()0,2P 射出的光线经x 轴反射到直线AB 上,又经过直线AB 反射到P 点,则光线所经过的路程为()A. B.6D.8.已知,A B 两点的坐标分别是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的差是2,则点M 的轨迹方程为()A.()211y x x =-+≠± B.()211y x x =+≠±C.()211x y y =-+≠± D.()211x y y =+≠±二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知()()3,4,6,3A B --两点到直线:10l ax y ++=的距离相等,则a 的值可取()A.13-B.13C.79-D.7910.已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为12,F F ,过点1F 的直线与C 的左支相交于,P Q 两点,若2PQ PF ⊥,且243PQ PF =,则()A.4PQ a=B.13PF PQ= C.双曲线C 的渐近线方程为223y x =±D.直线PQ 的斜率为411.已知椭圆221:195x y C +=,将1C 绕原点O 沿逆时针方向旋转π2得到椭圆2C ,将1C 上所有点的横坐标、纵坐标分别伸长到原来的2倍得到椭圆3C ,动点,P Q 在1C 上,且直线PQ 的斜率为12-,则()A.顺次连接12,C C 的四个焦点构成一个正方形B.3C 的面积为1C 的4倍C.3C 的方程为2244195x y+=D.线段PQ 的中点R 始终在直线109y x =上第II 卷三、填空题(本题共3小题,每小题5分,共15分)12.过点()0,1P 作直线l ,使它被直线1:280l x y +-=和2:3100l x y -+=截得的线段被点P 平分,则直线l 的方程为__________.13.直线2y x =-与抛物线22y x =相交于,A B 两点,则OA OB ⋅=__________.14.设F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,O 为坐标原点,过F 作C 的一条渐近线的垂线,垂足为H ,若FOH 的内切圆与x 轴切于点B ,且BF OB =,则C 的离心率为__________.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分13分)在平面直角坐标系中,已知点()()1,0,1,0A B -,动点P 满足PA PB ⊥.(1)求动点P 的轨迹方程;(2)将点A 和点B 并入点P 的轨迹得曲线C ,若过点()1,2Q 的直线l 与曲线C 有且只有一个公共点,求直线l 的方程.16.(本小题满分15分)如图,在棱长为a 的正方体OABC O A B C '-'''中,,E F 分别是,AB BC 上的动点,且AE BF =.(1)求证:A F C E '⊥';(2)当三棱锥B BEF '-的体积取得最大值时,求平面B EF '与平面BEF 所成夹角的正切值.17.(本小题满分15分)已知顶点为O 的抛物线212y x =的焦点为F ,直线l 与抛物线交于,A B 两点.(1)若直线l 过点()5,0M ,且其倾斜角ππ,63θ⎡⎤∈⎢⎥⎣⎦,求OAB S 的取值范围;(2)是否存在斜率为1的直线l ,使得FA FB ⊥?若存在,求出直线l 的方程;若不存在,请说明理由.18.(本小题满分17分)如图,P 为圆锥的顶点,O 是圆锥底面的圆心,AC 为底面直径,ABD 为底面圆O 的内接正三角形,且ABD,点E 在母线PC 上,且1AE CE ==.(1)求证:直线PO ∥平面BDE ;(2)若点M 为线段PO 上的动点,当直线DM 与平面ABE 所成角的正弦值最大时,求此时点M 到平面ABE 的距离.19.(本小题满分17分)已知椭圆()222210x y a b a b +=>>的左、右焦点分别为12,F F ,离心率22e =,点O 为坐标原点,点,P Q 分别是椭圆的右顶点和上顶点,POQ 的边PQ 上的中线长为32.(1)求椭圆的标准方程;(2)过点()2,0H -的直线交椭圆于,A B 两点,若11AF BF ⊥,求直线AB 的方程;(3)直线12,l l 过右焦点2F ,且它们的斜率乘积为12-,设1l 和2l 分别与椭圆交于点,C D 和,E F .若,M N 分别是线段CD 和EF 的中点,求OMN 面积的最大值.2024年下学期高二期中考试数学参考答案一、二、选择题题号1234567891011答案CACBDBCAACBCABD1.C 【解析】因为120x y +-=,所以12y x =-+,所以直线120x y +-=的斜率为1-,所以直线120x y +-=的倾斜角为3π4.故选C.2.A 【解析】由条件知点B 的坐标为()3,4,0,所以5OB == .故选A.3.C 【解析】当椭圆焦点在x 轴上时,长半轴长3a =,短半轴长1b =,方程为2219xy +=,当椭圆焦点在y 轴上时,短半轴长3b =,长半轴长9a =,方程为221819y x +=,所以椭圆方程为2219xy +=或221819y x +=.故选C.4.B 【解析】由条件()()210m m ++>可得2m <-或1m >-,故m 的取值范围为()(),21,∞∞--⋃-+.故选B.5.D【解析】设点P 在底面ABCD 内的投影为点O ,由题意知,4,2,PA AB PO====,以O 为原点,建立如图所示空间直角坐标系,所以(()()()214,0,,0,,,,0,22P A C D E ⎛- ⎪⎝⎭,(,0,22AE PC ⎛⎫=-= ⎪ ⎪⎝⎭,所以56cos ,24AE PC <>= .故选D.6.B 【解析】如图所示,设椭圆的左焦点为,4F AF AF ==='',则26PF PF a '+==,,PA PF AF APF ''-∴ 的周长6461010414AF PA PF AF PA PF PA PF AF =++=++-=++-+=+''=',当且仅当P 在AF '的延长线上时取等号.APF ∴ 的周长的最大值等于14.故选B.7.C 【解析】直线AB 的方程为3y x =+,设点()0,2P 关于直线3y x =+的对称点为()1,P a b ,则21,23,22b ab a -⎧=-⎪⎪⎨+⎪=+⎪⎩得1,3a b =-=,即()11,3P -,点()0,2P 关于x 轴的对称点为()20,2P -,由题意可知,如图所示,点12,P P 都在直线CD 上,由对称性可知,12,DP DP CP CP ==,所以光线经过的路程2112PC CD DP P C CD DP PP ++=++==.故选C.8.A【解析】设(),M x y ,则211AM BM y yk k x x -=-=+-,整理得()211y x x =-+≠±,所以动点M 的轨迹方程是()211y x x =-+≠±.故选A.9.AC 【解析】当直线l 过线段AB 中点31,22P ⎛⎫-⎪⎝⎭时,有311022a -+=,得13a =-,当直线l ∥AB 时,有79a -=,得79a =-.故选AC.10.BC 【解析】由243PQ PF =,设23,4PQ m PF m ==,由2PQ PF ⊥,得25QF m =,则1142,52PF m a QF m a =-=-,而11PF QF PQ +=,解得23a m =,因此1124,33a a PF QF ==,对于A ,2PQ a =,A 错误;对于B ,显然112F Q PF = ,则13PF PQ =,B 正确;对于C ,易知122F F c =,在12Rt PF F 中,由2221212PF PF F F +=,得222464499a a c +=,则222222178,99c a b c a a ==-=,即3b a =,因此双曲线C的渐近线方程为3y x =±,C 正确;对于D ,由2121tan 4PF PF F PF ∠==,结合对称性,图中,P Q 位置可互换,则直线PQ 的斜率为4±,D 错误.