江苏南京玄武区2017-2018学年第二学期八年级数学期末统考考试试题及答案

合集下载

2017-2018学年苏科版八年级下数学期末专题复习试卷(四)有答案

2017-2018学年苏科版八年级下数学期末专题复习试卷(四)有答案

学校班级准考证号姓名----------------------------------------装----------------------------------------------------订 2017~2018学年第二学期期终初二数学中午作业四本次考试范围;苏科版八年级数学下册《中心对称图形—平行四边形》、《分式》、《反比例函数》、《二次根式》加九年级上册《一元二次方程》和下册《相似形》;考试题型:选择、填空、解答三大类;考试时间:120分钟;考试分值:130分。

1.下列方程中,一元二次方程是()A 、221x x =0 B 、02bx ax C 、1)2)(1(x x D 、052322y xy x 2.若关于的方程032a x x 有一个根为—1,则另一个根为()A .—2 B .2 C .4 D .—3 3.以3,4为两实数根的一元二次方程为() A 、01272x x B 、01272x x C 、01272x x D 、01272x x 4.用配方法解一元二次方程01062x x 时,下列变形正确的为()A 、1)32x ( B 、1)32x (C 、19)32x ( D 、19)32x (5.用换元法解方程62)2(22x x x x 时,设y x x 2,原方程可化为()A 、y 2+y -6=0 B 、y 2+y +6=0 C 、y 2-y -6=0 D 、y 2-y +6=0 6.已知21x x 、是方程2—2—1=0的两个根,则2111x x 的值为()A 、—2 B 、21 C 、21 D 、2 7.关于x 的一元二次方程0122x kx 有两个不相等实数根,则k 的取值范围是() A 、1k B 、1k C 、0k D 、1k 且0k 8.方程组0122mxyy x 有唯一解,则m 的值是()A 、2 B、2 C、2 D 、以上答案都不对9.有两个关于的一元二次方程:M :02c bx axN :02abx cx,其中0ca ,以下列四个结论中,错误的是()A 、如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;B 、如果方程M 有两根符号异号,那么方程N 的两根符号也异号;[;;;]C 、如果5是方程M 的一个根,那么15是方程N 的一个根;D 、如果方程M 和方程N 有一个相同的根,那么这个根必定是1x 10.方程2+=0的根是________ .11.已知关于的方程(m +2)2+4m +1=0是一元二次方程,则m 的取范围值是.12.若实数a 、b 满足(a +b) (a +b -2)-8=0,则a +b =__________. 13.如果关于的一元二次方程2+4-m =0没有实数根,则m 的取值范围是________.14.已知方程组201242kxyy x y 有两组不相等的实数解,则k 的取值范围.15.如果m ,n 是两个不相等的实数,且满足m 2—m=3,n 2—n =3,则代数式2n 2﹣mn +2m +2015的值等于__________. 16.正数a 是一元二次方程2﹣5+m =0的一个根,—a 是一元二次方程2+5﹣m =0的一个根,则a 的值是.17.用适当的方法解下列方程:(每小题4分)(1)422x(2)22+3—1=0(用配方法解)(3) 2232xx x(4)(+1)(+8)=-2(5)xxx x222322(6)1032y xy x 18.已知:关于的方程01222mmxx.(1)求证:无论m 取何值,方程总有两个不相等的实数根;(2)若方程有一个根为3,求m 的值.19.已知关于的一元二次方程2+(m -1)-2m 2+m =0(m 为实常数)有两个实数根1,2.(1)当m 为何值时,方程有两个不相等的实数根;(2)若12+22=2,求m 的值.20.当m 取何值时,方程的解为正数?21.已知:方程组)12(0212x k yyx kx 有两组不同的实数解11y yx x ,22y yx x .(1)求实数的取值范围.(2)是否存在实数,使21121x x ?若存在,请求出所有符合条件的的值;若不存在,请说明理由.42121(1)(21)1xm x x x x x.作业四:题号 1 2 3 4 5 6 7 8 9 答案CABDCADCD10、1=0,2=—1;11、m ≠—2;12、—2或4;13、m <—4;14、1k 且0k;15、2026;16、5。

2017-2018学年江苏省南京市玄武区八年级(下)期末数学试卷

2017-2018学年江苏省南京市玄武区八年级(下)期末数学试卷

2017-2018学年江苏省南京市玄武区八年级(下)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)下列事件是确定事件的是()A.任买一张电影票,座位是偶数B.在一个装有红球和白球的箱子中,任摸一个球是红色的C.随意掷一枚均匀的硬币,正面朝上D.三根长度分别为2cm、3cm、5cm的木棒能摆成三角形2.(2分)若分式中的x、y都扩大为原来的2倍,那么分式的值()A.扩大为原来的2倍B.扩大为原来的4倍C.缩小为原来的倍D.不变3.(2分)下列关系中,两个变量之间为反比例函数关系的是()A.长40米的绳子减去x米,还剩y米B.买单价3元的笔记本x本,花了y元C.正方形的面积为S,边长为aD.菱形的面积为20,对角线的长分别为x,y4.(2分)下列各式成立的是()A.=B.C.=D.5.(2分)如图,在平行四边形ABCD中,AC、BD是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是()A.∠BAC=∠ACB B.∠BAC=∠ACD C.∠BAC=∠DAC D.∠BAC=∠ABD6.(2分)如图,在边长为4的正方形ABCD内取一点E,使得BE=CE,连接ED、BD.BD与CE相交于点O,若∠EOD=75°,则△BED的面积为()A .B .C .D .二、填空题(本大题共10小题,每小题3分,共20分)7.(3分)式子在实数范围内有意义,则实数a的取值范围是.8.(3分)在▱ABCD中,∠A+∠C=100°,则∠B的度数为°9.(3分)计算(a>0,b≥0)的结果是.10.(3分)用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n=.11.(3分)若,则的值为.12.(3分)已知反比例函数y=(k为常数,k≠0)中,函数y与自变量x的部分对应值如下表:则当﹣2<y<﹣时,x的取值范围是.13.(3分)已知x=2﹣,则x2﹣4x﹣6的值为.14.(3分)如图,正比例函数y=k1x与反比例函数y=的图象交于点A(2,2),则关于x的不等式k1x>的解集为.15.(3分)如图,在△ABC中,CD平分∠ACB,AD⊥CD,垂足为D,E为AB的中点,连接DE,AC=15,BC=27,则DE=.16.(3分)如图,在反比例函数y=(x>0)的图象上有点P1、P2、P3,…,P n (n为常数,n≥2),它们的横坐标依次为1,2,3,…,n,分别过点P1、P2、P2,…,P n作x轴,y轴的垂线,图中所构成的阴影部分面积从左到右依次为S1、S2、S3,…,S n﹣1,则S1+S2+S3+…+S n﹣1=.(用含n的代数式表示)三、解答题(本大题共11小题,共88分)17.(8分)计算:(1)(2)18.(8分)解分式方程:(1)(2)19.(8分)解一元二次方程:(1)2x2﹣5x+1=0(2)(x+1)2=(2x﹣3)220.(7分)先化简,再求值:,其中a=1+.21.(7分)某商场进行有奖促销活动,规定顾客购物达到一定金额就可以获得一次转动转盘的机会(如图),当转盘停止转动时指针落在哪一区域就可获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).(1)a的值为,b的值为;(2)假如你去转动该转盘一次,获得“10元兑换券”的概率约是;(结果精确到0.01)(3)根据(2)的结果,在该转盘中表示“20元兑换券”区域的扇形的圆心角大约是多少度?(结果精确到1°)22.(6分)某中学组织学生去离学校15km的农场,先遣队与大队同时出发,先遣队的速度是大队的速度的1.2倍,结果先遣队比大队早到0.5h,先遣队和大队的速度各是多少?23.(8分)如图,E、F分别为△ABC的边BC、AB的中点,延长EF至点D,使得DF=EF,连接DA、DB、AE.(1)求证:四边形ACED是平行四边形;(2)若AB⊥AC,求证:四边形AEBD是菱形.24.(8分)厨师将一定质量的面团做成粗细一致的拉面时,面条的总长度y(m)与面条横截面积x(mm2)之间成反比例函数关系.其图象经过A(4,32)、B(t,80)两点.(1)求y与x之间的函数表达式;(2)求t的值,并解释t的实际意义;(3)如果厨师做出的面条横截面面积不超过3.2mm2,那么面条的总长度至少为m.25.(8分)已知关于x的一元二次方程x2﹣(m+1)x+2m﹣3=0(m为常数).(1)若方程的一个根为1,求m的值及方程的另一个根;(2)求证:不论m为何值时,方程总有两个不相等的实数根.26.(9分)已知矩形的一边长为2,另一边长为1.(1)是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍?小明是这样想的:小刚是这样想的:①按照小明思路,完成解答:②根据小刚的思路,直接写出两个交点坐标;(2)如果存在另一个矩形,周长是已知矩形周长的2倍,面积是已知矩形面积的k倍(k>0),求k的取值范围.27.(11分)已知正方形ABCD,点P是边AD上一点(不与点A、D重合).(1)在图①中用直尺和圆规求作一点P,使得∠APB=60°(保留作图痕迹,不写作法).(2)如图②,CE⊥BP,交AB于点E,垂足为O、M、N分别是BE、CP的中点,MN交BP、CE于点H、G.求证:OG=OH.(3)如图③,若正方形ABCD的边长为4,点P为AD中点,连接BP并延长,与CD的延长线交于点F,在线段CF上找一点Q,使得△PFQ为等腰三角形,求DQ的长,直接写出结论.2017-2018学年江苏省南京市玄武区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)下列事件是确定事件的是()A.任买一张电影票,座位是偶数B.在一个装有红球和白球的箱子中,任摸一个球是红色的C.随意掷一枚均匀的硬币,正面朝上D.三根长度分别为2cm、3cm、5cm的木棒能摆成三角形【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:任买一张电影票,座位是偶数是随机事件,A错误;在一个装有红球和白球的箱子中,任摸一个球是红色的是随机事件,B错误;随意掷一枚均匀的硬币,正面朝上是随机事件,C错误;三根长度分别为2cm、3cm、5cm的木棒能摆成三角形是不可能事件,D正确,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.(2分)若分式中的x、y都扩大为原来的2倍,那么分式的值()A.扩大为原来的2倍B.扩大为原来的4倍C.缩小为原来的倍D.不变【分析】根据分式的性质,可得答案.【解答】解:中的x、y都扩大为原来的2倍,得=,故选:A.【点评】本题考查了分式的性质,利用分式的性质是解题关键.3.(2分)下列关系中,两个变量之间为反比例函数关系的是()A.长40米的绳子减去x米,还剩y米B.买单价3元的笔记本x本,花了y元C.正方形的面积为S,边长为aD.菱形的面积为20,对角线的长分别为x,y【分析】根据题意写出y与x的关系式,根据反比例函数的定义判断即可.【解答】解:长40米的绳子减去x米,还剩y米,则y=40﹣x,A不是反比例函数;买单价3元的笔记本x本,花了y元,则y=3x,B不是反比例函数;正方形的面积为S,边长为a,则S=a2,C不是反比例函数;菱形的面积为20,对角线的长分别为x,y,则y=是反比例函数,故选:D.【点评】本题考查的是反比例函数的概念,形如y=(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.4.(2分)下列各式成立的是()A.=B.C.=D.【分析】直接利用二次根式的性质分别化简求出答案.【解答】解:A、=,故此选项错误;B、=π﹣3,故此选项错误;C、()2=,正确;D、=5,故此选项错误;故选:C.【点评】此题主要考查了二次根式的性质,正确化简二次根式是解题关键.5.(2分)如图,在平行四边形ABCD中,AC、BD是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是()A.∠BAC=∠ACB B.∠BAC=∠ACD C.∠BAC=∠DAC D.∠BAC=∠ABD【分析】由矩形和菱形的判定方法即可得出答案.【解答】解:A、∠BAC=∠ACB,能判定四边形ABCD是菱形,不能判断四边形ABCD是矩形;B、∠BAC=∠ACD,不能判断四边形ABCD是矩形;C、∠BAC=∠DAC,能判定四边形ABCD是菱形,不能判断四边形ABCD是矩形;D、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;故选:D.【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.6.(2分)如图,在边长为4的正方形ABCD内取一点E,使得BE=CE,连接ED、BD.BD与CE相交于点O,若∠EOD=75°,则△BED的面积为()A.B.C.D.【分析】先求得∠EOD的度数,然后可证明△BCE为等边三角形,然后求得△BCE 和△CDE的面积,最后由△BED的面积=△BCE的面积+△CDE的面积﹣△BCD 的面积求解即可.【解答】解:如图所示:过点E作EF⊥BC,垂足为F,作EG⊥DC,垂足为G.∵∠EOD=75°,∠ECD+∠ODC=∠EOD,∴∠ECD=30°.∴∠ECB=60°.又∵BE=CE,∴△BCE为等边三角形.∴EC=BC=4.∴EF=FC=2.∵在Rt△EGC中,∠ECG=30°,∴EG=EC=2.∴S=CB•EF+DC•EG=×4×2+×4×2=4+4.四边形BDEC又∵S=BC•DC=8,△BCD∴△BED的面积=(4+4)﹣8=4﹣4.故选:B.【点评】本题主要考查的是正方形的性质、等边三角形的性质和判定、含30°直角三角形的性质,熟练掌握相关知识是解题的关键.二、填空题(本大题共10小题,每小题3分,共20分)7.(3分)式子在实数范围内有意义,则实数a的取值范围是a≥﹣.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,2a+1≥0,解得,a≥﹣,故答案为:a≥﹣.【点评】本题考查的是二次根式有意义的条件,二次根式中的被开方数是非负数.8.(3分)在▱ABCD中,∠A+∠C=100°,则∠B的度数为130°【分析】由四边形ABCD是平行四边形,可得∠A=∠C,又由∠A+∠C=200°,即可求得∠A的度数,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=100°,∴∠A=∠C=50°,∴∠B=180°﹣∠A=130°.故答案为130.【点评】此题考查了平行四边形的性质.此题比较简单,注意掌握方程思想的应用.9.(3分)计算(a>0,b≥0)的结果是3.【分析】直接利用二次根式的性质化简得出答案.【解答】解:(a>0,b≥0)==3.故答案为:3.【点评】此题主要考查了二次根式的性质,正确化简二次根式是解题关键.10.(3分)用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n=41.【分析】方程常数项移到右边,两边加上25配方得到结果,求出m与n的值即可.【解答】解:∵x2+10x﹣11=0,∴x2+10x=11,则x2+10x+25=11+25,即(x+5)2=36,∴m=5、n=36,∴m+n=41,故答案为:41.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.11.(3分)若,则的值为﹣1.【分析】直接利用比例的性质得出x,y之间的关系进而得出答案.【解答】解:∵,∴2y=3x,则y=x,则==﹣1.故答案为:﹣1.【点评】此题主要考查了比例的性质,正确用同一未知数代替另一未知数是解题关键.12.(3分)已知反比例函数y=(k为常数,k≠0)中,函数y与自变量x的部分对应值如下表:则当﹣2<y<﹣时,x的取值范围是﹣8<x<﹣2.【分析】根据反比例函数图象上点的坐标特征求得k=xy=4,所以将y=﹣2和y=﹣分别代入函数解析式求得相应的x的值,确定x的极值.【解答】解:∵k=xy=1×4=4,∴反比例函数解析式是:y=.∴当y=﹣2时,x=﹣2.当y=﹣时,x=﹣8.∴x的取值范围是﹣8<x<﹣2.故答案是:﹣8<x<﹣2.【点评】考查了反比例函数图象上点的坐标特征,反比例函数的性质.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.(3分)已知x=2﹣,则x2﹣4x﹣6的值为0.【分析】将x的值代入x2﹣4x﹣6=(x﹣2)2﹣10计算可得.【解答】解:当x=2﹣时,x2﹣4x﹣6=(x﹣2)2﹣10=(2﹣﹣2)2﹣10=(﹣)2﹣10=10﹣10=0,故答案为:0.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的混合运算顺序与运算法则及完全平方公式.14.(3分)如图,正比例函数y=k1x与反比例函数y=的图象交于点A(2,2),则关于x的不等式k1x>的解集为﹣2<x<0或x>2.【分析】先利用正比例函数图象和反比例函数图象的性质得正比例函数y=k1x与反比例函数y=的图象的另一个交点坐标为(﹣2,﹣2),然后利用函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【解答】解:∵正比例函数y=k1x与反比例函数y=的图象交于点A(2,2),∴正比例函数y=k1x与反比例函数y=的图象的另一个交点坐标为(﹣2,﹣2),∴当﹣2<x<0或x>2时,y1>y2,即关于x的不等式k1x>的解集为﹣2<x<0或x>2.故答案为﹣2<x<0或x>2.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.15.(3分)如图,在△ABC中,CD平分∠ACB,AD⊥CD,垂足为D,E为AB的中点,连接DE,AC=15,BC=27,则DE=6.【分析】证明△CDA≌△CDF,根据全等三角形的性质得到AD=DF,CF=AC,根据三角形中位线定理解答.【解答】解:在△CDA和△CDF中,,∴△CDA≌△CDF,∴AD=DF,CF=AC=15,∴BF=BC﹣CF=12,∵AD=DF,AE=EB,∴DE=BF=6,故答案为:6.【点评】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16.(3分)如图,在反比例函数y=(x>0)的图象上有点P1、P2、P3,…,P n (n为常数,n≥2),它们的横坐标依次为1,2,3,…,n,分别过点P1、P2、P2,…,P n作x轴,y轴的垂线,图中所构成的阴影部分面积从左到右依次为S1、S2、S3,…,S n﹣1,则S1+S2+S3+…+S n﹣1=.(用含n的代数式表示)【分析】求出P1、P2、P3、P4…的纵坐标,从而可计算出S1、S2、S3、S4…的高,进而求出S1、S2、S3、S4…,从而得出S1+S2+S3+…+S n﹣1的值.【解答】解:当x=1时,P1的纵坐标为6,当x=2时,P2的纵坐标3,当x=3时,P3的纵坐标2,当x=4时,P4的纵坐标,当x=5时,P5的纵坐标,…则S1=1×(6﹣3)=6﹣3;S2=1×(3﹣2)=3﹣2;S3=1×(2﹣)=2﹣;S4=1×(﹣)=﹣;…S n﹣1=﹣;=6﹣3+3﹣2+2﹣+…+﹣=6﹣=.∴S1+S2+S3+…+S n﹣1故答案为.【点评】此题考查了反比例函数图象上点的坐标特征,根据坐标求出各阴影部分面积的表达式是解题的关键.三、解答题(本大题共11小题,共88分)17.(8分)计算:(1)(2)【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法运算;(2)利用平方差公式计算.【解答】解:(1)原式=(2﹣)×=×=3;(2)原式=[(3﹣2)(3+2)]2=(18﹣12)2=36.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)解分式方程:(1)(2)【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去括号得:2x﹣4=3x+6,解得:x=﹣10,经检验x=﹣10是分式方程的解;(2)去分母得:2x﹣9=12x﹣21﹣3x+9,移项合并得:7x=21,解得:x=3,经检验x=3是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(8分)解一元二次方程:(1)2x2﹣5x+1=0(2)(x+1)2=(2x﹣3)2【分析】(1)利用公式法求解可得;(2)两边直接开平方法求解可得.【解答】解:(1)∵a=2、b=﹣5、c=1,∴△=25﹣4×2×1=17>0,则x=;(2)∵(x+1)2=(2x﹣3)2,∴x+1=2x﹣3或x+1=3﹣2x,解得:x=4或x=.【点评】此题考查了解一元二次方程﹣因式分解法,配方法,以及公式法,熟练掌握各种解法是解本题的关键.20.(7分)先化简,再求值:,其中a=1+.【分析】原式利用除法法则变形,约分后利用同分母分式的加法法则计算,得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=+•=+=,当a=1+时,原式==1+.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(7分)某商场进行有奖促销活动,规定顾客购物达到一定金额就可以获得一次转动转盘的机会(如图),当转盘停止转动时指针落在哪一区域就可获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).(1)a的值为0.74,b的值为0.705;(2)假如你去转动该转盘一次,获得“10元兑换券”的概率约是0.70;(结果精确到0.01)(3)根据(2)的结果,在该转盘中表示“20元兑换券”区域的扇形的圆心角大约是多少度?(结果精确到1°)【分析】(1)根据“频率=频数÷总数”可得;(2)由随着转动次数越大,频率逐渐稳定在0.70附近可得;(3)用360°乘以“20元兑换券”对应的频率即可得.【解答】解:(1)a=111÷150=0.74、b=564÷800=0.705,故答案为:0.74、0.705;(2)由表可知,随着转动次数越大,频率逐渐稳定在0.70附近,所以获得“10元兑换券”的概率约是0.70,故答案为:0.70;(3)在该转盘中表示“20元兑换券”区域的扇形的圆心角大约是360°×0.3=108°.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.22.(6分)某中学组织学生去离学校15km的农场,先遣队与大队同时出发,先遣队的速度是大队的速度的1.2倍,结果先遣队比大队早到0.5h,先遣队和大队的速度各是多少?【分析】首先设大队的速度为x千米/时,则先遣队的速度是1.2x千米/时,由题意可知先遣队用的时间+0.5小时=大队用的时间.【解答】解:设大队的速度为x千米/时,则先遣队的速度是1.2x千米/时,+0.5,解得:x=5,经检验x=5是原方程的解,1.2x=1.2×5=6.答:先遣队的速度是6千米/时,大队的速度是5千米/时.【点评】此题主要考查了分式方程的应用,关键是弄懂题意,表示出大队和先遣队各走15千米所用的时间,根据时间关系:先遣队比大队早到0.5h列出方程解决问题.23.(8分)如图,E、F分别为△ABC的边BC、AB的中点,延长EF至点D,使得DF=EF,连接DA、DB、AE.(1)求证:四边形ACED是平行四边形;(2)若AB⊥AC,求证:四边形AEBD是菱形.【分析】(1)由已知可得:EF是△ABC的中位线,则可得EF∥AC,EF=AC,又由DF=EF,易得AC=DE,根据有一组对边平行且相等的四边形是平行四边形,即可证得四边形ACED是平行四边形;(2)想办法证明四边形AEBD是平行四边形,AB⊥DE即可;【解答】证明:(1)∵E、F分别为△ABC的边BC、BA的中点,∴EF∥AC,EF=AC,∵DF=EF,∴EF=DE,∴AC=DE,∴四边形ACED是平行四边形;(2)∵四边形ACED是平行四边形,∴AD∥EC,DE∥AC,AD=EC,∵BE=EC,∴AD=BE,AD∥BE,∴四边形AEBD是平行四边形,∵AC⊥AB,AC∥DE,∴AB⊥ED,∴四边形AEBD是菱形.【点评】此题考查了平行四边形的判定(有一组对边平行且相等的四边形是平行四边形)、菱形的判定(对角线垂直的平行四边形是菱形)以及三角形中位线的性质(三角形的中位线平行于三角形的第三边且等于第三边的一半).解题的关键是仔细分析图形,注意数形结合思想的应用.24.(8分)厨师将一定质量的面团做成粗细一致的拉面时,面条的总长度y(m)与面条横截面积x(mm2)之间成反比例函数关系.其图象经过A(4,32)、B(t,80)两点.(1)求y与x之间的函数表达式;(2)求t的值,并解释t的实际意义;(3)如果厨师做出的面条横截面面积不超过3.2mm2,那么面条的总长度至少为40m.【分析】(1)直接利用待定系数法得出反比例函数解析式即可;(2)利用(1)中所求进而得出t的值,得出其实际意义;(3)利用x=3.2求出y的值即可得出答案.【解答】解:(1)设y与x之间的函数表达式为:y=(x>0),将(4,32)代入可得:k=128,∴y与x之间的函数表达式为:y=(x>0),(2)将(t,80)带入y=可得t=1.6,实际意义:当面条的横截面积为1.6mm2时,面条长度为80m;(3)∵厨师做出的面条横截面面积不超过3.2mm2,∴y≥=40,故面条的总长度至少为40m.故答案为:40.【点评】此题主要考查了反比例函数的应用,正确得出理解y与x代表的意义是解题关键.25.(8分)已知关于x的一元二次方程x2﹣(m+1)x+2m﹣3=0(m为常数).(1)若方程的一个根为1,求m的值及方程的另一个根;(2)求证:不论m为何值时,方程总有两个不相等的实数根.【分析】(1)把x=﹣1代入方程可求得m的值,再解方程可求得另一根;(2)由方程根的情况可得到关于m的不等式,可求得m的取值范围.【解答】解:(1)把x=1代入方程可得1﹣(m+1)+2m﹣3=0,解得m=3,当m=3时,原方程为x2﹣4x+3=0解得x1=1,x2=3,即方程的另一根为3;(2)∵a=1,b=﹣(m+1),c=2m﹣3,∴△=b2﹣4ac=[=﹣(m+1)]2﹣4×1×(2m﹣3)=(m﹣3)2+4>0,∴不论m为何值时,方程总有两个不相等的实数根.【点评】本题主要考查方程根与系数的关系及根的判别式,由方程根的情况得到判别式的符号是解题的关键.26.(9分)已知矩形的一边长为2,另一边长为1.(1)是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍?小明是这样想的:小刚是这样想的:①按照小明思路,完成解答:②根据小刚的思路,直接写出两个交点坐标;(2)如果存在另一个矩形,周长是已知矩形周长的2倍,面积是已知矩形面积的k倍(k>0),求k的取值范围.【分析】(1)①根据面积=长×宽,列出关于x的一元二次方程,解之即可,②将反比例函数和一次函数联立,求公共点即可,(2)根据“周长是已知矩形周长的2倍,面积是已知矩形面积的k倍(k>0)”,设矩形的一边长为x,则另一个边长为(6﹣x),根据面积公式列出关于x和k 的方程,令x为未知数,根据判别式得到关于k的不等式,解之即可.【解答】解:(1)①根据题意得:小明可列方程为x(6﹣x)=4,解得:x1=3+,x2=3﹣,当x=3+时,6﹣x=3﹣,当x=3﹣时,6﹣x=3+,即两矩形是全等的,所以存在这样的矩形符合题意,这个矩形一边为3+,另一边为3﹣,②根据题意得:,解得:,,两个交点坐标为:(3﹣,3+),(3+,3﹣),(2)根据题意知这个矩形周长为12,面积为2k,设矩形的一边长为x,则另一边为(6﹣x),则x(6﹣x)=2k,整理得:x2﹣6x+2k=0,由题意得原方程有实数根,∴36﹣8k≥0,∴,又∵k>0,∴0<k≤,即k的取值范围为:0<k≤.【点评】本题考查一元二次方程的应用和反比例函数与一次函数的交点问题,解题的关键是:正确找出等量关系,列出方程和不等式,根据判别式列出不等式.27.(11分)已知正方形ABCD,点P是边AD上一点(不与点A、D重合).(1)在图①中用直尺和圆规求作一点P,使得∠APB=60°(保留作图痕迹,不写作法).(2)如图②,CE⊥BP,交AB于点E,垂足为O、M、N分别是BE、CP的中点,MN交BP、CE于点H、G.求证:OG=OH.(3)如图③,若正方形ABCD的边长为4,点P为AD中点,连接BP并延长,与CD的延长线交于点F,在线段CF上找一点Q,使得△PFQ为等腰三角形,求DQ的长,直接写出结论.【分析】(1)分别以B、C为圆心,BC长为半径画弧,两弧交于点E,直线直线BE交AD于点P,点P即为所求;(2)如图②中,取PE的中点Q,连接QM,QN.首先证明BP=CE,再利用三角形中位线定理即可解决问题;(3)分三种情形讨论求解即可;【解答】解:(1)分别以B、C为圆心,BC长为半径画弧,两弧交于点E,直线直线BE交AD于点P,点P即为所求;(2)如图②中,取PE的中点Q,连接QM,QN.∵四边形ABCD是正方形,∴∠A=∠ABC=90°,AB=BC,∵BP⊥CE,∴∠BOC=90°,∴∠ABP+∠CBO=90°,∠CBO+∠ECB=90°,∴∠ABP=∠BCE,∴△ABP≌△BCE,∴BP=EC,∵EM=MB,EQ=PQ,∴MQ∥PB,MQ=BP,同理可证:QN∥CE,QN=CE,∴QM=QN,∴∠QMN=∠QNM,∵∠OHG=∠QMN,∠∠QNM,∴∠OHG=∠DGH,∴OH=OG.(3)如图③中,由题意PB=PF=2,AB=DF=4,①当FP=FQ时,可得DQ1=4+2,DQ2=2﹣4,②当QF=QP时,设Q3P=Q3F=x,在Rt△PDQ3中,x2=22+(4﹣x)2,∴x=,∴DQ3=.③当PF=PQ时,DQ4=4.综上所述,满足推荐的DQ的值为2±4或或4.【点评】本题考查四边形综合题、正方形的性质、全等三角形的判定和性质、三角形中位线定理、勾股定理、等边三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,学会用分类讨论的射线思考问题,属于中考压轴题.。

