已标自贡市2013年中考数学试题(含答案)
2013年中考数学答案
数学参考答案及评分标准 第1页(共4页)2013年来宾市初中毕业升学统一考试数学参考答案及评分标准一、选择题(每小题3分,共36分)二、填空题(每小题3分,共18分) 13.5-;14.31;15.x ﹥4 ; 16.9; 17.8;18.y =x 2-7x +12.三、解答题(本大题共7小题,共66分)19.解:(1)原式=1-1+2-3(每个知识点1分) …………………4分=-1……………………………6分(2)去分母,得2×2x =x +2 ………………………………2分 3x =2 ………………………………3分32=x ………………………………4分 检验:把32=x 代入 2x (x +2) ≠0 ………………………………5分∴32=x 是原分式方程的解 ………………………………6分20.解:(1)A 1的坐标是(2,4); ………………………………2分(画图正确3分,每对一点给1分) ………………………………5分 (2)(画图正确3分,每对一点给1分); ………………………………8分 (画图略)21.解:(1)80 ………………………………2分(2)综合 ………………………………4分 (3)(画图略) ………………………………6分 (如果有刻度线或条形图上标有数据且画图正确给满分,否则只画图给1分) (4)105 ………………………………8分22.解:(1)依题意,得(360-280)×60=4800 ………………………………2分 故降价前商场每月销售该商品的利润是4800元. ………………3分(2)设每件商品应降价x 元,依题意,得 ………………………………4分数学参考答案及评分标准 第2页(共4页)(360-280-x )(60+5x )=7200 ………………………………6分整理,得x 2-68x +480=0解得 x 1=60,x 2=8 ………………………………7分 因为要更有利于减少库存,所以必须多销售,故取x =60答:每件商品应降价60元. ………………………………8分 23.解:(1)△AEH ≌△DGH ………………………………1分△BEF ≌△CGF ………………………………2分 (当只写出四个三角形或两个能全等的三角形只给1分) 【证法一】:∵梯形ABCD 是等腰梯形,AD ∥BC ∴∠A =∠D ,AB=DC∵E ,F ,G ,H 分别是梯形ABCD 各边的中点∴AH =DH ,AB AE 21=,CD DG 21= …………………………3分∴AE =DG ∴△AEH ≌△DGH ………………………………4分 【证法二】:连接AC ,BD…………………………3分∵E ,F ,G ,H 分别是梯形ABCD 各边的中点,∴AH =DH ,AB AE 21=,CD DG 21=,BD EH 21=,AC GH 21= 又∵梯形ABCD 是等腰梯形 ∴AC =BD ,AE =DG ∴EH =GH∴△AEH ≌△DGH ………………………………4分 (2)【证法一】:连接AC ,BD ………………………………5分∵E ,F ,G ,H 分别是梯形ABCD 各边的中点∴BD EH 21=,BD FG 21=,AC EF 21=,AC GH 21= ………6分 又∵梯形ABCD 是等腰梯形 ∴AC =BD∴EF =FG =GH =HE ………7分 ∴四边形EFGH 是菱形 ………8分 【证法二】:连接AC ,BD ………5分 ∵E ,F ,G ,H 分别是梯形ABCD 各边的中点 ∴EH ∥BD 且BD EH 21=,FG ∥BD 且BD FG 21= ∴EH ∥FG 且EH =FG 同理 EF ∥HG 且EF =HG∴四边形EFGH 是平行四边形 ………………………………6分H G FE D CBA(第23题图)数学参考答案及评分标准 第3页(共4页)又∵梯形ABCD 是等腰梯形∴AC =BD∵AC EF 21=,BD EH 21= ∴EF =EH ………………………………7分 ∴四边形EFGH 是菱形 ………………………………8分 (其它证法参照以上方法步骤给分) 24.(1)解:△BCD 是等腰三角形…………………2分(2)证明:作⊙O 的直径AE ,连接DE ………………………3分∵AE 是⊙O 的直径∴∠ADE =90° ………………………4分 ∴∠DAE +∠E =90°又∵∠E =∠ABD ,∠P AD =∠ABD∴∠E =∠P AD ………………………5分 ∴∠DAE +∠P AD =90° 即∠P AE =90°∴P A 是⊙O 的切线. ………………………6分(3)证明:∵∠P AD =∠ABD ,∠ABD =∠ACP∴∠P AD =∠ACP …………7分 又∵∠P =∠P∴△APD ∽△CP A …………8分 ∴APDPCP AP =∴AP 2=CP ·DP∴AP 2=(CD +DP )·DP ……9分 ∵∠BAC =∠CAD ∴ BC =CD∴AP 2=(BC +DP )·DP =DP ·BC +DP 2∴AP 2-DP 2=DP ·BC ………………………10分25.解:(1)依题意,得A ,B 两点的坐标分别是A (0,6),B (8,0),设过点A 和点B 的直线表达式是:y =kx +b ………………1分∴⎩⎨⎧=+=086b k b解得:⎪⎩⎪⎨⎧=-=643b k∴直线AB 的表达式是:(第24题图)数学参考答案及评分标准 第4页(共4页)643+-=x y ………………………2分(2)设点M 的移动时间为t 秒,△OMN 的面积为S 1平方厘米,△AOB 的面积为S 2平方厘米,四边形AMNB 的面积为S 平方厘米,得OM =6-2t ,ON =4t ………………………3分15)23(441224)26(421682121212212+-=+-=-⨯-⨯⨯=⋅-⋅=-=t t t t t OM ON OA OB S S S ………………………5分当23=t 时,S 有最小值是15 所以,当点M 移动32秒时,四边形AMNB 的面积最小值是15平方厘米;………7分(3)存在. ……………………………8分①设当点M ,N 移动t 1秒时,如果OBONOA OM =, 则有△OMN ∽△OAB ∴8462611t t =-,解得:2.11=t ∴当点M ,N 移动1.2秒时, OM =6-2t 1=6-2×1.2=3.6, ON =4t 1=4×1.2=4.8∴点M 和点N 的坐标分别为M (0,3.6),N (4.8,0) …………10分②设当点M ,N 移动t 2秒时,如果OAONOB OM =, 则有△OMN ∽△OBA ∴6482622t t =-,解得:1192=t ∴当点M ,N 移动119秒时, OM =6-2t 2=6-2×119=1148, ON =4t 2=4×119=1136∴点M 和点N 的坐标分别为M (0,1148),N (1136,0) ………11分 综上所述:点M 和点N 的坐标分别为M (0,3.6),N (4.8,0)或数学参考答案及评分标准 第5页(共4页)M (0,1148),N (1136,0). ……………………………………12分。
2013年中考数学答案
数学参考答案及评分标准 第1页(共4页)2013年来宾市初中毕业升学统一考试数学参考答案及评分标准一、选择题(每小题3分,共36分)二、填空题(每小题3分,共18分) 13.5-;14.31;15.x ﹥4 ; 16.9; 17.8;18.y =x 2-7x +12.三、解答题(本大题共7小题,共66分)19.解:(1)原式=1-1+2-3(每个知识点1分) …………………4分=-1……………………………6分(2)去分母,得2×2x =x +2 ………………………………2分 3x =2 ………………………………3分32=x ………………………………4分 检验:把32=x 代入 2x (x +2) ≠0 ………………………………5分∴32=x 是原分式方程的解 ………………………………6分20.解:(1)A 1的坐标是(2,4); ………………………………2分(画图正确3分,每对一点给1分) ………………………………5分 (2)(画图正确3分,每对一点给1分); ………………………………8分 (画图略)21.解:(1)80 ………………………………2分(2)综合 ………………………………4分 (3)(画图略) ………………………………6分 (如果有刻度线或条形图上标有数据且画图正确给满分,否则只画图给1分) (4)105 ………………………………8分22.解:(1)依题意,得(360-280)×60=4800 ………………………………2分 故降价前商场每月销售该商品的利润是4800元. ………………3分(2)设每件商品应降价x 元,依题意,得 ………………………………4分 (360-280-x )(60+5x )=7200 ………………………………6分数学参考答案及评分标准 第2页(共4页)整理,得x 2-68x +480=0解得 x 1=60,x 2=8 ………………………………7分 因为要更有利于减少库存,所以必须多销售,故取x =60答:每件商品应降价60元. ………………………………8分23.解:(1)△AEH ≌△DGH ………………………………1分△BEF ≌△CGF ………………………………2分 (当只写出四个三角形或两个能全等的三角形只给1分) 【证法一】:∵梯形ABCD 是等腰梯形,AD ∥BC ∴∠A =∠D ,AB=DC∵E ,F ,G ,H 分别是梯形ABCD 各边的中点∴AH =DH ,AB AE 21=,CD DG 21= …………………………3分∴AE =DG ∴△AEH ≌△DGH ………………………………4分 【证法二】:连接AC ,BD…………………………3分∵E ,F ,G ,H 分别是梯形ABCD 各边的中点,∴AH =DH ,AB AE 21=,CD DG 21=,BD EH 21=,AC GH 21= 又∵梯形ABCD 是等腰梯形 ∴AC =BD ,AE =DG ∴EH =GH∴△AEH ≌△DGH ………………………………4分 (2)【证法一】:连接AC ,BD ………………………………5分∵E ,F ,G ,H 分别是梯形ABCD 各边的中点∴BD EH 21=,BD FG 21=,AC EF 21=,AC GH 21= ………6分 又∵梯形ABCD 是等腰梯形 ∴AC =BD∴EF =FG =GH =HE ………7分 ∴四边形EFGH 是菱形 ………8分 【证法二】:连接AC ,BD ………5分 ∵E ,F ,G ,H 分别是梯形ABCD 各边的中点 ∴EH ∥BD 且BD EH 21=,FG ∥BD 且BD FG 21= ∴EH ∥FG 且EH =FG 同理 EF ∥HG 且EF =HG∴四边形EFGH 是平行四边形 ………………………………6分又∵梯形ABCD 是等腰梯形∴AC =BDH G FE D CBA (第23题图)数学参考答案及评分标准 第3页(共4页)∵AC EF 21=,BD EH 21= ∴EF =EH ………………………………7分 ∴四边形EFGH 是菱形 ………………………………8分 (其它证法参照以上方法步骤给分) 24.(1)解:△BCD 是等腰三角形…………………2分(2)证明:作⊙O 的直径AE ,连接DE ………………………3分∵AE 是⊙O 的直径∴∠ADE =90° ………………………4分 ∴∠DAE +∠E =90°又∵∠E =∠ABD ,∠P AD =∠ABD∴∠E =∠P AD ………………………5分 ∴∠DAE +∠P AD =90° 即∠P AE =90°∴P A 是⊙O 的切线. ………………………6分(3)证明:∵∠P AD =∠ABD ,∠ABD =∠ACP∴∠P AD =∠ACP …………7分 又∵∠P =∠P∴△APD ∽△CP A …………8分 ∴APDPCP AP =∴AP 2=CP ·DP ∴AP 2=(CD +DP )·DP ……9分∵∠BAC =∠CAD ∴ BC =CD∴AP 2=(BC +DP )·DP =DP ·BC +DP 2∴AP 2-DP 2=DP ·BC ………………………10分25.解:(1)依题意,得A ,B 两点的坐标分别是A (0,6),B (8,0),设过点A 和点B 的直线表达式是:y =kx +b ………………1分∴⎩⎨⎧=+=086b k b解得:⎪⎩⎪⎨⎧=-=643b k∴直线AB 的表达式是:643+-=x y ………………………2分(2)设点M 的移动时间为t 秒,△OMN 的面积为S 1平方厘米,△AOB 的面积为S 2平方厘米,四边形AMNB 的面积为S 平方厘米,得OM =6-2t ,ON =4t ………………………3分(第24题图)数学参考答案及评分标准 第4页(共4页)15)23(441224)26(421682121212212+-=+-=-⨯-⨯⨯=⋅-⋅=-=t t t t t OM ON OA OB S S S ………………………5分当23=t 时,S 有最小值是15 所以,当点M 移动32秒时,四边形AMNB 的面积最小值是15平方厘米;………7分(3)存在. ……………………………8分①设当点M ,N 移动t 1秒时,如果OBONOA OM =, 则有△OMN ∽△OAB ∴8462611t t =-,解得:2.11=t ∴当点M ,N 移动1.2秒时, OM =6-2t 1=6-2×1.2=3.6, ON =4t 1=4×1.2=4.8∴点M 和点N 的坐标分别为M (0,3.6),N (4.8,0) …………10分②设当点M ,N 移动t 2秒时,如果OAONOB OM =, 则有△OMN ∽△OBA ∴6482622t t =-,解得:1192=t ∴当点M ,N 移动119秒时,OM =6-2t 2=6-2×119=1148,ON =4t 2=4×119=1136∴点M 和点N 的坐标分别为M (0,1148),N (1136,0) ………11分 综上所述:点M 和点N 的坐标分别为M (0,3.6),N (4.8,0)或 M (0,1148),N (1136,0). ……………………………………12分。
四川省自贡市初中毕业暨升学考试数学试题 参考答案
九年级暨升学考试数 学 试 卷一、选择题:本大题共11小题,每小题3分,共33分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列各式中,p ,q 互为相反数的是( ) A .pq =1 B .pq =-1C .p +q =0D .p -q =02.下列计算正确的是( ) A .)(818181y x y x +=+ B .xzyz y x y 2=+C .yy x y x 21212=+-D .011=-+-xy y x 3.a 是实数,且x >y ,则下列不等式中,正确的是( ) A .ax >ayB. a 2x ≤a 2yC .a 2x >a 2yD. a 2x ≥a 2y4.矩形、菱形、正方形都具有的性质是( ) A .每一条对角线平分一组对角 B .对角线相等 C .对角线互相平分D .对角线互相垂直5.用配方法解关于x 的方程x 2+mx +n =0,此方程可变形为( ) A .44)2(22m n m x -=+B .44)2(22nm m x -=+C . 24)2(22nm m x -=+D .24)2(22m n m x -=+6.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A .y =2a (x -1)B .y =2a (1-x )C .y =a (1-x 2)D .y =a (1-x )2相信自己一定成功!7.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为()A.32.5°B.57.5°C.65°或57.5°D.32.5°或57.5°8.随机抛掷一枚均匀的硬币两次,则出现两面不一样的概率是()A .41B.21C.43D.1 9.两圆的半径分别为7和1,圆心距为10,则其内公切线长和外公切线长分别为()A.6,8B.6,10C.8,2D.8,610.我市某风景区,在“五一“长假期间,接待游人情况如下图所示,则这七天游览该风景区的平均人数为()A.2800人B.3000人C.3200人D.3500人11.小洋用彩色纸制做了一个圆锥型的生日帽,其底面半径为6cm,母线长为12cm,不考虑接缝,这个生日帽的侧面积为()A.36πcm2B.72πcm2C.100πcm2D.144πcm2二、填空题:本大题共5小题,每小题4分,共20分12、一生物教师在显微镜下发现,某种植物的细胞直径约为0.00012mm,用科学记数法表示这个数为____________mm.13.请写出一个值k=___________,使一元二次方程x2-7x+k=0有两个不相等的非0实数根.(答案不唯一)你可要小心点14.