解析几何高考强化训练

合集下载

高考数学《解析几何》专项训练及答案解析

高考数学《解析几何》专项训练及答案解析

高考数学《解析几何》专项训练一、单选题1.已知直线l 过点A (a ,0)且斜率为1,若圆224x y +=上恰有3个点到l 的距离为1,则a 的值为( )A .B .±C .2±D .2.已知双曲线2222:1x y C a b-=(0,0)a b >>,过右焦点F 的直线与两条渐近线分别交于A ,B ,且AB BF =uu u r uu u r,则直线AB 的斜率为( ) A .13-或13B .16-或16C .2D .163.已知点P 是圆()()22:3cos sin 1C x y θθ--+-=上任意一点,则点P 到直线1x y +=距离的最大值为( )AB .C 1D 2+4.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .⎡⎣B .(C .33⎡-⎢⎣⎦D .33⎛⎫- ⎪ ⎪⎝⎭5.已知抛物线C :22x py =的焦点为F ,定点()M ,若直线FM 与抛物线C 相交于A ,B 两点(点B 在F ,M 中间),且与抛物线C 的准线交于点N ,若7BN BF =,则AF 的长为( )A .78B .1C .76D6.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2-BC .2D7.已知抛物线C :22(0)y px p =>的焦点F ,点00(2p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,以M 为圆心的圆与直线2p x =交于A 、B 两点(A 在B 的上方),若5sin 7MFA ∠=,则抛物线C 的方程为( )A .24y x =B .28y x =C .212y x =D .216y x =8.已知离心率为2的椭圆E :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,过点2F 且斜率为1的直线与椭圆E 在第一象限内的交点为A ,则2F 到直线1F A ,y 轴的距离之比为( )A .5B .35C .2D二、多选题9.已知点A 是直线:0l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .(B .()1C .)D .)1,110.已知抛物线2:2C y px =()0p >的焦点为F ,F ,直线l 与抛物线C交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =uuu r uu rC .2BD BF = D .4BF =三、填空题11.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.12.已知圆()2239x y -+=与直线y x m =+交于A 、B 两点,过A 、B 分别作x 轴的垂线,且与x轴分别交于C 、D 两点,若CD =m =_____.13.已知双曲线()2222:10,0x y C a b a b-=>>的焦距为4,()2,3A 为C 上一点,则C 的渐近线方程为__________.14.已知抛物线()220y px p =>,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于,A B 两点,1A 、1B 分别为A 、B 在l 上的射影,M 为11A B 的中点,给出下列命题: (1)11A F B F ⊥;(2)AM BM ⊥;(3)1//A F BM ;(4)1A F 与AM 的交点的y 轴上;(5)1AB 与1A B 交于原点. 其中真命题的序号为_________.四、解答题15.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点(0,Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.16.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅u u u r u u u u r的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.参考答案1.D 【解析】 【分析】因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,即圆心到直线l 的距离为1,根据点到直线的距离公式即可求出a 的值. 【详解】直线l 的方程为:y x a =-即0x y a --=.因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,而圆的半径为2,即圆心到直线l 的距离为1.1=,解得a =故选:D . 【点睛】本题主要考查直线与圆的位置关系的应用,以及点到直线的距离公式的应用,解题关键是将圆上存在3个点到l 的距离为1转化为两条直线与圆的位置关系,意在考查学生的转化能力与数学运算能力,属于中档题. 2.B 【解析】 【分析】根据双曲线的离心率求出渐近线方程,根据AB BF =u u u r u u u r,得到B 为AF 中点,得到B 与A 的坐标关系,代入到渐近线方程中,求出A 点坐标,从而得到AB 的斜率,得到答案. 【详解】因为双曲线2222:1x y C a b-=(0,0)a b >>,又222c e a =22514b a =+=,所以12b a =,所以双曲线渐近线为12y x =± 当点A 在直线12y x =-上,点B 在直线12y x =上时, 设(),A A Ax y (),B B B x y ,由(c,0)F 及B 是AF 中点可知22A B A B x c x y y +⎧=⎪⎪⎨⎪=⎪⎩,分别代入直线方程,得121222A A A A y x y x c ⎧=-⎪⎪⎨+⎪=⋅⎪⎩,解得24A Ac x c y ⎧=-⎪⎪⎨⎪=⎪⎩,所以,24c c A ⎛⎫-⎪⎝⎭, 所以直线AB 的斜率AB AFk k =42cc c =--16=-,由双曲线的对称性得,16k =也成立. 故选:B. 【点睛】本题考查求双曲线渐近线方程,坐标转化法求点的坐标,属于中档题. 3.D 【解析】 【分析】计算出圆心C 到直线10x y +-=距离的最大值,再加上圆C 的半径可得出点P 到直线10x y +-=的距离的最大值. 【详解】圆C 的圆心坐标为()3cos ,sin θθ+,半径为1,点C 到直线10x y +-=的距离为sin 14d πθ⎛⎫===++≤+ ⎪⎝⎭因此,点P 到直线1x y +=距离的最大值为12122++=+. 故选:D. 【点睛】本题考查圆上一点到直线距离的最值问题,当直线与圆相离时,圆心到直线的距离为d ,圆的半径为r ,则圆上一点到直线的距离的最大值为d r +,最小值为d r -,解题时要熟悉这个结论的应用,属于中等题. 4.D 【解析】设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径22411k k d k -=≤+,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确. 5.C 【解析】 【分析】由题意画出图形,求出AB 的斜率,得到AB 的方程,求得p ,可得抛物线方程,联立直线方程与抛物线方程,求解A 的坐标,再由抛物线定义求解AF 的长. 【详解】解:如图,过B 作'BB 垂直于准线,垂足为'B ,则'BF BB =,由7BN BF =,得7'BN BB =,可得1sin 7BNB '∠=, 3cos 7BNB '∴∠=-,tan 43BNB '∠=又()23,0M ,AB ∴的方程为2343y x =-, 取0x =,得12y =,即10,2F ⎛⎫ ⎪⎝⎭,则1p =,∴抛物线方程为22x y =. 联立223432y x x y ⎧=-⎪⎨⎪=⎩,解得23A y =.12172326A AF y ∴=+=+=. 故选:C . 【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题. 6.D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出22,22P c ⎛⎫⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点, 由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题. 7.C 【解析】 【分析】根据抛物线的定义,表示出MF ,再表示出MD ,利用5sin 7MFA ∠=,得到0x 和p 之间的关系,将M 点坐标,代入到抛物线中,从而解出p 的值,得到答案.【详解】抛物线C :22(0)y px p =>, 其焦点,02p F ⎛⎫⎪⎝⎭,准线方程2p x =-,因为点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线上一点, 所以02p MF x =+AB所在直线2p x =, 设MD AB ⊥于D ,则02p MD x =-, 因为5sin 7MFA ∠=,所以57 MD MF=,即5272pxpx-=+整理得03x p=所以()3,66M p将M点代入到抛物线方程,得()26623p p=⨯,0p>解得6p=,所以抛物线方程为212y x=故选:C.【点睛】本题考查抛物线的定义,直线与圆的位置关系,求抛物线的标准方程,属于中档题.8.A【解析】【分析】结合椭圆性质,得到a,b,c的关系,设2AF x=,用x表示112,AF F F,结合余弦定理,用c表示x,结合三角形面积公式,即可。

高三数学强化训练(4)解析几何

高三数学强化训练(4)解析几何

高三数学强化训练(4)解析几何一1、已知以点P 为圆心的圆经过点()1,0A -和()3,4B ,线段AB 的垂直平分线交圆P 于点C 和D,且||CD =. (1)求直线CD 的方程; ⑵求圆P 的方程;⑶设点Q 在圆P 上,试问使△QAB 的面积等于8的点Q 共有几个?证明你的结论.2.求椭圆22x +y 2=1上的点到直线y =x +2的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.3.已知双曲线C :2214y x -=, (1)求直线1y x =+被双曲线C 截得的弦长;(2)求过定点(0,1)的直线被双曲线C 截得的弦中点轨迹方程4.已知定点(1,0)C -及椭圆2235x y +=,过点C 的动直线与椭圆相交于,A B 两点.(1)若线段AB 中点的横坐标是12-,求直线AB 的方程; (2)在x 轴上是否存在点M ,使MA MB ∙为常数?若存在,求出点M 的坐标;若不存在,请说明理由5、在平面直角坐标系xOy 中,过定点C (0,p )作直线与 抛物线x 2=2py (p>0)相交于A 、B 两点。

(Ⅰ)若点N 是点C 关于坐标原点O 的对称点, 求△ANB 面积的最小值;(Ⅱ)是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由。

6、如图,已知抛物线C :px y 22=和⊙M :1)4(22=+-y x ,过抛物线C 上一点)1)(,(000≥y y x H 作两条直线与⊙M 相切于A 、B 两点,分别交抛物线为E 、F 两点,圆心点M 到抛物线准线的距离为417. (Ⅰ)求抛物线C 的方程;(Ⅱ)当AHB ∠的角平分线垂直x 轴时,求直线EF 的斜率; (Ⅲ)若直线AB 在y 轴上的截距为t ,求t 的最小值.*7.设椭圆E: 22221x y a b+=(a,b>0)过M (2,,1)两点,O 为坐标原点,(I )求椭圆E 的方程;(II )是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。

高三数学习题集:解析几何与立体几何综合练习

高三数学习题集:解析几何与立体几何综合练习

高三数学习题集:解析几何与立体几何综合练

解析几何与立体几何是高中数学中的重要内容之一,对于高三学生来说,掌握这两个领域的知识和技巧至关重要。

为了帮助同学们更好地复习与训练,以下是一些解析几何与立体几何综合练习题。

一、解析几何部分
1. 已知点A(2,3)、B(5,7),求直线AB的斜率和方程。

2. 设直线L1过点A(1,2),斜率为1,求L1与x轴、y轴的交点坐标。

3. 已知直线L2的方程为y=2x-3,求L2与y轴的交点坐标。

4. 设四边形ABCD的顶点分别为A(1,2)、B(4,5)、C(6,1)、D(3,-2),求四边形ABCD的周长和面积。

二、立体几何部分
1. 已知圆柱体的高为8cm,底面直径为6cm,求圆柱体的表面积和体积。

2. 设正方体的边长为3cm,求正方体的表面积和体积。

3. 设棱长为5cm的正六面体A,另有一条边长为4cm的直线段BC平行于A的一条棱,求BC与正六面体A的交点坐标。

4. 已知圆锥的高为12cm,底面半径为4cm,求圆锥的表面积和体积。

以上是一些解析几何与立体几何的综合练习题,希望同学们能够认真思考并灵活运用所学知识来解答这些问题。

通过不断练习,相信你们对解析几何与立体几何的理解和掌握会更上一层楼,为应对高考数学提供有力的支持。

加油!。

高三复习解析几何练习题

高三复习解析几何练习题

高三复习解析几何练习题解析几何是高中数学的重要内容之一,也是高考数学中的重点和难点。

在高三阶段,解析几何是学生们需要加强练习和熟练掌握的内容之一。

下面将为大家介绍几个高三复习解析几何的练习题。

一、平面几何题1. 已知四边形ABCD,AB=BC=CD=DA,以BC和AD为边,平分角AOK,角AOK的度数是多少?解析:由已知条件可知,ABCD为菱形。

菱形的性质是对角线互相垂直且互相平分。

因此,角AOK为90度。

2. 给定平面直角坐标系,点A(2,-3)在直线y=x上,点B(4,-2)在直线y=-2x上,求直线AB的斜率。

解析:直线AB的斜率等于两个点的纵坐标之差与横坐标之差的比值。

点A与点B的纵坐标之差为-2-(-3)=-2+3=1,横坐标之差为4-2=2,因此直线AB的斜率为1/2。

二、空间几何题1. 已知四面体ABCD,面ABCD的中心为O,直线AD与平面ABC垂直,求证AB与平面OBC平行。

解析:根据已知条件,AD与平面ABC垂直,即AD与平面ABC的法线向量垂直。

而面ABCD的中心O位于平面ABC上,所以向量OB与向量OA垂直。

由于向量OA与向量AD平行,所以向量OB与向量AD也平行,即平面OBC与平面ABC平行。

2. 设P为正方体ABCD-A1B1C1D1的重心,求证向量CBD与向量PP1平行。

解析:根据重心的定义,重心是由正方体八个顶点连接到重心的向量的和的平凡中心,即向量AP+向量BP1+向量CP+向量DP1=0。

因正方体其中一对相对的棱平行于向量CBD,并且向量AP+向量CP平行于向量APA1,所以向量CBD与向量PP1平行。

通过以上的几个解析几何练习题,可以帮助高三学生们加强对解析几何知识点的理解和运用。

解析几何作为高考数学中的重点和难点,需要同学们进行大量的练习和总结,提高解题策略和解题能力。

希望同学们通过不断的练习和理解,能够在高考中取得优异的成绩。

高中数学解析几何大题专项练习

高中数学解析几何大题专项练习

高中数学解析几何大题专项练习1、已知椭圆G:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(x,y)到椭圆上的点最远距离为52.1)求此时椭圆G的方程;2)设斜率为k(k≠0)的直线m与椭圆G相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于直线对称?若能,求出k的取值范围;若不能,请说明理由。

2、已知双曲线x-y=1的左、右顶点分别为A1、A2,动直线l:y=kx+m与圆x+y=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1)、P2(x2,y2)。

Ⅰ)求k的取值范围,并求x2-x1的最小值;Ⅱ)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么,k1×k2是定值吗?证明你的结论。

3、已知抛物线C:y=ax^2的焦点为F,点K(-1,0)为直线l与抛物线C准线的交点,直线l与抛物线C相交于A、B两点,点A关于x轴的对称点为D。

1)求抛物线C的方程。

2)证明:点F在直线BD上;3)设FA×FB=9,求△BDK的面积。

4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为1/2,中点T在直线OP上,且A、O、B三点不共线。

I)求椭圆的方程及直线AB的斜率;Ⅱ)求△PAB面积的最大值。

5、设椭圆(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的焦点分别为F1(-1,0)、F2(1,0),直线l:x=a(b^2/a)交x轴于点A,且AF1=2AF2.Ⅰ)试求椭圆的方程;Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E(如图所示),若四边形DMENE的面积为27,求DE 的直线方程。

6、已知抛物线P:x^2=2py(p>0)。

Ⅰ)若抛物线上点M(m,2)到焦点F的距离为3.ⅰ)求抛物线P的方程;ⅱ)设抛物线P的准线与y轴的交点为E,过E作抛物线P的切线,求此切线方程;Ⅱ)设过焦点F的动直线l交抛物线于A、B两点,连接AO,BO并延长分别交抛物线的准线于C、D。

高考数学-解析几何-专题练习及答案解析版

高考数学-解析几何-专题练习及答案解析版

高考数学解析几何专题练习解析版82页1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3B .32+C . 31+D . 323.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A .54 B .45C .254 D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+by x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y x D.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .312.已知)0(12222>>=+b a by ax ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =,且0PM AM ⋅=则||PM 的最小值是( )A .2B .3C .2D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b+=>>3过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B 2 (C 3(D )218.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离 19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( )(A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π) C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23B .32 C .32- D . 23- 22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP ⋅的取值范围为( ) A .()21,1- B .()21,2- C .()1,2 D .()2,+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( )A.B.C.D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r =。

高中数学高考总复习---解析几何综合问题巩固练习题(含答案解析)

高中数学高考总复习---解析几何综合问题巩固练习题(含答案解析)

2
b
(a)
2
(b)
2ab ab
.
【巩固练习】 1.(2016 浦东新区一模)方程 kx2+4y2=4k 表示焦点在 x 轴的椭圆,则实数 k 的取值范围是 () A.k>4 B.k=4 C.k<4 D.0<k<4
2.若过点 A(4, 0) 的直线 l 与曲线 (x 2)2 y2 1有公共点,则直线 l 的斜率的取值范
16.已知函数 f(x) x ,g(x)=alnx,a R.
(Ⅰ)若曲线 y=f(x)与曲线 y=g(x)相交,且在交点处有共同的切线,求 a 的值和该切 线方程;
(Ⅱ)设函数 h(x)=f(x)-g(x),当 h(x)存在最小值时,求其最小值 (a)的解析式;
(Ⅲ)对(Ⅱ)中的(a) 和任意的 a>0,b>0,证明:
方程为( )
A.5x+12y+20=0
B. 5x+12y+20=0 或 x+4=0
C.5x-12y+20=0
D. 5x-12y+20=0 或 x+4=0
3.设曲线
C
的参数方程为
x y
2 3cos 1 3sin
(
为参数),直线
l
的方程为
x
3y
2
0