苏科版2018年第二学期期末八年级数学试题二及答案

苏科版2018年第二学期期末八年级数学试题二及答案

2017~2018学年第二学期期末考试卷八年级数学试题2018.06(时间120分钟,满分120分)一、选择题(本大题共10小题,每题3分.)1.下列图形中,既是轴对称图形,又是中心对称图形的是……………………………………………(▲)A.D .2.下列各式: a -b 2 ,x -3x ,5+y ,a +b a -b ,1n (x -y )中,是分式的共有…………………………(▲ ) A .1个B .2个C .3个D .4个3.下列式子从左到右变形一定正确的是 ………………………………………………………………(▲) A .a b =a 2b2B .ab =a +1b +1C .ab =a -1b -1D .a 2ab =ab4.若2x -1在实数范围内有意义,则x 的取值范围是………………………………………………(▲) A .x ≥12B .x ≥-12C .x >12D .x ≠125.下列计算:(1)(2)2=2,(2)(-2)2=2,(3)(-23)2=12,(4)(2+3)(2-3)=-1,其中结果正确的个数为 …………………………………………………………………………………………(▲) A .1B .2C .3D .46.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是………… ……………………………………………………………………………(▲) A .至少有1个球是黑球 B .至少有1个球是白球 C .至少有2个球是黑球D .至少有2个球是白球7.已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y =6x 的图像上三点,且y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是 …………………………………………………………………………………………(▲) A . x 1<x 2<x 3B . x 3<x 2<x 1C . x 2<x 1<x 3D . x 2<x 3<x 18.关于x 的分式方程7xx -1 +5=2m -1x -1 有增根,则m 的值为 ……………(▲)A .5B .4C .3D .19.如图,在菱形ABCD 中,∠BCD =110°,AB 的垂直平分线交对角线AC 于点F ,F E DBA (第9题)E 为垂足,连接DF ,则∠CDF 等于 …………………………………………(▲) A .15°B .25°C .45°D .55°10.如图,在平面直角坐标系中,直线y =33x +2与x 轴交于点A ,与y 轴交于点B ,将△ABO 沿直线AB 翻折,点O 的对应点C 恰好落在双曲线y =kx (k ≠0)上,则k 的值为……(▲) A .-4B .-2C .-2 3D .-3 3二、填空题:(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置.......上.) 11.若分式x -3x值为0,则x 的值为▲. 12.若最简二次根式2a -3与5是同类二次根式,则a 的值为▲.13.若反比例函数y =k -2x 的图像经过第二、四象限,则k 的取值范围是▲.14.关于x 的分式方程x +m x -2+2m2-x=3的解为正实数,则实数m 的取值范围是▲. 15.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =2,BC =6,则OB 的长为▲. 16.如图,正方形ABCD 的边长为6,点G 在对角线BD 上(不与点B 、D 重合),GF ⊥BC 于点F ,连接AG ,若∠AGF =105°,则线段BG =▲. 17.如图,在平面直角坐标系中,点A 的坐标为(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC =90°,点B 在点A 的右侧,点C 在第一象限.将△ABC 绕点A 逆时针旋转75°,若点C 的对应点E 恰好落在y 轴上,则边AB 的长为▲.18.如图,已知点A 是一次函数y =23x (x ≥0)图像上一点,过点A 作x 轴的垂线,B 是上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰三角形ABC ,反比例函数y =kx (x >0)的图像过点B 、C ,若△OAB 的面积为5,则△ABC 的面积是▲.三、解答题(本大题共8小题,共计74分.解答需写出必要的文字说明或演算步骤.) 19.(本题满分16分) 计算:(1)6×33-(12)-2+|1-2|; (2)(312-213+48)÷3;MDABOCADG BFC(第15题)(第16题)(3)1m -2-4m 2-4;(4)解方程:1x -2-1-x 2-x=-3.20.(本题满分4分)先化简,再求值:x -1x ÷(x - 1x ),其中x =3-1.21.(本题满分8分)今年4月23日是第23个“世界读书日”.某校围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少? (2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计我市12000名初二学生中日均阅读时间在0.5~1.5小时的有多少人.22.(本题满分8分)如图,在□ABCD 中,E 、F 为对角线BD 上的两点,且∠BAE =∠DCF . 求证:BF =DE .日人均阅读时间各时间段人数所占的百分比FEABCD23.(本题满分8分)如图,方格纸中每个小正方形的边长都是1个单位长度. Rt △ABC 的三个顶点A (-2,2),B (0,5),C (0,2). (1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出的图形△A 1B 1C . (2)平移△ABC ,使点A 的对应点A 2坐标为(-2,-6),请画出平移后对应的△A 2B 2C 2. (3)请用无刻度的直尺在第一、四象限内画出一个以A 1B 2为边,面积是7的矩形A 1B 1EF .(保留作图痕迹,不写作法) (4)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,请直接写出旋转中心的坐标. 24.(本题满分8分)某公司在工程招标时,接到甲、乙两个工程队的投标书.工程领导小组根据甲、乙两队的投标书测算:每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元.甲队单独完成此工程刚好如期完工,乙队单独完成此工程要比规定工期多用5天,若甲、乙两队合作4天,剩下的工程由乙独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需要多少天?(2)由于任务紧迫,公司要求工程至少提前7天完成,问怎样安排甲、乙两个工程队施工所付施工费最少?最少施工费是多少万元?(施工天数不满一天以一天计)25.(本题满分10分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =k x (k >0,x >0)的图像上,点D 的坐标为(2,32),设AB所在直线解析式为y =kx +b (a ≠0),(1)求k 的值,并根据图像直接写出不等式ax +b >kx 的解集;(2)若将菱形ABCD 沿x 轴正方向平移m 个单位,① 当菱形的顶点B 落在反比例函数的图像上时,求m 的值;② 在平移中,若反比例函数图像与菱形的边AD 始终有交点,求m 的取值范围.26.(本题满分12分)在矩形ABCD 中,AB =4,AD =3,现将纸片折叠,点D 的对应点记为点P ,折痕为EF (点E 、F 是折痕与矩形的边的交点),再将纸片还原. (1)若点P 落在矩形ABCD 的边AB 上(如图1).① 当点P 与点A 重合时,∠DEF =▲°,当点E 与点A 重合时,∠DEF =▲°. ② 当点E 在AB 上时,点F 在DC 上时(如图2),若AP =72,求四边形EPFD 的周长.(2)若点F 与点C 重合,点E 在AD 上,线段BA 与线段FP 交于点M (如图3),当AM =DE 时,请求出线段AE 的长度. (3)若点P 落在矩形的内部(如图4),且点E 、F 分别在AD 、DC 边上,请直接写出AP 的最小值.AP BCFDE AEP DFCBDCEMAP BDFCEPAB(图1)(图2)(图3)(图4)2017-2018学年初二数学第二学期期末参考答案与评分标准一、选择题(本大题共10小题,,每小题3分,共30分.) 1.C 2.C3.D 4.A5.D 6.A 7.C 8.B 9.A10.D二、填空题(本大题共8小题,每小题2分,共16分.)11.312.413.2k <14.62m m <≠且15117.18.53三、解答题(本大题共8小题,共74分.) 19. (本题满分16分)解:(1)原式41= ·········································································· 3分5=.································································································· 4分(2)原式= ··································································· 3分 283= 4分(3)原式142(2)(2)m m m =--+- ·································································· 1分 24(2)(2)m m m +-=+- ··························································································· 2分12m =+ ······································································································· 4分 (4)1)1(1)3(2)x x +-=-- ········································································· 2分 ∴2x =经检验是原方程的增根,原方程无解 ································································· 4分 20.(本题满分4分)解:原式=x x x x 112-÷-= )1)(1(1+-⋅-x x xx x ······································································ 1分 =11+x 2分 当13-=x 时,原式=1131+-=31=33 ······································································· 4分 21.(本题满分8分)解:(1)样本容量是:30÷20%=150; ···················································································· 2分 (2)日人均阅读时间在0.5~1小时的人数是:150-30-45=75(人).画图略 ···················· 4分(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×45150 =108°; ··············· 6分(4)12000×75+45150 =9600(人). ························································································· 8分22. (本题满分8分)证明:∵□ABCD ∴AB ∥CD ,AB =CD ··························································· 2分 ∴∠ABE =∠CDF ·························································································································· 4分 在△ABE 和△DCF 中,BAE DCFAB CDABE CDF =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴ △ABE ≌△DCF (ASA ), ······································································ 6分 ∴BE =DF ································································································ 7分 ∴BE +EF =DF +EF 即BF =DE ······································································ 8分 23. (本题满分8分)(1)如图;(2)如图;(3)如图; (4)(0,-2); (2)或24.(本题满分8分)解:⑴设甲队单独完成此项工程需x 天,则乙队单独完成此项工程需(x +5)天. 由题意,得:1144155x x x x -⎛⎫+⨯+=⎪++⎝⎭···························································· 2分 解得:x =20. ································································································ 3分 经检验:x =20是原分式方程的解. ∴(x +5)=25.答:甲队单独完成此项工程需20天,则乙队单独完成此项工程需25天; ················· 4分 (2)设甲队施工a 天,乙队施工b 天,需支付工程费w 万元由题意,得:12025a b +≥ ··············································································· 5分 当a =13,b =9时,w =29.4;当a =12,b =10时,w =29;当a =11,b =12时,w =29.7;当a =10,b =13时,w =29.3 ········································· 7分∴当甲施工12天,乙施工10天,即在要求的13天内甲队施工12天,乙队施工10天,支付工程费最少为29万元. ···································································································· 8分 25. (本题满分10分)解:(1)延长AD 交x 轴于F ,由题意得AF ⊥x 轴 ∵点D 的坐标为(2,32),∴OF =2,DF =32, ∴OD =52,∴AD =52······················································································ 1分 ∴点A 坐标为(2,4),∴k =xy =2×4=8, ····························································· 3分 由图像得解集:2x >; ·················································································· 5分 (2)①将菱形ABCD 沿x 轴正方向平移m 个单位, 则平移后B′坐标为(m ,52), 因B′落在函数8y x =(x >0)的图象上, 则165m =. ············································· 7分 ②将菱形ABCD 沿x 轴正方向平移m 个单位,使得点D 落在函数8y x=(x >0)的图象D′点处,∴点D′的坐标为3(2,)2m + ························································································ 8分 ∵点D′在8y x =的图象上∴3822m =+,解得:103m =, ····································· 9分 ∴1003m ≤≤. ····························································································· 10分 26. (本题满分12分)(1) ①90,45 ································································································ 2分 ②设EF 与PD 交于点O ,由折叠知EF 垂直平分PD∴DO =PO ,EF ⊥PD ························································································· 3分 ∵矩形ABCD ∴DC ∥AB ∴∠FDO =∠EPO ∵∠DOF =∠EOP ∴△DOF ≌△POE ∴DF =PE∵DF ∥PE ∴四边形DEPF 是平行四边形 ·························································· 4分 ∵EF ⊥PD ∴四边形DEPF 是菱形 ··································································· 5分 当AP =72时,设菱形边长为x ,则72AE x =-,DE =x在Rt △ADE 中,222AD AE DE +=∴22273()2x x +-= ······································· 6分∴8528x =∴菱形的周长=857············································································ 7分 (2)连接EM ,设AE =x由折叠知PE =DE ,∠CDB =∠EPM =90°,CD =CP =4 ∵AM =DE ∠A =90° EM =EM∴Rt △AEM ≌Rt △PME (HL )·············································································· 8分 ∴AE =PM =x , ∴CM =4-x ,BM =AB -AM =AB -DE =4-(3-x )=1+x 在Rt △BCM 中,222BM BC CM +=∴2223(1)(4)x x ++=-得x =0.6 ····································································· 10分 (3) AP 的最小值=5-4=1 ················································································· 12分.。

苏科版2018年第二学期期末八年级数学试题一及答案

苏科版2018年第二学期期末八年级数学试题一及答案

22.( 本题 10 分 ) 已知,关于 x 的方程 x 2 mx 1 m 2 1 0 ,
4 ( 1)不解方程,判断此方程根的情况;
( 2)若 x 2 是该方程的一个根,求 m 的值.
4
苏科版 2018 年第二学期期末八年级数学试题一及答案
23.(本题满分 10 分)如图,已知△ ABC 的三个顶点坐标为 A(﹣ 3,4)、B(﹣ 7,1)、 C(﹣ 2, 1).
23. (本题 10 分)(1)(4 分) 图略 A′(3,-4) (2)(6 分 ) (2,4) (-8, 4) (-6 ,-2) 24. (每题 5 分,共 10 分) (1)45 人 (2)7000 元
25. (每题 4 分,本题 12 分)(1) k
4 (2) a
3 ( 3) AF<BF
2
26. (本题 14 分) (1) ①( 3 分)垂直,证明略 ; ②( 4 分)不可能
苏科版 2018 年第二学期期末八年级数学试题一及答案
2017~ 2018 学年度第二学期期末考试 八年级数学试题
(时间 120 分钟,满分 150 分)
一、选择题( 每小题 3 分,共 18 分)
1.化简 ( 4) 2 的结果是( ▲ )
A. -4
B. 4
C.
4
D. 16
x2
2.如果把分式
y 2 中 x、y 的值都扩大为原来的 2 倍,则分式的值(
图1
图2
图3
6
苏科版 2018 年第二学期期末八年级数学试题一及答案
2017 ~ 2018 学年度第二学期期末考试 八年级数学参考答案
一、选择题:(每题 3 分,共 18 分)
1.B 2.B 3.D 4.C 5.C 6.D

2017-2018学年苏科版八年级下数学期末复习试题(一)有答案

2017-2018学年苏科版八年级下数学期末复习试题(一)有答案

2017~2018学年第二学期期末初二数学班级: 姓名: 学号: 成绩: 1.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .2. 如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,AC=12,F 是DE 上一点,连接AF,CF, DF=1.若∠AFC =90°,则BC 的长度为( ) A.12 B.13 C.14 D.15(第2题)(第4题)3.若分式方程1133a xx x -+=--有增根,则a 的值是( ) A.1 B.2 C.3 D.44. 如图,小正方形的边长均为l ,则下列图中的三角形(阴影部分)与△ABC 相似的是( )A .B .C .D .5.函数22k y x --=(k 为常数)的图像上游三个点1231(2,),(1,),(,)2y y y --,函数值123,,y y y 的大小为( )A. 123y y y >> B.213y y y >> C.231y y y >> D.312y y y >>6. 如图l ,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于名的函数图象如图2所示,则△ABC 的面积是( )A.10; B.16; C.18; D.20(第6题) (第11题)7.某一时刻,身高1. 6m 的小明在阳光下的影长是0.4m ,同一时刻同一地点测得旗杆的影长是3m ,则该旗杆的高度是 ______m.8.矩形的两条对角线的夹角为60°,较短的边长为12cm ,则矩形较长的边长_ _m .9.如图,ABCD 中,点E 、F 为对角线BD 上两点,请添加一个条件,使四边形AECF 成为平行四边形:___________.10.曲线1y x =与直线23y x =-相交于点P (,)a b ,则11a b-=________. 11. 如图,将一个等腰直角三角形按图示方式依次翻折,若DE=a ,则下列说法:①DC ′平分∠BDE ;②BC 长为(22)a +;③△BC D '是等腰三角形;④△CED 的周长等于BC 的长.其中正确的个数有( )A .1个; B .2个; C .3个; D .4个。

