直方图均衡化及直方图规定化
利用直方图均衡化和规定化进行图像增强的算法设计 数字图像处理毕业论文
目录第1章绪论 (1)1.1 数字图像处理的研究背景 (1)1.2 数字图像处理的研究内容 (1)1.3 DSP系统简介 (2)1.4 图像增强简介 (4)第2章DSP系统 (5)2.1 DSP芯片 (5)2.1.1 DSP芯片的特点 (6)2.1.2 图像处理系统中DSP芯片的选择 (7)2.2 基于DSP的图像处理系统 (8)第3章图像增强 (9)3.1 图像增强的基本概念 (9)3.2 图像增强的方法 (9)3.2.1 图像锐化 (10)3.2.1.1 图像锐化原理 (10)3.2.1.2 拉普拉斯算子 (11)3.2.1.3 基于DSP的算法实现 (12)3.2.1.4 图片锐化效果比较 (14)3.2.2 Sobel边缘检测算法 (16)3.2.2.1 Sobel边缘检测算法原理 (16)3.2.2.2 Sobel边缘检测算法的变异及实现 (16)3.2.3 直方图均衡化算法 (20)3.2.3.1 直方图均衡化 (20)3.2.3.2 直方图规定化 (21)3.2.3.3实验结果及分析 (23)第4章直方图均衡化和规定化算法的DSP实现 (25)4.1 算法的DSP实现与优化 (25)4.1.1 算法开发硬件平台选择 (25)4.1.2 算法的实现与优化 (26)4.2 实验及结果分析 (27)结论 (31)致谢 (32)参考文献 (33)第1章绪论1.1 数字图像处理的研究背景数字图像处理又称为计算机图像处理,它最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
图像处理的基本目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。
直方图均衡化计算
直方图均衡化计算直方图均衡化是基于灰度直方图的图像增强的一种方法,还有另外一种方法是直方图规定化。
均衡化的目的是将原始图像的直方图变为均衡分布的的形式,将一非均匀灰度概率密度分布图像,通过寻求某种灰度变换,变成一幅具有均匀概率密度分布的目的图像。
具体原理如下:1、连续灰度级:假定:r代表灰度级,P(r)为概率密度函数。
r值已经过归一化处理,灰度值范围在[0,1]之间。
r与P(r)之间的关系如下:非均匀分布的连续灰度直方图均衡化的目的是将上面的非均匀分布变成如下图所示的均匀分布:均匀分布的连续灰度直方图我们接下来要做的是要找到一种变换S=T(r)使直方图变平直,为使变换后的灰度仍保持从黑到白的单一变化顺序,且变换范围与原先一致,以避免整体变亮或变暗,需要有如下规定:(1)在0 <= r <= 1中,T(r)是单调递增函数,且0 <= T(r) <= 1;(2)反变换r=(s),(s)也为单调递增函数,且0 <= s <= 1。
直方图均衡化变换公式推导图示因为灰度变换不影响像素的位置分布,而且也不会增减像素数目,所以有如下的推导公式:2、离散灰度级:设一幅图像的像素总数为n,分为L个灰度级,其中::表示第K个灰度级出现的个数。
:第K个灰度级出现的概率。
(0<=<=1, k=0,1,2,...,L-1),公式如下:计算的基本步骤如下:(1)求出图像中所包含的灰度级,一般都经过归一化处理,范围在[0,1]之间,也可以定在[0,L-1]之间。
(2)统计各灰度级的像素数目(k=0,1,2,...,L-1)。
(3)计算图像直方图。
(4)计算变换函数,即:(5)用变换函数计算映射后输出的灰度级。
(6)统计映射后新的灰度级的像素数目。
(7)计算输出图像的直方图。
根据上面推导出来的公式以及计算步骤,我们可以结合栗子来加深理解~~~eg:设图像有64*64=4096的像素,有8个灰度级,灰度分布如下所示:由上图我们知道该图像的,和,下一步我们要做的就是通过变换函数求,即:依次可求得,,,,。
灰度直方图均衡化与规定化
一、课程设计目的(1)进一步掌握matlab的用法;(2)在实践中深入理解图像显示的方法;(3)学会用matlab对图像进行显示。
二、课程设计要求(1)根据题目,查阅有关资料,掌握图像显示技术;(2)学习MATLAB软件,掌握MATLAB各种函数的使用;(3)根据图像显示原理,运用MATLAB进行编程,仿真调制过程,记录并分析仿真结果;(4)形成设计报告。
三、设计方案一般情况下,如果图像的灰度分别集中在比较窄的区间,从而引起图像细节的模糊,为了使图像细节清晰,并使目标得到突出,达到图像增强的目的,可通过改善各部分亮度的比例关系,即通过直方图的方法来实现.直方图的方法是以概率论为基础的.常用的方法有直方图均衡化和直方图规定化.(1)直方图均衡化直方图均衡化又称直方图平坦化,是将一已知灰度概率密度分布的图像经过某种变换,变成一幅具有均匀灰度概率密度分布的新图像.其结果是扩展了像元取值的动态范围,从而达到增强图像整体对比度的效果.直方图均衡化的具体实现步骤如下:1).列出原始图像的灰度级,-=Lfj1,,1,j2).统计各灰度级的像素数目=L,-nj1,,,1j3).计算原始图像直方图各灰度级的频数=Lj=P(-fnn/,)11,,,fjj4).计算累积分布函数1,,,1,0,)()(0-==∑=L k j f P f C k j j f5).应用以下公式计算映射后的输出图像的灰度级,P 为输出图像灰度级的个数,其中INT 为取整符号1,,1]5.0)()[(min min max -=++-=P i g f C g g INT g i6).统计映射后各灰度级的像素数目 ni, i=0,1,…,k,…P-1.7). 计算输出直方图Pg(gi)=ni/n, i=0,1,…,P-1.8). 用fj 和gi 的映射关系修改原始图像的灰度级,从而获得直方图近似为均匀分布的输出图像(2) 直方图规定化直方图均衡化的优点是能自动增强整个图像的对比度,但它的具体增强效果不易控制,处理的结果总是得到全局的均衡化的直方图.实际工作中,有时需要变换直方图使之成为某个特定的形状,从而有选择地增强某个灰度值范围内的对比度,这时可采用比较灵活的直方图规定化方法.直方图规定化增强处理的步骤如下:令Pr (r )和Pz (z )分别为原始图像和期望图像的灰度概率密度函数。
【数字图像处理】直方图的均衡与规定化