故选BC.11.ABD 【解析】椭圆221:195x y C +=的焦点为()()2,0,2,0-,将1C 绕原点O 沿逆时针方向旋转π2得到椭圆2C ,则椭圆2C 的焦点为()()0,2,0,2-,所以顺次连接12,C C 的四个焦点构成一个正方形,故A 正确;将1C 上所有点的横坐标、纵坐标分别伸长到原来的2倍得到椭圆3C ,所以3C 与1C 为相似曲线,相似比为2,所以3C 的面积为1C 的面积的224=倍,故B 正确;且3C 的方程为2222195x y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+=,即2213620x y +=,故C 错误;设()()1122,,,P x y Q x y ,则1212,22x x y y R ++⎛⎫ ⎪⎝⎭,又222211221,19595x y x y +=+=,所以2222121209955x x y y -+-=,即()()()()12121212095x x x x y y y y +-+-+=,所以()121212121259y y y y x x x x x x -+⋅=-≠-+,即59PQ OR k k ⋅=-,所以109OR k =,所以线段PQ 的中点R 始终在直线109y x =上,故D 正确.故选ABD.三、填空题(本题共3小题,每小题5分,共15分)12.440x y +-=【解析】设直线1l 与直线l 的交点为(),82A a a -,则由题意知,点A 关于点P 的对称点(),26B a a --在直线2l 上,代入直线2l 的方程得()326100a a ---+=,解得4a =,即点()4,0A 在直线l 上,所以直线l 的方程为440x y +-=.13.0【解析】由22,2,y x y x =-⎧⎨=⎩可得2640x x -+=,设()()1122,,,A x y B x y ,则有12126,4x x x x +==,所以124y y =-,所以1212440OA OB x x y y ⋅=+=-=.【解析】由双曲线2222:1x y C a b-=的渐近线方程为b y x a =±,即0bx ay ±=,又由双曲线C 的右焦点(),0F c到渐近线的距离为FH b ==,所以OH a ==,则直角FOH 的内切圆的半径为2a b cr +-=,如图所示,设FOH 的内切圆与FH 切于点M ,则2a b cMH r +-==,因为BF OB = ,可得12MF BF c ==,所以122a b cMF MH c FH b +-+=+==,可得a b =,所以双曲线C的离心率为c e a ===.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.【解析】(1)法一:设(),P x y ,因为PA PB ⊥,所以由0PA PB ⋅=,得()()221,1,10x y x y x y +⋅-=-+=,所以动点P 轨迹方程为()2210x y y +=≠.法二:由题2,AB PA PB =⊥,所以P 点的轨迹是以AB 中点O 为圆心,半径为1的圆去掉,A B 两点得到的,所以P 点的轨迹方程为()2210x y y +=≠.(2)由题设知曲线C 的方程为221x y +=,因为直线l 与曲线C 有只有一个公共点(如图),①若直线l 斜率不存在,此时直线l 方程为:1x =,与曲线22:1C x y +=切于点B ,②当直线l 斜率存在且与曲线C 相切时,设():12l y k x =-+,即20kx y k -+-=,1=,得34k =,所以此时直线l 方程为3450x y -+=.综上,直线l 方程为1x =或3450x y -+=.16.【解析】(1)如图,构建空间直角坐标系O xyz -,令AE BF m ==,且0m a ,所以()()()()0,,,,0,,,,0,,,0C a a A a a E a m F a m a -'',则()(),,,,,C E a m a a A F m a a '=--'=-- ,故()20C E A F am a m a a '⋅=-+-+'= ,所以C E A F ''⊥,即A F C E '⊥'.(2)由(1)可得三棱锥B BEF '-体积取最大,即BEF 面积()22112228BEFa a S m a m m ⎛⎫=-=--+⎪⎝⎭ 最大,所以当2a m =时,()2max 8BEF a S = ,故,E F 分别为,AB BC 的中点,所以(),,0,,,0,,,22a a E a F a B a a a ⎭'⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝,故0,,,,0,22a a EB a FB a ⎛⎫⎛⎫== ⎪ ⎪⎝''⎭⎝⎭ ,若(),,m x y z = 为平面B EF '的法向量,则0,20,2am EB y az am FB x az ⎧⋅=+=⎪⎪⎨⎪⋅=+=⎪''⎩令1z =-,得()2,2,1m =- ,又平面BEF 的法向量为()0,0,1n =,所以11cos ,313m n m n m n ⋅-<>===⨯ ,设平面B EF '与平面BEF 所成夹角为θ,则1cos 3θ=,所以222sin 1cos 3θθ=-=,所以sin tan cos θθθ==B EF '与平面BEF所成夹角的正切值为.17.【解析】(1)由题可知()3,0F ,且直线l 的斜率不为0,设()()1122,,,A x y B x y .设直线l 的方程为50kx y k --=,因此点O 到直线l的距离为d =联立212,15,y x x y k ⎧=⎪⎨=+⎪⎩则212600y y k --=,显然Δ0>,所以121212,60y y y y k +==-,则AB =,所以12OAB S d AB == ππ,63θ⎡⎤∈⎢⎥⎣⎦,则3k ∈⎣,当213k =时,OAB S取得最大值为,当23k =时,OAB S取得最小值为,所以OAB S的取值范围为⎡⎣.(2)设直线方程为y x b =+,即()()1122,,,,x y b A x y B x y =-,联立212,,y x x y b ⎧=⎨=-⎩得212120y y b -+=,故Δ144480b =->,即3b <,又121212,12y y y y b +==,易知()()11223,,3,FA x y FB x y =-=- ,因为FA FB ⊥,则0FA FB ⋅= ,因为1122,x y b x y b =-=-,所以()()()()2121212123323(3)0y b y b y y y y b y y b ----+=-++++=,即218270b b +-=,解得9b =-+9b =--,故存在斜率为1的直线l ,使得FA FB ⊥,此时直线l的方程为9y x =-+或9y x =--18.【解析】(1)设AC BD F ⋂=,连接EF ,ABD为底面圆O 的内接正三角形,32,πsin3AC F∴==为BD中点,2221,,AE CE AE CE AC AE EC==∴+=∴⊥,又3312,2,12223AF CF AO AF==∴=-===.AF AEAE AC=,且,,,EAF CAE AEF ACE AFE AEC EF AC∠∠∠∠=∴∴=∴⊥∽.PO⊥平面,ABD AC⊂平面,,ABD PO AC EF∴⊥∴∥PO,PO⊄平面,BDE EF⊂平面,BDE PO∴∥平面BDE.(2)1,2OF CF F==∴为OC中点,又PO∥,EF E∴为PC中点,2PO EF=,2PO PC∴==,以F为坐标原点,,,FB FC FE方向为,,x y z轴正方向,可建立如图所示空间直角坐标系,则311 0,,0,,0,0,,,0,0,0,,0,0,,222222A B E D O P⎛⎫⎛⎛⎫⎛⎫⎛⎫⎛----⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎝⎭⎝⎭⎝⎭,(33333133,,0,0,,,0,0,,,,0,,,022222222AB AE OP DO DA⎛⎫⎛⎛⎫⎛⎫∴====-=- ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,设()()3101,,,22OM OP DM DO OMλλ⎛⎫==∴=+=-⎪⎪⎝⎭.