同底数幂的除法练习题
同底数幂的除法专项练习题(有答案)
同底数幂的除法专项练习题(有答案)1.计算:$(-2m^2)^3+m^7/m$。
2.计算:$3(x^2)^3x^3-(x^3)^3+(-x)^2x^9/x^2$。
3.已知 $a_m=3$,$a_n=4$,求 $a_{2m-n}$ 的值。
4.已知 $3^m=6$,$3^n=-3$,求 $3^{2m-3n}$ 的值。
5.已知 $2a=3$,$4b=5$,$8c=7$,求 $8a+c-2b$ 的值。
6.如果 $x^m=5$,$x^n=25$,求 $x^{5m-2n}$ 的值。
7.计算:$a^{n+5}/a^7$($n$ 是整数)。
8.计算:(1) $-m^9/m^3$;(2) $(-a)^6/(-a)^3$;(3) $(-8)^6/(-8)^5$;(4) $6^{2m+3}/6^m$。
9.计算:$33\times36/(-3)^8$。
10.把下式化成 $(a-b)^p$ 的形式:$15(a-b)^3[-6(a-b)^p+5](b-a)^2/45(b-a)^5$。
11.计算:(1) $(a^8)^2/a^8$;(2) $(a-b)^2(b-a)^{2n}/(a-b)^{2n-1}$。
12.$(a^2)^3(a^2)^4/(-a^2)^5$。
13.计算:$x^3(2x^3)^2/(x^4)^2$。
14.若 $[(x^m/x^{2n})^3]/x^{m-n}$ 与 $4x^2$ 为同类项,且 $2m+5n=7$,求 $4m^2-25n^2$ 的值。
15.计算:(1) $m^9/m^7$;(2) $(-a)^6/(-a)^2$;(3) $(x-y)^6/(y-x)/(x-y)$。
16.已知 $2^m=8$,$2^n=4$,求:(1) $2^{m-n}$ 的值;(2) $2^{m+2n}$ 的值。
17.(1) 已知 $x^m=8$,$x^n=5$,求 $x^{m-n}$ 的值;(2) 已知 $10^m=3$,$10^n=2$,求 $10^{3m-2n}$ 的值。
同底数幂四则运算练习题
同底数幂四则运算练习题一、同底数幂的加法运算1. 计算:\(2^3 + 2^3\)2. 计算:\(5^2 + 5^2 + 5^2\)3. 计算:\(3^4 + 3^4 + 3^4 + 3^4\)4. 计算:\(4^5 + 4^5 + 4^5 + 4^5 + 4^5\)5. 计算:\(10^2 + 10^2 + 10^2 + 10^2 + 10^2 + 10^2\)二、同底数幂的减法运算1. 计算:\(2^5 2^4\)2. 计算:\(3^6 3^5 3^5\)3. 计算:\(4^7 4^6 4^6 4^6\)4. 计算:\(5^8 5^7 5^7 5^7 5^7\)5. 计算:\(6^9 6^8 6^8 6^8 6^8 6^8\)三、同底数幂的乘法运算1. 计算:\(2^2 \times 2^3\)2. 计算:\(3^3 \times 3^4\)3. 计算:\(4^4 \times 4^5\)4. 计算:\(5^5 \times 5^6\)5. 计算:\(6^6 \times 6^7\)四、同底数幂的除法运算1. 计算:\(2^5 \div 2^3\)2. 计算:\(3^7 \div 3^4\)3. 计算:\(4^9 \div 4^6\)5. 计算:\(6^{13} \div 6^{10}\)五、混合运算1. 计算:\(2^3 + 2^4 2^2\)2. 计算:\(3^4 \times 3^3 \div 3^2\)3. 计算:\(4^5 + 4^6 4^4 \times 4^3\)4. 计算:\(5^7 \div 5^6 + 5^5 5^4\)5. 计算:\(6^8 \times 6^7 \div 6^6 6^5 + 6^4\)六、特殊底数幂的运算1. 计算:\(\left(\frac{1}{2}\right)^4 +\left(\frac{1}{2}\right)^4\)2. 计算:\(\left(\frac{2}{3}\right)^5\left(\frac{2}{3}\right)^5\)3. 计算:\(\left(\frac{3}{4}\right)^6 \times\left(\frac{3}{4}\right)^6\)4. 计算:\(\left(\frac{4}{5}\right)^7 \div\left(\frac{4}{5}\right)^7\)5. 计算:\(\left(\frac{5}{6}\right)^8 +\left(\frac{5}{6}\right)^8 \left(\frac{5}{6}\right)^8\)七、指数比较1. 比较:\(2^7\) 和 \(2^8\)2. 比较:\(3^5\) 和 \(3^6\)3. 比较:\(4^4\) 和 \(4^3\)4. 比较:\(5^9\) 和 \(5^{10}\)八、指数表达式简化1. 简化表达式:\(2^3 \times 2^4 \div 2^2\)2. 简化表达式:\(3^5 + 3^5 3^4\)3. 简化表达式:\(4^6 \div 4^5 \times 4^4\)4. 简化表达式:\(5^7 5^6 + 5^5\)5. 简化表达式:\(6^8 + 6^7 \div 6^6\)九、指数方程求解1. 求解方程:\(2^x = 2^3\)2. 求解方程:\(3^y = 3^4\)3. 求解方程:\(4^z = 4^5\)4. 求解方程:\(5^a = 5^6\)5. 求解方程:\(6^b = 6^7\)十、指数不等式求解1. 解不等式:\(2^x > 2^2\)2. 解不等式:\(3^y < 3^5\)3. 解不等式:\(4^z \geq 4^4\)4. 解不等式:\(5^a \leq 5^7\)5. 解不等式:\(6^b > 6^3\)十一、应用题1. 如果一个数的同底数幂是64,另一个数的同底数幂是16,这两个数相乘后的同底数幂是多少?2. 一个数的同底数幂是81,另一个数的同底数幂是27,这两个数相除后的同底数幂是多少?3. 一个数的同底数幂是125,另一个数的同底数幂是25,这两个数相加后的同底数幂是多少?4. 一个数的同底数幂是256,另一个数的同底数幂是64,这两个数相减后的同底数幂是多少?5. 一个数的同底数幂是8,另一个数的同底数幂是2,这两个数进行混合运算(加、减、乘、除)后的同底数幂是多少?答案一、同底数幂的加法运算1. \(2^3 + 2^3 = 2^4 = 16\)2. \(5^2 + 5^2 + 5^2 = 3 \times 5^2 = 75\)3. \(3^4 + 3^4 + 3^4 + 3^4 = 4 \times 3^4 = 324\)4. \(4^5 + 4^5 + 4^5 + 4^5 + 4^5 = 5 \times 4^5 = 2048\)5. \(10^2 + 10^2 + 10^2 + 10^2 + 10^2 + 10^2 = 6 \times 10^2 = 600\)二、同底数幂的减法运算1. \(2^5 2^4 = 2^4(2 1) = 2^4 = 16\)2. \(3^6 3^5 3^5 = 3^5(3 2 1) = 3^5 = 243\)3. \(4^7 4^6 4^6 4^6 = 4^6(4 3 2 1) = 4^6 = 4096\)4. \(5^8 5^7 5^7 5^7 5^7 = 5^7(5 4 3 2 1) = 5^7 = 78125\)5. \(6^9 6^8 6^8 6^8 6^8 6^8 = 6^8(6 5 4 3 2 1) = 6^8 = 1679616\)三、同底数幂的乘法运算1. \(2^2 \times 2^3 = 2^{2+3} = 2^5 = 32\)2. \(3^3 \times 3^4 = 3^{3+4} = 3^7 = 2187\)3. \(4^4 \times 4^5 = 4^{4+5} = 4^9 = 262144\)4. \(5^5 \times 5^6 = 5^{5+6} = 5^{11} = 48828125\)5. \(6^6 \times 6^7 = 6^{6+7} = 6^{13} = 130691232\)四、同底数幂的除法运算1. \(2^5 \div 2^3 = 2^{53} = 2^2 = 4\)2. \(3^7 \div 3^4 = 3^{74} = 3^3 = 27\)3. \(4^9 \div 4^6 = 4^{96} = 4^3 = 64\)4. \(5^{11} \div 5^8 = 5^{118} = 5^3 = 125\)5. \(6^{13} \div 6^{10} = 6^{1310} = 6^3 = 216\)五、混合运算1. \(2^3 + 2^4 2^2 = 2^2(2^2 + 2^2 1) = 2^2 \times 7 = 4 \times 7 = 28\)2. \(3^4 \times 3^3 \div 3^2 = 3^{4+32} = 3^5 = 243\)3. \(4^5 + 4^6 4^4 \times 4^3 = 4^5(1 + 4 4^2) = 4^5\times 9 = 1024 \times 9 = 9216\)4. \(5^7 \div 5^6 + 5^5 5^4 = 5^1 + 5^5 5^4 = 5 + 3125 625 = 3555\)5. \(6^8 \times 6^7 \div 6^6 6^5。
同底数幂的除法 重难点专项练习【九大题型】-七年级数学下册同步精品课堂(苏科版)(解析版)