【数字图像处理】直⽅图的均衡与规定化很多情况下,图像的灰度级集中在较窄的区间,引起图像细节模糊。
通过直⽅图处理可以明晰图像细节,突出⽬标物体,改善亮度⽐例关系,增强图像对⽐度。
直⽅图处理基于概率论。
直⽅图处理通常包括直⽅图均衡化和直⽅图规定化。
直⽅图均衡化可实现图像的⾃动增强,但效果不易控制,得到的是全局增强的结果。
直⽅图规定化可实现图像的有选择增强,只要给定规定的直⽅图,即可实现特定增强的效果。
直⽅图均衡化直⽅图均衡化借助灰度统计直⽅图和灰度累积直⽅图来进⾏。
灰度统计直⽅图灰度统计直⽅图反映了图像中不同灰度级出现的统计情况。
灰度统计直⽅图是⼀个⼀维离散函数,可表⽰为h (k )=n k ,k =0,1,...L −1,其中k 为某个灰度级,L 为灰度级的数量,最⼤取256,n k 为具有第k 级灰度值的像素的数⽬。
灰度直⽅图归⼀化概率灰度统计直⽅图的归⼀化概率表达形式给出了对s k 出现概率的⼀个估计,可表⽰为p s (s k )=n k /N ,k =0,1,2..,L −1式中,k 为某个灰度级;L 为灰度级的数量,最⼤取256;s k 为第k 级灰度值的归⼀化表达形式,s k =k /255,故s k ∈[0,1];n k 为具有第k 级灰度值的像素的数⽬;N 为图像中像素的总数,故(n k /N )∈[0,1]。
灰度累计直⽅图灰度累积直⽅图反映了图像中灰度级⼩于或等于某值的像素的个数。
灰度累积直⽅图是⼀个⼀维离散函数,可表⽰为H (k )=k ∑i =0n i ,k =0,1,2..,L −1式中,k 为某个灰度级;L 为灰度级的数量,最⼤取256;n i 为具有第i 级灰度值的像素的数⽬。
累积分布函数可以表⽰为:t k =k ∑i =0p s (s i )相对的,灰度累积直⽅图的归⼀化表⽰如下图:Processing math: 100%原理步骤直⽅图均衡化主要⽤于增强动态范围偏⼩的图像的反差。
直方图规定化
直方图规定化直方图规定化是指将一幅图像的像素值分布规定到另一幅图像的像素值分布上的过程。
其基本思想是通过将目标图像的像素值分布函数变换为规定分布函数,再将原始图像的像素值进行相应的变换,从而实现两幅图像的像素值分布逼近或一致。
直方图规定化可以用于图像处理的许多应用,例如图像增强、图像融合、图像匹配等。
下面将详细介绍直方图规定化的原理和实现步骤。
直方图规定化的原理如下:1. 给定一幅原始图像和一幅目标图像,分别计算它们的像素值频率分布函数H1(i)和H2(i)。
2. 对于每一个像素值i,计算原始图像和目标图像的积累密度函数C1(i)和C2(i)。
3. 构造映射关系,将原始图像的像素值映射到目标图像的像素值上。
可以通过计算C1(i)和C2(i)的差值,得到原始图像像素值i在目标图像上的对应像素值j。
4. 使用这个映射关系,对原始图像的每个像素值i进行变换,得到规定化后的图像。
直方图规定化的实现步骤如下:1. 计算原始图像和目标图像的像素值频率分布函数H1(i)和H2(i)。
2. 对原始图像和目标图像的分布函数进行归一化处理,得到归一化分布函数P1(i)和P2(i)。
3. 计算归一化分布函数的积累密度函数C1(i)和C2(i)。
4. 对于每一个像素值i,计算C1(i)和C2(i)之间的差值。
5. 找到C2(i) - C1(i)绝对值的最小值,并记录对应的像素值j。
6. 将原始图像的像素值i映射到目标图像的像素值j。
7. 使用这个映射关系,对原始图像的每个像素值i进行变换,得到规定化后的图像。
直方图规定化要求原始图像和目标图像的像素值范围相同,并且分布函数的积累密度函数单调递增。
如果原始图像和目标图像的像素值范围不同,可以通过直方图均衡化等方法进行一定的预处理。
在实际应用中,直方图规定化是一个重要的图像处理技术,可以根据目标图像的特点调整原始图像的像素值分布,从而实现图像的增强和融合效果。
此外,直方图规定化还可以用于图像匹配,将不同图像的像素值分布规定为一致,方便后续的图像匹配和目标检测等任务。
图像直方图均衡的标准化与规定化处理
图像直方图均衡的标准化处理均衡化基本原理:对在图像中像素个数多的灰度值(即对画面其主要作用的灰度值)进行展宽,而对像素个数少的灰度值进行归并,从而达到清晰图像的目的。
代码:img=imread('tim.jpg');figure,imshow(img);[m,n]=size(img); %测量图像尺寸参数h=zeros(1,256) %预创建存放灰度出现概率的向量for k=0:255h(k+1)=length(find(img==k))/(m*n);endfigure,bar(0:255,h,'k') %绘制直方图title('原图像直方图')xlabel('灰度值')ylabel('出现概率')S1=zeros(1,256);for i=1:256for j=1:iS1(i)=h(j)+S1(i); %计算SkendendS2=round(S1*256); %将Sk归到相近级的灰度for i=1:256heq(i)=sum(h(find(S2==i))); %显示均衡化后的直方图endfigure,bar(0:255,heq,'k') %显示灰度变化曲线title('均衡化后的直方图')xlabel('灰度值')ylabel('出现概率')figure,plot(0:255,S2,'r') %显示灰度变化曲线legend('灰度变化曲线')xlabel('原图像灰度级')ylabel('均衡化后灰度级')TR=img;for i=0:255TR(find(img==i))=S2(i+1); %将各个像素归一化后的灰度值付给这个像素endfigure,imshow(TR) %将各个像素归一化后的灰度值赋给这个像素 title('均衡化后图像')imwrite(TR,'tim.jpg');实验效果图:原图像原图像直方图标准化后图像标准化后直方图:灰度变化曲线图像直方图均衡的规定化处理直方图规定化的基本原理:有目的地增强某个灰度区间的图像,即能够人为地修正直方图的形状,使之与期望的形状相匹配。
对比度增强的方法
对比度增强的方法对比度增强是数字图像处理中一种常用的图像增强技术,其目的是通过调整图像中不同亮度级的像素值,使图像中的细节更加明显,从而提高图像的视觉质量。