则曲线 C 上到直线 l 距离为 7 10 的点的个数为 10
高中数学高考总复习---解析几何综合问题巩固
练习题(含答案解析)
【巩固练习】 1.曲线 y x 在点 (1, 1) 处的切线方程为 x2
A. y 2x 1
B. y 2x 1
C. y 2x 3
D. y 2x 2
2.过点(-4,0)作直线 l 与圆 x2+y2+2x-4y-20=0 交于 A,B 两点,如果|AB|=8,则 l 的

2023年高考优质解析几何大题练习【含答案】

2023年高考优质解析几何大题练习【含答案】

新高考优质解析几何大题练习一.解答题(共30小题)1.(2022秋•浙江月考)如图,已知抛物线C:y2=2px(p>0)的焦点F,且经过点A(2p,m)(m>0),|AF|=5.(1)求p和m的值;(2)点M,N在C上,且AM⊥AN.过点A作AD⊥MN,D为垂足,证明:存在定点Q,使得|DQ|为定值.2.(2022秋•浙江月考)已知点A(2,1)在双曲线C:﹣=1(b>0)上.(Ⅰ)求双曲线C的渐近线方程;(Ⅱ)设直线l:y=k(x﹣1)与双曲线C交于不同的两点E,F,直线AE,AF分别交直线x=3于点M,N.当△AMN的面积为时,求k的值.3.(2022秋•玄武区校级月考)设A,B为双曲线C:﹣=1(a>b>0)的左、右顶点,直线l过右焦点F且与双曲线C的右支交于M,N两点,当直线l垂直于x轴时,△AMN为等腰直角三角形.(1)求双曲线C的离心率;(2)已知AB=4,若直线AM,AN分别交直线x=1于P,Q两点,若D(t,0)为x 轴上一动点,当直线l的倾斜角变化时,若∠PDQ为锐角,求t的取值范围.4.(2022•南京模拟)已知点F1,F2分别为双曲线C:的左、右焦点,点A为双曲线C的右顶点,已知,且点F2到一条渐近线的距离为2.(1)求双曲线C的方程;(2)若直线l:y=mx+n与双曲线C交于两点M,N,直线OM,ON的斜率分别记为k OM,k ON,且,求证:直线l过定点,并求出定点坐标.5.(2022春•开福区校级月考)已知双曲线C的渐近线方程为,且过点P(3,).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ 与C交于另一点D,过Q点作QN⊥AD于N,证明:直线AD过定点M,且点N在以QM为直径的圆上.6.(2022秋•皇姑区校级月考)已知椭圆Γ的方程为,圆C与x轴相切于点T(2,0),与y轴正半轴相交于A,B两点,且|AB|=3,如图.(1)求圆C的方程;(2)如图,过点(0,1)的直线l与椭圆Γ相交于P,Q两点,求证:射线AO平分∠PAQ.7.(2022秋•开福区校级月考)已知双曲线经过点(2,﹣3),两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程;(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M(m,0),使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.8.(2022秋•锦州期中)已知双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点;且C的一条渐近线与直线x﹣2y+2=0平行.(1)求双曲线C的方程;(2)若直线l与双曲线C右支相切(切点不为右顶点),且l分别交双曲线C的两条渐近线于A、B两点,O为坐标原点,试判断△AOB的面积是否为定值,若是,请求出;若不是,请说明理由.9.(2022秋•湖北期中)在△ABC中,已知A(﹣1,0),B(﹣2,0),且sin B=sin A.(1)求顶点C的轨迹E的方程;(2)曲线E与y轴交于P,Q两点,T是直线y=2上一点,连TP,TQ分别与E交于M,N两点(异于P,Q两点),试探究直线MN是否过定点,若是求定点,若不是说明理由.10.(2022秋•南阳期中)已知动点P到两个定点的距离之和为4,记点P的轨迹为Γ.(1)求Γ的方程;(2)若点Q(0,﹣3),过点T(0,1)的直线l与Γ交于M,N两点,求△QMN面积的最大值.11.(2022•临澧县校级开学)已知椭圆C的方程为+=1(a>0),斜率为k(k≠0)的直线与C交于M,N两点.(1)若G为MN的中点,O为坐标原点,且直线OG的斜率为﹣,求椭圆C的方程;(2)在(1)的条件下,若P是椭圆C的左顶点,直线PM的斜率为k PM,直线PN的斜率为k PN,k PM•k PN=﹣,F是椭圆的左焦点,要使F在以MN为直径的圆内,求k 的取值范围.12.(2022秋•辽宁期中)如图所示:已知椭圆C:的长轴长为4,离心率.A是椭圆的右顶点,直线l过点M(﹣1,0)交椭圆于C,D两点,记△ACD的面积为S.(1)求椭圆C的标准方程;(2)求S的最大值.13.(2022•烟台三模)已知椭圆C:+=1(a>b>0)的离心率为,(,1)为C与抛物线x2=2py的交点.(1)求椭圆C的方程;(2)设椭圆的上顶点为A,斜率为k的直线过抛物线的焦点F且与椭圆交于M,N两点,试探究直线AM,AN的斜率之积是否为定值?若是,求出此定值;若不是,说明理由.14.(2022•雨花区校级模拟)如图,已知椭圆,其左、右焦点分别为F1,F2,过右焦点F2且垂直于x轴的直线交椭圆于第一象限的点P,且.(1)求椭圆C的方程;(2)过点且斜率为k的动直线l交椭圆于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,说明理由.15.(2022•鞍山模拟)已知O为坐标原点,F1、F2为椭圆C的左、右焦点,|F1F2|=2,P 为椭圆C的上顶点,以P为圆心且过F1、F2的圆与直线相切.(1)求椭圆C的标准方程;(2)若过点F2作直线l,交椭圆C于M,N两点(l与x轴不重合),在x轴上是否存在一点T,使得直线TM与TN的斜率之积为定值?若存在,请求出所有满足条件的点T的坐标;若不存在,请说明理由.16.(2022•洛阳模拟)已知抛物线C:y2=2px(p>0),A是C上位于第一象限内的动点,它到点B(3,0)距离的最小值为.直线AB与C交于另一点D,线段AD的垂直平分线交C于E,F两点.(1)求p的值;(2)若中,证明A,D,E,F四点共圆,并求该圆的方程.17.(2022•德州二模)已知△ABC的两个顶点A,B的坐标分别为(﹣,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M、N两点,点D在曲线G上,O是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.18.(2022•襄城区校级四模)已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点到F点的距离为.(1)求抛物线的方程及点A坐标;(2)设斜率为k的直线l过点B(2,0)且与抛物线交于不同的两点M、N,若且,求斜率k的取值范围.19.(2021秋•淄博期末)已知O为坐标原点,A(x1,y1),B(x2,y2)是直线l与抛物线C:y2=4x的两个交点,满足.试求y1y2的值,并证明直线l恒过定点.20.(2021秋•十堰期末)已知抛物线,,点M(x0,y0)在C2上,且不与坐标原点O重合,过点M作C1的两条切线,切点分别为A,B.记直线MA,MB,MO的斜率分别为k1,k2,k3.(1)当x0=1时,求k1+k2的值;(2)当点M在C2上运动时,求的取值范围.21.(2021秋•武汉期末)已知双曲线的左、右焦点分别为,动点M满足|MF2|﹣|MF1|=2.(1)求动点M的轨迹方程;(2)若动点M在双曲线C上,设双曲线C的左支上有两个不同的点P,Q,点N(4,0),且∠ONP=∠ONQ,直线NQ与双曲线C交于另一点B.证明:动直线PB经过定点.22.(2021秋•菏泽期末)已知Rt△ABC中,A(﹣1,0),B(1,0),∠CAB=90°,,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.(1)求曲线E的方程;(2)过点(1,0)的直线l与曲线E交于M,N两点,则在x轴上是否存在定点Q.使得的值为定值?若存在,求出点Q的坐标和该定值;若不存在,请说明理由.23.(2021秋•南京月考)已知双曲线E:﹣=1(a>0,b>0)过点D(3,1),且该双曲线的虚轴端点与两顶点A1,A2的张角为120°.(1)求双曲线E的方程;(2)过点B(0,4)的直线l与双曲线E左支相交于点M,N,直线DM,DN与y轴相交于P,Q两点,求|BP|+|BQ|的取值范围.24.(2018秋•福田区校级期末)已知椭圆C的中心是坐标原点O,它的短轴长2,焦点F(c,0),点A(﹣c,0),且=2.(1)求椭圆C的标准方程;(2)是否存在过点A的直线与椭圆C相交于P、Q两点,且以线段PQ为直径的圆过坐标原点O,若存在,求出直线PQ的方程;不存在,说明理由.25.(2021•辽宁模拟)已知抛物线C1:y2=2px(p>0),椭圆C2:=1(a>b>0),抛物线与椭圆有共同的焦点F(4,0),且椭圆C2的离心率e=.(Ⅰ)求椭圆与抛物线的方程;(Ⅱ)直线l1的方程为x=﹣4,若不经过点P(4,8)的直线l2与抛物线交于A,B(A,B分别在x轴两侧),与直线l1交于点M,与椭圆交于点C,D,设PA,PM,PB的斜率分别为k1,k2,k3,若k1+k3=2k2.(ⅰ)证明:直线l2恒过定点;(ⅱ)点D关于x轴的对称点为D′,试问△CFD′的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.26.(2021•平邑县校级开学)已知椭圆(a>b>0)过点(,0),其焦距的平方是长轴长的平方与短轴长的平方的等差中项.(1)求椭圆的标准方程:(2)直线l过点M(1,0),与椭圆分别交于点A,B,与y轴交于点N,各点均不重合且满足,,求λ+μ.27.(2022秋•青羊区校级月考)已知椭圆=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆有相同的焦点,点P为抛物线与椭圆在第一象限的交点,且|PF1|=.(1)求椭圆的方程;(2)过F作两条斜率不为0且互相垂直的直线分别交椭圆于A,B和C,D,线段AB 的中点为M,线段CD的中点为N,证明:直线MN过定点,并求出该定点的坐标.28.(2022秋•思明区校级期中)在平面直角坐标系xOy中,△ABC的周长为12,AB,AC 边的中点分别为F1(﹣1,0)和F2(1,0),点M为BC边的中点.(1)求点M的轨迹方程;(2)设点M的轨迹为曲线Γ,直线MF1与曲线Γ的另一个交点为N,线段MF2的中点为E,记,求S的最大值.29.(2022秋•迎泽区校级月考)已知抛物线C:x2=2py(p>0)与圆O:x2+y2=12相交于A,B两点,且点A的横坐标为是抛物线C的焦点,过焦点的直线l与抛物线C 相交于不同的两点M,N.(1)求抛物线C的方程.(2)过点M,N作抛物线C的切线l1,l2,P(x0,y0)是l1,l2的交点,求证:点P在定直线上.参考公式:(cx2)′=2cx,其中c为常数.30.(2022秋•香坊区校级月考)动点M与定点A(1,0)的距离和M到定直线x=9的距离之比是常数.(1)求动点M的轨迹G的方程;(2)设O为原点,点B(﹣3,0),过点A的直线l与M的轨迹G交于P、Q两点,且直线l与x轴不重合,直线BP、BQ分别与y轴交于R、S两点,求证:|OR|⋅|OS|为定值.新高考优质解析几何大题练习参考答案与试题解析一.解答题(共30小题)1.(2022秋•浙江月考)如图,已知抛物线C:y2=2px(p>0)的焦点F,且经过点A(2p,m)(m>0),|AF|=5.(1)求p和m的值;(2)点M,N在C上,且AM⊥AN.过点A作AD⊥MN,D为垂足,证明:存在定点Q,使得|DQ|为定值.【答案】(1)p=2,m=4;(2)证明见解析.【解答】解:(1)由抛物线定义知:,则p=2,又A(4,m)(m>0)在抛物线上,则m2=4×4,可得m=4.(2)证明:设M(x1,y1),N(x2,y2),由(1)知:A(4,4),所以,,又AM⊥AN,所以(x1﹣4)(x2﹣4)+(y1﹣4)(y2﹣4)=x1x2﹣4(x1+x2)+y1y2﹣4(y1+y2)+32=0,令直线MN:x=ky+n,联立C:y2=4x,整理得y2﹣4ky﹣4n=0,且Δ=16k2+16n>0,所以y1+y2=4k,y1y2=﹣4n,则,,综上,n2﹣16k2﹣12n﹣16k+32=(n﹣4k﹣8)(n+4k﹣4)=0,当n=8+4k时,MN:x=k(y+4)+8过定点B(8,﹣4);当n=4﹣4k时,MN:x=k(y﹣4)+4过定点(4,4),即A,M,N共线,不合题意;所以直线MN过定点B(8,﹣4),又AD⊥MN,故D在以AB为直径的圆上,而AB中点为Q(6,0),即为定值,得证.2.(2022秋•浙江月考)已知点A(2,1)在双曲线C:﹣=1(b>0)上.(Ⅰ)求双曲线C的渐近线方程;(Ⅱ)设直线l:y=k(x﹣1)与双曲线C交于不同的两点E,F,直线AE,AF分别交直线x=3于点M,N.当△AMN的面积为时,求k的值.【答案】(Ⅰ)y=±x.(Ⅱ)2.【解答】解:(Ⅰ)因为点A(2,1)在双曲线上,所以﹣=1,b2=1,即双曲线C的方程为﹣y2=1,所以渐近线方程为y=±x,即y=±x.(Ⅱ)设直线AE的方程为y=k1(x﹣2)+1,直线AF的方程为y=k2(x﹣2)+1,联立,得(1﹣2k1)2x2+(8k12﹣4k1)x﹣8k12+8k1﹣4=0,所以x A+x E=﹣=,所以x E=﹣2=,y E=,所以E(,),同理可得F(,),联立,得M(3,k1+1),同理N(3,k2+1),所以|MN|=|k1﹣k2|,=|MN|×2=|k1﹣k2|=,所以S△AMN不妨设k1>k2,即k1=k2+,所以E(,),又E,F在直线l上,所以,解得,所以k的值为2.3.(2022秋•玄武区校级月考)设A,B为双曲线C:﹣=1(a>b>0)的左、右顶点,直线l过右焦点F且与双曲线C的右支交于M,N两点,当直线l垂直于x轴时,△AMN为等腰直角三角形.(1)求双曲线C的离心率;(2)已知AB=4,若直线AM,AN分别交直线x=1于P,Q两点,若D(t,0)为x 轴上一动点,当直线l的倾斜角变化时,若∠PDQ为锐角,求t的取值范围.【答案】(1)2;(2)(﹣∞,﹣2)∪(4,+∞).【解答】解:(1)由l⊥x轴,△AMN为等腰直角三角形,可得|AF|=|NF|=|MF|,所以a+c=,即c2﹣ac﹣2a2=0,可得e2﹣e﹣2=0,解得e=2或e=﹣1(舍),所以双曲线的离心率为2;(2)由AB=4,可得2a=4,即a=2,所以直线PQ的方程为:x=1,由(1)可得离心率为2,可得c=4,b==2,所以双曲线的方程为:﹣=1;由题意可得直线l的斜率不为0,设直线l的方程为x=my+4,m≠±,设M(x1,y1),N(x2,y2),联立,整理可得:(3m2﹣1)y2+24my+36=0,可得y1+y2=﹣,y1y2=,x1+x2=m(y1+y2)+8=,x1x2=(my1+4)(my2+4)=m2y1y2+4m(y1+y2)+16=,直线AM的方程为y=(x+2),直线AN的方程为:y=(x+2),令x=1,可得P(1,),Q(1,),∵D(t,0),∴=(1﹣t,),=(1﹣t,),∵•=(1﹣t)2+×=(1﹣t)2+=(1﹣t)2+=(1﹣t)2﹣9,∵∠PDQ为锐角,∴•>0,∴(1﹣t)2﹣9>0,∴t<﹣2或t>4.∴t的取值范围为(﹣∞,﹣2)∪(4,+∞).4.(2022•南京模拟)已知点F1,F2分别为双曲线C:的左、右焦点,点A为双曲线C的右顶点,已知,且点F2到一条渐近线的距离为2.(1)求双曲线C的方程;(2)若直线l:y=mx+n与双曲线C交于两点M,N,直线OM,ON的斜率分别记为k OM,k ON,且,求证:直线l过定点,并求出定点坐标.【答案】(1);(2)证明解析;定点为(﹣2,0)或(2,0).【解答】解:(1)由题知,F2(c,0),其中一条渐近线为,即bx﹣ay=0,所以,解得,所以,(2)证明:设M(x1,y1),N(x2,y2),将y=mx+n代入,整理得:(5m2﹣4)x2+10mnx+5n2+20=0,则,由Δ=100m2n2﹣4(5m2﹣4)(5n2+20)=80(n2﹣5m2+4)>0得n2﹣5m2+4>0,因为=,所以,得n2=4m2,即n=±2m,所以直线l的方程为y=m(x±2),所以当n2﹣5m2+4>0,且n=2m时,直线l过定点(﹣2,0);所以当n2﹣5m2+4>0,且n=﹣2m时,直线l过定点(2,0).5.(2022春•开福区校级月考)已知双曲线C的渐近线方程为,且过点P(3,).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ 与C交于另一点D,过Q点作QN⊥AD于N,证明:直线AD过定点M,且点N在以QM为直径的圆上.【答案】(1)﹣y2=1.(2)直线AD过定点(3,0).点N在以QM为直径的圆上.【解答】解:(1)因为双曲线C的渐近线方程为,故设C的方程为﹣y2=λ(λ≠0),又C过点P(3,).所以﹣()2=λ,解得λ=1,所以C的方程为﹣y2=1.(2)证明:显然直线BQ的斜率不为0,设直线BQ为x=my+1,B(x1,y1),D(x2,y2),A(x1,﹣y1),联立,消去x整理得(m2﹣3)y2+2my﹣2=0,依题意m2﹣3≠0且Δ=4m2+8(m2﹣3)>0,即m2>2且m2≠3,所以y1+y2=﹣,y1y2=﹣,直线AD的方程为y+y1=(x﹣x1),令y=0,得x=+x1=====3,所以直线AD过定点(3,0).过Q点作QN⊥AD于N,设QM的中点为R,若N和M不重合,则△QNM为直角三角形,所以|RN|=|MQ|,若N和M重合,|RN|=|MQ|,所以点N在以QM为直径的圆上.6.(2022秋•皇姑区校级月考)已知椭圆Γ的方程为,圆C与x轴相切于点T(2,0),与y轴正半轴相交于A,B两点,且|AB|=3,如图.(1)求圆C的方程;(2)如图,过点(0,1)的直线l与椭圆Γ相交于P,Q两点,求证:射线AO平分∠PAQ.【答案】(1);(2)证明见解析.【解答】解:(1)依题意,设圆心C(2,b),r=b,,解得,所以所求圆方程为:.(2)证明:x=0代入圆C方程,得y=1或y=4,所以B(0,1),A(0,4),若过B点的直线斜率不存在,此时A,P,Q在y轴上,∠PAB=∠QAB=0,射线AO平分∠PAQ;若过B(0,1)的直线l斜率存在,设其方程为y=kx+1,联立整理得(2k2+1)x2+4kx﹣6=0,Δ=16k2+24(2k2+1)=8(8k2+3)>0,设P(x1,y1),Q(x2,y2),,=,∴∠PAB=∠QAB.所以射线AO平分∠PAQ.综上,射线AO平分∠PAQ.7.(2022秋•开福区校级月考)已知双曲线经过点(2,﹣3),两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程;(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M(m,0),使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.【答案】(1);(2)存在M(﹣1,0),使得以线段AB为直径的圆恒过M点.【解答】解:(1)∵两条渐近线的夹角为60°,∴渐近线的斜率或,即或;当时,由,得:a2=1,b2=3,∴双曲线C的方程为:;当时,方程无解;综上所述:双曲线C的方程为:.