华师大版七年级上第3章《整式的加减》检测题(含答案)
华东师大版七年级数学上册《第三章整式的加减》单元检测卷-带答案
华东师大版七年级数学上册《第三章整式的加减》单元检测卷-带答案一、单选题1.一列火车长m 米,以每秒v 米的速度通过一个长为n 米的隧道,用式子表示它刚好从开始进隧道口到全部通过隧道所需的时间为( )秒.A .n vB .m n v +C .2m n v +D .n m v- 2.若221m m +=,则2483m m +-的值是( )A .4B .3C .2D .13.下列各式:15- 22a b 112x - -251x 2x y - 222a ab b -+.其中单项式的个数有( ) A .4个 B .3个 C .2个 D .1个4.若8m x y 与36n x y 的和是单项式,则m n +的值为( )A .4B .8C .4-D .8-5.若关于x 的多项式226723x x mx -++不含x 的二次项,则m =( )A .2B .2-C .3D .3-6.下列合并同类项正确的是( )A .336x y xy =+B .2222m n m n m n -=C .22752x x -=D .459ab ab =+7.下列计算正确是( )A .()x y z x y z ----=B .()x y z x y z -----+=C .3)33(x y z x z y --+=+D .()()a b c d a c d b ------=+++ 二、填空题 8.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m 张成人票和n 张儿童票,则共需花费________元.9.一个长方形的长、宽分别是34x -和x ,它的面积等于________.10.已知221x x +=-,则代数式()52x x ++的值为________.11.如图所示是一个设计好的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是________.12.在下列式子中:23b 32xy + 2,3xy 5ab x - a b π+ ()23xy π+多项式有________个. 13.把多项式22354xy x y y -+按字母x 降幂顺序排列为:________.14.将多项式22332356xy x x y -+-按v 的升幂排列:________.15.如果32x y a b 与21y x a b +-是同类项,则代数式52x y -的值是________.三、计算题16.先化简,再求值()2222332232x y xy xy x y ⎛⎫----+- ⎪⎝⎭,其中122x y =-=-.四、综合题17.数学老师给出这样一个题:22=2x x --+□△.(1)若“□”与“△”相等,求“△”(用含的代数式表示);(2)若“□”为2326x x -+,当1x =时,请你求出“△”的值.参考答案与解析一、1.【答案】B【解析】解:根据“通过桥洞所需的时间为=(桥洞长+车长)÷车速”求解即可. 根据分析知:火车通过桥洞所需的时间为m n v +秒. 故答案为:B .2.【答案】D【解析】把所求代数式2483m m +-变形为()2423m m +-,然后把条件整体代入求值即可.解:221m m += 2483m m ∴+-()2423m m =+-413=⨯-1=.故答案为:D .3.【答案】B【解析】由一个数字与一个字母的积或一个字母与一个字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式),据此得出单项式的个数。
华东师大版七年级数学第三章整式的加减单元检测试题(含答案)
精品基础教育教学资料,仅供参考,需要可下载使用!七年级数学第三章整式的加减单元检测试题姓名:__________ 班级:__________一、单选题(共10题;共30分)1.李华每分钟走a m,张明每分钟走b m,2分钟后,他们一共走了()A. 2(a-b)mB. 2(a+b)mC. 2ab mD. m2.一个两位数,个位上的数字是a,十位上的数字是b,用代数式表示这个两位数是()A. aB. baC. 10a+bD. 10b+a3.若x=-3,y=1,则代数式2x-3y+1的值为( )A. -10B. -8 C. 4 D. 104.若a3x b y与﹣2a2y b x+1是同类项,则x+y=()A. 1B. -1C. -5D. 55.现定义两种运算“⊕”“*”.对于任意两个整数,a⊕b=a+b-1,a*b=a×b-1,则(6⊕8)*(3⊕5)的结果是()A. 60B. 90C. 112D. 696.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A. ﹣3B. 0C. 3D. 67.规定:正整数n的“H运算”是:①当n为奇数时,H=3n+13;②当n为偶数时,H=n×0.5×0.5…(连续乘以0.5,一直算到H为奇数止).如:数3经过“H运算”的结果是22,经过2次“H运算”的结果为11,经过三次“H运算”的结果为46,那么257经2017次“H运算”得到的结果是()A. 161B. 1C. 16D. 以上答案均不正确8.观察下面的一列单项式::-x、2x2、-4x3、8x4、-16x5、…根据其中的规律,得出的第10个单项式是()A. -29x10B. 29x10C. -29x9D. 29x99.1×2+2×3+3×4+…+99×100=()A. 223300B. 333300C. 443300D. 43330 010.若|n+2|+|m+8|=0,则n﹣m等于()A. 6B. ﹣10C. ﹣6 D. 10二、填空题(共8题;共9分)11.出租车收费标准为:起步价10元(不超过3千米收费10元),3千米后每千米1.4元(不足1千米按1千米算)、小明坐车x(x是大于3的整数)千米,应付车费________元(化简).12.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是________.13.已知:x-2y=-3,则代数式-2x+4y+7的值为________ 。
华东师大版数学-七年级上册-第三章-整式的加减-巩固练习(含答案)
华东师大版数学-七年级上册-第三章-整式的加减-巩固练习一、单选题1.某超市进了一批商品,每件进价为a元,若要获利25%,则每件商品的零售价应定为()A.25%a元B.(1-25%)a元C.(1+25%)a元D.元2.下列代数式中,不是单项式的是()A. B. - C.t D.3a2b3.设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有()个.A.50B.90C.99D.1004.定义一种运算☆,其规则为,根据这个规则,计算的值是().A. B. C.5 D.65.下列各组中的两项是同类项的是().A.ab和abcB.a和a3C.5x2y和-2xy2D. -3xy和3yx6.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是()A.米B.(+1)米C.(+1)米D.(+1)米7.已知,则代数式的值为()A.1B.C.D.8.下列各算式中,合并同类项正确的是()A.x2+x2=2x2B.x2+x2=x4C.2x2﹣x2=2D.2x2﹣x2=2x9.下列运算中,错误的是()A.3x4+5x4=8x4B.4x6﹣8x6=﹣4x6C.﹣3x3+5x3=2x3D.4x2﹣8x2=﹣4二、填空题10.已知=0,则7(x+y)﹣20的立方根是________.11.如图,按此规律,第6行最后一个数字是16,第________行最后一个数是88.12.若,则=________13.对于任意不相等的两个数a,b,定义一种运算如下:如,,那么=________.14.若则________.15.若单项式3ab m和﹣4a n b是同类项,则m+n=________16.当x=2时,多项式ax3+bx+3的值为5,则当x=-2时,ax3+bx+3的值为________.17.如图所示,图中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数是________.三、计算题18.先化简,再求值.(1)(4a+3a2)﹣3﹣3a3﹣(﹣a+4a3),其中a=﹣2;(2)3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=13.19.先化简,再求值2(3ab2﹣a3b)﹣3(2ab2﹣a3b),其中a=﹣,b=4.四、解答题20.已知式子:①a2-2ab+b2;②(a-b)2(1)当a= -3,b= 5时,分别求代数式①和②的值;(2)观察所求的两个式子的值,探索a2-2ab+b2和(a-b)2有何数量关系,并把探索的结果写出来;(3)利用你探索出的规律,求128.52-2×128.5×28.5+28.52的值.21.已知多项式A和B,A=(2m+1)x2+(4n﹣2)xy﹣3x,B=5x2﹣5mxy﹣1,当A 与B的差不含二次项时,求2(m+n)﹣4[mn+(m+n)]+3[2(m+n)﹣3mn]的值.五、综合题22.观察下列式子:2×4+1=32;4×6+1=52;6×8+1=72;….(1)请你以上规律写出第4个等式:________;(2)根据你发现的规律,请写出第n个等式________;(3)你认为(2)中所写的等式一定成立吗?并说明理由.23.远东二中分为初中部和高中部,两部分别在两个不同的操场上进行广播操,站队时,做到了整齐划一,初中部排成的是一个规范的长方形方阵,每排(3a﹣b)人,站有(3a+2b)排,高中部站的方阵更特别,排数和每排人数都是(2a+b)人.(1)试求该学校初中部比高中部多多少学生?(2)当a=10,b=2时,试求该学校初中部比高中部多多少学生?答案一、单选题1.【答案】C【解析】【分析】根据题意列等量关系式:售价=进价+利润.得解答时按等量关系直接求出售价.【解答】依题意得,售价=进价+利润=进价×(1+利润率),∴售价为(1+25%)a元.故选:C.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.注意售价、进价、利润、利润率之间的数量关系.2.【答案】A【解析】【解答】解:A、是分式,所以它不是单项式;符合题意;B、﹣是数字,是单项式;不符合题意;C、t是字母,所以它是单项式;不符合题意;D、3a2b是数字与字母的积的形式,所以它是单项式;不符合题意.故选A.【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.3.【答案】C【解析】【分析】由于9=10-1,99=100-1,…,所以n="9+99+999+…+"=10+102+103+…1099-99×1.然后据此等式求出n的值后,即能得出n的十进制表示中,数码1有多少个.【解答】n=9+99+999+…+=10+102+103+…1099-99×1,=1111111…10(99个1)-99,=11111…1011(99个1).所以在十进制表示中,数码1有99个.故答案为:C.根据式中数据的特点将式中的数据变为10的n次方相加的形式是完成本题的关键.4.【答案】A【解析】【解答】∵a☆b=,∴2☆3== ,故选A.【分析】由a☆b= + ,可得2☆3==,则可求得答案.5.【答案】D【解析】【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】A、字母不同的项不是同类项,故A错误;B、相同字母的指数不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同且相同字母的指数也相同,故D正确;故选:D.【点评】本题考查了同类项,利用了同类项的定义,注意同类项是字母相同且相同字母的指数也相同,与字母的位置无关6.【答案】B【解析】【分析】首先根据1米长的电线,称得它的质量为a克,则剩余电线的质量为b克的长度是米,根据题意可求得总长度。
华东师大版七年级上册数学 第3章 整式的加减 单元测试卷(含答案解析)
第 1 页 共 13页 华东师大版七年级上册数学 第3章 整式的加减 单元测试卷(满分120分;时间:120分钟)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 以下是代数式的是( )A.m =abB.(a +b)(a −b)=a 2−b 2C.a +1D.S =πR 22. a −b =5,那么3a +7+5b −6(a +13b)等于( ) A.−7B.−8C.−9D.103. 下列关于多项式ab −a 2b −1的说法中,正确的是( )A.该多项式的次数是2B.该多项式是三次三项式C.该多项式的常数项是1D.该多项式的二次项系数是−14. 当a =−1,b =1时,(a 3−b 3)−(a 3−3a 2b +3ab 2−b 3)的值是( )A.0B.6C.−6D.95. 小华的存款x 元,小林的存款比小华的一半还多2元,小林的存款是( )A.12x +2B.12(x +2)C.12x −2D.12(x −2)6. 有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x 米,那么窗框的面积是( )A.x(6−x)米2B.x(12−x)米2C.x(6−3x)米2D.x(6−32x)米2第 2 页 共 13页7. 笔记本的单价是m 元,钢笔的单价是n 元,甲买3本笔记本和2支钢笔,乙买4本笔记本和3支钢笔,买这些笔记本和钢笔,甲和乙一共花了多少元?( )A.5m +7nB.7m +5nC.6m +6nD.7n +5m8. 一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是( )A.3B.4C.5D.6 9. 把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个,…,按这种规律摆放,第五层的正方体的个数是( )A.10B.12C.15D.−20 10. 一个正整数N 的各位数字不全相等,且都不为0,现要将N 的各位数字重新排列,可得到一个最大数和一个最小数,此最大数与最小数的和记为N 的“和数”;此最大数与最小数的差记为N 的“差数”.例如,245的“和数”为542+245=787;245的“差数”为542−245=297.一个四位数M ,其中千位数字和百位数字均为a ,十位数字为1,个位数字为b (且a ≥1,b ≥1),若它的“和数”是6666,则M 的“差数”的值为( )A.3456或3996B.4356或3996C.3456或3699D.4356或3699二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 单项式−3πxy 25的系数和次数分别是________.12. 单项式−xy 25的系数与次数的积是________.。
第3章 整式的加减数学七年级上册-单元测试卷-华师大版(含答案)
第3章整式的加减数学七年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、若个数、、…、满足下列条件:,,,…,,则的值为()A. B. C. D.2、下列计算正确的是( )A.4a+2a=6a 2B.7ab-6ba=abC.4a+2b=6abD.5a-2a=33、下列各组式子中,是同类项的是()A. 与B. 与C. 与D.与4、若,则代数式的值为()A.-2B.2C.10D.145、下列各式计算正确的是()A.a+2a=3a 2B.(﹣a 3)2=a 6C.a 3a 2=a 6D.(a+b)2=a 2+b 26、已知x=2,则代数式-x2+5的值为()A.9B.1C.7D.37、下列各组单项式:-2a2b3与;-5与0;4a2b与2ab2;-3x2与xy;-m2n与32m2n;7ab2与-ab2c;是同类项的有( )A.1组B.2组C.3组D.4组8、下列各运算中,计算正确的是()A.(x﹣2) 2=x 2﹣4B.(3a 2) 3=9a 6C. =a+b D.3m﹣2m=m9、下列运算正确的是()A. B. C. D.10、已知代数式2a2﹣b=7,则﹣4a2+2b+10的值是()A.7B.4C.﹣4D.﹣711、若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是( )A.①②B.①③C.②③D.①②③12、下列各式中,计算结果为a6的是()A.a 3+a 3B.a 7﹣aC.a 2•a 3D.a 12÷a 613、下列计算正确的是()A.3a+4b=7abB.7a﹣3a=4C.3a+a=3a 2D.3a 2b﹣4a 2b=﹣a 2b14、已知代数式a﹣2b+7的值是13,那么代数式2a﹣4b的值是()A.6B.12C.15D.2615、已知:,则的值为()A.2B.C.4D.二、填空题(共10题,共计30分)16、已知多项式6x2+(1﹣2m)x+7m的值与m的取值无关,则x=________.17、比a的2倍大4的数与比a的二分之一小3的数的和为________.18、小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是________枚.19、已知:,,,,…,根据上面各式的规律,等式中口里应填的数是________.20、a表示一个三位数,b表示一个两位数,把a放在b的左边组成一个五位数,那么这个五位数用代数式表示为________.21、观察下列等式:,,,,…,根据你发现的规律,请写出第n个等式:________.22、下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位,对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前200位的所有数字之和是________.23、如图是有规律的一组图案,它们是由边长相同的正方形和正三角形镶嵌而成的.第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形……按此规律,第n个图案有________个三角形(用含n的代数式表示).24、若与是同类项,则的值为________.25、在有理数的原有运算法则中,我们补充定义一种新运算“★”如下:a★b=(a+b)(a ﹣b),例如:5★3=(5+3)×(5﹣3)=8×2=16,下面给出了关于这种新运算的几个结论:① 3★(﹣2)=5;②a★b=b★a;③若b=0,则a★b=a2;④若a★b=0,则a=b.其中正确结论的有________;(只填序号)三、解答题(共5题,共计25分)26、先化简,再求值:(a2b-ab)-2(a2b-ba),其中a=-3,b=2。