苏科版2017~2018学年初二数学第二学期期末测试卷 有答案

苏科版2017~2018学年初二数学第二学期期末测试卷 有答案

2017-2018学年第二学期初二数学期末试卷一.选择题(共10小题,每小题3分,共30分) 1.(2015•重庆)下列调查中,最适宜采用全面调查方式(普查)的是……………………( ) A .对重庆市中学生每天学习所用时间的调查;B .对全国中学生心理健康现状的调查; C .对某班学生进行6月5日是“世界环境日”知晓情况的调查; D .对重庆市初中学生课外阅读量的调查;2.下列标识中,既是轴对称图形,又是中心对称图形的是…………………………( )A .B .C .D .3.分式的值为0,则…………………………………………………………( )A . x=﹣2B . x=±2C . x=2D . x=0 4.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是………………( ) A .(6,1) B . (3,2) C . (2,3) D . (﹣3,2)5.( )A B ;C ;D6.下列等式一定成立的是……………………………………………………………( )A -=B =; C 3±; D .=9;7.(2015•巴中)下列说法中正确的是………………………………………………( ) A .“打开电视,正在播放新闻节目”是必然事件 B .“抛一枚硬币,正面向上的概率为12”表示每抛两次就有一次正面朝上;C .“抛一枚均匀的正方体骰子,朝上的点数是6的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在16附近;D .为了解某种节能灯的使用寿命,选择全面调查; 8.函数y=kx+1与函数k y x=在同一坐标系中的大致图象是……………………( )A .B .C .D .9.如图,正比例函数1y 与反比例函数2y 相交于点E (﹣1,2),若1y >2y >0,则x 的取值范围是( )A . x <﹣1;B . ﹣1<x <0;C . x >1;D . 0<x <1;10.如图,已知四边形OABC 是菱形,CD ⊥x 轴,垂足为D ,函数4y x=的图象经过点C ,且与AB 交于点E .若OD=2,则△OCE 的面积为………………………………………………( ) A .2B .4C.D.二.填空题(共8小题,每小题3分,共24分) 111= ;12.一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是黄色球的概率是 . 13.若双曲线21k y x-=的图象经过第二、四象限,则k 的取值范围是 .14()210n +=,则m n -的值为 . 15.若关于x 的方程2111x m x x ++=--产生增根,则m = .16.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米. 17.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE ∥BD ,DE ∥AC ,若AD=4,则四边形CODE 的周长 .18.如图,已知点A 是双曲线y =3x在第一象限上的一动点,连接AO ,以OA 为一边作等腰直角三角形AOB (∠AOB =90°),点B 在第四象限,随着点A 的运动,点B 的位置也不断的变化,但始终在一函数图像上运动,则这个函数关系式为 .第10题图第9题图 第17题图第16题图第18题图三.解答题(共10小题,共76分) 19.计算:(1)-; (2)22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭;20.解方程: (1)=(2)= ﹣3.21.先化简,再求值:221ab a b a b ⎛⎫-÷⎪--⎝⎭,其中1a =+,1b =.22.如图,平行四边形ABCD 中,EF 过AC 的中点O ,与边AD 、BC 分别相交于点E 、F . (1)试判断四边形AECF 的形状,并说明理由.(2)若EF ⊥AC ,试判断四边形AECF 的形状,并说明理由.(3)请添加一个EF 与AC 满足的条件,使四边形AECF 是矩形,并说明理由.23. 如图,平行四边形ABCD 放置在平面直角坐标系A (-2,0)、B (6,0),D (0,3),反比例函数的图象经过点C .(1)求点C 的坐标和反比例函数的解析式;(2)将四边形ABCD 向上平移m 个单位后,使点B 恰好落在双曲线上,求m 的值.24.(2015•岳阳)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调(1)频数分布表中的m= ,n= ; (2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为 ;(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率是 .25.如图,已知反比例函数1k y x=和一次函数2y a x b =+的图象相交于点A 和点D ,且点A的横坐标为1,点D 的纵坐标为-1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1. (1)求反比例函数和一次函数的解析式.(2)若一次函数2y a x b =+的图象与x 轴相交于点C ,求∠ACO 的度数. (3)结合图象直接写出:当12y y >时,x 的取值范围.26.(2015•济南)济南与北京两地相距480km ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.27.如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线kyx=(x>0)也恰好经过点A.(1)求k的值;(2)如图2,过O点作OD⊥AC于D点,求22C D A D-的值;(3)如图3,点P为x轴上一动点.在(1)中的双曲线上是否存在一点Q,使得△PAQ是以点A为直角顶点的等腰三角形.若存在,求出点P、点Q的坐标,若不存在,请说明理由.28. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.参考答案一、选择题:1.C ;2.A;3.C;4.C;5.D;6.B;7.C;8.A;9.A;10.C;二、填空题:1;12.712;13. 12k<;14.2;15.2;16.3;17.16;18. 3yx=;三、解答题:19.(13;(2)1x -;20.(1)3x =-;(2)2x =;21. ab +=22. 解:(1)四边形AECF 的形状是平行四边形,理由是:∵平行四边形ABCD ,∴AD ∥BC ,∴∠DAO=∠ACF ,∠AEO=∠CFO , ∵EF 过AC 的中点O ,∴OA=OC ,在△AEO 和△CFO 中∠EAO =∠OCF ,∠AEO =∠CFO ,OA =OC ,∴△AEO ≌△CFO , ∴OE=OF ,∵OA=CO ,∴四边形AECF 是平行四边形, (2)四边形AECF 是菱形,理由是:由(1)知四边形AECF 是平行四边形, ∵EF ⊥AC ;∴四边形AECF 是菱形. (3)添加条件:EF=AC ,理由是:由(1)知四边形AECF 是平行四边形, ∵EF=AC ,∴四边形AECF 是矩形. 23.(1)C (8,3),24yx=;(2)4m=;24.(1)24,0.3;(2)108°;(3)110;25.(1)12y x=,21y x =+;(2)45°;(3)2x <- 或01x <<;26.240; 27. 解:(1)过点A 分别作AM ⊥y 轴于M 点,AN ⊥x 轴于N 点,△AOB 是等腰直角三角形,∴AM=AN .∴可设点A 的坐标为(a ,a ),点A 在直线y=3x-4上,∴a=3a-4, 解得a=2,则点A 的坐标为(2,2). 将点A (2,2)代入反比例函数的解析式为k y x=,求得k=4.则反比例函数的解析式为4yx=.(2)点A 的坐标为(2,2),在Rt △AMO 中,222A O A MM O=+=4+4=8.∵直线AC 的解析式为y=3x-4,则点C 的坐标为(0,-4),OC=4. 在Rt △COD 中,222O C O D C D =+(1);在Rt △AOD 中,222A O A DO D=+(2);(1)-(2),得2222C D A DO CO A-=-=16-8=8.(3)双曲线上是存在一点Q (4,1),使得△PAQ 是等腰直角三角形.过B 作BQ ⊥x 轴交双曲线于Q 点,连接AQ ,过A 点作AP ⊥AQ 交x 轴于P 点,则△APQ 为所求作的等腰直角三角形.在△AOP 与△ABQ 中,∠OAB-∠PAB=∠PAQ-∠PAB ,∴∠OAP=∠BAQ ,AO=BA ,∠AOP=∠ABQ=45°,∴△AOP ≌△ABQ (ASA ),∴AP=AQ , ∴△APQ 是所求的等腰直角三角形.∵B (4,0),点Q 在双曲线4yx=上,∴Q (4,1),则OP=BQ=1.则点P 、Q 的坐标分别为(1,0)、(4,1).28. 解:(1)1(2)如图1,当∠EMC=90°时,四边形DCEF 是菱形.∵∠EMC=∠ACD=90°,∴DC ∥EF .∵BC ∥AD ,∴四边形DCEF 是平行四边形,∠BCA=∠DAC .由(1)可知:CD=4,AC=∵点M 为AC 的中点,∴CM= Rt △EMC 中,∠CME=90°,∠BCA=30°.∴CE=2ME ,可得(()2222EM E +=,解得:ME=2.∴CE=2ME=4.∴CE=DC .又∵四边形DCEF 是平行四边形, ∴四边形DCEF 是菱形.(3)点E 在运动过程中能使△BEM 为等腰三角形.理由:如图2,过点B 作BG ⊥AD 与点G ,过点E 作EH ⊥AD 于点H ,连接DM . ∵DC ∥AB ,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°-30°-90°=60°.∴∠ABG=30°.∴AG=12AB=2,BG=∵点E 的运动速度为每秒1个单位,运动时间为t 秒, ∴CE=t ,BE=8-t .在△CEM 和△AFM 中∠BCM =∠MAF,MC =AM,∠CME =∠AMF,∴△CEM ≌△AFM .∴ME=MF ,CE=AF=t .∴HF=HG-AF-AG=BE-AF-AG=8-t-2-t=6-2t .∵EH=BG= Rt △EHF 中,ME=12=.∵M 为平行四边形ABCD 对角线AC 的中点,∴D ,M ,B 共线,且DM=BM .∵在Rt △DBG 中,DG=AD+AG=10,BG=BM=12⨯=要使△BEM 为等腰三角形,应分以下三种情况: 当EB=EM 时,有()()221812624t t ⎡⎤-=+-⎣⎦,解得:t=5.2.当EB=BM 时,有8-t=t=8-当EM=BM 时,由题意可知点E 与点B 重合,此时点B 、E 、M 不构成三角形.综上所述,当t=5.2或t=8-时,△BEM 为等腰三角形.。

江苏省南京市八年级下学期数学期末考试试卷

江苏省南京市八年级下学期数学期末考试试卷

江苏省南京市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018九上·新乡期末) 式子中x的取值范围是()A . x≥1且x≠2B . x>1且x≠2C . x≠2D . x>12. (2分)(2017·襄阳) 下列图形中,既是中心对称图又是轴对称图形的是()A .B .C .D .3. (2分)(2019·江川模拟) 下列说法正确的是()A . 一个游戏的中奖概率是则做10次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 一组数据 8 ,8 ,7 ,10 ,6 ,8 ,9 的众数和中位数都是 8D . 若甲组数据的方差 S =" 0.01" ,乙组数据的方差 s = 0 .1 ,则乙组数据比甲组数据稳定4. (2分) (2015七下·宜兴期中) 不论x、y为何有理数,多项式x2+y2﹣4x﹣2y+8的值总是()A . 正数B . 零C . 负数D . 非负数5. (2分)(2017·西城模拟) 如图是由射线AB,BC,CD,DE,EA组成的平面图形,若∠1+∠2+∠3+∠4=225°,ED∥AB,则∠1的度数为()A . 55°B . 45°C . 35°D . 25°6. (2分)四边形ABCD的对角线AC,BD相交于点O,能判断它为矩形的题设是()A . AO=CO,BO=DOB . AO=BO=CO=DOC . AB=BC,AO=COD . AO=CO,BO=DO,AC⊥BD7. (2分)命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是()A . a<bB . a≤bC . a=bD . a≥b8. (2分)(2018·庐阳模拟) 某企业因春节放假,二月份产值比一月份下降20%,春节后生产呈现良好上升势头,四月份比一月份增长15%,设三、四月份的月平均增长率为x,则下列方程正确的是()A . (1﹣20%)(1+x)2=1+15%B . (1+15%%)(1+x)2=1﹣20%C . 2(1﹣20%)(1+x)=1+15%D . 2(1+15%)(1+x)=1﹣20%9. (2分)(2016·云南) 位于第一象限的点E在反比例函数y= 的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A . 4B . 2C . 1D . ﹣210. (2分)如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴相交于C点,图中虚线为抛物线的对称轴,则下列正确的是()A . a<0B . b<0C . c>0D . b2-4ac<011. (2分) (2020八上·淅川期末) 如图,将长方形纸片沿对角线折叠,使点落在处,交AD于E,若,则在不添加任何辅助线的情况下,则图中的角(虚线也视为角的边)的个数是()A . 5个B . 4个C . 3个D . 212. (2分) (2019八上·泰兴期中) 如图所示,在长方形ABCD的对称轴l上找点P,使得△PAB、△PBC均为等腰三角形,则满足条件的点P有()A . 1个B . 3个C . 5个D . 无数多个二、填空题 (共6题;共6分)13. (1分)计算:=________ .14. (1分) (2017八下·卢龙期末) 对于数据:2,4,4,5,3,9,4,5,1,8,其众数,中位数与平均数分别是________.15. (1分)关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是________16. (1分)(2018·江苏模拟) 如图,⊙O的半径为1,点为⊙O外一点,过点P作⊙O的两条切线,切点分别为点A和点B,则四边形PBOA面积的最小值是________.17. (1分)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM、CN、MN.若AB=3, BC=2,则图中阴影部分的面积为________ .18. (1分)(2017·菏泽) 菱形ABCD中,∠A=60°,其周长为24cm,则菱形的面积为________ cm2 .三、解答题 (共8题;共76分)19. (5分)计算:(1);(2).20. (10分) (2019八下·北京期中) 解方程:(1);(2).21. (10分) (2018九上·渝中期末) 距离中考体考时间越来越近,年级想了解初三年级2200名学生周末进行体育锻炼的情况,在初三年级随机抽查了20名男生和20名女生周末每天的运动时间进行了调查并收集到了以下数据(单位:min)男生:20 30 40 45 60 120 80 50 100 45 85 90 90 70 9 0 50 90 50 70 40女生:75 30 120 70 60 100 90 40 75 60 75 75 80 9070 80 50 80 100 90根据统计数据制作了如下统计表:时间x x≤3030<x≤6060<x≤9090<x≤120男生2882女生14a3两组数据的极差、平均数、中位数、众数如下表所示:极差平均数中位数众数男生10065.75b c女生9075.57575(1)请将上面两个表格补充完整:a=________,b=________,c=________;(2)请根据抽样调查的数据估计初三年级周末每天运动时间在100分钟以上的同学大约有多少人?(3)李老师看了表格数据后认为初三年级的女生周末体锻坚持得比男生好,请你结合统计数据,写出支持李老师观点的理由.22. (10分) (2017九上·巫溪期末) 如图所示,已知反比例函数y= 的图象与一次函数y=ax+b的图象交于两点M(4,m)和N(﹣2,﹣8),一次函数y=ax+b与x轴交于点A,与y轴交于点B.(1)求这两个函数的解析式;(2)求△MON的面积;(3)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.23. (6分) (2018九上·南召期中) 某水果店出售一种水果,经过市场估算,若每个售价为元时,每周可卖出个.经过市场调查,如果每个水果每降价元,每周可多卖出个,若设每个水果的售价为元.(1)则这一周可卖出这种水果为________ 个(用含的代数式表示);(2)若该周销售这种水果的收入为元,那么每个水果的售价应为多少元?24. (10分) (2018九上·萧山开学考) 如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,(1)求证:四边形AEBD是菱形;(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.25. (15分)如图1,平面直角坐标系中,直线y=﹣x+3与抛物线y=ax2+x+c相交于A,B两点,其中点A在x轴上,点B在y轴上.(1)求抛物线的解析式;(2)在抛物线上存在一点M,使△MAB是以AB为直角边的直角三角形,求点M的坐标;(3)如图2,点E为线段AB上一点,BE=2,以BE为腰作等腰Rt△BDE,使它与△AOB在直线AB的同侧,∠BED=90°,△BDE沿着BA方向以每秒一个单位的速度运动,当点B与A重合时停止运动,设运动时间为t秒,△BDE与△AOB 重叠部分的面积为S,直接写出S关于t的函数关系式,并写出自变量t的取值范围.26. (10分) (2018九上·镇海期末) 如图(1)如图1,的内切圆与边,,分别相切于点,若,,,求的面积;(2)观察(1)中所得结论中与,之间的数量关系,猜测:若(1)中,,其余条件不变,则的面积为多少?并证明你的结论;(3)如图2,锐角的内切圆与边分别相切于点,若,,,求的面积.(结果用含的式子表示)参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共76分)19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。

江苏省南京市玄武区2018-2019学年八年级下学期期末考试数学试题

江苏省南京市玄武区2018-2019学年八年级下学期期末考试数学试题

2018--2019年玄武八年级下学期期末一、选择题1、关于一元二次方程x 525x 2=+根的情况描述正确的是( )A. 有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.不能确定2、下列各式中,化简后能与2合并的是( ) A.12 B.5.0 C.23 D.4 3、下列式子从左到右的变形一定正确的是( ) A.22a b a b = B.bc ac b =a C.m b m a b ++=a D.22a --=-a a a 4、做“抛掷一枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法正确的是( )A.概率等于频率B.频率等于21 C.概率是随机的 D.频率会在某一个常数附近摆动 5、如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,下列条件中,不能判断这个平行四边形是菱形的是( )A.AB=ADB.∠BAC=∠DACC.∠BAC=∠ABDD.AC ⊥BD6、如图,点A 是反比例函数()0x y <xm =图像上一点,AC ⊥x 轴于点C ,与反比例函数()0y <x xn =图像交于点B ,AB=2BC ,连接OA 、OB ,若△OAB 的面积为2,则m+n 的值( ) A.-3 B.-4 C.-6 D.-8二、填空题7、若式子x -1在实数范围内有意义,则x 的取值范围是 。

8、若分式xx -2x 的值为零,则x= 。

9、在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸出一个乒乓球,恰好是黄球的概率为0.7,则袋子内共有乒乓球 个。

10、已知菱形ABCD 的对角线AC=10,BD=24,则菱形ABCD 的面积为 。

11、如图,在△ABC 中,AB=5,AC=6,BC=7,点D 、E 、F 分别是边AB 、AC 、BC 的中点,连接DE 、DF 、EF ,则△DEF 的周长是 。