8.3同底数幂的除法重难点题型专项练习考查题型一利用运算性质直接计算典例1.下列运算正确的是()A .87a a a -=B .842a a a ÷=C .236a a a ⋅=D .2242(2)4a b a b -=【详解】解:A .8a 与7a 不是同类项,所以不能合并,故A 不合题意;B .原式4a =,故B 不合题意;C .原式5a =,故C 不合题意;D .原式424a b =,故D 符合题意.故本题选:D .变式1-1.210x y --=,求:248x y ÷⨯的值.【详解】解:210x y --= ,21x y ∴-=,2248228x y x y ∴÷⨯=÷⨯228x y -=⨯28=⨯16=.变式1-2.计算:982()()()m n n m m n -⋅-÷-.【详解】解:原式98298215()()()()()m n m n m n m n m n +-=-⋅-÷-=-=-.变式1-3.探究应用:用“⋃”、“⋂”定义两种新运算:对于两数a 、b ,规定1010a b a b =⨯ ,1010a b a b =÷ ,例如:32532101010=⨯= ,3232101010=÷= .(1)求:(1039983) 的值;(2)求:(20222020) 的值;(3)当x 为何值时,(5)x 的值与(2317) 的值相等.【详解】解:(1)(1039983) 10399831010=⨯202210=;(2)(20222020) 202220201010=÷210=100=;(3)由题意得:(5)(2317)x = ,则5231710101010x ⨯=÷,561010x +∴=,即56x +=,解得:1x =.考查题型二利用运算性质求解/参典例2.已知262555a b = ,444b c ÷=,则代数式23a ab c ++值是.【详解】解:262555a b = ,444b c ÷=,22655a b +∴=,44b c -=,3a b ∴+=,1b c -=,两式相减,可得:2a c +=,23()333326a ab c a a b c a c ∴++=++=+=⨯=.故本题答案为:6.变式2-1.已知6()x y a a =,23()x y a a a ÷=(1)求xy 和2x y -的值;(2)求224x y +的值.【详解】解:(1)6()x y a a = ,23()x y a a a ÷=6xy a a ∴=,223x y x y a a a a -÷==,6xy ∴=,23x y -=;(2)22224(2)434692433x y x y xy +=-+=+⨯=+=.变式2-2.已知常数a 、b 满足23327a b ⨯=,且2223(5)(5)(5)1a b a b ⨯÷=,求224a b +的值.【详解】解:23327a b ⨯= ,2333a b +∴=,故23a b +=,2223(5)(5)(5)1a b a b ⨯÷= ,243551a b ab +∴÷=,2430a b ab ∴+-=,23a b += ,630ab ∴-=,则2ab =,2224(2)4a b a b ab ∴+=+-2342=-⨯1=.考查题型三运算性质的逆用典例3.已知4m a =,8n b =,用含a ,b 的式子表示下列代数式:(1)求:232m n +的值(2)求:462m n -的值.变式3.已知36=,32=.(1)求3m n +的值.(2)求3m n -的值.(3)求233m n -的值.考查题型四零指数幂使用的条件典例4.等式0(3)1x -=成立的条件是()A .3x ≠-B .3x -C .3x -D .3x ≠【详解】解:等式0(3)1x -=成立的条件是:3x ≠.故本题选:D .变式4.若0(12)1x -=,则()A .0x ≠B .2x ≠C .12x ≠D .x 为任意有理数考查题型五利用零指数幂直接计算典例5.计算:220200(2)1( 3.14)π--+-.【详解】解:原式411=-+4=.变式5.计算:2202130(2)4(1)|2|(5)π-+⨯---+-.【详解】解:原式44(1)81=+⨯--+4481=--+7=-.考查题型六利用零指数幂求解/求参典例6.若2022(23)1x x ++=,则x =.【详解】解:当20200x +=时,2020x ∴=-,230x ∴+≠,符合题意;当231x +=时,20222021x ∴+=,符合题意;当231x +=-时,2x ∴=-,20222020x ∴+=,符合题意.故本题答案为:1-或2-或2022-.变式6-1.若13(1)1x x --=,则满足条件的x 值为.变式6-2.若-=-,求x 的值.【详解】解:①10x +=,且250x -≠,40x -≠,解得:1x =-;②254x x -=-,解得:1x =;③当指数是偶数时,25x -和4x -互为相反数,2540x x -+-=,解得:3x =,指数14x +=,符合题意.综上,1x =或1-或3.考查题型七负整数指数幂的计算与应用典例7-1.若20.3a =-,23b -=-,21(3c -=-,01()5d =-,则()A .a b c d <<<B .b a d c <<<C .a d c b <<<D .c a d b<<<变式7-1-1.已知222011(0.2),2,(),(22a b c d --=-=-=-=-,则比较a 、b 、c 、d 的大小结A .b a d c <<<B .a b d c <<<C .b a c d <<<D .b d a c<<<变式7-1-2.计算:(1)2301()(48)2-÷⨯.(2)201820114((5)3π--⨯+-+-.典例7-2.已知=,=,=,=,则这四个数从小到大排列顺序是()A .a b c d<<<B .d a c b<<<C .a d c b<<<D .b c a d<<<变式7-2.已知-=,-=,-=,请用“<”把它们按从小到大的顺序连接起来,说明理由.考查题型八科学记数法——表示较小的数典例8.飞沫一般认为是直径大于5微米(5微米0.000005=米)的含水颗粒.飞沫传播是新型冠状病毒的主要传播途径之一,日常面对面说话、咳嗽、打喷嚏都可能造成飞沫传播.因此有效的预防措施是戴口罩并尽量与他人保持1米以上社交距离.将0.000005用科学记数法表示应为()A .50.510-⨯B .60.510-⨯C .5510-⨯D .6510-⨯【详解】解:60.000005510-=⨯.故本题选:D .变式8-1.中芯国际集成电路制造有限公司,是世界领先的集成电路晶圆代工企业之一,也是中国内地技术最先进、配套最完善、规模最大、跨国经营的集成电路制造企业集团,中芯国际第一代14纳米FinFET 技术取得了突破性进展,并于2019年第四季度进入量产,代表了中国大陆自主研发集成电路的最先进水平,14纳米0.000000014=米,0.000000014用科学记数法表示为()A .71.410-⨯B .71410-⨯C .81.410-⨯D .91.410-⨯【详解】解:80.000000014 1.410-=⨯.故本题选:C .变式8-2.每到四月,许多地方的杨絮、柳絮如雪花漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000115m ,把0.0000115写成10(110n a a ⨯<,n 为整数)的形式,则n 为()A .7-B .5-C .4-D .5【详解】解:50.0000115 1.1510-=⨯,5n ∴=-,故本题选:B .变式8-3.某种分子的直径约为19000mm ,将19000用科学记数法表示为10n a ⨯的形式,下列说法正确的是()A .a ,n 都是负数B .a 是负数,n 是正数C .a ,n 都是正数D .a 是正数,n 是负数考查题型九科学记数法——原数典例9.已知一种细胞的直径约为42.1310cm -⨯,请问42.1310-⨯这个数原来的数是()A .21300B .2130000C .0.0213D .0.000213【详解】解:42.13100.000213-⨯=.故本题选:D .变式9.将53.0510-⨯用小数表示为.【详解】解:53.05100.0000305-⨯=.故本题答案为:0.0000305.。
初中数学同底数幂除法基础习题含答案
同底数幂除法一.选择题(共30小题)1.若2x=8,4y=16,则2x﹣2y的值为()A.B.﹣2C.D.2.若a=﹣3﹣2,b=(﹣)﹣2,c=(﹣)0,则a,b,c大小关系正确的是()A.a<b<c B.c<a<b C.b<c<a D.a<c<b3.下列计算正确的是()A.m2+m3=m5B.m2•m3=m6C.m2÷m2=0D.m4÷m2=m2 4.下列各式运算不正确的是()A.a3•a4=a7B.(a4)4=a16C.a5÷a3=a2D.(﹣2a2)2=﹣4a45.下列运算正确的是()A.(a3)2=a5B.a3×a2=a6C.(ab)4=a4b4D.a6÷a3=a2 6.计算3﹣2的结果是()A.﹣6B.C.9D.﹣97.若(a﹣1)0=1,则()A.a=1B.a≠1C.a=0D.a≥18.a11÷(﹣a2)3•a5的值为()A.1B.﹣1C.﹣a10D.a99.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3或x≠2D.x≠3且x≠2 10.已知a m=2,a n=4,则a3m﹣2n=()A.﹣B.C.1D.211.若等式(a﹣2)3﹣2a=1成立,则a的值可能为()A.3或1或1.5B.3或1.5C.3或1D.1或1.5 12.计算:=()A.2B.﹣2C.D.13.已知a=(﹣5)2,b=(﹣5)﹣1,c=(﹣5)0,那么a,b,c之间的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.c>a>b14.74÷72的值是()A.49B.14C.2D.15.计算(﹣x3)2÷(﹣x)所得结果是()A.x5B.﹣x5C.x6D.﹣x616.已知a m=9,a n=3,则a m﹣n的值是()A.﹣3B.3C.D.117.如果3a=5,3b=10,那么3a﹣b的值为()A.B.﹣5C.9D.18.计算:x5÷x2等于()A.x2B.x3C.2x D.2x19.已知5x=2,5y=3,则53x﹣2y的值为()A.1B.C.D.﹣120.已知a m=3,a n=5,则a2m﹣n的值为()A.4B.C.D.21.计算(π﹣3)0÷3×(﹣)的结果是()A.﹣1B.﹣C.1D.922.计算a5÷a﹣2÷a3的结果是()A.a4B.a﹣4C.a7D.a1423.若代数式(x﹣1)﹣1有意义,则x应满足()A.x=0B.x≠0C.x≠1D.x=124.(﹣)0=()A.﹣B.1C.0D.﹣25.下列运算正确的是()A.x6÷x=x6B.x3+x5=x8C.x2•x2=2x4D.(﹣x2y)3=﹣x6y326.计算的结果是()A.6B.C.8D.27.若3m=5,3n=2,则3m﹣2n等于()A.B.9C.D.28.若a m=6,a n=2,则a m﹣n的值为()A.8B.4C.12D.329.若a=,b=﹣0.32,c=﹣3﹣2,d=,则它们的大小关系是()A.a<b<c<d B.b<c<d<a C.a<d<c<b D.c<b<d<a 30.当代数式2(x+1)﹣1与3(x﹣2)﹣1的值相等时,x=()A.7B.﹣7C.8D.﹣8二.填空题(共19小题)31.计算:5﹣2+(﹣2019)0=______.32.满足等式(3x+2)x+5=1的x的值为______.33.当2(x+1)﹣1与3(x﹣2)﹣1的值相等时,此时x的值是______.34.计算:()0×10﹣1=______.35.计算:(﹣8)0+(﹣2)2=______.36.计算:(﹣2)0+|﹣3|=______.37.已知:5x=6,5y=3.则5x+2y﹣1=______.38.计算:=______.39.已知3a=5,9b=10,则3a﹣b=______.40.若a x÷a3×a5=a6,则x=______.41.若(x+3)x﹣3=1,则x=______.42.计算:(﹣2)﹣2+(﹣2)﹣1﹣(﹣)0=______.43.若代数式(m+2)0+(m﹣2)﹣2有意义,则m的取值范围是______.44.已知a5=6,a2=2,则a3=______.45.计算:(π﹣2019)0+(﹣)3=______.46.若(a﹣3)0=1,则a的取值范围是______.47.