在数字图像中,对比度越高,图像的明暗差异越明显,细节越清晰。
以下是几种常用的对比度增强方法:1.直方图拉伸:直方图拉伸是一种简单且有效的对比度增强方法。
它通过将图像的像素值线性映射到一个更宽的值域范围内,以扩展原始图像的灰度级范围。
这样可以使图像的黑色和白色更加明显,细节更加清晰。
2.直方图均衡化:直方图均衡化是一种通过重新分布图像中像素的灰度级来增强对比度的方法。
通过对图像的累积分布函数进行均衡化,可以使得图像中的灰度级分布更加均匀,从而提高图像的对比度。
但是,直方图均衡化可能会导致图像的整体亮度发生变化,需要进一步处理以保持原始图像的亮度。
3.自适应直方图均衡化:自适应直方图均衡化是一种改进的直方图均衡化方法,可以在不影响图像整体亮度的情况下增强图像的对比度。
它将图像划分为多个小块,在每个小块上进行直方图均衡化,以适应不同区域的亮度变化。
4.对比度拉伸:对比度拉伸是一种通过压缩图像的动态范围来增强对比度的方法。
它将图像的像素值重新映射到一个较小的范围内,以增加图像中各个灰度级之间的差异。
通常可以通过设置一个合适的拉伸参数来控制拉伸的程度。
5.非线性映射:非线性映射是一种通过对图像像素值进行非线性的转换来增强对比度的方法。
常用的非线性映射函数包括对数变换、幂次变换等。
这些函数可以调整图像中较低或较高灰度级的像素值,以增强图像中的细节。
此外,还有一些其他的对比度增强方法,如灰度变换、直方图规定化等,它们都可以通过调整图像像素值的分布来增强对比度。
选择合适的对比度增强方法需要考虑图像的特点以及增强的目的,最终效果的好坏需要通过实验来验证。
(精品)数字图像处理实验报告--直方图规定化
数字图像处理实验报告直方图匹配规定化直方图均衡化能够自动增强整个图像的对比度,但它的具体增强效果不容易控制,处理的结果总是得到全局均匀化的直方图。
实际上有时需要变换直方图,使之成为某个特定的形状,从而有选择地增强某个灰度值范围内的对比度。
这时可以采用比较灵活的直方图规定化。
一般来说正确地选择规定化的函数可以获得比直方图均衡化更好的效果。
所谓直方图规定化,就是通过一个灰度映像函数,将原灰度直方图改造成所希望的直方图。
所以,直方图修正的关键就是灰度映像函数。
直方图匹配方法主要有3个步骤(这里设M和N分别为原始图和规定图中的灰度级数,且只考虑N≤M的情况):(1) 如同均衡化方法中,对原始图的直方图进行灰度均衡化:(2) 规定需要的直方图,并计算能使规定的直方图均衡化的变换:(3) 将第1个步骤得到的变换反转过来,即将原始直方图对应映射到规定的直方图,也就是将所有pf(fi)对应到pu(uj)去。
一、A图直方图规定B图Matlab程序:%直方图规定化clear allA=imread('C:\Users\hp\Desktop\A.tif'); %读入A图像imshow(A) %显示出来title('输入的A图像')%绘制直方图[m,n]=size(A); %测量图像尺寸B=zeros(1,256); %预创建存放灰度出现概率的向量for k=0:255B(k+1)=length(find(A==k))/(m*n); %计算每级灰度出现的概率,将其存入B中相应位置endfigure,bar(0:255,B,'g'); %绘制直方图title('A图像直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.015])C=imread('C:\Users\hp\Desktop\B.tif');%读入B图像imshow(C) %显示出来title('输入的B图像')%绘制直方图[m,n]=size(C); %测量图像尺寸D=zeros(1,256); %预创建存放灰度出现概率的向量for k=0:255D(k+1)=length(find(C==k))/(m*n); %计算每级灰度出现的概率,将其存入D中相应位置endfigure,bar(0:255,D,'g'); %绘制直方图title('B图像直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.015])S1=zeros(1,256);for i=1:256for j=1:iS1(i)=D(j)+S1(i); %计算B灰度图累计直方图endendcounts=Bfigure,bar(0:255,counts,'r')title('A图像直方图 ')S2=zeros(1,256);for i=1:256for j=1:iS2(i)=counts(j)+S2(i);endend; %"累计"规定化直方图%对比直方图,找到相差最小的灰度级for i=1:256for j=1:255if S1(j)<=S2(i)&S1(j+1)>=S2(i)if abs(S1(j)-S2(i))<=abs(S1(j+1)-S2(i)) T(i)=j;else T(i)=j+1;endendendend%确定变换关系,重组直方图H=zeros(1,256);H(1)=S2(1);for i=2:255if T(i-1)>0for k=(T(i-1)+1):T(i)H(i)=H(i)+D(k);endelse H(i)=0;endendfigure,bar(0:255,H,'g') %显示规定化后的直方图title('A规定B后的直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.6])%显示规定图PA=C; %将各个像素归一化后的灰度值赋给这个像素for i=1:mfor j=1:nfor k=2:255if T(k-1)<=C(i,j)&C(i,j)<=T(k)PA(i,j)=k;break;endendendendfigure,imshow(PA) %显示规定化后的图像title('A规定B后图像')imwrite(PA,'guidinghua.bmp');二、用已知直方图规定A图规定灰度为[zeros(1,49),0.3,zeros(1,49),0.1,zeros(1,49),0.2,zeros(1,49),0.1,zeros(1,49 ),0.2,zeros(1,49),0.1]Matlab程序:clear