(2)由题意得:F2(2,0),假设存在定点M(m,0)满足题意,则恒成立;①当直线l斜率存在时,设l:y=k(x﹣2),A(x1,y1),B(x2,y2),由得:(3﹣k2)x2+4k2x﹣(4k2+3)=0,∴,∴,,∴==0,∴(4k2+3)(1+k2)﹣4k2(2k2+m)+(m2+4k2)(k2﹣3)=0,整理可得:k2(m2﹣4m﹣5)+(3﹣3m2)=0,由,得:m=﹣1;∴当m=﹣1时,恒成立;②当直线l斜率不存在时,l:x=2,则A(2,3),B(2,﹣3),当M(﹣1,0)时,,,∴成立;综上所述:存在M(﹣1,0),使得以线段AB为直径的圆恒过M点.8.(2022秋•锦州期中)已知双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点;且C的一条渐近线与直线x﹣2y+2=0平行.(1)求双曲线C的方程;(2)若直线l与双曲线C右支相切(切点不为右顶点),且l分别交双曲线C的两条渐近线于A、B两点,O为坐标原点,试判断△AOB的面积是否为定值,若是,请求出;若不是,请说明理由.【答案】(1);(2)△AOB的面积为定值2,理由见解答.【解答】解:(1)∵双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点,∴c=,又C的一条渐近线与直线x﹣2y+2=0平行,∴=,又a2+b2=c2=5,解得a=2,b=1,∴双曲线C的方程为;(2)设直线l的方程为y=kx+m,联立,可得(4k2﹣1)x2+8kmx+4m2﹣4=0,∴Δ=64k2m﹣16(4k2﹣1)(m2+1)=0,∴4k2=m2+1,设直线l与x轴交点为D,则OD=||,=S△OAD+S△OBD==,∴S△AOB又双曲线的渐近线方程为y=±x,联立直线l:y=kx+m,可得A(,),B(,),===,∴S△AOB又4k2=m2+1,=2,∴△AOB的面积为定值.∴S△AOB9.(2022秋•湖北期中)在△ABC中,已知A(﹣1,0),B(﹣2,0),且sin B=sin A.(1)求顶点C的轨迹E的方程;(2)曲线E与y轴交于P,Q两点,T是直线y=2上一点,连TP,TQ分别与E交于M,N两点(异于P,Q两点),试探究直线MN是否过定点,若是求定点,若不是说明理由.【答案】(1)x2+y2=2(y≠0);(2)直线MN恒过点(0,).【解答】解:(1)A(﹣1,0),B(﹣2,0),由sin B=sin A,得,即,设C(x,y),则,整理得x2+y2=2(y≠0);(2)曲线E:x2+y2=2(y≠0),由题意不妨设P(0,),Q(0,﹣),T(m,)(m≠0),TP:y=,TQ:y=,联立,得(m2+2)x2+4mx=0,得M(,);联立,得(m2+18)x2﹣12mx=0,得N(,).当m≠±3时,直线MN方程为y=.∴直线MN恒过点(0,).10.(2022秋•南阳期中)已知动点P到两个定点的距离之和为4,记点P的轨迹为Γ.(1)求Γ的方程;(2)若点Q(0,﹣3),过点T(0,1)的直线l与Γ交于M,N两点,求△QMN面积的最大值.【答案】(1);(2).【解答】解:(1)由题意可知,P点轨迹为Γ是以,为焦点,长轴长为4的椭圆,即2a=4,,所以a=2,b=1,所以Γ的方程为:;(2)因为直线l的斜率存在,设直线l的方程:y=kx+1,设M(x1,y1),N(x2,y2),,消去y,整理得:(k2+4)x2+2kx﹣3=0,Δ=(2k)2+4(k2+4)×3=16(k2+3)>0,所以,,所以,所以△QMN面积,设,所以在上单调递减,故当,即k=0时,△BMN面积取得最大值,最大值为,所以△QMN面积的最大值.11.(2022•临澧县校级开学)已知椭圆C的方程为+=1(a>0),斜率为k(k≠0)的直线与C交于M,N两点.(1)若G为MN的中点,O为坐标原点,且直线OG的斜率为﹣,求椭圆C的方程;(2)在(1)的条件下,若P是椭圆C的左顶点,直线PM的斜率为k PM,直线PN的斜率为k PN,k PM•k PN=﹣,F是椭圆的左焦点,要使F在以MN为直径的圆内,求k 的取值范围.【答案】(1);(2).【解答】解:(1)设M,N两点坐标分别为M(x1,y1),N(x2,y2),G(x0,y0),代入椭圆方程,得,则,可得,因为,所以,所以a2=4,椭圆C的方程为.(2)设MN方程为y=kx+m,则,所以(3+4k2)x2+8kmx+4m2﹣12=0,所以,,所以,所以=,所以=,解得m=2k(舍)或m=﹣k,若F在以MN为直径的圆内,则,即,,即4k2﹣12+8k2+3k2﹣12k2+3+4k2=0,即7k2﹣9<0,且k≠0,解得且k≠0,所以k的取值范围为.12.(2022秋•辽宁期中)如图所示:已知椭圆C:的长轴长为4,离心率.A是椭圆的右顶点,直线l过点M(﹣1,0)交椭圆于C,D两点,记△ACD的面积为S.(1)求椭圆C的标准方程;(2)求S的最大值.【答案】(1);(2).【解答】解:(1)令椭圆E的半焦距为c,依题意,a=2,=,解得c=,则b2=a2﹣c2=1,所以椭圆E的标准方程为.(2)依题意,设直线l:x=ty﹣1,设C(x1,y1),D(x2,y2),由,消去x并整理得:(t2+4)y2﹣2ty﹣3=0,则y1+y2=,y1y2=﹣,|y1﹣y2|===,由(1)知A(2,0),|AM|=3,则有S===,令u=,显然函数y=在[,+∞)上单调递增,,当且仅当,即=±1时取等号.显然取等号情况不成立,故当=时S取得最大值,即S≤,所以S的最大值为.13.(2022•烟台三模)已知椭圆C:+=1(a>b>0)的离心率为,(,1)为C与抛物线x2=2py的交点.(1)求椭圆C的方程;(2)设椭圆的上顶点为A,斜率为k的直线过抛物线的焦点F且与椭圆交于M,N两点,试探究直线AM,AN的斜率之积是否为定值?若是,求出此定值;若不是,说明理由.【答案】(1);(2)直线AM,AN的斜率之积为定值.【解答】解:(1)由题意可知,,可得a2=2c2,又a2=b2+c2,可得a2=2b2,所以椭圆方程为,将代入方程得:,解得b2=4,所以a2=8,所以椭圆C的方程:;(2)直线AM,AN的斜率之积为定值,且定值为.由(1)可得A(0,2),将代入抛物线可得6=2p,p=3,所以抛物线方程为x2=6y,所以,则设直线MN的方程为,设M(x1,y1),N(x2,y2),联立直线MN的方程,,消去y,整理得(2+4k2)x2+12kx﹣7=0,所以,,,所以=,所以,直线AM,AN的斜率之积为定值.14.(2022•雨花区校级模拟)如图,已知椭圆,其左、右焦点分别为F1,F2,过右焦点F2且垂直于x轴的直线交椭圆于第一象限的点P,且.(1)求椭圆C的方程;(2)过点且斜率为k的动直线l交椭圆于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,说明理由.【答案】(1),(2)(0,1).【解答】解:(1)∵,∴,∵,∴,∵a2=c2+1,∴,∴椭圆方程为:.(2)动直线l的方程为:,由得,设A(x1,y1),B(x2,y2),则..由对称性可设存在定点M(0,m)满足题设,则,⇒6(m2﹣1)k2+(3m2+2m﹣5)=0,由题意知上式对∀k∈R成立,∴m2﹣1=0且3m2+2m﹣5=0,解得m=1.∴存在定点M,使得以AB为直径的适恒过这个点,且点M的坐标为(0,1).15.(2022•鞍山模拟)已知O为坐标原点,F1、F2为椭圆C的左、右焦点,|F1F2|=2,P 为椭圆C的上顶点,以P为圆心且过F1、F2的圆与直线相切.(1)求椭圆C的标准方程;(2)若过点F2作直线l,交椭圆C于M,N两点(l与x轴不重合),在x轴上是否存在一点T,使得直线TM与TN的斜率之积为定值?若存在,请求出所有满足条件的点T的坐标;若不存在,请说明理由.【答案】(1);(2)存在;.【解答】解:(1)依题意,F1(﹣1,0),F2(1,0),,由椭圆定义知:椭圆长轴长,即,而半焦距c=1,即有短半轴长b=1,所以椭圆C的标准方程为:.(2)依题意,设直线l方程为x=my+1,由消去x并整理得(m2+2)y2+2my﹣1=0,设M(x1,y1),N(x2,y2),则,,假定存在点T(t,0),直线TM与TN的斜率分别为,,=,要使k TM⋅k TN为定值,必有﹣1﹣2(1﹣t)+(1﹣t)2=0,即,当时,∀m∈R,,当时,∀m∈R,,所以存在点,使得直线TM与TN的斜率之积为定值.16.(2022•洛阳模拟)已知抛物线C:y2=2px(p>0),A是C上位于第一象限内的动点,它到点B(3,0)距离的最小值为.直线AB与C交于另一点D,线段AD的垂直平分线交C于E,F两点.(1)求p的值;(2)若中,证明A,D,E,F四点共圆,并求该圆的方程.【答案】(1)2;(2)(x﹣9)2+(y﹣2)2=64.【解答】解:(1)设A(2py2,2py),则,令t=y2∈[0,+∞),则,对于二次函数m=4p2t2+(4p2﹣12p)t+9,其对称轴为,当p≥3时,在[0,+∞)上单调递增,其最小值为9,即|AB|的最小值为3,不满足题意,当0<p<3时,,所以当时m=4p2t2+(4p2﹣12p)t+9取得最小值,即所以,解得p=2或p=4(舍),所以p=2;(2)由(1)可得,当时,,点A(1,2),所以,直线AB的方程为y=﹣x+3,由可得x2﹣10x+9=0,解得x=1或x=9,所以D(9,﹣6),所以AD的中点为N(5,﹣2),所以直线EF的方程为y+2=1⋅(x﹣5),即y=x﹣7,设E(x1,y1),F(x2,y2),由可得y2﹣4y﹣28=0,所以y1+y2=4,y1y2=﹣28,所以线段EF的中点为,因为,所以d,D,E,F四点共圆,圆心为M(9,2),半径为8,所以该圆的方程为(x﹣9)2+(y﹣2)2=64.17.(2022•德州二模)已知△ABC的两个顶点A,B的坐标分别为(﹣,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M、N两点,点D在曲线G上,O是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.【答案】;(2)四边形OMDN的面积是定值,其定值为.【解答】解:(1)因为圆E为△ABC的内切圆,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|,所以点C的轨迹为以点A和点B为焦点的椭圆,所以,a=2,则b=1,所以曲线G的方程为.(2)由y≠0可知直线l的斜率存在,设直线l方程是y=kx+m,由平面图形OMDN是四边形,可知m≠0,代入到,得(1+4k2)x2+8kmx+4m2﹣4=0,所以Δ=16(4k2+1﹣m2)>0,,.所以,所以,又点O到直线MN的距离,由,得,,因为点D在曲线G上,所以将D点坐标代入椭圆方程得1+4k2=4m2.由题意四边形OMDN为平行四边形,所以OMDN的面积为,由1+4k2=4m2,代入得,故四边形OMDN的面积是定值,其定值为.18.(2022•襄城区校级四模)已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点到F点的距离为.(1)求抛物线的方程及点A坐标;(2)设斜率为k的直线l过点B(2,0)且与抛物线交于不同的两点M、N,若且,求斜率k的取值范围.【答案】(1),(2).【解答】解:(1)由抛物线定义可知:,得p=2,∴抛物线方程为x2=4y,将点坐标代入抛物线方程得:∴点A坐标为,(2)直线l的方程为y=k(x﹣2),设M、N两点的坐标分别为(x1,y1),(x2,y2).联立消去y,整理得:x2﹣4kx+8k=0,由Δ>0⇒16k2﹣32k>0⇒k<0或k>2.且x1+x2=4k,x1x2=8k,又即(x1﹣2,y1)=λ(x2﹣2,y2)∴,∵,∴,又,令,∴,又:k<0或k>2.∴k的取值范围是.19.(2021秋•淄博期末)已知O为坐标原点,A(x1,y1),B(x2,y2)是直线l与抛物线C:y2=4x的两个交点,满足.试求y1y2的值,并证明直线l恒过定点.【答案】y1y2=﹣8,证明见解析.【解答】证明:设l:x=my+n,A(x1,y1),B(x2,y2).由得y2﹣4my﹣4n=0.∴y1+y2=4m,y1y2=﹣4n,∴x1+x2=4m2+2n,x1x2=n2.又•=﹣4,∴x1x2+y1y2=n2−4n=−4,解得n=2,∴y1y2=﹣8.∴直线l方程为x=my+2,∴直线l恒过点(2,0).20.(2021秋•十堰期末)已知抛物线,,点M(x0,y0)在C2上,且不与坐标原点O重合,过点M作C1的两条切线,切点分别为A,B.记直线MA,MB,MO的斜率分别为k1,k2,k3.(1)当x0=1时,求k1+k2的值;(2)当点M在C2上运动时,求的取值范围.【答案】(1)k1+k2=4.(2)(﹣∞,﹣4]∪[4,+∞).【解答】解:(1)因为x0=1,所以y0=﹣1.设过点M并与C1相切的直线方程为y=k(x﹣1)﹣1.联立方程组整理得x2﹣kx+k+1=0,则Δ=(﹣k)2﹣4(k+1)=k2﹣4k﹣4=0.由题可知,k1,k2即方程k2﹣4k﹣4=0的两根,故k1+k2=4.(2)因为,所以可设过点M并与C1相切的直线的方程为.联立方程组整理得,则.由题可知,k1+k2=4x0,.又,所以.当x0>0时,,所以,当且仅当时,等号成立.当x0<0时,,所以,当且仅当时,等号成立.故的取值范围为(﹣∞,﹣4]∪[4,+∞).21.(2021秋•武汉期末)已知双曲线的左、右焦点分别为,动点M满足|MF2|﹣|MF1|=2.(1)求动点M的轨迹方程;(2)若动点M在双曲线C上,设双曲线C的左支上有两个不同的点P,Q,点N(4,0),且∠ONP=∠ONQ,直线NQ与双曲线C交于另一点B.证明:动直线PB经过定点.【答案】(1)x2﹣=1(x≤﹣1);(2)证明过程见详解,定点(,0).【解答】解:(1)动点M满足|MF2|﹣|MF1|=2<|F1F2|,所以动点M的轨迹为双曲线的左支,且2a=2,c=,所以可得a=1,b2=c2﹣a2=10﹣1=9,所以双曲线的方程为:x2﹣=1(x≤﹣1);(2)证明:由题意可得P,Q关于x轴对称,设直线PB的方程为:y=kx+t,设P(x1,y1),B(x2,y2),则Q(x1,﹣y1),联立,整理可得:(9﹣k2)x2﹣2ktx﹣t2﹣9=0,则x1+x2=,x1x2=,则直线BQ的方程为:y=(x﹣x2)+y2,因为直线过N(4,0)点,所以0=(4﹣x2)+y2,整理可得:(x2﹣4)(y2+y1)=y2(x2﹣x1),即2kx1x2+(t﹣4k)(x1+x2)﹣8t=0,所以+﹣8t=0,整理可得:﹣2kt2﹣18k+2kt2﹣8k2t﹣72t+8tk2=0,即k=﹣4t,所以直线PB的方程为:y=﹣4tx+t=﹣4t(x﹣),可证得:直线PB恒过定点(,0)22.(2021秋•菏泽期末)已知Rt△ABC中,A(﹣1,0),B(1,0),∠CAB=90°,,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.(1)求曲线E的方程;(2)过点(1,0)的直线l与曲线E交于M,N两点,则在x轴上是否存在定点Q.使得的值为定值?若存在,求出点Q的坐标和该定值;若不存在,请说明理由.【答案】(1).(2)存在点.【解答】解:(1)由题意,可得,而,所以点P的轨迹为以A,B为焦点,长轴长为的椭圆,由,故,所以曲线E的方程为.(2)当直线l的斜率为不为0时,设直线l的方程为x=my+1,设定点Q(t,0),联立方程组消x可得(m2+2)y2+2my﹣1=0,设M(x1,y1),N(x2,y2),可得,所以=(my1+1﹣t)(my2+1﹣t)+y1y2==,要使上式为定值,则,解得,此时,当直线l的斜率为0时,,此时,也符合;所以,存在点,使得为定值.23.(2021秋•南京月考)已知双曲线E:﹣=1(a>0,b>0)过点D(3,1),且该双曲线的虚轴端点与两顶点A1,A2的张角为120°.(1)求双曲线E的方程;(2)过点B(0,4)的直线l与双曲线E左支相交于点M,N,直线DM,DN与y轴相交于P,Q两点,求|BP|+|BQ|的取值范围.【答案】(1).;(2)|BP|+|BQ|的取值范围是(,18﹣6).【解答】解:(1)由已知可得,结合a2+b2=c2,解得,故双曲线E的方程;.(2)设直线方程y=kx+4,M(x1,y1),N(x2,y2),直线DM的方程为y﹣1=(x﹣3),可得P(0,1﹣),直线DN的方程为y﹣1=(x﹣3),可得Q(0,1﹣),联立,消去y,整理可得(1﹣3k2)x2﹣24kx﹣54=0,则,可得,|BP|+||BQ|=4﹣y M+4﹣y N=6+=6+3×=6+3×=6+3×===8﹣,又,∴3k+5∴|BP|+|BQ|的取值范围是(,18﹣6).24.(2018秋•福田区校级期末)已知椭圆C的中心是坐标原点O,它的短轴长2,焦点F(c,0),点A(﹣c,0),且=2.(1)求椭圆C的标准方程;(2)是否存在过点A的直线与椭圆C相交于P、Q两点,且以线段PQ为直径的圆过坐标原点O,若存在,求出直线PQ的方程;不存在,说明理由.【答案】见试题解答内容【解答】解:(1)由题意知,b=,F(c,0),A(﹣c,0),则,,由=2,得c=,解得:c=2.∴a2=b2+c2=6,∴椭圆的方程为,离心率为;(2)A(3,0),设直线PQ的方程为y=k(x﹣3),联立,得(1+3k2)x2﹣18k2x+27k2﹣6=0,设P(x1,y1),Q(x2,y2),则,.∴=k2()=.由已知得OP⊥OQ,得x1x2+y1y2=0,即,解得:k=,符合Δ>0,∴直线PQ的方程为y=.25.(2021•辽宁模拟)已知抛物线C1:y2=2px(p>0),椭圆C2:=1(a>b>0),抛物线与椭圆有共同的焦点F(4,0),且椭圆C2的离心率e=.(Ⅰ)求椭圆与抛物线的方程;(Ⅱ)直线l1的方程为x=﹣4,若不经过点P(4,8)的直线l2与抛物线交于A,B(A,B分别在x轴两侧),与直线l1交于点M,与椭圆交于点C,D,设PA,PM,PB的斜率分别为k1,k2,k3,若k1+k3=2k2.(ⅰ)证明:直线l2恒过定点;(ⅱ)点D关于x轴的对称点为D′,试问△CFD′的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【答案】(Ⅰ)椭圆C2的方程为,抛物线C1的方程为y2=16x;(Ⅱ)(i)证明见解析;(ii)△CFD'的面积存在最大值,最大值为.【解答】(Ⅰ)解:设椭圆的半焦距为c,因为抛物线与椭圆有共同的焦点F(4,0),则y2=16x且c=4,因为椭圆C2的离心率为e=,解得a=5,所以b2=a2﹣c2=9,故椭圆C2的方程为,抛物线C1的方程为y2=16x;(Ⅱ)(i)证明:当直线l2的斜率k=0时,不符合题意;当直线l2的存在且不为0时,设直线l2:y=kx+b,令x=﹣4,可得y=﹣4k+b,则点M(﹣4,﹣4k+b),设A(x1,y1),B(x2,y2),联立,可得ky2﹣16y+16b=0,则Δ>0,所以,直线PA的斜率,同理可得直线PB的斜率为,直线PM的斜率为,因为k1+k3=2k2,所以,即,整理可得,,所以b=4k或b=﹣4k,当b=4k时,y1y2=64,与A,B在x轴两侧矛盾;当b=﹣4k时,直线l2的方程为y=kx﹣4k,即直线l2恒过定点(4,0);(ii)解:设C(x3,y3),D(x4,y4),D'(x4,﹣y4),设直线CD的方程为x=ty+4(t≠0),代入椭圆C2的方程可得,(9t2+25)y2+72ty﹣81=0,。