有4条长度分别为1,3,5,7的线段,现从中任取三条能构成三角形的概率是__________.15.如图是中国共产主义青年团团旗上的图案(图案本身没有字母),5个角的顶点A ,B ,C ,D ,E 把外面的圆5等分,则∠A +∠B +∠C +∠D +∠E =__________________.16.一个叫巴尔末的中学教师成功地从光谱数据59,1216,2125,3236,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第n (n ≥1)个数据是___________.三、解答题:本大题共4个小题,每小题6分,共24分.17.解方程组:⎩⎨⎧=--=-+063042y x y x18.解方程:2121=++x x19.计算:2010011(20072009)(1)(1233)3-⎛⎫+-+-+- ⎪⎝⎭·tan30°①②20.学校举行百科知识抢答赛,共有20道题,规定每答对一题记10分,答错或放弃记-4分.九年级一班代表队的得分目标为不低于88分.问这个队至少要答对多少道题才能达到目标要求?四、解答题:本大题共3个小题,每小题7分,共21分.21.按规定尺寸作出下面图形的三视图.22.如图所示,我市某中学数学课外活动小组的同学,利用所学知识去测量沱江流经我市某段的河宽.小凡同学在点A处观测到对岸C点,测得∠CAD=45°,又在距A处60米远的B处测得∠CBA=30°,请你根据这些数据算出河宽是多少?(精确到0.01m)23.某商店按图(Ⅰ)给出的比例,从甲、乙、丙三个厂家共购回饮水机150台,商店质检员对购进的这批饮水机进行检测,并绘制了如图所示的统计图(Ⅱ).请根据图中提供的信息回答下列问题.(Ⅰ)(Ⅱ)(1)求该商店从乙厂购买的饮水机台数?(2)求所购买的饮水机中,非优等品的台数?(3)从优等品的角度考虑,哪个工厂的产品质量较好些?为什么?五、解答题:本大题共2个小题,每小题7分,共14分.24.如图,AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过E作⊙O的切线ME交AC于点D.试判断△AED的形状,并说明理由.25.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.六、解答题:本大题8分.26.△ABC中,∠A,∠B,∠C的对边分别为a,b,c,抛物线y=x2-2ax+b2交x轴于两点M,N,交y轴于点P,其中M的坐标是(a+c,0).(1)求证:△ABC是直角三角形.(2)若S△MNP=3S△NOP,①求cos C的值;②判断△ABC的三边长能否取一组适当的值,使三角形MND(D为抛物线的顶点)是等腰直角三角形?如能,请求出这组值;如不能,请说明理由.四川省自贡市初中毕业暨升学考试数学参考答案及评分标准说明: 一.如果考生的解法与下面提供的参考解法不同,只要正确一律给满分,若某一步出现错误,可参照该题的评分意见进行评分. 二.评阅试卷时,不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步以后的解答未改变这一道题的内容和难度,后来发生第二次错误前,出现错误的那一步不给分,后面部分只给应给分数之半;明显笔误,可酌情少扣;如有严重概念性错误,则不给分;在同一解答中,对发生第二次错误起的部分不给分. 三.涉及计算过程,允许合理省略非关键性步骤.四.在几何题中,考生若使用符号“⇒”进行推理,其每一步应得分数,可参照该题的评分意见进行评分.一.选择题:本大题共11个小题,每小题3分,共33分. 1.C 2.D 3.D 4.C 5.B6.D 7.D 8.B 9.A 10.B 11.B二.填空题:(每小题4分,共计20分) 12.1.2×10-4 13.10(答案不唯一) 14.4115.180° 16.)4()2(2++n n n 或4)2()2(22-++n n (只填一个均可) 三.解答题:(每小题6分,共计24分)17.解:由①+②得 5x =10 ········································································ 2分 x =2 ··········································································· 3分 将x =2代入①得 y =0 ················································································ 5分 ∴原方程组的解为⎩⎨⎧==02y x ················································································ 6分 18.解:x +(x +2)=2x (x +2) ··········································································· 2分整理得:x 2+x -1=0 ····················································································· 3分 ∴x =251±- ······························································································ 4分 经检验x =251±-均为原方程的解 ·································································· 5发 ∴原方程的解为x =251±- ··········································································· 6分 19.解:原式=9+1-1+(23-33)·33 ··················································· 2.5分 =9+(-3)·33 ····················································································· 4.5分 =9-1 ········································································································ 5分 =8 ············································································································ 6分20.解:设九年级一班代表队至少要答对x 道题才能达到目标要求. ······················ 1分 由题意得:10x -4(20-x )≥88 ········································································· 4分 10x -80+4x ≥88 ································································································ 14x ≥168 x ≥12 ········································································································· 5分 答:这个队至少要答对12道题才能达到目标要求. ············································· 6分 四.解答题:(每小题7分,共计21分) 21.解:主视图 左视图俯视图(三个视图各2分,位置正确给1分,共7分.) 22.解:如图,过C 作CE ⊥AB 于E ················ 1分 则CE 为河宽 设CE =x (米),于是BE =x +60(米) ··········· 2分 在Rt △BCE 中 tan30°=EBCE······························································································· 3分 ∴3x =x +60 ····························································································· 4分 ∴x =30(3+1) ·························································································· 5分 ≈81.96(米) ···························································································· 6分 答:河宽约为81.96米. ················································································ 7分 23.解:(1)150×40%=60(台) ·································································· 2分 ∴设商店从乙厂购买的饮水机台数为60台 (2)由图(II )知优等品的台数为 50+51+26=127(台)∴非优等品的台数为150-127=23(台) ·························································· 4分 (3)由题意知: 甲厂的优等品率为6050%4015050=⨯ ··································································· 4.5人乙厂的优等品率为6051%4015051=⨯ ····································································· 5分丙厂的优等品率为3026%2015026=⨯ ··································································· 5.5分又3026>6051>6050 ·························································································· 6分 ∴丙厂的产品质量较好. ··············································································· 7分 五.解答题:(每小题7分,共计14分) 24.解AED △为直角三角形 ······························· 1分 理由:连结BE ················································· 2分 ∵AB 是直径∴∠BEA =90° ················································ 3分 ∴∠B +∠BAE =90° ········································ 4分 又∵AE 平分∠BAC ∴∠BAE =∠EAD ··········································· 4.5分 ∵ME 切O 于点E ∴∠AED =∠B ····························································································· 5分 ∴∠AED +∠EAD =90° ················································································ 6分 ∴AED △是直角三角形 ················································································· 7分 25.证明:①连结AD ················································································· 0.5分 ∵AB AC = ∠BAC =90° D 为BC 的中点 ∴AD ⊥BC BD =AD ······································· 1分 ∴∠B =∠DAC =45° ········································ 1.5分 又BE =AF∴△BDE ≌△ADF (S.A.S ) ································2分 ∴ED =FD ∠BDE =∠ADF ······································································· 2.5分 ∴∠EDF =∠EDA +∠ADF =∠EDA +∠BDE =∠BDA =90° ∴△DEF 为等腰直角三角形 ············································································ 3分 ②若E ,F 分别是AB ,CA 延长线上的点,如图所示. 连结AD ································································································· 4分 ∵AB =AC ∠BAC =90° D 为BC 的中点 ∴AD =BD AD ⊥BC ··································· 5分 ∴∠DAC =∠ABD =45° ∴∠DAF =∠DBE =135° ···························· 5.5分 又AF =BE∴△DAF ≌△DBE (S.A.S ) ························· 6分 ∴FD =ED ∠FDA =∠EDB ························· 6.5分∴∠EDF =∠EDB +∠FDB =∠FDA +∠FDB =∠ADB =90° ∴△DEF 仍为等腰直角三角形 ········································································· 7分 六.解答题:(共8分) 26.解:(1)证明:∵抛物线y =x 2-2ax +b 2 经过点(0)M a c +, ∴22()2()0a c a a c b +-++= ··········································································· 1分 ∴22222220a ac c a ac b ++--+=∴222b c a += ····························································································· 1.5分 由勾股定理的逆定理得:ABC △为直角三角形 ···································································· 2分 (2)解:①如图所示; ∵3MNP NOP S S =△△∴3MN ON = 即4MO ON = ····················· 2.5分又(0)M a c +, ∴04a c N +⎛⎫⎪⎝⎭, ···················· 3分 ∴a c +,4a c+是方程x 2-2ax +b 2=0的两根 ∴()24a ca c a +++= ··················································································· 3.5分 ∴35c a = ···································································································· 4分由(1)知:在ABC △中,∠A =90°由勾股定理得45b a = ··················································································· 4.5分∴4cos 5b C a == ···························································································· 5分 ②能 ········································································································· 5.5分由(1)知 222222222()y x ax b x ax a c x a c =-+=-+-=--∴顶点2()D a c -, ·························································································· 6分过D 作DE ⊥x 轴于点E 则NE =EM DN =DM 要使MND △为等腰直角三角形,只须ED =21MN =EM ······································ 6.5分 ∵(0)M a c +, 2()D a c -,∴2DE c = EM c =∴2c c = 又c >0,∴c =1 ············································································ 7分 由于c =53a b =54a ∴a =35b =34 ························································ 7.5分 ∴当a =35,b =34,c =1时,MNP △为等腰直角三角形8分。