12、计算()0y 08xy 2>,≥÷x y 的结果是 。

2017~2018学年苏科版八年级数学下册期末试卷含答案解析

2017~2018学年苏科版八年级数学下册期末试卷含答案解析

2017~2018学年八年级(下)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.若二次根式有意义,则x的取值范围是()A.x<2 B.x≠2 C.x≤2 D.x≥22.下列根式中,最简二次根式是()A.B. C.D.3.对于函数y=,下列说法错误的是()A.它的图象分布在一、三象限B.它的图象与直线y=﹣x无交点C.当x<0时,y的值随x的增大而减小D.当x>0时,y的值随x的增大而增大4.如图,在△ABC中,点E、F分别为AB、AC的中点.若EF的长为2,则BC的长为()A.1 B.2 C.4 D.85.分式的值为0,则()A.x=2 B.x=﹣2 C.x=±2 D.x=06.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④梯形;⑤圆.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.7.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=8.如图已知双曲线y=(k<0)经过直角△OAB斜边OA的中点D,且与直角边AB交于点C,若点A 坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4二、填空题(本大题共有10小题,每小题3分,共30分)9.化简:=.10.若反比例函数y=图象经过点A(﹣,),则k=.11.当x=2014时,分式的值为.12.将一批数据分成5组,列出频率分布表,其中第一组与第五组的概率之和是0.2,第二与第四组的概率之和是0.25,那么第三组的概率是.13.菱形的两条对角线的长分别为6和8,则它的面积是.14.为了了解10000只灯泡的使用寿命,从中抽取10只进行试验,则该考察中的样本容量是.15.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是.16.如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE∥BD,DE∥AC,若AD=4,则四边形CODE的周长.17.已知(﹣1,y1),(﹣2,y2)是反比例函数y=﹣的图象上的两个点,则y1、y2的大小关系是(用“<”表示)18.如图,已知四边形OABC为正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA 上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是.三、解答题(本大题共有9小题,共86分)19.计算:.20.解方程: +=1.21.先化简,再求值:(1﹣)÷,其中x=2.22.2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:(1)本次调查共选取名居民;(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?23.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.24.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE 分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.25.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求一次函数和反比例函数的表达式及点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数.26.某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.27.已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.28.如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.(3)在x轴上是否存在点Q,使得△QBC是等腰三角形?若存在,请直接写出Q点坐标;若不存在,请说明理由.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分)1.若二次根式有意义,则x的取值范围是()A.x<2 B.x≠2 C.x≤2 D.x≥2【考点】二次根式有意义的条件.【专题】计算题.【分析】二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.【解答】解:由题意得:2﹣x≥0,解得:x≤2.故选:C.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.2.下列根式中,最简二次根式是()A.B. C.D.【考点】最简二次根式.【分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.由被选答案可以用排除法可以得出正确答案.【解答】A、可以化简,不是最简二次根式;B、,不能再开方,被开方数是整式,是最简二根式;C、,被开方数是分数,不是最简二次根式;D、,被开方数是分数,不是最简二次根式.故选B.【点评】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.3.对于函数y=,下列说法错误的是()A.它的图象分布在一、三象限B.它的图象与直线y=﹣x无交点C.当x<0时,y的值随x的增大而减小D.当x>0时,y的值随x的增大而增大【考点】反比例函数的性质.【分析】根据反比例函数的性质对四个选项进行逐一分析即可.【解答】解:A、∵函数y=中k=6>0,∴此函数图象的两个分支分别在一、三象限,故本选项正确;B、∵函数y=位于一三象限,直线直线y=﹣x位于二四象限,故无交点,故本选项正确;C、∵当x<0时,函数的图象在第一象限,∴y的值随x的增大而减小,故本选项正确;D、∵当x>0时,函数的图象在第三象限,∴y的值随x的增大而减小,故本选项错误.故选D.【点评】本题考查的是反比例函数的性质,即反比例函数y=xk(k≠0)的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.4.如图,在△ABC中,点E、F分别为AB、AC的中点.若EF的长为2,则BC的长为()A.1 B.2 C.4 D.8【考点】三角形中位线定理.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2EF.【解答】解:∵点E、F分别为AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×2=4.故选C.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.5.分式的值为0,则()A.x=2 B.x=﹣2 C.x=±2 D.x=0【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件得到x2﹣4=0且x+2≠0,然后分别解方程与不等式易得x=2.【解答】解:∵分式的值为0,∴x2﹣4=0且x+2≠0,解x2﹣4=0得x=±2,而x≠﹣2,∴x=2.故选A.【点评】本题考查了分式的值为零的条件:当分式的分子为零并且分母不为零时,分式的值为零.6.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④梯形;⑤圆.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】由五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的有①⑤,直接利用概率公式求解即可求得答案.【解答】解:∵五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的①⑤,∴从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是:.故答案选:B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.7.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】设甲队每天修路xm,则乙队每天修(x﹣10)米,再根据关键语句“甲队修路120m与乙队修路100m所用天数相同”可得方程=.【解答】解:设甲队每天修路x m,依题意得:=,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.如图已知双曲线y=(k<0)经过直角△OAB斜边OA的中点D,且与直角边AB交于点C,若点A 坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【考点】反比例函数图象上点的坐标特征;反比例函数系数k的几何意义.【分析】根据A点坐标可直接得出D点坐标,代入双曲线y=(k<0)求出k的值,进可得出△OBC的面积,由S△AOC=S△AOB﹣S△OBC即可得出结论.【解答】解:∵D是OA的中点,点A的坐标为(﹣6,4),∴D(﹣3,2),∵知双曲线y=(k<0)经过点D,∴k=(﹣3)×2=﹣6,∴S△OBC=×|6|=3,∴S△AOC=S△AOB﹣S△OBC=×6×4﹣3=9.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(本大题共有10小题,每小题3分,共30分)9.化简:=3.【考点】二次根式的性质与化简.【专题】计算题.【分析】先算出(﹣3)2的值,再根据算术平方根的定义直接进行计算即可.【解答】解:==3,故答案为:3.【点评】本题考查的是算术平方根的定义,把化为的形式是解答此题的关键.10.若反比例函数y=图象经过点A(﹣,),则k=﹣1.【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(﹣,)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=图象经过点A(﹣,),∴=,即k=﹣1.故答案为:﹣1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.当x=2014时,分式的值为2017.【考点】分式的值.【分析】先把分子因式分解,再约去x﹣3,得x+3,把x=2014代入求值【解答】解:==x+3,当x=2014时,==x+3=2014+3=2017,故答案为:2017.【点评】本题主要考查了分式的值,解题的关键是把分子进行因式分解.12.将一批数据分成5组,列出频率分布表,其中第一组与第五组的概率之和是0.2,第二与第四组的概率之和是0.25,那么第三组的概率是0.55.【考点】利用频率估计概率.【专题】推理填空题.【分析】根据一组数据总的概率是1,可以得到第三组的概率是多少.【解答】解:由题意可得,第三组的概率是:1﹣0.2﹣0.25=0.55,故答案为:0.55.【点评】本题考查利用频率估计概率,解题的关键是明确题意,知道一组数据总的概率是1.13.菱形的两条对角线的长分别为6和8,则它的面积是24.【考点】菱形的性质.【专题】计算题.【分析】菱形的面积等于对角线乘积的一半.【解答】解:∵菱形的面积等于对角线乘积的一半,∴面积S=×6×8=24.故答案为24.【点评】此题考查菱形的面积计算方法,属基础题.菱形的面积=底×高=对角线乘积的一半.14.为了了解10000只灯泡的使用寿命,从中抽取10只进行试验,则该考察中的样本容量是10.【考点】总体、个体、样本、样本容量.【分析】样本容量是样本中包含个体的数目,不带单位.依据定义即可判断.【解答】解:根据样本容量的定义得:样本容量为10.故答案为:10.【点评】本题样本容量的定义,特别需要注意的是:样本容量不能带单位,比较简单.15.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是.【考点】几何概率.【分析】确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率.【解答】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;故答案为:.【点评】本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.16.如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE∥BD,DE∥AC,若AD=4,则四边形CODE的周长16.【考点】菱形的判定与性质;矩形的性质.【分析】首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=4,即可判定四边形CODE是菱形,继而求得答案.【解答】解:∵四边形ABCD是矩形,∴BD=AC,DO=BO,AO=CO,∴OD=OA,∵∠AOB=120°,∴∠DOA=60°,∴△AOD是等边三角形,∴DO=AO=AD=OC=4,∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×4=16,故答案为:16.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.17.已知(﹣1,y1),(﹣2,y2)是反比例函数y=﹣的图象上的两个点,则y1、y2的大小关系是2<y1(用“<”表示)【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数的性质可找出反比例函数在第二象限内为减函数,再结合﹣1>﹣2即可得出结论.【解答】解:∵在反比例函数y=﹣中k=﹣4<0,∴该反比例函数在第二象限内y随x的增加而减小,∵﹣1>﹣2,∴y2<y1.故答案为:y2<y1.【点评】本题考查了反比例函数的性质,解题的关键是根据反比例函数的系数找出反比例函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数的单调性比求出点的坐标再进行比较要简便很多,因此我们可以根据反比例函数的性质找出其单调性来解决问题.18.如图,已知四边形OABC为正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且点D的坐标为(2,0),点P是OB上的一个动点,则PD+PA的最小值是2.【考点】轴对称-最短路线问题;坐标与图形性质;正方形的性质.【分析】作出D关于OB的对称点D′,则D′的坐标是(0,2).则PD+PA的最小值就是AD′的长,利用勾股定理即可求解.【解答】解:作出D关于OB的对称点D′,则D′的坐标是(0,2).则PD+PA的最小值就是AD′的长.则OD′=2,因而AD′===2.则PD+PA和的最小值是2.故答案是:2.【点评】本题考查了正方形的性质,以及最短路线问题,正确作出P的位置是关键.三、解答题(本大题共有9小题,共86分)19.计算:.【考点】实数的运算;负整数指数幂.【专题】探究型.【分析】先根据绝对值的性质、负整数指数幂及算术平方根计算岀各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=3﹣2﹣4+3=﹣1.【点评】本题考查的是实数的运算,熟知绝对值的性质、负整数指数幂及算术平方根的计算是解答此题的关键.20.解方程: +=1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x﹣1=x﹣4,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.先化简,再求值:(1﹣)÷,其中x=2.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=2时,原式==1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:(1)本次调查共选取80名居民;(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据为A的人数与所占的百分比列式计算即可求出被调查的居民人数;(2)求出为C的人数,得到所占的百分比,然后乘以360°,从而求出扇形统计图中“C”所对扇形的圆心角的度数,然后补全条形统计图即可;(3)用全区总人数乘以从不闯红灯的人数所占的百分比,进行计算即可得解.【解答】解:(1)本次调查的居民人数=56÷70%=80人;(2)为“C”的人数为:80﹣56﹣12﹣4=8人,“C”所对扇形的圆心角的度数为:×360°=36°补全统计图如图;(3)该区从不闯红灯的人数=1600×70%=1120人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【考点】作图-旋转变换.【分析】(1)点B关于点A对称的点的坐标为(2,6);(2)分别作出点A、B、C绕坐标原点O逆时针旋转90°后的点,然后顺次连接,并写出点B的对应点的坐标;(3)分别以AB、BC、AC为对角线,写出第四个顶点D的坐标.【解答】解:(1)点B关于点A对称的点的坐标为(2,6);(2)所作图形如图所示:,点B'的坐标为:(0,﹣6);(3)当以AB为对角线时,点D坐标为(﹣7,3);当以AC为对角线时,点D坐标为(3,3);当以BC为对角线时,点D坐标为(﹣5,﹣3).【点评】本题考查了根据旋转变换作图,轴对称的性质,以及平行四边形的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.24.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE 分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.【考点】平行四边形的判定与性质;直角三角形斜边上的中线;菱形的判定.【专题】证明题.【分析】(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形,即得AD=CE;(2)由∠BAC=90°,AD是边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,即证;【解答】证明:(1)∵DE∥AB,AE∥BC,∴四边形ABDE是平行四边形,∴AE∥BD,且AE=BD又∵AD是BC边的中线,∴BD=CD,∴AE=CD,∵AE∥CD,∴四边形ADCE是平行四边形,∴AD=EC;(2)∵∠BAC=90°,AD是斜边BC上的中线,∴AD=BD=CD,又∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.【点评】本题考查了平行四边形的判定和性质,(1)证得四边形ABDE,四边形ADCE为平行四边形即得;(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,从而证得四边形ADCE是菱形.25.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求一次函数和反比例函数的表达式及点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数.【考点】反比例函数与一次函数的交点问题.【分析】(1)设反比例函数的解析式为y=(k≠0),把A点坐标代入即可得出k的值,进而得出反比例函数的解析式,再把B点坐标代入即可得出a的值,利用待定系数法即可得出一次函数的解析式;(2)直接根据两函数的交点即可得出结论.【解答】解:(1)设反比例函数的解析式为y=(k≠0),∵反比例函数图象经过点A(﹣4,﹣2),∴﹣2=,解得k=8,∴反比例函数的解析式为y=.∵B(a,4)在y=的图象上,∴4=,∴a=2,∴点B的坐标为B(2,4);设一次函数表达式为y=mx+n,将点A,点B代入得,,解得,∴一次函数表达式为y=x+2;(2)根据图象得,当x>2或﹣4<x<0时,一次函数的值大于反比例函数的值.【点评】本题考查的是反比例函数与一次函数的交点问题,能直接利用函数图象求出不等式的解集是解答此题的关键.26.某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.【考点】分式方程的应用.【分析】首先设第一组有x人,则第二组人数是1.5x人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数﹣第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可.【解答】解:设第一组有x人.根据题意,得=,解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.27.已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】(1)根据非负数的性质得到方程,解方程即可得到结果;(2)根据三角形的三边关系,勾股定理的逆定理判断即可.【解答】解:(1)∵a、b、c满足|a﹣|++(c﹣4)2=0.∴|a﹣|=0,=0,(c﹣4)2=0.解得:a=,b=5,c=4;第21页(共23页)(2)∵a=,b=5,c=4, ∴a +b=+5>4, ∴以a 、b 、c 为边能构成三角形,∵a 2+b 2=()2+52=32=(4)2=c 2,∴此三角形是直角三角形,∴S △==.【点评】本题考查了勾股定理的逆定理,非负数的性质,求三角形的面积,熟练掌握勾股定理的逆定理是解题的关键.28.如图,直线y=x ﹣1与反比例函数y=的图象交于A 、B 两点,与x 轴交于点C ,已知点A 的坐标为(﹣1,m ).(1)求反比例函数的解析式;(2)若点P (n ,﹣1)是反比例函数图象上一点,过点P 作PE ⊥x 轴于点E ,延长EP 交直线AB 于点F ,求△CEF 的面积.(3)在x 轴上是否存在点Q ,使得△QBC 是等腰三角形?若存在,请直接写出Q 点坐标;若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)将点A 的坐标代入直线AB 的解析式中即可求出m 的值,根据点A 的坐标利用反比例函数图象上点的坐标特征即可求出k 值,从而得出反比例函数解析式;(2)由直线AB 的解析式可求出点C 的坐标,将点P 的坐标代入反比例函数解析式中可求出n 值,从而可得出点E 、F 的坐标,由此可得出线段EF 、CE 的长度,再根据三角形的面积公式即可得出结论;第22页(共23页)(3)假设存在,设点Q 的坐标为(a ,0).联立直线AB 与反比例函数解析式可求出点B 的坐标,由此即可得出线段BC 、BQ 、CQ 的长,根据等腰三角形的性质分BC=BQ 、BC=CQ 以及BQ=CQ 三种情况考虑,由此可得出关于a 的方程,解方程即可求出点Q 的坐标,此题得解.【解答】解:(1)把A (﹣1,m )代入y=x ﹣1,∴m=﹣2,∴A (﹣1,﹣2).∵点A 在反比例函数图象上,∴k=﹣1×(﹣2)=2,∴反比例函数的表达式为:y=.(2)令y=x ﹣1中y=0,则0=x ﹣1,解得:x=1,∴C (1,0).把P (n ,﹣1)代入y=中,得:﹣1=,解得:n=﹣2,∴P (﹣2,﹣1).∵PE ⊥x 轴,∴E (﹣2,0).令y=x ﹣1中x=﹣2,则y=﹣2﹣1=﹣3,∴F (﹣2,﹣3).∴CE=3,EF=3,∴S △CEF =CE •EF=.(3)假设存在,设点Q 的坐标为(a ,0).联立直线AB 和反比例函数解析式得:,解得:或,∴B (2,1).∴BC==,CQ=|a ﹣1|,BQ=.△QBC 是等腰三角形分三种情况:①当BC=CQ 时,有=|a ﹣1|,第23页(共23页)解得:a 1=1+,a 2=1﹣,此时点Q 的坐标为(1+,0)或(1﹣,0);②当CQ=BQ 时,有|a ﹣1|=, 解得:a 3=2,此时点Q 的坐标为(2,0);③当BC=BQ 时,有=,解得:a 4=3,a 5=1,此时点Q 的坐标为(3,0)或(1,0)(舍去). 综上可知:在x 轴上存在点Q ,使得△QBC 是等腰三角形,Q 点坐标为(1+,0)、(1﹣,0)、(2,0)或(3,0).【点评】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、三角形的面积公式、两点间的距离公式以及等腰三角形的性质,解题的关键是:(1)求出点A 的坐标;(2)求出点C 、E 、F 的坐标;(3)分三种情况找出关于a 的方程.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,根据点的坐标利用反比例函数图象上点的坐标特征求出反比例函数解析式是关键.。

2017-2018年第二学期八年级数学期末试卷(参考答案)

2017-2018年第二学期八年级数学期末试卷(参考答案)

∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF

DC AH

5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°

2018-2019玄武区初二数学期末试卷以及答案

2018-2019玄武区初二数学期末试卷以及答案

6
27.已知:正方形 ABCD 和等腰直角三角形 AEF,AE=AF(AE<AD),连接 DE、BF,P 是
DE 的中点,连接 AP.将△AEF 绕点 A 逆时针旋转.
(1)如图①,当△AEF 的顶点 E、F 恰好分别落在边 AB、AD 时,则线段 AP 与线段 BF 的
位置关系为
,数量关系为
.
(2)当△AEF 绕点 A 逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成
24.如图,在矩形 ABCD 中,E 是对角线 BD 上一定(不与 B、D 重合),过点 E 作 EF//AB, 且 EF=AB,连接 AE、BF、CF.
(1)若 DE=DC,求证:四边形 CDEF 是菱形;
(2)若 AB 3 ,BC=3,当四边形 ABFE 周长最小时,四边形 CDEF 的周长为
.
2 - ӧ1-211
4
26 զ BCD
DO ࢥᬟ୵ABCDԅଘᤈࢥᬟ୵ ቘኧ ፗᕚ ᕪᬦܻᅩ ඳፗᕚ ‫ى‬ԭܻᅩӾஞ੒ᑍ
if ݈
i ࢶ᨝Ԟ‫ى‬ԭܻᅩӾஞ੒ᑍ
ytx ઊ
ྲԫ0D
‫ݶ‬ቘ oA 013
‫ك‬෭ԞᮈABCDԅଘᤈࢥᬟ୵
๋ᥢ᝜ጱොဩଫᧆฎဌۖԅ
cl
࿢‫ ڊ‬CDࣖຽӨ a 01 ႐ ٚ஑ᦤ
k x k x
的解集为

15.如图,在反比例函数 y
9 x
(x
!
0)
的图象上有点
P1

P2

P3
,}

Pn

Pn +1
,它们的横
坐标依次为 1,2,3,} , n , n+1 ,分别过点 P1 、 P2 、 P2 ,} , Pn , Pn+1 作 x 轴, y 轴

2018-2019学年江苏省南京市玄武区八年级(下)期末数学试卷含解析

2018-2019学年江苏省南京市玄武区八年级(下)期末数学试卷含解析

2018-2019学年江苏省南京市玄武区八年级(下)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)关于一元二次方程x2+5=2x根的情况描述正确的是()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.不能确定2.(2分)下列各式中,化简后能与合并的是()A.B.C.D.3.(2分)下列式子从左到右的变形一定正确的是()A.B.=C.=D.=﹣4.(2分)做“抛掷一枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法正确的是()A.概率等于频率B.频率等于C.概率是随机的D.频率会在某一个常数附近摆动5.(2分)如图,在▱ABCD中,对角线AC、BD相交于点O,下列条件中,不能判断这个平行四边形是菱形的是()A.AB=AD B.∠BAC=∠DAC C.∠BAC=∠ABD D.AC⊥BD6.(2分)如图,点A是反比例图数y=(x<0)图象上一点,AC⊥x轴于点C,与反比例函数y =(x<0)图象交于点B,AB=2BC,连接OA、OB,若△OAB的面积为2,则m+n=()A.﹣3B.﹣4C.﹣6D.﹣8二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)若式子在实数范围内有意义,则x的取值范围是.8.(2分)若分式的值为零,则x=.9.(2分)在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸岀一个乒乓球,恰好是黄球的概率为,则袋子内共有乒乓球的个数为.10.(2分)已知菱形ABCD的对角线AC=10,BD=24,则菱形ABCD的面积为.11.(2分)如图,在△ABC中,AB=5,AC=6,BC=7,点D、E、F分别是边AB、AC、BC的中点,连接DE、DF、EF,则△DEF的周长是.12.(2分)计算÷(x≥0,y>0)的结果是.13.(2分)若关于x的方程=2的解是负数,则a的取值范围是.14.(2分)如图,反比例函数y1=(x>0)与正比例函数y2=mx和y3=nx象分别交于点A(2,2)和B(b,3),则关于x的不等式组的解集为.15.(2分)如图,在反比例函数y=(x>0)的图象上有点P1,P2,P3,…P n,P n+1,它们的横作x轴,y轴的垂线,坐标依次为1,2,3,…,n,n+1,分别过点P1,P2,P3,…,P n,P n﹣1图中所构成的阴影部分面积从左到右依次为S1,S2,S3,S4,…,则S n=.(用含n的代数式表示)16.(2分)如图,△ABC是边长为6的等边三角形,D是AB中点,E是边BC上一动点,连结DE,将DE绕点D逆时针旋转60°得DF,连接CF.若CF=,则BE=.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)计算:(1)×+÷﹣(2)(﹣1)2﹣(3﹣2)(3+2)18.(8分)解分式方程;(1)﹣1=(2)=119.(8分)解一元次方程:(1)2x2+x﹣3=0;(2)(x+1)2=4(x+1).20.(7分)先化简,再求值:+÷,其中a=1+.21.(8分)学校开展“书香校园,诵读经典”活动,随机抽查了部分学生,对他们每天的课外阅读时长进行统计,并将结果分为四类:设每天阅读时长为t分钟,当0<t≤20时记为A类,当20<t≤40时记为B类,当40<t≤60时记为C类,当t>60时记为D类,收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题;(1)这次共抽取了名学生进行调查统计,扇形统计图中的D类所对应的扇形圆心角为°.(2)将条形统计图补充完整;(3)若该校共有2000名学生,请估计该校每天阅读时长超过40分钟的学生约有多少人?22.(6分)某公司第一季度花费3000万元向海外购进A型芯片若千条.后来,受国际关系影响,第二季度A型芯片的单价涨了10元/条,该公司在第二季度花费同样的钱数购买A型芯片的数量是第一季度的80%,求在第二季度购买时A型芯片的单价.23.(7分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积m3)的反比例函数,且当V=0.8m3时,P=120kPa.(1)求P与V之间的函数表达式;(2)当气球内的气压大于100kPa时,气球将爆炸,为砳保气球不爆炸,气球的体积应不小于多少?24.(7分)如图,在矩形ABCD中,E是对角线BD上一点(不与点B、D重合),过点E作EF ∥AB,且EF=AB,连接AE、BF、CF.(1)若DE=DC,求证:四边形CDEF是菱形;(2)若AB=,BC=3,当四边形ABFE周长最小时,四边形CDEF的周长为.25.(9分)已知关于x的方程(m﹣1)x2﹣mx+1=0.(1)证明:不论m为何值时,方程总有实数根;(2)若m为整数,当m为何值时,方程有两个不相等的整数根.26.(10分)(1)下列关于反比例函数y=的性质,描述正确的有.(填所有描述正确的选项)A.y随x的增大而减小B.图象关于原点中心对称C.图象关于直线y=x成轴对称D.把双曲线y=绕原点逆时针旋转90°可以得到双曲线y=﹣(2)如图,直线AB、CD经过原点且与双曲线y=分别交于点A、B、C、D,点A、C的横坐标分别为m、n(m>n>0),连接AC、CB、BD、DA.①判断四边形ACBD的形状,并说明理由;②当m、n满足怎样的数量关系时,四边形ACBD是矩形?请直接写出结论;③若点A的横坐标m=3,四边形ACBD的面积为S,求S与n之间的函数表达式.27.(10分)已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP.将△AEF绕点A逆时针旋转.(1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为,数量关系为.(2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立.(3)若AB=3,AE=1,则线段AP的取值范围为.2018-2019学年江苏省南京市玄武区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【解答】解:x2+5=2x,x2﹣2x+5=0,△=(﹣2)2﹣4×1×5=0,故方程有两个相等的实数根.故选:A.2.【解答】解:A、=2,与不能合并,故本选项不符合题意;B、=,与能合并,故本选项符合题意;C、=,与不能合并,故本选项不符合题意;D、=2,与不能合并,故本选项不符合题意;故选:B.3.【解答】解:A.,错误;B.,错误;C.,错误;D.,正确.故选:D.4.【解答】解:A、频率只能估计概率,故此选项错误;B、概率等于,故此选项错误;C、频率是随机的,随实验而变化,但概率是唯一确定的一个值,故此选项错误;D、当实验次数很大时,频率稳定在概率附近,故此选项正确.故选:D.5.【解答】解:A、邻边相等的平行四边形是菱形,故A选项不符合题意;B、对角线平分对角的平行四边形是菱形,故B选项不符合题意;C、由∠BAC=∠ABD不一定能够判断这个平行四边形是菱形,故C选项符合题意;D、对角线互相垂直平分的平行四边形是菱形,故D选项不符合题意.故选:C.6.【解答】解:设B(a,),A(a,)∵AB=2BC,∴=,∴m=3n,∵△OAB的面积为2,∴根据反比例函数k的几何意义可知:△AOC的面积为﹣,△BOC的面积为﹣,∴△AOB的面积为﹣+=2,∴n﹣m=4,∴n﹣3n=4,∴n=﹣2,∴m=﹣6,∴m+n=﹣8故选:D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.【解答】解:∵式子在实数范围内有意义,∴1﹣x≥0,解得x≤1.故答案为:x≤1.8.【解答】解:∵分式的值为零,∴x2﹣x=0且x≠0,解得:x=1.故答案为:1.9.【解答】解:设有x个黄球,由题意得:=,解得:x=7,7+3=10,故答案为:10.10.【解答】解:∵菱形ABCD的对角线AC=10,BD=24,∴菱形的面积S=AC•BD=×10×24=120.故答案为120.11.【解答】解:∵点D、E、F分别是边AB、AC、BC的中点,∴DE=BC=3.5,DF=AC=3,EF=AB=2.5,∴△DEF的周长=DE+DF+EF=9,故答案为:9.12.【解答】解:÷(x≥0,y>0)==.故答案为:.13.【解答】解:=2,方程两边同乘以2x﹣1,得3x+a=2(2x﹣1),解得,x=a+2,∵关于x的方程的解是负数,∴a+2<0且2x﹣1≠0,∴a+2<0且2a+3≠0,解得a<﹣2,即a的取值范围是a<﹣2.故答案为:a<﹣2.14.【解答】解:∵反比例函数y1=(x>0)与正比例函数y2=mx和y3=nx象分别交于点A(2,2)和B(b,3),∴k=2×2=3b,∴b=,∴B(,3),由图象可知,关于x的不等式组的解集为:<x<2,故答案为:<x<2.15.【解答】解:当x=1时,P1的纵坐标为9,当x=2时,P2的纵坐标4.5,当x=3时,P3的纵坐标3,当x=4时,P4的纵坐标,当x=5时,P5的纵坐标,…则S1=1×(9﹣4.5)=9﹣4.5;S2=1×(4.5﹣3)=4.5﹣3;S3=1×(3﹣)=3﹣;S4=1×(﹣)=﹣;…S n=﹣=;故答案为.16.【解答】解:连接CD,当点F在直线CD的右侧时,如图1中,取BC的中点M,连接DM,MF,延长MF交CD于N,∵△ABC是等边三角形,∴∠B=60°,BA=BC,∵AD=DB,CM=MB,∴DB=BM,∴△BMD是等边三角形,∴∠BDM=∠EDF=60°,DB=DM,∴∠BDE=∠MDF,∵DE=DF,∴△BDE≌△MDF(SAS),∴FM=BE,∠FMD=∠B=60°,∴∠FMD=∠BDM,∴MF∥AB,∵CM=MB,∴CN=ND,∴FM=BD=,∵AD=BD,CA=CB,∴CD⊥AB,∴∠CDB=90°,∵BC=6,BD=3,∴CD=3,∴CN=,∠CNM=∠CDB=90°,∵CF=,∴NF==∴BE=FM=﹣=1.当点F在直线CD的左侧时,如图2中,同法可得FM=BE=+=2,综上所述,满足条件的BE的值为1或2.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.【解答】解:(1)原式=+﹣=2+﹣=;(2)原式=5﹣2+1﹣(18﹣12)=6﹣2﹣6=﹣2.18.【解答】解:(1)去分母得:﹣1﹣x+4=x﹣3,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:x2+2x﹣8=x2﹣4,解得:x=2,经检验x=2是增根,分式方程无解.19.【解答】解:(1)分解因式得:(2x+3)(x﹣1)=0,可得2x+3=0或x﹣1=0,解得:x1=﹣,x2=1;(2)方程整理得:(x+1)2﹣4(x+1)=0,分解因式得:(x+1)(x+1﹣4)=0,可得x+1=0或x﹣3=0,解得:x1=﹣1,x2=3.20.【解答】解:+÷====,当a=1+时,原式==.21.【解答】解:(1)15÷30%=50,所以这次共抽查了50名学生进行调查统计;扇形统计图中D类所对应的扇形圆心角大小为:×360°=36°,故答案为50;36;(2)D类人数为50﹣15﹣22﹣8=5.条形图补充如下:(3)2000×=520,答:估计该校每天阅读时长超过40分钟的学生约有520人.22.【解答】解:设在第二季度购买时A型芯片的单价为x元,则在第一季度购买时A型芯片的单价为(x﹣10)元,依题意,得:×80%=,解得:x=50,经检验,x=50是所列分式方程的解,且符合题意.答:在第二季度购买时A型芯片的单价为50元.23.【解答】解:(1)设p=,由题意知120=,所以k=96,故p=;(2)当p=100kPa时,v==0.96.所以为了安全起见,气体的体积应不少于0.96m3.24.【解答】解:(1)∵矩形ABCD中,∴AB∥CD,AB=CD,∵EF∥AB,EF=AB,∴EF∥CD,EF=CD,∴四边形CDEF是平行四边形,∵DE=DC,∴四边形CDEF是菱形;(2 )∵四边形ABFE周长=2(BF+EF)=2(AB+BF),∴当BF⊥BD时,四边形ABFE周长最小;∵AB=,BC=3,∴∠CBD=∠ADB=30°,∵∠AFB=∠FBE=90°,∴BF=,∵BD=2,∴DF=,∴四边形CDEF的周长=2(CD+DF)=2(+)=5;故答案为5;25.【解答】(1)证明:当m﹣1=0时,即m=1,方程变形为﹣x+1=0,解得x=1;、当m﹣1≠0时,△=m2﹣4(m﹣1)=m2﹣4m+4=(m﹣2)2,则△≥0,此时方程有两个实数根,所以不论m为何值时,方程总有实数根;(2)解;x=,则x1=1,x2=,当m﹣1=﹣1时,方程方程有两个不相等的整数根,此时m=0.26.【解答】解:(1)∵6>0,∴在同一象限内,y随x的增大而减小,A不符合题意;∵y=为反比例函数,∴函数y=的图象关于原点中心对称,函数y=的图象关于直线y=x成轴对称,B,C符合题意;设点(a,)为反比例函数y=上任意一点,∵将该点绕原点逆时针旋转90°得到的点的坐标为(﹣,a),﹣×a=﹣6,∴把双曲线y=绕原点逆时针旋转90°可以得到双曲线y=﹣,D符合题意.故答案为:BCD.(2)①四边形ACBD为平行四边形,理由如下:∵直线AB,CD经过原点且与双曲线y=分别交于点A,B,C,D,双曲线y=的图象关于原点中心对称,∴点A,B关于原点对称,点C、D关于原点对称,∴OA =OB ,OC =OD ,∴四边形ACBD 为平行四边形.②当∠ACB =90°时,四边形ACBD 是矩形.∵点A ,C 的横坐标分别为m ,n (m >n >0),∴点A 的坐标为(m ,),点C 的坐标为(n ,),∴点B 的坐标为(﹣m ,﹣),点D 的坐标为(﹣n ,﹣),∴AC 2=(n ﹣m )2+(﹣)2=m 2+n 2+2mn ++﹣,BC 2=[n ﹣(﹣m )]2+[﹣(﹣)]2=m 2+n 2+2mn +++,AB 2=(﹣m ﹣m )2+(﹣﹣)2=4m 2+. ∵∠ACB =90°,∴AC 2+BC 2=AB 2,即m 2+n 2+2mn ++﹣+m 2+n 2+2mn +++=4m 2+,∴m 2+=n 2+. 又∵m >n >0,∴,∴mn =6,∴当mn =6时,四边形ACBD 是矩形.③当m =3时,点A 的坐标为(3,2).过点A 作AE ⊥x 轴于点E ,过点C 作CF ⊥y 轴于点F ,过点C 作CM ⊥x 轴于点M ,如图所示.∵点C 的坐标为(n ,),∴OM =n ,ME =3﹣n ,CM =,∴S △OAC =S 矩形OMCF +S 梯形CMEA ﹣S △OCF ﹣S △OAE ,=6+×(+2)×(3﹣n )﹣×6﹣×6,=﹣n .∵四边形ACBD 为平行四边形,∴S =4S △OAC =﹣4n .27.【解答】解:(1)结论:BF=2PA,BF⊥AP.理由:如图1中,设BF交PA于点O.∵四边形ABCD是正方形,∴AB=AD,∠DAB=∠EAF=90°,在△ABF和△ADE中,,∴△ABF≌△ADE(SAS),∴BF=DE,∠ABF=∠ADE,在Rt△AED中,∵EP=PD,∴AP=DEDE,∴AP=BF;,∴BF=2AP,∵PA=PD,∴∠PAD=∠PDA,∴∠ABF=∠PAD,∵∠ABF+∠AFB=90°,∴∠PAD+∠AFB=90°,∴∠AOF=90°,∴PA⊥BF.故答案为:PA⊥BF,BF=2PA.(2)结论成立.理由:如图2中,延长AP到G,使AP=PG,连接EG,延长PA交BF于点O.∵EP=PD,AP=PG,∴四边形EADG是平行四边形,∴DG=AE=AF,∠EAD+∠ADG=180°,AP=AG,∵∠FAB+∠EAD=180°,∴∠FAB=∠ADG,在△FAB与△GDA中,,∴△FAB≌△GDA(SAS),∴AG=FB,∠ABF=∠GAD,∴AP=BF,∴BF=2PA,∵∠BAD=90°,∴∠GAD+∠BAO=90°,∴∠ABF+∠BAO=90°,∴∠AOB=90°,∴PA⊥BF.(3)∵AE=AF=1,BA=3,∴2≤BF≤4,∴2≤2PA≤4,∴1≤PA≤2,故答案为1≤PA≤2.。