设平面ABE的法向量(),,n x y z=,则330,22330,22AB n x y AE n y z ⎧⋅=+=⎪⎪⎨⎪⋅=+=⎪⎩ 令1y =-,解得x z n ==∴=- ,设直线DM 与平面ABE 所成夹角为θ,sin DM n DM n θ⋅∴==⋅ ,令32t λ=+,则[]22,5,3t t λ-∈∴=,2222222(2)1314717431(32)33t t t t t t t λλ-++-+⎛⎫∴===-+ ⎪+⎝⎭,111,,52t ⎡⎤∈∴⎢⎥⎣⎦ 当127t =,即12λ=时,22min31311449(32)74λλ+⎡⎤+==⎢⎥+⎣⎦,max (sin )1θ∴==,此时3133,,,0,1,2222DM MA DA DM ⎛⎛=-∴=-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭,∴点M 到平面ABE 的距离17214MA n d n ⋅===.19.【解析】(1)由题意,因为()(),0,0,,P a Q b POQ为直角三角形,所以PQ ==.又222e ,2c a b c a ===+,所以1,1a b c ===,所以椭圆的标准方程为2212x y +=.(2)由(1)知,()11,0F -,显然直线AB 的斜率存在,设直线AB 的方程为()()()()112220,,,,y k x k A x y B x y =+≠,联立()221,22,x y y k x ⎧+=⎪⎨⎪=+⎩消去y 得,()2222128820k x k x k +++-=,所以()()()()22222Δ8412828120k k k k =-+-=->,即2102k <<,且22121222882,1212k k x x x x k k-+=-=++,因为11AF BF ⊥,所以110AF BF ⋅= ,所以()()11221,1,0x y x y ---⋅---=,即12121210x x x x y y ++++=,所以()()1212121220x x x x k x k x +++++⋅+=,整理得()()()2221212121140k x x k x x k ++++++=,即()()()22222221828121401212k k k k k k k +-⎛⎫+-+++= ⎪++⎝⎭,化简得2410k -=,即12k =±满足条件,所以直线AB 的方程为()122y x =+或()122y x =-+,即直线AB 的方程为220x y -+=或220x y ++=.(3)由题意,()21,0F ,设直线1l 的方程为()()()33441,,,,y m x C x y D x y =-,则直线2l 的方程为()()()556611,,,,2y x E x y F x y m=--,联立()221,21,x y y m x ⎧+=⎪⎨⎪=-⎩消去y 得()2222124220m x m x m +-+-=,所以22343422422,1212m m x x x x m m -+==++,所以()234222,121212M M M x x m m x y m x m m +===-=-++,所以2222,1212m m M m m ⎛⎫- ⎪++⎝⎭,同理联立()221,211,2x y y x m ⎧+=⎪⎪⎨⎪=--⎪⎩消去y 得()222122140m x x m +-+-=,所以2565622214,1212m x x x x m m-+==++,所以()562211,1212212N N N x x m x y x m m m +===--=++,所以221,1212m N m m ⎛⎫ ⎪++⎝⎭,所以MN 的中点1,02T ⎛⎫ ⎪⎝⎭.所以22112111212412212282OMN M N m m S OT y y m m m m =-===⨯+++,当且仅当12m m =,即22m =±时取等号,所以OMN 的面积最大值为28.。
2023-2024学年湖南省长沙市雅礼中学高二(上)期中数学试卷【答案版】
2023-2024学年湖南省长沙市雅礼中学高二(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|x2+x﹣2<0,x∈R},B={x||x﹣1|<1},则A∪B=()A.{x|﹣1<x<2}B.{x|0<x<1}C.{x|﹣2<x<2}D.{x|0<x<2}2.“m=﹣2”是“直线l1:mx+4y+2=0与直线l2:x+my+1=0平行”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.空气质量指数是评估空气质量状况的一组数字,空气质量指数划分为[0,50)、[50,100)、[100,150)、[150,200)、[200,300)和[300,500]六档,分别对应“优”、“良”、“轻度污染”、“中度污染”、“重度污染”和“严重污染”六个等级.如图是某市2月1日至14日连续14天的空气质量指数趋势图,则下面说法中正确的是()A.这14天中有5天空气质量为“中度污染”B.从2日到5日空气质量越来越好C.这14天中空气质量指数的中位数是214D.连续三天中空气质量指数方差最小是5日到7日4.在平面直角坐标系xOy中,直线x+2y﹣4=0与两坐标轴分别交于点A,B,圆C经过A,B,且圆心在y轴上,则圆C的方程为()A.x2+y2+6y﹣16=0B.x2+y2﹣6y﹣16=0C.x2+y2+8y﹣9=0D.x2+y2﹣8y﹣9=05.已知双曲线C:x2a2−y2b2=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.x220−y25=1B.x25−y220=1C.x280−y220=1D.x220−y280=16.抛物线y2=2px(p>0)焦点为F,O为坐标原点,M为抛物线上一点,且|MF|=4|OF|,△MFO的面积为4√3,则抛物线方程为( ) A .y 2=6xB .y 2=8xC .y 2=16xD .y 2=152x 7.已知定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),且当x <0时,f (x )>0.给出以下四个结论:①f (0)=0;②f (x )可能是偶函数;③f (x )在[m ,n ]上一定存在最大值f (n );④f (x ﹣1)>0的解集为{x |x <1}.共中正确的结论的个数为( ) A .1B .2C .3D .48.在焦点在x 轴椭圆中截得的最大矩形的面积范围是[72b 2,92b 2],则椭圆离心率的范围是( )A .[√297,√659]B .[√317,√679] C .[√337,√659] D .[√347,√699] 二、多项选择题:本题共4小题,每小题5分,共20分。
2024-2025学年湖南省长沙市长沙一中高二(上)开学数学试卷(含答案)
2024-2025学年湖南省长沙一中高二(上)开学数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A={x∈Z|x2+3x<4},B={−1,2,5},则A∪B中元素的个数为( )A. 1B. 4C. 6D. 72.命题“∃x∈Q,tanx2∈Q”的否定是( )A. ∀x∈Q,tanx2∉QB. ∀x∈Q,tanx2∈QC. ∃x∈Q,tanx2∈QD. ∀x∉Q,tanx2∈Q3.已知i是虚数单位,复数1−2i1−i的虚部为( )A. −12B. 32C. −12i D. 32i4.函数f(x)=ln|x|e x+e−x的图象大致为( )A. B.C. D.5.已知x>0,y>0,lg2x+lg8y=lg2,则1x +3y的最小值是( )A. 8B. 12C. 16D. 10+236.已知随机事件A,B,C中,A与B相互独立,B与C对立,且P(A)=0.3,P(C)=0.6,则P(A∪B)=( )A. 0.4B. 0.58C. 0.7D. 0.727.甲、乙、丙、丁四个人在一次比赛中只有一人得奖,在问到谁得奖时,四人的回答如下:甲:乙得奖.乙:丙得奖.丙:乙说错了.丁:我没得奖.四人之中只有一人说的与事实相符,则得奖的是( )A. 甲B. 乙C. 丙D. 丁8.设a=log52,b=0.50.6,c=0.60.5,则( )A. c >b >aB. c >a >bC. b >a >cD. a >c >b二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.已知函数f(x)=sin (2x +π6),则下列结论正确的是( )A. f(x)的图象向左平移π6个单位长度后得到函数g(x)=sin (2x +π3)的图象B. 