(夺分金卷)华师大版七年级上册数学第3章 整式的加减含答案
华师大版七年级上册数学第3章整式的加减含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A.a 3+a 3=a 6B.2x+3y=5xyC.a 3•a=a 4D.(2a 2)3=6a 52、下列运算正确是()A. B. C. D.3、下列等式成立的是()A.2 ﹣1=﹣2B.(a 2)3=a 5C.a 6÷a 3=a 2D.﹣2(x﹣1)=﹣2x+24、化简多项式:a-(-b+c)正确的是()A.a+b+cB.a-b+cC.a+b-cD.a-b-c5、下列运算正确的是()A. B. C. D.6、下列计算正确的是()A.3a+2b =5abB.4m 2n -2mn 2 =2mnC.5y 2 -3y 2 =2D.-12x +7x =-5x7、某种商品进价为a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的优惠价开展促销活动,这时该商品的售价为()A.a元B.0.8a元C.0.92a元D.1.04a元8、下列说法正确的是()A.a是代数式,1不是代数式B.表示a、b、2 的积的代数式为2ab C. 的意义是:a与4的差除b的商 D.a、b两数差的平方与a、b两数的积的4倍的和表示为(a﹣b)2+4ab9、下列运算正确的是A.a 6÷a 2=a 3B.3a 2b﹣a 2b=2C.(﹣2a 3)2=4a 6D.(a+b)2=a 2+b 210、下列运算结果正确的是( )A.(-69)+9=7B.0+(-1)= 1C.2x+3x=5xD.-a-a=011、将一组整数按如图所示的规律排列下去. 若有序数对(n,m)表示第n 排,从左到右第m个数,如(4,2)表示的数为8,则(7,4)表示的数是()A.32B.24C.25D.-2512、已知小明的年龄是岁,爸爸的年龄比小明年龄的倍少岁,妈妈的年龄比小明年龄的倍多岁,则小明爸爸和妈妈的年龄和是()A. B. C. D.13、把多项式按字母a降幂排列,正确的是()A. B. C.D.14、下列计算中,正确的是()A. B. C. D.15、下列各式的计算,正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、如果a﹣2b=3,则9﹣4a+8b的值为________.17、已知实数a、b、c满足2a+13b+3c=90,3a+9b+c=72,则=________.18、观察下面一列数,探究其中的规律:,,,,,…那么,第个数是________,第个数是________.19、将2x3﹣y3﹣4xy2+4x2y按y的升幂排列得到的多项式是________.20、观察下列数据: ,,,,,……它们是按一定规律排列的,依照此规律,第11个数据是________。
华东师大版七年级数学上册第三章 整式的加减 专题训练试题(含答案)
华东师大版七年级数学上册第三章整式的加减专题训练试题专题(一)整式的化简与求值1.已知有理数a,b,c 在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是()A .a+cB .c-aC .-a-cD .a+2b-c2.有理数a,b 在数轴上的位置如图所示,则化简式子|a+b|+a 的结果是______.3.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x-7的值为______.4.已知xy=-1,x+y=12,那么y-(xy-4x-3y)的值等于______.5.计算:(1)6a 2+4b 2-4b 2-7a 2;(2)(8a-7b)-(4a-5b);(3)-12(x 2y-2xy 2-x 2)-13(-x 2-x 2y-xy 2);(4)2(x 3-2y 2)-(x-2y)-(x-3y 2+2x 3);(5)3x 2-[5x-(12x-3)+3x 2].6.已知A=x 2-2x+1,B=2x 2-6x+3.求:(1)A+2B;(2)2A-B.7.先化简,再求值:(1)14(-4x 2+2x-8)-(12x-1),其中x=12;(2)(-2ab+3a)-2(2a-b)+2ab,其中a=3,b=1;(3)2(a 2b-ab 2)-3(a 2b-1)+2ab 2+1,其中a=2,|b+1|=0.8.若单项式3x 2y 5与-2x1-a y 3b-1是同类项,求下面代数式的值:5ab 2-[6a 2b-3(ab 2+2a 2b)].9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=______;(2)因为b_____0,-b_____0,所以|b|=_____;|-b|=_____;(3)因为1+a_____0,所以|1+a|=_____;(4)因为1-b<_____,所以|1-b|=_____=_____;(5)因为a+b>0,所以|a+b|=_____;(6)因为a-b_____0,所以|a-b|=_____=_____.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.13.有一道题“先化简,再求值:17x 2-(8x 2+5x )-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2020.”小明做题时把“x =2020”错抄成了“x =-2020”.但他计算的结果却是正确的,请你说明这是什么原因?14.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?专题(二)整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2019的值是()A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0B.1C.7D.83.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6D.3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是()A.1009+1010+…+3026=20172B.1009+1010+…+3027=20182C.1010+1011+…+3028=20192D.1010+1011+…+3029=202025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_____.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是_____粒.7.按规律写出空格中的数:-2,4,-8,16,_____,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是_____.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是_____.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为_____.11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_____个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2019,2020个单项式.参考答案专题(一)整式的化简与求值1.已知有理数a,b,c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是(A)A.a+c B.c-a C.-a-c D.a+2b-c 2.有理数a,b在数轴上的位置如图所示,则化简式子|a+b|+a的结果是-b.3.若多项式2x2+3x+7的值为10,则多项式6x2+9x-7的值为2.4.已知xy=-1,x+y=12,那么y-(xy-4x-3y)的值等于3.5.计算:(1)6a 2+4b 2-4b 2-7a 2;解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)(8a-7b)-(4a-5b);解:原式=8a-7b-4a+5b =4a-2b.(3)-12(x 2y-2xy 2-x 2)-13(-x 2-x 2y-xy 2);解:原式=-12x 2y+xy 2+12x 2+13x 2+13x 2y+13xy2=-16x 2y+56x 2+43xy 2.(4)2(x 3-2y 2)-(x-2y)-(x-3y 2+2x 3);解:原式=2x 3-4y 2-x+2y-x+3y 2-2x 3=-y 2-2x+2y.(5)3x 2-[5x-(12x-3)+3x 2].解:原式=3x 2-(5x-12x+3+3x 2)=3x 2-5x+12x-3-3x2=-92x-3.6.已知A=x 2-2x+1,B=2x 2-6x+3.求:(1)A+2B;(2)2A-B.解:(1)A+2B=x 2-2x+1+2(2x 2-6x+3)=x 2-2x+1+4x 2-12x+6=5x 2-14x+7.(2)2A-B=2(x 2-2x+1)-(2x 2-6x+3)=2x 2-4x+2-2x 2+6x-3=2x-1.7.先化简,再求值:(1)14(-4x 2+2x-8)-(12x-1),其中x=12;解:原式=-x 2+12x-2-12x+1=-x 2-1.当x=12时,原式=-(12)2-1=-54.(2)(-2ab+3a)-2(2a-b)+2ab,其中a=3,b=1;解:原式=-2ab+3a-4a+2b+2ab=-a+2b.当a=3,b=1时,原式=-3+2=-1.(3)(安阳期末)2(a2b-ab2)-3(a2b-1)+2ab2+1,其中a=2,|b+1|=0.解:原式=2a2b-2ab2-3a2b+3+2ab2+1=-a2b+4.因为a=2,|b+1|=0,即b=-1,所以原式=-22×(-1)+4=4+4=8.8.若单项式3x2y5与-2x1-a y3b-1是同类项,求下面代数式的值:5ab2-[6a2b-3(ab2+2a2b)].解:因为3x2y5与-2x1-a y3b-1是同类项,所以1-a=2,3b-1=5.解得a=-1,b=2.原式=5ab2-(6a2b-3ab2-6a2b)=5ab2-6a2b+3ab2+6a2b=8ab2.当a=-1,b=2时,原式=8×(-1)×22=-8×4=-32.9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.解:原式=-3a2+8ab-3b2=-3(a2+b2)+8ab,因为a2+b2=6,ab=-2,所以原式=-3×6+8×(-2)=-34.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b<0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b<0,所以|a-b|=-(a-b)=b-a.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.解:由数轴知,a<b<0<c,且|b|<|c|,所以b+c>0,a-c<0,a+b<0.所以原式=2(b+c)-[-3(a-c)]-[-4(a+b)]=2b+2c+3(a-c)+4(a+b)=2b+2c+3a-3c+4a+4b=6a+6b-c.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.解:2mx2-x2+5x+8-(7x2-3y+5x)=2mx2-x2+5x+8-7x2+3y-5x=(2m-8)x2+3y+8.因为此多项式的值与x无关,所以2m-8=0,解得m=4.m2-[2m2-(5m-4)+m]=m2-(2m2-5m+4+m)=-m2+4m-4,当m=4时,原式=-42+4×4-4=-4.13.有一道题“先化简,再求值:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3,其中x=2020.”小明做题时把“x=2020”错抄成了“x=-2020”.但他计算的结果却是正确的,请你说明这是什么原因?解:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3=17x2-8x2-5x-4x2-x+3+5x2+6x-1-3=10x2-1.因为当x=2020和x=-2020时,x2的值不变,所以他计算的结果是正确的.14.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a+b.(2)(10a+b)+(10b+a)=11a+11b=11(a+b),因为a,b都是整数,所以a+b也是整数.所以这两个数的和能被11整除.(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),(10b+a)-(10a+b)=10b+a-10a-b=9b-9a=9(b-a),因为a,b都是整数,所以a-b,b-a也是整数.所以这两个数的差一定是9的倍数.专题(二)整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2019的值是(D )A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是(A )A .0B .1C .7D .83.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为(D )A .3nB .6nC .3n+6D .3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是(C )A .1009+1010+…+3026=20172B .1009+1010+…+3027=20182C .1010+1011+…+3028=20192D .1010+1011+…+3029=202025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是(2n+1)粒.7.按规律写出空格中的数:-2,4,-8,16,-32,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是13a+21b.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有6058个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2019,2020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2019个单项式是-4037x2019,第2020个单项式是4039x2020.。
七年级数学华东师大版上册课件:第3章《整式的加减》测试卷 (共33张PPT)
20
(2)求当 t=8 小时,s=40 千米时,骑自行车每小 时比步行多走的距离.