2017-2018学年第二学期0623江苏南京秦淮区八年级数学期末统考试卷与答

2017-2018学年第二学期0623江苏南京秦淮区八年级数学期末统考试卷与答

第 1 页,共 9 页
11.分式
2 1 1 , 2 , 的最简公分母是 3x y 12 y 2 x
. .
6 的图像上的两点,则 y1 与 y2 的大小关系 x
12.已知 x 2 1 ,则代数式 x 2 2 x 1 的值为 13.若 A 1,y1 , B 2,y2 是反比例函数 y 是 y1
三、解答题(本大题共 10 小题,共 68 分) 17. (8 分)计算 (1) 12 3
1 ; 3 1 (2) 32 8 18 2
2 2 1 1 a b 18. (5 分)先化简,再求值: ,其中 a 3,b 2 . ab a b
(填“>” 、 “<”或“=” ) y2 .
14.如图,矩形 OABC 的顶点 A、C 分别在 x 轴和 y 轴上,点 O 与坐标原点重合,B 点坐标 k 是 (4,2) , 反比例函数 y 的图像经过对角线 OB、 AC 的交点 M, 则 k 的值是 . x
15.类比二次根式的性质:① 结果:
(2)求(1)的表格中的 x 的值.
第 4 页,共 9 页
24. (7 分)如图,在直角坐标系中,函数 y1 (1)点 A、B 的坐标分别是 、
4 与函数 y2=x 的图像交于点 A、B. x

4 (2)在同一直角坐标系中,画出函数 y3 的图像; x
(3)垂直于 y 轴的直线 l 与函数 y1、y2、y3 的图像分别交于点 P(x1,y1) 、Q(x2,y2) 、 N(x3,y3) ,若 x1<x2<x3,结合函数的图像,直接写出 x1+知 a 2 1 , b 2 1 那么 a 与 b 的关系为 A.互为相反数 B.互为倒数 C.相等 D.a 是 b 的平方根

【全国区级联考】江苏省南京市鼓楼区2017-2018学年八年级第二学期数学期末试题(解析版)

【全国区级联考】江苏省南京市鼓楼区2017-2018学年八年级第二学期数学期末试题(解析版)

江苏省南京市鼓楼区2017-2018学年八年级第二学期数学期末试题一、选择题(本大题共6小题,每小题2分,共12分)1. 若分式在实数范围内有意义,则x的取值范围是()A. x≠-2B. x>-2C. x<-2D. x=-2【答案】A【解析】分析:根据分式有意义的条件:分母不为0,列不等式求解即可.详解:由题意可得x+2≠0解得x=-2.故选:A.点睛:此题主要考查了分式有意义的条件,关键是让分母不为0即可,比较简单.2. 下列二次根式是最简二次根式的是()A. B. C. D.【答案】B【解析】分析:根据最简二次根式的概念,求解即可.满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.详解:由=3,可知不是最简二次根式,故不正确;由=,可知不是最简二次根式,故不正确;由=,可知不是最简二次根式,故不正确,因此只有是最简二次根式.故选:B.点睛:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.3. 下列一元二次方程中,没有实数根的是()A. B. C. D.【答案】D【解析】分析:由一元一次方程的系数,即可根据一元二次方程根的判别式△=b2-4ac求解判断即可.详解:①由a=1,b=0,c=-4,可得△=0+16=16>0,有两个不相等的实数根,故不正确;②由x(x-1)=0,可得x2-x=0,即a=1,b=-1,c=0,所以△=1>0,有两个不相等的实数根,故不正确;③由题意可得a=1,b=1,c=-1,所以△=1+4=5>0,故有两个不相等的实数根,故不正确;④由题意可得a=1,b=1,c=1,所以△=1-4=-3<0,方程没有实数根,故正确.故选:D.点睛:此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键. 当△=b2-4ac>0时,方程有两个不相等的实数根;当△=b2-4ac=0时,方程有两个相等的实数根;当△=b2-4ac<0时,方程没有实数根.4. 图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②⑧③④的某-一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A. ①B. ②C. ③D. ④【答案】C【解析】试题分析:以中间的四个小正方形组成的图形为基础,即可确定补到③的位置即可构成中心对称图形,故答案选C.考点:中心对称图形.5. 已知菱形的周长为4,一条对角线的长度为2,则另一条对角线的长度是()A. 1B. 2C. 3D. 4【答案】D【解析】分析:根据菱形的周长求出边长,再根据菱形的对角线互相垂直平分以及勾股定理求出另一条对角线.详解:因为菱形的周长为4所以边长为因为一条对角线长为2根据勾股定理可得另一条对角线为2=2×2=4.故选:D.点睛:此题主要考查了菱形的性质,关键是熟记并掌握菱形的对角线互相垂直且平分的性质.6. 如图,显示了某次用计算机模拟随机投掷一枚图钉的实验结果,下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0. 616;②随着实验次数的增加,“钉尖向上”的概率总在0.618附近摆动,显示出-一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的概率-定是0.620.其中合理的是()A. ①B. ②C. ①②D. ①③【答案】B【解析】①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.620.错误,故选B.【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.二、填空题7. 使有意义的的取值范围是_______________【答案】【解析】分析:根据二次根式有意义的条件:被开方数为非负数,列不等式求解.详解:根据题意得x+4≥0解得x≥-4.故答案为:x≥-4.点睛:此题主要考查了二次根式有意义的条件,关键是明确二次根式的被开方数为非负数,比较简单,是常考题型.8. 计算的结果是_______________【答案】【解析】分析:首先根据二次根式的化简法则以及二次根式的乘法计算法则得出各式的值,然后进行求和得出答案.详解:原式=.点睛:本题主要考查的是二次根式的计算法则,属于基础题型.理解计算法则是解题的关键.9. 函数与(均是不为0的常数)的图像交于A、B两点,若点A的坐标是(2,3),则点B的坐标是______________ .【答案】(-2,-3)【解析】分析:根据待定系数法求出两个函数的解析式,构成方程组即可求解出交点B的坐标.详解:根据题意,把(2,3)分别代入与,可得k1=6,k2=,即与构成方程组,可得x=,解得x=2(舍去)或x=-2,再代入其中一个函数可得y=-3,所以B点的坐标为(-2,-3).故答案为:(-2,-3).点睛:此题主要考查了正比例函数与反比例函数的交点,根据待定系数法求出函数的解析式,构造方程组是解题关键.10. 已知是一元二次方程的两个根,则=__________.【答案】2【解析】分析:根据一元二次方程根与系数的关系,分别求出x1+x2=-,x1·x2=,即可代入求解.详解:由题意可得a=1,b=1,c=-3∴x+x2=-1,x1·x2=-31∴x1+x2-x1·x2=-1-(-3)=2.故答案为:2.点睛:此题主要考查了一元二次方程根与系数的关系,关键是根据一元二次方程根与系数的关系,x1+x2=-,x1·x2=,求出两根之和与两根之积,再根据分式的通分和完全平方式变形代入即可求解,是中档题.11. 为了解某市4万名学生平均每天读书的时间,请你运用所学的统计知识,将统计的主要步骤进行排序:①从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;②分析数据;③得出结论,提出建议;④利用统计图表将收集的数据整理和表示.合理的排序是_______(只填序号)【答案】①④②③【解析】分析:根据已知的调查统计的一般过程:①收集数据,②整理数据,③分析数据,④得出结论,进而判断得出答案.详解:根据数据的调查的步骤,可知合理的排序为:①④②③.故答案为:①④②③.点睛:此题主要考查了调查收集数据的过程和方法,正确进行数据的调查,掌握调查的步骤是解题关键. 12. 如图,一个圆形转盘皱等分成八个扇形区域,上面分别标有数字1、2、3、4,转盘指针的位置固定,转动转盘后任其自由停止,转动转盘一次,当转盘停止转动时,记指正指向标有“3”所在区域的概率为P (3),指针指向标有“4”所在区域的概率为P (4),则P (3)____ P (4) (填“>”、“=”或*<*).【答案】>【解析】试题分析:∵扇形区域中有3个3,2个4,∴P(3)>P(4).故答案为:>.考点:几何概率.13. 如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,CE=3,则DF=_______.【答案】3....... ....................详解:∵在△ABC中,∠ACB=90°,E为AB的中点,CE=3∴AB=6∵D、F为AC、BC的中点∴DF=AB=3.故答案为:3.点睛:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.14. 反比例函数的图像如图所示,点A为的图像上任意一点,过点A作x轴的平行线交y轴于点B,点D在x轴的正半轴上,AD//BC,若四边形ABCD的面积为2,则k的值为__________.【答案】-2【解析】分析:连接OA,根据反比例函数的系数k的几何意义,可得△OAB的面积,然后根据平行四边形的对边相等,以及平行线间的距离可得2S△OAB=S□ABCD求解即可.详解:如图,连接OA,过A作AE⊥x轴∵AB∥x轴,AD//BC∴四边形ABCD是平行四边形∴S□ABCD=AB·AE=2根据反比例函数的解析式可得S△OAB =×AB·AE=∴2×=2解得|k|=2又因反比例函数的图像在第二象限,∴k=-2.故答案为:-2.点睛:此题主要考查了反比例函数 y=中k的几何意义,这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=|k|.15. 如果关于的一元二次方程的两个根分别是与,那么的值为__________.【答案】4【解析】分析:先把一元二次方程化为一般式,然后根据一元二次方程根与系数的关系x1+x2=-,x1·x2=,构造方程组,然后可求出m的值,然后代入求解即可.详解:方程化为一般式为:ax2-b=0x1+x2=m+1+2m-4=0 ①x1·x2=(m+1)(2m-4)=-②解方程①,得m=1把m=1代入②,得=-2×(-2)=4.故答案为:4.点睛:此题主要考查了一元二次方程根与系数的关系,关键是根据一元二次方程根与系数的关系,x1+x2=-,x1·x2=,求出m的值,是中档题.16. 已知反比例函数(k≠0)的图像过点,,若,则的取值范围为__________.【答案】-1<a<0详解:∵k≠0∴k2≥0∴反比例函数的图像在第一三象限,在每个象限内,y随x增大而减小当A、B在两个象限时,由,可得a<0,a+1>0,此时-1<a<0;当A、B在同一个象限时,由,可得a+1<a<0或0<a+1<a,不存在符合条件的a值.故答案为:-1<a<0.点睛:此题主要考查了反比例函数的图像与性质,关键是根据k的值判断出函数的图像的增减性,由增减性得到a的取值范围.三、解答题(本题共10小题,共68分)17. 计算:(1)(2)(3)【答案】(1)2;(2),(3)【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可. 详解:(1)=2-+=2(2)=×+2×=+6(3)====点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.18. 解下列方程:(1)(2)【答案】(1);(2).【解析】分析:(1)根据配方法解一元二次方程(或根据公式法解方程)即可;(2)把x-1看做一个整体,先移项,再利用因式分解法,化为ab=0的形式解方程即可.详解:(1)x2-4x+4=-1+4(x-2)2=3x-2=±解得(2)移项得-x(x-1)=0(x-1)[4(x-1)-x]=0即x-1=0或3x-4=0解得点睛:此题主要考查了一元二次方程的解法,通过方程的特点,选择配方法、公式法、因式分解法解方程,注意选择配方法时确定一次项的系数是关键.19. 先化简,再求值:,其中.【答案】-1【解析】分析:根据分式的混合运算的法则和步骤,先把括号内的部分通分计算,然后把除法化为乘法,因式分解后约分即可化简,再代入求值即可.详解:原式===.当a=-3时,原式=-1.点睛:此题主要考查了分式的化简求值,注意解答此题的关键是把分式化到最简,然后代入计算.20. 如图,正方形ABCD的对角线AC、BD相交于点O,BE//AC,CE//DB.求证:四边形OBEC是正方形。