直线x =π3是f(x)图象的一条对称轴C. f(x)在[π4,π2]上单调递减D. f(x)的图象关于点(5π12,0)对称10.某学校高一年级学生有900人,其中男生500人,女生400人,为了获得该校高一全体学生的身高信息,现采用样本量按比例分配的分层抽样方法抽取了容量为90的样本,经计算得男生样本的均值为170,方差为19,女生样本的均值为161,方差为28,则下列说法正确的是( )参考公式:样本划分为2层,各层的容量、平均数和方差分别为:m ,−x ,s 21;n ,−y ,s 22.记样本平均数为−ω,样本方差为s 2,s 2=m m +n [s 21+(−x−−ω)2]+n m +n [s 22+(−y−−ω)2]A. 男生样本容量为50B. 每个女生被抽到的概率110C. 抽取的样本的均值为165D. 抽取的样本的方差为4311.如图,正方体ABCD−A′B′C′D′的棱长为4,M 是侧面ADD′A′上的一个动点(含边界),点P 在棱CC′上,且|PC′|=1,则下列结论正确的有( )A. 沿正方体的表面从点A 到点P 的最短距离为73B. 保持PM 与BD′垂直时,点M 的运动轨迹长度为32C. 若保持|PM|=25,则点M 的运动轨迹长度4π3D. 平面AD′P 截正方体ABCD−A′B′C′D′所得截面为等腰梯形三、填空题:本题共3小题,每小题5分,共15分。
湖南省长沙市2024-2025学年高二上学期入学检测数学试卷含答案
长沙市2024年下学期高二入学检测数学(答案在最后)2024.09命题:高一数学备课组审定:高一数学备课组时量:120分钟满分150一、单选题(本题共8个小题,每小题5分,共40分,每个小题只有一个正确答案)1.已知集合{}22M x x =-<<,集合{1,0,1,2}N =-,则M N = ()A.{1,0,1}-B.{0,1,2}C.{}12x x -<≤ D.{}12x x -≤≤【答案】A 【解析】【分析】利用交集的定义直接求解即可.【详解】因为{}22M x x =-<<,{1,0,1,2}N =-,所以{1,0,1}M N ⋂=-,故A 正确.故选:A2.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =()A.1-B.12-C.13D.i【答案】B 【解析】【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】()()()()21i 3i 3i 3i i 331i a a a a a +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =-.故选:B.3.已知函数()244x x f x x++=,定义域为1,2⎡⎫+∞⎪⎢⎣⎭,则下列说法正确的是()A.函数的最大值是8B.函数的最小值是8C.函数的最大值是232D.函数的最小值是232【答案】B 【解析】【分析】利用基本不等式可求得()f x 的最小值判断BD ;由对勾函数的单调性可知()f x 无最大值判断AC.【详解】函数()24444x x f x x x x++==++,又1,2x ⎡⎫∈+∞⎪⎢⎣⎭,所以44x x +≥=,所以()448f x x x =++≥,当且仅当4x x=,即2x =时取等号,故()f x 的最小值为8,故B 正确,D 错误;由4y x x =+,知x →+∞时,40x→,所以()f x →+∞,故()f x 无最大值,故AC 错误.故选:B.4.在ABC V 中,点D 是AB 的中点,3CD CE = .设AB a =,AC b =,则AE = ()A.1263AE a b =+B.2136AE a b=+ C.1233AE a b =+D.2133AE a b=+ 【答案】A 【解析】【分析】根据向量的线性运算,即可求得答案.【详解】由题意,点D 是AB 的中点,3CD CE =,可得12AD AB = ,13CE CD = ,则()11113332AE AC CE AC CD AC AD AC AC AB AC ⎛⎫=+=+=+-=+- ⎪⎝⎭12126363AB AC a =+=+,故选:A5.在平面直角坐标系中,角α与角β的顶点在原点,始边与x 轴的正半轴重合,终边构成一条直线,且1sin 3α=,则()cos αβ+=()A.79B.13C.13-D.79-【答案】D 【解析】【分析】由终边角的特性得到2ππ,Z k k βα=++∈,再结合两角和的余弦展开式和余弦二倍角公式求解即可;【详解】因为角α与角β始边与x 轴的正半轴重合,终边构成一条直线,所以2ππ,Zk k βα=++∈所以()()()()2cos cos 2ππcos π2cos 212sin k αβααααα+=+++=+=-=--,又1sin 3α=,所以()17cos 2199αβ+=⨯-=-,故选:D.6.已知,A B 是球O 的球面上的两点,AOB 90∠= ,点C 为该球面上的动点,若三棱锥O ABC -体积的最大值为92,则球O 的表面积为()A.16πB.36πC.64πD.144π【答案】B 【解析】【分析】由212△AOB S R =和O ABC C AOB V V --=得三棱锥O ABC -体积达到最大值时OC ⊥平面AOB ,进而由锥体体积最大值结合体积公式即可求出R ,从而由球的表面积公式得解.【详解】设球的半径为R ,则由题212△AOB S R =,因为O ABC C AOB V V --=,所以三棱锥O ABC -体积达到最大值时,OC ⊥平面AOB ,所以()233max 1119273262O ABC V R R R R -=⨯⨯==⇒=,故3R =,所以球O 的表面积为24π36πR =.故选:B.7.已知函数()()π2sin 30,2f x x ωϕωϕ⎛⎫=++>< ⎪⎝⎭,函数()f x 图象与1y =相邻两个交点的距离为π,若任意()ππ,,3123x f x ⎛⎫∀∈-> ⎪⎝⎭恒成立,则ϕ的取值范围是()A.ππ,63⎛⎫-⎪⎝⎭ B.ππ,123⎡⎤-⎢⎥⎣⎦C.ππ,63⎡⎤⎢⎥⎣⎦D.ππ,122⎡⎤-⎢⎥⎣⎦【答案】C 【解析】【分析】根据题意可得周期为π,根据周期公式可得2ω=.将不等式恒成立的范围化为()sin 20x ϕ+>的解集的子集,即可构造不等式求得结果.【详解】()min 1f x = ,由题意可得相邻最低点距离1个周期,即πT =,2ω∴=,由()3f x >得:()sin 20x ϕ+>,2π2π2π,k x k k ϕ∴<+<+∈Z ,即π,π,222x k k k ϕϕπ⎛⎫∈-+-++∈ ⎪⎝⎭Z ,所以,π,ππππ,123222k k k ϕϕ⎛⎫⎛⎫-⊆-+-++∈ ⎪ ⎪⎝⎭⎝⎭Z ,ππ,1230⎛⎫- ⎪⎝∈⎭,0k ∴=,即,2π22x ϕϕ⎛⎫∈--+ ⎪⎝⎭,π122ππ223ϕϕ⎧-≥-⎪⎪∴⎨⎪-+≥⎪⎩,解得:ππ63ϕ≤≤.故选:C.8.已知函数()y f x =是R 上的偶函数,对于R x ∈都有()()()63f x f x f +=+成立,且()42f -=-,当[]12,0,3x x ∈,且12x x ≠时,都有1212()()0f x f x x x ->-.则给出下列命题:①()20082=-f ;②函数()y f x =图象的一条对称轴为6x =-;③函数()y f x =在[]9,6--上为严格减函数;④方程()0f x =在[]9,9-上有4个根;其中正确的命题个数为()A.1 B.2C.3D.4【答案】D【解析】【分析】对于①,令3x =-代入已知等式可求出()30f -=,再结合其为偶函数可得3=0,从而可求出函数的周期为6,利用周期可求得结果;对于②,由()f x 为偶函数,结合周期为6分析判断;对于③,由当[]12,0,3x x ∈,且12x x ≠时,都有1212()()0f x f x x x ->-,可得=在[]0,3上为严格增函数,再结合其为偶函数及周期为6分析判断;对于④,由3=0,()f x 的周期为6,及函数的单调性分析判断.