四川省自贡市2013-2014学年九年级(上)期末统一检测数学试题(含答案)
2013-2014上期九数期末考试 第 1页(共 4页) 第 2页 (共 4页) 秘密★启用前〖考试时间:2014年元月7日上午9:00-11:00 共120分钟〗2013-2014学年九年级上学期期末考试数 学 试 卷重新制版:赵化中学 郑宗平本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷2至4页,共150分. 注意事项:1、答题前,考生务必将自己的姓名、班级、考号(用0.5毫米的黑色签字笔)填写在答题卡上,并检查条形码粘贴是否正确.2、选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米的黑色签字笔书写在答题卡的对应框内,超出答题区域的书写的答案无效,在草稿纸、试题卷上答题无效.3、考试结束后,将答题卡收回.第Ⅰ卷 选择题 (共40分)一、选择题(每小题4分,共40分) 1、下列各式中一定是二次根式的是( )ABCD2、下列方程中,一元二次方程共( )①、23x x 20+=;②、22x y 5+=;③、21x 4x -=;④、2x 1=;⑤、2xx 303-+=. A 、5个 B 、4个 C 、3个 D 、2个 3、下列图形中,既是轴对称图形,又是中心对称图形的是 ( ) 4、若两圆的半径分别是1cm 和5cm,圆心距为6cm,z 则这两圆的位置关系是 ( ) A 、内切 B 、相交 C 、外切 D 、外离 5、下列事件中是必然事件的是 ( ) A 、从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球 B 、小丹的自行车轮胎被钉子扎坏C 、小红期末考试数学成绩一定得满分D 、将油滴入水中,油会浮在水面上6、若关于x 的一元二次方程23x k 0+=有实数根,则 ( ) A 、k 0> B 、k 0< C 、k 0≥ D 、k 0≤7、一扇形的半径为24cm,若此扇形围成的圆锥的底面半径为10cm,那么这个扇形的面积是( )A 、2120cm πB 、2240cm πC 、2260cm πD 、2480cm π 8、如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且AB OP ,若 阴影部分的面积为9π,则弦AB 的长为 ( )A 、3B 、4C 、2D 、39的弧相等;④、等弧所对的弦相等;⑤、圆周角等于圆心角的一半;⑥、2x 5x 70-+=两根之和为5,其中正确命题的个数为 () A 、0个 B 、1个 C 、2个 D 、3个 10、如图,在△ABC 中,AB 10AC 8BC 6===,,,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的 最小值是 ( ) A 、4.8 B 、4.75 C 、5 D 、第Ⅱ卷 非选择题( 共110分)二、填空题(共5个小题,每小题4分,共20分)11、已知关于x 的方程22x 3x k 0++=的一个根是-1,则k = .12、当实验次数很大时,同一事件发生的频率稳定在相应的 附近,所以我们可以通过多次实验,用同一事件发生的 来估计这事件发生的概率.(填“频率”或“概率”) 13、已知点(,)A 2a 3b 2+-和(,)B 03a 2b +关于原点对称,则a b += .14、要用一条长为24cm 的铁丝围成一个斜边是10cm 的直角三角形,则两条直角边的长分别为 . 15、用两个全等的含30°角的直角三角形制作如图①所示的两种卡片,两种卡片中扇形的半径均为1,且扇形所在圆的圆心分别为长直角边的中点和30°角的顶点,按先A 后B 的顺序交替摆放A 、B 两张卡片得到图②所示的图案,若摆放这个图案共用两种卡片8张,则这个图案中阴影部分的面积之和为 ;若摆放这个图案共用两种卡片()2n 1+张(n 为正整数),则这个图中阴影部分的面积之和为 .(结果保留π)三、解答题(共2个题,每题8分,共16分)A B D C B Q ①②2013-2014上期九数期末考试 第 3页(共 4页) 第 4页 (共 4页)A CE16、计算:()1; ().2; 17、解下列一元二次方程:()().21x 22x 4-=-;()..222x 4x 10--=四、解答题(共2个题,每小题8分,共16分)⑴、请写出这四个图案都具有的两个共同特征.特征1:; 特征2:. ⑵、请在图二中设计出你心中最美丽的图案,使它也具备你写出的上述特征.19、为了亲近和感受大自然,某校组织学生从学校出发,步行6km 到自贡花海游玩,返回时比去时每小时少走1千米,结果返回时比去时多用了半小时,求学生返回时步行的速度.五、解答题(共2个题,每题10分,共20分)20、如图,某小区规划在长32米,宽20米的矩形场地ABCD 上修建三条同样宽的3条小路,使其中两条与AD 平行,一条 与AB 平行,其余部分种草,若使草坪的面积为570米2,问小 路应为多宽.21、有形状、大小和质地都相同的四张卡片,正面分别写有A 、B 、C 、D 和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.⑴、用树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A 、B 、C 、D 表示).⑵、小明和小强按下面规则做游戏:抽取的两张卡片上等式都不成立,则小明胜;若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利?为什么?六、解答题(本题满分12分)22、如果12x x ,是一元二次方程2ax bx c 0=++的两根,那么有,1212b cx x x x a a=-=+.这是一元二次方程根与系数的关系,我们可以用它来解题:设12x x ,是方程2x 6x 30+-=的两根,求2212x x +的值.解法可以这样:,1212x x 6x x 3+=-=- ,则()()()2222121212x x x x 2x x 62342+=+-=--⨯-=. 请根据以上解法解答下题:已知12x x ,是方程2x 4x 20-+=的两根,求:⑴、1211x x +的值;⑵、12x x -的值.七、解答题(本题满分12分)23、如图在Rt ABC 中,C 90=∠ ,以AC 为直径作⊙O ,交AB 于D ,过O 作OE AB ,交BC 于E .⑴、求证:ED 是⊙O 的切线;⑵、如果⊙O 的半径为1.5,ED =2,求AB 的长. ⑶、在⑵的条件下,求△ADO 的面积.八、解答题(本题满分14分)24、如图,⊙M 的圆心M 在x 轴上,⊙M 分别交x 轴于点A 、B (A 在B 的左边),交y 轴的正半轴于点C ,弦CD x 轴交⊙M 于点D ,已知A 、B 两点的横坐标分别是方程)23的两个根.①、求点C 的坐标;②、求直线AD 的解析式;③、点N 是直线AD 上的一个动点,求△MNB 的周长的最 小值,并在图中画出△MNB 周长最小时点N 的位置.图 一图 二 .()532D b b b b 0-=≠.333C 3x x 2x -=.=2B 24-2013-2014上期九数期末测试答题卡 第1页 共6页 第 2页 共6页 第3页 共6页请在各题目的答题区域内作答,超出答题区域的答案无效准考证号姓 名 2013~2014学年九年级上学期期末考试数 学 答 题 卡设计:郑宗平上期九数期末测试答题卡 第4页 共6页 第5页 共6页 第6页 共6页请在各题目的答题区域内作答,超出答题区域的答案无效请在各题目的答题区域内作答,超出答题区域的答案无效自贡市2013-2014上期九数期末考试参考答案 第 1页(共6页) 第 2页 (共6页)2013-2014学年九年级上学期期末考试 数学参考答案及评分标准一、选择题:本大题共10个小题,每小题4分,共40分.二、填空题:本大题共5个小题,每小题4分,共20分. 11.12. 概率、频率 13. 65- 14 6cm ,8cm 15 π,3212n π+ 三、解答题(每题8分,共16分) 16. 解:(1).原式= 333233+-……3分=334 ……4分(2).原式=3323534⋅-)( ……2分=8-10……3分= -2 ……4分17. 解:(1)∵42442-=+-x x x ………1分0862=+-x x ……1分 0)4)(2(=--x x ……3分 ∴ 4,221==x x ……4分(2). 48164+±=x……3分∴ 262,26221-=+=x x ……4分 四、解答题:(每题8分,共16分)18. (1) . 特征1:都是轴对称图形; ……2分 特征2:都是中心对称图形. ……4分(2).……8分19. 解:设学生返回时步行的速度是x 千米/小时. ……0.5分由题意有21166++=x x ……4.5分 整理得 0)3)(4(=-+x x ……5.5分∴ 4,321-==x x ……6.5分经检验它们都是原方程的解,但 4-=x 不合题意舍去∴ ,3=x ……7.5分 答:学生返回时步行的速度是3千米/小时. ……8分五、解答题(每题10分,共20分)20. 解:设小路宽为x 米, ……0.5分由题意得方程 570)20)(232(=--x x ……5.5分整理得, 35362+-x x 即 0)35)(1(=--x x ∴ 35,121==x x 或 ……8.5分 35=x 不合题意舍去 ∴ ,1=x …… 9.5分 答:小路宽为1米 ……10分自贡市2013-2014上期九数期末考试参考答案 第 3页(共6页) 第 4页 (共6页)六、解答题 (本题12分)22.解:∵ 21x x 是方程0242=+-x x 的两根 ∴ 421=+x x 221=⋅x x ……3分(1).∵21212111x x x x x x +=+ ∴2241121==+x x ……7分 (2).∵221)(x x -=221)(x x +-421x x ⋅ ……10分∴12x x -===± ……12分七、解答题 (本题12分)23.(1).证明:连结OD ……1分 ∵ OE ∥AB ∴ ∠1=∠4 ∠2=∠3∵OA =OD ∴∠3=∠4 ∴∠1=∠2 ……2分 在△OCE 和△ODE 中 OC =OD ∠1=∠2 OE =OE ∴ △OCE ≌△ODE , ……3分 ∴∠ODE =∠C =90°∴ OD ⊥ED ∴ED 是⊙O 的切线 .……4分(2). ∵ OE ∥AB OA =OC ∴ AB =2OE ……5分又 ∠C =90°, ∴ OC ⊥EC ∴EC 是⊙O 的切线. ……6分 ∴ EC =ED =2 … 7分 在△OCE 中,OE =5.225.12222=+=+CE OC ∴ AB =2OE =5 ……8分 (3)连结CD …9分 ∵ AC 是⊙O 的直径,∴ ∠CDA =90° ∴ CD ⊥AB 在Rt △ABC 中, CD ⊥AB ∴ CD ·AB =AC ·BC ∴ CD =2.4 ……10分 在Rt △ABC 中,AD 8.14.232222=-=-=CD AC ……11分∴ 16.221=⋅=∆AD CD S ACD ∴ 08.121==∆∆ACD ADO S S ……12分 八、解答题 (本题14分)24.(1).解:方程)3(42+=x x 整理得 01242=--x x即 (6)(2)0x x-+= ∴ 6,221=-=x x ……1分∴ 点A ,B 的坐标分别是)0,2(-A ,)0,6(B ……2分 ∴ 点M 的坐标是)0,2(M ,OM 的半径为4, ……3分 连结CM ,则 32242222=-=-=OM OC OC∴ 点C 的坐标为 )220(,C ……4分(2).如图,过点M 作ME ⊥CD ,则CE =ED =12CD ……5分 ∵ CD ∥x 轴 ∴ ME ⊥x 轴 ∴ 四边形OMEC 是矩形,∴ OE =OM =2 ∴ CD =4 ∴ 点D 的坐标是(4, ……6分自贡市2013-2014上期九数期末考试参考答案 第 5页(共6页) 第 6页 (共6页) 设直线AD 的解析式为y kx b =+则204k b k b -+=⎧⎪⎨+=⎪⎩ 解得k =b = ……7分∴ 直线AD的解析式为y x =……8分 (3).如图,设直线AD 与y 轴的交点是F 当 0x =时,3y = ∴ 点F 的坐标为F (0,3) ……9分在Rt △OMF 中2FM == ∵ CF =OC -OF=MF == ∴ 点F 在线段MC 的中垂线上 ……11分 ∵ MD =CD =4∴ 点D 也在线段CM 的中垂线上 ∴ 直线AD 是线段CM 的中垂线. ∴ 点M 关于直线AD 的对称点是C ……12分 连结BC 交直线AD 于N ,连结MN ,则 △MNB 就是所求作的周长最小的三角形 ……13分此时在△OBC中,BC === △MNB 的周长为 MN +CN +MB =BC +BM=4,点N 的位置如图所示. (14)分。
【VIP专享】自贡市2012-2013学年度下学期八年级统一检测 数学试题(Word版.含答题卡和参考答案)
AE⊥DP 于 E,设 DP=x,AE=y,则能反映 y 与 x 之间函数关系的大致图象是( )
二、填空题(本题有 6 个小题,每小题 3 分,共计 18 分)
9、用科学记数法表示 0.0000563 米,为
A
10、若一组数据 1,1,2,3,x 的平均数据是 3,则这组数据的人数是
11、已知 a,b,c 是△ABC 的三边长,且满足 c 2 a 2 b2 a b 0 ,则△ABC 的形
a,b,c 的大小关系是
A、a<c<b
B、a<b<c
7、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
输入
输出
…
…
那么,当输入数据是 8 时,输入的数据是
A、 8 25
B、 8 63
1
1
2
2
2
5
8、如图:在矩形 ABCD 中,AB=3,BC=4,点 P 在 BC 边上运动,连接 DP,过点 A 作
秘密★启用前〖考试时间:2013 年 7 月 3 日上午 9:00-11:00 共 120 分钟〗
自贡市 2012-2013 学年度下学期期末八年级统一检测
数学试卷
重新制版:赵化中学 郑宗平
注意事项: 1、答题前,考生务必将自己的姓名、班级、考号(用 0.5 毫米的黑色签字笔)填写在答 题卡上,并检查条形码粘贴是否正确. 2、选择题使用 2B 铅笔填涂在答题卡对应题目标号的位置上,非选择题用 0.5 毫米的黑 色签字笔书写在答题卡的对应框内,超出答题区域的书写的答案无效,在草稿纸、试题卷 上答题无效. 3、考试结束后,将答题卡收回.