allA=imread('C:\Users\hp\Desktop\B.tif'); %读入A图像imshow(A) %显示出来title('输入的A图像')%绘制直方图[m,n]=size(A); %测量图像尺寸B=zeros(1,256); %预创建存放灰度出现概率的向量for k=0:255B(k+1)=length(find(A==k))/(m*n); %计算每级灰度出现的概率,将其存入B中相应位置endfigure,bar(0:255,B,'g'); %绘制直方图title('A图像直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.015])S1=zeros(1,256);for i=1:256for j=1:iS1(i)=B(j)+S1(i); %计算原灰度图累计直方图endendcounts=[zeros(1,49),0.3,zeros(1,49),0.1,zeros(1,49),0.2,zeros(1,49),0.1,zer os(1,49),0.2,zeros(1,49),0.1];%规定化直方图figure,bar(1:300,counts,'r')title('规定化直方图')S2=zeros(1,256);for i=1:256for j=1:iS2(i)=counts(j)+S2(i);endend; %"累计"规定化直方图%对比直方图,找到相差最小的灰度级for i=1:256for j=1:256if S1(j)<=S2(i)&S1(j+1)>=S2(i)if abs(S1(j)-S2(i))<=abs(S1(j+1)-S2(i)) T(i)=j;else T(i)=j+1;endendendend%确定变换关系,重组直方图H=zeros(1,256);H(1)=S2(1);for i=2:256if T(i-1)>0for k=(T(i-1)+1):T(i)H(i)=H(i)+B(k);endelse H(i)=0;endendfigure,bar(0:255,H,'g') %显示规定化后的直方图title('规定化后的直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.6])%显示规定图PA=A; %将各个像素归一化后的灰度值赋给这个像素for i=1:mfor j=1:nfor k=2:256if T(k-1)<=A(i,j)&A(i,j)<=T(k)PA(i,j)=k;break;endendendendfigure,imshow(PA) %显示规定化后的图像title('规定化后图像')imwrite(PA,'guidinghua.bmp');。
数字图像处理算法中的细节增强
数字图像处理算法中的细节增强数字图像处理是指通过计算机算法对数字图像进行处理和改进的过程。
其中,细节增强是一种常见且重要的处理方式,旨在突出图像中的细节信息,提高图像的质量和清晰度。
本文将介绍数字图像处理算法中的细节增强方法以及它们的原理和应用。
一、直方图均衡化(Histogram Equalization)直方图均衡化是一种广泛应用于图像增强的方法。
其基本原理是通过重新分布图像中像素的灰度级,使得图像中的灰度值按照均匀分布的方式出现,从而增加图像的对比度并凸显细节。
具体来说,直方图均衡化分为以下几个步骤:1. 计算图像的直方图,即每个灰度级出现的次数;2. 计算图像的累积直方图,即每个灰度级出现的累积次数;3. 根据累积直方图以及图像的最大最小灰度级,重新分布像素的灰度级;4. 更新图像的像素值,使得图像的灰度级按照均衡化的直方图进行分布。
直方图均衡化的优点是简单易实现,并且适用于大部分的图像。
然而,由于其对整个图像的统计信息进行处理,可能会导致图像的噪声增加和背景细节丢失的问题。
为解决这些问题,后续的算法提出了更加复杂的细节增强方法。
二、自适应直方图均衡化(Adaptive Histogram Equalization,AHE)自适应直方图均衡化是一种改进的直方图均衡化方法,它能针对不同区域的图像进行不同的处理,以保持细节并减少噪声。
其基本原理是将图像分割成许多小的局部区域,并对每个区域进行直方图均衡化。
具体来说,自适应直方图均衡化分为以下几个步骤:1. 将图像分割成大小相等的小区域;2. 对每个小区域进行直方图均衡化,使得每个区域中的灰度级分布均匀;3. 将各个小区域重新合并为原始尺寸的图像。
与传统的直方图均衡化相比,自适应直方图均衡化通过适应不同区域的直方图均衡化保留了更多的细节信息,同时避免了噪声的引入。
然而,自适应直方图均衡化存在一些问题,如对于过亮或过暗的区域处理效果较差。
三、双边滤波(Bilateral Filtering)双边滤波是一种基于图像的空间和灰度相似性的滤波方法,常在图像细节增强中应用。
直方图规定化
Step 3
具体步骤
(1)做出原图像的直方图。 (2)做出原图像的累积直方图,对原图像进行均衡化变换。 (3)做出参考图像的直方图或确定参考直方图。 (4)做出参考累积直方图,进行均衡化变换。 (5)对原图像找到参考累积直方图中对应的累积值;如参 考图有数学公式,直接求的新灰度值。 (6)以新值替代原灰度值,形成均衡化后的新图像。 (7)根据原图像像元统计值对应找到新图像像元统计值, 做出新直方图。
缺点:图像是离散函数,同时近似运算存在误差,规定化 变换只能接近参考直方图,不可能完全相同。两幅亮度相 差很大的图像,无法做规定化。(注:两幅图像必须具有 相同的投影)
现有的图像增强方法各有利弊,同一种方法
能用突变出换图后像的的某地些形特湿征度,指又数会掩建盖立或土消壤除水图分像别模型
的特征,因此应根据需要加以选用。
应用实例
用变换后的地形湿度指数建立土壤水分模型
BEA Confidential. | 15
应用实例
用变换后的地形湿度指数建立土壤水分模型
BEA Confidential. | 16
应用实例
用变换后的地形湿度指数建立土壤水分模型
BEA Confidential. | 17
5.总结分析
(1)直方图规定化优缺点 优点:消除由于太阳高度角或大气影响造成的图像色调差 异。
就是通过一个灰度映像函数,将原灰度 直方图改造成所希望的直方图。所以,直方 图修正的关键就是灰度映像函数。
直方图规定化概念
Service Bus