解:当 t=8,s=40 时,t-s 3-st=84-03-480=3 千 米/小时,即骑自行车比步行每小时多走 3 千米.
21
21. (8 分)阅读理解:小红、小英和小强三个同学, 针对同一道数学题“先化简,后求值:(xyz2-4xy-1) +(-3xy+xyz2-3)-(2xyz2+xy),其中 x=-0.125,y =0.5,z=0.315.”展开争论:
(1)在第 n 个图形中,每一横行共有________块瓷 砖,每一竖列共有________块瓷砖;
(2)在铺设第 n 个图形时,共用多少,每块白瓷砖 3 元,铺设 当 n=10 时的图形时,共需花多少钱购买瓷砖?
29
解:(1)(n+3);(n+2); (2)(n+3)(n+2); (3)当 n=10 时,总砖数为 13×12=156(块),其中 白瓷砖 10×11=110 块,黑瓷砖 156-110=46(块). 所需购买瓷砖的钱数为 4×46+3×110=514(元).
A.x(6-x)平方米 B.x(12-x)平方米 C.x(6-32x)平方米 D.x(6-3x)平方米
10
【解析】窗框的宽度为12-2 3x=6-32x米,则窗 框的面积是 x(6-32x)平方米.
11
10. (2017·荆州)如图,用黑白两种颜色的菱形 纸片,按黑色纸片数逐渐增加 1 的规律拼成下列图 案.若第 n个图案有2017 个白色纸片,则 n的值为( B )
解:(1)如图所示; (2)原式=a-2(a-b)+a+b =3b.
24
23. (10 分)“囧”(jiǒng)是网络流行语,像一个人 脸郁闷的神情.如图所示,一张边长为 20 的正方形的 纸片,剪去两个一样的小直角三角形和一个长方形得 到一个“囧”字图案(阴影部分).设剪去的小长方形长 和宽分别为 x,y,剪去的两个小直角三角形的两直角 边长也分别为 x,y.
2022-2023学年华东师大版七年级数学上册第3章《整式的加减》单元达标测试题(含答案)
2022-2023学年华东师大版七年级数学上册《第3章整式的加减》单元达标测试题(附答案)一.选择题(共10小题,满分30分)1.多项式的次数和项数分别为()A.7,2B.8,3C.8,2D.7,32.下列说法,其中正确的是()A.负数没有绝对值B.所含字母相同,并且字母的指数也相同的项是同类项C.几个有理数相乘,负因数的个数是奇数个时,积为负数D.如果两个数互为相反数,那么它们的平方相等3.下列各式中,符合代数式书写规则的是()A.x×5B.C.D.x﹣1÷y4.若代数式x2+3x的值为5,则代数式2x2+6x﹣9的值是()A.10B.1C.﹣4D.﹣85.下列各式中,不是整式的是()A.3a B.C.0D.x+y6.单项式mxy3与x n+2y3的和是5xy3,则m﹣n()A.﹣4B.3C.4D.57.如图长方形中放入5张长为x,宽为y的相同的小长方形,其中A,B,C三点在同一条直线上.若阴影部分的面积为54,大长方形的周长为42,则一张小长方形的面积为()A.10B.11C.12D.138.观察下列图形,图①中有7个空心点,图②中有11个空心点,图③中有15个空心点,…,按此规律排列下去,第50个图形中有()个空心点.A.196B.199C.203D.2079.按一定规律排列的单项式:3b2,5a2b2,7a4b2,9a6b2,11a8b2,…,第8个单项式是()A.17a14b2B.17a8b14C.15a7b14D.152a14b210.规定一个新数“i”满足i2=﹣1,则方程x2=﹣1变为x2=i2,故方程的解为x=±i,并规定:一切实数可以与新数进行四则运算,原有的运算律与运算法则仍然成立,于是i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对于任意正整数n有i4n+1=i4n•i=(i4)n・i=i,i4n+2=i4n•i2=(i4)n•i2=﹣1,那么i+i2+i3+i4+…+i2021+i2022=()A.i﹣1B.1C.i D.﹣i二.填空题(共10小题,满分30分)11.单项式的系数是.12.若a,c,d是整数,b是正整数,且满足a+b=c,b+c=d,c+d=a,则a+2b+3c+4d的最大值是.13.化简:﹣2(3x﹣1)=.14.若单项式3x m y与﹣2x6y是同类项,则m=.15.(1)单项式32x3y的次数是;(2)﹣πr2h的系数是.16.下列代数式:①﹣mn,②m,③,④,⑤2m+1,⑥,⑦,⑧x2+2x+中,整式共有个.17.某超市的苹果价格如图,试说明代数式100﹣6.8x的实际意义.18.已知代数式x4+ax3+3x2+5x3﹣7x2﹣bx2+6x﹣2合并同类项后不含x3,x2项,则2a+3b的值.19.若|y﹣|+(x+1)2=0,则代数式﹣2(3x﹣y)﹣[5x﹣(3x﹣4y)]=.20.如果代数式x2+3x的值是4,那么代数式3﹣2x2﹣6x的值等于.三.解答题(共7小题,满分60分)21.先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2﹣(a+b)﹣(a+b)2+(﹣3)2(a+b).22.已知关于x的多项式A,当A﹣(x﹣2)2=x(x+7)时,完成下列各题:(1)求多项式A;(2)若x2+x+1=0,求多项式A的值.23.已知单项式﹣2x2m y7与单项式﹣5x6y n+8是同类项,求﹣m2﹣n2021的值.24.某企业有A、B两条加工相同原材料的生产线,在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.(1)当a=b=1时,两条生产线的加工时间分别是多少小时?(2)第一天,该企业把5吨原材料分配到A、B两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的吨数是多少?(3)第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A生产线分配了m吨原材料,给B生产线分配了n吨原材料,若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m和n有怎样的数量关系?若此时m与n 的和为6吨,则m和n的值分别为多少吨?25.某居民小区为响应党的号召,开展全民健身活动,准备修建一座长方形健身广场,其设计方案及数据如图所示.已知广场内A区为长方形的成年人活动场所,B区为圆形的儿童活动场所,其余地方为绿化带.(1)求绿化带的面积;(2)求整座健身广场的面积是成年人活动场所面积的多少倍.26.对于密码Ldpdvwxghqw,你能看出它代表什么意思吗?如果给你一把破译它的“钥匙”x﹣3,联想英语字母表中字母的顺序,你再试试能不能解读它.英语字母表中字母是按以下顺序排列的:abcdefghijklmnopqrstuvwxyz,如果规定a又接在z的后面,使26个字母排成圈,并能想到x﹣3可以代表“把一个字母换成字母表中从它向前移动3位的字母”,按这个规律就有Ldpdvwxghqw→Iamastudent.这样你就能解读它的意思了.为了保密,许多情况下都要采用密码,这时就需要有破译密码的“钥匙”.上面的例子中,如果写和读密码的双方事先约定了作为“钥匙”的式子x﹣3的含义,那么他们就可以用一种保密方式通信了.你和同伴不妨也利用数学式子来制定一种类似的“钥匙”,并互相合作,通过游戏试试如何进行保密通信.27.近日,教育部正式印发《义务教育课程方案》,将劳动从原来的综合实践活动课程中完全独立出来,并在今年9月份开学开始正式施行.某学校率先行动,在校园开辟了劳动教育基地,培养学生劳动品质.已知该劳动教育基地有一块长方形和一块正方形实验田,长方形实验田每排种植(3a﹣b)株豌豆幼苗,种植了(3a+b)排,正方形实验田每排种植(a+b)株豌豆幼苗,种植了(a+b)排,其中a>b>0.(1)该劳动教育基地这两块实验田一共种植了多少株豌豆幼苗?(用含a、b的代数式表示并化简)(2)当a=5,b=2时,求该劳动教育基地这两块实验田一共种植了多少株豌豆幼苗?参考答案一.选择题(共10小题,满分50分)1.解:多项式共有3项,分别是:,其次数为6+2=8,﹣2x3y4,其次数为3+4=7,3,其次数为0,∴多项式的次数为8;故选:B.2.解:A、任何数都有绝对值,正数和0的绝对值是它本身,负数的绝对值是它的相反数,说法错误,不符合题意;B、所含字母相同,并且相同字母的指数也相同的单项式是同类项,说法错误,不符合题意;C、几个有理数相乘,负因数的个数是奇数个时,积不一定为负数,例如有因数为0的时候,最后的结果为0,说法错误,不符合题意;D、如果两个数互为相反数,那么它们的平方相等,说法正确,符合题意;故选D.3.解:x×5应写成5x,∴选项A不符合题意;∵xy符合整式的规范书写规则,∴选项B符合题意;∵2xy应该写成xy,∴选项C不符合题意;∵x﹣1÷y应该写成x﹣,∴选项D不符合题意,故选:B.4.解:∵x2+3x=5,∴2x2+6x﹣9=2(x2+3x)﹣9=2×5﹣9=1.故选:B.5.解:A、3a是整式,不符合题意;B、是分式,不是整式,符合题意;C、0是整式,不符合题意;D、x+y是整式,不符合题意;故选:B.6.解:∵单项式mxy3与x n+2y3的和是5xy3,∴单项式mxy3与x n+2y3是同类项,∴n+2=1,m+1=5,解得n=﹣1,m=4,∴m﹣n=4﹣(﹣1)=5,故选:D.7.解:由题意知,大长方形的长=2x+y,大长方形的宽=x+2y,则大长方形的周长=2[(2x+y)+(x+2y)]=42,化简得x+y=7,∵阴影部分的面积=大长方形的面积﹣5个小长方形的面积,∴54=(2x+y)(x+2y)﹣5xy,化简得x2+y2=27,∵大长方形的周长=2[(2x+y)+(x+2y)]=42,化简得x+y=7,∴(x+y)2=72,即x2+2xy+y2=49,把x2+y2=27代入得,27+2xy=49,解得xy=11,则一张小长方形的面积=xy=11.故选:B.8.解:∵第1个图形中空心点的个数为:7,第2个图形中空心点的个数为:11=7+4=7+4×1,第3个图形中空心点的个数为:15=7+4+4=7+4×2,…∴第n个图形中空心点的个数为:7+4(n﹣1)=4n+3.∴第50个图形中空心点的个数为:4×50+3=203,故选:C.9.解:由题意可知:单项式的系数是从3起的奇数,单项式中a的指数偶数,b的指数不变,所以第8个单项式是:17a14b2.故选:A.10.解:原式=(i+i2+i3+i4)+i4(i+i2+i3+i4)+...i2016(i+i2+i3+i4)+i2021+i2022=(i﹣1﹣i+1)+(i﹣1﹣i+1)+...+(i﹣1﹣i+1)+i﹣1=i﹣1,故选:A.二.填空题(共10小题,满分30分)11.解:∵单项式为,∴单项式的系数为,故答案为:.12.解:∵a+b=c①,b+c=d②,c+d=a③,由①+③,得(a+b)+(c+d)=a+c,∴b+d=0④,∵b+c=d②;由④+②,得2b+c=b+d=0,∴c=﹣2b⑤;由①⑤,得a=c﹣b=﹣3b,⑥由④⑤⑥,得a+2b+3c+4d=﹣11b,∵b是正整数,其最小值为1,∴a+2b+3c+4d的最大值是﹣11.故答案为:﹣11.13.解:原式=﹣6x+2,故答案为:﹣6x+2.14.解:∵3x m y与﹣2x6y是同类项,∴m=6.故答案为:6.15.解:(1)单项式32x3y的次数是4;(2)﹣πr2h的系数是﹣π.故选:4,﹣π.16.解:在①﹣mn,②m,③,④,⑤2m+1,⑥,⑦,⑧x2+2x+中,①﹣mn,②m,③,⑤2m+1,⑥,⑧x2+2x+都是整式,④,⑦的分母中含有字母,属于分式.综上所述,上述代数式中整式的个数是6个.故答案为:6.17.解:代数式100﹣6.8x的实际意义为:用100元买每斤6.8元的苹果x斤余下的钱.故答案为:用100元买每斤6.8元的苹果x斤余下的钱.18.解:x4+ax3+3x2+5x3﹣7x2﹣bx2+6x﹣2=x4+(a+5)x3+(3﹣7﹣b)x2+6x﹣2,由x4+ax3+3x2+5x3﹣7x2﹣bx2+6x﹣2,合并同类项后不含x3和x2项,得a+5=0,3﹣7﹣b=0.解得a=﹣5,b=﹣4.∴2a+3b=2×(﹣5)+3×(﹣4)=﹣22.故答案为:﹣22.19.解:∵|y﹣|+(x+1)2=0,∴y﹣=0,x+1=0,∴y=,x=﹣8,∴﹣2(3x﹣y)﹣[5x﹣(3x﹣4y)]=﹣6x+2y﹣5x+(3x﹣4y)=﹣6x+2y﹣5x+3x﹣4y=﹣8x﹣2y=﹣8×(﹣8)﹣2×=64﹣1=63,故答案为:63.20.解:∵x2+3x=4,∴3﹣2x2﹣6x=3﹣2(x2+3x)=3﹣8=﹣5.故答案为:﹣5.三.解答题(共7小题,满分60分)21.解:(1)原式=3x2+4﹣5x3﹣x3+3﹣3x2=﹣6x3+7;(2)原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=x2﹣3xy+2y2;(3)原式=2x﹣2x﹣6y+3x﹣6y=3x﹣12y;(4)原式=﹣(a+b)﹣(a+b)2+9(a+b)=﹣(a+b)2+(a+b).22.解:(1)由题意将原式整理得:A=(x﹣2)2+x(x+7),=x2﹣4x+4+x2+7x,=2x2+3x+4;(2)∵x2+x+1=0,∴2x2+3x=﹣2,∴A=﹣2+4=2,则多项式A的值为2.23.解:因为单项式﹣2x2m y7与单项式﹣5x6y n+8是同类项,所以2m=6,n+8=7,所以m=3,n=﹣1,所以﹣m2﹣n2021=﹣32﹣(﹣1)2021=﹣8.24.解:(1)当a=b=1时,4a+1=5,2b+3=5.答:当a=b=1时,A生产线的加工时间为5小时,B生产线的加工时间为5小时.(2)由题意可知,,解得:a=2,b=3.答:分配到A生产线2吨,分配到B生产线3吨.(3)由题意可知,4(2+m)+1=2(3+n)+3,解得:2m=n,,解得:m=2,n=4.答:m和n的数量关系为2m=n,当m与n的和为6吨时,m为2吨,n为4吨.25.解:(1)绿化带的面积:(a+4a+5a)(1.5a+3a+1.5a)﹣[4a×3a+π(1.5a)2]=60a2﹣12a2﹣πa2=48a2﹣πa2;(2)根据题意得:(a+4a+5a)(1.5a+3a+1.5a)÷(3a×4a)=10a•6a÷12a2=5.26.解:钥匙为:x+1,英语字母表中字母是按以下顺序排列的:abcdefghijklmnopqrstuvwxyz,如果规定a又接在z的后面,使26个字母排成圈,并能想到x+1可以代表“把一个字母换成字母表中从它向后移动1位的字母“,按这个规律就有:ktbjx→lucky.27.解:(1)由题意得,(3a﹣b)(3a+b)+(a+b)2=9a2﹣b2+a2+2ab+b2=10a2+2ab.(2)当a=5,b=2时,原式=10×52+2×5×2=270.答:该劳动教育基地这两块实验田一共种植了270株豌豆幼苗.。