已知10m=20,10n=,则10m﹣n=______;9m÷32n=______ 48.若x m=6,x n=9,则x2m﹣n=______.49.已知:2m=12,2n=48,试计算:(﹣3)m﹣n=______.三.解答题(共1小题)50.计算:(﹣)﹣2+4×(﹣1)2019﹣|﹣23|+(π﹣5)0同底数幂除法参考答案与试题解析一.选择题(共30小题)1.若2x=8,4y=16,则2x﹣2y的值为()A.B.﹣2C.D.解:∵2x=8,4y=16,∴2x﹣2y=2x÷22y=2x÷4y=8÷16=.故选:A.2.若a=﹣3﹣2,b=(﹣)﹣2,c=(﹣)0,则a,b,c大小关系正确的是()A.a<b<c B.c<a<b C.b<c<a D.a<c<b解:∵a=﹣3﹣2=﹣,b=(﹣)﹣2=9,c=(﹣)0=1,∴a<c<b.故选:D.3.下列计算正确的是()A.m2+m3=m5B.m2•m3=m6C.m2÷m2=0D.m4÷m2=m2解:A.m2与m3不是同类项,所以不能合并,故本选项不合题意;B.m2•m3=m5,故本选项不合题意;C.m2÷m2=1,故本选项不合题意;D.m4÷m2=m2,正确,故本选项符合题意.故选:D.4.下列各式运算不正确的是()A.a3•a4=a7B.(a4)4=a16C.a5÷a3=a2D.(﹣2a2)2=﹣4a4解:A.a3•a4=a7,故本选项不合题意;B.(a4)4=a16,故本选项不合题意;C.a5÷a3=a2,故本选项不合题意;D.(﹣2a2)2=4a4,故本选项符合题意.故选:D.5.下列运算正确的是()A.(a3)2=a5B.a3×a2=a6C.(ab)4=a4b4D.a6÷a3=a2解:A、应为(a3)2=a6,故本选项错误;B、应为a3×a2=a5,故本选项错误;C、(ab)4=a4b4,故本选项正确;D、应为a6÷a3=a3,故本选项错误.故选:C.6.计算3﹣2的结果是()A.﹣6B.C.9D.﹣9解:3﹣2=.故选:B.7.若(a﹣1)0=1,则()A.a=1B.a≠1C.a=0D.a≥1解:由题意知,a﹣1≠0.解得a≠1.故选:B.8.a11÷(﹣a2)3•a5的值为()A.1B.﹣1C.﹣a10D.a9解:a11÷(﹣a2)3•a5=a11÷(﹣a6)•a5=﹣a11﹣6+5=﹣a10.故选:C.9.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3或x≠2D.x≠3且x≠2解:若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x﹣3≠0且2x﹣4≠0,解得:x≠3且x≠2.故选:D.10.已知a m=2,a n=4,则a3m﹣2n=()A.﹣B.C.1D.2解:∵a m=2,a n=4,∴a3m﹣2n=(a m)3÷(a n)2=23÷42=.故选:B.11.若等式(a﹣2)3﹣2a=1成立,则a的值可能为()A.3或1或1.5B.3或1.5C.3或1D.1或1.5解:当3﹣2a=0,即a=1.5时,等式(a﹣2)3﹣2a=1成立;当a﹣2=1,即a=3时,等式(a﹣2)3﹣2a=1成立;综上所述,当等式(a﹣2)3﹣2a=1成立,则a的值可能为3或1.5,故选:B.12.计算:=()A.2B.﹣2C.D.解:=2,故选:A.13.已知a=(﹣5)2,b=(﹣5)﹣1,c=(﹣5)0,那么a,b,c之间的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.c>a>b解:a=25,b=,c=1,∴b<c<a,故选:B.14.74÷72的值是()A.49B.14C.2D.解:74÷72=74﹣2=72=49.故选:A.15.计算(﹣x3)2÷(﹣x)所得结果是()A.x5B.﹣x5C.x6D.﹣x6解:(﹣x3)2÷(﹣x)=x6÷(﹣x)=﹣x5,故选:B.16.已知a m=9,a n=3,则a m﹣n的值是()A.﹣3B.3C.D.1解:∵a m=9,a n=3,∴a m﹣n=a m÷a n=9÷3=3,故选:B.17.如果3a=5,3b=10,那么3a﹣b的值为()A.B.﹣5C.9D.解:∵3a=5,3b=10,∴3a﹣b=.故选:A.18.计算:x5÷x2等于()A.x2B.x3C.2x D.2x 解:x5÷x2=x5﹣2=x3.故选:B.19.已知5x=2,5y=3,则53x﹣2y的值为()A.1B.C.D.﹣1解:∵5x=2,5y=3,∴53x﹣2y=(5x)3÷(5y)2=23÷32=.故选:B.20.已知a m=3,a n=5,则a2m﹣n的值为()A.4B.C.D.解:∵a m=3,a n=5,∴.故选:B.21.计算(π﹣3)0÷3×(﹣)的结果是()A.﹣1B.﹣C.1D.9解:原式=1××(﹣)=﹣,故选:B.22.计算a5÷a﹣2÷a3的结果是()A.a4B.a﹣4C.a7D.a14解:原式=a7÷a3=a4,故选:A.23.若代数式(x﹣1)﹣1有意义,则x应满足()A.x=0B.x≠0C.x≠1D.x=1解:若代数式(x﹣1)﹣1有意义,则x﹣1≠0,解得:x≠1.故选:C.24.(﹣)0=()A.﹣B.1C.0D.﹣解:(﹣)0=1.故选:B.25.下列运算正确的是()A.x6÷x=x6B.x3+x5=x8C.x2•x2=2x4D.(﹣x2y)3=﹣x6y3解:x6÷x=x5,故选项A错误;x3与x5不是同类型,故不能合并,故选项B错误;x2•x2=x4,故选项C错误;(﹣x2y)3=﹣x6y3.故选项D正确.故选:D.26.计算的结果是()A.6B.C.8D.解:原式=23=8,故选:C.27.若3m=5,3n=2,则3m﹣2n等于()A.B.9C.D.解:∵3m=5,3n=2,∴3m﹣2n=3m÷(3n)2=5÷22=.故选:C.28.若a m=6,a n=2,则a m﹣n的值为()A.8B.4C.12D.3解:∵a m=6,a n=2,∴原式=a m÷a n=3,故选:D.29.若a=,b=﹣0.32,c=﹣3﹣2,d=,则它们的大小关系是()A.a<b<c<d B.b<c<d<a C.a<d<c<b D.c<b<d<a解:∵a==9,b=﹣0.32=﹣0.09,c=﹣3﹣2=﹣,d==1,∴c<b<d<a.故选:D.30.当代数式2(x+1)﹣1与3(x﹣2)﹣1的值相等时,x=()A.7B.﹣7C.8D.﹣8解:∵代数式2(x+1)﹣1与3(x﹣2)﹣1的值相等,∴=,则3(x+1)=2(x﹣2),故3x+3=2x﹣4,解得:x=﹣7,检验:当x=﹣7时,(x+1)(x﹣2)≠0,故x=﹣7是方程的解.故选:B.二.填空题(共19小题)31.计算:5﹣2+(﹣2019)0=1.解:原式=+1=1.故答案为:1.32.满足等式(3x+2)x+5=1的x的值为﹣,﹣1或﹣5.解:(1)当3x+2=1时,x=﹣,此时(﹣1+2)=1,等式成立;(2)当3x+2=﹣1时,x=﹣1,此时(﹣3+2)﹣1+5=1,等式成立;(3)当x+5=0时,x=﹣5,此时(﹣15+2)0=1,等式成立.综上所述,x的值为:﹣,﹣1或﹣5.故答案为:﹣,﹣1或﹣5.33.当2(x+1)﹣1与3(x﹣2)﹣1的值相等时,此时x的值是﹣7.解:∵2(x+1)﹣1与3(x﹣2)﹣1的值相等,∴=,则2x﹣4=3x+3,解得:x=﹣7,检验:x=﹣7时,(x+1)(x﹣2)≠0,故x=﹣7是原方程的根.故答案为:﹣7.34.计算:()0×10﹣1=.解:原式=1×=,故答案为:.35.计算:(﹣8)0+(﹣2)2=5.解:原式=1+4=5.故答案为:5.36.计算:(﹣2)0+|﹣3|=4.解:原式=1+3=4.故答案为:4.37.已知:5x=6,5y=3.则5x+2y﹣1=.解:∵5x=6,5y=3,∴5x+2y﹣1=5x•(5y)2÷5=6×32÷5=6×9÷5=.故答案为:38.计算:=2.解:原式=1﹣3+4=2,故答案为:239.已知3a=5,9b=10,则3a﹣b=.解:∵9b=32b=10,∴3b=,∵3a=5,∴3a﹣b=3a÷3b=5=,故答案为:40.若a x÷a3×a5=a6,则x=4.解:∵a x÷a3×a5=a6,∴x﹣3+5=6x=4.故答案为4.41.若(x+3)x﹣3=1,则x=3或﹣2.解:由题意得:①x﹣3=0,解得:x=3,②x+3=1,解得:x=﹣2,③x+3=﹣1,且x﹣3为偶数,解得:无解,故答案为:3或﹣2.42.计算:(﹣2)﹣2+(﹣2)﹣1﹣(﹣)0=﹣.解:原式=﹣﹣1=﹣.故答案为:.43.若代数式(m+2)0+(m﹣2)﹣2有意义,则m的取值范围是m≠±2.解:∵(m+2)0+(m﹣2)﹣2有意义,∴m+2≠0且m﹣2≠0,解得:m≠±2.故答案为:m≠±2.44.已知a5=6,a2=2,则a3=3.解:∵a5=6,a2=2,∴a3=6÷2=3.故答案为:3.45.计算:(π﹣2019)0+(﹣)3=.解:(π﹣2019)0+(﹣)3=1﹣=.故答案为:.46.若(a﹣3)0=1,则a的取值范围是a≠3.解:∵(a﹣3)0=1,∴a﹣3≠0,故a≠3.故答案为:a≠3.47.已知10m=20,10n=,则10m﹣n=100;9m÷32n=81解:∵10m=20,10n=,∴10m﹣n=10m÷10n==100;∴m﹣n=2,9m÷32n=32m÷32n=32m﹣2n=32(m﹣n)=34=81.故答案为:100;81.48.若x m=6,x n=9,则x2m﹣n=4.解:∵x m=6,∴x2m=62=36,∴x2m﹣n=36÷9=4.故答案为:4.49.已知:2m=12,2n=48,试计算:(﹣3)m﹣n=.解:∵2m=12,2n=48,∴2m﹣n=12÷48==2﹣2,∴m﹣n=﹣2,∴(﹣3)m﹣n=(﹣3)﹣2=.故答案为:.三.解答题(共1小题)50.计算:(﹣)﹣2+4×(﹣1)2019﹣|﹣23|+(π﹣5)0解:原式=(﹣3)2+4×(﹣1)﹣8+1=9﹣4﹣8+1=﹣2。
同底数幂的除法练习题含答案