21、如图 A、B、C 三点在同一直线上,AB=2BC,分别以 AB、BC 为边正方形 ABEF 和正方形 BCMN。连接 FN、EC. 求证:FN=EC
数学:中考2013年各地数学试题解析(遵义、自贡)
贵州省遵义市2013年中考数学试卷一、选择题(本题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.(3分)(2013•遵义)如果+30m表示向东走30m,那么向西走40m表示为()A.+40m B.﹣40m C.+30m D.﹣30m考点:正数和负数.分析:此题主要用正负数来表示具有意义相反的两种量:向东走记为正,则向西走就记为负,直接得出结论即可.解答:解:如果+30米表示向东走30米,那么向西走40m表示﹣40m.故选B.点评:此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(2013•遵义)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.考点:由三视图判断几何体分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.解答:解:如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选D.点评:本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.3.(3分)(2013•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为()A.3.354×106B.3.354×107C.3.354×108D.33.54×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3354万用科学记数法表示为:3.354×107.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2013•遵义)如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70°B.80°C.65°D.60°考点:平行线的性质;三角形的外角性质.分析:首先根据平行线的性质得出∠1=∠4=140°,进而得出∠5度数,再利用三角形内角和定理以及对顶角性质得出∠3的度数.解答:解:∵直线l1∥l2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°,∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°,∵∠3=∠6,∴∠3的度数是70°.故选:A.点评:此题主要考查了平行线的性质以及三角形内角和定理等知识,根据已知得出∠5的度数是解题关键.5.(3分)(2013•遵义)计算(﹣ab2)3的结果是()A.﹣a3b6B.﹣a3b5C.﹣a3b5D.﹣a3b6考点:幂的乘方与积的乘方.分析:利用积的乘方与幂的乘方的运算法则求解即可求得答案.解答:解:(﹣ab2)3=(﹣)3•a3(b2)3=﹣a3b6.故选D.点评:此题考查了积的乘方与幂的乘方.注意掌握指数的变化是解此题的关键.6.(3分)(2013•遵义)如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.考点:概率公式;利用轴对称设计图案.分析:由白色的小正方形有12个,能构成一个轴对称图形的有2个情况,直接利用概率公式求解即可求得答案.解答:解:∵白色的小正方形有12个,能构成一个轴对称图形的有2个情况,∴使图中黑色部分的图形构成一个轴对称图形的概率是:=.故选A.点评:此题考查了概率公式的应用与轴对称.注意概率=所求情况数与总情况数之比.7.(3分)(2013•遵义)P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,下列判断中,正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y2考点:一次函数图象上点的坐标特征.分析:根据正比例函数图象的性质:当k<0时,y随x的增大而减小即可求解.解答:解:∵y=﹣x,k=﹣<0,∴y随x的增大而减小.故选D.点评:本题考查正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.8.(3分)(2013•遵义)如图,A、B两点在数轴上表示的数分别是a、b,则下列式子中成立的是()A.a+b<0B.﹣a<﹣b C.1﹣2a>1﹣2b D.|a|﹣|b|>0考点:实数与数轴.分析:根据a、b两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可.解答:解:a、b两点在数轴上的位置可知:﹣2<a<﹣1,b>2,∴a+b>0,﹣a>b,故A、B错误;∵a<b,∴﹣2a>﹣2b,∴1﹣2a>1﹣2b,故C正确;∵|a|<2,|b|>2,∴|a|﹣|b|<0,故D错误.故选C.点评:本题考查的是数轴的特点,根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.9.(3分)(2013•遵义)如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()A.cm B.C.cm D.3cm(2+π)cm考点:弧长的计算;等边三角形的性质;旋转的性质.分析:通过观察图形,可得从开始到结束经过两次翻动,求出点B两次划过的弧长,即可得出所经过路径的长度.解答:解:∵△ABC是等边三角形,∴∠ACB=60°,∴∠AC(A)=120°,点B两次翻动划过的弧长相等,则点B经过的路径长=2×=π.故选C.点评:本题考查了弧长的计算,解答本题的关键是仔细观察图形,得到点B运动的路径,注意熟练掌握弧长的计算公式.10.(3分)(2013•遵义)二次函数y=ax2+bx+c(a≠0)的图象如图如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()A.3个B.2个C.1个D.0个考点:二次函数图象与系数的关系.专题:计算题.分析:根据图象得到x=﹣2时对应的函数值小于0,得到N=4a﹣2b+c的值小于0,根据对称轴在直线x=﹣1右边,利用对称轴公式列出不等式,根据开口向下得到a小于0,变形即可对于P作出判断,根据a,b,c的符号判断得出a+b﹣c的符号.解答:解:∵图象开口向下,∴a<0,∵对称轴在y轴左侧,∴a,b同号,∴a<0,b<0,∵图象经过y轴正半轴,∴c>0,∴M=a+b﹣c<0,当x=﹣2时,y=4a﹣2b+c<0,∴N=4a﹣2b+c<0,∵﹣>﹣1,∴<1,∴b>2a,∴2a﹣b<0,∴P=2a﹣b<0,则M,N,P中,值小于0的数有M,N,P.故选:A.点评:此题主要考查了二次函数图象与系数的关系,根据图象判断出对称轴以及a,b,c的符号是解题关键.二、填空题(本题共8小题,每小题4分,共32分.答题请用黑色墨水笔或黑色签字笔直接在答题卡的相应位置上.)11.(4分)(2013•遵义)计算:20130﹣2﹣1=.考点:负整数指数幂;零指数幂.分析:根据任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.解答:解:20130﹣2﹣1,=1﹣,=.故答案为:.点评:本题考查了任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数,是基础题,熟记两个性质是解题的关键.12.(4分)(2013•遵义)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25.考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a+b=﹣3,1﹣b=﹣1,再解方程可得a、b的值,进而算出a b的值.解答:解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴a+b=﹣3,1﹣b=﹣1,解得:b=2,a=﹣5,a b=25,故答案为:25.点评:此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.13.(4分)(2013•遵义)分解因式:x3﹣x=x(x+1)(x﹣1).考点:提公因式法与公式法的综合运用.分析:本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.解答:解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).点评:本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.14.(4分)(2013•遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=52°度.考点:圆周角定理;垂径定理.分析:由OC是⊙O的半径,AB是弦,且OC⊥AB,根据垂径定理的即可求得:=,又由圆周角定理,即可求得答案.解答:解:∵OC是⊙O的半径,AB是弦,且OC⊥AB,∴=,∴∠BOC=2∠APC=2×26°=52°.故答案为:52°.点评:此题考查了垂径定理与圆周角定理.此题比较简单,注意掌握数形结合思想的应用.15.(4分)(2013•遵义)已知x=﹣2是方程x2+mx﹣6=0的一个根,则方程的另一个根是3.考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到﹣2•x1=﹣6,然后解一次方程即可.解答:解:设方程另一个根为x1,根据题意得﹣2•x1=﹣6,所以x1=3.故答案为3.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.16.(4分)(2013•遵义)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F 分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=9cm.考点:三角形中位线定理;矩形的性质.分析:先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出△AEF的周长.解答:解:在Rt△ABC中,AC==10cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=,AF=AD=BC=4cm,AE=AO=AC=,∴△AEF的周长=AE+AF+EF=9cm.故答案为:9.点评:本题考查了三角形的中位线定理、勾股定理及矩形的性质,解答本题需要我们熟练掌握三角形中位线的判定与性质.17.(4分)(2013•遵义)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为(结果保留根号).考点:扇形面积的计算.分析:若两个阴影部分的面积相等,那么△ABC和扇形ADF的面积就相等,可分别表示出两者的面积,然后列出方程即可求出AF的长度.解答:解:∵图中两个阴影部分的面积相等,=S△ABC,即:=×AC×BC,∴S扇形ADF又∵AC=BC=1,∴AF2=,∴AF=.故答案为.点评:此题主要考查了扇形面积的计算方法及等腰直角三角形的性质,能够根据题意得到△ABC和扇形ADF的面积相等,是解决此题的关键,难度一般.18.(4分)(2013•遵义)如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,点B的坐标为(﹣4,﹣2),C为双曲线y=(k>0)上一点,且在第一象限内,若△AOC的面积为6,则点C的坐标为(2,4).考点:反比例函数与一次函数的交点问题.分析:把点B的坐标代入反比例函数解析式求出k值,再根据反比例函数图象的中心对称性求出点A的坐标,然后过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,设点C的=S△COF+S梯形ACFE﹣S△AOE列出方程求解即可得到a 坐标为(a,),然后根据S△AOC的值,从而得解.解答:解:∵点B(﹣4,﹣2)在双曲线y=上,∴=﹣2,∴k=8,根据中心对称性,点A、B关于原点对称,所以,A(4,2),如图,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,设点C的坐标为(a,),=S△COF+S梯形ACFE﹣S△AOE,则S△AOC=×8+×(2+)(4﹣a)﹣×8,=4+﹣4,=,∵△AOC的面积为6,∴=6,整理得,a2+6a﹣16=0,解得a1=2,a2=﹣8(舍去),∴==4,∴点C的坐标为(2,4).故答案为:(2,4).点评:本题考查了反比例函数与一次函数的交点问题,反比例函数系数的几何意义,作辅助线并表示出△ABC的面积是解题的关键.三、解答题(本题共9小题,共88分.答题请用黑色墨水笔或黑色签字笔直接在答题卡的相应位置上.解答时应写出必要的文字说明、证明过程或盐酸步骤.)19.(6分)(2013•遵义)解方程组.考点:解二元一次方程组.专题:计算题.分析:由第一个方程得到x=2y+4,然后利用代入消元法其解即可.解答:解:,由①得,x=2y+4③,③代入②得2(2y+4)+y﹣3=0,解得y=﹣1,把y=﹣1代入③得,x=2×(﹣1)+4=2,所以,方程组的解是.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.20.(8分)(2013•遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.考点:分式的化简求值.分析:先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a2+2a﹣15=0进行配方,得到一个a+1的值,再把它整体代入即可求出答案.解答:解:﹣÷=﹣•=﹣=,∵a2+2a﹣15=0,∴(a+1)2=16,∴原式==.点评:此题考查了分式的化简求值,关键是掌握分式化简的步骤,先进行通分,再因式分解,然后把除法转化成乘法,最后约分;化简求值题要将原式化为最简后再代值.21.(8分)(2013•遵义)我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).考点:解直角三角形的应用-仰角俯角问题.分析:首先过点C作CN⊥AM于点N,则点C,E,N在同一直线上,设AB=x米,则AN=x+(17﹣1)=x+16(米),则在Rt△AEN中,∠AEN=45°,可得EN=AN=x+16,在Rt△BCN中,∠BCN=37°,BM=17,可得tan∠BCN==0.75,则可得方程:,解此方程即可求得答案.解答:解:过点C作CN⊥AM于点N,则点C,E,N在同一直线上,设AB=x米,则AN=x+(17﹣1)=x+16(米),在Rt△AEN中,∠AEN=45°,∴EN=AN=x+16,在Rt△BCN中,∠BCN=37°,BM=17,∴tan∠BCN==0.75,∴,解得:x=1≈1.3.经检验:x=1是原分式方程的解.答:宣传牌AB的高度约为1.3m.点评:此题考查了俯角的定义.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键.22.(10分)(2013•遵义)“校园安全”受到全社会的广泛关注,某校政教处对部分学生及家长就校园安全知识的了解程度,进行了随机抽样调查,并绘制成如图所示的两幅统计图,请根据统计图中的信息,解答下列问题:(1)参与调查的学生及家长共有400人;(2)在扇形统计图中,“基本了解”所对应的圆心角的度数是135度.(3)在条形统计图中,“非常了解”所对应的学生人数是62人;(4)若全校有1200名学生,请你估计对“校园安全”知识达到“非常了解”和“基本了解”的学生共有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据参加调查的人中,不了解的占5%,人数是16+4=20人,据此即可求解;(2)利用360°乘以对应的比例即可求解;(3)利用总人数减去其它的情况的人数即可求解;(4)求得调查的学生总数,则对“校园安全”知识达到“非常了解”和“基本了解”所占的比例即可求得,利用求得的比例乘以1200即可得到.