规
定
一幅参考图像的直方图
直
方
特定函数形式的直方图
图
2. 直方图规定化原理
直方图规定化原理是对两个直方图都做均 衡化,变成相同的归一化的均匀直方图。以此 均匀直方图起到媒 介作用,再对参考图像做均 衡化的逆运算即可。
遥感——数字图像处理名词解释及简单整理
Unit 11、图像是对客观存在的物体的一种相似性的、生动的写真或描述。
2、图像处理的内容它是研究图像的获取、传输、存储、变换、显示、理解与综合利用的一门崭新学科。
根据抽象程度不同可分为三个层次:狭义图像处理、图像分析和图像理解。
Unit 21、图像数字化是将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
2、将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
3、将像素灰度转换成离散的整数值的过程叫量化。
4、表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
5、一幅大小为M×N、灰度级数为G的图像所需的存储空间,即图像的数据量,大小为M×N×g (bit)6、数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
7、对比度是指一幅图象中灰度反差的大小。
对比度=最大亮度/最小亮度8、清晰度由图像边缘灰度变化的速度来描述。
9、灰度直方图反映的是一幅图像中各灰度级像素出现的频率。
以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图就是灰度直方图。
10、简述灰度直方图的应用。
1).数字化参数(判断量化是否恰当)。
2). 边界阈值选取(确定图像二值化的阈值)。
3). 利用直方图统计图像中物体的面积。
4). 计算图像信息量H(熵)。
5). 利用直方图分析图像的特性。
6). 利用直方图进行图像增强。
11、对于任一像素(i,j),该像素周围的像素构成的集合{(i+p,j+q),p、q取合适的整数},叫做该像素的邻域。
12、对输入图像IP(i,j)处理时,某一输出像素JP(i,j)值由输入图像像素(i,j)及其邻域N(IP(i,j))中的像素值确定。
这种处理称为局部处理。
13、在局部处理中,当输出值JP(i,j)仅与IP(i,j)有关,则称为点处理。
14、在局部处理中,输出像素JP(i,j)的值取决于输入图像大范围或全部像素的值,这种处理称为大局处理。
名词解释与简答题
名词解释同态滤波增强:将图像亮度范围压缩和对比度增强的频域方法。
图像锐化:增强图像的边缘或轮廓或增强被模糊了的细节。
图像平滑:去噪处理。
均值滤波:用邻域像素的灰度平均值替代当前像素的灰度值。
中值滤波:设置一个奇数点的滑动窗口,将窗口中心点的像素值用窗口内各点的中值代替。
数字图像处理:利用计算机对数字图像进行系列操作(计算机图像处理)。
变换编码(DCT):通过正交变换把图像从空间域转换为能量比较集中的交换域系数,然后对系数进行编码,从而达到压缩数据的目的。
图像分割:将一幅图像划分为互不重叠的区域的处理。
JPEG静止图像编码标准:采用基于变换编码的有损/基于预测编码的无损压缩方案。
MPEG:运动图像编码标准。
图像复原:把退化、模糊了的图像复原.包括图像辐射校正和几何校正等内容。
图像退化:是指图像在形成、传输和记录过程中,由于成像系统、传输介质和设备的不完善,使图像的质量变坏。
几何校正:是由输出图像像素坐标反算输入图像坐标,然后通过灰度再采样求出输出像素灰度值。
图像:图像是对客观存在的物体的一种相似性的、生动的写真或描述图像的数字化:如何由一幅模拟图像获取一幅满足需求的数字图像,使图像便于计算机处理、分析。
图像变换:处理问题简化、有利于特征提取、加强对图像信息的理解。
图像增强:增强图像的有用信息,消弱噪声的干扰。
图像编码:简化图像的表示,压缩图像的数据,便于存储和传输。
数字图象处理系统:一般由图象数字化设备、图象处理计算机和图象输出设备组成。
采样:图像空间位置的离散。
量化:图像灰度的离散化。
LUT:伪彩色查寻表。
灰度直方图:灰度直方图是灰度级的函数,它表示图像具有某种灰度级的像数的个数,反映了图像中每种灰度出现的频数。
直方图均衡化:将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。
直方图规定化增强:使原图像灰度直方图变成规定形状的直方图。
基于阈值的图像分割:通过取灰度门限值对图像像素进行分类。
直方图均衡化及规定化
直方图均衡化
直方图均衡化示意图
图(a) 原图灰度级直方图;图(b) 累积变换后的直方图; 图(c) 均衡化后的直方图;
直方图均衡化
直方图均衡化
直方图规定化
直方图规定化的原因: 在实际应用中,希望能够有目的地增强某 个灰度区间的图像, 即能够人为地修正直 方图的形状, 使之与期望的形状相匹配, 这就是直方图规定化的基本思想。
s G( z ) ( L 1) q(t )dt
0 z
3.由于它们的直方图均衡化图像理论上是一样的,即:
G( z ) s T (r ), z G 1[T (r )] G 1[s]
于是就得到了根据指定直方图来变换图像的直方图匹配变换。
直方图规定化
直方图规定化
直方图规定化
原图 均衡化的图像
直方图规定化
例如:Pr (r)为原图像的灰度密度函数, Pz (z)为希 望得到的增强图像的灰度密度函数,二者的直方图 如下:
直方图规定化
直方图规定化基本步骤:
1.先对原图做直方图均衡化,得到
s T (r ) ( L 1) p(t )dt
0 r
2.再对规定的直方图均衡化,得到
就给出了一个函数图形,称为直方图。
直方图未规范化 规范化直方图均衡化均衡化的原因: 大多数自然图像,其灰度分布集中在较窄的区间,引起 图像细节不够清晰,采用直方图修正后可使图像的灰度间距 拉开或使灰度分布均匀,从而增大反差,使图像细节清晰,
达到增强的目的。
直方图均衡化
直方图均衡化处理的“中心思想”: 把原始图像的灰度直方图从比较集中的某个灰度区间
变成在全部灰度范围内的均匀分布。
直方图均衡化就是对图像进行非线性拉伸,重新分配
【数字图像处理】灰度直方图、直方图均衡化、直方图规定化