同底数幂的除法练习题含答案1.选择题下列算式中正确的是.A.0=0B.-2=0.01C.0=1D.10-4=0.0001下列计算正确的是.A.a3m-5÷a5-m=a4m+10B.x4÷x3÷x2=x3C.5÷3=-yD.ma+2b÷mb-a=m2a+b若x2m+nyn÷x2y2=x5y,则m、n的值分别为.A.m=3,n=B.m=2,n=C.m=2,n=D.m=3,n=12.填空题3÷a3.108÷104.y10÷4÷2.若32x-1=1,则x;若3x=127,则x= .用科学记数法表示0.0001234×1083.用整数或小数表示下列各数9.932×107.21×10-5-4.21×10-3.021×10-34.用科学记数法表示下列各数732400 -66439190000.0000000600-0.000002175.计算2÷x2÷x+x3÷2·28÷[3×2]m÷2m÷bm÷4c5÷3[123-3+33]÷1.已知252m÷52m-1=125,求m的值.2.已知[2]3÷4=0,求x、y的值.3.已知xa=24,xb=16,求xa-b的值.121212填空:∵am÷am=a mam=1,又∵am÷am=am-m=a0,∴a0a.已知a=11?66?12?67?13?68?14?69?15?7011?65?12?66?13?67?14?68?15?69·100,问 a的整数部分是多少?参考答案1.选择题DDC2.填空题-a3104=10000y225x2-20xy+4y1,-21.234×1043.用整数或小数表示下列各数 99320.0000721-42100000-0.0030214.用科学记数法表示下列各数7.324×105-6.643919×1096.005×10-8-2.17×10-65.计算2x3-11-x2-y2-z2-2xy+2xz+2yz-10x2-20xy-10y21.m=12.x=0,y=03.21,≠100,提示:设68=m同底数幂的除法专项练习30题2371.计算:+m÷m.2.计算:3?x﹣+?x÷x3.已知a=3,a=4,求amnmn2m﹣n23333292的值.4.已知3=6,3=﹣3,求3abc2m﹣3n的值.5.已知2=3,4=5,8=7,求8 6.如果x=5,x=25,求x7.计算:a?an7mna+c﹣2b的值.5m﹣2n的值.÷a.8.计算:﹣m÷m;÷;÷;69.3×3÷10.把下式化成的形式:3p+52515[﹣6]÷4511.计算:÷a;÷12.?÷13.计算:x?÷14.若÷x与4x为同类项,且2m+5n=7,求4m﹣25n 的值.15.计算:97m÷m=;÷=; m2n 3m﹣n 222332422324258222n2n﹣1p3689363652m+3÷6.m.63÷÷=16.已知2=8,2=4求2 mnmnm﹣n的值.2m+2n的值.17.已知x=8,x=5,求xmnkm﹣n的值;已知10=3,10=2,求10mn3m﹣2n的值.18.已知a=4,a=3,a=2,求a19.计算:÷[]k2n+m﹣2k32n20.已知:a=2,a=3,a=4,试求a 21.已知5x﹣3y﹣2=0,求10ab10x6ym的值.÷10的值.22.已知10=2,10=9,求:23.已知 24.计算:÷amn2n23n+2的值.,求n的值.a.225.已知a=2,a=7,求a33m+2n﹣a2n﹣3m的值.26.计算:?÷.27.?÷.28.已知a=4,a=9,求a29.计算7483÷74÷2m+2m+2x÷x53÷xy3x﹣2y534228的值.62x÷x?x30.若3?9 22a+1a+1=81,求a的值.参考答案:1.+m÷m,=×+m,=﹣8m+m,=﹣7m2333329263929299992.3?x﹣+?x÷x=3x?x﹣x+x?x÷x=3x﹣x+x=3x..∵a=3,a=4,∴amnmn2m﹣n237323666=a÷a=÷a=3÷4=.=3÷3=÷=6÷=﹣.=23a+3c﹣6b5n2m3nm2n3232mnm2n24.∵3=6,3=﹣3,∴3abc2m﹣3n5.∵2=3,4=5,8=7,∴8 ma+c﹣2b=?÷=27×7÷125=25254a33c2b36.∵x=5,x=25,∴x=÷=5÷=5÷5=5. nn+572n+5﹣72n﹣27.a?a÷a=a=a939﹣36636﹣3338.﹣m÷m=﹣1×m=﹣m;÷===﹣a; 656﹣512m+3m﹣mm+3÷===﹣8;÷6=6=6368989.3×3÷=3÷3=33p+52510. 15[﹣6]÷4p+525=15×[﹣6]÷45[﹣]3+p+2+5﹣5p+5=[15×]÷×=211.÷a=a÷a=a=a;22n2n﹣122n2n﹣12+2n﹣3÷=÷==.232425*********12.?÷=a?a÷=﹣a÷a=﹣a.332429813.x?÷=4x÷x=4x.m2n3m﹣nm﹣2n3m﹣n3m﹣6nm﹣n2m﹣5n214.÷x=÷x=x÷x=x,因它与4x为同类项,所以2m ﹣5n=2,又2m+5n=7,2222所以4m﹣25n=﹣==7×2=14.979﹣72626﹣2415. m÷m=m=m;÷==a;63636﹣3﹣12÷÷=÷[﹣]÷=﹣=﹣.m3n2m﹣n3﹣2m+2n3+4716.∵2=8=2,2=4=2,∴m=3,n=2,2=2=2;2=2=2=128. 17.∵x=8,x=5,∴xmnmnm﹣n5m﹣2nm82816816﹣88=x÷x,=8÷5=;m332nn223m﹣2nmn∵10=3,10=2,∴10==3=27,10==2=4,∴1018.∵a=4,a=3,∴a19.?=4÷2×3=2n6n+63nm3k2nmk3n232y)÷[]=﹣27xmk2n+m﹣2k3y÷=﹣27x2kn2mk32n6n+63n6n2n6ny÷xy=﹣27xy20.∵a=2,a=3,a=4,∴a=a?a÷a=?a÷=4×3÷16=. 10x6y10x﹣6ym221.由5x﹣3y﹣2=0,得5x﹣3y=2.∴10÷10=1010x6y4故10÷10的值是102.23.∵32m+22=10=102×2=10.4=1022a﹣b=m+1m=.,∴9÷3?a=a 2m+2=3n+2nm+1=9=9÷92mm+1=9==,∴n=?a=an﹣2+2n﹣1224.÷am2n?a=a÷a24n3n+24n﹣3n﹣2a=a3n﹣2n=a.2m3n25.∵a=2,a=7,∴a 3m+2n﹣a2n﹣3m=?﹣÷=8×49﹣49÷8=26.?÷=÷=27.原式=?a÷=﹣a28.a 3x﹣2y51225+122172328585﹣8==15﹣315÷=﹣a÷a=﹣a.故答案为:﹣a.=÷=4÷9=43x3y23229.a÷a=a;8355÷==﹣m;74333÷==xy;2m+2m+2mx÷x=x;53532÷=﹣÷=﹣;6245x÷x?x=x?x=x.223430.原式可化为:3?3÷3=3,即2+2﹣3=4,解得a=3.故答案为:3.7同底数幂的除法专项训练一、填空题1.计算:a6?a25?2.2.在横线上填入适当的代数式:x6?_____?x14,x6?_____?x2.3.计算:x9?x5?x= x5?4.计算:9?85.计算:3?2=___________.二、选择题6.下列计算正确的是A.7÷4=y; B.5÷=x4+y4;C.6÷2=; D.-x5÷=x2.7.下列各式计算结果不正确的是A.ab2=a3b3;B.a3b2÷2ab=1a2b;C.3=8a3b6;D.a3÷a3·a3=a2.8.计算:??a?5?a2a?34的结果,正确的是A.a7;B.?a6;C.?a;D.a6.9. 对于非零实数m,下列式子运算正确的是A.2?m; B.m3?m2?m6;C.m2?m3?m; D.m6?m2?m4.10.若3x?5,3y?4,则32x?y等于25;B.; C.21;D.20.三、解答题11.计算: A.⑴4?2;⑵5?2;444⑶4?2;⑷7?4?3.3312.计算:⑴a9?a5?3;⑵7?4?3;432332⑶83?43?25;⑷. ??13.地球上的所有植物每年能提供人类大约6.6?1016大卡的能量,若每人每年要消耗8?105大卡的植物能量,试问地球能养活多少人?14.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89的个位数字是A.; B.4;C.8; D.6.15.如果xm?8,xn?5,则xm?n16. 解方程:28?x?215;7x?5.17. 已知am?3,an?9,求a3m?2n的值.18.已知32m?5,3n?10,求9m?n;92m?n.参考答案1.a4,?a3;2.x8,x4;3.x9, x;4.a?1;5. m?n.6.D;7.D;8.C;9.D;10.A.11.⑴x2y2;⑵?a3b;⑶2;⑷.1.12.⑴a2;⑵a6;⑶83?43?25=29?26?25=210;⑷?x.13.解:÷=0.825?1011=8.25?1010答:略.14.C.15..716. 解:x?215?28?27;x??74.17.解:因为am?3,an?9,1所以a3m?2n=a3m?a2n=3?2=33?92=.18.解:因为32m?5,3n?10,所以9m?n?32m?2n?32m?32n=32m?2?5?100? 92m?n=34m?2n=2?2=25?100=1.120,。
同底数幂的除法试题精选附答案
同底数幂的除法试题精选附答案1.已知 $a=6$,$a=3$,则 $a^{2m-3n}$ 的值为()。
A。
9.B。
$6^{2m-3n}$。
C。
2.2.下列计算:①$x÷x=x$,②$(x^m)^n=x^{mn}$,③$(3xy)^2=9x^2y^2$。
其中正确的计算有()。
A。
个。
B。
1个。
C。
2个。
3.已知$x^m=2$,$x^n=3$,则$x^{2m-3n}$ 的值为()。
A。
$-5$。
B。
$\dfrac{1}{6}$。
C。
$-\dfrac{1}{5}$。
4.若 $3x=15$,$3y=5$,则 $3x-y$ 等于()。
A。
5.B。
3.C。
15.5.($-2$)$^{2014}÷$($-2$)$^{2013}$ 等于()。
A。
$-2$。
B。
2.C。
$-2^{2012}$。
6.下面是某同学在一次测验中的计算摘录,其中正确的是()。
A。
$b^3·b^3=b^6$。
B。
$(a^5)^2=a^{10}$。
C。
$(ab^2)^3=a^3b^6$。
7.若 $a^m=2$,$a^n=3$,则 $a^{2m-n}$ 的值是()。
A。
1.B。
12.C。
18.8.$x^{15}÷x^3$ 等于()。
A。
$x^5$。
B。
$x^{45}$。
C。
$x^{12}$。
9.已知 $\dfrac{2amb^4}{4abn}=\dfrac{1}{2}$,则 $m$,$n$ 的值分别为()。
A。
$m=1$,$n=4$。
B。
$m=2$,$n=3$。
C。
$m=3$,$n=4$。
10.若 $m$,$n$ 都是正整数,$a^{mn}÷a^n$ 的结果是()。
A。
$a^m$。
B。
$a^{mn-n}$。
C。
$a^n$。
11.若 $x^{-2y+1}=0$,则 $2x÷4y×8$ 等于()。
A。
1.B。
4.C。
8.12.如果 $a^m=3$,$a^n=6$,则 $a^{n-m}$ 等于()。
同底数幂的除法试题精选(三)附答案