2013-2014学年华师大版七年级数学上第3章整式的加减单元目标检测试卷及答案点拨
数学华师版七年级上第3章整式的加减单元检测参考完成时间:120分钟实际完成时间:______分钟总分:120分得分:______一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题意要求的)1.某省今年七年级的学生约有100万人,其中男生约有a万人,则女生约有().A.(100+a)万人B.100a万人C.(100-a)万人D.100a万人2.下列代数式书写规范的是().A.a3 B.1 32a -C.(a+b)÷c D.3a(x+1)3.当x=-1时,代数式x2+2x+1的值是().A.-2 B.-1 C.0 D.4 4.下列说法中,正确的是().A.3是单项式B.32abc-的系数是-3,次数是3C.24m n不是整式D.多项式2x2y-xy是五次二项式5.下列两项中,属于同类项的是().A.62与x2B.4ab与4abcC.0.2x2y与0.2xy2D.nm和-mn6.下列各式从左到右正确的是().A.-(3x+2)=-3x+2 B.-(-2x-7)=-2x+7C.-(3x-2)=-3x+2 D.-(-2x-7)=2x-77.计算8x2-(2x2-5)正确的结果是().A.6x2-5 B.10x2+5C.6x2+5 D.10x2-58.一个多项式与x2+2x+1的和是3x-2,则这个多项式为().A.x2-5x+3 B.-x2+x-3C.-x2+5x-3 D.x2-5x-139.若M=4x2-5x+11,N=3x2-5x+10,则M与N的大小关系是().A.M>N B.M=NC.M<N D.无法确定10.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为().A.5n B.5n-1C.6n-1 D.2n2+1二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.用代数式表示“a、b两数的平方和”,结果为__________.12.矩形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是__________.13.如果单项式x a +1y 3与2x 3y b 是同类项,那么a b=__________.14.已知x -y =5,xy =-3,则3xy -7x +7y =__________.15.多项式ab 3-3a 2b -a 3b -3按字母a 降幂排列是__________.16.把3+[3a -2(a -1)]化简得__________.17.已知A =a 2-ab ,B =ab +b 2,则A +B =__________,A -B =__________,3A -2B =__________.18.小宇同学在一次手工制作活动中,先把一张长方形纸片按图①方式进行折叠,使折痕的左侧部分比右侧部分短1 cm ;展开后按图②的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1 cm ,再展开后,在纸上形成的两条折痕之间的距离是__________cm.三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本题满分6分)在2x 2y ,-2xy 2,3x 2y ,-xy 四个代数式中,找出两个同类项,并合并这两个同类项.20.(本题满分10分)如图是一个圆环,外圆与内圆的半径分别是R 和r .(1)用代数式表示圆环的面积;(2)当R =5 cm ,r =3 cm 时,圆环的面积是多少(π取3.14)?21.(本题满分16分)先化简,再求值:(1)(4a 2-3a )-(1-4a +4a 2),其中a =-2; (2)3x +2(x 2-y )-21323x x y ⎛⎫+- ⎪⎝⎭,其中x =12,y =-3; (3)1115(23)(23)(23)(23)3263x y x y x y x y -+-----,其中x =2,y =1; (4)已知a +b =-2,ab =3,求2[ab +(-3a )]-3(2b -ab )的值.22.(本题满分10分)数学老师在黑板上抄写了一道题目“当a =2,b =-2时,求多项式332332233221113423244a b a b b a b a b b a b a b b ⎛⎫⎛⎫-+---++-+ ⎪ ⎪⎝⎭⎝⎭的值”,甲同学做题时把a =2抄错成a =-2,乙同学没抄错题,但他们得出的结果恰好一样,这是怎么回事儿呢?23.(本题满分12分)观察下列各式:21-12=9;75-57=18;96-69=27;84-48=36;45-54=-9;27-72=-45;19-91=-72;…(1)请用文字补全上述规律:把一个两位数的十位和个位交换位置,新的两位数与原来两位数的差等于__________;(2)请用含a,b的等式表示上述规律?并说明理由.24.(本题满分12分)某公司在A,B两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援建设,其中甲地需要15台,乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.(1)设从A(2)当从A参考答案1答案:C2答案:D 点拨:A ,B ,C 中代数式应分别记作3a 、72a -、a b c +. 3答案:C 点拨:当x =-1时,x 2+2x +1=(-1)2+2×(-1)+1=1-2+1=0. 4答案:A 点拨:32abc -的系数是32-,故B 错误;24m n 是单项式,所以也是整式,故C 错误;多项式2x 2y -xy 的次数是3,所以它是三次二项式,故D 错误. 5答案:D6答案:C 点拨:-(3x +2)=-3x -2,故A 错误;-(-2x -7)=-2x -7,故B 错误;-(-2x -7)=2x +7,故D 错误.7答案:C 点拨:8x 2-(2x 2-5)=8x 2-2x 2+5=6x 2+5.8答案:B 点拨:(3x -2)-(x 2+2x +1)=3x -2-x 2-2x -1=-x 2+x -3.9答案:A 点拨:M -N =4x 2-5x +11-(3x 2-5x +10)=4x 2-5x +11-3x 2+5x -10=x 2+1.因为x 2+1>0,所以M >N .10答案:C 点拨:观察图形,可知摆第1个“小屋子”需要5个棋子,摆第2个“小屋子”需要11个棋子,摆第3个“小屋子”需要17个棋子.将1、2、3分别代入6n -1得5、11、17,由此可知C 正确.11答案:a 2+b 212答案:2122ab b π- 点拨:能射进阳光部分的面积=长方形的面积-直径为2b 的半圆的面积.13答案:8 点拨:因为单项式x a +1y 3与2x 3y b 是同类项,所以a +1=3,b =3,解得a=2,b =3,则a b =23=8.14答案:-44 点拨:3xy -7x +7y =3xy -7(x -y )=3×(-3)-7×5=-9-35=-44. 15答案:-a 3b -3a 2b +ab 3-316答案:a +5 点拨:原式=3+(3a -2a +2)=3+3a -2a +2=a +5.17答案:a 2+b 2 a 2-2ab -b 2 3a 2-5ab -2b 2点拨:A +B =a 2-ab +ab +b 2=a 2+b 2;A -B =a 2-ab -(ab +b 2)=a 2-ab -ab -b 2=a 2-2ab -b 2;3A -2B =3(a 2-ab )-2(ab +b 2)=3a 2-3ab -2ab -2b 2=3a 2-5ab -2b 2. 18答案:119解:同类项是:2x 2y,3x 2y ,合并同类项得:2x 2y +3x 2y =5x 2y . 20解:(1)πR 2-πr 2;(2)当R =5 cm ,r =3 cm ,π=3.14时,πR 2-πr 2=π(R 2-r 2)=3.14×(52-32)=3.14×16=50.24(cm 2),即圆环的面积是50.24 cm 2.21解:(1)原式=4a 2-3a -1+4a -4a 2=a -1,当a =-2时,a -1=-2-1=-3;(2)原式=3x +2x 2-2y -6x 2-3x +y =-4x 2-y ,当x =12,y =-3时,原式=-4×212⎛⎫ ⎪⎝⎭-(-3)=2. (3)原式=1115(23)3263x y ⎛⎫+--- ⎪⎝⎭=-(2x -3y )=-2x +3y ,当x =2,y =1时,原式=-2×2+3×1=-1;(4)原式=2ab -6a -6b +3ab =5ab -6a -6b =5ab -6(a +b ),当a +b =-2,ab =3时,原式=5×3-6×(-2)=27.22解:因为3a 3b 3-233223*********a b b a b a b b a b a b ⎛⎫⎛⎫+---++ ⎪ ⎪⎝⎭⎝⎭-2b 2+3=3a 3b 3-212a b +b -4a 3b 3+214a b +b 2+a 3b 3+214a b -2b 2+3=-b 2+b +3,即这个多项式的值只与b 的取值有关,与a 的取值大小无关.无论甲同学怎么抄错a ,都不会影响最后的计算结果.23解:(1)这个两位数的十位与个位的差的9倍;(2)设原来两位数的十位数为a ,个位数为b ,则新两位数为(10b +a ),原两位数为(10a +b ),则(10b +a )-(10a +b )=10b +a -10a -b =9b -9a =9(b -a ).即新两位数与原两位数的差等于这个两位数的十位与个位的差的9倍.24解:(1)A 地运往乙地:16-x ,B 地运往甲地:15-x ,B 地运往乙地:13-(16-x ); 总费用:500x +400(16-x )+300(15-x )+600[13-(16-x )]=500x +400(16-x )+300(15-x )+600(13-16+x )=500x +400(16-x )+300(15-x )+600(-3+x )=500x +6 400-400x +4 500-300x -1 800+600x=(500-400-300+600)x +(6 400+4 500-1 800)=400x +9 100(元);(2)当x =3时,400x +9 100=400×3+9 100=10 300(元),即运这批挖掘机的总费用是10 300元.。
七年级上册数学单元测试卷-第3章 整式的加减-华师大版(含答案)
七年级上册数学单元测试卷-第3章整式的加减-华师大版(含答案)一、单选题(共15题,共计45分)1、如果单项式2a2m﹣5b n+2与ab4是同类项.那么m与n的值分别为()A.2,3B.3,2C.﹣3,2D.3,﹣22、小花的存款是元,小林的存款比小花的一半少3元,则小林的存款是( )A. 元B. 元C. 元D. 元3、下列计算中正确的是()A.2x 3﹣x 3=2B.x 3•x 2=x 6C.x 2+x 3=x 5D.x 3÷x=x 24、下列运算正确的是()A.x 2+x 2=2x 4B.x 2•x 3=x 6C.(x 2)3=x 6D.(2x 2)3=6x 65、下列计算正确的是()A. B. C. D.6、下列运算正确的是()A. B. C. D.7、已知,则式子的值为()A.4B.C.12D.无法确定8、以下代数式中不是单项式的是()A.–12abB.C.D.09、某商品的价格为m元,涨价10%后,9折优惠,该产品售价为()A.90%m元B.99%m元C.110%m元D.81%m元10、电影院第一排有m个座位,后面每排比前一排多2个座位,则第n排的座位数为()A.m+2nB.m+2(n﹣1)C.mn+2D.m+n+211、下列运算正确的是()A.2a+4b=7abB.1+2a=3aC.5x﹣5y=0D.﹣3a+a﹣(﹣2a)=012、在式子:,,,,,中,单项式的个数为().A. 个B. 个C. 个D. 个13、已知代数式x+2y的值是3,则代数式2x+4y+1的值为( )A.1B.4C.7D.不能确定14、减去-3m等于的式子是()A. B. C. D.-15、下列运算正确的是()A.2a+3b=5abB.2(2a﹣b)=4a﹣bC.(a+b)(a﹣b)=a 2﹣b2 D.(a+b)2=a 2+b 2二、填空题(共10题,共计30分)16、观察下列算式:,,,,请你在察规律之后并用你得到的规律填空:________×________+________= ,第n个式子呢? ________17、若﹣5x2y m与x n y的差是单项式,则m+n=________.18、如果4个不等的偶数m,n,p,q满足(3﹣m)(3﹣n)(3﹣p)(3﹣q)=9,那么m+n+p+q等于________.19、一组按规律排列的多项式:,,,,…,其中第10个式子是________.20、若单项式﹣2a m b2与3a5b n是同类项,那么m+n=________.21、已知:a是的相反数,b比最小的正整数大4,c是最大的负整数,计算3a+3b+c=________ .22、正方形A1B1C1O,A2B2C2C1, A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则An的坐标是________.23、定义新运算:a★b=ab-a-b,那么3★(-2) =________.24、如果的乘积中不含项,则为________.25、单项式与是同类项,则的值为________.三、解答题(共5题,共计25分)26、已知a、b互为相反数,c、d互为倒数,m是绝对值最小的数,求代数式的值.27、已知:a、b互为相反数,c、d互为倒数,m是最小的正整数,求代数式2020(a+b)-3cd+2m的值.28、“计算的值,其中,”,甲同学把“”错抄成“”,但他计算的最后结果,与其他同学的正确结果都一样.试说明理由,并求出这个结果. 29、先化简,再求值:,其中,.30、已知有理数 a,b 互为相反数,=2,求 a﹣x+b+(﹣2)的值.参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、C5、D6、D7、C9、B10、B11、D12、C13、C14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