解答:解:(1)参与调查的学生及家长总人数是:(16+4)÷5%=400(人);(2)基本了解的人数是:73+77=150(人),则对应的圆心角的底数是:360×=135°;(3)“非常了解”所对应的学生人数是:400﹣83﹣77﹣73﹣54﹣31﹣16﹣4=62;(4)调查的学生的总人数是:62+73+54+16=205(人),对“校园安全”知识达到“非常了解”和“基本了解”的学生是62+73=135(人),则全校有1200名学生中,达到“非常了解”和“基本了解”的学生是:1200×≈790(人).点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(10分)(2013•遵义)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率考点:列表法与树状图法;概率公式.分析:(1)首先设口袋中黄球的个数为x个,根据题意得:=,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;(3)由若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;直接利用概率公式求解即可求得答案.解答:解:(1)设口袋中黄球的个数为x个,根据题意得:=,解得:x=1,经检验:x=1是原分式方程的解;∴口袋中黄球的个数为1个;(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况,∴两次摸出都是红球的概率为:=;(3)∵摸到红球得5分,摸到黄球得3分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,∴乙同学已经得了7分,∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;∴若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.24.(10分)(2013•遵义)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求的值.考点:矩形的性质;勾股定理;翻折变换(折叠问题).分析:(1)由折叠的性质可得:∠ANM=∠CNM,由四边形ABCD是矩形,可得∠ANM=∠CMN,则可证得∠CMN=∠CNM,继而可得CM=CN;(2)首先过点N作NH⊥BC于点H,由△CMN的面积与△CDN的面积比为3:1,易得MC=3ND=3HC,然后设DN=x,由勾股定理,可求得MN的长,继而求得答案.解答:(1)证明:由折叠的性质可得:∠ANM=∠CNM,∵四边形ABCD是矩形,∴AD∥BC,∴∠ANM=∠CMN,∴∠CMN=∠CNM,∴CM=CN;(2)解:过点N作NH⊥BC于点H,则四边形NHCD是矩形,∴HC=DN,NH=DC,∵△CMN的面积与△CDN的面积比为3:1,∴===3,∴MC=3ND=3HC,∴MH=2HC,设DN=x,则HC=x,MH=2x,∴CM=3x=CN,在Rt△CDN中,DC==2x,∴HN=2x,在Rt△MNH中,MN==2x,∴==2.点评:此题考查了矩形的性质、折叠的性质、勾股定理以及三角形的面积.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.25.(10分)(2013•遵义)2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设租用甲种货车x辆,表示出租用乙种货车为(16﹣x)辆,然后根据装运的粮食和副食品数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x是正整数设计租车方案;(2)方法一:根据所付的费用等于两种车辆的燃油费之和列式整理,再根据一次函数的增减性求出费用的最小值;方法二:分别求出三种方案的燃油费用,比较即可得解.解答:解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,,由①得,x≥5,由②得,x≤7,所以,5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:组甲种货车5辆,乙种货车11辆;方案二:组甲种货车6辆,乙种货车10辆;方案三:组甲种货车7辆,乙种货车9辆;(2)方法一:由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y元,由题意得,y=1500x+1200(16﹣x),=300x+19200,∵300>0,∴当x=5时,y有最小值,y最小=300×5+19200=20700元;方法二:当x=5时,16﹣5=11,5×1500+11×1200=20700元;当x=6时,16﹣6=10,6×1500+10×1200=21000元;当x=7时,16﹣7=9,7×1500+9×1200=21300元;答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.点评:本题考查了一次函数的应用,一元一次不等式组的应用,读懂题目信息,找出题中不等量关系,列出不等式组是解题的关键.26.(12分)(2013•遵义)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P 从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.考点:相似形综合题.分析:根据勾股定理求得AB=5cm.(1)分类讨论:△AMP∽△ABC和△APM∽△ABC两种情况.利用相似三角形的对应边成比例来求t的值;(2)如图,过点P作PH⊥BC于点H,构造平行线PH∥AC,由平行线分线段成比﹣S△BPH”列出S与t的关系式S=(t 例求得以t表示的PH的值;然后根据“S=S△ABC﹣)2+(0<t<2.5),则由二次函数最值的求法即可得到S的最小值.解答:解:∵如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.∴根据勾股定理,得=5cm.(1)以A,P,M为顶点的三角形与△ABC相似,分两种情况:①当△AMP∽△ABC时,=,即=,解得t=;②当△APM∽△ABC时,=,即=,解得t=0(不合题意,舍去);综上所述,当t=时,以A、P、M为顶点的三角形与△ABC相似;(2)存在某一时刻t,使四边形APNC的面积S有最小值.理由如下:假设存在某一时刻t,使四边形APNC的面积S有最小值.如图,过点P作PH⊥BC于点H.则PH∥AC,∴=,即=,∴PH=t,∴S=S△ABC ﹣S△BPH,=×3×4﹣×(3﹣t)•t,=(t﹣)2+(0<t<2.5).∵>0,∴S有最小值.当t=时,S最小值=.答:当t=时,四边形APNC的面积S有最小值,其最小值是.点评:本题综合考查了相似三角形的判定与性质、平行线分线段成比例,二次函数最值的求法以及三角形面积公式.解答(1)题时,一定要分类讨论,以防漏解.另外,利用相似三角形的对应边成比例解题时,务必找准对应边.27.(14分)(2013•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP 的最小值,若不存在,请说明理由;(3)在以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.考点:二次函数综合题.专题:综合题.分析:(1)利用顶点式求得二次函数的解析式后令其等于0后求得x的值即为与x轴交点坐标的横坐标;(2)线段BC的长即为AP+CP的最小值;(3)连接ME,根据CE是⊙M的切线得到ME⊥CE,∠CEM=90°,从而证得△COD≌△MED,设OD=x,在RT△COD中,利用勾股定理求得x的值即可求得点D的坐标,然后利用待定系数法确定线段CE的解析式即可.解答:解:(1)由题意,设抛物线的解析式为y=a(x﹣4)2﹣(a≠0)∵抛物线经过(0,2)∴a(0﹣4)2﹣=2解得:a=∴y=(x﹣4)2﹣即:y=x2﹣x+2当y=0时,x2﹣x+2=0解得:x=2或x=6∴A(2,0),B(6,0);(2)存在,如图2,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小∵B(6,0),C(0,2)∴OB=6,OC=2∴BC=2,∴AP+CP=BC=2∴AP+CP的最小值为2;(3)如图3,连接ME∵CE是⊙M的切线∴ME⊥CE,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDE∵在△COD与△MED中∴△COD≌△MED(AAS),∴OD=DE,DC=DM设OD=x则CD=DM=OM﹣OD=4﹣x则RT△COD中,OD2+OC2=CD2,∴x2+22=(4﹣x)2∴x=∴D(,0)设直线CE的解析式为y=kx+b∵直线CE过C(0,2),D(,0)两点,则解得:∴直线CE的解析式为y=﹣+2;点评:本题考查了二次函数的综合知识,特别是用顶点式求二次函数的解析式,更是中考中的常考内容,本题难度偏大.四川省自贡市2013年中考数学试卷一、选择题(共10个小题,每小题4分,共40分)1.(4分)(2013•自贡)与﹣3的差为0的数是()A.3B.﹣3C.D.考点:有理数的减法.分析:与﹣3的差为0的数就是﹣3+0,据此即可求解.解答:解:﹣3+0=﹣3.故选B.点评:本题考查了有理数的减法运算,正确列出式子是关键.2.(4分)(2013•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2013•自贡)某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5B.5.5C.6D.7考点:中位数;算术平均数.分析:根据平均数的定义先求出这组数据x,再将这组数据从小到大排列,然后找出最中间的数即可.解答:解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6;则这组数据的中位数是6;故选C.点评:此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).4.(4分)(2013•自贡)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.B.C.D.考点:列表法与树状图法;轴对称图形.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案.解答:解:分别用A、B、C、D表示等腰三角形、平行四边形、菱形、圆,画树状图得:∵共有12种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有6种情况,∴抽到卡片上印有的图案都是轴对称图形的概率为:=.故选D.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.5.(4分)(2013•自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A.3B.4C.5D.8考点:圆周角定理;坐标与图形性质;勾股定理.专题:计算题.分析:连接BC,由90度的圆周角所对的弦为直径,得到BC为圆A的直径,在直角三角形BOC中,由OB与OC的长,利用勾股定理求出BC的长,即可确定出圆A的半径.解答:解:连接BC,∵∠BOC=90°,∴BC为圆A的直径,即BC过圆心A,在Rt△BOC中,OB=8,OC=6,。
2013年自贡市中考数学卷附答案
绝密★启用前 [考试时间:2013年6月15日上午9∶00-11∶00]四川省自贡市2013年初中毕业生学业考试数 学 试 卷本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至12页,满分150分,考试时间为120分钟.考试结束后,将试卷第Ⅰ卷、试卷第Ⅱ卷和答题卡一并交回.装订时将第Ⅱ卷单独装订.第Ⅰ卷(选择题共40分)注意事项:(1)答第Ⅰ卷前,考生务必将自己的姓名,准考证号、考试科目涂写在答题卡上. (2橡皮擦擦干净后,再选涂其它答案标号,不能答在试卷中.一、选择题(共10个小题,每小题4分,共40分) 1.与3-的差为0的数是() A . 3B .-3C .13D .13-2.我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为() A .101.9410⨯B .100.19410⨯C .919.410⨯D .91.9410⨯3.某班七个合作学习小组人数如下:4、5、5、x 、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A .5B .5.5C .6D .74.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A .34B .14 C .13D .125.如图,在平面直角坐标系中, A 经过原点O ,并且分别与x 轴、y 轴交于B 、C 两点,已知B (8,0),C (0,6),则 A 的半径为()A .3B .4C .5D .86.如图,在平行四边形ABCD 中,AB =6,AD =9,BAD ∠的平分线交BC 于E ,交DC 的延长线于F ,BG AE ⊥于G ,BG =,则EFC 的周长为()A .11B .10C .9D .87.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()A .8B .9C .10D .118.如图,将一张边长为3的正方形纸片按虚线裁剪后恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为()A .9-B .9C .9D .99.如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使该角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的个数是()A .4B .5C .6D .710.如图,已知A 、B 是反比例函数(0,0)ky k x x=>>上的两点,BC x 轴,交y 轴于C ,动点P 从坐标原点O 出发,沿O A B C→→→匀速运动,终点为C ,过运动路线上任意一点P 作PM x ⊥轴于M ,PN y ⊥轴于N ,设四边形OMPN 的面积为S ,P 点运动的时间为t ,则S 关于t 的函数图象大致是()绝密★启用前 【考试时间:2013年6月15日上午9:00—11:00】四川省自贡市2013年初中毕业生学业考试数学试卷第Ⅱ卷(非选择题共110分)注意事项:1.答题前,将密封线内的项目填写清楚.2.用蓝色或黑色笔中的一种作答(不能用铅笔),答案直接写在试卷上.总分 总分人二、填空题(共5个小题,每小题4分,共20分)11.多项式2ax a -与多项式221x x -+的公因式是___________12.计算:2013260sin -0-11+()2°2=______. 13.如图,边长为1的小正方形网格中,O 的圆心在格点上,则AED ∠的余弦值是__________.14.已知关于x 的方程2()10x a b x ab -++-=,1x 、2x 是此方程的两个实数根,现给出三个结论:①12x x ≠;②12x x ab <;③222212x x a b +<+.则正确结论的序号是_________.(填上你认为正确结论的所有序号)15.如图,在函数8(0)y x x=>的图象上有点1P 、2P 、3P ……、n P 、1n P +,点1P 的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点1P 、2P 、3P ……、n P 、1n P +分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为1S 、2S 、3S ……、n S ,则1S =________,n S =________.(用含n 的代数式表示)三、解答题(共2个题,每题8分,共16分)16.