【数字图像处理】灰度直⽅图、直⽅图均衡化、直⽅图规定化灰度直⽅图 ⼀幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的⼀个重要特征。
图像的灰度直⽅图就描述了图像中灰度分布情况,能够很直观的展⽰出图像中各个灰度级所占的多少。
图像的灰度直⽅图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数:其中,横坐标是灰度级,纵坐标是该灰度级出现的频率。
灰度直⽅图的计算公式如下:p(rk)=nk/MN其中,rk是像素的灰度级,nk是具有灰度rk的像素的个数,MN是图像中总的像素个数。
直⽅图均衡化 Histogram Equalization假如图像的灰度分布不均匀,其灰度分布集中在较窄的范围内,使图像的细节不够清晰,对⽐度较低。
通常采⽤直⽅图均衡化及直⽅图规定化两种变换,使图像的灰度范围拉开或使灰度均匀分布,从⽽增⼤反差,使图像细节清晰,以达到增强的⽬的。
直⽅图均衡化,对图像进⾏⾮线性拉伸,重新分配图像的灰度值,使⼀定范围内图像的灰度值⼤致相等。
这样,原来直⽅图中间的峰值部分对⽐度得到增强,⽽两侧的⾕底部分对⽐度降低,输出图像的直⽅图是⼀个较为平坦的直⽅图。
均衡化算法直⽅图的均衡化实际也是⼀种灰度的变换过程,将当前的灰度分布通过⼀个变换函数,变换为范围更宽、灰度分布更均匀的图像。
也就是将原图像的直⽅图修改为在整个灰度区间内⼤致均匀分布,因此扩⼤了图像的动态范围,增强图像的对⽐度。
通常均衡化选择的变换函数是灰度的累积概率,直⽅图均衡化算法的步骤:计算原图像的灰度直⽅图 P(Sk)=nknP(Sk)=nkn,其中nn为像素总数,nknk为灰度级SkSk的像素个数计算原始图像的累积直⽅图 CDF(Sk)=∑i=0knin=∑i=0kPs(Si)CDF(Sk)=∑i=0knin=∑i=0kPs(Si)Dj=L⋅CDF(Si)Dj=L⋅CDF(Si),其中 DjDj是⽬的图像的像素,CDF(Si)CDF(Si)是源图像灰度为i的累积分布,L是图像中最⼤灰度级(灰度图为255)灰度直⽅图均衡化实现的步骤1.统计灰度级中每个像素在整幅图像中的个数2.计算每个灰度级占图像中的概率分布3.计算累计分布概率4.计算均衡化之后的灰度值5.映射回原来像素的坐标的像素值⽰例说明来看看通过上述步骤怎样实现的拉伸。
直方图均衡化及直方图规定化
《数字图像处理》实验报告(二)学号:____________ 姓名:__________ 专业:____ 课序号:__________计算机科学与技术学院实验2直方图均衡化一、实验学时:4学时(本部分占实验成绩的40%)二、实验目的:1、理解直方图均衡化的原理及步骤;2、编程实现图像(灰度或彩色)的直方图均衡化。
三、必须学习和掌握的知识点:直方图均衡化是一种快速有效且简便的图像空域增强方法,在图像处理中有着非常重要的意义,因此要求掌握。
四、实验题目:编程实现灰度图像的直方图均衡化处理。
要求给出原始图像的直方图、均衡化图像及其直方图和直方图均衡化时所用的灰度级变换曲线图。
五、思考题:(选做,有加分)实现对灰度图像的直方图规定化处理。
六、实验报告:请按照要求完成下面报告内容并提交源程序、可执行程序文件和实验结果图像。
1、请详细描述本实验的原理:1.直方图均衡化概述图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。
直方图拉伸和直方图均衡化是两种最常见的间接对比度增强方法。
直方图拉伸是通过对比度拉伸对直方图进行调整,从而“扩大”前景和背景灰度的差别,以达到增强对比度的目的,这种方法可以利用线性或非线性的方法来实现;直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。
直方图均衡化的英文名称是Histogram Equalization.直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。
这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。
通过这种方法,亮度可以更好地在直方图上分布。
这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。
2基本思想直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
直方图规定化及其实现
■ MATLAB中的函数J=histeq(I,hgram)可以实现 直方图规定化,它来源于MATLAB图像处理工 具箱imagetoolbox
■ I代表待处理的图片
■ Hgram是由自己指定的矢量,规定将原始图 像I的直方图变换成hgram,hgram中的每个 元素都在[0,1]之间。
参考文献 张阳德,胡智渊,叶茂英,王吉伟,潘一峰,尹翔.扩大显微镜下细菌图片的灰度分布范围--基于MATLAB 直方图增强方法[J].《中国医学工程》,2006,14(3):228—233.
■ X=imread(‘ibm.bmp‘); %读取图片 ■ Y=rgb29ray(X); %将RGB图像转换为灰
度图像
■ L=127:255; %设置规定化函数量 ■ G=histeq(Y,L); %调用函数求直方图规
定化
■ N=imadjust(G,[0.867,1],[]);%调整 图像的灰度级范围
直方图规定
直方图增强
直方图均衡 直方图规定化
直方图规定化的定义
■ 直方图均衡实现了图像灰度的均衡分布,对 提高图像对比度、提升图像亮度具有明显的 作用。
■ 在实际应用中,有时并不需要图像的直方图 具有整体的均匀分布,而希望直方图与规定 要求的直方图一致,这就是直方图规定化。
■ 它可以人为地改变原始图像直方图的形状, 使其成为某个特定的形状,即增强特定灰度 级分布范围内的图间映射规则
逐次接近映射规则
直方图规定化的应用
——乳腺钼靶图像直方图增强
乳腺钼靶摄影是诊断乳腺疾病,特别是发现早期乳腺癌 的一种重要和有效的检查方法。
参考文献 昊杨韬,刘春,王娟,汤乐民.基于MATLAB的乳腺钼靶图像直方图增强方法的比较[J].《生物医学工程学进 展》,2009,30(2):90—93.