2017-2018学年江苏省南京市玄武区八年级(下)期末数学试卷及答案

2017-2018学年江苏省南京市玄武区八年级(下)期末数学试卷及答案

2017-2018学年江苏省南京市玄武区八年级(下)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 2.(2分)如果把分式2x x +y中的x 和y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13倍 C .缩小为原来的16倍 D .不变 3.(2分)某课外兴趣小组为了了解所在地区老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样比较合理的是( )A .在公园调查了1000名老年人的健康状况B .调查了10名老年人的健康状况C .在医院调查了1000名老年人的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人健康状况4.(2分)下列事件中,属于确定事件的个数是( )(1)打开电视,正在播放广告.(2)投掷一枚普通的骰子,掷得的点数小于10.(3)射击运动员射击一次,命中10环.(4)在一个只装有红球的袋子中摸出白球.A .1B .2C .3D .45.(2分)下列计算错误的是( )A . 12÷ 43=3B .(1﹣ 2)2=3﹣2 2C . (3−π)2=3﹣π D .(﹣5 2+3 5)(﹣5 2﹣3 5)=56.(2分)如图,AD 是△ABC 是角平分线,E 、F 分别是边AB 、AC 的中点,连接DE 、DF ,要使四边形AEDF 是菱形还需要添加一个条件,这个条件不可能是( )A .AD ⊥BCB .AB=AC C .AD=BCD .BD=DC二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)使式子x−1x +2有意义的x 的取值范围是 . 8.(2分)分式2ab ,1a 2b ,3abc的最简公分母是 . 9.(2分)化简 25的结果是 . 10.(2分)如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为 .11.(2分)已知点A (3,y 1)、B (m ,y 2)在反比例函数y =6x 的图象上,且y 1>y 2.写出满足条件的m 的一个值,m 可以是 .12.(2分)若m 是 2的小数部分,则m 2+2m +1的值是 .13.(2分)一次函数y=kx +b 与反比例函数y =m n 中,若x 与y 的部分对应值如下表:则不等式x>kx +b 的解集是 . 14.(2分)课本上,在画y =6x 图象之前,通过讨论函数表达式中x ,y 的符号特征以及取值范围,猜想出y=6x的图象在第一、三象限.据此经验,猜想函数y=12的图象在第象限.15.(2分)如图,矩形ABCD中,AB=4,BC=6,E是BC上一点(不与B、C重合),点P在边CD上运动,M、N分别是AE、PE的中点,线段MN长度的最大值是.16.(2分)如图,将△ABC绕点B逆时针旋转60°得△DBE,连接CD,若AB=AC=5,BC=6,则CD=.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)计算:(1)(2−313)×6.(2)239x−(6x4+2x)(x>0).18.(8分)解方程:(1)3xx−3=1+13−x.(2)x2﹣6x+2=0(用配方法).19.(8分)先化简,再求值:(1+12)÷x2x+1,其中x是一元二次方程x2﹣2x﹣2=0的正数解.20.(8分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P (kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求该反比例函数的表达式.(2)当气体体积为1m3时,气球内气体的气压是多少?(3)当气球内的气压大于200kPa时,气球将爆炸,为确保气球不爆炸,气球内气体的体积应不小于多少?21.(6分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?22.(8分)已知:关于x的方程x2﹣2(k﹣2)x+k2﹣2k﹣2=0.(1)若这个方程有实数根,求k的取值范围.(2)若此方程有一个根是1,求k的值.23.(8分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q ,连接AQ 、QC 、CP 、PA ,并直接写出四边形AQCP 的周长;(2)在图2中画出一个以线段AC 为对角线、面积为6的矩形ABCD ,且点B 和点D 均在小正方形的顶点上.24.(8分)如图,四边形ABCD 为矩形,O 为AC 中点,过点O 作AC 的垂线分别交AD 、BC 于点E 、F ,连接AF 、CE .(1)求证:四边形AFCE 是菱形.(2)若AC=8,EF=6,求BF 的长.25.(7分)某学习要添置一批圆珠笔和签字笔,计划用200元购买圆珠笔,用280元购买签字笔.已知一支签字笔比一支圆珠笔贵1元.该学校购买的圆珠笔和签字笔的数量能相同吗?(1)根据题意,甲和乙两同学先假设该学校购买的圆珠笔和签字笔的数量能相同,并分别列出的方程如下:200x =280x +1;280y −200y=1,根据两位同学所列的方程,请你分别指出未知数x ,y 表示的意义:x 表示 ;y 表示 .(2)任选其中一个方程说明该学校购买的圆珠笔和签字笔的数量能否相同.26.(10分)如图,矩形AOCB 的顶点B 在反比例函数y =k x (k >0,x >0)的图象上,且AB=3,BC=8.若动点E 从A 开始沿AB 向B 以每秒1个单位长度的速度运动,同时动点F 从B 开始沿BC 向C 以每秒2个单位长度的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动,设运动时间为t 秒.(1)求反比例函数的表达式.(2)当t=1时,在y 轴上是否存在点D ,使△DEF 的周长最小?若存在,请求出△DEF 的周长最小值;若不存在,请说明理由.(3)在双曲线上是否存在一点M,使以点B、E、F、M为顶点的四边形是平行四边形?若存在,请直接写出满足条件t的值;若不存在,请说明理由.27.(9分)(1)问题背景如图甲,∠ADC=∠B=90°,DE⊥AB,垂足为E,且AD=CD,DE=5,求四边形ABCD 的面积.小明发现四边形ABCD的一组领边AD=CD,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△ADE绕点D逆时针旋转90°;第二步:利用∠A与∠DCB互补,证明F、C、B三点共线,从而得到正方形DEBF;进而求得四边形ABCD的面积.请直接写出四边形ABCD的面积为.(2)类比迁移如图乙,P为等边△ABC外一点,BP=1,CP=3,且∠BPC=120°,求四边形ABPC 的面积.(3)拓展延伸如图丙,在五边形ABCDE中,BC=4,CD+AB=4,AE=DE=6,AE⊥AB,DE⊥CD,求五边形ABCDE的面积.2017-2018学年江苏省南京市玄武区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、是轴对称图形,又是中心对称图形,故此选项正确;C 、不是轴对称图形,是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,故此选项错误;故选:B .【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(2分)如果把分式2x x +y中的x 和y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13倍 C .缩小为原来的16倍 D .不变 【分析】根据分式的性质,可得答案.【解答】解:把x 和y 都扩大3倍后,原式为3⋅2x 3x +3y =3⋅2x 3(x +y ),约分后仍为原式,分式值不变,故选D .【点评】本题考查了分式的基本性质,利用分式的基本性质是解题关键.3.(2分)某课外兴趣小组为了了解所在地区老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.调查了10名老年人的健康状况C.在医院调查了1000名老年人的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人健康状况【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、调查不具代表性,故A错误;B、调查不具广泛性,故B错误;C、调查不具代表性,故C错误;D、调查具有广泛性、代表性,故D正确;故选:D.【点评】本题考查了抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.4.(2分)下列事件中,属于确定事件的个数是()(1)打开电视,正在播放广告.(2)投掷一枚普通的骰子,掷得的点数小于10.(3)射击运动员射击一次,命中10环.(4)在一个只装有红球的袋子中摸出白球.A.1 B.2 C.3 D.4【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:(1)打开电视,正在播放广告为随机事件.(2)投掷一枚普通的骰子,掷得的点数小于10是必然事件.(3)射击运动员射击一次,命中10环为随机事件.(4)在一个只装有红球的袋子中摸出白球为不可能事件,故确定事件为(2)(4),故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(2分)下列计算错误的是()A.12÷43=3 B.(1﹣2)2=3﹣22C.(3−π)2=3﹣πD.(﹣52+35)(﹣52﹣35)=5【分析】根据各个选项中的式子可以计算出正确的结果,从而可以判断各个选项是否正确.【解答】解:∵12÷43=23×32=3,故选项A正确,∵(1−2)2=1−22+2=3−22,故选项B正确,∵(3−π)2=π−3,故选项C错误,∵(﹣52+35)(﹣52﹣35)=(−52)2−(35)2=50−45=5,故选项D 正确,故选C.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.6.(2分)如图,AD是△ABC是角平分线,E、F分别是边AB、AC的中点,连接DE、DF,要使四边形AEDF是菱形还需要添加一个条件,这个条件不可能是()A.AD⊥BC B.AB=AC C.AD=BC D.BD=DC【分析】由条件可先判定四边形AEDF为平行四边形,再利用等腰三角形的判定即可求得答案.【解答】解:∵E 、F 分别为AB 、AC 的中点, ∴DE 、DF 分别为△ABC 的中位线, ∴DE ∥AF ,DF ∥AB ,∴四边形AEDF 为平行四边形,若AB=AC 即可求得四边形AEDF 为菱形,故B 选项可以,当AD ⊥BC 时,则可求得∠ABD=∠ACD ,即AB=AC ,可得AE=AF ,故A 选项可以, 当BD=DC 时,可证得△ABD ≌△ACD ,可得AB=AC ,故D 选项可以, 当AD=BC 时,无法确定AB=AC ,故C 选项不可以,∴要使四边形AEDF 是菱形还需要添加一个条件,这个条件不可能是C , 故选C .【点评】本题主要考查菱形的判定,掌握菱形的判定方法是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)使式子x−1x +2有意义的x 的取值范围是 x ≠﹣2 .【分析】根据分式有意义的条件即可求出答案. 【解答】解:由题意可知:x +2≠0, ∴x ≠﹣2故答案为:x ≠﹣2【点评】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件,本题属于基础题型.8.(2分)分式2ab ,1a b ,3abc的最简公分母是 a 2bc .【分析】根据最简公分母的定义可以找出题目中各个式子的最简公分母,本题得以解决.【解答】解:分式2ab,1a b ,3abc的最简公分母是a 2bc ,故答案为:a 2bc .【点评】本题考查最简公分母,解答本题的关键是明确最简公分母的定义,会找几个式子的最简公分母.9.(2分)化简25的结果是105.【分析】直接利用二次根式的性质化简求出答案.【解答】解:原式=25=105.故答案为:10 5.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.10.(2分)如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为0.600.【分析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.【解答】解:依题意得击中靶心频率逐渐稳定在0.600附近,估计这名射手射击一次,击中靶心的概率约为0.600.故答案为:0.600.【点评】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.11.(2分)已知点A(3,y1)、B(m,y2)在反比例函数y=6x的图象上,且y1>y2.写出满足条件的m的一个值,m可以是6.【分析】反比例函数y=6x的图象位于一三象限,由y1=63=2、y2=6m及y1>y2,可得2>6m,解得m<0或m>3.【解答】解:∵点A(3,y1),B(m,y2)在y=6x的图象上,∴y1=63=2,y2=6m.∵y1>y2.∴2>6m ,解得:m<0或m>3,∴在m<0或m>3内可取m=6,故答案为:6.【点评】本题考查了反比例函数图象上点的坐标特征,要学会比较图象上任意两点函数的大小.12.(2分)若m是2的小数部分,则m2+2m+1的值是2.【分析】先估算出2的大小,从而得到m的值,最后代入计算即可.【解答】解:由题m是2的小数部分,2≈1.414,所以m=2﹣1.∵m2+2m+1=(m+1)2,代入m=2﹣1.原式=(2﹣1+1)2=2.故答案为:2.【点评】本题主要考查的是估算无理数的大小,求得m的值是解题的关键.13.(2分)一次函数y=kx+b与反比例函数y=mn中,若x与y的部分对应值如下表:则不等式x>kx+b的解集是x<﹣4或0<x<1.【分析】由表得出直线和双曲线的交点,画出直线和双曲线的大致图象,由mx>kx+b知反比例函数图象在一次函数图象上方,结合图象可得答案.【解答】解:由表可知y=kx+b与y=mx交于点(﹣4,﹣1)和点(1,4),用描点法可得出二者的大致图象.若mx>kx +b ,则反比例函数图象在一次函数图象上方, 由函数图象可知解集为x <﹣4或0<x <1, 故答案为:x <﹣4或0<x <1.【点评】本题考查了一次函数和反比例函数的交点问题,给出相应的函数值,求自变量的取值范围应该从交点入手思考.14.(2分)课本上,在画y =6x 图象之前,通过讨论函数表达式中x ,y 的符号特征以及取值范围,猜想出y =6x 的图象在第一、三象限.据此经验,猜想函数y =1x2的图象在第 一、二 象限.【分析】分两种情况:x >0时;x <0时;进行讨论,由各象限点的坐标特征可求函数y =1x 2的图象所在象限. 【解答】解:x >0时,y =1x2>0.此时函数在第一象限.x <0时,y =12>0.此时函数在第二象限.故函数y =12的图象在第一、二象限.故答案为:一、二.【点评】考查了反比例函数的性质,反比例函数的图象,关键是熟悉各象限点的坐标特征,注意分类思想的运用.15.(2分)如图,矩形ABCD 中,AB=4,BC=6,E 是BC 上一点(不与B 、C 重合),点P 在边CD 上运动,M 、N 分别是AE 、PE 的中点,线段MN 长度的最大值是 13 .【分析】由条件可先求得MN=12AP ,则可确定出当P 点运动到点C 时,PA 有最大值,即可求得MN 的最大值. 【解答】解:∵M 为AE 中点,N 为EP 中点, ∴MN 为△AEP 的中位线,∴MN=12AP .若要MN 最大,则使AP 最大.∵P 在CD 上运动,当P 运动至点C 时PA 最大, 此时PA=CA 是矩形ABCD 的对角线, ∴AC= 42+62=2 13,∴MN 的最大值=12AC= 13,故答案为: 13.【点评】本题主要考查矩形的性质和三角形中位线定理,由条件确定出当MN 有最大值时P 点的位置是解题的关键.16.(2分)如图,将△ABC 绕点B 逆时针旋转60°得△DBE ,连接CD ,若AB=AC=5,BC=6,则CD= 4+3 3 .【分析】连接CE ,设BE 、CD 交于点O .先判定△DEC ≌△DBC (SSS ),得到∠1=∠2.再判定△DEO ≌△DNO (SAS ),即可得出∠DOE=∠DOB=90°,进而得到等腰△BDE 中,O 为BE 中点,即OE =12BE =3,最后根据勾股定理求得DO ,CO 的长即可.【解答】解:如图,连接CE,设BE、CD交于点O.由旋转得BE=BE=6,∵∠CBE=60°,∴△CBE为等边三角形,∴CE=CB,∵△BDE中,DE=DB,∴△DEC和△DBC中,DE=DBEC=BCDC=DC.∴△DEC≌△DBC(SSS),∴∠1=∠2.又∵△DEO和△DBO中,DE=DB∠1=∠2DO=DO,∴△DEO≌△DNO(SAS).∴∠DOE=∠DOB=90°,∴等腰△BDE中,O为BE中点,∴OE=12BE=3,∴Rt△DOE中,DO=2−32=4,Rt△COE中,CO=62−32=33.∴DC=DO+CO=4+33.故答案为:4+33.【点评】本题考查了旋转的性质,等边三角形的判定和性质,全等三角形的判定和性质以及勾股定理的运用,解本题的关键是判断出DC是线段BE的垂直平分线.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)计算:(1)(212−313)×6.(2)239x−(6x4+2x)(x>0).【分析】(1)先利用二次根式的乘法法则运算,然后把二次根式化为最简二次根式后合并即可;(2)先把二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=212×6﹣313×6=122﹣32=92;(2)原式=2x﹣3x﹣2x=﹣3x.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)解方程:(1)3xx−3=1+13−x.(2)x2﹣6x+2=0(用配方法).【分析】(1)先把分式方程化为整式方程3x=(x﹣3)﹣1,然后解整式方程得x=﹣2,然后进行检验确定原方程的解;(2)利用配方法得到(x﹣3)2=7,然后利用直接开平方法求解.【解答】解:(1)两边同乘以x﹣3得,3x=(x﹣3)﹣1,解得x=﹣2,检验:x=﹣2时,x﹣3≠0.所以x=﹣2是原方程的解.(2)x2﹣6x+9=7,(x﹣3)2=7,x﹣3=±7,所以x1=3+7,x2=3﹣7.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解分式方程.19.(8分)先化简,再求值:(1+1x2−1)÷x2x+1,其中x是一元二次方程x2﹣2x﹣2=0的正数解.【分析】先求出一元二次方程x2﹣2x﹣2=0的解,再根据分式混合运算的法则把原式进行化简,把x的值代入进行计算即可.【解答】解:原式=x2x−1⋅x+1x=1x−1,化简方程得,(x﹣1)2=3,解方程得,x1=1+3,x2=1−3,取正数解,则将x=1+3代入原式,原式=3 3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(8分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P (kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求该反比例函数的表达式.(2)当气体体积为1m3时,气球内气体的气压是多少?(3)当气球内的气压大于200kPa时,气球将爆炸,为确保气球不爆炸,气球内气体的体积应不小于多少?【分析】(1)设出反比例函数解析式,把A 坐标代入可得函数解析式; (2)把v=1代入(1)得到的函数解析式,可得p ; (3)把P=200代入得到V 即可. 【解答】解:(1)设ρ=kv,由题意知120=k0.8,所以k=96, 故ρ=96v(v >0);(2)当v=1m 3时,ρ=961=96,∴气球内气体的气压是96kPa ;(3)当p=200kPa 时,v=96200=1225. 所以为了安全起见,气体的体积应不少于1225m 3.【点评】考查反比例函数的应用;应熟练掌握符合反比例函数解析式的数值的意义.21.(6分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了200名同学;(2)条形统计图中,m=40,n=60;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【分析】(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;(3)利用360°乘以对应的百分比即可求解;(4)根据喜欢其他类读物人数所占的百分比,即可估计6000册中其他读物的数量;【解答】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:40200×360°=72°,故答案为:72;(4)由题意,得5000×30200=750(册).答:学校购买其他类读物750册比较合理.【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.22.(8分)已知:关于x的方程x2﹣2(k﹣2)x+k2﹣2k﹣2=0.(1)若这个方程有实数根,求k的取值范围.(2)若此方程有一个根是1,求k的值.【分析】(1)根据方程有实数根结合根的判别式,即可得出△=﹣8k+24≥0,解之即可得出k的取值范围;(2)将x=1代入原方程,解之即可求出k值.【解答】解:(1)∵关于x的方程x2﹣2(k﹣2)x+k2﹣2k﹣2=0有实数根,∴△=[﹣2(k﹣2)]2﹣4(k2﹣2k﹣2)=﹣8k+24≥0,解得:k≤3.(2)将x=1代入原方程得1﹣2(k﹣2)+k2﹣2k﹣2=k2﹣4k+3=(k﹣1)(k﹣3)=0,解得:k1=1,k2=3.【点评】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)根据方程有实数根,找出△=﹣8k+24≥0;(2)将x=1代入原方程求出k值.23.(8分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合矩形的性质以及勾股定理得出答案.(1)如图1所示:四边形AQCP即为所求,它的周长为:4×10=410;【解答】解:(2)如图2所示:四边形ABCD即为所求.【点评】此题主要考查了轴对称变换以及矩形的性质、勾股定理等知识,正确应用勾股定理是解题关键.24.(8分)如图,四边形ABCD为矩形,O为AC中点,过点O作AC的垂线分别交AD、BC于点E、F,连接AF、CE.(1)求证:四边形AFCE是菱形.(2)若AC=8,EF=6,求BF的长.【分析】(1)由条件可先证四边形AFCE为平行四边形,再结合线段垂直平分线的性质可证得结论;(2)由菱形的性质可求得AE=CF=5,设BF=x,在Rt△ABF和Rt△ABC中,分别利用勾股定理可得到关于x的方程,可求得BF的长.【解答】(1)证明:∵O 为AC 中点,EF ⊥AC ,∴EF 为AC 的垂直平分线,∴EA=EC ,FA=FC ,∴∠EAC=∠ECA ,∠FAC=∠FCA .∵AE ∥CF ,∴∠EAC=∠FCA ,∴∠FAC=∠ECA ,∴AF ∥CE ,∴四边形AFCE 平行四边形.又∵EA=EC ,∴平行四边形AFCE 是菱形.(2)∵四边形AFCE 是菱形,AC=8,EF=6,∴OE=3,OA=4,∴AE=CF=5,设BF=x ,在Rt △ABF 中,AB 2=AF 2﹣BF 2,在Rt △ABC 中,AB 2=AC 2﹣BC 2.∴52﹣x 2=82﹣(x +5)2,解得x =75,∴BF =75.【点评】本题主要考查菱形的判定和性质,掌握菱形的判定方法和菱形的性质是解题的关键,在求BF 的长时,注意方程思想的应用.25.(7分)某学习要添置一批圆珠笔和签字笔,计划用200元购买圆珠笔,用280元购买签字笔.已知一支签字笔比一支圆珠笔贵1元.该学校购买的圆珠笔和签字笔的数量能相同吗?(1)根据题意,甲和乙两同学先假设该学校购买的圆珠笔和签字笔的数量能相同,并分别列出的方程如下:200x =280x +1;280y −200y=1,根据两位同学所列的方程,请你分别指出未知数x ,y 表示的意义:x 表示 圆珠笔的单价 ;y 表示所购圆珠笔(签字笔)的数量.(2)任选其中一个方程说明该学校购买的圆珠笔和签字笔的数量能否相同.【分析】(1)由一支签字笔比一支圆珠笔贵1元且该学校购买的圆珠笔和签字笔的数量能相同,即可得出x、y表示的意义;(2)选第一个分式方程,解之并检验后即可得出结论.【解答】解:(1)∵一支签字笔比一支圆珠笔贵1元,该学校购买的圆珠笔和签字笔的数量能相同,∴x表示圆珠笔的单价,y表示所购圆珠笔(签字笔)的数量.故答案为:x表示圆珠笔的单价;y表示所购圆珠笔的数量.(2)选第一个分式方程200x=280x+1,去分母得:200(x+1)=280x,解得:x=5 2,经检验,x=52为方程的解,符合题意.答:该校购买的圆珠笔和签字笔的数量能相同.【点评】本题考查了分式方程的应用,解题的关键是:(1)根据相等的量找出x、y表示的意义;(2)熟练掌握解分式方程的方法.26.(10分)如图,矩形AOCB的顶点B在反比例函数y=kx(k>0,x>0)的图象上,且AB=3,BC=8.若动点E从A开始沿AB向B以每秒1个单位长度的速度运动,同时动点F从B开始沿BC向C以每秒2个单位长度的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动,设运动时间为t秒.(1)求反比例函数的表达式.(2)当t=1时,在y轴上是否存在点D,使△DEF的周长最小?若存在,请求出△DEF的周长最小值;若不存在,请说明理由.(3)在双曲线上是否存在一点M,使以点B、E、F、M为顶点的四边形是平行四边形?若存在,请直接写出满足条件t的值;若不存在,请说明理由.【分析】(1)根据AB与BC的长,且B为第一象限角,确定出B的坐标,代入反比例函数解析式求出k的值,即可确定出反比例解析式;(2)运动1秒时,在y轴上存在点D,使△DEF的周长最小,理由为:作出E 关于y轴的对称点E′,连接E′F,与y轴交于点D,连接DE,EF,此时△DEF周长最小,求出周长最小值即可;(3)存在,若四变形BEMF为平行四边形,则有三种可能,已知E(t,8),F (3,8﹣2t),0<t≤3.①BE∥FM,此时M在F右侧,M(248−2t,8−2t),结合BE=FM,列出关于t的方程,解方程即可;②BF∥EM,此时M在E正上方,Mt(t,24t),结合ME=BF,列出关于t的方程,解方程即可;③EF∥BM,易知点M一定不在反比例函数上.【解答】解:(1)由题可知点B的坐标为(3,8),且点B在y=kx上.∴k=3×8=24,∴反比例函数的表达式为:y=24 x.(2)t=1时,E(1,8),F(3,6),则EF=22,取E关于y轴的对称E′(﹣1,8),连接E′F,E′F=25,C△DEF=DE+DF+EF=22+DE′+DF≥2G+E′F,∴C△DEFmin=22+25,此时点D为E′F与y轴交点,。