华东师大版七年级数学上册第三章 整式的加减 专题训练试题(含答案)
华东师大版七年级数学上册第三章 整式的加减 专题训练试题专题(一) 整式的化简与求值1.已知有理数a ,b ,c 在数轴上的位置如图所示,化简|a +b|-|c -b|的结果是( )A .a +cB .c -aC .-a -cD .a +2b -c2.有理数a ,b 在数轴上的位置如图所示,则化简式子|a +b|+a 的结果是______.3.若多项式2x 2+3x +7的值为10,则多项式6x 2+9x -7的值为______. 4.已知xy =-1,x +y =12,那么y -(xy -4x -3y)的值等于______.5.计算:(1)6a 2+4b 2-4b 2-7a 2;(2)(8a -7b)-(4a -5b);(3)-12(x 2y -2xy 2-x 2)-13(-x 2-x 2y -xy 2);(4)2(x 3-2y 2)-(x -2y)-(x -3y 2+2x 3);(5)3x 2-[5x -(12x -3)+3x 2].6.已知A =x 2-2x +1,B =2x 2-6x +3.求:(1)A +2B ; (2)2A -B.7.先化简,再求值:(1)14(-4x 2+2x -8)-(12x -1),其中x =12;(2)(-2ab +3a)-2(2a -b)+2ab ,其中a =3,b =1;(3)2(a 2b -ab 2)-3(a 2b -1)+2ab 2+1,其中a =2,|b +1|=0.8.若单项式3x 2y 5与-2x1-a y 3b -1是同类项,求下面代数式的值:5ab 2-[6a 2b -3(ab 2+2a 2b)].9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=______;(2)因为b_____0,-b_____0,所以|b|=_____;|-b|=_____;(3)因为1+a_____0,所以|1+a|=_____;(4)因为1-b <_____,所以|1-b|=_____=_____;(5)因为a+b>0,所以|a+b|=_____;(6)因为a-b _____0,所以|a-b|=_____=_____.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.13.有一道题“先化简,再求值:17x 2-(8x 2+5x )-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2 020.”小明做题时把“x =2 020”错抄成了“x =-2 020”.但他计算的结果却是正确的,请你说明这是什么原因?14.已知一个两位数,其十位数字是a ,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?专题(二) 整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是( )A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是( )A.0 B.1 C.7 D.83.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6 D.3n+34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是( )A.1 009+1 010+…+3 026=2 0172B.1 009+1 010+…+3 027=2 0182C.1 010+1 011+…+3 028=2 0192D.1 010+1 011+…+3 029=2 02025.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_____.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是_____粒.7.按规律写出空格中的数:-2,4,-8,16,_____,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是_____.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是_____.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为_____.11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2 019个图形中共有_____个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.参考答案专题(一) 整式的化简与求值1.已知有理数a ,b ,c 在数轴上的位置如图所示,化简|a +b|-|c -b|的结果是(A )A .a +cB .c -aC .-a -cD .a +2b -c2.有理数a ,b 在数轴上的位置如图所示,则化简式子|a +b|+a 的结果是-b .3.若多项式2x 2+3x +7的值为10,则多项式6x 2+9x -7的值为2. 4.已知xy =-1,x +y =12,那么y -(xy -4x -3y)的值等于3.5.计算:(1)6a 2+4b 2-4b 2-7a 2; 解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)(8a -7b)-(4a -5b); 解:原式=8a -7b -4a +5b =4a -2b.(3)-12(x 2y -2xy 2-x 2)-13(-x 2-x 2y -xy 2);解:原式=-12x 2y +xy 2+12x 2+13x 2+13x 2y +13xy 2=-16x 2y +56x 2+43xy 2.(4)2(x 3-2y 2)-(x -2y)-(x -3y 2+2x 3); 解:原式=2x 3-4y 2-x +2y -x +3y 2-2x 3=-y 2-2x +2y.(5)3x 2-[5x -(12x -3)+3x 2].解:原式=3x 2-(5x -12x +3+3x 2)=3x 2-5x +12x -3-3x 2=-92x -3.6.已知A =x 2-2x +1,B =2x 2-6x +3.求:(1)A +2B ; (2)2A -B.解:(1)A +2B =x 2-2x +1+2(2x 2-6x +3) =x 2-2x +1+4x 2-12x +6 =5x 2-14x +7.(2)2A -B =2(x 2-2x +1)-(2x 2-6x +3) =2x 2-4x +2-2x 2+6x -3 =2x -1.7.先化简,再求值:(1)14(-4x 2+2x -8)-(12x -1),其中x =12; 解:原式=-x 2+12x -2-12x +1=-x 2-1.当x =12时,原式=-(12)2-1=-54.(2)(-2ab +3a)-2(2a -b)+2ab ,其中a =3,b =1;解:原式=-2ab+3a-4a+2b+2ab=-a+2b.当a=3,b=1时,原式=-3+2=-1.(3)(安阳期末)2(a2b-ab2)-3(a2b-1)+2ab2+1,其中a=2,|b+1|=0.解:原式=2a2b-2ab2-3a2b+3+2ab2+1=-a2b+4.因为a=2,|b+1|=0,即b=-1,所以原式=-22×(-1)+4=4+4=8.8.若单项式3x2y5与-2x1-a y3b-1是同类项,求下面代数式的值:5ab2-[6a2b-3(ab2+2a2b)].解:因为3x2y5与-2x1-a y3b-1是同类项,所以1-a=2,3b-1=5.解得a=-1,b=2.原式=5ab2-(6a2b-3ab2-6a2b)=5ab2-6a2b+3ab2+6a2b=8ab2.当a=-1,b=2时,原式=8×(-1)×22=-8×4=-32.9.已知a2+b2=6,ab=-2,求(4a2+3ab-b2)-(7a2-5ab+2b2)的值.解:原式=-3a2+8ab-3b2=-3(a2+b2)+8ab,因为a2+b2=6,ab=-2,所以原式=-3×6+8×(-2)=-34.10.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b <0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b <0,所以|a-b|=-(a-b)=b-a.11.已知有理数a,b,c在数轴上的对应点分别是A,B,C,其位置如图所示,化简:2|b +c|-3|a-c|-4|a+b|.解:由数轴知,a<b<0<c,且|b|<|c|,所以b+c>0,a-c<0,a+b<0.所以原式=2(b+c)-[-3(a-c)]-[-4(a+b)]=2b+2c+3(a-c)+4(a+b)=2b+2c+3a-3c+4a+4b=6a+6b-c.12.若多项式2mx2-x2+5x+8-(7x2-3y+5x)的值与x无关,求m2-[2m2-(5m-4)+m]的值.解:2mx2-x2+5x+8-(7x2-3y+5x)=2mx2-x2+5x+8-7x2+3y-5x=(2m-8)x2+3y+8.因为此多项式的值与x无关,所以2m-8=0,解得m=4.m2-[2m2-(5m-4)+m]=m2-(2m2-5m+4+m)=-m2+4m-4,当m=4时,原式=-42+4×4-4=-4.13.有一道题“先化简,再求值:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3,其中x=2 020.”小明做题时把“x=2 020”错抄成了“x=-2 020”.但他计算的结果却是正确的,请你说明这是什么原因?解:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3=17x2-8x2-5x-4x2-x+3+5x2+6x-1-3=10x2-1.因为当x=2 020和x=-2 020时,x2的值不变,所以他计算的结果是正确的.14.已知一个两位数,其十位数字是a ,个位数字是b.(1)写出这个两位数;(2)若把这个两位数的十位数字与个位数字对换,得到一个新的两位数,这两个数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a +b.(2)(10a +b)+(10b +a)=11a +11b =11(a +b),因为a ,b 都是整数,所以a +b 也是整数.所以这两个数的和能被11整除.(10a +b)-(10b +a)=10a +b -10b -a =9a -9b =9(a -b),(10b +a)-(10a +b)=10b +a -10a -b =9b -9a =9(b -a),因为a ,b 都是整数,所以a -b ,b -a 也是整数.所以这两个数的差一定是9的倍数.专题(二) 整式中的规律探索1.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是(D )A .5B .-14C .43D .452.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是(A )A .0B .1C .7D .83.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为(D )A .3nB .6nC .3n +6D .3n +34.观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是(C ) A .1 009+1 010+…+3 026=2 0172 B .1 009+1 010+…+3 027=2 0182 C .1 010+1 011+…+3 028=2 0192 D .1 010+1 011+…+3 029=2 02025.归纳“T ”字形,用棋子摆成的“T ”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n 个“T ”字形需要的棋子个数为3n +2.6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取1的种子数是(2n+1)粒.7.按规律写出空格中的数:-2,4,-8,16,-32,64.8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第9个数是13a+21b.9.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2 019个图形中共有6058个〇.…12.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2 019个单项式是-4 037x2 019,第2020个单项式是4 039x2 020.。