【详解】①:对于任意R x ∈,都有()()()63f x f x f +=+成立,令3x =-,则()()()3633f f f -+=-+,解得()30f -=,又因为()f x 是R 上的偶函数,所以3=0,所以()()6f x f x +=,所以函数()f x 的周期为6,所以()()()200844f f f ==-,又由()42f -=-,故()20082f =-;故①正确;②:由(1)知()f x 的周期为6,又因为()f x 是R 上的偶函数,所以()()6f x f x +=-,而()f x 的周期为6,所以()()66f x f x +=-+,()()6f x f x -=--,所以:()()66f x f x --=-+,所以直线6x =-是函数=的图象的一条对称轴.故②正确;③:当[]12,0,3x x ∈,且12x x ≠时,都有1212()()0f x f x x x ->-.所以函数=在[]0,3上为严格增函数,因为()f x 是R 上的偶函数,所以函数=在[]3,0-上为严格减函数,而()f x 的周期为6,所以函数=在[]9,6--上为严格减函数.故③正确;④:3=0,()f x 的周期为6,所以()()()()93390f f f f -=-===,又()f x 在[]3,3-先严格递减后严格递增,所以()f x 在[]3,3-上除端点外不存在其他零点,所以()f x 在[9,3)--和(3,9]上各有一个零点,所以函数=在[]9,9-上有四个零点.故④正确;故选:D .【点睛】关键点点睛:此题考查抽象函数的奇偶性,对称性,单调性和周期性,解题的关键是利用赋值法求出3=0,从而可得()()6f x f x +=,得到周期为6,然后结合周期性和奇偶性分析判断,考查分析问题的能力,属于较难题.二、多选题(本题共3个小题,每小题6分.共18分,每小题有多项符合题目要求,全部选对得6分.选错得0分,部分选对得3分)9.某市教育局为了解疫情时期网络教学期间的学生学习情况,从该市随机抽取了1000名高中学生,对他们每天的平均学习时间进行问卷调查,根据所得信息制作了如图所示的频率分布直方图,则()A.这1000名高中学生每天的平均学习时间为6~8小时的人数有100人B.估计该市高中学生每天的平均学习时间的众数为9小时C.估计该市高中学生每天的平均学习时间的60%分位数为9.2小时D.估计该市高中学生每天的平均学习时间的平均值为8.6小时【答案】BCD 【解析】【分析】对于A :直接利用频率分布直方图的数据进行计算,即可判断;对于B :根据众数的定义进行判断;对于C :直接利用频率分布直方图的数据进行计算,即可判断;对于D :直接利用频率分布直方图的数据,按照平均数的定义进行计算,即可判断.【详解】对于A :从频率分布直方图,可以得到0.1021000=200⨯⨯,即这1000名高中学生每天的平均学习时间为6~8小时的人数有200人,故A 错误;对于B :由频率分布直方图可以得到,抽查的1000名高中学生每天的平均学习时间的众数为9小时,由此可以估计该市高中学生每天的平均学习时间的众数为9小时,故B 正确;对于C :由频率分布直方图可以得到,设抽查的1000名高中学生每天的平均学习时间的60%分位数为k 小时,则有:()0.0520.120.2580.6k ⨯+⨯+⨯-=,解得:k =9.2,即抽查的1000名高中学生每天的平均学习时间的60%分位数为9.2小时,由此可以估计该市高中学生每天的平均学习时间的60%分位数为9.2小时,故C 正确;对于D :由频率分布直方图可以得到,抽查的1000名高中学生每天的平均学习时间的平均值为0.05250.10270.25290.102118.6⨯⨯+⨯⨯+⨯⨯+⨯⨯=小时,由此可以估计该市高中学生平均学习时间的平均值为8.6小时,故D 正确;故选:BCD10.在ABC V 中,设角,,A B C 所对的边分别为s s ,则下列命题一定成立的是()A.若222a b c +>,则ABC V 是锐角三角形B.若2a =,b =,π4B =,则ABC V 有唯一解C.若ABC V 是锐角三角形,3b =,π3B =,设ABC V 的面积为S ,则S ∈D.若ABC V 是锐角三角形,则sin sin cos cos A B A B +>+【答案】BCD 【解析】【分析】由余弦定理可判断A ;由正弦定理可判断B ;利用边化角结合面积公式可得πsin 2264S A ⎛⎫=-+⎪⎝⎭,求π26A -的范围,结合正弦函数的性质可得S 的范围,即可判断C ;由锐角三角形可得ππ022A B >>->及ππ022B A >>->,利用sin y x =在π(0,)2上的单调性结合诱导公式可判断D .【详解】222a b c +> ,2220a b c ∴+->,222cos 02a b c C ab+-∴=>,∴C 为锐角,但不能确定角,A B 是否为锐角,故ABC V 不一定是锐角三角形,故A 错误;由正弦定理得22sin 2sin 1a BA b⨯===,(0,π)A ∈ ,ππ,24A C ∴==,∴ABC V 有唯一解,故B正确;3πsin sin 3b B ==,a A ∴=,2πsin()3c C A ==-,112ππsin sin()sin2233S ac B A A ∴==⨯⋅-⋅2π2π(sin cos cos sin )33A A A =-1(cos sin )22A A A =+29sin cos sin 22A A A =+93333sin 2cos 2444A A =-+33π33sin(2)264A =-+,又π022ππ032A A ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ62A <<,π2π3A ∴<<,ππ5π2666A ∴<-<,1πsin(2126A ∴<-≤,πsin(24262A ∴<-≤,24S ∴<≤,即(,24S ∈,故C 正确;ABC V 是锐角三角形,π2A B ∴+>,又π,(0,)2A B ∈,ππ022A B ∴>>->,ππ022B A >>->,又sin y x =在π(0,2上单调递增,πsin sin()cos 2A B B ∴>-=,πsin sin()cos 2B A A >-=,sin sin cos cos A B A B ∴+>+,故D 正确;故选:BCD .11.如图,在棱长为5的正方体ABCD A B C D -''''中,M 是侧面ADD A ''上的一个动点,点P 为线段CC '上,且2PC '=,则以下命题正确的是()A.沿正方体的表面从点A 到点P 的最短距离是B.保持PM 与BD '垂直时,点M 的轨迹长度为C.若保持PM =M 的轨迹长度为4π3D.平面AD P '被正方体ABCD A B C D -''''截得截面为等腰梯形【答案】BD 【解析】【分析】根据平面展开即可判断A ;过P 做平面//PEF 平面ACB ',即可判断B ;根据点M 的轨迹是圆弧,即可判断C ;作出正方体ABCD A B C D -''''被平面AD P '所截的截面即可判断D .【详解】对于A ,将正方体的下底面和侧面展开可得如图图形,连接AP ,则25648910AP =+=<,故A 错误;对于B ,如图:DD ' 平面ABCD ,AC ⊂平面ABCD ,DD AC '⊥,又AC BD ⊥,DD BD D '= ,DD ',BD ⊂平面DD B ',AC ∴⊥平面DD B ',BD '⊂平面DD B ',AC BD '∴⊥,同理可得BD AB ''⊥,AC AB A ⋂'=,AC ,AB '⊂平面ACB '.BD '∴⊥平面ACB '.所以过点P 作//PG C D '交CD 交于G ,过G 作//GF AC 交AD 交于F ,由//AB C D '',可得//PG AB ',PG ⊄平面ACB ',AB '⊂平面ACB ',//PG ∴平面ACB ',同理可得//GF平面ACB ',,,PG GF G PG GF ⋂=⊂平面PGF ,则平面//PGF 平面ACB '.设平面PEF 交平面ADD A ''于EF ,则M 的运动轨迹为线段EF ,由点P 在棱CC '上,且2PC '=,可得2DG DF AE ===,连接A D ',则1AE AA AF AD '==,所以//EF A D ',又//A D B C '',所以//EF B C ',所以3323255EF A D ==⨯=',故B 正确;对于C ,如图:若26PM =M 在以P 为球心,26过点P 作PQ ⊥平面ADD A '',则2D Q '=,此时22||26251QM PM PQ =-=-=.所以点M 在以Q 为圆心,1为半径的圆弧上,此时圆心角为π.