高考数学大二轮复习第二部分专题5解析几何增分强化练(二十六)文

高考数学大二轮复习第二部分专题5解析几何增分强化练(二十六)文

高考数学大二轮复习第二部分专题5解析几何增分强化练(二十六)文增分强化练(二十六)一、选择题1.双曲线x 23-y 29=1的渐近线方程是( )A .y =±3xB .y =±13xC .y =±3xD .y =±33x 解析:因为x 23-y 29=1,所以a =3,b =3,渐近线方程为y =±b ax , 即为y =±3x ,故选C. 答案:C2.已知双曲线my 2-x 2=1(m ∈R)与抛物线x 2=8y 有相同的焦点,则该双曲线的渐近线方程为( ) A .y =±3x B .y =±3x C .y =±13xD .y =±33x 解析:∵抛物线x 2=8y 的焦点为(0,2)∴双曲线的一个焦点为(0,2),∴1m +1=4,∴m =13,∴双曲线的渐近线方程为y =±3x , 故选A. 答案:A3.已知双曲线C :x 2m 2-y 23=1的离心率为2,则C 的焦点坐标为( )A .(±2,0)B .(±2,0)C .(0,±2)D .(0,±2)解析:由双曲线C :x 2m 2-y 23=1,离心率为2,可得m 2+3m=2,∴m 2=1, 则c =m 2+3=2,故双曲线C 的焦点坐标是(±2,0).故选A.答案:A4.(2019·呼和浩特模拟)已知双曲线C 1:x 24-y 2k =1与双曲线C 2:x 2k -y 29=1有相同的离心率,则双曲线C 1的渐近线方程为( ) A .y =±32x B .y =±62x C .y =±34x D .y =±64x 解析:由双曲线方程可知k >0,双曲线C 1:x 24-y 2k =1的离心率为4+k2,双曲线C 2:x 2k -y 29=1的离心率为k +9k,由题意得4+k 2=k +9k ,解得k =6, 双曲线C 1为x 24-y26=1,则渐近线方程为y =±62x , 故选B. 答案:B5.已知双曲线C 的一个焦点坐标为(3,0),渐近线方程为y =±22x ,则C 的方程是( ) A .x 2-y 22=1 B.x 22-y 2=1 C.y 22-x 2=1 D .y 2-x 22=1解析:因为双曲线C 的一个焦点坐标为(3,0),所以c =3,又因为双曲线C 的渐近线方程为y =±22x ,所以有b a =22⇒a =2b ,c =3,而c =a 2+b 2,所以解得a =2,b =1,因此双曲线方程为x 22-y 2=1,故选B.答案:B6.(2019·岳阳模拟)过抛物线x 2=4y 的焦点F 作直线,交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|=( ) A .5 B .6 C .8D .10解析:x 2=4y 的焦点为(0,1),准线为y =-1,因为P 1(x 1,y 1),P 2(x 2,y 2)两点是过抛物线焦点的直线与抛物线的交点,所以P 1(x 1,y 1),P 2(x 2,y 2)两点到准线的距离分别是y 1+1,y 2+1,所以由抛物线的定义知|P 1P 2|=|P 1F |+|P 2F |=y 1+1+y 2+1=y 1+y 2+2=6+2=8,故选C. 答案:C7.(2019·洛阳、许昌质检)若双曲线x 2-y 2b2=1 (b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个交点,则双曲线离心率的取值范围是( ) A .(1,2] B .[2,+∞) C .(1,3]D .[3,+∞)解析:双曲线x 2-y 2b2=1(b >0)的一条渐近线方程是bx -y =0,由题意圆x 2+(y -2)2=1的圆心(0,2)到bx -y =0的距离不小于1,即2b 2+1≥1,则b 2≤3,那么离心率e ∈(1,2],故选A. 答案:A8.(2019·咸阳模拟)已知椭圆、双曲线均是以直角三角形ABC 的斜边AC 的两端点为焦点的曲线,且都过B 点,它们的离心率分别为e 1,e 2,则1e 21+1e 22=( )A.32 B .2 C.52D .4解析:以AC 边所在的直线为x 轴,AC 中垂线所在的直线为y 轴建立直角坐标系(图略),设椭圆方程为x 2a 21+y 2b 21=1,设双曲线方程为x 2a 22-y 2b 22=1,焦距都为2c不妨设|AB |>|BC |,椭圆和双曲线都过点B , 则|AB |+|BC |=2a 1,|AB |-|BC |=2a 2, 所以|AB |=a 1+a 2,|BC |=a 1-a 2, 又因为△ABC 为直角三角形,|AC |=2c ,所以(a 1+a 2)2+(a 1-a 2)2=(2c )2,即a 21+a 22=2c 2,所以a 21c 2+a 22c 2=2,即1e 21+1e 22=2.故选B. 答案:B9.(2019·乌鲁木齐质检)已知抛物线C :y 2=8x 的焦点为F ,直线l 过焦点F 与抛物线C 分别交于A ,B 两点,且直线l 不与x 轴垂直,线段AB 的垂直平分线与x 轴交于点P (10,0),则△AOB 的面积为( )A .4 3B .4 6C .8 2D .8 6解析:设直线l :x =ty +2,A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧y 2=8x x =ty +2可以得到y 2-8ty -16=0,所以AB 的中点M (4t 2+2,4t ),线段AB 的垂直平分线与x 轴交于点P (10,0),故t ≠0. 所以AB 的中垂线的方程为y =-1t (x -4t 2-2)+4t =-1t ·x +8t +2t,令y =0可得x =8t 2+2,解方程10=8t 2+2得t =±1. 此时AB = 1+t 2|y 1-y 2|=81+t 2t 2+1=16,O 到AB 的距离为d =21+t2=2,所以S ΔOAB =12×16×2=8 2.故选C. 答案:C10.(2019·滨州模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为P ,直线l :4x -3y =0与椭圆C 相交于A ,B 两点.若|AF |+|BF |=6,点P 到直线l 的距离不小于65,则椭圆离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,59 B.⎝ ⎛⎦⎥⎤0,32 C.⎝ ⎛⎦⎥⎤0,53 D.⎝ ⎛⎦⎥⎤13,32 解析:如图所示,设F ′为椭圆的左焦点, 连接AF ′,BF ′,则四边形AFBF ′是平行四边形,∴6=|AF |+|BF |=|AF ′|+|AF |=2a ,∴a =3.取P (0,b ),∵点P 到直线l ∶4x +3y =0的距离不小于65,∴|3b |16+9≥65,解得b ≥2. ∴c ≤9-4=5,∴0<c a ≤53.∴椭圆E 的离心率范围是⎝ ⎛⎦⎥⎤0,53. 故选C. 答案:C11.(2019·济宁模拟)已知直线l 过抛物线C :y 2=3x 的焦点F ,交C 于A ,B 两点,交C 的准线于点P ,若AF →=FP →,则|AB |=( ) A .3 B .4 C .6D .8解析:如图所示:不妨设A 在第一象限,由抛物线C :y 2=3x 可得F ⎝ ⎛⎭⎪⎫34,0,准线DP :x =-34.因为AF →=FP →,所以F 是AP 的中点,则AD =2CF =3.所以可得A ⎝ ⎛⎭⎪⎫94,332,则k AF =3,所以直线AP 的方程为:y =3⎝ ⎛⎭⎪⎫x -34, 联立方程⎩⎪⎨⎪⎧y =3⎝ ⎛⎭⎪⎫x -34y 2=3x,整理得:x 2-52x +916=0所以x 1+x 2=52,则|AB |=x 1+x 2+p =52+32=4.故选B.答案:B12.(2019·晋城模拟)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF →=3FB →,则该双曲线的离心率为( ) A.52 B.62C.233D. 3 解析:由题意得直线l 的方程为x =b ay +c ,不妨取a =1,则x =by +c ,且b 2=c 2-1.将x =by +c 代入x 2-y 2b2=1,(b >0),得(b 4-1)y 2+2b 3cy +b 4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-2b 3c b 4-1,y 1y 2=b4b 4-1.由AF →=3FB →,得y 1=-3y 2,所以⎩⎪⎨⎪⎧-2y 2=-2b 3cb 4-1-3y 22=b 4b 4-1,得3b 2c 2=1-b 4,解得b 2=14,所以c=b 2+1=54=52,故该双曲线的离心率为e =c a =52,故选A. 答案:A 二、填空题13.(2019·合肥质检)抛物线x 2=8y 的焦点坐标为________.解析:由抛物线方程x 2=8y 知,抛物线焦点在y 轴上,由2p =8,得p2=2,所以焦点坐标为(0,2). 答案:(0,2)14.已知过P (1,1)的直线l 与双曲线C :x 2-y 2=1只有一个公共点,则直线l 的条数为________. 解析:双曲线C :x 2-y 2=1的渐近线方程y =±x , 其中一条渐近线y =x 过点P (1,1),所以过点P (1,1)的直线x =1与双曲线右支相切,只有一个公共点,过P (1,1)与y =-x 平行的直线y =-x +2和双曲线右支相交,只有一个公共点, 综上共有2条直线符合要求. 答案:215.(2019·泰安模拟)抛物线C :y 2=4x 的焦点为F ,动点P 在抛物线C 上,点A (-1,0),当|PF ||PA |取得最小值时,直线AP 的方程为________. 解析:设P 点的坐标为(4t 2,4t ), ∵F (1,0),A (-1,0),∴|PF |2=(4t 2-1)2+16t 2=16t 4+8t 2+1, |PA |2=(4t 2+1)2+16t 2=16t 4+24t 2+1,∴⎝ ⎛⎭⎪⎫|PF ||PA |2=16t 4+8t 2+116t 4+24t 2+1=1-16t 216t 4+24t 2+1=1-1616t 2+1t2+24≥1-16216t 2·1t2+24=1-1632=12,当且仅当16t 2=1t 2,即t =±12时取等号,此时点P 坐标为(1,2)或(1,-2),此时直线AP 的方程为y =±(x +1),即x +y +1=0或x -y +1=0. 答案:x +y +1=0或x -y +1=016.抛物线C :y 2=2px (p >0)的焦点为A ,其准线与x 轴的交点为B ,如果在直线3x +4y +25=0上存在点M ,使得∠AMB =90°,则实数p 的取值范围是________.解析:由题得A ⎝ ⎛⎭⎪⎫p 2,0,B ⎝ ⎛⎭⎪⎫-p2,0,∵M 在直线3x +4y +25=0上,设点M ⎝ ⎛⎭⎪⎫x ,-3x -254,∴AM →=⎝ ⎛⎭⎪⎫x -p 2,-3x -254, BM →=⎝⎛⎭⎪⎫x +p 2,-3x -254, 又∠AMB =90°,∴AM →·BM →=⎝ ⎛⎭⎪⎫x -p 2⎝ ⎛⎭⎪⎫x +p 2+⎝ ⎛⎭⎪⎫-3x -2542=0,即25x 2+150x +625-4p 2=0, ∴Δ≥0,即1502-4×25×(625-4p 2)≥0, 解得p ≥10或p ≤-10,又p >0,∴p 的取值范围是[10,+∞). 答案:[10,+∞) 三、解答题17.已知椭圆的焦点F 1(-4,0),F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,并且|F 1B |+|F 2B |=10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:|F 2A |,|F 2B |,|F 2C |成等差数列. (1)求椭圆的方程; (2)求弦AC 中点的横坐标.解析:(1)由题意可知2a =|F 1B |+|F 2B |=10. 所以a =5,又c =4,所以b =a 2-c 2=3, 所以椭圆方程为:x 225+y 29=1.。