2023-2024学年江苏省南京市玄武区八年级(下)期末数学试卷及答案解析

2023-2024学年江苏省南京市玄武区八年级(下)期末数学试卷及答案解析

2023-2024学年江苏省南京市玄武区八年级(下)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)《周易》是中国传统思想文化中自然哲学与人文实践的理论根源,是古代汉民族思想、智慧的结晶,被誉为“大道之源”.下列“卦象”是中心对称图形的是()A.B.C.D.2.(2分)下列调查中,适合普查的是()A.了解全国中学生的睡眠时间B.了解一批灯泡的使用寿命C.调查长江中下游的水质情况D.对乘坐飞机的乘客进行安检3.(2分)下列运算中,正确的是()A.B.C.D.4.(2分)如图,在△ABC中,AB=4,BC=6,DE是△ABC的中位线,∠ABC的平分线交DE于点F,则线段EF的长为()A.2B.C.1D.5.(2分)如图,点A,B分别在反比例函数和的图象上,AB∥x轴,与y 轴交于点C,点D是x轴上一点.若BC=2AC,△ABD的面积为3,则k1k2的值为()A.﹣8B.8C.﹣6D.66.(2分)在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC.添加下列条件:①OB=OD;②AD=BC;③AD∥BC;④∠BAD=∠BCD.其中,能判定四边形ABCD是平行四边形的个数为()A.4个B.3个C.2个D.1个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)若式子在实数范围内有意义,则x的取值范围为.8.(2分)若分式的值为0,则x的值是.9.(2分)柑橘在运输、存储中会有损坏,现从某批柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,并把获得的数据记录如下:柑橘的总质量n/kg100200250300350400450500损坏的柑橘质量m/kg10.5019.4224.2530.9335.3239.2444.5751.540.1050.0970.0970.1030.1010.0980.0990.103估计这批柑橘中损坏的柑橘的概率为.(精确到0.1)10.(2分)比较大小:+1.(填“>”“<”或“=”)11.(2分)菱形的面积是24,一条对角线的长为6,则菱形的另一条对角线的长为.12.(2分)点(x1,y1),(x2,y2)在反比例函数的图象上,若y2<y1<0,则x1,x2的大小关系:x1x2.(填“>”、“<”或“=”)13.(2分)如图,在△ABC中,AB=AC,∠A=80°,将△ABC绕着点B顺时针旋转,使点A落在边BC 上的A′处,点C落在点C′处,联结CC′,则∠BCC′=.14.(2分)已知关于x的分式方程有增根,则m的值为.15.(2分)在平面直角坐标系xOy中,A,B是反比例函数图象上不同的两点,点A的横坐标为m,点B的横坐标为n,且O,A,B三点不在同一条直线上.若OA=OB,则mn=.16.(2分)如图,在△ABC中,∠ABC=90°,BA=BC=2,E,F分别是边AB,BC上的动点,且AE =BF,连接EF,P是EF的中点,连接BP,则线段BP的最小值为.三、解答题(本大题共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(10分)计算:(1);(2).18.(10分)解分式方程:(1);(2).19.(8分)解一元二次方程:(1)x2﹣6x+3=0;(2)4x2﹣4x+1=x2+6x+9.20.(8分)先化简,再求值:,其中.21.(10分)学校计划在八年级开设以下四门校本课程:A无人机、B创客、C人工智能和D航模.为了解学生对这四门课程的选择情况,随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的两幅不完整的统计图.根据以上信息,解决下列问题:(1)本次抽样调查的学生人数为名,并补全条形统计图;(2)在扇形统计图中,“人工智能”所对应的扇形圆心角度数是°;(3)若该校八年级一共有560名学生,估计选择“创客”课程的学生有多少名?22.(7分)某项工程,乙队单独完成的天数是甲队单独完成的天数的2倍.现由甲、乙两队合作10天后,余下的工程由乙队单独来做,还需6天完工.求甲、乙两队单独完成此项工程各需多少天?23.(8分)如图,在▱ABCD中,E,F分别是边AB,CD上的点,且BE=DF,连接AF,BF,CE,DE.AF,DE交于点G,BF,CE交于点H.(1)求证:四边形GEHF是平行四边形;(2)若四边形ABCD是矩形,AB=4,BC=3,E是AB的中点,则四边形GEHF的周长是.24.(7分)已知关于x的一元二次方程x2﹣(k+2)x+2k﹣1=0(k为常数).(1)求证:不论k为何值,该方程总有两个不相等的实数根;(2)若方程的一个根为3,求k的值和方程的另一个根.25.(9分)如图,一次函数y1=ax+b的图象与反比例函数的图象交于点A(4,m),B(﹣6,﹣2).(1)求k的值和一次函数的表达式;(2)关于x的不等式的解集为;(3)若点P为直线AB上的动点,过点P作PQ∥y轴,与反比例函数的图象交于点Q,当△OPQ的面积为6时,请直接写出点Q的坐标.26.(11分)如图,在▱ABCD中,E,F是对角线BD上的点,且BE=DF.连接AF,CE,G,H分别是AF,CE的中点,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是正方形,∠ABD=30°,则=.27.【探索发现】(1)在▱ABCD中,AC,BD是对角线.求证:AC2+BD2=2(AB2+BC2).如图①,过点A,D分别作AE⊥BC,DF⊥BC,垂足为E,F.设AB=x,BC=y,BE=z.证明途径可以用下面的框图表示,请填写其中的空格.(用含x,y,z的代数式表示)【性质运用】(2)如图②,在△ABC中,AD是BC边上的中线.①若BC=a,AC=b,AB=c,求AD的长;(用含a,b,c的代数式表示)②若M是BD的中点,连接AM.当,时,则BC=.【拓展探究】(3)如图③,已知点A,点B和直线l.在直线l上求作一点P,使PA2+PB2的值最小.(要求:尺规作图,保留作图痕迹,写出必要说明)2023-2024学年江苏省南京市玄武区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:选项A、B、C的图形均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形;选项D的图形能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形.故选:D.【点评】此题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【分析】根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,抽样调查得到的调查结果比较近似进行解答.【解答】解:A.了解全国中学生的睡眠时间,适合抽样调查,故本选项不符合题意;B.了解一批灯泡的使用寿命,适合抽样调查,故本选项不符合题意;C.调查长江中下游的水质情况,适合抽样调查,故本选项不符合题意;D.对乘坐飞机的乘客进行安检,适合全面调查,故本选项符合题意.故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.【分析】利用分式的基本性质逐项判断即可.【解答】解:=﹣,则A不符合题意;=(n≠0),则B不符合题意;==,则C符合题意;无法化简,则D不符合题意;故选:C.【点评】本题考查分式的基本性质,此为基础且重要知识点,必须熟练掌握.4.【分析】根据三角形中位线定理得到DE∥BC,DE=3,根据平行线的性质、角平分线的定义得到∠DBF =∠DFB,得到DF=DB=2,计算即可.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,DE=BC=×6=3,DB=AB=2,∴∠DFB=∠FBC,∵BF是∠ABC的平分线,∴∠DBF=∠FBC,∴∠DBF=∠DFB,∴DF=DB=2,∴EF=DE﹣DF=3﹣2=1,故选:C.【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.5.【分析】根据反比例函数k值的几何意义解答即可得到正确的选项.【解答】解:连接OA、OB,∵AB∥x轴,=S△AOB=3,∴S△ABD∵点A,B分别在反比例函数和的图象上,=丨k1丨,S△OBC=k2,∴S△AOC∵BC=2AC,===1,S△COB=S△ABD=×3=2,∴S△AOC∴k1=﹣2,k2=4,∴k1k2=﹣8.故选:A.【点评】本题考查了反比例函数k值的几何意义及反比例函数图象上点的坐标特征,熟练掌握k值几何意义是关键.6.【分析】根据平行四边形的判定定理判断即可.【解答】解:①OA=OC,OB=OD,对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形;②OA=OC,AD=BC,不能判定四边形ABCD为平行四边形;两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形;③∵AD∥BC,∴∠ADO=∠CBO,在△ADO和△CBO中,,∴△ADO≌△CBO(AAS),∴OB=OD,∴四边形ABCD为平行四边形;④OA=OC,∠BAD=∠BCD,不能判定四边形ABCD为平行四边形;∴能判定四边形ABCD是平行四边形的①③.故选:C.【点评】本题考查了平行四边形的判定,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.【分析】根据被开方数不小于零的条件进行解题即可.【解答】解:由题可知,1+x≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】本题考查二次根式有意义的条件,掌握被开方数不小于零的条件是解题的关键.8.【分析】直接利用分式的值为零,则分子为零,再利用分式有意义的条件,其分母不为零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣4=0且x+2≠0,解得:x=2.故答案为:2.【点评】此题主要考查了分式的值为零的条件以及分式有意义的条件,注意分式有意义的条件是解题关键.9.【分析】利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.1左右,由此可估计柑橘损坏率大约是0.1.【解答】解:根据表中的损坏的频率,当实验次数的增多时,柑橘损坏的频率越来越稳定在0.1左右,所以可估计柑橘损坏率大约是0.1,故答案为:0.1.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率;用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.10.【分析】由题意,两个正数都带根号,可比较其平方的大小,即可解答.【解答】解:∵,,,∴,∴.故答案为:<【点评】本题考查了实数大小的比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.11.【分析】根据菱形的面积计算公式S=ab(a、b为对角线的长度),已知一条对角线的长度和菱形的面积即可计算另一条对角线的长度.【解答】解:菱形的面积计算公式S=ab(a、b为对角线的长度),已知S=24,a=6,则b=8,故答案为8.【点评】本题考查了菱形的面积计算公式,考查了菱形对角线互相垂直的性质,本题中正确利用面积计算公式求另一条对角线长是解题的关键.12.【分析】根据反比例函数图象性质可得k=﹣1<0,图象过第二、四象限,进而可以得出当y2<y1<0时x1与x2的大小关系.【解答】解:∵k=﹣a2﹣1<0,∴反比例函数的图象过第二、四象限,当y2<y1<0时,则x1>x2,故答案为:>.【点评】本题考查了反比例函数图象上点的坐标特征,解决本题的关键是掌握反比例函数图象和性质.13.【分析】根据等腰三角形的性质和旋转的性质,可以求得∠BCC′的度数.【解答】解:∵在△ABC中,AB=AC,∠A=80°,∴∠ABC=∠ACB=50°,∵将△ABC绕着点B顺时针旋转,使点A落在边BC上的A′处,点C落在点C′处,∴∠CBC′=50°,BC=BC′,∴∠BCC′=∠BC′C=65°,故答案为:65°.【点评】本题考查旋转的性质、等腰三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣4=0,得到x=4,然后代入化为整式方程的方程算出a的值.【解答】解:方程两边都乘x﹣4,得x=2(x﹣4)+m,∵原方程有增根,∴最简公分母x﹣4=0,解得x=4,当x=4时,m=4.故答案为:4.【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.【分析】根据反比例函数的对称性得到A、B的坐标,代入反比例函数中,即可求得mn=±6.【解答】解:由题意可知A、B两点关于直线y=x或关于直线y=﹣x对称,当A、B两点关于直线y=x对称时,点A(m,n),B(n,m),∴k=mn=6;当A、B两点关于直线y=﹣x对称时,点A(m,﹣n),B(n,﹣m),∴k=﹣mn=6,即mn=﹣6.故答案为:±6.【点评】本题考查了反比例函数图象上点的坐标特征,掌握反比例函数的对称性是解题的关键.16.【分析】取AC的中点G,AB的中点G,连接GH、GE、GF、BG,因为∠ABC=90°,BA=BC=2,所以HG∥BC,HG=BC=1,BG⊥AC,则HG⊥AB,可证明△AGE≌△BGF,得EG=FG,∠AGE =∠BGF,推导出∠EGF=∠AGB=90°,EF=EG,由BP=EF=EG,得EG=BP,所以BP≥1,则BP≥,求得BP的最小值为,于是得到问题的答案.【解答】解:取AC的中点G,AB的中点G,连接GH、GE、GF、BG,∵∠ABC=90°,BA=BC=2,∴HG∥BC,HG=BC=1,BG⊥AC,BG=AG=CG=AC,∠A=∠C=45°,∠FBG=∠ABG=∠ABC=45°,∴∠AHG=∠ABC=90°,∠AGB=90°,∠A=∠FBG,∴HG⊥AB,在△AGE和△BGF中,,∴△AGE≌△BGF(SAS),∴EG=FG,∠AGE=∠BGF,∴∠EGF=∠BGE+∠BGF=∠BGE+∠AGE=∠AGB=90°,∴EF==EG,∵∠EBF=90°,P是EF的中点,∴BP=EF=EG,∴EG=BP,∴EG≥HG,∴BP≥1,∴BP≥,∴BP的最小值为,故答案为:.【点评】此题重点考查等腰直角三角形的性质、全等三角形的判定与性质、三角形的中位线定理、勾股定理、垂线段最短等知识,正确地作出辅助线是解的关键.三、解答题(本大题共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.【分析】(1)把系数,被开方数分别相乘,再化为最简二次根式即可;(2)先分母有理化,算二次根式乘法,再合并同类二次根式即可.【解答】解:(1)原式=3×(﹣)=﹣2=﹣4b;(2)原式=2﹣+2=2+.【点评】本题考查二次根式的混合运算,解题的关键是掌握二次根式相关的运算法则.18.【分析】(1)按照解分式方程的步骤进行计算,即可解答;(2)按照解分式方程的步骤进行计算,即可解答.【解答】解:(1),x=2(x+2),解得:x=﹣4,检验:当x=﹣4时,x(x+2)≠0,∴x=﹣4是原方程的根;(2),+2=,2+4(x﹣3)=﹣(x﹣5),解得:x=3,检验:当x=3时,2(3﹣x)=0,∴x=3是原方程的增根,∴原方程无解.【点评】本题考查了解分式方程,准确熟练地进行计算是解题的关键.19.【分析】(1)移项后配方,再开方,即可得出两个一元一次方程,再求出方程的解即可;(2)先根据完全平方公式进行变形,再方程两边开方,即可得出两个一元一次方程,再求出方程的解即可.【解答】解:(1)x2﹣6x+3=0,移项,得x2﹣6x=﹣3,配方,得x2﹣6x+32=﹣3+32,(x﹣3)2=6,开方,得x﹣3=±,解得:x1=3+,x2=3﹣;(2)4x2﹣4x+1=x2+6x+9,(2x﹣1)2=(x+3)2,开方得:2x﹣1=±(x+3),2x﹣1=x+3或2x﹣1=﹣(x+3),解得:x1=4,x2=﹣.【点评】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,注意:解一元二次方程的方法有直接开平方法,公式法,配方法,因式分解法等.20.【分析】先通分括号内的式子,再算括号外的除法,然后约分,最后将x的值代入化简后的式子计算即可.【解答】解:=÷=•==,当x=﹣2时,原式==.【点评】本题考查分式的化简求值,熟练掌握运算法则是解答本题的关键.21.【分析】(1)用A的人数除以所占的百分比即可求出总人数,用总人数减去其它人数求出C的人数,补全条形统计图即可;(2)用360°乘以C的人数所占的百分比,即可得出答案;(3)用560乘以B的人数所占的百分比,即可得出答案.【解答】解:(1)本次抽样调查的学生人数为12÷30%=40(名),所以C的人数40﹣(12+8+4)=16(名),补全条形统计图如图所示:故答案为:40;(2)在扇形统计图中,“人工智能”所对应的扇形圆心角度数是360°×=144°;故答案为:144;(3)560×=112(名),答:估计选择“创客”课程的学生有112名.【点评】本题考查条形统计图,扇形统计图及用样本估计总体,熟知扇形统计图和条形统计图的特征是解题的关键.22.【分析】设甲队单独完成此项工程需x天,则乙队单独完成此项工程需2x天,利用工程质量=甲队完成的工程量+乙队完成的工程量,可列出关于x的分式方程,解之经检验后,可得出x的值(即甲队单独完成此项工程所需时间),再将其代入2x中,即可求出乙队单独完成此项工程所需时间.【解答】解:设甲队单独完成此项工程需x天,则乙队单独完成此项工程需2x天,根据题意得:+=1,解得:x=18,经检验,x=18是所列方程的解,且符合题意,∴2x=2×18=36.答:甲队单独完成此项工程需18天,乙队单独完成此项工程需36天.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.【分析】(1)由平行四边形的性质可得AB=BC,AB∥CD,可证四边形BEDF是平行四边形,四边形AECF是平行四边形,可得DE∥BF,AF∥CE,可得结论;(2)由“ASA“可证△BEH≌△FCH,可得EH=HC,BH=HF,由勾股定理可求EC的长,可证四边形EHFG是菱形,可得EH=HF=GF=EG=,即可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=BC,AB∥CD,∴BE=DF,∴AE=CF,四边形BEDF是平行四边形,∴四边形AECF是平行四边形,DE∥BF,∴AF∥CE,∴四边形GEHF是平行四边形;(2)解:∵点E是AB的中点,∴AE=BE=2,∵四边形BEDF是平行四边形,四边形AECF是平行四边形,∴AE=CF,BE=DF,∴BE=CF=AE=DF,∵AB∥CD,∴∠ABF=∠CFB,∠BEC=∠ECF,∴△BEH≌△FCH(ASA),∴EH=HC,BH=HF,∵四边形ABCD是矩形,∴∠ABC=90°,∴BH=EH=HC,EC===,∴EH=HF=,∵四边形GEHF是平行四边形,∴四边形EHFG是菱形,∴EH=HF=GF=EG=,∴四边形GEHF的周长=4×=2,故答案为:2.【点评】本题考查了平行四边形的性质,矩形的性质,菱形的判定和性质,勾股定理,全等三角形的判定和性质,直角三角形的性质等知识,灵活运用这些性质解决问题是解题的关键.24.【分析】(1)证明Δ>0,可得结论;(2)根据方程解的定义求出k的值,再求出方程的根可得结论.【解答】(1)证明:∵Δ=[﹣(k+2)]2﹣4(2k﹣1)\=k2+4k+4﹣8k+4=k2﹣4k+4+4=(k﹣2)2+4,∵(k﹣2)2≥0,∴Δ>0,∴该方程总有两个不相等的实数根;(2)解:∵方程的一个根为3,∴9﹣3(k+2)+2k﹣1=0,∴k=2,∴方程为x2﹣4x+3=0,∴x1=3,x1=1,∴另一个根为1,k=2.【点评】本题考查根与系数关系,根的判别式,解题的关键是掌握根与系数关系,属于中考常考题型.25.【分析】(1)由待定系数法即可求解;(2)观察函数图象即可求解;(3)由△OPQ的面积=×PQ×|x P|=×|x+1﹣|×|x|=6,即可求解.【解答】解:(1)将点A、B的坐标代入反比例函数表达式得:k=4m=﹣6×(﹣2)=12,则k=12,m=3,即反比例函数的表达式为:y=,点A(4,3);将点A、B的坐标代入一次函数表达式得:,解得:,则一次函数表达式为:y=x+1;(2)观察函数图象知,不等式的解集为x>4或﹣6<x<0,故答案为:x>4或﹣6<x<0;(3)设点P(x,x+1),则点Q(x,),则△OPQ的面积=×PQ×|x P|=×|x+1﹣|×|x|=6,解得:x=0(舍去)或6或﹣8或﹣2,即点Q的坐标为:(6,2)或(﹣8,﹣)或(﹣2,﹣6).【点评】本题考查的是反比例函数综合运用,涉及到面积的计算、解不等式、待定系数法求函数表达式等,利用绝对值解决分类求解是本题的重点.26.【分析】(1)由▱ABCD得AD=BC,AD∥BC,故∠EBC=∠FDA,再证明△CBE≌△ADF,最后利用一组对边平行且相等得四边形EHFG是平行四边形;(2)连接AE,CF.由正方形EHFG得∠GEF=45°,FG=AG=GE,设AE=x,则EF=x,利用∠ABD=30°得AB=2x,BE=x,同理:DF=x,BD=2x+x,故==.【解答】(1)证明:∵▱ABCD,∴AD=BC,AD∥BC,∴∠EBC=∠FDA,在△CBE和△ADF中,∴△CBE≌△ADF(SAS),∴AF=EC,∠AFD=∠BEC,∴∠AFE=∠CEF,∴AF∥EC.∵G,H分别是AF,CE的中点,∴EH=GF,∴四边形EHFG是平行四边形;(2)解:连接AE,CF.∵正方形EHFG,∴∠GEF=45°,FG=AG=GE,∴∠AEG=45°,∴∠AEF=90°,设AE=x,则EF=x,∵∠ABD=30°,∴AB=2x,BE=x,同理:DF=x,∴BD=2x+x,∴==.【点评】本题考查了平行四边形综合题,掌握平行四边形的性质,构造直角三角形再利用勾股定理计算是解题关键.27.【分析】(1)运用勾股定理得AE2=x2﹣z2,AC2=x2+y2﹣2yz,BD2=x2+y2+2yz,AC2+BD2=2(x2+y2).(2)①延长AD至E,使DE=AD,连接BE,CE,可证得四边形ABEC是平行四边形,利用(1)的结论即可求得答案.②由AD是BC边上的中线,M是BD的中点,可得关于AD与BC的方程组,消去AD即可求得答案.(3)连接AB,取AB的中点Q,过Q作QP⊥l,由(2)得PA2+PB2=2AQ2+2PQ2.由AB是定值,故AB的一半AQ也是定值,再根据垂线段最短得QP最短,故此时PA2+PB2的值最小.【解答】解:(1)①在Rt△ABE中,AE2=AB2﹣BE2=x2﹣z2,②在Rt△ACE中,AC2=AE2+EC2=x2﹣z2+(y﹣z)2=x2+y2﹣2yz,③在Rt△BDF中,BD2=DF2+(BE+EF)2=x2﹣z2+(z+y)2=x2+y2+2yz,④∵AC2+BD2=(x2+y2﹣2yz)+(x2+y2+2yz)=2(x2+y2),2(AB2+BC2)=2(x2+y2),∴AC2+BD2=2(AB2+BC2),故答案为:①x2﹣z2,②x2+y2﹣2yz,③x2+y2+2yz,④2(x2+y2).(2)①延长AD至E,使DE=AD,连接BE,CE,如图.∵AD是△ABC的BC边上的中线,∴BD=CD,又∵DE=AD,∴四边形ABEC是平行四边形,由(1)知:AE2+BC2=2(AB2+AC2),∴(2AD)2=2(AB2+AC2)﹣BC2=2(c2+b2)﹣a2,∴AD==;②如图,AD是BC边上的中线,M是BD的中点,由(1)得:,∵AB=,AC=AM=,∴,解得:BC=4,故答案为:4.(3)连接AB,取AB的中点Q,过Q作QP⊥l,由(2)得PA2+PB2=2AQ2+2PQ2.∵AB是定值,故AB的一半AQ也是定值,再根据垂线段最短得QP最短,故此时PA2+PB2的值最小.【点评】本题是四边形综合题,考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质,构造直角三角形,运用勾股定理是解题关键。