同底数幂的除法试题精选(三)一.填空题(共17小题)1.(﹣b2)•b3÷(﹣b)5=_________.2.(1)a2•a3=_________;(2)x6÷(﹣x)3=_________.3.若2m=5,2n=6,则2m﹣2n=_________.若3m+2n=6,则8m×4n=_________.4.计算:(﹣a2)3+(﹣a3)2﹣a2•a4+a9÷a3=_________.5.①若m x=4,m y=3,则m x+y=_________;②若,则9x﹣y=_________.6.a5•a÷a2=_________;(x﹣y)(y﹣x)2(x﹣y)3=_________;(a2)m﹣a m=_________.7.(2012•滨州)根据你学习的数学知识,写出一个运算结果为a6的算式_________.8.下雨时,常常是“先见闪电,后听雷鸣”,这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×102米/秒,则光速是声速的_________倍.(结果保留两个有效数字)9.已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是_________.10.(﹣x)10÷(﹣x)5÷(﹣x)÷x=_________.11.如果2x=5,2y=10,则2x+y﹣1=_________.12.已知a m=9,a n=8,a k=4,则a m﹣2k+n=_________.13.(2011•安徽)根据里氏震级的定义,地震所释放的相对能量E与地震级数n的关系为:E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是_________.14.(2007•仙桃)计算:a2•a3÷a4的结果是_________.15.(2004•太原)人们以分贝为单位来表示声音的强弱.通常说话的声音是50分贝,它表示声音的强度是105;摩托车发出的声音是110分贝,它表示声音的强度是1011.摩托车的声音强度是说话声音强度的_________倍.16.(2005•河南)计算:(x2)3÷x5=_________.17.(2001•济南)_________÷a=a3.二.解答题(共8小题)18.化简:(x﹣y)12×(y﹣x)2÷(y﹣x)3.19.(2a+b)4÷(2a+b)2.20.已知a x=2,a y=3,求下列各式的值.(1)a2x+y(2)a3x﹣2y.21.已知5x=36,5y=2,求5x﹣2y的值.22.已知:x m=3,x n=2,求:(1)x m+n的值;(2)x2m﹣3n的值.23.利用幂的性质进行计算:.24.已知4m=y﹣1,9n=x,22m+1÷32n﹣1=12,试用含有字母x的代数式表示y.25.(1)计算:(﹣x)(﹣x)5+(x2)3;(2)计算:(﹣a2)3÷(﹣a3)2.同底数幂的除法试题精选(三)附答案参考答案与试题解析一.填空题(共17小题)1.(﹣b2)•b3÷(﹣b)5=1.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减计算即可.解答:解:(﹣b2)•b3÷(﹣b)5,=﹣b5÷(﹣b5),=1.点评:本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,要注意符号的运算.2.(1)a2•a3=a5;(2)x6÷(﹣x)3=﹣x3.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:(1)是考查同底数幂的乘法,底数不变指数相加.(2)是考查同底数幂相除,底数不变指数相减.解答:解:(1)a2•a3=a5(2)x6÷(﹣x)3=﹣x3故答案为:a5,﹣x3点评:这道题主要考查了同底数幂的乘法和除法,熟记计算法则是解题的关键.3.若2m=5,2n=6,则2m﹣2n=.若3m+2n=6,则8m×4n=64.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:把2m﹣2n化为2m÷(2n)2计算,把8m×4n化为23m+2n计算即可.解答:解:∵2m=5,2n=6,∴2m﹣2n=2m÷(2n)2=5÷36=,∵3m+2n=6,∴8m×4n=(2)3m•22n=23m+2n=26=64.故答案为:,64.点评:本题主要考查了同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方,解题的关键是正确运用法则进行变式.4.计算:(﹣a2)3+(﹣a3)2﹣a2•a4+a9÷a3=0.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方、同底数幂的除法,可得答案.解答:解:(﹣a2)3+(﹣a3)2﹣a2•a4+a9÷a3=﹣a2×3+a3×2﹣a2+4+a9﹣3=﹣a6+a6﹣a6+a6=0,故答案为:0.点评:本题考查了同底数幂的除法,幂的乘方底数不变指数相乘,同底数幂的乘法,底数不变指数相加,同底数幂的除法,底数不变指数相减.5.①若m x=4,m y=3,则m x+y=12;②若,则9x﹣y=.考点:同底数幂的除法.分析:①把m x+y化为m x•m y求解,②把9x﹣y化为(3x)2÷(3y)2求解.解答:解:①∵m x=4,m y=3,∴m x+y=m x•m y=4×3=12,②∵,∴9x﹣y=(3x)2÷(3y)2=÷=,故答案为:12,.点评:本题主要考查了同底数幂的除法,解题的关键是通过转化,得到含有已知的式子求解.6.a5•a÷a2=a4;(x﹣y)(y﹣x)2(x﹣y)3=(x﹣y)6;(a2)m﹣a m=a m.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减,同底数幂的乘法,底数不变指数相减,可得答案.解答:解:a5•a÷a2=a5+1﹣2=a4;(x﹣y)(y﹣x)2(x﹣y)3=(x﹣y)1+2+3=(x﹣y)6;(a2)m﹣a m=a2m﹣m=a m,故答案为:a4,(x﹣y)6,a.点评:本题考查了同底数幂的除法,根据乘方化成同底数的幂乘法是解题关键.7.(2012•滨州)根据你学习的数学知识,写出一个运算结果为a6的算式a4•a2=a6(答案不唯一).考点:幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法.专题:开放型.分析:根据同底数幂相乘,底数不变,指数相加即可求.注意答案不唯一.解答:解:a4•a2=a6.故答案是a4•a2=a6(答案不唯一).点评:本题考查了同底数幂的乘方,解题的关键是注意掌握同底数幂的运算法则.8.下雨时,常常是“先见闪电,后听雷鸣”,这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×102米/秒,则光速是声速的8.8×105倍.(结果保留两个有效数字)考点:同底数幂的除法.专题:应用题.分析:首先根据题意可得:光速是声速的(3×108)÷(3.4×102)倍,利用同底数幂的除法法则求解即可求得答案.解答:解:∵光在空气中的传播速度约为3×108米/秒,声音在空气中的传播速度约为3.4×102米/秒,∴(3×108)÷(3.4×102)=(3÷3.4)×(108÷102)≈0.883×106≈8.8×105,∴光速是声速的8.8×105倍.故答案为:8.8×105.点评:本题考查同底数幂的除法.注意将实际问题转化为数学问题是解此题的关键.9.已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是18.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:运用同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方把原式化为含有4x,3y的式子求解.解答:解:∵4x=3,3y=2,∴6x+y•23x﹣y÷3x=6x•6y•23x÷2y÷3x=2x•3x•2y•3y(2x)3÷2y÷3x=2x•3y•(2x)3=(4x)2•3y=9×2=18,故答案为:18.点评:本题主要考查了同底数幂的除法,同底数幂的乘法及幂的乘方与积的乘方,解题的关键是运用法则把6x+y•23x﹣y÷3x化为6x•6y•23x÷2y÷3x.10.(﹣x)10÷(﹣x)5÷(﹣x)÷x=x3.考点:同底数幂的除法;幂的乘方与积的乘方.分析:先根据有理数乘方的意义计算符号,再利用同底数幂相除,底数不变指数相减进行计算即可得解.解答:解:(﹣x)10÷(﹣x)5÷(﹣x)÷x,=x10÷x5÷x÷x,=x10﹣5﹣1﹣1,=x3.故答案为:x3.点评:本题主要考查了同底数幂相除,底数不变指数相减的性质,计算时要注意符号的处理,这也是本题最容易出错的地方.11.如果2x=5,2y=10,则2x+y﹣1=25.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂的除法底数不变指数相减,可得计算结果.解答:解:2x+y﹣1=2x×2y÷2=5×10÷2=25.故答案为:25.点评:本题考查了同底数幂的除法,底数不变指数相减.12.已知a m=9,a n=8,a k=4,则a m﹣2k+n= 4.5.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方,同底数幂的除法,同底数幂的乘法的逆运算整理成已知条件的形式,然后代入数据求解即可.解答:解:∵a m=9,a n=8,a k=4,∴a m﹣2k+n=a m÷a2k•a n,=a m÷(a k)2•a n,=9÷16×8,=4.5.点评:本题主要考查幂的乘方,同底数幂的乘法,同底数幂的除法性质的逆运用,熟练掌握运算性质并灵活运用是解题的关键.13.(2011•安徽)根据里氏震级的定义,地震所释放的相对能量E与地震级数n的关系为:E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是100.考点:同底数幂的除法.专题:应用题.分析:首先根据里氏震级的定义,得出9级地震所释放的相对能量为109,7级地震所释放的相对能量为107,然后列式表示9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是109÷107,最后根据同底数幂的除法法则计算即可.解答:解:∵地震所释放的相对能量E与地震级数n的关系为:E=10n,∴9级地震所释放的相对能量为109,7级地震所释放的相对能量为107,∴109÷107=102=100.即9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是100.故答案为100.点评:本题考查了同底数幂的除法在实际生活中的应用.理解里氏震级的定义,正确列式是解题的关键.14.(2007•仙桃)计算:a2•a3÷a4的结果是a.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减计算即可.解答:解:a2•a3÷a4=a2+3﹣4=a,故答案为:a.点评:本题考查了同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键.15.(2004•太原)人们以分贝为单位来表示声音的强弱.通常说话的声音是50分贝,它表示声音的强度是105;摩托车发出的声音是110分贝,它表示声音的强度是1011.