直方图修正法
直方图修正法分为直方图均衡化和直方图规定化目的:采用直方图修整后可使图像的灰度间距拉开或使灰度分布均匀,从而增大反差,使图像细节清晰,从而增强图像。
1.直方图均衡化通过对原图像进行某种变换使原图像的灰度直方图修正为均匀的直方图的一种方法以r 和s 分别表示归一化了的原图像灰度和经直方图修正后的图像灰度。
即 1,0≤≤s r 在[]1,0区间内的任一个r ,经变换T (r )都可产生一个S ,且 S=T(r)T(r)为变换函数,应满足下列条件:(1)在10≤≤r 内为单调递增函数(保证灰度级从黑到白的次序不变);(2)在10≤≤r 内,有1)(0≤≤r T 。
(确保映射后的像素灰度在允许的范围内) 由概率论理论可知,如果已知随机变量r 的概率密度为)(r p r ,而随机变量s 是r 的函数,则s 的概率密度)(s p s 可以由)(r p r 求出。
假定随机变量s 的分布函数用)(s F s 表示,根据分布函数定义,则有⎰⎰∞-∞-==s r r s s dr r ds s s p p F )()()([])()(1s dsd s T p p r s -=⇒ (1) 因为归一化假定 1)(=s p s由(1)得dr r ds p r )(= 两边积分得 ⎰==rrdr r r T s p 0)()( (变换函数) 上式表明当变换函数T (r )是原图像直方图累积分布函数时,能达到直方图均衡化的目的。
对于灰度级为离散的数字图像,用频率来代替概率。
∑∑=====k j k j j j r k k n r T n r p s 00)()(1,,2,1,0,10-=≤≤L k r k2.直方图规定化(直方图匹配)使原图像灰度直方图变成规定形状的直方图而对图像作修正的增强方法。
假设)(r p r 和)(z p z分别表示已归一化的原图像灰度概率密度函数和希望得到的图像概率密度函数。
首先对原图像进行直方图均衡化处理,即求变换函数:⎰==rrdr r r T s p 0)()( 假定已得到了所希望的图像,对它也进行均衡化处理,即⎰==zzdr r z G v p 0)()( (2) 它的逆变换是 )(1v z G -=即由均衡化后的灰度级得到希望图像的灰度级。
图像处理基础(8):图像的灰度直方图、直方图均衡化、直方图规定化(匹配)
图像处理基础(8):图像的灰度直⽅图、直⽅图均衡化、直⽅图规定化(匹配)本⽂主要介绍了灰度直⽅图相关的处理,包括以下⼏个⽅⾯的内容:利⽤OpenCV 计算图像的灰度直⽅图,并绘制直⽅图曲线直⽅图均衡化的原理及实现直⽅图规定化(匹配)的原理及实现图像的灰度直⽅图⼀幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的⼀个重要特征。
图像的灰度直⽅图就描述了图像中灰度分布情况,能够很直观的展⽰出图像中各个灰度级所占的多少。
图像的灰度直⽅图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数:其中,横坐标是灰度级,纵坐标是该灰度级出现的频率。
不过通常会将纵坐标归⼀化到[0,1]区间内,也就是将灰度级出现的频率(像素个数)除以图像中像素的总数。
灰度直⽅图的计算公式如下:p (r k )=n kMN其中,r k 是像素的灰度级,n k 是具有灰度r k 的像素的个数,MN 是图像中总的像素个数。
OpenCV 灰度直⽅图的计算直⽅图的计算是很简单的,⽆⾮是遍历图像的像素,统计每个灰度级的个数。
在OpenCV 中封装了直⽅图的计算函数calcHist ,为了更为通⽤该函数的参数有些复杂,其声明如下:void calcHist( const Mat* images, int nimages,const int* channels, InputArray mask,OutputArray hist, int dims, const int* histSize,const float** ranges, bool uniform = true, bool accumulate = false );该函数能够同时计算多个图像,多个通道,不同灰度范围的灰度直⽅图.其参数如下:images ,输⼊图像的数组,这些图像要有相同⼤⼤⼩,相同的深度(CV_8U CV_16U CV_32F ).nimages ,输⼊图像的个数channels ,要计算直⽅图的通道个数。
2.2.4 直方图规定化 _多媒体信息处理技术_[共3页]
第章 图像增强 4122.2.4 增强整幅图像的对比度,但它的具体增强效果不易控制,处理的结果总是得到近似均匀分布的直方图。
实际应用中,在不同的情况下,并不总是需要具有均匀直方图的图像,即希望找到灰度变换函数,使原直方图即是找一种变换,使得原图像r 之间的是直()d r 直方图规定化直方图均衡化的优点是能有时要求突出图像中人们感兴趣的灰度范围,图像的直方图变成所要求的特定形状,从而有选择地增强某个灰度值范围内的对比度。
直方图规定化就是针对上述要求提出来的一种直方图修正方法。
实际上,直方图均衡化是直方图规定化中给定直方图为均匀分布的一种特例。
下面仍然从研究连续灰度的概率密度函数入手来讨论直方图规定化的基本思想。
设()r p r 是待增强的原始图像的灰度分布概率密度函数,()z p z 是直方图规定化后的新图像(即希望得到的图像)的灰度分布概率密度函数。
规定化经变换后,变成了具有灰度分布概率密度函数()z p z 的新图像。
如何建立()z p z 和p ()r 联系方图规定化处理的关键。
首先对原始图像进行直方图均衡化处理,即()r 0s T r p ==∫ ()x x 2-16灰度分布概率密度函数为,并对其作直方图均衡化处理,即为 ()z p z 假定已经得到了所希望的规定化后的图像,其也0()()d z u G z p x x ==∫ (2-17)式(2-17)的反变换函数z 1()z G u −= (2-18)根据前面关于连续图像直方图均衡化的讨论,若对原始图像和期望图像都进行一次直方图均衡化处理,将会得到相同的归一化均匀灰度分布的概率密度函数,即()()1s u p s p u ==(2-19) 也就是说,均匀分布的随机变量s 和u 有完全相同的统计特性。
换句话说,在统计意义上说,它们是完全相同的。
为此,可用s 来代替式(2-18)中的u ,即)11()(G u G s −−== z (2-20) 这样,得到的灰度值z 便是所希望的规定化后的图像的灰度值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数字图像处理》实验
报告(二)
学号:____________ 姓名:__________ 专业:____ 课序号:__________
计算机科学与技术学院
实验2直方图均衡化
一、实验学时:4学时(本部分占实验成绩的40%)
二、实验目的:
1、理解直方图均衡化的原理及步骤;
2、编程实现图像(灰度或彩色)的直方图均衡化。
三、必须学习和掌握的知识点:
直方图均衡化是一种快速有效且简便的图像空域增强方法,在图像处理中有着非常重要的意义,因此要求掌握。
四、实验题目:
编程实现灰度图像的直方图均衡化处理。
要求给出原始图像的直方图、均衡化图像及其直方图和直方图均衡化时所用的灰度级变换曲线图。
五、思考题:(选做,有加分)
实现对灰度图像的直方图规定化处理。
六、实验报告:
请按照要求完成下面报告内容并提交源程序、可执行程序文件和实验结果图像。
1、请详细描述本实验的原理:
1.直方图均衡化概述
图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。
直方图拉伸和直方图均衡化是两种最常见的间接对比度增强方法。
直方图拉伸是通过对比度拉伸对直方图进行调整,从而“扩大”前景和背景灰度的差别,以达到增强对比度的目的,这种方法可以利用线性或非线性的方法来实现;直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。
直方图均衡化的英文名称是Histogram Equalization.