点M 的运动轨迹长度π×1=π,故C 错误;对于D ,如图:延长DC ,D P '交于点H ,连接AH 交BC 于I ,连接PI ,所以平面AD P '被正方体ABCD A B C D -''''截得的截面为AIPD '.~PCH D DH ' ,35PH PC HC D H DD DH ''===,~ICH ADH ,35CI HC IH DA DH AH===,所以35PH IH PI D HAHAD ==='',//PI AD '∴,且||||PI AD '≠,所以截面AIPD '为梯形,25429AI PD =+'==,截面AIPD '为等腰梯形,故D 正确.故选:BD .【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.三、填空题(本题共3个小题,每题5分,共15分)12.设α,β是两个不同的平面,l 是直线且l α⊂,则“l β⊥”是“αβ⊥”的______.条件(参考选项:充分不必要,必要不充分,充分必要,既不充分也不必要).【答案】充分不必要【解析】【分析】面面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.根据题意由判断定理得l βαβ⊥⇒⊥.若αβ⊥,直线l α⊂则直线l β⊥,或直线l β∥,或直线l 与平面β相交,或直线l 在平面β内.由αβ⊥,直线l α⊂得不到l β⊥,故可得出结论..【详解】面面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.因为直线l α⊂且l β⊥所以由判断定理得αβ⊥.所以直线l α⊂,且l βαβ⊥⇒⊥若αβ⊥,直线l α⊂则直线l β⊥,或直线l β∥,或直线l 与平面β相交,或直线l 在平面β内.所以“l β⊥”是“αβ⊥”成立的充分不必要条件.故答案为:充分不必要.【点睛】本题考查充分条件,必要条件的判断,涉及到线面、面面关系,属于基础题.13.已知函数()()2ln f x x ax a =--对任意两个不相等的实数121,,2x x ∞⎛⎫∈--⎪⎝⎭,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为__________.【答案】11,2⎡⎤-⎢⎥⎣⎦【解析】【分析】由题意可知()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,令()2g x x ax a =--,则由复合函数单调性可知二次函数()g x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,由此列不等式组即可求解.【详解】由题意可知,()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,令()2g x x ax a =--,则()g x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,且()0g x >在1,2⎛⎫-∞- ⎪⎝⎭上恒成立,所以()2121211022a a a ⎧--≥-⎪⨯⎪⎨⎛⎫⎛⎫⎪--⨯--≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得112a -≤≤,故答案为:11,2⎡⎤-⎢⎥⎣⎦14.已知,x y R +∈,x y t +=,记11x y m x y =+++,221111n x y =+++,有下面四个结论:①若1t =,则m 的最大值为43;②若1t =,则n 的最小值为85;③若2t =,则m 的最大值为1;④若2t =,则n 的最大值为212+.则错误..结论的序号是______.【答案】①②【解析】【分析】把m 变形成112()11m x y =-+++,利用常数t 值并借助“1”的妙用求解,再按t 的不同取值计算即可判断;用常数t 表示出xy 的取值范围,然后将n 变形成用xy 表示,再借助函数、均值不等式求解计算并判断作答.【详解】依题意,(1)(1)2x y t +++=+,则1111(1)(1)2()1111m x y x y =-+-=-+++++11111142[()2(2)(1221)(1)212]11y x t x y t x y t x y ++=-+=-++≤-++++++++++,当且仅当2tx y ==时取“=”,对于①,1t =时,12x y ==有max 23m =,①不正确;对于③,2t =时,1x y ==有max 1m =,③正确;令22()24x y t p xy +=≤=,当且仅当2t x y ==时取“=”,即204t p <≤,2222()22x y x y xy t p +=+-=-,则22222222222222222(1)(1)121x y x y t pn x y x y x y p p t +++++-===+++++-++对于②,1t =时,104p <≤,2232()322333322[()]2[()]22222p p n p p p p --==-+-----+232()22335351()()()1322424()2p p p p p -==---+-+⋅--,而533422p ≤-<,由对勾函数知351()324()2p p -+⋅-对353[,)242p -∈是递增的,2351()1324()2p p -+⋅--对353[,)242p -∈是递减的,则14p =时,max 85n =,无最小值,即②不正确;对于④,2t =时,01p <≤,22622(3)25[3(3)]2[3(3)]5p p n p p p p --==-+-----+22(3)28(3)4(3)8(3)4(3)p p p p p -==---+-+--,而233p ≤-<,8(3)(3)p p -+≥-,当且仅当8(3)(3)p p -=-,3p -=,即3=-p 时取“=”,则有3=-p时,max 12n ==,即④正确,所以错误结论的序号是①②.故答案为:①②四、解答题(本题共5个小题,共77分,解答应写出必要的文字说明证明过程或演算步骤.)15.平面内给定两个向量()()3,2,1,2a b ==-.(1)求cos ,a b;(2)求2a b -.【答案】(1)65(2【解析】【分析】(1)先求出a b ⋅ 、a 和 b ,接着由向量夹角余弦公式cos ,a b a b a b⋅= 即可得解.(2)由坐标形式的向量模长公式即可计算得解.【小问1详解】由题()31221a b ⋅=⨯-+⨯=,a b ===所以cos ,65a b a b a b⋅===.【小问2详解】由题得()27,2a b -=,所以()27,2a b -=== .16.记ABC V 的内角A ,B ,C 的对边分别为a ,b,c ,已知sin cos sin cos C A B A C =-,a c +=3b =.(1)求角B 的大小;(2)求ABC V 的面积.【答案】(1)π3(2)334【解析】【分析】(1)利用两角和的正弦公式及诱导公式得到sin B B =,即可得解;(2)利用余弦定理得到229a c ac =+-,再将a c +=ac ,最后由面积公式计算可得.【小问1详解】因为sin cos sin cos C A B A C =-,所以cos sin sin cos A C A C B +=,即()sin A C B +=,即sin B B =,显然cos 0B ≠,所以tan B =,又()0,πB ∈,所以π3B =;【小问2详解】由余弦定理2222cos b a c ac B =+-,即229a c ac =+-,又a c +=22182a c ac =++,解得3ac =,所以11sin 32224ABC S ac B ==⨯⨯=△.17.如图所示,在长方形ABCD 中,2,1AB AD ==,E 为CD 的中点,以AE 为折痕,把DAE 折起到D AE ' 的位置,且平面D AE '⊥平面ABCE .(1)求证:AD BE '⊥;(2)求四棱锥D ABCE '-的体积;(3)在棱ED '上是否存在一点P ,使得D B '//平面PAC ,若存在,求出点P 的位置;若不存在,请说明理由.【答案】(1)证明见解析.(2)4.(3)存在,13EP ED '=.【解析】【分析】(1)在长方形ABCD 中可知,BE AE ⊥,根据面面垂直的性质定理可以证明AD BE '⊥.(2)取AE 的中点F ,连接D F ',则D F AE '⊥,由面面垂直的性质定理可以证明D F '⊥平面ABCE ,进而求出D ABCE V '-.