摩托车的声音强度是说话声音强度的106倍.考点:同底数幂的除法.专题:应用题.分析:用摩托车的声音强度除以说话声音强度,再利用同底数幂相除,底数不变指数相减计算.解答:解:1011÷105=1011﹣5=106.答:摩托车的声音强度是说话声音强度的106倍.点评:本题主要考查同底数幂的除法的运算性质,熟练掌握运算性质是解题的关键.16.(2005•河南)计算:(x2)3÷x5=x.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减计算即可.解答:解:(x2)3÷x5=x6÷x5=x.点评:本题考查幂的乘方的性质,同底数幂的除法的性质,熟练掌握运算性质是解题的关键.17.(2001•济南)a4÷a=a3.考点:同底数幂的除法.分析:根据同底数幂的除法法则计算即可.解答:解:a4÷a=a3,故答案为a4.点评:本题考查了同底数幂的除法法则,底数不变指数相减,一定要记准法则才能做题.二.解答题(共8小题)18.化简:(x﹣y)12×(y﹣x)2÷(y﹣x)3.考点:同底数幂的除法;同底数幂的乘法.分析:运用同底数幂的除法及同底数幂的乘法法则求解即可.解答:解:(x﹣y)12×(y﹣x)2÷(y﹣x)3,=(x﹣y)14÷(y﹣x)3.=﹣(x﹣y)11.点评:本题主要考查了同底数幂的除法及同底数幂的乘法,解题的关键是注意运算符号.19.(2a+b)4÷(2a+b)2.考点:同底数幂的除法.分析:运用同底数幂的除法法则:底数不变,指数相减运算,再运用完全平方公式展开.解答:解:(2a+b)4÷(2a+b)2=(2a+b)2=4a2+4ab+b2点评:本题主要考查了同底数幂的除法和完全平方公式,解题的关键是熟记法则.20.已知a x=2,a y=3,求下列各式的值.(1)a2x+y(2)a3x﹣2y.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:把原式化为关于a x,a y式子,再代入求解即可.解答:解:(1)∵a x=2,a y=3,∴a2x+y=(a x)2a y=4×3=12,(2)∵a x=2,a y=3,∴a3x﹣2y=(a x)3÷(a y)2=8÷9=.点评:本题主要考查了同底数幂的除法,同底数幂的乘法和幂的乘方与积的乘方,解题的关键是把原式化为关于a x,a y式子求解.21.已知5x=36,5y=2,求5x﹣2y的值.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法底数不变指数相减,可得答案.解答:解:(5y)2=52y=4,5x﹣2y=5x÷52y=36÷4=9.点评:本题考查了同底数幂的除法,底数不变指数相减.22.已知:x m=3,x n=2,求:(1)x m+n的值;(2)x2m﹣3n的值.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:运用同底数幂的乘法与除法以及幂的乘方运算即可.解答:解:(1)∵x m=3,x n=2,∴x m+n=x m•x n=3×2=6,(2)∵x m=3,x n=2,∴x2m﹣3n=(x m)2÷(x n)3=9÷8=,点评:此题考查了同底数幂的乘法与除法以及幂的乘方等知识,解题的关键是熟记法则.23.利用幂的性质进行计算:.考点:实数的运算;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.分析:把式子化成指数幂的形式,通过同底数指数相乘,底数不变,指数相加即得.解答:解:原式=×=×=.点评:本题考查了实数运算,把根下化成指数幂,从而很容易解得.24.已知4m=y﹣1,9n=x,22m+1÷32n﹣1=12,试用含有字母x的代数式表示y.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,可化已知成要求的形式,根据已知,可得答案.解答:解:4m=22m=y﹣1,9n=32n=x,原式等价于;2×22m÷(32n÷3)=12,2(y﹣1)÷(x÷3)=122y﹣2=12(x÷3)2y﹣2=4xy=2x+1.点评:本题考查了同底数幂的除法,把已知化成要求的形式是解题关键.25.(1)计算:(﹣x)(﹣x)5+(x2)3;(2)计算:(﹣a2)3÷(﹣a3)2.考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:(1)根据同底数幂的乘法、幂的乘方,可算出乘方,根据合并同类项,可得答案;(2)根据先算积的乘方,可得同底数幂的除法,再根据同底数幂的除法,可得答案.解答:解:(1)原式=(﹣x)1+5+x2×3=x6+x6=2x6;(2)原式=﹣a2×3÷a3×2=﹣a6÷a6=﹣1.点评:本题考查了同底数幂的除法,(1)先算同底数幂的乘法幂的乘方,再合并同类项,(2)先算积的乘方,再算算幂的乘方,最后算同底数幂的除法,底数不变指数相减.。
同底数幂的除法专项练习
. .同底数幂的除法专项练习30题(有答案)1.计算:(﹣2 m2)3+m7÷m.2.计算:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x23.已知a m=3,a n=4,求a2m﹣n的值.4.已知3m=6,3n=﹣3,求32m﹣3n的值.5.已知2a=3,4b=5,8c=7,求8a+c﹣2b的值.6.如果x m=5,x n=25,求x5m﹣2n的值.7.计算:a n•a n+5÷a7(n是整数).8.计算:(1)﹣m9÷m3;(2)(﹣a)6÷(﹣a)3;(3)(﹣8)6÷(﹣8)5;(4)62m+3÷6m.9.33×36÷(﹣3)810.把下式化成(a﹣b)p的形式:15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)511.计算:(1)(a8)2÷a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1.12.(a2)3•(a2)4÷(﹣a2)513.计算:x3•(2x3)2÷(x4)214.若(x m÷x2n)3÷x m﹣n与4x2为同类项,且2m+5n=7,求4m2﹣25n2的值.15.计算:(1)m9÷m7= _________ ;(2)(﹣a)6÷(﹣a)2= _________ ;(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)= _________ .16.已知2m=8,2n=4求(1)2m﹣n的值.(2)2m+2n的值.17.(1)已知x m=8,x n=5,求x m﹣n的值;(2)已知10m=3,10n=2,求103m﹣2n的值.18.已知a m=4,a n=3,a k=2,求a m﹣3k+2n的值._________ 19.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n20.已知:a n=2,a m=3,a k=4,试求a2n+m﹣2k的值.21.已知5x﹣3y﹣2=0,求1010x÷106y的值.22.已知10a=2,10b=9,求:的值.23.已知,求n的值.24.计算:(a2n)2÷a3n+2•a2.25.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.26.计算:(﹣2)3•(﹣2)2÷(﹣2)8.27.(﹣a)5•(﹣a3)4÷(﹣a)2.28.已知a x=4,a y=9,求a3x﹣2y的值.29.计算(1)a7÷a4(2)(﹣m)8÷(﹣m)3(3)(xy)7÷(xy)4(4)x2m+2÷x m+2(5)(x﹣y)5÷(y﹣x)3(6)x6÷x2•x30.若32•92a+1÷27a+1=81,求a的值.同底数幂的除法50题参考答案:1.(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m62.3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2=3x6•x3﹣x9+x2•x9÷x2=3x9﹣x9+x9=3x9.3.∵a m=3,a n=4,∴a2m﹣n=a2m÷a n=(a m)2÷a n=32÷4=.4.∵3m=6,3n=﹣3,∴32m﹣3n=32m÷33n=(3m)2÷(3n)3=62÷(﹣3)3=﹣.5.∵2a=3,4b=5,8c=7,∴8a+c﹣2b=23a+3c﹣6b=(2a)3•(23)c÷(22b)3=27×7÷125=6.∵x m=5,x n=25,∴x5m﹣2n=(x m)5÷(x n)2=55÷(25)2=55÷54=5.7.a n•a n+5÷a7=a2n+5﹣7=a2n﹣28.(1)﹣m9÷m3=﹣1×m9﹣3=﹣m6;(2)(﹣a)6÷(﹣a)3=(﹣a)6﹣3=(﹣a)3=﹣a3;(3)(﹣8)6÷(﹣8)5=(﹣8)6﹣5=(﹣8)1=﹣8;(4)62m+3÷6m=6(2m+3)﹣m=6m+39.33×36÷(﹣3)8=39÷38=310. 15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5=15(a﹣b)3×[﹣6(a﹣b)p+5](a﹣b)2÷45[﹣(a﹣b)5]=[15×(﹣6)]÷(﹣45)×(a﹣b)3+p+2+5﹣5=2(a﹣b)p+511.(1)(a8)2÷a8=a16÷a8=a16﹣8=a8;(2)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1=(a﹣b)2(a﹣b)2n÷(a﹣b)2n﹣1=(a﹣b)2+2n﹣(2n﹣1)=(a﹣b)3.12.(a2)3•(a2)4÷(﹣a2)5=a6•a8÷(﹣a10)=﹣a14÷a10=﹣a4.13.x3•(2x3)2÷(x4)2=4x9÷x8=4x.14.(x m÷x2n)3÷x m﹣n=(x m﹣2n)3÷x m﹣n=x3m﹣6n÷x m﹣n=x2m﹣5n,因它与4x2为同类项,所以2m﹣5n=2,又2m+5n=7,所以4m2﹣25n2=(2m)2﹣(5n)2=(2m+5n)(2m﹣5n)=7×2=14.15. (1)m9÷m7=m9﹣7=m2;(2)(﹣a)6÷(﹣a)2=(﹣a)6﹣2=a4;(3)(x﹣y)6÷(y﹣x)3÷(x﹣y)=(x﹣y)6÷[﹣(x﹣y)]3÷(x﹣y)=﹣(x﹣y)6﹣3﹣1=﹣(x﹣y)2.16.∵2m=8=23,2n=4=22,∴m=3,n=2,(1)2m﹣n=23﹣2=2;(2)2m+2n=23+4=27=128.17.(1)∵x m=8,x n=5,∴x m﹣n=x m÷x n,=8÷5=;(2)∵10m=3,10n=2,∴103m=(10m)3=33=27,102n=(10n)2=22=4,∴103m﹣2n=103m÷102n=27÷4=18.∵a m=4,a n=3,∴a m﹣3k+2n=a m÷a3k•a2n=a m÷(a k)3•(a n)2=4÷23×32=19.