华师大版七年级上第3章《整式的加减》检测题(含答案)
第3章 整式的加减检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列说法正确的是( )A .23xyz 与23xy 是同类项B .1x 与2x 是同类项C .−0.5x 3y 2与2x 2y 3是同类项D .5m 2n 与−2nm 2是同类项 2.下列说法中,错误的是( )A.代数式x 2+y 2的意义是x 、y 的平方和B.代数式5(x +y)的意义是5与(x +y)的积C.x 的5倍与y 的和的一半,用代数式表示为25y x +D.比x 的2倍多3的数,用代数式表示为2x +33.下列式子中代数式的个数有( )−2a −5,−3,2a +1=4,3x 3+2x 2y 4,−b .A.2B.3C.4D.54.当a =3,b =1时,代数式2a−b 2的值是( ) A.2 B.0C.3D.52 5.下列各式去括号错误的是( )A.213)213(+-=--y x y x B.b a n m b a n m -+-=-+-+)(C.332)364(21++-=+--y x y x D.723121)7231()21(-++=+--+c b a c b a 6.已知代数式x +2y 的值是5,则代数式2x +4y +1的值是( )A.6B.7C.11D.127.已知a 是两位数,b 是一位数,把a 接写在b 的后面,就成为一个三位数.这个三位数可表示成( )A.10b a +B.baC.100b a +D.10b a +8.一个代数式的2倍与−2a +b 的和是a +2b ,这个代数式是( )A.3a b +B.1122a b -+C.3322a b +D.3122a b + 9.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x 2+3xy )−(2x 2+4xy )=−x 2【】.此空格的地方被钢笔水弄污了,那么空格中的一项是( )A.−7xyB.7xyC.−xyD.xy10.多项式A 与多项式B 的和是3x +x 2,多项式B 与多项式C 的和是−x +3x 2,那么多项式A 减去多项式C 的差是( )A.4x −2x 2B.4x +2x 2C.−4x +2x 2D.4x 2−2x 二、填空题(每小题3分,共24分)11.单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为_______________________, 化简后的结果是 . 12.规定a ﹡b =5a +2b −1,则(−4)﹡6的值为 .13.如图是一个数值转换机的示意图,若输入x 的值为3,y 的值为−2,则输出的结果为 .14.已知单项式32b a m 与-3214-n b a 的和是单项式,那么 m = ,n = .15.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树 棵.16.一个学生由于粗心,在计算35−a 的值时,误将“−”看成“+”,结果得63,则35−a 的值应为____________.17.若a =2,b =20,c =200,则(a +b +c )+(a −b +c )+(b −a +c )= .18.当x =1时,代数式13++qx px 的值为2 012,则当x =−1时,代数式13++qx px 的值为__________.三、解答题(共46分)19.(5分)如图,当x =5.5,y =4时,求阴影部分的周长和面积.20.(5分)一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.21.(6分)已知:A −2B =7a 2−7ab ,且B =−4a 2+6ab +7.(2)若|a +1|+(b −2)2=0,求A 的值.22.(6分)有这样一道题:先化简,再计算:(2x 3−3x 2y −2xy 2)−(x 3−2xy 2+y 3)+(−x 3+3x 2y −y 3) , 其中x =12,y =−1.甲同学把“x =12”错抄成“x =−12”,但他计算的结果也是正确的,试说明理由,并求出这个结果.23.(6分)某工厂第一车间有x 人,第二车间比第一车间人数的54少30人,如果从第二车间调出10人到第一车间,那么:24.(6分) 某餐厅中,一张桌子可坐6人,有以下两种摆放方式:26.(6分)观察下面的变形规律: 211211-=⨯;3121321-=⨯;4131431-=⨯;….解答下面的问题:(1)若n 为正整数,请你猜想=)1(1+n n _____________;(2)证明你猜想的结论;(3)求和:012 2011 21431321211⨯++⨯+⨯+⨯ .第3章 整式的加减检测题参考答案1.D 解析:对于A ,前面的单项式含有z ,后面的单项式不含有,所以不是同类项;对于B ,1x 不是整式,2x 是整式,所以不是同类项;对于C ,两个单项式,所含字母相同,但相同字母的指数不一样,所以不是同类项; 对于D ,两个单项式,所含字母相同,相同字母的指数也相同,所以是同类项,故选D.2.C 解析:选项C 中运算顺序表达错误,应写成)5(21y x +. 3.C 解析:代数式有:−2a −5,−3,3x 3+2x 2y 4,−b .因为2a +1=4中含有“=”号,所以不是代数式.故选C.4.D 解析:将a =3,b =1代入代数式2a−b 2得2×3−12=52,故选D. 5.C 解析:−12(4x −6y +3)=−2x +3y −32≠−2x +3y +3,所以C 错误.故选C.6.C 解析:因为x +2y =5,所以2x +4y =10,从而2x +4y +1=10+1=11.7.C 解析:两位数的表示方法:十位数字×10+个位数字;三位数的表示方法:百位数字×100+十位数字×10+个位数字.a 是两位数,b 是一位数,依据题意可得b 扩大了100倍,所以这个三位数可表示成100b a +.8.D 解析:这个代数式的2倍为a +2b −(−2a +b )=3a +b , 所以这个代数式为3122a b +. 9.C 解析:因为(x 2+3xy )−(2x 2+4xy )=x 2+3xy −2x 2−4xy =−x 2−xy ,将此结果与(x 2+3xy )−(2x 2+4xy )=−x 2【】相比较,可知空格中的一项是−xy .故选C.10.A 解析:由题意可知A +B =3x +x 2①;B +C =−x +3x 2②.①−②:A −C =(3x +x 2)−(−x +3x 2)=3x +x 2+x −3x 2=4x −2x 2.故选A.11.−3x 2−[−4x 2y +(−5x 2)+2x 2y ] 2x 2+2x 2y解析:根据叙述可列算式−3x 2−[−4x 2y +(−5x 2)+2x 2y ],化简这个式子,得 −3x 2−[−4x 2y +(−5x 2)+2x 2y ]=−3x 2+4x 2y +5x 2−2x 2y =2x 2+2x 2y.12.−9 解析:根据a ﹡b =5a +2b −1,得(−4)﹡6=5×(−4)+2×6−1=−9. 13.5 解析:将x =3,y =−2代入(2x +y 2)÷2,得原式=[2×3+(−2)2]÷2=5. 14.4 3 解析:因为两个单项式的和还为单项式,所以这两个单项式可以合并同类项,根据同类项的定义可知m =4,2=n −1,所以m =4,n =3.15.4x +6 解析:依题意,得第二队种的树的数量为2x +8,第三队种的树的数量为12(2x +8)−6=x −2,所以三队共种树x +(2x +8)+(x −2)=4x +6(棵). 16.7 解析:由题意可知35+a =63,故a =28.所以35−a =35−28=7. 17.622 解析:因为(a +b +c )+(a −b +c )+(b −a +c )=a +b +3c , 将a =2,b =20,c =200代入可得a +b +3c =2+20+3×200=622.18.−2 010 解析:因为当x =1时,13++qx px ==++1q p 2 012,所以p +q =2 011,所以当x =−1时,13++qx px =−=+-1q p −(p +q )+1=−2 011+1=−2 010. 19.解:阴影部分的周长为4x +6y =4×5.5+6×4=46;阴影部分的面积为4xy −y (2x −x −0.5x )=3.5xy =3.5×5.5×4=77.20. 解:设原来的两位数是10a +b ,则调换位置后的新数是10b +a .所以(10b +a )−(10a +b )=9b −9a =9(b −a ).所以这个数一定能被9整除.21.解:(1)∵ A −2B =7a 2−7ab , B =−4a 2+6ab +7,A −2B =A −2(−4a 2+6ab +7)=7a 2−7ab ,∴ A =(7a 2−7ab )+2(−4a 2+6ab +7)=7a 2−7ab −8a 2+12ab +14=−a 2+5ab +14.(2)依题意得:a +1=0,b −2=0,∴ a =−1,b =2.∴ A =−a 2+5ab +14=−(−1)2+5×(−1)×2+14=3.22.分析:首先将原代数式去括号,合并同类项,化为最简整式−2y 3,与x 无关,所以当甲同学把“x =12”错抄成“x =−12”时,他计算的结果也是正确的.解:(2x 3−3x 2y −2xy 2)−(x 3−2xy 2+y 3)+(−x 3+3x 2y −y 3)=2x 3−3x 2y −2xy 2−x 3+2xy 2−y 3−x 3+3x 2y −y 3=−2y 3.因为所得结果与x 的取值没有关系,所以他将y 值代入后,所得结果也是正确的. 当y =−1时,原式=2.23.解:(1)因为第二车间比第一车间人数的54少30人, 所以第二车间有(45x −30)人.则两个车间共有x +(45x −30)=95x −30(人 ).(2)如果从第二车间调出10人到第一车间,则第一车间有(x +10)人,第二车间有45x −30−10=45x −40(人),所以调动后,第一车间的人数比第二车间多x +10−45x +40=15x +50(人). 24.解:(1)第一种中,有一张桌子时有6人,后边多一张桌子多4人.即有n 张桌子时,有6+4(n −1)=(4n +2)(人).第二种中,有一张桌子时有6人,后边多一张桌子多2人,即6+2(n −1)=(2n +4)(人).(2)打算用第一种摆放方式来摆放餐桌.因为当n =25时,用第一种方式摆放餐桌:4n +2=4×25+2=102>98, 用第二种方式摆放餐桌:2n +4=2×25+4=54<98,所以选用第一种摆放方式.25.解:举例1:三位数578:57757887588522;578+++++=++ 举例2:三位数123:12211331233222;123+++++=++ 猜想:所有可能的两位数的和除以这几个数字的和恒等于22.证明如下:设三位数为()10010,,0a b c a b c ++≠,则所有的两位数是10a +b ,10a +c ,10b +a ,10b +c ,10c +a ,10c +b . 故101010101010a b b a a c c a b c c ba b c +++++++++++++()2222222222a b c a b c a b c a b c++++===++++. 26.(1)111+n n -;(2)证明:右边==+=+-+=++++)1(1)1(1)1()1(1111n n n n n n n n n n n n n n -=-左边, 所以猜想成立.(3)解:原式=01221011 2141313121211-++-+-+- 0122011 2012 211=-=.。
华师大版七上数学第三章 整式的加减单元测试题3(含答案)