直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。
这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。
通过这种方法,亮度可以更好地在直方图上分布。
这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。
2基本思想
直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。
直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。
设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x,y)处的灰度f映射为g。
在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数):
(1)EQ(f)在0≤f≤L-1范围内是一个单值单增函数。
这是为了保证增强处理没有打乱原始图像的灰度排列次序,原图各灰度级在变换后仍保持从黑到白(或从白到黑)的排列。
(2)对于0≤f≤L-1有0≤g≤L-1,这个条件保证了变换前后灰度值动态范围的一致性。
累积分布函数(cumulative distribution function,CDF)即可以满足上述两个条件,并且通过该函数可以完成将原图像f的分布转换成g的均匀分布。
此时的直方图均衡化映射函数为:
gk = EQ(fk) = (ni/n) = pf(fi) ,
(k=0,1,2,……,L-1)
上述求和区间为0到k,根据该方程可以由源图像的各像素灰度值直接得到直方图均衡化后各像素的灰度值。
在实际处理变换时,一般先对原始图像的灰度情况进行统计分析,并计算出原始直方图分布,然后根据计算出的累计直方图分布求出fk到gk的灰度映射关系。
在重复上述步骤得到源图像所有灰度级到目标图像灰度级的映射关系后,按照这个映射关系对源图像各点像素进行灰度转换,即可完成对源图的直方图均衡化。
3.图像直方图变换的基本原理:
设变量r代表图像中像素的灰度级,直方图变换就是假定一个变换式:
(1-1)
也就是,通过上述变换,每个原始图像的像素灰度级r都会产生一个s值。
变换函数T(r)应满足以下条件:
(1)T(r)在区间中为单值且单调递增;
(2)当时,,即T(r)的取值范围与r相同。
2. 直方图均衡化:
对于离散值,我们处理其概率与求和,而不是概率密度函数与积分。
一幅图像中灰度级r k 出现的概率近似为
(1-2)
其中,n是图像中像素的总和,是灰度级的像素个数,L为图像中可能的灰度级总数。
(1-3)
上式中变换函数的离散形式为:
该变换(映射)称为直方图均衡化或直方图线性化。
优缺点
这种方法对于背景和前景都太亮或者太暗的图像非常有用,这种方法尤其是可以带来X 光图像中更好的骨骼结构显示以及曝光过度或者曝光不足照片中更好的细节。
这种方法的一个主要优势是它是一个相当直观的技术并且是可逆操作,如果已知均衡化函数,那么就可以恢复原始的直方图,并且计算量也不大。
这种方法的一个缺点是它对处理的数据不加选择,它可能会增加背景杂讯的对比度并且降低有用信号的对比度;变换后图像的灰度级减少,某些细节消失;某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。
2、请给出本实验的核心源码(Matlab或C语言):
I=imread('C:\Users\wh\Desktop\photo\Rockies.bmp'); %读
imshow(I);
figure,imhist(I);
[J,T]=histeq(I,64); %图像灰度扩展到0~255,但是只有64个灰度级figure,imshow(J);
figure,imhist(J);
figure,plot((0:255)/255,T); %转移函数变换曲线
J=histeq(I,32);
figure,imshow(J); %图像灰度扩展到0~255,但只有32个灰度级
figure,imhist(J);
3
、实验结果分析(要求附上结果图像):
0 100 200 300 400 500 600 700 800 900 0 50 100 150 200 250 原图像直方图 原图像
500
1000
1500
050100150200250图像灰度扩展到0~255,但是只有64个灰度级
直方图显示
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 转移函数变换曲线 图像灰度扩展到0~255,但只有32个灰度级
(下附显示各像素灰度级的mat 文件)
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 50 100 150 200 250
4、实验体会:
1.工欲善其事,必先利其器,matlab简单几行代码就解决了VC中可能上
百上千行的程序。
2.正确调用内置子程序是非常便利的。
5、思考题部分:
1.直方图规定化程序代码:
>> f=imread('C:\Users\wh\Desktop\photo\Rockies.bmp');
>> imshow(f);
figure,imhist(f);
ylim('auto');
g=histeq(f,256);
figure,imshow(g);
figure,imhist(g);
ylim('auto');
2.图像处理
原图像
200
400
600
800
原图像直方图
050100150200250
200
400
600
800
1000
1200
1400
050100150200250
200
400
600
800
1000
1200
1400
050100150200250。