(﹣3x2n+2y n)3÷[(﹣x3y)2]n=﹣27x6n+6y3n÷(﹣x3y)2n=﹣27x6n+6y3n÷x6n y2n=﹣27x6y n20.∵a n=2,a m=3,a k=4,∴a2n+m﹣2k=a2n•a m÷a2k=(a n)2•a m÷(a k)2=4×3÷16=.21.由5x﹣3y﹣2=0,得5x﹣3y=2.∴1010x÷106y=1010x﹣6y=102(5x﹣3y)=102×2=104.故1010x÷106y的值是10422.=10 2a﹣b==.23.∵32m+2=(32)m+1=9m+1,∴9m÷3m+2=9m÷9m+1=9﹣1==()2,∴n=224.(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n.25.∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=26.(﹣2)3•(﹣2)2÷(﹣2)8=(﹣2)5÷(﹣2)8=(﹣2)5﹣8=(﹣2)﹣3=27.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.故答案为:﹣a15.28.a3x﹣2y=(a x)3÷(a y)2=43÷92=29.(1)a7÷a4=a3;(2)(﹣m)8÷(﹣m)3=(﹣m)5=﹣m5;(3)(xy)7÷(xy)4=(xy)3=x3y3;(4)x2m+2÷x m+2=x m;(5)(x﹣y)5÷(y﹣x)3=﹣(y﹣x)5÷(y﹣x)3=﹣(y﹣x)2;(6)x6÷x2•x=x4•x=x5.30.原式可化为:32•32(2a+1)÷33(a+1)=34,即2+2(2a+1)﹣3(a+1)=4,解得a=3.故答案为:3.。
七年级数学下 同底数幂的除法
1.3同底数幂的除法一、单项选择题1.20210的值等于〔〕A. 0B. 1C. 2021D. ﹣20212.假设〔x﹣1〕0﹣3〔x﹣2〕0有意义,那么x的取值范围是〔〕A. x>1B. x>2C. x≠1或x≠2D. x≠1且x≠23.以下计算正确的选项是〔〕A. 2a+3b=5ab B. a2•a4=a8 C. 〔2a〕3=2a3 D. 〔a2〕3÷〔﹣a2〕2=a24.如果3x=m,3y=n,那么3x﹣y等于〔〕A. m+nB. m﹣nC. mnD.5.算式:〔﹣4〕﹣2的计算结果是〔〕A. ﹣16B.C. 16D.6.以下计算中,正确的选项是〔〕A. 〔﹣5〕﹣2×50=B. 3a﹣2=C. 〔a+b〕2=a2+b2D. 〔m+n〕〔﹣m+n〕=﹣m2+n27.2﹣2的值为〔〕A. B. - C. D. -8.x15÷x3等于〔〕A. x5B. x45C. x12D. x189.〔﹣3〕0等于〔〕A. 1B. ﹣1C. ﹣3D. 010.以下计算正确的选项是〔〕A. 〔a+b〕2=a2+b2B. a9÷a3=a3C. 〔ab〕3=a3b3D. 〔a5〕2=a7二、填空题〔共5题;共5分〕11.计算:〔﹣1〕0﹣〔〕﹣1=________12.假设〔x+1〕0=1,那么x的取值范围是________.13.假设a m=2,a n=5,那么a m﹣n=________14.假设3m=6,3n=2,那么32m﹣n=________.15.如果〔m﹣1〕0=1,那么m满足的条件是________.三、计算题〔共3题;共40分〕16.计算:〔1〕〔2m2n﹣3〕2•〔﹣mn﹣2〕﹣2;〔2〕4x2y﹣3z÷〔﹣2x﹣1yz﹣2〕2;〔3〕;〔4〕.17.计算:〔1〕m9÷m7〔2〕〔﹣a〕6÷〔﹣a〕2〔3〕〔x﹣y〕6÷〔y﹣x〕3÷〔x﹣y〕18.如果3m=5,3n=7,求3m﹣n的值.四、解答题〔共2题;共10分〕19. a m=2,a n=4,a k=32〔a≠0〕.〔1〕求a3m+2n﹣k的值;〔2〕求k﹣3m﹣n的值.20.10m=﹣,10n=4,求10m+2n﹣2的值.五、综合题〔共1题;共3分〕21.计算:〔1〕﹣3﹣2=________;〔2〕〔﹣〕﹣3=________;〔3〕52×5﹣2÷50=________.答案解析局部一、单项选择题1.【答案】B【解析】解:20210=1.应选B.【分析】根据零指数幂公式可得:20210=1.2.【答案】D【解析】【解答】解:假设使〔x﹣1〕0﹣3〔x﹣2〕0有意义,那么x﹣1≠0,x﹣2≠0,故x≠1且x≠2,应选D.【分析】要使这个式子有意义就要x﹣1和x﹣2不等于0,依此求x的取值范围即可.3.【答案】D【解析】【解答】解:A、不是同类项的不能合并,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、积的乘方等于乘方的积,故C错误;D、〔a2〕3÷〔﹣a2〕2=a6÷a4=a2,故D正确;应选:D.【分析】根据合并同类项,可判断A,根据同底数幂的乘法,可判断B,根据积的乘方,可判断C,根据幂的乘方、同底数幂的除法,可判断D.4.【答案】D【解析】【解答】∵3x=m,3y=n,∴3x﹣y=3x÷3y=,应选D.【分析】根据同底数幂相除,底数不变,指数相减,整理后再根据指数相等列出方程求解即可.5.【答案】B【解析】【解答】解:〔﹣4〕﹣2=〔﹣〕2= .应选:B.【分析】根据负整数指数幂:a﹣p= 〔a≠0,p为正整数〕进行计算即可.6.【答案】D【解析】解:A、〔﹣5〕﹣2×50=,故A错误;B、3的指数是1,故B错误;C、和的平方等于平方和加积的二倍,故C错误;D、两数和乘以这两个数的差等于这两个数的平方差,故D正确;应选:D.【分析】根据负整数指数幂与正整数指数幂互为倒数,和的平方等于平方和加积的二倍,平方差公式,可得答案.7.【答案】C【解析】【解答】解:∵2﹣2= = ,∴2﹣2的值为.应选:C.【分析】根据负整数指数幂的运算方法:a﹣p= ,求出2﹣2的值是多少即可.8.【答案】C【解析】解:x15÷x3=x15﹣3=x12.应选C.【分析】根据同底数幂相除,底数不变,指数相减解答.9.【答案】A【解析】【解答】解:〔﹣3〕0=1.应选:A.【分析】根据非零的零次幂等于1,可得答案.10.【答案】C【解析】【解答】解:A、和的平方等于平方和加积的二倍,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、积的乘方等于乘方的积,故C正确;D、幂的乘方底数不变指数相乘,故D错误.应选:C.【分析】根据完全平方公式,可判断A;根据同底数幂的除法,可判断B;根据积的乘方,可判断C;根据幂的乘方,可判断D二、填空题11.【答案】-1【解析】【解答】解:〔﹣1〕0﹣〔〕﹣1=1﹣2=﹣1故答案为:﹣1.【分析】首先根据负整数指数幂的运算方法,分别求出〔﹣1〕0、〔〕﹣1的值是多少,然后把它们相减,求出算式〔﹣1〕0﹣〔〕﹣1的值是多少即可.12.【答案】x≠﹣1【解析】【解答】解:根据零指数幂:a0=1〔a≠0〕得:x+1≠0,∴x≠﹣1.故答案为:x≠﹣1.【分析】根据零指数幂:a0=1〔a≠0〕得出x+1≠0,从而得出答案.13.【答案】【解析】【解答】解:∵a m=2,a n=5,∴a m﹣n=a m÷a n=.故填.【分析】根据同底数幂相除,底数不变指数相减的性质的逆用解答.14.【答案】18【解析】【解答】解:32m﹣n=32m÷3n=36÷2=18.故答案为:18.【分析】根据同底数幂的除法法那么求解.15.【答案】m=1【解析】【解答】解:〔m﹣1〕0=1,得m﹣1≠0.解得m≠1.故答案为:m=1.【分析】根据非零的零次幂等于1,可得答案.三、计算题16.【答案】〔1〕解:原式=4m4n﹣6•m﹣2n4=4m2n﹣2〔2〕解:原式=4x2y﹣3z÷〔4x﹣2y2z﹣4〕=x4y﹣5z5〔3〕解:原式=8﹣8×0.125+1+1 =﹣8﹣1+1+1=﹣7〔4〕解:原式=2×1+8× +16 =2+ +16=19【解析】【分析】〔1〕原式利用积的乘方与幂的乘方运算法那么计算即可得到结果;〔2〕原式先计算乘方运算,再利用单项式除单项式法那么计算即可得到结果;〔3〕原式第一项利用负指数幂法那么计算,第二项先利用乘方运算法那么计算,再计算乘法运算,.第三项利用零指数幂法那么计算,最后一项利用负数的绝对值等于它的相反数计算,即可得到结果;〔4〕原式第一项利用零指数幂法那么计算,第二、三项利用负指数幂法那么计算,计算即可得到结果、17.【答案】〔1〕解:m9÷m7=m9﹣7=m2〔2〕解:〔﹣a〕6÷〔﹣a〕2=〔﹣a〕6﹣2=a4〔3〕解:〔x﹣y〕6÷〔y ﹣x〕3÷〔x﹣y〕,=〔x﹣y〕6÷[﹣〔x﹣y〕]3÷〔x﹣y〕,=﹣〔x﹣y〕6﹣3﹣1,=﹣〔x﹣y〕2【解析】【分析】〔1〕〔2〕利用同底数相除,底数不变指数相减计算;〔3〕把多项式〔x﹣y〕看成一个整体,先转化为同底数幂相除,然后利用同底数幂的除法法那么计算.18.【答案】解:3m﹣n= =【解析】【分析】根据同底数幂的除法法那么;a m÷a n=a m﹣n,求解即可.四、解答题19.【答案】解:〔1〕∵a3m=23,a2n=42=24,a k=32=25,∴a3m+2n﹣k=a3m•a2n÷a k=23•24÷25=23+4﹣5=22=4;〔2〕∵a k﹣3m﹣n=25÷23÷22=20=1=a0,∴k﹣3m﹣n=0,即k﹣3m﹣n的值是0.【解析】【分析】〔1〕首先求出a3m=23,a2n=42=24,a k=32=25,然后根据同底数幂的乘法、除法法那么计算即可;〔2〕首先求出a k﹣3m﹣n的值是1;然后根据a0=1,求出k﹣3m﹣n的值是多少即可.20.【答案】解:因为10m=﹣,10n=4,所以10m+2n﹣2=10m•〔10n〕2÷102==﹣0.04【解析】【分析】根据同底数的幂的除法和幂的乘方进行计算即可.五、综合题21.【答案】〔1〕﹣〔2〕﹣〔3〕1【解析】【解答】解:〔1〕﹣3﹣2=﹣;2〕〔﹣〕﹣3=﹣;3〕52×5﹣2÷50=52﹣2﹣0=1.故答案为:﹣;﹣;1.【分析】根据负整数指数幂:a﹣p= 〔a≠0,p为正整数〕,零指数幂:a0=1〔a≠0〕分别进行计算即可.。
8.3同底数幂的除法(讲+练)(原卷版)