2023-2024学年江苏省南京市玄武区八年级(下)期末数学试卷及答案解析

2023-2024学年江苏省南京市玄武区八年级(下)期末数学试卷及答案解析

2023-2024学年江苏省南京市玄武区八年级(下)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)《周易》是中国传统思想文化中自然哲学与人文实践的理论根源,是古代汉民族思想、智慧的结晶,被誉为“大道之源”.下列“卦象”是中心对称图形的是()A.B.C.D.2.(2分)下列调查中,适合普查的是()A.了解全国中学生的睡眠时间B.了解一批灯泡的使用寿命C.调查长江中下游的水质情况D.对乘坐飞机的乘客进行安检3.(2分)下列运算中,正确的是()A.B.C.D.4.(2分)如图,在△ABC中,AB=4,BC=6,DE是△ABC的中位线,∠ABC的平分线交DE于点F,则线段EF的长为()A.2B.C.1D.5.(2分)如图,点A,B分别在反比例函数和的图象上,AB∥x轴,与y 轴交于点C,点D是x轴上一点.若BC=2AC,△ABD的面积为3,则k1k2的值为()A.﹣8B.8C.﹣6D.66.(2分)在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC.添加下列条件:①OB=OD;②AD=BC;③AD∥BC;④∠BAD=∠BCD.其中,能判定四边形ABCD是平行四边形的个数为()A.4个B.3个C.2个D.1个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)若式子在实数范围内有意义,则x的取值范围为.8.(2分)若分式的值为0,则x的值是.9.(2分)柑橘在运输、存储中会有损坏,现从某批柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,并把获得的数据记录如下:柑橘的总质量n/kg100200250300350400450500损坏的柑橘质量m/kg10.5019.4224.2530.9335.3239.2444.5751.540.1050.0970.0970.1030.1010.0980.0990.103估计这批柑橘中损坏的柑橘的概率为.(精确到0.1)10.(2分)比较大小:+1.(填“>”“<”或“=”)11.(2分)菱形的面积是24,一条对角线的长为6,则菱形的另一条对角线的长为.12.(2分)点(x1,y1),(x2,y2)在反比例函数的图象上,若y2<y1<0,则x1,x2的大小关系:x1x2.(填“>”、“<”或“=”)13.(2分)如图,在△ABC中,AB=AC,∠A=80°,将△ABC绕着点B顺时针旋转,使点A落在边BC 上的A′处,点C落在点C′处,联结CC′,则∠BCC′=.14.(2分)已知关于x的分式方程有增根,则m的值为.15.(2分)在平面直角坐标系xOy中,A,B是反比例函数图象上不同的两点,点A的横坐标为m,点B的横坐标为n,且O,A,B三点不在同一条直线上.若OA=OB,则mn=.16.(2分)如图,在△ABC中,∠ABC=90°,BA=BC=2,E,F分别是边AB,BC上的动点,且AE =BF,连接EF,P是EF的中点,连接BP,则线段BP的最小值为.三、解答题(本大题共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(10分)计算:(1);(2).18.(10分)解分式方程:(1);(2).19.(8分)解一元二次方程:(1)x2﹣6x+3=0;(2)4x2﹣4x+1=x2+6x+9.20.(8分)先化简,再求值:,其中.21.(10分)学校计划在八年级开设以下四门校本课程:A无人机、B创客、C人工智能和D航模.为了解学生对这四门课程的选择情况,随机抽取部分学生进行问卷调查,并将调查结果绘制成如图所示的两幅不完整的统计图.根据以上信息,解决下列问题:(1)本次抽样调查的学生人数为名,并补全条形统计图;(2)在扇形统计图中,“人工智能”所对应的扇形圆心角度数是°;(3)若该校八年级一共有560名学生,估计选择“创客”课程的学生有多少名?22.(7分)某项工程,乙队单独完成的天数是甲队单独完成的天数的2倍.现由甲、乙两队合作10天后,余下的工程由乙队单独来做,还需6天完工.求甲、乙两队单独完成此项工程各需多少天?23.(8分)如图,在▱ABCD中,E,F分别是边AB,CD上的点,且BE=DF,连接AF,BF,CE,DE.AF,DE交于点G,BF,CE交于点H.(1)求证:四边形GEHF是平行四边形;(2)若四边形ABCD是矩形,AB=4,BC=3,E是AB的中点,则四边形GEHF的周长是.24.(7分)已知关于x的一元二次方程x2﹣(k+2)x+2k﹣1=0(k为常数).(1)求证:不论k为何值,该方程总有两个不相等的实数根;(2)若方程的一个根为3,求k的值和方程的另一个根.25.(9分)如图,一次函数y1=ax+b的图象与反比例函数的图象交于点A(4,m),B(﹣6,﹣2).(1)求k的值和一次函数的表达式;(2)关于x的不等式的解集为;(3)若点P为直线AB上的动点,过点P作PQ∥y轴,与反比例函数的图象交于点Q,当△OPQ的面积为6时,请直接写出点Q的坐标.26.(11分)如图,在▱ABCD中,E,F是对角线BD上的点,且BE=DF.连接AF,CE,G,H分别是AF,CE的中点,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是正方形,∠ABD=30°,则=.27.【探索发现】(1)在▱ABCD中,AC,BD是对角线.求证:AC2+BD2=2(AB2+BC2).如图①,过点A,D分别作AE⊥BC,DF⊥BC,垂足为E,F.设AB=x,BC=y,BE=z.证明途径可以用下面的框图表示,请填写其中的空格.(用含x,y,z的代数式表示)【性质运用】(2)如图②,在△ABC中,AD是BC边上的中线.①若BC=a,AC=b,AB=c,求AD的长;(用含a,b,c的代数式表示)②若M是BD的中点,连接AM.当,时,则BC=.【拓展探究】(3)如图③,已知点A,点B和直线l.在直线l上求作一点P,使PA2+PB2的值最小.(要求:尺规作图,保留作图痕迹,写出必要说明)2023-2024学年江苏省南京市玄武区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:选项A、B、C的图形均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形;选项D的图形能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形.故选:D.【点评】此题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【分析】根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,抽样调查得到的调查结果比较近似进行解答.【解答】解:A.了解全国中学生的睡眠时间,适合抽样调查,故本选项不符合题意;B.了解一批灯泡的使用寿命,适合抽样调查,故本选项不符合题意;C.调查长江中下游的水质情况,适合抽样调查,故本选项不符合题意;D.对乘坐飞机的乘客进行安检,适合全面调查,故本选项符合题意.故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.【分析】利用分式的基本性质逐项判断即可.【解答】解:=﹣,则A不符合题意;=(n≠0),则B不符合题意;==,则C符合题意;无法化简,则D不符合题意;故选:C.【点评】本题考查分式的基本性质,此为基础且重要知识点,必须熟练掌握.4.【分析】根据三角形中位线定理得到DE∥BC,DE=3,根据平行线的性质、角平分线的定义得到∠DBF =∠DFB,得到DF=DB=2,计算即可.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,DE=BC=×6=3,DB=AB=2,∴∠DFB=∠FBC,∵BF是∠ABC的平分线,∴∠DBF=∠FBC,∴∠DBF=∠DFB,∴DF=DB=2,∴EF=DE﹣DF=3﹣2=1,故选:C.【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.5.【分析】根据反比例函数k值的几何意义解答即可得到正确的选项.【解答】解:连接OA、OB,∵AB∥x轴,=S△AOB=3,∴S△ABD∵点A,B分别在反比例函数和的图象上,=丨k1丨,S△OBC=k2,∴S△AOC∵BC=2AC,===1,S△COB=S△ABD=×3=2,∴S△AOC∴k1=﹣2,k2=4,∴k1k2=﹣8.故选:A.【点评】本题考查了反比例函数k值的几何意义及反比例函数图象上点的坐标特征,熟练掌握k值几何意义是关键.6.【分析】根据平行四边形的判定定理判断即可.【解答】解:①OA=OC,OB=OD,对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形;②OA=OC,AD=BC,不能判定四边形ABCD为平行四边形;两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形;③∵AD∥BC,∴∠ADO=∠CBO,在△ADO和△CBO中,,∴△ADO≌△CBO(AAS),∴OB=OD,∴四边形ABCD为平行四边形;④OA=OC,∠BAD=∠BCD,不能判定四边形ABCD为平行四边形;∴能判定四边形ABCD是平行四边形的①③.故选:C.【点评】本题考查了平行四边形的判定,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.【分析】根据被开方数不小于零的条件进行解题即可.【解答】解:由题可知,1+x≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】本题考查二次根式有意义的条件,掌握被开方数不小于零的条件是解题的关键.8.【分析】直接利用分式的值为零,则分子为零,再利用分式有意义的条件,其分母不为零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣4=0且x+2≠0,解得:x=2.故答案为:2.【点评】此题主要考查了分式的值为零的条件以及分式有意义的条件,注意分式有意义的条件是解题关键.9.【分析】利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.1左右,由此可估计柑橘损坏率大约是0.1.【解答】解:根据表中的损坏的频率,当实验次数的增多时,柑橘损坏的频率越来越稳定在0.1左右,所以可估计柑橘损坏率大约是0.1,故答案为:0.1.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率;用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.10.【分析】由题意,两个正数都带根号,可比较其平方的大小,即可解答.【解答】解:∵,,,∴,∴.故答案为:<【点评】本题考查了实数大小的比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.11.【分析】根据菱形的面积计算公式S=ab(a、b为对角线的长度),已知一条对角线的长度和菱形的面积即可计算另一条对角线的长度.【解答】解:菱形的面积计算公式S=ab(a、b为对角线的长度),已知S=24,a=6,则b=8,故答案为8.【点评】本题考查了菱形的面积计算公式,考查了菱形对角线互相垂直的性质,本题中正确利用面积计算公式求另一条对角线长是解题的关键.12.【分析】根据反比例函数图象性质可得k=﹣1<0,图象过第二、四象限,进而可以得出当y2<y1<0时x1与x2的大小关系.【解答】解:∵k=﹣a2﹣1<0,∴反比例函数的图象过第二、四象限,当y2<y1<0时,则x1>x2,故答案为:>.【点评】本题考查了反比例函数图象上点的坐标特征,解决本题的关键是掌握反比例函数图象和性质.13.【分析】根据等腰三角形的性质和旋转的性质,可以求得∠BCC′的度数.【解答】解:∵在△ABC中,AB=AC,∠A=80°,∴∠ABC=∠ACB=50°,∵将△ABC绕着点B顺时针旋转,使点A落在边BC上的A′处,点C落在点C′处,∴∠CBC′=50°,BC=BC′,∴∠BCC′=∠BC′C=65°,故答案为:65°.【点评】本题考查旋转的性质、等腰三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣4=0,得到x=4,然后代入化为整式方程的方程算出a的值.【解答】解:方程两边都乘x﹣4,得x=2(x﹣4)+m,∵原方程有增根,∴最简公分母x﹣4=0,解得x=4,当x=4时,m=4.故答案为:4.【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.【分析】根据反比例函数的对称性得到A、B的坐标,代入反比例函数中,即可求得mn=±6.【解答】解:由题意可知A、B两点关于直线y=x或关于直线y=﹣x对称,当A、B两点关于直线y=x对称时,点A(m,n),B(n,m),∴k=mn=6;当A、B两点关于直线y=﹣x对称时,点A(m,﹣n),B(n,﹣m),∴k=﹣mn=6,即mn=﹣6.故答案为:±6.【点评】本题考查了反比例函数图象上点的坐标特征,掌握反比例函数的对称性是解题的关键.16.【分析】取AC的中点G,AB的中点G,连接GH、GE、GF、BG,因为∠ABC=90°,BA=BC=2,所以HG∥BC,HG=BC=1,BG⊥AC,则HG⊥AB,可证明△AGE≌△BGF,得EG=FG,∠AGE =∠BGF,推导出∠EGF=∠AGB=90°,EF=EG,由BP=EF=EG,得EG=BP,所以BP≥1,则BP≥,求得BP的最小值为,于是得到问题的答案.【解答】解:取AC的中点G,AB的中点G,连接GH、GE、GF、BG,∵∠ABC=90°,BA=BC=2,∴HG∥BC,HG=BC=1,BG⊥AC,BG=AG=CG=AC,∠A=∠C=45°,∠FBG=∠ABG=∠ABC=45°,∴∠AHG=∠ABC=90°,∠AGB=90°,∠A=∠FBG,∴HG⊥AB,在△AGE和△BGF中,,∴△AGE≌△BGF(SAS),∴EG=FG,∠AGE=∠BGF,∴∠EGF=∠BGE+∠BGF=∠BGE+∠AGE=∠AGB=90°,∴EF==EG,∵∠EBF=90°,P是EF的中点,∴BP=EF=EG,∴EG=BP,∴EG≥HG,∴BP≥1,∴BP≥,∴BP的最小值为,故答案为:.【点评】此题重点考查等腰直角三角形的性质、全等三角形的判定与性质、三角形的中位线定理、勾股定理、垂线段最短等知识,正确地作出辅助线是解的关键.三、解答题(本大题共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.【分析】(1)把系数,被开方数分别相乘,再化为最简二次根式即可;(2)先分母有理化,算二次根式乘法,再合并同类二次根式即可.【解答】解:(1)原式=3×(﹣)=﹣2=﹣4b;(2)原式=2﹣+2=2+.【点评】本题考查二次根式的混合运算,解题的关键是掌握二次根式相关的运算法则.18.【分析】(1)按照解分式方程的步骤进行计算,即可解答;(2)按照解分式方程的步骤进行计算,即可解答.【解答】解:(1),x=2(x+2),解得:x=﹣4,检验:当x=﹣4时,x(x+2)≠0,∴x=﹣4是原方程的根;(2),+2=,2+4(x﹣3)=﹣(x﹣5),解得:x=3,检验:当x=3时,2(3﹣x)=0,∴x=3是原方程的增根,∴原方程无解.【点评】本题考查了解分式方程,准确熟练地进行计算是解题的关键.19.【分析】(1)移项后配方,再开方,即可得出两个一元一次方程,再求出方程的解即可;(2)先根据完全平方公式进行变形,再方程两边开方,即可得出两个一元一次方程,再求出方程的解即可.【解答】解:(1)x2﹣6x+3=0,移项,得x2﹣6x=﹣3,配方,得x2﹣6x+32=﹣3+32,(x﹣3)2=6,开方,得x﹣3=±,解得:x1=3+,x2=3﹣;(2)4x2﹣4x+1=x2+6x+9,(2x﹣1)2=(x+3)2,开方得:2x﹣1=±(x+3),2x﹣1=x+3或2x﹣1=﹣(x+3),解得:x1=4,x2=﹣.【点评】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,注意:解一元二次方程的方法有直接开平方法,公式法,配方法,因式分解法等.20.【分析】先通分括号内的式子,再算括号外的除法,然后约分,最后将x的值代入化简后的式子计算即可.【解答】解:=÷=•==,当x=﹣2时,原式==.【点评】本题考查分式的化简求值,熟练掌握运算法则是解答本题的关键.21.【分析】(1)用A的人数除以所占的百分比即可求出总人数,用总人数减去其它人数求出C的人数,补全条形统计图即可;(2)用360°乘以C的人数所占的百分比,即可得出答案;(3)用560乘以B的人数所占的百分比,即可得出答案.【解答】解:(1)本次抽样调查的学生人数为12÷30%=40(名),所以C的人数40﹣(12+8+4)=16(名),补全条形统计图如图所示:故答案为:40;(2)在扇形统计图中,“人工智能”所对应的扇形圆心角度数是360°×=144°;故答案为:144;(3)560×=112(名),答:估计选择“创客”课程的学生有112名.【点评】本题考查条形统计图,扇形统计图及用样本估计总体,熟知扇形统计图和条形统计图的特征是解题的关键.22.【分析】设甲队单独完成此项工程需x天,则乙队单独完成此项工程需2x天,利用工程质量=甲队完成的工程量+乙队完成的工程量,可列出关于x的分式方程,解之经检验后,可得出x的值(即甲队单独完成此项工程所需时间),再将其代入2x中,即可求出乙队单独完成此项工程所需时间.【解答】解:设甲队单独完成此项工程需x天,则乙队单独完成此项工程需2x天,根据题意得:+=1,解得:x=18,经检验,x=18是所列方程的解,且符合题意,∴2x=2×18=36.答:甲队单独完成此项工程需18天,乙队单独完成此项工程需36天.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.【分析】(1)由平行四边形的性质可得AB=BC,AB∥CD,可证四边形BEDF是平行四边形,四边形AECF是平行四边形,可得DE∥BF,AF∥CE,可得结论;(2)由“ASA“可证△BEH≌△FCH,可得EH=HC,BH=HF,由勾股定理可求EC的长,可证四边形EHFG是菱形,可得EH=HF=GF=EG=,即可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=BC,AB∥CD,∴BE=DF,∴AE=CF,四边形BEDF是平行四边形,∴四边形AECF是平行四边形,DE∥BF,∴AF∥CE,∴四边形GEHF是平行四边形;(2)解:∵点E是AB的中点,∴AE=BE=2,∵四边形BEDF是平行四边形,四边形AECF是平行四边形,∴AE=CF,BE=DF,∴BE=CF=AE=DF,∵AB∥CD,∴∠ABF=∠CFB,∠BEC=∠ECF,∴△BEH≌△FCH(ASA),∴EH=HC,BH=HF,∵四边形ABCD是矩形,∴∠ABC=90°,∴BH=EH=HC,EC===,∴EH=HF=,∵四边形GEHF是平行四边形,∴四边形EHFG是菱形,∴EH=HF=GF=EG=,∴四边形GEHF的周长=4×=2,故答案为:2.【点评】本题考查了平行四边形的性质,矩形的性质,菱形的判定和性质,勾股定理,全等三角形的判定和性质,直角三角形的性质等知识,灵活运用这些性质解决问题是解题的关键.24.【分析】(1)证明Δ>0,可得结论;(2)根据方程解的定义求出k的值,再求出方程的根可得结论.【解答】(1)证明:∵Δ=[﹣(k+2)]2﹣4(2k﹣1)\=k2+4k+4﹣8k+4=k2﹣4k+4+4=(k﹣2)2+4,∵(k﹣2)2≥0,∴Δ>0,∴该方程总有两个不相等的实数根;(2)解:∵方程的一个根为3,∴9﹣3(k+2)+2k﹣1=0,∴k=2,∴方程为x2﹣4x+3=0,∴x1=3,x1=1,∴另一个根为1,k=2.【点评】本题考查根与系数关系,根的判别式,解题的关键是掌握根与系数关系,属于中考常考题型.25.【分析】(1)由待定系数法即可求解;(2)观察函数图象即可求解;(3)由△OPQ的面积=×PQ×|x P|=×|x+1﹣|×|x|=6,即可求解.【解答】解:(1)将点A、B的坐标代入反比例函数表达式得:k=4m=﹣6×(﹣2)=12,则k=12,m=3,即反比例函数的表达式为:y=,点A(4,3);将点A、B的坐标代入一次函数表达式得:,解得:,则一次函数表达式为:y=x+1;(2)观察函数图象知,不等式的解集为x>4或﹣6<x<0,故答案为:x>4或﹣6<x<0;(3)设点P(x,x+1),则点Q(x,),则△OPQ的面积=×PQ×|x P|=×|x+1﹣|×|x|=6,解得:x=0(舍去)或6或﹣8或﹣2,即点Q的坐标为:(6,2)或(﹣8,﹣)或(﹣2,﹣6).【点评】本题考查的是反比例函数综合运用,涉及到面积的计算、解不等式、待定系数法求函数表达式等,利用绝对值解决分类求解是本题的重点.26.【分析】(1)由▱ABCD得AD=BC,AD∥BC,故∠EBC=∠FDA,再证明△CBE≌△ADF,最后利用一组对边平行且相等得四边形EHFG是平行四边形;(2)连接AE,CF.由正方形EHFG得∠GEF=45°,FG=AG=GE,设AE=x,则EF=x,利用∠ABD=30°得AB=2x,BE=x,同理:DF=x,BD=2x+x,故==.【解答】(1)证明:∵▱ABCD,∴AD=BC,AD∥BC,∴∠EBC=∠FDA,在△CBE和△ADF中,∴△CBE≌△ADF(SAS),∴AF=EC,∠AFD=∠BEC,∴∠AFE=∠CEF,∴AF∥EC.∵G,H分别是AF,CE的中点,∴EH=GF,∴四边形EHFG是平行四边形;(2)解:连接AE,CF.∵正方形EHFG,∴∠GEF=45°,FG=AG=GE,∴∠AEG=45°,∴∠AEF=90°,设AE=x,则EF=x,∵∠ABD=30°,∴AB=2x,BE=x,同理:DF=x,∴BD=2x+x,∴==.【点评】本题考查了平行四边形综合题,掌握平行四边形的性质,构造直角三角形再利用勾股定理计算是解题关键.27.【分析】(1)运用勾股定理得AE2=x2﹣z2,AC2=x2+y2﹣2yz,BD2=x2+y2+2yz,AC2+BD2=2(x2+y2).(2)①延长AD至E,使DE=AD,连接BE,CE,可证得四边形ABEC是平行四边形,利用(1)的结论即可求得答案.②由AD是BC边上的中线,M是BD的中点,可得关于AD与BC的方程组,消去AD即可求得答案.(3)连接AB,取AB的中点Q,过Q作QP⊥l,由(2)得PA2+PB2=2AQ2+2PQ2.由AB是定值,故AB的一半AQ也是定值,再根据垂线段最短得QP最短,故此时PA2+PB2的值最小.【解答】解:(1)①在Rt△ABE中,AE2=AB2﹣BE2=x2﹣z2,②在Rt△ACE中,AC2=AE2+EC2=x2﹣z2+(y﹣z)2=x2+y2﹣2yz,③在Rt△BDF中,BD2=DF2+(BE+EF)2=x2﹣z2+(z+y)2=x2+y2+2yz,④∵AC2+BD2=(x2+y2﹣2yz)+(x2+y2+2yz)=2(x2+y2),2(AB2+BC2)=2(x2+y2),∴AC2+BD2=2(AB2+BC2),故答案为:①x2﹣z2,②x2+y2﹣2yz,③x2+y2+2yz,④2(x2+y2).(2)①延长AD至E,使DE=AD,连接BE,CE,如图.∵AD是△ABC的BC边上的中线,∴BD=CD,又∵DE=AD,∴四边形ABEC是平行四边形,由(1)知:AE2+BC2=2(AB2+AC2),∴(2AD)2=2(AB2+AC2)﹣BC2=2(c2+b2)﹣a2,∴AD==;②如图,AD是BC边上的中线,M是BD的中点,由(1)得:,∵AB=,AC=AM=,∴,解得:BC=4,故答案为:4.(3)连接AB,取AB的中点Q,过Q作QP⊥l,由(2)得PA2+PB2=2AQ2+2PQ2.∵AB是定值,故AB的一半AQ也是定值,再根据垂线段最短得QP最短,故此时PA2+PB2的值最小.【点评】本题是四边形综合题,考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质,构造直角三角形,运用勾股定理是解题关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

它们的横坐标依次为 1,2,3, . . . ,n,分别过点 P1、P2、P3, . . . ,Pn 作 x 轴,y 轴的 垂线, 图中所构成的阴影部分面积从左到右依次为 S1、S2、S3, . . . ,Sn-1,则 S1+S2+S3+. . .+Sn-1= .(用含 n 的代数式表示) 三、解答题(本大题共 11 小题,共 88 分) 17.(8 分)计算: ⑴ ( 24
. . . . . . 1 4 2 2 4 1 8 . . . . . .
1 2
则当 -2 y -
1 时,x 的取值范围是 2

13.已知 x= 2 10 ,则 x2 - 4x- 6 的值为 14.如图,正比例函数 y=k1x 与反比例函数 y= k1x

k2 的图像交于点 A(2,2),则关于 x 的不等式 x
2
. °
b (a 0,b 0)的结果是 a
. .
10. 用配方法将方程 x2+10x - 11=0 化成(x+m)2=n 的形式(m、 n 为常数), 则 m+n=
11.若
x y 2x 3y 则 的值为 2 3 x y
第 1 页,共 8 页

12.已知反比例函数 y x y
k (k 为常数,k 0)中,函数 y 与自变量 x 的部分对应值如下表: x
3 ) 2 2
2
⑵ (3 2 2
3)2 (3 2+2 3)2
第 2 页,共 8 页
18.(8 分)解分式方程: (1)
2 3 x2 x2
(2)
2x 9 4x 7 1 3x 9 x 3
19.(8 分)解一元二次方程: ⑴2x2 - 5x+1=0
⑵ ( x 1) 2 (2 x - 3) 2
第 3 页,共 8 页
23.(8 分)如图,E、F 分别为△ABC 的边 BC、AB 的中点,延长 EF 至点 D,使得 DF=EF, 连接 DA、DB、AE. A D ⑴求证:四边形 ACED 是平行四边形; ⑵若 AB⊥AC,求证:四边形 AEBD 是菱形. F
B
E
C
24.(8 分)厨师将一定质量的面团做成粗细一致的拉面时,面条的总长度 y(m)与面条横截面 积 x(mm2)之间成反比例函数关系.其图像经过 A(4,32)、B(t,80)两点. ⑴求 y 与 x 之间的函数表达式; ⑵求 t 的值,并解释 t 的实际意义; ⑶如果厨师做出的面条横截面面积不超过 3.2mm2, 那么面条的总长度至少为 m.
2018【玄武区】初二(下)数学期末考试
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分) 1.下列事件是确定事件的是( ) A.任买一张电影票,座位号是偶数 B.在一个装有红球和白球的箱子中,任摸一个球是红球 C.掷一枚质地均匀的硬币,正面朝上 D.三根长度分别为 2cm、3cm、5cm 的木棒能摆成三角形 2.若分式
3 xy 中的 x、y 都扩大为原来的 2 倍,那么分式的值( x y
B.扩大为原来的 4 倍 D.不变 )

A.扩大为原来的 2 倍 C.缩小为原来的
1 倍 2
3.下列关系中,两个变量之间为反比例函数关系的是( A.长 40 米的绳子减去 x 米,还剩 y 米 B.买单价 3 元的笔记本 x 本,花了 y 元 C.正方形的面积为 S,边长为 a D.菱形的面积为 20,对角线的长分别为 x,y 4.下列各式成立的是( ) A. (- )
⑴a 的值为 ,b 的值为 ; ⑵假如你去转动该转盘一次, 或得 “10 元兑换券” 的概率约是 ; (结果精确到 0.01) ⑶根据⑵的结果,在该转盘中表示“20 元兑换券”区域的扇形的圆心角大约是多少度? (结果精确到 1°)
m n
22.(6 分)某中学组织学生去离学校 15km 的农场,先遣队与大队同时出发,先遣队的速度 是大队的速度的 1.2 倍,结果先遣队比大队早到 0.5h,先遣队和大队的速度各是多少?
(第 5 题)
(第 6 题)
6.如图,在边长为 4 的正方形 ABCD 内取一点 E,使得 BE=CE,连接 ED、BD.BD 与 CE 相交于点 O,若∠EOD=75° ,则△BED 的面积为( ) A.
34 2
B. 4 3 4
C. 3+1
D.16 8 3
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分) 7.若式子 2 x 1 在实数范围内有意义,则 x 的取值范围是 8.在□ABCD 中,∠A+∠C=100° ,则∠B 的度数为 9.计算 9a
2 a 2 4a 4 a 2 20.(7 分)先化简,再求值: ,其中 a=1+ 5 . a 1 a2 1 a 1
21.(7 分)某商场进行有奖促销活动,规定顾客购物达到一定金额就可以获得一次转动 转盘 的机会(如图), 当转盘停止转动时指针落在哪一区域就可获得相应的奖品(若指针落在两 个区 域的交界处,则重新转动转盘). 100 150 200 500 800 1000 转动转盘的次数 n 落在“10 元兑换券”的次数 m 落在“10 元兑换券”的频率 68 0.68 111 a 136 0.68 345 0.69 564 b 701 0.701
25.(8 分)已知关于 x 的一元二次方程 x2 - (m+1)x+2m- 3=0(m 为常数). ⑴若方程的一个根为 1,求 m 的值及方程的另一个根; ⑵求证:不论 m 为何值时,方程总有两个不相等的实数根.
k2 的解集为 x

(第 14 题)
(第 15 题)
(第 16 题)
15.如图,在△ABC 中,CD 平分∠ACB,AD⊥CD,垂足为 D,E 为 AB 的中点,连接 DE, AC=15,BC=27,则 DE= . 16.如图,在反比例函数 y=
6 (x 0)的图像上有点 P1、P2、P3, . . . ,Pn(n 为常数,n 2), x
2
1 2
1 2
B. ( 3)2 3 C. (
1 2 1 ) 2 2
D. 3 +4 =7
2
2
5.如图,在平行四边形ABCD 中,AC、BD 是它的两条对角线,下列条件中,能判断这个 平行四边形是矩形的是( ) A.∠BAC=∠ACB B.∠BAC=∠ACD C.∠BAC=∠DAC D.∠BAC=∠ABD
相关文档
最新文档