第三章 整式的加减单元测试一、判断1.S=2r π是圆的面积公式,也是代数式.( )2.代数式23223,,1,x x x xy z xπ+-都是整式.( )3.对于代数式2131a +来说,不论a 取何值,总有意义( )4.某项工程甲单独做a 天完成,乙单独做b 天完成,则甲、乙两人合作要用111a b+天( )5.某商品原价a 元,降价20%后又提价20%,则该商品的价格仍为a 元.( )6.代数式243mn π-是单项式,系数是43-,次数为4.( ) 7.两个二次多项式的和仍是二次多项式.( ) 8.(x-1)-(1-x)+(x+1)=3x-1.()9.若2313m x y z -与2343x y z 是同类项,则m=4.( )10.对于代数式a 3+3a 2b+3ab 2+b 3,当a=4,b=-3时,代数式的值为-1.( ) 二、填空11.a 表示一个三位数,b 表示一个两位数,若把b 放在a 的左边构成一个五位数,则该五位数应记为__________.12.在代数式0,a 2+1,x 2y,(a+b)(a-b),-a,x+-2xy+1,23-a 2b 中,单项式有____,多项式有________.13.多项式-12x 3y+3xy 3-5x 2y 3-1是______次______项式,最高次项是______,常数项是_________,最高次项的系数是_________. 14.多项式2x 4y-x 2y 3+12x 3y 2+xy 4-1按x 的降幂排列为______,按y 的升幂排列为________.15.多项式8x 2-3x-3+4+2x-6x 2中的同类项是_________. 16.已知A=x 2-3x+2,B=-2x 2+x-1,则A-B=______,-A+2B=________.17.去括号:-{-[-(1-a)-(1-b)]}=______________.18.化简:(3x 2-2x+1)-(x 2+2x+2)-(-2x 2-x)=__________,当x=-2时,代数式的值是_______.19.代数式(a 2+b 2)-(a+b)2的意义是_______,111x y的意义是_______.20.已知三个数的平均值是a,其中一个数为b,则其余两个数的平均值是______(用含a,b 的代数式表示),若a=-3,b=2,则其余两个数的平均值是________. 三、选择21.有一两位数,其十位数字为a,个位数字为b,将两个数颠倒,-得到一个新的两位数,那么这个新两位数十位上的数字与个位数字的和与这个新两位数的积用代数式表示( )A.ba(a+b)B.(a+b)(b+a)C.(a+b)(10a+b) -D.(a+b)(10b+a)22.某班有学生m 人,若每4人一组,有一组少2人,则所分组数是( ) A.24m - B. 24m + C. 24m + D. 24m- 23.浓度为p%和q%的盐水各akg 和bkg,混合后从中取出ckg(c ≤a+b,那么关于这ckg 盐水的说法:(1)浓度是(p+q)%;(2)含盐(ap%+bq%)kg;(3)浓度是%ap bqa b++;(4)含水是(1)%(1)%a pb q a b-+-+,其中说法正确的个数是( ).A.1B.2C.3D.4 24.下列代数式的叙述,正确的是( ) A. 1x y -读作x 减y 分之一 B.a b x-读作x 分之a 减bC.23xy读作x 除以3乘以y的平方 D.2x x y-读作x 的平方除以x 与y 的差25.下列各组单项式中,不是同类项的是( )A.xy 2和x 2y B.13abc 2和3ac 2b C.12-和0 D. 3x y 和-2xy26.一个五次项式,它任何一项的次数( ).A.都等于 5B.都大于 5C.都不大于 5D.都不小于527.若A=4x 2-3x-2,B=4x 2-3x-4,则A,B 的大小关系是( ) A.A<B B.A=B C.A>B D.无法确定28.若-4m x y 2与x4n y 是同类项,则m-n 的值是( )A.2B.6C.-2D.-6 29.已知a-b=-1,则3b-3a-(a-b)3的值是( ). A.-4 B.-2 C.4 D.230.已知m,n 是自然数, 234m n m n x y +++多项式的次数应当是( ) A.m B.n C.m+n D.m,n 中较大的数 四、解答31.某班共有学生40人,其中m 岁的有9人,n 岁的有24人,其余的都是s 岁的人,用代数式表示他们的平均年龄.若m=7,n=8,s=9,该班的平均年龄是多少?32.先化简,再求值. (1)13-(x 2y 2-xy+3)+2[x 2-12(xy-2x+y-1)]+3x-1,其中x=-4,y=3;(2)2(2a-b)2-12(2a+b)+3(2a-b)2+2(2a+b)-13,其中a=32,b=-2.33.多项式5x2y+7x3-2y3与另一多项式的和为3x2y-y3,求另一多项式.34.把多项式x 3y-xy 2+13-x 2y 3先按x 的升幂排列,再按y 的降幂排列.35.如图,长方形ABCD36.已知:a=b+2,c 的绝对值为3,m,n 互为倒数,试求代数式5a b-+4mn-c 2的值.五、证明37.已知:A=2x2+14x-1,B=x2+7x-2,试证A-2B的值与x无关.38.证明:一个两位数的十位数字大于个位数字,如果把十位数字与个位数字交换位置,则原来的数与新得到的数的差必能被9整除.第三章单元测试一、1.×2.×3.∨4.∨5.×6.×7.×8.∨9.∨10.×提示:1.S=2r π中含有非运算符号“=”,是等式,而非代数式.2.33x x中的分母含有字母x,因此33x x不是整式.3.对任意的a,3a 2+1>0是恒成立的. 5.a(1-20%)(1+20%)=425a6.243mn π是单项式,但系数是43π,次数为3.7.两个二次多项式的和可能不是二次多项式,如-x 2+3和x 2+y的和为y+3,是一次多项式,正确的说法应为两个二次多项式的和是不大于二次的多项式. 9.由同类项的定义,即为m=4. 10.代数式的值应为1. 二、11.1000b+a提示:a 是一个三位数,由于放在右边,所以不变,而b 放在a的左边,把b 看成一个整体,b 处在千位上,应乘以1000,所以这个五位数是1000b+a.12.0,x 2y,-a,23-a 2b;a 2+1,(a+b)(a-b),x 2-2xy+1 13.五,四,-5x 2y 3,-1,-5.14.2x 4y+12x 3y 2-x 2y 3+xy 4-1,-1+2x 4y+12x 3y 2-x 2y 3+xy 415.8x 2和-6x 2,-3x 和2x,-3和4 16.3x 2-4x+3,-5x 2+5x-4 17.a+b-218.4x+-3x-1,21.19.a,b 的平方和与a,b 和的平方的差,x,y 倒数和的倒数. 20.311,22a b -- 提示:三个数的和为3a,则其余两个数的和为3a-b,所以这两个数的平均值为32a b- 三、21.D 22.B 23.A 24.D 25.A 26.C 27.C 28.A 29.C 30.D提示:21.原两位数是10a+b,颠倒后的两位数是10b+a,新两位数十位上的数字是b,个位数字是a,两数字和为a+b,此和与新两位数的积为(a+b)(10b+a)22.若给这个班加上2个人,每4人一组,则每个组的人数刚好相等,所以组数为24m + 23.这ckg 盐水的浓度为%%a p b q a b ⋅+⋅+, 含盐应为%a p b qc a b⋅+⋅⋅+,含水应为c-%a p b qc a b⋅+⋅⋅+,只有(3)是正确的. 25.A 中所含字母相同,但相同字母的指数不同,故不是同类项. 26.五次多项式是指最高次项的次数是5,而不要求每一项的次数都是5.27.A-B=(4x 2-3x-2)-(4x 2-3x-4)=2>0,故A>B. 28.m=4,n=2.29.把a-b 看成整体,并代入,3b-3a-(a-b)3=-3(a-b)-(a-b)3. 30.多项式的次数是指最高次项的次数, 4m n +是常数项,所以多项式的次数由2,3m n x y 决定,若m ≥n,则m 即为多项式的次数;反之若n ≥m,则3n y 是最高次项,即n 为多项式的次数.四、31.平均年龄为924740m n s++, 将m=7,n=8,s=9代入得972487940⨯+⨯+⨯=7.95(岁)32.(1)原式=-13x 2y 2-23xy+2x 2+5x-y-1=-32.(2)原式=5(2a-b)2+32(2a+b)-13=2272提示:将(2a-b)2,2a+b 看成整体,合并同类项. 33.-2x 2y+y 3-7x 334.按x 的升幂排列:13-xy 2-x 2y 3+x 3y. 按y 的降幂排列:-x 2y 3-xy 2+x 3y+1335.L=2a-2b+πb. S=ab-212b π 36.-4.6. 五、37.(略) 提示:消去x.38.设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a,交换后的两位数为10a+b. 10b+a-(10a+b)=10b+a-10a-b=9b-9a=9(b-a)。
第3章 整式的加减数学七年级上册-单元测试卷-华师大版(含答案)
第3章整式的加减数学七年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列计算正确的是()A.3a+2b=5abB.3a﹣2a=1C.a 6÷a 2=a 3D.(﹣a 3b)2=a 6b 22、下列说法正确的是 ( ).A.整式就是多项式B.10 5是单项式C. x4+2 x3是七次二项式 D. 是单项式3、若﹣2a m b4与b n﹣2a3是同类项,则m n的值为()A.9B.-9C.729D.-7294、若,则的值是()A. B. C. D.5、下列运算正确的是()A.(2a)2=2a 2B.a 2•a 3=a 6C.2a+3a=5aD.(a 2)3=a 56、一个两位数,个位上是,十位上是,用代数式表示这个两位数( )A. B. C. D.7、把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为,宽为)的盒子底部(如图②),盒子底部未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A. B. C. D.8、下列运算正确的是()A. B.a 6÷a 2=a 3 C.5y 3•3y 2=15y 5 D.a+a 2=a 39、有理数,,,0,,中,负数有()A.1个B.2个C.3个D.4个10、如图所示的运算程序中,若开始输入的x值为5,可发现第一次输出的结果为8,第二次输出的结果为4,…,请你探索第2020次输出的结果为()A.2B.1C.6D.411、定义一种运算☆,其规则为,根据这个规则,计算的值是().A. B. C.5 D.612、下列式子变形正确的是()A.﹣(a﹣1)=﹣a﹣1B.3a﹣5a=﹣2aC.2(a+b)=2a+b D.|π﹣3|=3﹣π13、计算的结果正确的是()A. B. C. D.14、下面计算正确是()A. x3+4 x3=5 x6B. a2•a3=a6C.(﹣2 x3)4=16 x12 D.(x+2 y)(x﹣2 y)=x2﹣2 y215、下列去括号正确的是().A.-2(a+b)=-2a+bB.-2(a+b)=-2a-bC.-2(a+b)=-2a -2bD.-2(a+b)=-2a+2b二、填空题(共10题,共计30分)16、已知代数式a﹣2b的值为5,则4b﹣2a的值是________17、已知,则的值是________.18、如上图,已知等腰Rt△AA1,A2的直角边长为1,以Rt△AA1,A2的斜边AA2为直角边,画第2个等腰Rt△AA2A3,再以Rt△AA2A3的斜边AA3为直角边,画第3个等腰Rt△AA3A4,…,依此类推直到第100个等腰Rt△AA100A101,则由这100个等腰直角三角形所构成的图形的面积为________19、若单项式﹣3a m b3与4a2b n是同类项,则m+n=________.20、如果定义新运算“※”,满足a※b=a×b﹣a÷b,那么1※2=________.21、观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4,…请你将猜想得到的规律用自然数n表示出来:________ .22、高斯函数,也称为取整函数,即表示不超过的最大整数.例如:,.则下列结论:①;②;若,则的取值范围是;当时,的值为、、.其中正确结论有________(写出所有正确结论的序号).23、观察下列关于的单项式,探究其规律:,,,,按照上述规律,第2018个单项式________,第n个单项式是________.24、写出2a2b的一个同类项是________.25、观察下面的一列单项式:2x,﹣4x2, 8x3,﹣16x4,…根据你发现的规律,第7个单项式为________;第n个单项式为________.三、解答题(共5题,共计25分)26、先化简,再求值:3x2y-[2x2y-3(2xy-x2y)-xy],其中x=-,y=2.27、如果﹣a|m﹣3|b与是同类项,且m、n互为负倒数.求:n﹣mn﹣m的值.28、说出下列代数式的意义:(1)2a﹣3c;(2);(3)ab+1;(4)a2﹣b2.29、己知 a、b、c 在数轴上的位置如图所示,化简30、如果的整数部分是,而的小数部分是.求的值.参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、B5、C6、D7、B8、C9、B10、B11、A12、B13、A14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
第3章 整式的加减数学七年级上册-单元测试卷-华师大版(含答案)
第3章整式的加减数学七年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、两个三次多项式的和的次数是()A.六次B.三次C.不低于三次D.不高于三次2、已知x=a是方程x2﹣3x﹣5=0的根,代数式a2﹣3a+4的值为()A.6B.9C.14D.﹣63、以下代数式中不是单项式的是( )A. B. C. D.4、当分别等于1和-1时,代数式的两个值()A.互为相反数B.相等C.互为倒数D.异号5、已知小明的年龄是岁,爸爸的年龄比小明年龄的倍少岁,妈妈的年龄比小明年龄的倍多岁,则小明爸爸和妈妈的年龄和是()A. B. C. D.6、下列计算正确的是()A.(a﹣b)2=a 2﹣b 2B.5x 2+x 3=5x 5C. + =D.(a 2b)3=a 6b 37、如果|y﹣3|+|x﹣4|=0,那么的x﹣y值为()A.1B.-1C.7D.-78、有一列数,从第二个数开始,每一个数都等于与它前面那个数的倒数的差,若,则为()A.2011B.2C.-1D.9、观察图中正方形四个顶点所标的数字规律,可知数1007应标在()A.第252个正方形的左上角B.第252个正方形的右下角C.第251个正方形的左上角D.第521个正方形的右下角10、下列运算结果为a3的是()A.a+a+aB.a 5-a 2C.a·a·aD.a 6÷a 211、对于每个非零自然数n,抛物线与x轴交于,两点,以表示这两点之间的距离,则的值是()A. B. C. D.112、将4个数排成2行、2列,两边各加一条竖直线记成,定义,上述记号就叫做2阶行列式.若,则x的值为().A. B. C. D.213、若,则的值为()A. B. C. D.14、设则与s最接近的整数是()A.2009B.2006C.2007D.200815、如果,那么下列四个选项中,正确的选项是()A. B. C. D.二、填空题(共10题,共计30分)16、在有理数的原有运算法则中,我们定义一个新运算“★”如下:x≤y时,x★y=x2;x >y时,x★y=y.则(﹣2★﹣4)★1的值为________.17、若点在一次函数的图像上,则代数式的值是________.18、整式3x,-ab,t+1,0.12h+b中,单项式有________,多项式有________.19、历史上数学家欧拉最先把关于的多项式用记号来表示,把等于某数时的多项式的值用来表示.例如,对于多项式,当时,多项式的值为,若,则的值为________.20、用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a,b的等式为________.21、已知,则代数式的值为________.22、附加题:已知,则=________.23、若2,-5是方程x2-px+q=0的两个根,则p+q=________.24、对于两个非零的有理数,,规定,若,则的值为________.25、多项式中不含项,则常数的值是________.三、解答题(共5题,共计25分)26、已知关于x、y的多项式x2+ax+y-b与bx2-3x+6y-3 的差与字母x无关,求代数式2(a2-2ab-b2)-3(3a2-4ab-4b2)的值。