解析几何-冲刺2022年高考数学大题限时集训(解析版)

解析几何-冲刺2022年高考数学大题限时集训(解析版)

专题05解析几何解析几何作为高考数学必考大题,一般包含圆,椭圆。

双曲线,抛物线相关的综合问题。

一般解答题椭圆与抛物线作为重点,双曲线一般考查小题,但是2021年高考新课标中解答题出现了双曲线。

一般出现在20或21题左右,考查内容主要包含直线过定点,求值或者是相应的范围问题,以及定值问题等,对于直线过定点问题可采用齐次化解。

对于求值以及范围问题一般做法均是万能方法韦达定理去转化。

类型一:斜率之和或之积,直线过定点问题方法一:韦达定理方法二:齐次化解决(简单方便)例题1.12,Q Q 为椭圆222212x y b b+=上两个动点,且12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,求D 的轨迹方程.解法一(常规方法):设111222(,),(,)Q x y Q x y ,00(,)D x y ,设直线12Q Q 方程为y kx m =+,联立222212y kx mx y bb =+⎧⎪⎨+=⎪⎩化简可得:22222222(2)42()0b k b x kmb x b m b +++-=,所以222222212122222222()(2),22b m b b m b k x x y y b k b b k b +-==++因为12OQ OQ ⊥所以2222222222221212222222222()(2)2()2=0222121b m b b m b k m b m b k x x y y b k b b k b k k +---+=+=+++++22232(1)m b k ∴=+*又因为直线12Q Q 方程等价于为0000()x y y x x y -=--,即200000x x y x y y y =-++对比于y kx m =+,则00200x k y x y my ⎧-=⎪⎪⎨⎪+=⎪⎩代入*中,化简可得:2220023x y b +=.解法二(齐次式):设直线12Q Q 方程为1mx ny +=,联立222222221111022mx ny mx ny x y x y b b bb +=+=⎧⎧⎪⎪⇒⎨⎨+=+-=⎪⎪⎩⎩22222()02x y mx ny b b +-+=化简可得:22222222202x y m x n y mnxy b b+---=整理成关于,x y ,x y 的齐次式:2222222(22)(12)40b n y m b x mnb xy -+--=,进而两边同时除以2x ,则22222222122212(22)412022m b b n k mnb k m b k k b n ---+-=⇒=-因为12OQ OQ ⊥12OQ OQ ⊥所以121k k =-,222212122m b b n-=--22232()b m n ∴=+*又因为直线12Q Q 方程等价于为0000()x y y x x y -=--,即200000x x y x y y y =-++对比于1mx ny +=,则022000220x mx y y n x y ⎧=⎪+⎪⎨⎪=⎪+⎩代入*中,化简可得:2220023x y b +=.齐次化方法技巧:例如要证明直线AP 与AQ 斜率之和或者斜率之积为定值,将公共点A 平移到原点,设平移后的直线为mx+ny=1(为什么这样设?因为这样齐次化更加方便),与圆锥方程联立,一次项乘以mx+ny ,常数项乘以(mx+ny )²,构造ay ²+bxy+cx ²,然后等式两边同时除以x ²(前面注明x 不等于0),得到,化简为ak ²+bk+c=0,可以直接利用韦达定理得出斜率之和或者斜率之积,即可得出答案,如果是过定点题目,还需要还原直线,之前如何平移,现在反平移回去。

2023年高三数学 强化训练 解析几何

2023年高三数学 强化训练 解析几何

2023年高中数学强化训练解析几何一、填空题1、过原点且与向量⎪⎭⎫⎝⎛--=)6sin(6cos(ππn 垂直的直线被圆2240x y y +-=所截得的弦长为.2、若点(1,1)P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在的直线方程为______3、已知双曲线的方程为1322=-y x ,则此双曲线的焦点到渐近线的距离为4、设双曲线226x y -=的左右顶点分别为1A 、2A ,P 为双曲线右支上一点,且位于第一象限,直线1PA 、2PA 的斜率分别为1k 、2k ,则12k k ⋅的值为.5、设1F 、2F 是椭圆1422=+y x 的两个焦点,点P 在椭圆上,且满足221π=∠PF F ,则21PF F ∆的面积等于.6、已知椭圆2212516x y +=内有两点()()1,3,3,0,A B P 为椭圆上一点,则PA PB +的最大值为.7、椭圆22221(0)x y a b a b+=>>上的任意一点M (除短轴端点除外)与短轴两个端点1B ,2B 的连线交x 轴于点N和K ,则ON OK +的最小值是__________8、已知椭圆:2221(03)9x y b b+=<<,左右焦点分别为1F ,2F ,过1F 的直线l 交椭圆于A ,B 两点,则22BF AF + 的最大值为__________9、如果是函数图像上的点,是函数图像上的点,且两点之间的距离能取到最小值,那么将称为函数与之间的距离。

按这个定义,函数和之间的距离是.10、现有一个由长半轴为2,短半轴为1的椭圆绕其长轴按一定方向旋转180所形成的“橄榄球面”.已知一个以椭圆的长轴为轴的圆柱内接于该橄榄球面,则这个圆柱的侧面积的最大值是.二、选择题1、“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的()充分不必要条件必要不充分条件充分必要条件既不充zxxk 分也不必要条件2、若直线2=+by ax 通过点)sin ,(cos ααM ,则()(A)422≤+b a .(B)422≥+b a .(C)41122≤+b a .(D)41122≥+ba .3、如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是()A.{2}∪(4,)+∞B.(2,)+∞C.{2,4}D.(4,)+∞4、如果函数y ||2x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是()A.[1,1)-B.{1,0}-C.(,1]-∞-∪[0,1)D.[1,0]-∪(1,)+∞5、过点作直线与双曲线交于A、B 两点,使点P 为AB 中点,则这样的直线()A.存在一条,且方程为B.存在无数条C.存在两条,方程为D.不存在6、直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若OB b OA a OP +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是()(A)222a b +≥(B)2122≥+b a (C)222a b +≤(D)2212a b +≤7、条件“0<abc ”是曲线“c by ax =+22”为双曲线的()(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件三、解答题1、(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.已知椭圆E 的中心在坐标原点O ,焦点在坐标轴上,且经过(2,1)M N 、两点,P 是E 上的动点.(1)求OP 的最大值;(2)若平行于OM 的直线l 在y 轴上的截距为(0)b b <,直线l 交椭圆E 于两个不同点A B 、,求证:直线MA 与直线MB 的倾斜角互补.2、(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.已知椭圆E 的中心在坐标原点O ,焦点在坐标轴上,且经过(2,1),M N 两点.(1)求椭圆E 的方程;(2)若平行于OM 的直线l 在y 轴上的截距为(0)b b <,直线l 交椭圆E 于两个不同点A B 、,直线MA 与MB 的斜率分别为12k k 、,求证:120k k +=.3、(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.设抛物线2:2(0)C y px p =>的焦点为F ,经过点F 的动直线l 交抛物线C 于11(,),A x y 22(,)B x y 两点,且124y y =-.(1)求抛物线C 的方程;(2)若2()OE OA OB =+(O 为坐标原点),且点E 在抛物线C 上,求直线l 的倾斜角;(3)若点M 是抛物线C 的准线上的一点,直线,,MF MA MB 的斜率分别为012,,k k k .求证:当0k 为定值时,12k k +也为定值.4、(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.动圆C 过定点F ,0,2⎪⎭⎫⎝⎛p 且与直线2p x =相切,其中P>0.设圆心C 的轨迹Γ的方程为.0),(=y x F (1)求.0),(=y x F (2)曲线Γ上的一定点()),(),0(,0000p y d y y x p -=≠方向向量的直线l (不过点P)与曲线Γ交于A、B 两点,设直线PA、PB 斜率分别为;计算PB PA PB PA k k k k +,,(3)曲线Γ上的两个定点),,(),('0'00000y x Q y x P 、分别过点00,Q P 做倾斜角互补的两条直线N Q M P 00,分别与曲线Γ交于M,N 两点,求证直线MN 的斜率为定值;5、(本题满分16分)已知抛物线C :px y 22=)0(>p ,直线l 交此抛物线于不同的两个点),(11y x A 、),(22y x B .(1)当直线l 过点)0,(p M 时,证明21y y ⋅为定值;(2)当p y y -=21时,直线l 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由;(3)如果直线l 过点)0,(p M ,过点M 再作一条与直线l 垂直的直线l '交抛物线C 于两个不同点D 、E .设线段AB 的中点为P ,线段DE 的中点为Q ,记线段PQ 的中点为N .问是否存在一条直线和一个定点,使得点N 到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.6、(本题满分16分)本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知点)0,1(A ,1P 、2P 、3P 是平面直角坐标系上的三点,且1AP 、2AP 、3AP 成等差数列,公差为d ,0≠d .(1)若1P 坐标为()1,1-,2d =,点3P 在直线3180x y --=上时,求点3P 的坐标;(2)已知圆C 的方程是222)3()3(r y x =-+-)0(>r ,过点A 的直线交圆于31P P 、两点,2P 是圆C 上另外一点,求实数d 的取值范围;(3)若1P 、2P 、3P 都在抛物线24y x =上,点2P 的横坐标为3,求证:线段13PP 的垂直平分线与x 轴的交点为一定点,并求该定点的坐标.7、(本题满分14分)本题共有2小题,第1小题满分6分,第2小题满分8分.已知椭圆141222=+Γy x :.(1)直线AB 过椭圆Γ的中心交椭圆于B A 、两点,C 是它的右顶点,当直线AB 的斜率为1时,求△ABC 的面积;(2)设直线2+=kx y l :与椭圆Γ交于Q P 、两点,且线段PQ 的垂直平分线过椭圆Γ与y 轴负半轴的交点D ,求实数k 的值.8、已知双曲线C 的中心在原点,()1,0D 是它的一个顶点,d =是它的一条渐近线的一个方向向量.(1)求双曲线C 的方程;(2)若过点(3,0-)任意作一条直线与双曲线C 交于,A B 两点(,A B 都不同于点D ),求证:DA DB ⋅为定值;(3)对于双曲线Γ:22221(0,0,)x y a b a b a b-=>>≠,E 为它的右顶点,,M N 为双曲线Γ上的两点(都不同于点E ),且EM EN ⊥,那么直线MN 是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).情形一:双曲线22221(0,0,)x y a b a b a b-=>>≠及它的左顶点;情形二:抛物线22(0)y px p =>及它的顶点;情形三:椭圆22221(0)x y a b a b+=>>及它的顶点.第22题O xyF9、(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知双曲线C 的中心在原点,()1,0D 是它的一个顶点,d =是它的一条渐近线的一个方向向量.(1)求双曲线C 的方程;(2)若过点(3,0-)任意作一条直线与双曲线C 交于,A B 两点(,A B 都不同于点D ),求DA DB ⋅的值;(3)对于双曲线Γ:22221(0,0,)x y a b a b a b-=>>≠,E 为它的右顶点,,M N 为双曲线Γ上的两点(,M N 都不同于点E ),且EM EN ⊥,求证:直线MN 与x 轴的交点是一个定点.10、(本题满分16分)本大题共3小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.在平面直角坐标系xOy 中,方向向量为),1(k d =的直线l 经过椭圆191822=+y x 的右焦点F ,与椭圆相交于A 、B 两点(1)若点A 在x 轴的上方,且||||OF OA =,求直线l 的方程;(2)若0>k ,)0,6(P 且△PAB 的面积为6,求k 的值;(3)当k (0≠k )变化时,是否存在一点)0,(0x C ,使得直线AC 和BC 的斜率之和为0,若存在,求出0x 的值;若不存在,请说明理由.11、本题满分16分(其中第(1)小题4分,第(2)小题8分,第(3)小题4分)已知椭圆C 的方程为22212x y a +=(0)a >,其焦点在x 轴上,点Q 27(,)22为椭圆上一点.(1)求该椭圆的标准方程;(2)设动点P 00(,)x y 满足2OP OM ON =+ ,其中M 、N 是椭圆C 上的点,直线OM 与ON 的斜率之积为12-,求证:22002x y +为定值;(3)在(2)的条件下探究:是否存在两个定点,A B ,使得PA PB +为定值?若存在,给出证明;若不存在,请说明理由.12、(本题满分18分,第1小题满分4分,第2小题满分8分,第3小题满分6分)如图,已知点,直线:,为平面上的动点,过点作的垂线,垂足为点,且.(1)求动点的轨迹的方程;(2)过轨迹的准线与轴的交点作直线与轨迹交于不同两点、,且线段的垂直平分线与轴的交点为,求的取值范围;(3)对于(2)中的点、,在轴上是否存在一点,使得△为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.13、本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.(1)设椭圆:与双曲线:有相同的焦点,的公共点,且的周长为,求椭圆的方程;我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.(2)如图,已知“盾圆”的方程为.设“盾圆”上的任意一点到的距离为,到直线的距离为,求证:为定值;(3)由抛物线弧:()与第(1)小题椭圆弧:()所合成的封闭曲线为“盾圆”.设过点的直线与“盾圆”交于两点,,且(),试用表示;并求的取值范围.14、(本题满分16分,第1小题满分8分,第2小题满分8分和平面解析几何的观点相同,在空间中,空间曲面可以看作是适合某种条件的动点的轨迹.在空间直角坐标系xyz O -中,空间曲面的方程是一个三元方程0),,(=z y x F .设1F 、2F 为空间中的两个定点,02||21>=c F F ,我们将曲面Γ定义为满足aPF PF 2||||21=+)(c a >的动点P 的轨迹.(1)试建立一个适当的空间直角坐标系xyz O -,求曲面Γ的方程;(2)指出和证明曲面Γ的对称性,并画出曲面Γ的直观图.15、本题满分18分,第1小题满分8分,第2小题满分10分在平面直角坐标系xOy 中,已知曲线1C 为到定点21,23(F 的距离与到定直线023:1=++y x l 的距离相等的动点P 的轨迹,曲线2C 是由曲线1C 绕坐标原点O 按顺时针方向旋转30形成的.(1)求曲线1C 与坐标轴的交点坐标,以及曲线2C 的方程;(2)过定点)0,(0m M )2(>m 的直线2l 交曲线2C 于A 、B 两点,已知曲线2C 上存在不同的两点C 、D关于直线2l 对称.问:弦长CD 是否存在最大值?若存在,求其最大值;若不存在,请说明理由.1116、(本题满分18分,第1小题满分8分,第2小题满分10分在平面直角坐标系xOy 中,已知曲线1C 为到定点)22,22(F 的距离与到定直线02:1=++y x l 的距离相等的动点P 的轨迹,曲线2C 是由曲线1C 绕坐标原点O 按顺时针方向旋转 45形成的.(1)求曲线1C 与坐标轴的交点坐标,以及曲线2C 的方程;(2)过定点)0,(m M )0(>m 的直线2l 交曲线2C 于A 、B 两点,点N 是点M 关于原点的对称点.若MB AM λ=,证明:)(NB NA NM λ-⊥.。