解不等式组:3(2)42113x x x x ⎧--⎪⎨+>-⎪⎩ …并写出它的所有的整数解. 17.先化简211()1122a a a a -÷-+-,然后从11-中选取一个你认为合适的数作为a 的值代入求值.四、解答题(共2个题,每小题8分,共16分)18.用配方法解关于x的一元二次方程20ax bx c++=.19.某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?五、解答题(共2个题,每题10分,共20分)20.为配合我市创建省级文明城市,某校对八年级各班文明行为劝导志愿者人数进行了统计,各班统计人数有6名、5名、4名、3名、2名、1名共计六种情况,并制作如下两幅不完整的统计图.(1)求该年级平均每班有多少文明行为劝导志愿者?并将条形图补充完整; (2)该校决定本周开展主题实践活动,从八年级只有2名文明行为劝导志愿者的班级中任选两名,请用列表或画树状图的方法,求出所选文明行为劝导志愿者有两名来自同一班级的概率.21.如图,点B 、C 、D 都在O 上,过点C 作AC BD 交OB 延长线于点A ,连接CD ,且30CDB OBD ∠=∠=°,DB=cm .(1)求证:AC 是O 的切线;(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)六、解答题(本题满分12分)22.如图,在东西方向的海岸线l 上有一长为1km 的码头MN ,在码头西端M 的正西19.5km 处有一观察站A ,某时刻测得一艘匀速直线航行的轮船位于A 处的北偏西30°且与A 相距40km 的B 处,经过1小时20分钟,又测得该轮船位于A 处的北偏东60°且与A 处相距83km 的C 处.(1)求轮船航行的速度;(保留精确结果)(2)如果该轮船不改变航向继续航行,那么轮船能否正好至码头MN 靠岸?请说明理由.七、解答题(本题满分12分)23.将两块全等的三角板如图①摆放,其中1190ACB ACB ∠=∠=°,130A A ∠=∠=°. (1)将图①中的11A B C 顺时针旋转45°得图②,点1P 是1A C 与AB 的交点,点Q 是11A B 与BC 的交点,求证:1CP CQ=; (2)在图②中,若12AP =,则CQ 等于多少? (3)如图③,在1B C 上取一点E ,连接BE 、1P E ,设1BC =,当1B E P B ⊥时,求1PBE 面积的最大值.八、解答题(本题满分14分)24.如图,已知抛物线22(0)y ax bx a =+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且D (2,3),1t a n2D B A ∠=. (1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C 、A ,求四边形BMCA 面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆,若存在,求出圆心Q的坐标,若不存在,请说明理由.四川省自贡市2013年初中毕业生学业考试数学参考答案及评分标准第Ⅰ卷(选择题共40分)一、选择题:(每小题4分,共40分)1.B 2.A 3.C 4.D 5.C6.D 7.B 8.A 9.B 10.A第Ⅱ卷(非选择题共110分)说明:一、如果考生的解法与下面提供的参考解法不同,只要正确一律给满分,若某一步出现错误,可参照该题的评分意见进行评分。
2013年四川省自贡市中考数学试题及参考答案(word解析版)
2013年四川省自贡市中考数学试题及参考答案与解析一、选择题(本大题共10个小题,每小题4分,共40分)1.与﹣3的差为0的数是()A.3 B.﹣3 C.13D.132.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1093.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.74.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.34B.14C.13D.125.如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B (8,0),C(0,6),则⊙A的半径为()A.3 B.4 C.5 D.66.如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=EFC的周长为()A.11 B.10 C.9 D.87.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()A.8 B.9 C.10 D.118.如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( )A .9-B .9C .9-D .9- 9.如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使该角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的个数是( )A .4B .5C .6D .710.如图,已知A 、B 是反比例函数()0,0k y k x x=>>上的两点,BC ∥x 轴,交y 轴于C ,动点P 从坐标原点O 出发,沿O→A→B→C 匀速运动,终点为C ,过运动路线上任意一点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,设四边形OMPN 的面积为S ,P 点运动的时间为t ,则S 关于t 的函数图象大致是( )A .B .C .D .二、填空题(本大题共5个小题,每小题4分,共20分)11.多项式ax 2﹣a 与多项式x 2﹣2x+1的公因式是 .12.计算:10120132sin 60|2|2-⎛⎫+-︒-= ⎪⎝⎭ . 13.如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则∠AED 的余弦值是 .14.已知关于x 的方程x 2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③222212x x a b ++<.则正确结论的序号是 .(填上你认为正确结论的所有序号)15.如图,在函数()80y x x=>的图象上有点P 1、P 2、P 3…、P n 、P n+1,点P 1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P 1、P 2、P 3…、P n 、P n+1分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S 1、S 2、S 3…、S n ,则S 1= 4 ,S n = .(用含n 的代数式表示)三、解答题(本大题共2个题,每题8分,共16分)16.(8分)解不等式组:()3242113x x x x --⎧⎪⎨+-⎪⎩≥①>②,并写出它的所有的整数解. 17.(8分)先化简2111122a a a a ⎛⎫-÷ ⎪-+-⎝⎭,然后从11中选取一个你认为合适的数作为a 的值代入求值.四、解答题(本大题共2个题,每小题8分,共16分)18.(8分)用配方法解关于x 的一元二次方程ax 2+bx+c=0.19.(8分)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?五、解答题(本大题共2个题,每题10分,共20分)20.(10分)为配合我市创建省级文明城市,某校对八年级各班文明行为劝导志愿者人数进行了统计,各班统计人数有6名、5名、4名、3名、2名、1名共计六种情况,并制作如下两幅不完整的统计图.(1)求该年级平均每班有多少文明行为劝导志愿者?并将条形图补充完整;(2)该校决定本周开展主题实践活动,从八年级只有2名文明行为劝导志愿者的班级中任选两名,请用列表或画树状图的方法,求出所选文明行为劝导志愿者有两名来自同一班级的概率.21.(10分)如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)六、解答题(本题满分12分)22.(12分)在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km 处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.七、解答题(本题满分12分)23.(12分)将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC 的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?(3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE面积的最大值.八、解答题(本题满分14分)24.(14分)如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=12.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题共10个小题,每小题4分,共40分)1.与﹣3的差为0的数是()A.3 B.﹣3 C.13D.13【知识考点】有理数的减法.【思路分析】与﹣3的差为0的数就是﹣3+0,据此即可求解.【解答过程】解:﹣3+0=﹣3.故选B.【总结归纳】本题考查了有理数的减法运算,正确列出式子是关键.2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.7【知识考点】中位数;算术平均数.【思路分析】根据平均数的定义先求出这组数据x,再将这组数据从小到大排列,然后找出最中间的数即可.【解答过程】解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6;则这组数据的中位数是6;故选C.【总结归纳】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).。
2013中考数学真题及答案汇编相当经典不用花钱(八)
【答案】B 【解析】方差小的比较稳定,故选 B。 5.(2013 山西,5,2 分)下列计算错误的是( )
A.x3+ x3=2x3
B.a6÷a3=a2
C.
12 2
3
1 1 D. 3
3
【答案】B
【解析】a6÷a3= a63 a3 ,故 B 错,A、C、D 的计算都正确。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
【精校】2013年四川省自贡市初中毕业生学业考试化学试卷(含答案)
2013年四川省自贡市初中毕业生学业考试化学试卷可能用到的相对源自质量:H-1 C-12 N-14 O-16 Na-23 Cl-35.5 Ca-40 Ag-108一、选择题(本大题包括15小题,每小题2分,共30分。
每小题只有一个选项符合题意。
)1、大气中直径小于或等于2.5微米的固体颗粒物称为PM2.5,它容易诱发呼吸道疾病。
2012年2月,国务院发布了新的《环境空气质量标准》,下列项目不必列入监测范围的是A、氮气B、二氧化硫C、一氧化碳D、PM2.52、下列说法中,错误的是A、物理变化中分子种类不变B、化学变化中,原子的种类和个数不变C、带电的微粒都称为离子D、分子、原子、离子都是构成物质的微粒3、下列符号表示正确的是A、2个氢分子:2HB、4个氧原子:2O2+2C、氧化铜中铜元素的化合价:CuOD、2个碳酸跟离子2CO32-4、“毒胶囊”成为社会焦点,铬(Cr)严重超标,其中含有的铬酸钠(Na2Cr2 O7)中铬元素的化合价为A、+3B、+4C、+5D、+65、下列物质在氧气中燃烧,产生大量的白烟,生成一种白色固体的是A、红磷B、木炭C、铁丝D、甲烷6、水是生命之源。
下列有关水的叙述中正确的是A、自来水中只含有水分子,不含其它粒子B、水中的色素和异味可以用活性炭除去C、为了节约用水,可以用工业废水直接浇灌农田D、地球上的淡水资源丰富,取之不尽、用之不竭7、氧化物与X的关系可用右图表示,则X是A、混合物B、金属氧化物C、化合物D、单质8、下列关于浓硫酸的描述错误的是A、溶于水时放出大量的热B、有强烈的腐蚀性C、稀释浓硫酸时,切不可将水倒进浓硫酸中D、可在量筒中用浓硫酸配置稀硫酸9、用分子的性质解释下列生活中的现象,其中错误的是A、墙内开花墙外可嗅到花香,说明分子在不停地运动B、湿衣服在阳光下比在阴凉处易于晾干,说明分子运动速率随温度升高而加快C、将100mL水与100mL酒精混合,体积小于200mL,说明分子间有间隔D、水由液态变成气态,体积膨胀,说明分子体积变大10、下列是人体中几种体液的正常pH,酸性最强的是A、胆汁(7.1~7.3)B、唾液(6.6~7.1)C、血液(7.35~7.45)D、胃液(0.9~1.5)11、下列实验操作不能达到预期目标的是A、在甲烷火焰上方罩一个干而冷的烧杯,通过产生水的现象证明甲烷中含有氢元素B、将足量的铜丝放在充满氧气的密闭容器中加热,以除去其中的O2C、电解水时加入氢氧化钠可增强导电性D、将50g溶质质量分数为10%的盐酸加热蒸发25g水,得到质量分数20%的盐酸12、下列实验操作中,错误的是A 、二氧化碳的验满B 、倾倒液体C 、检验气密性D 、测定溶液pH 值13、下列化学方程式正确的是A、3Fe+2AlCl3=3FeCl2+2AlB、3Cu+2AlCl3=3CuCl2+2AlC、Fe+CuCl2= FeCl2+CuD、2Fe+3H2SO4= Fe2(SO4)3+3H2↑14、推理是化学学习中常用的思维方法。
四川2013年中考数学真题
第1页 共10页 ◎ 第2页 共10页绝密★启用前 2013-2014学年度???学校3月月考卷 试卷副标题注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.计算()()39-+-的结果等于 A .12 B.-12 C . 6 D .-6 2.tan60°的值等于 A .1 BC D .2 3.下列标志中,可以看作是中心对称图形的是 A . B . C . D .4.中国园林网4月22日消息:为建设生态滨海,2013年天津滨海新区将完成城市绿化面积共8210 000m 2,将8210 000用科学记数法表示应为 A .821×102 B .82.1×105 C .8.21×106 D .0.821×107 5.七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知 A .(1)班比(2)班的成绩稳定 B .(2)班比(1)班的成绩稳定 C .两个班的成绩一样稳定 D .无法确定哪班的成绩更稳定 6.如图是由3个相同的正方体组成的一个立体图形,它的三视图是 A . B . C . D . 7.如图,在△ABC 中,AC=BC ,点D 、E 分别是边AB 、AC 的中点,将△ADE 绕点E 旋转180°得△CFE ,则四边形ADCF 一定是第3页 共10页 ◎ 第4页 共10页 A .矩形 B .菱形 C .正方形 D .梯形 8.正六边形的边心距与边长之比为 A 3: B 2: C .1:2 D 2: 9.若x=-1,y=2,则 222x 1x 64y x 8y---的值等于 A .117- B .117 C .116 D .11510.如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x 分,离出发地的距离为y 千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x 分,桶内的水量为y 升;③矩形ABCD 中,AB=4,BC=3,动点P 从点A 出发,依次沿对角线AC 、边CD 、边DA 运动至点A 停止,设点P 的运动路程为x ,当点P 与点A 不重合时,y=S △ABP ;当点P 与点A 重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为A .0B .1C .2D .3第5页 共10页 ◎ 第6页 共10页第II 卷(非选择题) 请点击修改第II 卷的文字说明二、填空题(题型注释) 11.计算a a ⋅的结果等于 . 