8.3同底数幂的除法同底数幂的除法a m÷a n=a m−n(a≠0, m、n都是正整数,且m>n)同底数幂相除,底数不变,指数相减零指数幂符号语言:a0=1(a≠0)文字语言:任何不等于0的数的0次幂等于1强调:零的零次幂无意义幂的运算中值恒为1的三种情况①任何不等于0的数的0次幂等于1②1的任何次幂等于1③-1的偶数次幂等于1负整数指数幂符号语言:a−n=1(a≠0,n是正整数).a n文字语言:任何不等于0的数的-n(n是正整数)次幂,等于这个数的n次幂的倒数.题型1:同底数幂的除法1.已知a m =6,a n =2,则a m ﹣n = . 题型2:零指数幂2. 计算:(12)0+|﹣1|= . 题型3:负整数指数幂3. 计算:3﹣1﹣π0= . 题型4:含负整数指数幂的科学记数法4. 0.000000358用科学记数法可表示为 .题型5:幂的运算的综合运用5.已知10﹣2α=3,10−β=−15,求106α+2β的值.一.选择题(共5小题)1.下列运算错误的是()A.(2ab)4=8a4b B.a8÷a2=a6C.(a2)3=a6D.a2•a3=a52.大型纪录片《厉害了,我的国》上映25天,累计票房约为4.027×108成为中国纪录电影票房冠军,这个用科学记数法表示的数据的原数为()A.0.000000004027B.0.00000004027C.402700000D.40270000003.已知4x=18,8y=3,则52x﹣6y的值为()A.5B.10C.25D.504.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3B.6C.7D.85.纳米(nm)是长度的单位,1nm=10﹣3μm,1μm=10﹣3mm,如果将在2022年底攻克20nm工艺芯片技术的难关,其中20nm等于()A.2.0×10﹣5mm B.2.0×10﹣6mm C.2.0×10﹣7mm D.20×10﹣5mm二.填空题(共5小题)6.某种细菌的直径为0.00000014m,请用科学记数法表示该直径是m.7.已知2m=a,16n=b,m、n为正整数,则24m+8n=.8.若(x−2x+2)0有意义,则x的取值范围是.9.若[(a﹣2)2]3=(a﹣2)(a﹣2)a(a≠2),则a的值为.10.如果(a﹣1)a+4=1成立,那么满足它的所有整数a的值是.三.解答题(共6小题)11.计算:(1)−12030+|−6|−(π−3.14)0+(−13)−2;(2)x3y(12x−1y3)−2.12.若a+b+c=3,求22a﹣1•23b+2•2a+3c的值.13.在一次测验中有这样一道题:“|a|n=12,|b|n=3,求(ab)2n的值.”马小虎是这样解的:解:(ab)2n=(a n b n)2=(12×3)2=94.结果卷子发下来,马小虎这道题没得分,而答案确实是94,你知道这是为什么吗?请你作出正确的解答14.如果x n=y,那么我们规定(x,y)=n.例如:因为32=9,所以(3,9)=2.(1)(理解)根据上述规定,填空:(2,8)=,(2,14)=;(2)(说理)记(4,12)=a,(4,5)=b,(4,60)=c.试说明:a+b=c;(3)(应用)若(m,16)+(m,5)=(m,t),求t的值.15.规定两数a,b之间的一种运算,记作(a,b),如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(3,1)=,(2,18)=;(2)小明在研究这种运算时发现一个特征:(3n,4n)=(3,4),并作出了如下的证明:∵设(3,4)=x,则3x=4,∴(3x)n=4n,即(3n)x=4n,∴(3n,4n)=x∴(3n,4n)=(3,4).试参照小明的证明过程,解决下列问题:①计算(8,1000)﹣(32,100000);②请你尝试运用这种方法,写出(7,45),(7,9),(7,5)之间的等量关系.并给予证明.16.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N,比如指数式24=16可转化为4=log216,对数式2=log525互转化为52=25.我们根据对数的定义可得对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0)解决以下问题:(1)将指数43=64转化为对数式;(2)试说明log a MN=log a M−log a N(a>0,a≠1,M>0,N>0);(3)拓展运用:计算log32+log36﹣log34=。
初一数学第二学期第1章第3节同底数幂的除法_练习题和答案
同底数幂的除法【知识点考查题】一、容易题1.(2017-2018山东德州联考)下列计算正确的是( )A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
【答案】B【考点】幂的乘方【考查能力】运算求解能力2.(2017-2018河南郑州枫杨外国语月考)下列运算中,正确的个数是( )①2352x x x +=; ②()326x x =; ③03215⨯-=; ④538--+=;⑤11212÷⨯= A. 1个 B. 2个 C. 3个 D. 4个【答案】A【考点】幂的乘方【考查能力】运算求解能力3.(2018湖北随州中考模拟)若5x =125y ,3y =9z ,则x :y :z 等于( )A. 1:2:3B. 3:2:1C. 1:3:6D. 6:2:1【答案】D【考点】幂的乘方【考查能力】运算求解能力4.(2017-2018吉林长春中考模拟)计算(x 2y )3的结果是( )A. x 6y 3B. x 5y 3C. x 5yD. x 2y 3【答案】A【考点】幂的乘方【考查能力】运算求解能力二、中等题5.(2017-2018山东济南历城区期中)若错误!未找到引用源。
,则错误!未找到引用源。
__________【答案】4【考点】幂的乘方【考查能力】运算求解能力6.(2017--2018江苏靖江靖城中学)已知2错误!未找到引用源。
=错误!未找到引用源。
,4错误!未找到引用源。
=y ,用含有字母错误!未找到引用源。
的代数式表示y ,则y =__________.【考查能力】运算求解能力7.(原创题)已知错误!未找到引用源。
,则mn(mn-1)的值为______________________.【答案】20【考点】幂的乘方【考查能力】运算求解能力【技能技巧考查题】一、较难题8.(2017-2018江苏徐州月考)若错误!未找到引用源。
(错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创作编号:
GB8878185555334563BT9125XW
创作者: 凤呜大王*
第三节 同底数幂的除法(1)
学习准备(1)同底数幂相乘,_____不变,______相加.()()
+=⋅a a a n
m (m,n 是正
整数)(2)幂的乘方,______不变,______相乘.()
a a n
m
=)((m,n 是正整数)
(3)积的乘方等于积中各因数乘方的______.()()
b a ab n
=)( (n 是正整数)
归纳:同底数幂的运算法则:n
m n m a a a -=÷(a ≠0,m,n 是正整数,且m >n )。
即:
同底数幂的除法,底数不变,指数相减。
3.实践练习:;)1(4
7
a a ÷ ;)())(2(2
7
x x -÷- ;)3(2
8
m m ÷- );())(4(5
xy xy ÷
;)5(222b b m ÷+ ;)())(6(38n m n m +÷+(1)()()
()a a a a ==÷-47
()()()
()()=-=-÷--x x x 27)())(2(
()()
()()-=-=÷--m m m 28)3( ()()()()
==÷-)())(4(5xy xy
(
)()()()()==÷-+222)5(b b m ()()()()()==+÷+-38)())(6(n m n m
归纳:0
a =_______(其中a________);=-p
a (其中a )
实践练习:1.计算:用小数或分数分别表示下列各数:
4204
106.1)3(;35)2(10)1(---⨯⨯
(1)0001.010000110
1104
4
===
-(2)________________(3)________________________
1.计算(1) ()()
5
4
323
x
x x ÷⋅ (2)()-1
3
1-2-3.14--2π⎛⎫+ ⎪⎝⎭
(3)()()22
1n n a a a +÷÷ 2.解答题(1).()
()()23
22
n n a b b a a b +-÷-÷-
(2).若0
)52(-+y x 无意义,且1023=+y x ,求y x ,的值
形成提升1.计算:
()()2
3
32(1)a a ÷ ()()3
(2)xy xy ÷ 5
3(3)()
()c c -÷-
3
2(4)()
()m x y x y ++÷+()()
3
2
22(7)ab ab ÷- ()()
32
(8)m n n m -÷- 2.若
23,3,3x y x y a b -==求的值。
1.本节知识点:同底数幂的除法: a m
÷a n
= ( m ,n 都是 ,对a 什么
要求: )。
用文字叙述同底数幂的除法法则: _________ 。
2.0
a =_______(其中a________) 3.=-p
a
(其中a )
第三节 同底数幂的除法(2)
学习准备1.单位换算:1米=10分米,1分米=10厘米,1厘米=10毫米;另外规定,1毫米=1000微米,1微米=1000纳米 2. 科学记数法的表示形式_________,其中a 与n 的取值范围:________,n 为正整数.
3.纳米是一种长度单位, 1米=1,000,000,000纳米,用科学记数法表示1,000,000,000=__________________。
二.解读教材1.正的纯小数的科学记数法表示:5
5
1010
100001.0-==
0.001= = 0.000 000 001= = 0.000 000 0072= =
规律:n n -=1010......0.00
个归纳:一般地把一个绝对值小于1的数也可以表示成n
a 10⨯的形式,其中101 a ≤,n 为负整数,n 等于非零的数前面的连续零的个数。
3.实践练习:用科学计数法表示下列各数
(1)0.00000072 (2)0.00000861 (3)0.00000000000003425 解:(1)=__________ (2) =__________ (3)=_________________ 探究1.大多数花粉的直径约为20微米到50微米,这相当于多少米?
2.估计下例事物的大小(1)一只猫的体长大约是多少千米?(约为35厘米)(2)一个鸡蛋的重量约多少吨?(约为60克)
形成提升1.把下列各数用科学记数法表示: ① 0.000 000 001 65;
② 0.000 36微米,相当于多少米? 600纳米,相当于多少米? 2.冠状病毒的直径为1.2×102 纳米,用科学记数法表示为 米
3.人的头发直径为70微米=______ _米
4.将8
1062.5-⨯用小数表述为
( )
A.0.00000000562
B.0.0000000562
C.0.000000562
D.0.0000000000562
5.在日本核电站事故期间,我国某监测点检测到极微量的人工放射性核素碘-131.其浓度为0.0000963贝克/立方米。
数据“0.0000963”用科学记数法表示为。
本节知识点:一般地把一个绝对值小于1的数也可以表示成的形式,其中,n为负整数,n等于非零的数前面的连续零的个数。
创作编号:
GB8878185555334563BT9125XW
创作者:凤呜大王*。