高考数学解析几何题目训练卷

高考数学解析几何题目训练卷

高考数学解析几何题目训练卷解析几何是高考数学中的重点和难点之一,它综合了代数和几何的知识,对同学们的思维能力和运算能力都有较高的要求。

为了帮助大家更好地应对高考中的解析几何题目,我们精心准备了这份训练卷。

一、选择题1、已知直线\(l\)经过点\((-2,0)\),且与直线\(y = 2x 1\)垂直,则直线\(l\)的方程为()A \(x + 2y + 2 = 0\)B \(x + 2y 2 = 0\)C \(2x + y + 4 = 0\)D \(2x + y 4 = 0\)解析:因为直线\(y = 2x 1\)的斜率为\(2\),所以与其垂直的直线的斜率为\(\frac{1}{2}\)。

又因为直线\(l\)经过点\((-2,0)\),所以直线\(l\)的方程为\(y 0 =\frac{1}{2}(x + 2)\),即\(x + 2y + 2 = 0\)。

故选 A。

2、若抛物线\(y^2 =2px\)的焦点坐标为\((1,0)\),则\(p\)的值为()A \(1\)B \(2\)C \(4\)D \(8\)解析:因为抛物线\(y^2 = 2px\)的焦点坐标为\((\frac{p}{2},0)\),已知焦点坐标为\((1,0)\),所以\(\frac{p}{2} =1\),解得\(p = 2\)。

故选 B。

3、双曲线\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\)的离心率为\(\sqrt{3}\),则其渐近线方程为()A \(y =\pm \sqrt{2}x\)B \(y =\pm \frac{\sqrt{2}}{2}x\)C \(y =\pm \sqrt{3}x\)D \(y =\pm \frac{\sqrt{3}}{3}x\)解析:双曲线\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\)的离心率\(e =\frac{c}{a}\),且\(c^2 = a^2 + b^2\)。

高考解析几何专题练习(含讲解)

高考解析几何专题练习(含讲解)

解析几何专题练习一、选择题(每题4分,共32分)1、若椭圆的一个焦点是(-2,0),则a等于()2、若双曲线的焦点到它相对应的准线的距离为2,则k等于()A.1 B. 4 C. 6 D. 83、在椭圆中,短轴的两个端点与一个焦点恰好构成正三角形,若短轴长为2,则两准线间的距离为()4、已知双曲线,则点M到x轴的距离为()5、双曲线的焦点分别为以线段为边长作等边三角形,若双曲线恰好平分正三角形的另外两边,则双曲线的离心率为()6、椭圆长轴上的一个顶点为A,以A为直角顶点作一个内接于椭圆的等腰直角三角形,则该三角形的面积为()7、若椭圆的左、右焦点分别为线段被抛物线的焦点分成5:3两段,则椭圆的离心率为()8、点P(-3,1)在椭圆的左准线上,过点P且方向为的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为()二、填空题(每题5分,共20分)1、若双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程为。

2、若抛物线上一点M与该抛物线的焦点F的距离,则点M到x轴的距离为。

3、抛物线的焦点到准线的距离为。

4、抛物线在点P和Q处的切线斜率分别为1和-1,则。

三、解答题(本大题共有4题,满分48分)1、经过抛物线的焦点的直线l与抛物线交于点A、B,若抛物线的准线上存在一点C,使△ABC为等边三角形,求直线l的斜率的取值范围.2、已知曲线,一条长为8的弦AB的两个端点在H上运动,弦AB的中点为M,求距y轴最近的点M的坐标.3、已知点为椭圆上一定点,过点A作两条直线与椭圆交于B、C两点.若直线AB、AC与x轴围成以点A为顶点的等腰三角形,求直线BC的斜率,并求在什么条件下△ABC的面积最大?最大面积是多少?4、如图,直角三角形PAQ的顶点P(-3,0),点A在y轴上,点Q在x轴正半轴上,∠PAQ=90°.在AQ的延长线上取点M,使.(1)当点A在y轴上移动时,求动点M的轨迹C;(2)设轨迹C的准线为l,焦点为F,过F作直线m交轨迹C于G、H两点,过点G作平行轨迹C的对称轴的直线n且n∩l=E.试问:点E、O、H(O为坐标原点)是否在同一条直线上?说理由.答案与解析:一、选择题1、选B解析:从椭圆的标准方程切入,由题设知,所给方程为椭圆第一标准方程:∴这里有于是可得,应选B.2、选C.解析:双曲线标准方程为∴∴双曲线的焦点到相应准线的距离∴由题设得∴应选C.3、选A.解析:由题设得a=2b又b=1,∴a=2,∴两准线间的距离∴应选A.4、选C.解析:应用双曲线定义.设得,①又②∴由①②得③∴∴∴即点M到x轴的距离为,应选C.5、选A.解析:由题设易知等边三角形的另一顶点P在y轴上,且中线OP的长为设故有由此解得或(舍去)∴应选A.6、选A.解析:椭圆标准方程为取A(-2,0),由题设易知以A为顶点的等腰直角三角形BAC的顶点B、C关于x轴对称.不妨设B点坐标为则由等腰直角三角形ABC得∴将点B坐标代入椭圆方程得∴或于是有∴应选A.7、选D.解析:由题设得①②∴由①②得故应选D.8、选A.解析:从确立反射光线的方程突破.椭圆左准线方程,左焦点由题意得①又过点p方向为点(-3,1)关于直线y=-2的对称点为(-3,-5)∴由光学知识得反射光线斜率为,反射光线经过点(-3,-5)∴反射光线方程为②在②中令y=0得x=-1,即反射光线与x轴的交点为(-1,0),∴椭圆左焦点坐标为(-1,0),即c=1③于是由①③得应选A.二、填空题1、答案:解析:由题意得①②∴将①②代入∴∴双曲线方程为2、答案:解析:这里令则由抛物线定义得∴∴∴点M到x轴的距离为.3、答案:.解析:抛物线方程为∴当a>0时,焦点到准线的距离;当a<0时,焦点到准线的距离;当a≠0时,焦点到准线的距离.4、答案:2p.解析:设过点p的抛物线的切线方程为y=x+b①则由题设知过点Q的抛物线的切线方程为y=-x-b②又设将①代入③∴由直线①与抛物线相切得∴∴由③得由此解得∴因此得点评:根据已知条件与抛物线关于x轴的对称性,两切线经过x轴上的同一点,它们在y轴上的截距互为相反数.由此断定.这是求解本题的关键.三、解答题.1、分析:注意到本题的目标,首选对交点A、B的坐标“既设又解”,对点C坐标“解而不设”.对于△ABC为正三角形的条件,则考虑利用正三角形的性质转化,为此,在循着熟悉的思路奠基之后,从寻求弦AB的垂直平分线方程突破.解:抛物线的焦点F(1,0),准线方程为x=-1.由题意设直线l的方程为y=k(x-1)①把①代入得且②∴即∴弦AB的垂直平分线方程为,∴它与准线x=-1的交点C的坐标为注意到△ABC为正三角形∴③又由抛物线定义得④⑤∴④⑤代入③解得∴所求直线l的斜率的取值范围为.点评:这里对A、B坐标的求解是“半心半意”,解题中途运用常用定理,因此,为避免引入新的参数,我们对点C坐标采取“解而不设”,以便于实现用同一参数k表示△ABC为正三角形的条件的设想.我们的这一设想一旦实现,解题便胜券在握.2、分析:体现点M到y轴的距离的线段MM′平行于双曲线的对称轴.注意到线段MM′与表示A、B到(右)准线的距离的线段之间的密切联系,考虑运用双曲线第二定义,故而对A、B 坐标“设而不解”.解:曲线为双曲线的右支.这里∴e=2右准线l:设作则∴∴①又双曲线右焦点由双曲线第二定义得②∴②代入①得③当且仅当,即AB为焦点弦时等号成立.∴由③当且仅当弦AB通过焦点时等号成立.注意到曲线H过焦点垂直于对称轴的弦长为6<8,故条件可以满足.∴④此时,,,而,于是有⑤因此由④⑤得,距y轴最近的点M的坐标为.点评:(1)解析几何中寻求某量的最值或寻求某量取何最值的有关曲线上的点的坐标,基本解法之一是“先找后解”,即首先利用曲线的性质或平面几何知识寻求该量取得最值时的点(或线段),而后运用代数求解的手段解出这一量或这一点的坐标,本题的求解便是运用了这一手法.(2)这里应用了焦点弦的命题:,同学们不妨给予证明,或寻找解题的另一途径.3、分析:由题设容易确定椭圆的方程.由直线AB、AC与x轴围成以A为顶点的等腰三角形知直线AB与AC的倾斜角互补,因而它们的斜率互为相反数(即两斜率之和为0)这便是我们求解目标的一个等量关系.为便于由这一等量关系求解,我们在第一阶段对B、C坐标“解而不设”.当求出直线BC的斜率之后,进而研究△ABC面积的最大值时再考虑对B、C坐标“既设又解”(半心半意地“解”).解:(1)将点坐标代入椭圆方程得n=6∴椭圆方程为①由题设知等腰三角形ABC的两腰不能与x轴垂直,故设两腰AB、AC所在直线的斜率分别为,,则直线AB的方程为②直线AC的方程为③∴由①②联立解得点B坐标为∴由①③联立解得点C坐标为由题设知∴直线BC的斜率(2)设直线BC的方程为④④代入椭圆方程得∴判别式△>0⑤且∴⑥又点A到直线BC的距离∴△ABC的面积当且仅当时等号成立∴,当且仅当(满足⑤式)时取得.于是可知,当或时,△ABC的面积S取得最大值,此时,直线BC的方程为,即.此时又易知BC∥OA(O为原点),B、C两点恰好分别为长轴、短轴的端点.点评:本题的难点在于求直线BC的斜率.对此,从已知条件中认识到直线AB和AC的倾角互补,进而是解题的关键环节.对于B、C两点坐标,立足于“求解”,虽然计算量大一些,但思路简明,解题的技术含量较低,反而容易寻出目标.对于直线与圆锥曲线相交的问题,在适宜的条件下以“求解”回避审题需要的深刻与细腻,也是解题的基本方略.4、分析:(1)条件的转化,化繁为简的策略之一,是线段向x轴或向y轴的投影转化.注意到这里点A在y轴上,故考虑运用这一策略进行转化.(2)此为常见的直线与抛物线相交的问题,故考虑对点G、H、E的坐标“既设又解”.解:(1)设M(x,y),且过点M作MN⊥OY于N则∴∴点A坐标为由题设得PA⊥AM化简得①注意到当x=0时,点M与点N重合,点Q与原点重合,这与已知条件不符因此,动点M的轨迹方程为,其轨迹是顶点在原点,焦点为F(1,0)的抛物线(不含顶点).(2)由(1)知,轨迹C的焦点F(1,0),准线l:x=-1(ⅰ)当直线m不与x轴垂直时,设直线m的方程为y=k(x-1)(k≠0)①将①与联立,消去x得∴由韦达定理得②又直线n的方程为∴∴∴∴点E、O、H三点共线(ⅱ)当直线m⊥ox时,直线m的方程为x=1,此时易证点E、O、H三点共线.于是,由(ⅰ)(ⅱ)知,题设条件下的点E、O、H一定在同一条直线上.点评:对于(1),已知条件的投影转化促使点M,A的关系明朗,从而为运用“直接法”求轨迹方程奠定基础.对于(2),要证点E、O、H三点共线,重点证也是常用方法.只是不可忽略直线m⊥x轴的情形.“一般”与“特殊”共同组成解题或证明的完整过程.此题的求解也是展示一般与特殊之间辩证关系的一个范例.。

高考数学解析几何客观题强化训练

高考数学解析几何客观题强化训练

解析几何客观题强化训练姓名; 学号;1.直线l 经过点A (2;1)、B (1;2m ) (m )R ∈两点;那么直线l 的倾斜角的范围是( )(A) [)π,0 (B) []()πππ,,024(C) []4,0π (D) []4,0π[)ππ,22.已知直线,32:1+=x y l 直线2l 与1l 关于直线x y -=对称;直线23l l ⊥;则3l 的斜率为( )(A) 21 (B) -21(C) -2 (D) 23.直线沿y 轴正方向平移m ()1,0≠≠m m 个单位;再沿x 轴负方向平移m -1个单位得直线l ';若直线l 与l '重合;则直线l 的斜率为( )(A) mm -1 (B) mm --1(C) m m-1 (D) m m--14.已知()()b a B A ,,0,0两点;其中0≠ab ;1P 是AB 的中点;2P 是1BP 的中点;3P 是21P P 的中点;…2+n P 是1+n n P P 的中点;则点n P 的极限位置是( )(A) ()22,b a (B) ()5353,b a(C) ()3232,b a (D) ()4343,ba5.如果直线4=+by ax 与圆422=+y x 有两个不同的交点;那么()b a P ,与圆的位置关系是( )(A) 在圆外 (B) 在圆上 (C) 在圆内 (D) 不确定6.已知()()0,1,0,2B A -两点;动点P 不在x 轴上;且满足,BPO APO ∠=∠其中o 为原点;则P 点的轨迹方程是( )(A) ())0(4222≠=++y y x (B) ())0(1122≠=++y y x(C) ())0(4222≠=+-y y x (D) ())0(1122≠=+-y y x7.过点()0,2-M 的直线l 与椭圆1222=+y x 交于1P 、2P 两点;线段1P 2P 的中点为P ;设直线l 的斜率为()011≠k k ;直线OP 的斜率为2k ;则21k k 的值等于( )(A) 2 (B) -2(C) 21 (D) -218.椭圆()012222>>=+b a b y a x 的四个顶点为A 、B 、C 、D ;若菱形ABCD 的内切圆恰好过焦点;则椭圆的离心率是( )(A) 253- (B) 853+ (C)215- (D)815+9.若双曲线122216=-b y x 的一条准线恰好为圆0222=++x y x 的一条切线;则b 的值等于( )(A) 4 (B) 8(C) (D) 34 10.双曲线()()0,0122222>>=--b a b y a x 的一条准线被它的两条渐近线截得线段长度等于它的一个焦点到一条渐近线的距离;则双曲线的两条渐近线的夹角为( )(A) 300 (B) 600 (C) 450 (D) 900 11.在抛物线x y 42=上有点M ;它到直线x y =的距离为24;如果点M 的坐标为()b a ,+∈R b a ,;则b a的值为( )(A) 2 (B) 21 (C) 1 (D) 212.已知抛物线12+=y x 上一定点A (-1;0)和两动点P 、Q ;当PA ⊥PQ 时;点Q 的横坐标的取值范围是( )(A) (]3,-∞- (B) [)+∞,1(C) []1,3- (D) (]3,-∞- ∪[)+∞,113.已知抛物线C ;842+-=x x y 作C 关于原点对称的曲线C 1;然后把1C 向右平移a 个单位;再向上平移b 个单位;就可得到抛物线2x y -=;则b a ,之值分别是( )(A) 2;3 (B) 3;2(C) 2;4 (D) 3;3 14.已知两点M(0,1).N(10,1)给出下列直线方程;① 5x -3y -22=0 ② 5x -3y -52=0 ③ x -y -4=0 ④ 4x -y -14=0 在直线上存在点P 满足MP =NP +6的所有直线方程是( ) (A) ①②③ (B) ②④ (C) ①③ (D) ②③15.直线x -2y -3=0与圆2)2(-x +2)3(+y =9交于P 、Q 两点;则△POQ (O 是原点)的面积等于( )(A) 23 (B) 43(C) 553 (D) 55616.已知c b a ,,为某一直角三角形的三边;c 为斜边;若点()n m ,在直线02=++c by ax 上;则22n m +的最小值为17.椭圆122222=+ay x a 与连结()()3,2,2,1B A 的线段没有公共点;则正数a 的取值范围是18.已知双曲线C;()()1924122=+--y x ;给出以下四个命题;① 双曲线C 的渐近线方程是x y 23±=; ② 直线123+=x y 与双曲线C 只有一个交点;③ 将双曲线19422=-y x 向左平移一个单位;并向上平移两个单位;可以得到双曲线C ; ④ 双曲线C 的一个焦点到一条渐近线的距离为3。

2024届高考数学解析几何专项练【配套新教材】(12)

2024届高考数学解析几何专项练【配套新教材】(12)