(3)连接AC 交BE 于点Q ,假设在D E '上存在点P ,使得D B '//平面PAC ,根据平行线的性质结合平面几何知识即可得到EP 与ED '之间的关系.【小问1详解】根据题意可知,在长方形ABCD 中,DAE 和CBE △为等腰直角三角形,∴45DEA CEB ∠=∠= ,∴90AEB ∠= ,即BE AE ⊥.∵平面D AE '⊥平面ABCE ,且平面D AE ' 平面ABCE AE =,BE ⊂平面ABCE ,∴BE ⊥平面D AE ',∵AD '⊂平面D AE ',∴AD BE '⊥.【小问2详解】如图所示,取AE 的中点F ,连接D F ',则D F AE '⊥,且2D F '=.∵平面D AE '⊥平面ABCE ,且平面D AE ' 平面ABCE AE =,D F '⊂平面D AE ',∴D F '⊥平面ABCE ,∴()1112212133224D ABCE ABCE V S DF -'=⋅=⨯⨯+⨯⨯='.【小问3详解】连接AC 交BE 于点Q ,假设在D E '上存在点P ,使得D B '//平面PAC ,连接PQ .∵D B '⊂平面D BE ',平面DBE' 平面PAC PQ =,∴D B '//PQ ,∴在EBD ' 中,EP EQPD QB='.∵CEQ ABQ ∽△△,∴12EQ EC QB AB ==,∴12EP EQPD QB==',即13EP ED'=,∴在棱ED'上存在一点P,且13EP ED'=,使得DB'//平面PAC.【点睛】关键点点睛:本题第三小问关键是确定动点P的位置,使得D B'//PQ,利用三角形相似得出EP 与ED'之间的关系.18.象棋作为中华民族的传统文化瑰宝,是一项集科学竞技,文化于一体的智力运动,可以帮助培养思维能力,判断能力和决策能力.近年来,象棋也继围棋、国际象棋之后,成为第三个进入普通高校运动训练专业招生项目的棋类项目.某校象棋社团组织了一场象棋对抗赛,参与比赛的40名同学分为10组,每组共4名同学进行单循环比赛.已知甲、乙、丙、丁4名同学所在小组的赛程如表:第一轮甲-乙丙-丁第二轮甲-丙乙-丁第三轮甲-丁乙-丙规定;每场比赛获胜的同学得3分.输的同学不得分,平局的2名同学均得1分,三轮比赛结束后以总分排名,每组总分排名前两位的同学可以获得奖励.若出现总分相同的情况,则以抽签的方式确定排名(抽签的胜者排在负者前面),且抽签时每人胜利的概率均为12,假设甲、乙、丙3名同学水平相当,彼此间胜、负、平的概率均为13,丁同学的水平较弱.面对任意一名同学时自己胜、负、平的概率都分别为124,,777.每场比赛结果相互独立.(1)求丁同学的总分为5分的概率;(2)已知三轮比赛中丁同学获得两胜一平,且第一轮比赛中丙、丁2名同学是平局,求甲同学能获得奖励的概率.【答案】(1)48 343(2)7 27【解析】【分析】(1)利用相互独立事件的乘法公式即可求解;(2)利用相互独立事件的乘法公式及互斥事件的概率的加法公式即可求解.【小问1详解】丁同学总分为5分,则丁同学三轮比赛结果为一胜两平,记第()1,2,3k k =轮比赛丁同学胜、平的事件分别为k A ,k B ,丁同学三轮比赛结果为一胜两平的事件为M ,则()()()()21231231234148377343P M P A B B P B A B P B B A ⎛⎫=++=⨯⨯=⎪⎝⎭,即丁同学的总分为5分的概率为48343.【小问2详解】由于丁同学获得两胜一平,且第一轮比赛中丙、丁2名同学是平局,则在第二、三轮比赛中,丁同学对战乙、甲同学均获胜,故丁同学的总分为7分,且同丁同学比赛后,甲、乙、丙三人分别获得0分,0分、1分,若甲同学获得奖励,则甲最终排名为第二名.①若第一、二轮比赛中甲同学均获胜,则第三轮比赛中无论乙、丙两位同学比赛结果如何,甲同学的总分为6分,排第二名,可以获得奖励,此时的概率1111339P =⨯=.②若第一轮比赛中甲同学获胜,第二轮比赛中甲、丙2名同学平局,第三轮比赛中乙、丙2名同学平局或乙同学获胜,甲同学的总分为4分,排第二名,可以获得奖励,此时的概率211112333327P ⎛⎫=⨯⨯+= ⎪⎝⎭.③若第一轮比赛中甲、乙2名同学平局,第二轮比赛中甲同学获胜,第三轮比赛中当乙、丙2名同学平局时,甲同学的总分为4分,排第二名,可以获得奖励,此时的概率111133327⨯⨯=;第三轮比赛中当乙,丙同学没有产生平局时,甲同学与第三轮比赛乙、丙中的胜者的总分均为4分,需要进行抽签来确定排名,当甲同学抽签获胜时甲同学排第二名,可以获得奖励,此时的概率4111111333227P ⎛⎫=⨯⨯-⨯= ⎪⎝⎭.综上,甲同学能获得奖励的概率123412117927272727P P P P P =+++=+++=.19.对于集合{}12,,,n θθθΩ=⋅⋅⋅和常数0θ,定义:()()()22210200cos cos cos n nθθθθθθμ-+-+⋅⋅⋅+-=为集合Ω相对0θ的“余弦方差”.(1)若集合,34ππ⎧⎫Ω=⎨⎬⎩⎭,00θ=,求集合Ω相对0θ的“余弦方差”;(2)若集合2,,33πππ⎧⎫Ω=⎨⎬⎩⎭,证明集合Ω相对于任何常数0θ的“余弦方差”是一个常数,并求这个常数;(3)若集合,,4παβ⎧⎫Ω=⎨⎬⎩⎭,[0,)απ∈,[,2)βππ∈,相对于任何常数0θ的“余弦方差”是一个常数,求α,β的值.【答案】(1)38(2)证明见解析,这个常数为12;(3)11121912παπβ⎧=⎪⎪⎨⎪=⎪⎩或7122312παπβ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)根据集合Ω相对0θ的“余弦方差”的定义及特殊角的三角函数值即可求解;(2)根据集合Ω相对于常数0θ的“余弦方差”的定义及两角差的余弦公式即可求解;(3)根据集合Ω相对于常数0θ的“余弦方差”的定义及三角恒等变换公式即可求解.【小问1详解】解:当集合,34ππ⎧⎫Ω=⎨⎬⎩⎭,00θ=时,集合Ω相对0θ的“余弦方差”22cos (0)cos (0)33428ππμ-+-==;【小问2详解】证明:当集合2,,33πππ⎧⎫Ω=⎨⎬⎩⎭时,集合Ω相对于常数0θ的“余弦方差”2220002cos ()cos ()cos ()333ππθθπθμ-+-+-=2220000011(cos )(cos sin )cos 22223θθθθθ++-++=22200013cos sin cos 12232θθθ++==,∴此时“余弦方差”是一个常数,且常数为12;【小问3详解】解:当集合,,4παβ⎧⎫Ω=⎨⎬⎩⎭,[)0,απ∈,[),2βππ∈时,集合Ω相对于任何常数0θ的“余弦方差”222000cos ()cos ()cos ()43πθαθβθμ-+-+-=2222220000111[(cos cos )cos (1sin 2sin 2)sin cos (sin sin )sin ]322αβθαβθθαβθ=⋅++++++++,要使上式对任何常数0θ是一个常数,则1sin 2sin 20αβ++=且222211cos cos sin sin 22αβαβ++=++,所以cos 2cos 20sin 2sin 21αβαβ+=⎧⎨+=-⎩,故()221cos 21sin 2αα=+--,整理得到1sin 22α=-,而[)20,2απ∈,故726πα=或1126πα=,所以7π12α=或1112πα=,当7π12α=时,有cos 221sin 22ββ⎧=⎪⎪⎨⎪=-⎪⎩,而[)22,4βππ∈,故2326πβ=即2312πβ=,当1112πα=时,有cos 221sin 22ββ⎧=-⎪⎪⎨⎪=-⎪⎩,而[)22,4βππ∈,故1926πβ=即1912πβ=,故11121912παπβ⎧=⎪⎪⎨⎪=⎪⎩或7122312παπβ⎧=⎪⎪⎨⎪=⎪⎩.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省长沙市一中18-10学年高二第一学期期中考试数学(理科)命题人:李读华审校人;龚日辉时量120分钟满分150分一、选择题:(本大题共8个小题,每小题5分共40分,在每小题给出的选项中,只有一项是符合题材目要求的)1. 在空间有三个向量、、,则()A.B.C.D.2. 已知抛物线的标准方程为,则抛物线的准线方程是()A. B. C. D.3. 下列各组向量中不平行的是()A.B.C.D.4. 