12.一元二次方程()x x 60-=的两个实数根中较大的根是 . 13.若一次函数y=kx+1(k 为常数,k≠0)的图象经过第一、二、三象限,则k 的取值范围是 . 14.如图,已知∠C=∠D ,∠ABC=∠BAD ,AC 与BD 相交于点O ,请写出图中一组相等的线段 . 15.如图,PA 、PB 分别切⊙O 于点A 、B ,若∠P=70°,则∠C 的大小为 (度). 16.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是 . 17.如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°,则AE 的长为 . 18.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A 、B 、C 均落在格点上. (1)△ABC 的面积等于 ; (2)若四边形DEFG 是△ABC 中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明) . 三、计算题(题型注释) 19.解不等式组 x 1<22x 9>3-⎧⎨+⎩.第7页共10页◎第8页共10页四、解答题(题型注释)20.已知反比例函数kyx(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当-3<x<-1时,求y的取值范围.21.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.23.天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).24.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.第9页 共10页 ◎ 第10页 共10页 (2)当x 取何值时,小红在甲、乙两商场的实际花费相同? (3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少? 25.已知抛物线21y ax bx c =++ a≠0)的对称轴是直线l ,顶点为点M .若自变量x 和函数值y 1的部分对应值如下表所示: x … ―1 0 3 … 21y ax bx c =++ … 0 94 0 … (1)求y 1与x 之间的函数关系式; (2)若经过点T (0,t )作垂直于y 轴的直线l′,A 为直线l′上的动点,线段AM 的垂直平分线交直线l 于点B ,点B 关于直线AM 的对称点为P ,记P (x ,y 2). ①求y 2与x 之间的函数关系式; ②当x 取任意实数时,若对于同一个x ,有y 1<y 2恒成立,求t 的取值范围. 五、判断题(题型注释)参考答案1.B【解析】试题分析:根据有理数的加法法则计算即可:()()3912-+--=。
四川省自贡市中考数学试卷版含答案
绝密★启用前 [考试时间:2010年6月12日上午9∶00-11∶00]2010年四川省自贡市初中毕业生学业考试 (全word)数 学 试 卷本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至14页,满分150分,考试时间为120分钟。
考试结束后,将试卷第Ⅰ卷、试卷第Ⅱ卷和答题卡一并交回。
装订时将第Ⅱ卷单独装订。
第Ⅰ卷(选择题 共36分)注意事项:(1)答第Ⅰ卷前,考生务必将自己的姓名,准考号、考试科目涂写在答题卡上。
(2)每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号,不能答在试卷中。
一、选择题(本大题共12个小题,每小题3分,共计36分)1.下列各数中,最小的实数是( )。
A .-3B .-21C .-2D .312.若式子5x +在实数范围内有意义,则x 的取值范围是( )。
A .x <-5B .x >-5C .x ≠-5D .x ≥-53.数据1,2,x ,-1,-2的平均数是0,则这组数据的方差是( )。
A .1B .2C .3D .44. 如图所表示的是下面哪一个不等式组的解集( )。
A .⎩⎨⎧≤≥1x 2-xB .⎩⎨⎧≥1x 2<-xC .⎩⎨⎧1x <2-x >D .⎩⎨⎧≤1x 2-x >5.如图在平面直角坐标系中,□ MNEF 的两条对角线ME ,NF 交 于原点O ,点F 的坐标是(3,2),则点N 的坐标为( )。
A .(-3,-2)B .(-3,2)C .(-2,3)D .(2,3)6.小球从A 点入口往下落,在每个交叉口都有向左或向右两种可 能,且可能性相等。
则小球最终从E 点落出的概率为( )。
A .81B .61C .41D .21 7.为估计池塘两岸A 、B 间的距离,杨阳在池塘一侧选取了一点P ,测得PA=16m ,PB=12m ,那么AB 间的距离不可能是( )。
(完整版)四川省自贡市2012-2013年八年级下期末数学试卷及答案
四川省自贡市2012— 2013 学年第二学期期末考试八年级数学试卷班级学号成绩一、选择题(每题3 分,共24 分)x 无心义,则 x 的值是()1、若分式x1A 、 0B 、 1C 、- 1D 、± 12、以下各组数中,能组成直角三角形的是()A 、4, 5,6B 、1, 1, 2C 、6, 8, 11D 、5, 12, 233、以下命题中,正确的选项是( )A 、两条对角线相等的四边形是矩形B 、两条对角线相互垂直的四边形是菱形C 、两条对角线相互均分的四边形是平行四边形D 、两条对角线垂直且相等的四边形是正方形4、三角形的重心是三角形三条( )的交点 A 、中线B 、高C 、角均分线D 、垂直均分线 5、八年级一,二班的同学在一次数学测试中的成绩统计状况以下表:班级 参加人数 中位数 均匀数 方差一 50 84 80 186二50 85 80161某同学剖析后获得以下结论: ①一, 二班学生成绩均匀水平同样; ②二班优生人数许多于于一班(优生线 85 分);③一班学生的成绩相对稳固。
此中正确的选项是( ) A 、②③B 、①③C 、①②③D 、①②6、设有反比率函数y2a ,,( 1,a ),(2, b ),(- 3,c )为其图象上的三个点,则b ,c 的大小关系是( x)A 、 a < c < bB 、 a < b < cC 、 c < b < aD 、 b < c < a7、小王利用计算机设计了一个计算程序,输入和输出的数据以下表:输入 1 2 3 4 5输出1 2 3 4 525101726那么,当输入数据是8 时,输入的数据是()888D 、8A 、B 、C 、616563678、如图:在矩形ABCD 中, AB = 3, BC = 4,点 P 在 BC 边上运动,连结DP ,过点 A 作AE ⊥ DP 于 E ,设 DP = x ,AE =y ,则能反应 y 与 x 之间函数关系的大概图象是()ABCD二、填空题(每题 3 分,共 18 分) 9、用科学记数法表示 0.0000563 米,为10、若一组数据 1,1, 2, 3,x 的均匀数据是米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省自贡市2013年中考数学试卷一、选择题(共10个小题,每小题4分,共40分) 1.(4分)(2013•自贡)与﹣3的差为0的数是( ) A . 3 B . ﹣3C .D .考点: 有理数的减法.分析: 与﹣3的差为0的数就是﹣3+0,据此即可求解. 解答: 解:﹣3+0=﹣3.故选B .有理数运算1 点评: 本题考查了有理数的减法运算,正确列出式子是关键.2.(4分)(2013•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A . 1.94×1010B . 0.194×1010C . 19.4×109D . 1.94×109考点: 科学记数法—表示较大的数.分析: 科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答: 解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A .科学记数法 点评: 此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(4分)(2013•自贡)某班七个合作学习小组人数如下:4、5、5、x 、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是( ) A . 5 B .5.5C .6 D .7考点: 中位数;算术平均数.分析: 根据平均数的定义先求出这组数据x ,再将这组数据从小到大排列,然后找出最中间的数即可.解答: 解:∵4、5、5、x 、6、7、8的平均数是6,∵(4+5+5+x+6+7+8)÷7=6, 解得:x=7, 求平均数模型将这组数据从小到大排列为4、5、5、6、7、7、8, 最中间的数是6; 则这组数据的中位数是6; 求中位数模型 故选C .点评: 此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).4.(4分)(2013•自贡)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.B.C.D.考点:列表法与树状图法;轴对称图形.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案.解答:解:分别用A、B、C、D表示等腰三角形、平行四边形、菱形、圆,画树状图得:∵共有12种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有6种情况,∵抽到卡片上印有的图案都是轴对称图形的概率为:=.求等概率事件概率模型故选D.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.5.(4分)(2013•自贡)如图,在平面直角坐标系中,∵A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则∵A的半径为()A . 3B . 4C . 5D .8 考点: 圆周角定理;坐标与图形性质;勾股定理.专题: 计算题.分析: 连接BC ,由90度的圆周角所对的弦为直径,得到BC 为圆A 的直径,在直角三角形BOC 中,由OB 与OC 的长,利用勾股定理求出BC 的长,即可确定出圆A 的半径. 解答: 解:连接BC ,∵∵BOC=90°,∵BC 为圆A 的直径,即BC 过圆心A , 直径圆周角定理模型在Rt ∵BOC 中,OB=8,OC=6, 根据勾股定理得:BC=10, 勾股定理模型则圆A 的半径为5. 故选C点评: 此题考查了圆周角定理,坐标与图形性质,以及勾股定理,熟练掌握圆周角定理是解本题的关键.6.(4分)(2013•自贡)如图,在平行四边形ABCD 中,AB=6,AD=9,∵BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ∵AE 于G ,BG=,则∵EFC 的周长为( )A . 11B .10 C . 9 D .8 考点: 相似三角形的判定与性质;勾股定理;平行四边形的性质.分析: 判断出∵ADF 是等腰三角形,∵ABE 是等腰三角形,DF 的长度,继而得到EC 的长度,在Rt ∵BGE 中求出GE ,继而得到AE ,求出∵ABE 的周长,根据相似三角形的周长之比等于相似比,可得出∵EFC 的周长. 解答:解:∵在∵ABCD 中,AB=CD=6,AD=BC=9,∵BAD 的平分线交BC 于点E ,∵∵BAF=∵DAF , ∵AB ∵DF ,AD ∵BC ,∵∵BAF=∵F=∵DAF ,∵BAE=∵AEB , ∵AB=BE=6,AD=DF=9,∵∵ADF 是等腰三角形,∵ABE 是等腰三角形,∵AD ∵BC ,∵∵EFC 是等腰三角形,且FC=CE , ∵EC=FC=9﹣6=3,在∵ABG 中,BG ∵AE ,AB=6,BG=4,∵AG==2,勾股定理模型∵AE=2AG=4,∵∵ABE 的周长等于16,又∵∵ CEF ∵ ∵ BEA ,相似比为1:2, ∵∵ CEF 的周长为8. 平行X 相似模型 故选D .点评: 本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大.7.(4分)(2013•自贡)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )A . 8B .9 C .10 D .11考点: 由三视图判断几何体.分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:易得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少共有9个碗. 故选B . 视图与展开图点评: 考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.8.(4分)(2013•自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( )A .B .9 C .D .考点: 剪纸问题;展开图折叠成几何体;等边三角形的性质.专题: 操作型.分析: 这个棱柱的侧面展开正好是一个长方形,长为3,宽为3减去两个三角形的高,再用长方形的面积公式计算即可解答. 解答: 解:∵将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,∵这个正三角形的底面边长为1,高为=, ∵侧面积为长为3,宽为3﹣的长方形,面积为9﹣3.展开图 故选A . 点评: 此题主要考查了剪纸问题的实际应用,动手操作拼出图形,并能正确进行计算是解答本题的关键.9.(4分)(2013•自贡)如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使该角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的个数是( )A . 4B . 5C . 6D .7 考点: 正多边形和圆.分析: 根据圆内接正多边形的性质可知,只要把此正六边形再化为正多边形即可,即让周角除以30的倍数就可以解决问题. 解答: 解:360÷30=12;360÷60=6;360÷90=4; 360÷120=3; 360÷180=2.因此n 的所有可能的值共五种情况,正多边形与圆故选B.点评:本题考查了正多边形和圆,只需让周角除以30°的倍数即可.10.(4分)(2013•自贡)如图,已知A、B是反比例函数上的两点,BC∵x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM∵x轴于M,PN∵y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:通过两段的判断即可得出答案,①点P在AB上运动时,此时四边形OMPN的面积不变,可以排除B、D;②点P在BC上运动时,S减小,S与t的关系为一次函数,从而排除C.解答:解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系.故排除C.故选A.点评:本题考查了动点问题的函数图象,解答此类题目并不需要要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.二、填空题(共5个小题,每小题4分,共20分)11.(4分)(2013•自贡)多项式ax2﹣a与多项式x2﹣2x+1的公因式是x﹣1.考点:公因式.专题:计算题.分析:第一个多项式提取a后,利用平方差公式分解,第二个多项式利用完全平方公式分解,找出公因式即可.解答:解:多项式ax2﹣a=a(x+1)(x﹣1),多项式x2﹣2x+1=(x﹣1)2,则两多项式的公因式为x﹣1.故答案为:x﹣1.因式分解点评:此题考查了公因式,将两多项式分解因式是找公因式的关键.12.(4分)(2013•自贡)计算:=1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、负指数幂、特殊角的三角函数值、绝对值等四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1+﹣2×﹣(2﹣)=1+2﹣﹣2+=1,故答案为1.