第3章 整式的加减数学七年级上册-单元测试卷-华师大版(含答案)
第3章整式的加减数学七年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列各式的计算,正确的是()A.3a+2b=5abB.5y 2﹣3y 2=2C.﹣12x+7x=﹣5xD.4m 2n﹣2mn 2=2mn2、已知2y2+y﹣2的值为3,则4y2+2y+1的值为()A.10B.11C.10或11D.3或113、下列运算中,结果正确的是()A.a 4+a 4=a 4B.(﹣2a 2)3=﹣6a 6C.a 8÷a 2=a 4D.a 3•a 2=a 54、若a+b=3,ab=2,则a2+b2的值为()A.6B.5C.4D.25、下列式子:﹣abc2, c,0,2a2+3b+1,,.其中单项式有()A.3个B.4个C.5个D.6个6、下列代数式-xy,,1,x+2y中,单项式有()A.1个B.2个C.3个D.4个7、已知:2+=22×, 3+=32×, 4+=42×, 5+=52×,…,若10+=102×符合前面式子的规律,则a+b的值为()A.179B.140C.109D.2108、下列式子中,符号代数式书写规范的是()A.a•3B.2 ab 2cC.D.a×b÷c9、已知正方形的边长为xcm,若把这个正方形的每边长都减少3cm,则正方形减少的面积为()A.3B.6x – 9C.(x-3) 2D.6x10、若与是同类项,则a、b值分别为()A.a=2,b=-1B.a=2,b=1C.a=-2,b=1D.a=-2,b=-111、下列各对单项式是同类项的是( )A.-x 3y 2与3y 2x 3B.-x与yC.3与3aD.3ab 2与a 2b12、已知x=1,|y|=2且x>y,则x﹣y的值是()A.﹣1B.﹣3C.1D.313、一项工程,甲单独做需a天完成,乙单独做需b天完成,则甲乙两人合做此项工程所需时间为()A. 天B. 天C. 天D. 天14、下列各式中,正确的是()A.t 2•t 3=t 5B.t 4+t 2=t 6C.t 3•t 4=t 12D.t 5•t 5=2t 515、下列各式中,计算结果为a6的是()A.a 3+a 3B.a 7﹣aC.a 2•a 3D.a 12÷a 6二、填空题(共10题,共计30分)16、三个连续整数中,n是最大的一个,这三个数的和为________ .17、如图是一个运算程序的示意图,若开始输入x的值为625,则第2019次输出的结果为________18、若x2﹣2x﹣1=2,则代数式2x2﹣4x的值为________19、若x3y a与﹣2x b y2的和仍为单项式,则a﹣b的值为________20、按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是________.21、在平面直角坐标系xOy中,对于点P(x,y),如果点Q(x,)的纵坐标满足,那么称点Q为点P的“关联点”.请写出点(3,5)的“关联点”的坐标________;如果点P(x,y)的关联点Q坐标为(-2,3),则点P的坐标为________.22、甲、乙、丙三人分别拿出相同数量的钱,合伙购买某种商品若干件.商品买来后,乙比甲少拿了2件,丙比甲多拿了11件,最后结算时,三人要求按所得商品的实际数量付钱,进行多退少补.已知丙付给甲30元,那么丙应付给乙________元.23、用代数式表示:比a的3倍大2的数________.24、如果单项式与的和是,那么________,________.25、如果x-2y=3,那么4(2-x)+8y=________.三、解答题(共5题,共计25分)26、当x=2时,代数式px3+qx+1的值等于2016,那么当x=﹣2时,求px3+qx+1 的值.27、若a、b互为相反数,c、d互为倒数,m的绝对值是1,求 (a+b)cd-2013m的值.28、已知:,,求的值.29、写出下列各单项式的系数和次数.(1)﹣3x2;(2)﹣m;(3)﹣.30、某地电话拨号入网有两种收费方式:(A)计时制:0.05元/分;(B)包月制:50元,此外,每种另加收通信费0.02元/分.(1)某用户某月上网时间为x小时,请分别写出两种收费方式下该用户应支付的费用;(2)若某用户估计一个月上网时间为20小时,你认为采用哪种方式较合算.参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、B5、B6、B7、C9、B10、B11、A12、D13、C14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 整式的加减检测题
(时间:90分钟,满分:100分)
一、选择题(每小题3分,共30分)
1.下列说法正确的是( ) A .2
3
与
23
是同类项 B .
1
x
与2是同类项 C .
3
2
与
是同类项 D .5与
2
是同类项
2.下列说法中,错误的是( ) A.代数式的意义是
的平方和
B.代数式
的意义是5与
的积
C.的5倍与的和的一半,用代数式表示为2
5y x + D.比的2倍多3的数,用代数式表示为
3.下列式子中代数式的个数有( )
A.2
B.3
C.4
D.5 4.当时,代数式的值是( ) A.
B.
C.
D.
5.下列各式去括号错误的是( ) A.2
1
3)213(+
-=--y x y x B.b a n m b a n m -+-=-+-+)( C.332)364(2
1
++-=+--
y x y x D.7
23121)7231()21(-++=+--+
c b a c b a 6.已知代数式的值是5,则代数式的值是( )
A.6
B.7
C.11
D.12
7.已知a 是两位数,b 是一位数,把a 接写在b 的后面,就成为一个三位数.这个三位数可表示成( )
A.10b a +
B.ba
C.100b a +
D.10b a + 8.一个代数式的倍与的和是,这个代数式是( ) A.3a b +
B.11
22
a b -
+ C.
33
22
a b + D.
31
22
a b + 9.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上
讲的内容,他突然发现一道题:.此空格的地方被钢笔水弄污了,那么空格中的一项是( ) A. B. C. D.
10.多项式与多项式的和是,多项式与多项式的和是
,那么多项式减去多项式的差是( )
A. 2
B.
2
C.
2
D.
2
二、填空题(每小题3分,共24分)
11.单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为_______________________, 化简后的结果是 .
12.规定
,则
的值
为 .
13.如图是一个数值转换机的示意图,若输入的值为,的值为,则输出的结果为 .
14.已知单项式2
b a m 与-
3
21
4-n b a 的和是单项式,那么 m = ,= .
15.三个小队植树,第一队种棵,第二队种的树比第一队种的树的倍还多棵,第三队种的树比第二队种的树的
一半少6棵,三队共种树 棵. 16.一个学生由于粗心,在计算的值时,误将“”
看成“”,结果得,则的值应为____________. 17.若则
.
18.当
时,代数式13++qx px 的值为
,则当
时,代数式13++qx px 的
值为__________.
三、解答题(共46分)
19.(5分)如图,当,
时,求阴影部分的周长和面积.
20.(5分)一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.
21.(6分)已知:,且. (1)求等于多少? (2)若,求的值. 22.(6分)有这样一道题: 先化简,再计算:, 其中. 甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.
23.(6分)某工厂第一车间有人,第二车间比第一车间人数的5
4
少人,如果从第二车
间调出
人到第一车间,那么:
(1)两个车间共有多少人?
(2)调动后,第一车间的人数比第二车间多多少人?
24.(6分) 某餐厅中,一张桌子可坐6人,有以下两种摆放方式: (1)当有张桌子时,两种摆放方式各能坐多少人?
(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?
25.(6分)任意写出一个数位不含零的三位数,任取三个数字中的两个,组合成所有可能的两位数(有6个),求出所有这些两位数的和,然后将它除以原三位数的各个数位上的数的和.例如,对三位数223,取其两个数字组成所有可能的两位数:22,23,22,23,32,32.它们的和是154.三位数223各位数的和是7,.再换几个数试一试,你发现了什么?请写出你按上面方法的探索过程和所发现的结果,并运用代数式的知识说明所发现的结果的正确性. 26.(6分)观察下面的变形规律:
211211-=⨯;3121321-=⨯;4
131431-=⨯;…. 解答下面的问题:
(1)若n 为正整数,请你猜想=)
1(1
+n n _____________;
(2)证明你猜想的结论; (3)求和:
012
2011 21431321211⨯++⨯+⨯+⨯ .
第3章 整式的加减检测题参考答案
1.D 解析:对于A ,前面的单项式含有,后面的单项式不含有,所以不是同类项; 对于B ,不是整式,2是整式,所以不是同类项;
对于C ,两个单项式,所含字母相同,但相同字母的指数不一样,所以不是同类项; 对于D ,两个单项式,所含字母相同,相同字母的指数也相同,所以是同类项,故选D. 2.C 解析:选项C 中运算顺序表达错误,应写成)5(2
1
y x +. 3.C 解析:代数式有:.因为
中含有“”
号,所以不是代数式.故选C. 4.D 解析:将代入代数式
得
,故选D.
5.C 解析:
6.C 解析:因为,所以,从而.
7.C 解析:两位数的表示方法:十位数字×10个位数字;三位数的表示方法:百位数字×100十位数字×10个位数字.是两位数,是一位数,依据题意可得扩大了100倍,所以这个三位数可表示成100b a +. 8.D 解析:这个代数式的倍为, 所以这个代数式为
31
22
a b +.
9.C 解析:因为将此
结果与相比较,可知空格中的一项是.故选C. 10.A 解析:由题意可知①;②. ①②:.故选A.
11. 解析:根据叙述可列算式,化简这个式子,得
12. 解析:根据,得. 13.5 解析:将代入,得. 14. 解析:因为两个单项式的和还为单项式,所以这两个单项式可以合并同类项,根据同类项的定义可知 15. 解析:依题意,得第二队种的树的数量,第三队种的树的数量为
,所以三队共种树
. 16.7 解析:由题意可知,故
.所以
.
17.622 解析:因为,
将代入可得
18. 解析:因为当
时,13
++qx px ==
++1q p ,所以
,
所以当
时,13
++qx px ==
+-1q p .
19.解:阴影部分的周长为;
阴影部分的面积为
20. 解:设原来的两位数是,则调换位置后的新数是. 所以. 所以这个数一定能被9整除.
21.解:(1)∵ ,,
,
∴
. (2)依题意得:,, ∴ ,.
∴ . 22.分析:首先将原代数式去括号,合并同类项,化为最简整式无关,所以当甲同学把”错抄成“”时,他计算的结果也是正确的. 解:
因为所得结果与的取值没有关系,所以他将值代入后,所得结果也是正确的. 当时,原式. 23.解:(1)因为第二车间比第一车间人数的5
4
少30人, 所以第二车间有.
则两个车间共有
.
(2)如果从第二车间调出10人到第一车间, 则第一车间有
所以调动后,第一车间的人数比第二车间多
.
24.解:(1)第一种中,有一张桌子时有6人,后边多一张桌子多4人. 即有张桌子时,有. 第二种中,有一张桌子时有6人,后边多一张桌子多2人,即.
(2)打算用第一种摆放方式来摆放餐桌. 因为当时,用第一种方式摆放餐桌:,
用第二种方式摆放餐桌:, 所以选用第一种摆放方式. 25.解:举例1:三位数578:
577578875885
22;578
+++++=++
举例2:三位数123:
122113312332
22;123
+++++=++ 猜想:所有可能的两位数的和除以这几个数字的和恒等于22. 证明如下:
设三位数为()10010,,0a b c a b c ++≠,则 所有的两位数是
.
故
101010101010a b b a a c c a b c c b
a b c +++++++++++++
()2222222222a b c a b c a b c a b c ++++===++++.
26.(1)1
1
1+n n -;
(2)证明:右边==+=+-+=++++)
1(1)1(1)1()1(1111n n n n n n n n n n n n n n -=-左边, 所以猜想成立. (3)解:原式=012
21011 2141313121211-++-+-+-
012
2011 2012 211=-=.。