2024届高考数学解析几何专项练【配套新教材】(12)1.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点10,2Q ⎛⎫⎪⎝⎭在线段AB 上,直线PA ,PB 分别交直线132y x =-+于C ,D 两点.(Ⅰ)求点P 到椭圆上点的距离的最大值;(Ⅱ)求||CD 的最小值.2.在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b-=>>直线:1l y x =-与双曲线C 交于,A B 两点,点()00,D x y 在双曲线C 上.(1)求线段AB 中点的坐标;(2)若1a =,过点D 作斜率为2x y 的直线l '与直线10l y -=交于点P ,与直线20l y +=交于点Q ,若点(,)R m n 满足||||||RO RP RQ ==,求22220022m x n y +--的值.3.已知椭圆2222:1(0)x y E a b a b+=>>的一个顶点为(0,1)A,焦距为 .(Ⅰ)求椭圆E 的方程;(Ⅱ)过点(2,1)P -作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N .当2MN =时,求k 的值.4.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过(0,2)A -,3,12B ⎛⎫- ⎪⎝⎭两点.(1)求E 的方程;(2)设过点(1,2)P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =,证明:直线HN 过定点.5.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()11,P x y ,()22,Q x y 在C上,且120x x >>,10y >.过P 且斜率为Q 的直线交于点M ,请从下面①②③中选取两个作为条件,证明另外一个条件成立:①M 在AB 上;②//PQ AB ;③||||MA MB =.6.已知椭圆2222:1(0)x y C a b a b+=>>A ,下顶点为B ,定点(0,2)C ,ABC △的面积为3,过点C 作与y 轴不重合的直线l 交椭圆C 于P ,Q 两点,直线BP ,BQ 分别与x 轴交于M ,N 两点.(1)求椭圆C 的方程.(2)试探究点M ,N 的横坐标的乘积是否为定值,若是,请求出该定值;若不是,请说明理由.7.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.8.已知抛物线2:2(0)C y px p =>,抛物线C 上横坐标为1的点到焦点F 的距离为3.(1)求抛物线C 的方程及其准线方程;(2)过(1,0)-的直线l 交抛物线C 于不同的两点A ,B ,交直线4x =-于点E ,直线BF 交直线1x =-于点D .是否存在这样的直线l ,使得//DE AF ?若存在,求出直线l 的方程;若不存在,请说明理由.9.在平面直角坐标系Oxy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点(2,1)P -,求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.10.已知椭圆2222:1(0)x y E a b a b +=>>的离心率为2,且点(0,1)A 在椭圆E 上.(1)求椭圆E 的方程;(2)已知(0,2)P -,设点()00,B x y (00y ≠且01y ≠±)为椭圆E 上一点,点B 关于x 轴的对称点为C ,直线AB ,AC 分别交x 轴于点M ,N ,证明:OPM ONP ∠=∠.(O 为坐标原点)答案以及解析1.答案:(Ⅰ)121111(Ⅱ)5解析:(Ⅰ)设,sin )([0,2))M θθθ∈π是椭圆上任意一点,由(0,1)P ,知222221441144||12cos (1sin )1311sin 2sin 11sin 111111PM θθθθθ⎛⎫=+-=--=-+≤⎪⎝⎭,故||PM 的最大值是121111,即点P 到椭圆上点的距离的最大值为121111.(Ⅱ)易知直线AB 的斜率存在,设直线AB :12y kx =+,联立直线AB 与椭圆的方程,整理得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()11,A x y ,()22,B x y ,则122112kx x k +=-+,12231412x x k =-⎛⎫+ ⎪⎝⎭.直线PA 的方程为1111y y x x -=+,代入132y x =-+,整理得111114422(21)1C x x x x y k x ==+-+-.同理可得,222224422(21)1D x x x x y k x ==+-+-,则||C D CD x =-224(21)1x k x =-+-===352=655=655=341654531k k ⨯+≥+=,当且仅当3|4|4k =,即3||16k =时等号成立,所以当3||16k =时,||CD2.答案:(1)()1,2--(2)174解析:本题考查双曲线的方程、直线与双曲线的综合应用.(1)依题意,双曲线C的离心率c e a ==,则222b a =,故双曲线C 的方程为222220x y a --=.联立222220,1,x y a y x ⎧--=⎨=-⎩得222210x x a +--=,且Δ0>.设()()1122,,,A x y B x y ,则212122,21x x x x a +=-=--.设线段AB 的中点为(),E x y '',故1x '=-,将1x '=-代入直线:1l y x =-,得2y '=-,故线段AB 的中点坐标为()1,2--.(2)依题意,1a =,则双曲线C 的方程为2212y x -=.直线()00002:x l y y x x y '-=-,又点()00,D x y 在双曲线C 上,所以220012y x -=,故直线l '的方程为0012y yx x -=.由题可知,点,,O P Q 均不重合,由||||||RO RP RQ ==易知(,)R m n 为OPQ V 的外心,设()()3344,,,P x y Q x y ,330y -=,即33440y y =+=,即44y =.线段OP的垂直平分线的方程为3322y x y x -=-,线段OQ 的垂直平分线的方程为442()222y x y x -=-.联立33442),222222y x y x y x y x ⎧-=--⎪⎪⎨⎪-=-⎪⎩得()()34343,4.8x m x x y n x x ⎧==+⎪⎪⎨⎪==-⎪⎩联立330303,1,2y y y x x ⎧=⎪⎨-=⎪⎩解得3x =同理4x =.故0340220222x x x x y x +=+==-,034022002x x y x -===-故())34034033423,,4m x x x n x x y ⎧=+=⎪⎪⎨⎪=-=⎪⎩解得002,34,3x m y n ⎧=⎪⎪⎨⎪=⎪⎩代入方程220012y x -=,得2248199m n -=,即22924m n -=,则22220017224m x n y +--=.3.答案:(Ⅰ)2214x y +=(Ⅱ)-4解析:(Ⅰ)依题意可知22212b c a b c =⎧⎪=⎨⎪=+⎩,得21a b c ⎧=⎪=⎨⎪=⎩,故椭圆E 的方程为2214x y +=.(Ⅱ)由题可知直线BC 的方程为1(2)y k x -=+,设11(,)B x y ,()22,C x y ,联立直线BC 和椭圆E 的方程,得221(2)14y k x x y -=+⎧⎪⎨+=⎪⎩,整理得()()22224116816160k x k k x k k +++++=,212216841k k x x k +∴+=-+,2122161641k kx x k +=+,由0∆>得0k <,易知直线AB 的斜率111AB y k x -=,直线AB 的方程为1111y y x x -=+,令0y =,可得点M 的横坐标111M x x y =-,同理可得点N 的横坐标221N xx y =-.()()12121212||1122x x x x MN y y k x k x ∴=-=----+-+()()()21122121121222112224x x x x x x k x x k x x x x +-+⎛⎫=-=⋅⎪+++++⎝⎭1k =1k =1k=2==,得4k =-.故k 的值为-4.4.答案:(1)22134x y +=;(2)直线HN 过定点(0,2)-解析:(1) 椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过(0,2)A -,∴可设椭圆E 的方程为22214x y a +=,又椭圆E 过3,12B ⎛⎫- ⎪⎝⎭,291144a ∴+=,得23a =,∴E 的方程为22134x y +=.(2)当直线MN 的斜率不存在时,:1MN l x =,由221134x x y =⎧⎪⎨+=⎪⎩,得283y =,y ∴=结合题意可知1,M ⎛⎫⎝,N⎛⎝,∴过M 且平行于x 轴的直线的方程为y =.易知点T 的横坐标30,2T x ⎡⎤∈⎢⎥⎣⎦,直线AB 的方程为1(2)(2)(0)302y x -----=⨯--即223y x =-,由223y y x ⎧=⎪⎪⎨⎪=-⎪⎩,得3T x =,3T ⎛∴- ⎝.MT TH =,5H ⎛⎫∴- ⎝,:1)HNl y x =-,即2y =-.当直线MN 的斜率存在时,如图,设()11,M x y ,()22,N x y ,:(2)MN l y kx m k m =++=-.由22134y kx mx y =+⎧⎪⎨+=⎪⎩,得()2223463120k x kmx m +++-=,0∆>,122634km x x k ∴+=-+,212231234m x x k -=+.过M 且平行于x 轴的直线的方程为1y y =,与直线AB 的方程联立,得1223y y y x =⎧⎪⎨=-⎪⎩,得()1322T y x +=,()1132,2y T y +⎛⎫∴ ⎪⎝⎭.MT TH =,()11136,H y x y ∴+-,()1222112:36HN y y l y y x x y x x --=-+--,即1212221121123636y y y y y x y x y x x y x x --=+-+--+--.令0x =,得()122211236y y x y y y x x -=-+--()()12211221213663x y x y y y y x x y -+++=-+++()()()12211221212236633x y x y y y y x x y y y -+++=-++++-.()()()222212121212212434k m y y kx m kx m k x x mk x x m k -+=++=+++=+ ,()()()12121228234my y kx m kx m k x x m k +=+++=++=+,()()1221122112122242()34kx y x y x kx m x kx m kx x m x x k -+=+++=++=+,()221221122224361233434k k m x y x y y y k k -+∴-++=+++()2222224323612243434k k k m k k k ----++==++,()()1212226246363434km mx x y y k k -++++=++++()2222123261824243434k k km k m k k --+++==++,()()222222243263421232334k k y k y k k y k ---++∴==----+,∴直线HN 过定点(0,2)-.综上,直线HN 过定点(0,2)-.5、(1)答案:2213y x -=解析:由题意得224a b +=,ba=解得1a =,b =,所以双曲线C 的方程为2213y x -=.(2)答案:见解析解析:设直线PQ 的方程为y kx b =+,由题意知k >由2233y kx b x y =+⎧⎨-=⎩得()2223230k x kbx b ----=.0∆>,故2230b k +->,故12223kbx x k+=-,212233b x x k +=--,12x x -=-.设(),M MM x y ,则)11M M y y x x -=-,)22M M y y x x -=-,于是)1212M y y x x -=-+,())12122M y y y x x -+=-.因为()()()121212y y kx b kx b k x x -=+-+=-,()()()1212122y y kx b kx b k x x b +=+++=++,所以())1212M k x x x x =-++,())121222M y k x x x x b =++-+.因此23M k b k kb x k -+=-,2333M M b k b y x k k -+==-.因此点M 的轨迹方程为3y x k=.选择①②作为条件,证明③成立.由//PQ AB 可得直线AB 的方程为(2)y k x =-.点M 的坐标满足(2)3y k x y x k =-⎧⎪⎨=⎪⎩,解得2223M k x k =-,263M k y k =-.设(),A A A x y ,(),B B B x y ,0A y >,0By <.由(2)y k x y =-⎧⎪⎨=⎪⎩,解得A x=,A y =.同理可得B x=,B y =.于是2A B M x x x +=,2ABM y y y +=.因此点M 为AB 的中点,即||||MA MB =.选择①③作为条件,证明②成立.当直线AB 的斜率不存在时,点M 与点(2,0)F 重合,此时点M 不在直线3y x k=上,矛盾.当直线AB 的斜率存在时,设直线AB 的方程为(2)(0)y m x m =-≠,(),A A A x y ,(),B B B x y ,0A y >,0B y <.由(2)y m x y =-⎧⎪⎨=⎪⎩,解得A x =A y =.同理可得B x =B y =于是22223A B M x x m x m +==-,2623A B A y y my m +==-.因为点M 在直线3y x k =上,所以2362m m k=⋅,即k m =.因此//PQ AB .选择②③作为条件,证明①成立.由//PQ AB 可得直线AB 的方程为(2)y k x =-,设(),A A A x y ,(),B B B x y ,0A y >,0B y <.由(2)y k x y =-⎧⎪⎨=⎪⎩,解得A x =,A y =.同理可得B x =,B y =.设AB 的中点为(),N N N x y ,则22223A B N x x k x k +==-,2623A B N y y ky k +==-.因为||||MA MB =,所以点M 在AB 的垂直平分线上,即M 在直线()1N N y y x x k-=--上.由()13N N y y x x k y x k ⎧-=--⎪⎪⎨⎪=⎪⎩,得2223M N k x x k ==-,263M N k y y k ==-,即M 恰为AB 的中点.因此点M 在直线AB 上.6.答案:(1)2214x y +=;(2)是定值,43.解析:解:(1)由已知,A ,B 的坐标分别是(,0)A a ,(0,)B b -,由于ABC △的面积为3,1(2)32b a ∴+=①,又由32c e a ===,化简得2a b =②,①②两式联立解得:1b =或3b =-(舍去),2a ∴=,1b =,∴椭圆方程为2214x y +=;(2)设直线PQ 的方程为2y kx =+,P ,Q 的坐标分别为()11,P x y ,()22,Q x y 则直线BP 的方程为1111y y x x +=-,令0y =,得点M 的横坐标111M xx y =+,直线BQ 的方程为2211y y x x +=-,令0y =,得点N 的横坐标221N xx y =+,()()()()121212121133M N x x x x x x y y kx kx ∴⋅==++++()122121239x x k x x k x x =+++,把直线2y kx =+代入椭圆2214x y +=得()221416120k x kx +++=,由韦达定理得1221214x x k =+,1221614kx x k +=-+22222222121241412481248936391414M N k x x k k k k k k k +∴===-++-+++,是定值.7、(1)答案:-1解析:由题设得224111a a -=-,解得22a =.所以C 的方程为2212x y -=.设l 的斜率为k ,()11,P x y ,()22,Q x y .当2212x x =时,0AP AQ k k +≠.由221122221,21,2x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩得()2222212102x x y y ---=,故()212121212y y x x k x x y y -+==-+.由0AP AQ k k +=得121211022y y x x --+=--,即()()12211212420x y x y x x y y ++-+-+=.①由221112x y -=得()222112102x y ---=,即()111112221y x x y -+=-+.同理可得()222212221y x x y -+=-+.由0AP AQ k k +=得()()12122202121x x y y +++=++,即()12211212420x y x y x x y y ++++++=.②由①②得()121220x x y y +++=.因此l 的斜率为-1.(2)答案:1629解析:由题意,不妨设AP 的倾斜角为α,且0,2απ⎛⎫∈ ⎪⎝⎭,则PAQ ∠为2απ-.C 的渐近线的斜率为22±,由tan PAQ ∠=22tan 1tan αα=--,得tan α=,所以AP k =AQ k =.直线AP的方程为12)y x -=-,代入2212x y -=得2)316200x x +-+-=,所以12023x -=,14||23AP =-=.直线AQ的方程为12)y x -=-,代入2212x y -=得2316)200x x -+++=,所以2208223x +=,24||23AQ =-=+.又易知22sin 3PAQ ∠=,所以PAQ △的面积为1||||sin 29AP AQ PAQ ⨯⨯⨯∠=.8.答案:(1)28y x =,准线方程为2x =-(2)存在这样的直线l ,使得//DE AF ,直线l 的方程为221)3y x =+或221)3y x =-+解析:(1)因为横坐标为1的点到焦点的距离为3,所以132p+=,解得4p =,所以28y x =,所以准线方程为2x =-.(2)显然直线l 的斜率存在,设直线l 的方程为(1)(0)y k x k =+≠,()11,A x y ,()22,B x y .由28,(1)y x y k x ⎧=⎨=+⎩消去y ,得()2222280k x k x k +-⋅+=.令()2242840k k ∆=-->,解得k <<.所以k <<且0k ≠.由根与系数的关系得212282k x x k -+=,121x x =.解法一:直线BF 的方程为22(2)2y y x x =--,又1D x =-,所以2232D y y x -=-,所以2231,2y D x ⎛⎫-- ⎪-⎝⎭,因为//DE AF ,所以直线DE 与直线AF 的斜率相等.又(4,3)E k --,所以221133232y k x yx -+-=--.整理得121222y y k x x =+--,即()()12121122k x k x k x x ++=+--,化简得121211122x x x x ++=+--,()()1212121224124x x x x x x x x -+-=-++,即127x x +=.所以22827k k-=,整理得289k =,解得223k =±.经检验,223k =±符合题意.所以存在这样的直线l ,使得//DE AF ,直线l的方程为1)y x =+或1)y x =+.解法二:因为//DE AF ,所以||||||||BA BF BE BD =,所以21222241x x x x x --=++.整理得()12128x x x x ++=,即22827k k -=,整理得289k =.解得223k =±,经检验,223k =±符合题意.所以存在这样的直线l ,使得//DE AF ,直线l 的方程为221)3y x =+或221)3y x =-+.9.答案:(1)当0x ≥时,点M 的轨迹C 的方程为24y x =,当0x <时,点M 的轨迹C 的方程为0y =(2)当1(,1),{0}2k ⎛⎫∈-∞-+∞ ⎪⎝⎭时,直线l 与轨迹C 恰好有一个公共点;当11,01,22k ⎡⎫⎧⎫∈--⎨⎬⎪⎢⎣⎭⎩⎭ 时,直线l 与轨迹C 恰好有两个公共点;当111,0,22k ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭ 时,直线l 与轨迹C 恰好有三个公共点解析:(1)设点(,)M x y ,依题意,得||||1MF x =+||1x =+,化简并整理,得22(||)y x x =+.故当0x ≥时,点M 的轨迹C 的方程为24y x =,当0x <时,点M 的轨迹C 的方程为0y =.(2)记21:4(0)C y x x =≥,22:0(0)C y x =<,依题意,可知直线l 的方程为1(2)y k x -=+.联立21(2),4y k x y x-=+⎧⎨=⎩可得244(21)0ky y k -++=.①(ⅰ)当0k =时,1y =.把1y =代入轨迹C 的方程,得14x =.故此时直线:1l y =与轨迹C 恰好有一个公共点1,14⎛⎫⎪⎝⎭.(ⅱ)当0k ≠时,方程①的判别式()21621k k ∆=-⨯+-.②设直线l 与x 轴的交点为()0,0x ,则021k x k+=-.③若00,0,x ∆<⎧⎨<⎩由②③解得1k <-或12k >,即当1(,1),2k ⎛⎫∈-∞-+∞ ⎪⎝⎭时,直线l 与1C 没有公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.若00,0x ∆=⎧⎨<⎩或00,0,x ≥∆>⎧⎨⎩由②③解得1k =-或12k =或102k -≤<,即当11,2k ⎧⎫∈-⎨⎬⎩⎭时,直线l 与1C 有一个公共点,与2C 有一个公共点;当1,02k ⎡⎫∈-⎪⎢⎣⎭时,直线l 与1C 有两个公共点,与2C 没有公共点.故当11,01,22k ⎡⎫⎧⎫∈--⎨⎬⎪⎢⎣⎭⎩⎭时,直线l 与轨迹C 恰好有两个公共点.若00,0,x ∆>⎧⎨<⎩由②③解得112k -<<-或0k <12<,即当111,0,22k ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭ 时,直线l 与1C 有两个公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综合(ⅰ)(ⅱ)可知,当1(,1),{0}2k ⎛⎫∈-∞-+∞ ⎪⎝⎭时,直线l 与轨迹C 恰好有一个公共点;当11,01,22k ⎡⎫⎧⎫∈--⎨⎬⎪⎢⎣⎭⎩⎭时,直线l 与轨迹C 恰好有两个公共点;当111,0,22k ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭ 时,直线l 与轨迹C 恰好有三个公共点.10.答案:(1)2214x y +=(2)见解析解析:(1)由已知得1b =,32c a=,又222a b c =+ ,24a ∴=.∴椭圆E 的方程为2214x y +=.(2)证明: 点B 关于x 轴的对称点为C ,()00,C x y ∴-,∴直线AC 的方程为011y y x x +=-+.令0y =,得00,01x N y ⎛⎫⎪+⎝⎭.直线AB 的方程为0011y y x x -=+,令0y =,得00,01x M y ⎛⎫ ⎪-⎝⎭.20002000||||111x x x ON OM y y y ∴⋅=⋅=+--. 点()00,B x y 在椭圆2214x y +=上,220014x y ∴+=,即20241x y =-,2||||4||OM ON OP ∴⋅==,即||||||||OM OP OP ON =,又POM NOP ∠=∠, Rt Rt OPM ONP ∴ △△,OPM ONP ∴∠=∠.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何高考强化训练1.[江苏海头高级中学2008~2009学年度高三数学模拟练习第3题]已知光线通过点(2,3)A ,经直线10x y ++=反射,其反射光线通过点()1,1B ,入射光线所在直线的方程为 。