有理数运算1点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点的运算.13.(4分)(2013•自贡)如图,边长为1的小正方形网格中,∵ O的圆心在格点上,则∵AED 的余弦值是.考点:圆周角定理;勾股定理;锐角三角函数的定义.专题:网格型.分析:根据同弧所对的圆周角相等得到∵ABC=∵AED,在直角三角形ABC中,利用锐角三角函数定义求出cos∵ABC的值,即为cos∵AED的值.解答:解:∵∵AED与∵ABC都对,∵∵AED=∵ABC,在Rt∵ABC中,AB=2,AC=1,根据勾股定理得:BC=,勾股定理模型则cos∵AED=cos∵ABC==.锐角三角函数定义模型故答案为:点评:此题考查了圆周角定理,锐角三角函数定义,以及勾股定理,熟练掌握圆周角定理是解本题的关键.14.(4分)(2013•自贡)已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是①②.(填上你认为正确结论的所有序号)考点:根与系数的关系;根的判别式.分析:(1)可以利用方程的判别式就可以判定是否正确;(2)根据两根之积就可以判定是否正确;(3)利用根与系数的关系可以求出x12+x22的值,然后也可以判定是否正确.解答:解:①∵方程x2﹣(a+b)x+ab﹣1=0中,∵=(a+b)2﹣4(ab﹣2)=(a﹣b)2+4>0,二次函数与方程关系模型∵x1≠x2故①正确;②∵x1x2=ab﹣1<ab,故②正确;③∵x1+x2=a+b,即(x1+x2)2=(a+b)2,∵x12+x22=(x1+x2)2﹣2x1x2=(a+b)2﹣2ab+2=a2+b2+2>a2+b2,即x12+x22>a2+b2.两根平方和模型故③错误;综上所述,正确的结论序号是:①②.故答案是:①②.点评:本题考查的是一元二次方程根的情况与判别式∵的关系,及一元二次方程根与系数的关系,需同学们熟练掌握.15.(4分)(2013•自贡)如图,在函数的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S1=4,S n=.(用含n的代数式表示)考点:反比例函数系数k的几何意义.专题:规律型.分析:求出P1、P2、P3、P4…的纵坐标,从而可计算出S1、S2、S3、S4…的高,进而求出S1、S2、S3、S4…,从而得出S n的值.解答:解:当x=2时,P1的纵坐标为4,当x=4时,P2的纵坐标为2,当x=6时,P3的纵坐标为,当x=8时,P4的纵坐标为1,当x=10时,P5的纵坐标为:,…则S1=2×(4﹣2)=4=2[﹣];S2=2×(2﹣)=2×=2[﹣];S3=2×(﹣1)=2×=2[﹣];…Sn=2[﹣]=;故答案为:4,.反比例函数几何性质模型点评:此题考查了反比例函数图象上点的坐标特征,根据坐标求出个阴影的面积表达式是解题的关键.三、解答题(共2个题,每题8分,共16分)16.(8分)(2013•自贡)解不等式组:并写出它的所有的整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.专题:计算题.分析:先求出两个不等式的解集,再求其公共解,然后写出整数解即可.解答:解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.一元一次不等式1点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.(8分)(2013•自贡)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.考点:分式的化简求值.分析:先把除法转化成乘法,再根据乘法的分配律分别进行计算,然后把所得的结果化简,最后选取一个合适的数代入即可.解答:解:=×=﹣==,由于a≠±1,所以当a=时,原式==.分式的概念和运算点评:此题考查了分式的化简求值,用到的知识点是乘法的分配律、约分,在计算时要注意把结果化到最简.四、解答题(共2个题,每小题8分,共16分)18.(8分)(2013•自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.考点:解一元二次方程-配方法.分析:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.解答:解:∵关于x的方程ax2+bx+c=0是一元二次方程,∵a≠0.∵由原方程,得x2+x=﹣,等式的两边都加上,得x2+x+=﹣+,配方,得(x+)2=﹣,开方,得x+=±,解得x1=,x2=.一元二次方程当b2﹣4ac<0时,原方程无实数根.点评:本题考查了配方法解一元二次方程.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.19.(8分)(2013•自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?考点:二元一次方程组的应用;一元一次不等式的应用.分析:(1)首先设该校的大寝室每间住x人,小寝室每间住y人,根据关键语句“高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满”列出方程组即可;(2)设大寝室a间,则小寝室(80﹣a)间,由题意可得a≤80,再根据关键语句“高一新生中有不少于630名女生将入住寝室80间”可得不等式8a+6(80﹣a)≥630,解不等式组即可.解答:解:(1)设该校的大寝室每间住x人,小寝室每间住y人,由题意得:,列方程模型解得:,答:该校的大寝室每间住8人,小寝室每间住6人;(2)设大寝室a间,则小寝室(80﹣a)间,由题意得:,列不等式模型解得:80≥a≥75,①a=75时,80﹣75=5,②a=76时,80﹣a=4,③a=77时,80﹣a=3,④a=78时,80﹣a=2,⑤a=79时,80﹣a=1,⑥a=80时,80﹣a=0.故共有6种安排住宿的方案.点评:此题主要考查了二元一次方程组的应用,以及一元一次不等式组的应用,关键是正确理解题意,抓住题目中的关键语句,列出方程和不等式.五、解答题(共2个题,每题10分,共20分)20.(10分)(2013•自贡)为配合我市创建省级文明城市,某校对八年级各班文明行为劝导志愿者人数进行了统计,各班统计人数有6名、5名、4名、3名、2名、1名共计六种情况,并制作如下两幅不完整的统计图.(1)求该年级平均每班有多少文明行为劝导志愿者?并将条形图补充完整;(2)该校决定本周开展主题实践活动,从八年级只有2名文明行为劝导志愿者的班级中任选两名,请用列表或画树状图的方法,求出所选文明行为劝导志愿者有两名来自同一班级的概率.考点:条形统计图;扇形统计图;列表法与树状图法.分析:(1)根据志愿者有6名的班级占20%,可求得班级总数,再求得志愿者是2名的班数,进而可求出每个班级平均的志愿者人数;(2)由(1)得只有2名志愿者的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,则所选两名志愿者来自同一个班级的概率.解答:解:(1)∵有6名志愿者的班级有4个,∵班级总数为:4÷20%=20(个),有两名志愿者的班级有:20﹣4﹣5﹣4﹣3﹣2=2(个),如图所示:样本容量-频数-频率模型该年级平均每班有;(4×6+5×5+×4+3×3+2×2+2×1)=4(名),求平均数模型(2)由(1)得只有2名文明行为劝导志愿者的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名文明行为劝导志愿者来自同一个班级的概率为:=.求等概率事件概率模型点评:此题主要考查了条形统计图与扇形统计图的综合应用以及树状图法求概率,根据图象得出正确信息是解题关键.21.(10分)(2013•自贡)如图,点B、C、D都在∵ O上,过点C作AC∵ BD交OB延长线于点A,连接CD,且∵ CDB=∵ OBD=30°,DB=cm.(1)求证:AC是∵ O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)考点:切线的判定;扇形面积的计算.分析:(1)求出∵COB的度数,求出∵A的度数,根据三角形的内角和定理求出∵OCA的度数,根据切线的判定推出即可;(2)如解答图所示,解题关键是证明∵CDM∵∵OBM,从而得到S阴影=S扇形BOC.解答:如图,连接BC,OD,OC,设OC与BD交于点M.(1)证明:根据圆周角定理得:∵COB=2∵CDB=2×30°=60°,∵AC∵ BD,∵∵ A=∵OBD=30°,∵∵ OCA=180°﹣30°﹣60°=90°,即OC∵ AC,∵ OC为半径,∵ AC是∵ O的切线;线圆位置关系模型(2)解:由(1)知,AC为∵ O的切线,∵OC∵ AC.∵AC∵ BD,∵OC ∵ BD .由垂径定理可知,MD=MB=BD=.垂径定理求长度模型在Rt ∵ OBM 中,∵COB=60°,OB===6. 在∵CDM 与∵OBM 中,∵ ∵ CDM ∵ ∵ OBM∵ S ∵CDM =S ∵OBM∵阴影部分的面积S 阴影=S 扇形BOC ==6π(cm 2).割补法求面积模型点评: 本题考查了平行线性质,切线的判定,扇形的面积,三角形的面积,圆周角定理的应用,主要考查学生综合运用定理进行推理和计算的能力.六、解答题(本题满分12分)22.(12分)(2013•自贡)在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距km 的C 处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.考点:解直角三角形的应用-方向角问题.分析:(1)根据∵1=30°,∵2=60°,可知∵ABC为直角三角形.根据勾股定理解答.(2)延长BC交l于T,比较AT与AM、AN的大小即可得出结论.解答:解:(1)∵∵ 1=30°,∵2=60°,∵∵ ABC为直角三角形.∵AB=40km,AC=km,∵BC===16(km).勾股定理模型∵1小时20分钟=80分钟,1小时=60分钟,∵×60=12(千米/小时).(2)作线段BR∵x轴于R,作线段CS∵x轴于S,延长BC交l于T.∵∵ 2=60°,∵∵ 4=90°﹣60°=30°.∵ AC=8(km),∵ CS=8sin30°=4(km).∵ AS=8cos30°=8×=12(km).又∵∵ 1=30°,∵∵ 3=90°﹣30°=60°.∵ AB=40km,∵BR=40•sin60°=20(km).∵AR=40×cos60°=40×=20(km).锐角三角函数定义模型易得,∵ STC∵∵ RTB,所以=,,解得:ST=8(km).所以AT=12+8=20(km).又因为AM=19.5km,MN长为1km,∵AN=20.5km,∵19.5<AT<20.5故轮船能够正好行至码头MN靠岸.点评:此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.七、解答题(本题满分12分)23.(12分)(2013•自贡)将两块全等的三角板如图①摆放,其中∵A1CB1=∵ACB=90°,∵A1=∵A=30°.(1)将图①中的∵A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?(3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE∵P1B时,求∵P1BE面积的最大值.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质;解直角三角形.分析:(1)先判断∵B1CQ=∵BCP1=45°,利用ASA即可证明∵B1CQ∵∵BCP1,从而得出结论.(2)作P1D∵CA于D,在RtADP1中,求出P1D,在Rt∵CDP1中求出CP1,继而可得出CQ的长度.(3)证明∵AP1C∵∵BEC,则有AP1:BE=AC:BC=:1,设AP1=x,则BE=x,得出S∵P1BE关于x的表达式,利用配方法求最值即可.解答:(1)证明:∵∵B1CB=45°,∵B1CA1=90°,∵∵B1CQ=∵BCP1=45°,∵在∵B1CQ和∵BCP1中,,∵∵B1CQ∵∵BCP1(ASA),∵CQ=CP1;全等证边角模型(2)作P1D∵CA于D,∵∵A=30°,∵P1D=AP1=1,∵∵P1CD=45°,∵=sin45°=,∵CP1=P1D=,又∵CP1=CQ,∵CQ=;(3)∵∵P1BE=90°,∵ABC=60°,∵∵A=∵CBE=30°,∵AC=BC,由旋转的性质可得:∵ACP1=∵BCE,∵∵AP1C∵∵BEC,旋转模型∵AP1:BE=AC:BC=:1,设AP1=x,则BE=x,在Rt∵ABC中,∵A=30°,∵AB=2BC=2,∵S∵P1BE=×x(2﹣x)=﹣x2+x =﹣(x﹣1)2+,故当x=1时,S∵P1BE(max)=.求二次函数最值模型点评:本题考查了相似三角形的判定与性质,解答本题需要我们熟练掌握含30°角的直角三角形的性质、勾股定理及配方法求二次函数的最值,有一定难度.八、解答题(本题满分14分)24.(14分)(2013•自贡)如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∵DBA=.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)如答图1所示,利用已知条件求出点B的坐标,然后用待定系数法求出抛物线的解析式;(2)如答图1所示,首先求出四边形BMCA面积的表达式,然后利用二次函数的性质求出其最大值;(3)本题利用切线的性质、相似三角形与勾股定理求解.如答图2所示,首先求出直线AC与直线x=2的交点F的坐标,从而确定了Rt∵AGF的各个边长;然后证明Rt∵AGF∵Rt∵QEF,利用相似线段比例关系列出方程,求出点Q的坐标.解答:解:(1)如答图1所示,过点D作DE∵x轴于点E,则DE=3,OE=2.∵ tan∵ DBA==,∵ BE=6,∵ OB=BE﹣OE=4,∵ B(﹣4,0).∵点B(﹣4,0)、D(2,3)在抛物线y=ax2+bx﹣2(a≠0)上,∵,待定系数法求二次函数解析式解得,∵抛物线的解析式为:y=x2+x﹣2.(2)抛物线的解析式为:y=x2+x﹣2,令x=0,得y=﹣2,∵C(0,﹣2),令y=0,得x=﹣4或1,∵A(1,0).设点M坐标为(m,n)(m<0,n<0),如答图1所示,过点M作MF∵x轴于点F,则MF=﹣n,OF=﹣m,BF=4+m.S四边形BMCA=S∵BMF+S梯形MFOC+S∵AOC=BF•MF+(MF+OC)•OF+OA•OC=(4+m)×(﹣n)+(﹣n+2)×(﹣m)+×1×2=﹣2n﹣m+1割补法求面积模型∵点M(m,n)在抛物线y=x2+x﹣2上,∵n=m2+m﹣2,代入上式得:S四边形BMCA=﹣m2﹣4m+5=﹣(m+2)2+9,∵当m=﹣2时,四边形BMCA面积有最大值,最大值为9.(3)假设存在这样的∵Q.如答图2所示,设直线x=﹣2与x轴交于点G,与直线AC交于点F.设直线AC的解析式为y=kx+b,将A(1,0)、C(0,﹣2)代入得:,待定系数法求一次函数解析式解得:k=2,b=﹣2,∵直线AC解析式为:y=2x﹣2,令x=﹣2,得y=﹣6,∵F(﹣2,﹣6),GF=6.在Rt∵AGF中,由勾股定理得:AF===3.设Q(﹣2,n),则在Rt∵AGF中,由勾股定理得:OQ==.勾股定理模型设∵Q与直线AC相切于点E,则QE=OQ=.在Rt∵AGF与Rt∵QEF中,∵∵AGF=∵QEF=90°,∵AFG=∵QFE,∵Rt∵AGF∵Rt∵QEF,∵,即,化简得:n2﹣3n﹣4=0,解得n=4或n=﹣1.∵存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆,点Q的坐标为(﹣2,4)或(﹣2,﹣1).点评:本题是中考压轴题,综合考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、相似三角形、勾股定理、圆的切线性质、解直角三角形、图形面积计算等重要知识点,涉及考点众多,有一定的难度.第(2)问面积最大值的问题,利用二次函数的最值解决;第(3)问为存在型问题,首先假设存在,然后利用已知条件,求出符合条件的点Q坐标.。