下列命题为真的是()A.,B.,C.,D.,5.如图:正方体中,点是中点,是中点,则和所成角的是()A.B.C.D.6.已知a,b是两个非零向量,给定p:|a·b|=|a|·|b|,使得a=tb,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.非充分,非必要条件7.过双曲线的右焦点作直线交双曲线于、两点,若实数使得的直线有4条,则的取值范围是().A.B.C.D.8.设斜率为的直线与椭圆交于不同的两点,且这两个交点在轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为().A.B.C.D.二、填空题:(本大题共7个小题,每小题5分共35分.)9.如果椭圆上一点到焦点的距离等于6,那么点到另一个焦点的距离是.10.a,b,若a b,则______.11.设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为.12.向量a与b的夹角为,,,则.13. 已知:实数m满足,:函数是增函数. 若为真命题,为假命题,则实数m的取值范围是.14.从抛物线图象上一点引抛物线准线的垂线,垂足为,且,设抛物线焦点为,则的面积为.15.点为平面内一点,点为平面外一点,直线与平面成角,平面内有一动点,当时,动点的轨迹图形为.长沙市一中2018—2018年度上学期第二次阶段性考试高二数学(理科)答题卷一、选择题:(本大题共8个小题,每小题5分共40分,在每小题给出的选项中,只有一项是符合题材目要求的)题号 1 2 3 4 5 6 7 8答案二、填空题:(本大题共7个小题,每小题5分共35分.)9.10. 11.12.13.14. 15.三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题共12分)在平面直角坐标系中,抛物线的顶点是坐标原点且经过点,其焦点在轴上.(1)求抛物线方程;(2)求过点且与直线垂直的直线方程.17.(本小题共12分)如图,正方体的棱长为2.(1)求点到平面的距离;(2)求直线与平面所成角的大小.18.(本小题共12分)如图,在五面体中,平面,,,为的中点,.(1)证明:平面平面;(2)求二面角的余弦值;19.(本小题共13分)设双曲线的方程为,、为其左、右两个顶点,是双曲线上的任意一点,作,,垂足分别为、,与交于点.(1)求点的轨迹方程;(2)设、的离心率分别为、,当时,求的取值范围.20.(本小题共13分)如图椭圆:的两个焦点为、和顶点、构成面积为32的正方形.(1)求此时椭圆的方程;(2)设斜率为的直线与椭圆相交于不同的两点、、为的中点,且. 问:、两点能否关于直线对称. 若能,求出的取值范围;若不能,请说明理由.21.(本小题共13分)如图,是边长为2的正方形纸片,沿某动直线为折痕,正方形在其下方的部分向上翻折,使得每次翻折后点都落在边上,记为;折痕与交于点,点满足关系式.(1)如图,建立以中点为原点的直角坐标系,求点的轨迹方程;(2)若曲线是由点的轨迹及其关于边对称的曲线组成的,是边上的一点,,过点的直线交曲线于、两点,且,求实数的取值范围.附加题:(本小题共5分)给定曲线族,为参数,求该曲线族在直线上所截得的弦长的最大值.高二数学(理科)试卷参考答案一、选择题:1. B2. A3. D4. B5. D6. C7. B8. D二、填空题:9. 10 10. 5 11. 12. 6 13. (1,2)14.10 15.椭圆三、解答题16.(本小题共12分)在平面直角坐标系中,抛物线的顶点是坐标原点且经过点,其焦点在轴上.(1)求抛物线方程;(2)求过点且与直线垂直的直线方程.解析:(1)可设抛物线方程为,将代入方程得,方程为……………………………………………………………………(6分)(2)焦点,,.故直线方程为. .………………………………(12分)17.(本小题共12分)如图,正方体的棱长为2.(1)求点到平面的距离;(2)求直线与平面所成角的大小.解析:(1)可证面,则为到面距离,故.………………………………(4分)(2)解法一:连接,设与交于点,连接.,,.平面,在平面内的射影为.就是与平面所成的角.………………………………………(9分)设正方体的棱长为1,在中,,,. .即与平面所成的角为.……………………………………………(12分)解法二:以为原点,,,所在直线分别为、、轴,建立如图所示的空间直角坐标系,设正方体的棱长为1,则,.,.设平面的一个法向量n=,则令得.…………………………………(9分).又,...……………………………………………………………………(11分)即与平面所成的角为.……………………………………………(12分)18.(本小题共12分)如图,在五面体中,平面,,,为的中点,.(1)证明:平面平面;(2)求二面角的余弦值;解析:解法一:(1)证明:需先证明,因为且为的中点,所以.连结,则.又,故平面.而平面,所以平面平面…………………(6分)(2)设为的中点,连结、.因为,所以.因为.所以,故为二面角的平面角.……………(9分),,,于是在中,,所以二面角的余弦值为.………………………………………………(12分)解法二:如图所示,建立空间直角坐标系,点为坐标原点.设,依题意得,,,,,.(1)证明:由,,,可得,.因此,,.又,故平面.而平面,所以平面平面.…………(6分)(2)设平面的法向量为u=,则于是令,可得u.…………………………………………………………………………(9分)又由题设,平面的一个法向量为,所以<u,v>=.…………………………………………(11分)因为二面角为锐角,所以其余弦值为.…………………………(12分)19.(本小题共13分)设双曲线的方程为,、为其左、右两个顶点,是双曲线上的任意一点,作,,垂足分别为、,与交于点.(1)求点的轨迹方程;(2)设、的离心率分别为、,当时,求的取值范围.解析:(1)如图,设,,,,,,…………………………(4分)由①×②得:③,,代入③得,即. …………………………………………………………………………………………(6分)经检验,点,不合题意,因此点的轨迹方程是(点除外).(2)由(1)得的方程为.,………………………………(9分),,…………………………………………(11分).………………………………………………………………………(13分)20.(本小题共13分)如图椭圆:的两个焦点为、和顶点、构成面积为32的正方形.(1)求此时椭圆的方程;(2)设斜率为的直线与椭圆相交于不同的两点、、为的中点,且. 问:、两点能否关于直线对称. 若能,求出的取值范围;若不能,请说明理由.解析:由已知可得且,所以.所求椭圆方程为. ………(5分)②设直线的方程为,代入,得.由直线与椭圆相交于不同的两点知,. ②…………………………………………………………(7分)要使、两点关于过点、的直线对称,必须.………………(8分)设、,则,.,,解得. ③……………………………………………………………(11分)由②、③得,,,. 或.故当时,、两点关于过点、的直线对称.(13分)21.(本小题共13分)如图,是边长为2的正方形纸片,沿某动直线为折痕,正方形在其下方的部分向上翻折,使得每次翻折后点都落在边上,记为;折痕与交于点,点满足关系式.(1)如图,建立以中点为原点的直角坐标系,求点的轨迹方程;(2)若曲线是由点的轨迹及其关于边对称的曲线组成的,是边上的一点,,过点的直线交曲线于、两点,且,求实数的取值范围.解析:以为原点,所在直线为轴,所在直线为轴,建立直角坐标系如图所示.(1)设,,,其中,.,且,是菱形,设,则,,且,即=0由………………………………………………(2分)由……………………………………………………(4分)消去参数,,得.…………………………………………(7分)(2)依题意知曲线的方程为:,如图.设直线的方程为.……………………………………(8分)代入曲线的方程并整理,得.由.设,,则………………………………(10分)又,,从而得.代入(*)得①式两边平方除以②式,得,即,,.即,.实数的取值范围为.……………………………………………………(13分)附加题:(本小题共5分)给定曲线族,为参数,求该曲线族在直线上所截得的弦长的最大值.解析:由得.解得,要截得的弦最长,就必须的绝对值最大.为了利用正、余弦函数有界性,上式变为:;因为,所以,.该曲线族在上截得弦长的最大值是.。