2.[浙江省富阳新中2008(上)高三期中考试数学(理科)试卷第8题]3.[浙江省富阳新中2008(上)高三期中考试数学(理科)试卷第16题]过点)2,1(M 的直线l 将圆:22(2)9x y -+=分成两段弧,当其中的劣弧最短时, 直线l 的方程为 _____ __ 。

4.[福建省政和二中2009届高三数学第四次月考试卷第5题]过点(1,1)的直线与圆22(2)(3)9x y -+-=相交于A 、B 两点,则|AB|的最小值为:A 、、4 C 、、55.[2009年普通高等学校招生全国统一考试福建省数学文科参考样卷第11题]已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为A.106B.206C.306D.4066. [安徽凤阳中学2009届高三第四次月考理科数学试卷第14题]已知圆O 的半径为18,P 为圆外一点,P 与圆上各点连线的最大距离为38,则点P 到圆O 的切线长是 ___________________.7.[山东省青岛市2007-2008学年度第一学期高三期末考试数学试题(理科)第7题]8.[辽宁省沈阳二中2008—2009学年上学期高三期中考试数学试题(理科)第10题]设集合},,,0|),{(},,,1)1)(,{(22R y x c y x y x N R y x y x y x M ∈≥-+=∈=++=则使得的M N M = c 的取值范围是( )A .)+∞--,12[B .]12,(---∞C .],12[+∞+D .]12,(+--∞9. [福州三中2008——2009学年度高三(理科)数学月考试卷第3题]已知抛物线px y 22=上点),2(m A 到原点的距离等于到它准线距离,则p 的值是( ) A .2 B .4 C .8 D .1610.[福建省政和二中2009届高三数学第四次月考试卷第15题]在抛物线24y x =上求一点,使该点到直线45y x =-的距离为最短,该点的坐标是 .11、[江苏海头高级中学2008~2009学年度高三数学模拟练习第12题]设F 为抛物线24y x =的焦点,A BC ,,为该抛物线上三点,若FA FB FC ++=0,则F A F B F C ++=。

12.[福州三中2008——2009学年度高三(理科)数学月考试卷第10题]已知P 为椭圆192522=+yx上动点,F 为椭圆的右焦点,点A 的坐标为)1,3(,则||||PA PF +的最小值为( ) A .210+ B .210- C .2510+ D .2510-13.[辽宁省沈阳二中2008—2009学年上学期高三期中考试数学试题(理科)第9题]双曲线12222=-by ax 的左焦点为F 1,顶点为A 1,A 2,P 是该双曲线右支上任意一点,则分别以线段PF 1,A 1A 2的直径的两圆一定( )A .相交B .内切C .外切D .相离14.[辽宁省沈阳二中2008—2009学年上学期高三期中考试数学试题(理科)第14题]已知4)21(:),0,21(22=+--yx F B A 是圆(F 为圆心)上一动点,线段AB 的垂直平分线交于BF 于P ,则动点P 的轨迹方程为 .15.[2008学年广东省中山市一中高三年级第一次统测试题理科数学第8题]已知点(3,0)M -,(3,0)N ,(1,0)B ,动圆C 与直线M N 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为A .221(1)8yx x -=<- B .221(1)8yx x -=>C .1822=+yx (x > 0) D .221(1)10yx x -=>16.[安徽凤阳中学2009届高三第四次月考理科数学试卷第11题]已知椭圆12222=+by ax 的左、右焦点分别为F 1、F 2,且|F 1F 2|=2c ,点A 在椭圆上,0211=⋅F F AF ,221c AF AF =⋅,则椭圆的离心率e =( )A .33 B .213- C .215- D .2217. [江苏省盐城市田家炳中学09届高三数学12月综合练习第16题]已知平面区域00240x y x y ≥⎧⎪≥⎨⎪+-≤⎩恰好被面积最小的圆222:()()C x a y b r -+-=及其内部所覆盖.(1)试求圆C 的方程.(2)若斜率为1的直线l 与圆C 交于不同两点,.A B 满足C A C B ⊥,求直线l 的方程.18.[山东省潍坊市2007—2008学年度高三第一学期期末考试数学试题(理科)第21题](本小题满分12分)已知椭圆)0(12222>>=+b a by ax 的两个焦点为F 1,F 2,椭圆上一点M )33,362(满足.021=⋅MF MF(1)求椭圆的方程; (2)若直线L :y=2+kx 与椭圆恒有不同交点A 、B ,且1>⋅OB OA (O 为坐标原点),求k 的范围。

19.[2008学年广东省中山市一中高三年级第一次统测试题理科数学第19题](本小题满分14分)已知动圆过定点()1,0A ,且与直线1x =-相切. (1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1)B ,并与轨迹C 交于,P Q 两点,且满足0O P O Q ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.20.[2009年普通高等学校招生全国统一考试福建省数学理科参考样卷第20题] (本小题满分14分)以F 1(0,-1),F 2(0,1)为焦点的椭圆C 过点P (2,1).(Ⅰ)求椭圆C 的方程; (Ⅱ)过点S (13-,0)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以AB 为直径的圆恒过点T ? 若存在,求出点T 的坐标;若不存在,请说明理由.21.[辽宁省沈阳二中2008—2009学年上学期高三期中考试数学试题(理科)第22题](本题满分14分)已知函数.2)1()(+=x x f(1)当x x f m x ≤-≤≤)3(,1为等式时恒成立,求实数m 的最大值; (2)在曲线)(t x f y +=上存在两点关于直线x y =对称,求t 的取值范围; (3)在直线)(,41t x f y P P y +=-=作曲线过点上取一点的两条切线l 1、l 2,求证:l 1⊥l 2参考答案1. 0245=+-y x 2.C 3. x-2y+3=0 4.B 5.B 6. 192 7.B 8.B 9.C 10.(0.5 ,1) 11.6 12.D 13.B 14.13422=+yx 15.B 16.C17. [江苏省盐城市田家炳中学09届高三数学12月综合练习第16题]解:(1)由题意知此平面区域表示的是以(0,0),(4,0),(0,2)O P Q 构成的三角形及其内部, 且△OPQ 是直角三角形,所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),, 所以圆C 的方程是22(2)(1)5x y -+-=.(2)设直线l 的方程是:y x b =+.因为C A C B ⊥ ,所以圆心C 到直线l 2,即2=解得:1b =-±所以直线l 的方程是:1y x =-±.18.[山东省潍坊市2007—2008学年度高三第一学期期末考试数学试题(理科)第21题] 解:(1)设F 1(-c,0),F 2(c ,0))33,362(1---=c MF)33,362(2--=c MF021=⋅MF MF0)33()362(222=++-∴c32=∴c……………………………………………………2分322=-∴b a ①又点M 在椭圆上1313822=+∴ba②由①代入②得1)3(313822=-+a a整理为:08624=+-a a4222==∴a a 或32>a 1,422==∴ba…………………………4分∴椭圆方程为1422=+yx…………………………5分(2)由0122)41(,2142222=+++⎪⎩⎪⎨⎧+==+kx x k y kx y y x 解得消去………………7分 设),(),,(2211y x B y x A则)2)(2(21212121+++=+=⋅kx kx x x y y x x OB OA141462)(2)1(2221212>+-=++++=kk x x k x x k ………………10分,41041,85222>>-=∆<∴kk k 得又由,85412<<∴k)410,21()21,410(-∈∴k ……………………12分19.[2008学年广东省中山市一中高三年级第一次统测试题理科数学第19题] (本小题满分14分) 解:(1)设M 为动圆圆心,由题意知:||M A =M 到定直线1x =-的距离, 由抛物线的定义知,点M 的轨迹为抛物线,其中(1,0)A 为焦点,1x =-为准线, ∴ 动圆的圆心M 的轨迹C 的方程为:24y x = ………………………5分(2)由题意可设直线l 的方程为(1)(0)x k y k =-≠,由2(1)4x k y y x=-⎧⎨=⎩ 得 2440y ky k -+= 216160k k ∴∆=-> ⇒ 1k >或0k < ………………………7分且124y y k +=,124y y k = …………………………………9分由0O P O Q ⋅=⇒ 12120x x y y += …………………………………………11分⇒21212(1)(1)0k y y y y --+=⇒2221212(1)()0k y y k y y k +-++=⇒2224(1)40k k k k k +-⋅+=⇒4k =-或0k =(舍去) …………………13分又40k =-<,所以直线l 存在,其方程为:440x y +-= ………………14分20.[2009年普通高等学校招生全国统一考试福建省数学理科参考样卷第20题]本题主要考查直线、圆、椭圆等基础知识,考查运算求解能力、探究能力、分析问题和解决问题的能力.满分14分. 解法一:(Ⅰ)设椭圆方程为22221y x ab+=(a>b>0),由已知c =1,又2a==所以a=2=a 2-c 2=1,椭圆C 的方程是x 2+22y=1.(Ⅱ)若直线l 与x 轴重合,则以AB 为直径的圆是x 2+y 2=1,若直线l 垂直于x 轴,则以AB 为直径的圆是(x +13)2+y 2=169.由22221,116(),39x y x y ⎧+=⎪⎨++=⎪⎩解得1,0.x y =⎧⎨=⎩即两圆相切于点(1,0). 因此所求的点T 如果存在,只能是(1,0). 事实上,点T (1,0)就是所求的点.证明如下:当直线l 垂直于x 轴时,以AB 为直径的圆过点T (1,0).若直线l 不垂直于x 轴,可设直线l :y =k (x +13).由221(),31.2y k x y x ⎧=+⎪⎪⎨⎪+=⎪⎩即(k 2+2)x 2+23k 2x +19k 2-2=0. 记点A (x 1,y 1),B (x 2,y 2),则2122212223,2129.2kx x k k x x k ⎧-⎪+=⎪⎪+⎨⎪-⎪=⎪+⎩又因为TA =(x 1-1, y 1), TB=(x 2-1, y 2),TA ·TB =(x 1-1)(x 2-1)+y 1y 2=(x 1-1)(x 2-1)+k 2(x 1+13)(x 2+13)=(k 2+1)x 1x 2+(13k 2-1)(x 1+x 2)+19k 2+1 =(k 2+1) 221292k k -++(13k 2-1) 22232kk -++ 219k +1=0,所以TA ⊥TB ,即以AB 为直径的圆恒过点T (1,0). 所以在坐标平面上存在一个定点T (1,0)满足条件.解法二:(Ⅰ)由已知c =1,设椭圆C 的方程是222211y xaa +=-(a>1).因为点P 在椭圆C 上,所以2211211aa +=-,解得a 2=2, 所以椭圆C 的方程是:2212yx +=.(Ⅱ)假设存在定点T (u ,v )满足条件. 同解法一得(k 2+2)x 2+23k 2x +19k 2-2=0.记点A (x 1,y 1),B (x 2,y 2),则2122212223,2129.2kx x k k x x k ⎧-⎪+=⎪⎪+⎨⎪-⎪=⎪+⎩又因为TA =(x 1-u , y 1-v ), TB =(x 2-u , y 2-v ),及y 1=k (x 1+13),y 2=k (x 2+13).所以TA ·TB=(x 1-u )(x 2-u )+(y 1-v )(y 2-v )=(k 2+1)x 1x 2+(13k 2-u -kv )(x 1+x 2)+19k 2-23k v +u 2+v 2=(k 2+1) 221292k k -++(13k 2-u -kv )·22232kk -++ 219k -23k v + u 2+v 2,=222222(3235)46663(2)u u v k vk u v k ++--++-+.当且仅当TA ·TB=0恒成立时,以AB 为直径的圆恒过点T .TA ·TB =0恒成立等价于222232350,40,6660.u u v v u v ⎧++-=⎪-=⎨⎪+-=⎩解得u =1,v =0.此时,以AB 为直径的圆恒过定点T (1,0).当直线l 垂直于x 轴时,以AB 为直径的圆22116()39x y ++=亦过点T (1,0).所以在坐标平面上存在一个定点T (1,O)满足条件. 解法三:(Ⅰ)同解法一或解法二.(Ⅱ)设坐标平面上存在一个定点T 满足条件,根据直线过x 轴上的定点S 及椭圆的对称性,所求的点T如果存在,只能在x 轴上,设T(t ,O). 同解法一得2122212223,2129.2kx x k k x x k ⎧-⎪+=⎪⎪+⎨⎪-⎪=⎪+⎩又因为TA =(x 1-t , y 1), TB=(x 2-t , y 2),所以TA ·TB =(x 1-t )(x 2-t )+y 1y 2=(x 1-t )(x 2-t )+k 2(x 1+13)(x 2+13)=(k 2+1)x 1x 2+(13k 2-t)(x 1+x 2)+19k 2+t 2 =(k 2+1) 221292k k -++(13k 2-t )22232kk -++219k +t 2=2222(325)663(2)t t k t k +-+-+.当且仅当TA ·TB=O 恒成立时,以AB 为直径的圆恒过点T .TA ·TB =O 恒成立等价于223250,660.t t t ⎧+-=⎨-=⎩解得t =1. 所以当t =1时,以AB 为直径的圆恒过点T .当直线l 垂直于x 轴时,以AB 为直径的圆22116()39x y ++=亦过点T (1,O).所以在坐标平面上存在一个定点T (1,O)满足条件.21.[辽宁省沈阳二中2008—2009学年上学期高三期中考试数学试题(理科)第22题](本题满分14分) 解:(1)直线y=x 与曲线)3(-=x f y 的交点可由045)2(22=+-⇒⎩⎨⎧-==x x x y x y 求得交点为(1,1)和(4,4),此时)3(-=x f y 在区间[1,4]上图象在直线y=x 的下面,即x x f ≤-)3(恒成立,所以m 的最大值为4。

相关文档
最新文档