2019-2020年九年级第二学期期中练习数学
2019-2020学年第二学期期中练习九年级数学参考答案
海淀区九年级第二学期期中练习数 学 2020.5参考答案及评分建议一、选择题二、填空题9.1x ≥10.611. ()()a b c b c +- 12.913.4714.1215.324748x y x y +=⎧⎨-=⎩16. ①②③注:第16题写对1个或2个(答案不全)的得1分,含有错误答案的得0分. 三、解答题17.解:0(2)2sin 30|-+︒+1122=+⨯=18.解:解不等式3(1)2x x -<,得332x x -<,即3x <.解不等式1212x x -+>,得421x x +>-, 即1x >-.所以不等式组的解集为13x -<<.19.证明:∵△ABC 是等边三角形,∴AC =BC . ∠CAB =∠ACB =60° .∴∠CAD =∠BCE =120°.在△ACD 和△CBE 中. AD CE CAD BCE AC CB =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE (SAS).20.解:(1)当1m =-时,原方程可化为2230x x --=.得(3)(1)0x x -+=,即123,1x x ==-.(2)由题意,原方程有两个实数根, 得2(2)4(21)0m ∆=---≥. 得880m -≥. 即1m ≤.21.(1)证明:∵四边形ABCD 为平行四边形,∴AD ∥BC. ∴∠B +∠BAD =180°. ∵∠B =60°, ∴∠BAD =120°.∵AE 为∠BAD 的平分线, ∴∠F AB =60°.∴△ABF 是等边三角形.(2)解:过点F 做FG ^CD 于G . ∵AB ∥CD , ∴∠FCD =∠B =60°. ∵FG ^CD , ∴∠FGC =90°. ∵∠FCD =60° , ∴∠GFC =30°. ∵CF =2,∴CG =1, FG∵∠CDF =45°, ∠FGD =90°, ∴DG=FG∴22. 解:(1)B(2)1021, 15 (3)404103835901.2161433814804..210242⨯⨯+++=≈+.答:支援湖北省的全体医务人员中,“90后”大约有1.2万人.B23. 解:(1)依题意,311.2x y x =⎧⎪⎨=+⎪⎩,∴35.2x y =⎧⎪⎨=⎪⎩,∴点A 的坐标为532⎛⎫ ⎪⎝⎭,.(2)①当1k =时,结合函数图象,可得区域W 内整点的个数为1.②12k ≤<或1620k <≤.24.(1)证明:如图,连接OE .∵Rt △ABC 中,点D 为BC 边中点, ∴AD BD =.∴∠BAD =∠DBA .∵OE =OA , ∴∠OAE =∠OEA . ∴∠OEA =∠DBA . ∴OE ∥BD .又∵EG ⊥BC , ∴OE ⊥EG . 又∵OE 是半径, ∴EG 是O e 的切线.(2)解:如图,连接DE ,DF . ∵AD 为O e 的直径, ∴∠AED =∠AFD =90°. 又∵∠BAC =90°, ∴四边形AEDF 为矩形. ∴DE =AF =6.又∵BD =AD =10,∴在Rt △BDE中,8BE ==. 25. 解:(1)10,3;(2)0:2,2:0; (3)9或10. 26. 解:(1)x =1;(2)∵2222()y x mx m m x m m =-++=-+,+1∴抛物线222y x mx m m=-++的顶点A的坐标为(,)m m. ∵若点A在第一象限,且点A的坐标为(,)m m,过点A作AM垂直x轴于M,连接OA.∵m>0,∴OM=AM=m.∴OA.∵OA.∴m=1.∴抛物线的解析式为222y x x=-+.(3)m≤1或m≥2.27.解:(1)如图所示.(2)解:∵AB=AC,∴∠1=∠2.∵点C,D关于直线OM对称,A在OM上,∴AC=AD,OC=OD.∵OA=OA,∴△ACO≌△ADO.∴∠3=∠D,∠4=∠AOC.∵∠1+∠3=180°,∴∠2+∠D=180°.∴∠BAD +∠DOB =180°,∵∠AOC =∠4 = α,∴∠BAD = 180°-2α.(3)AB=.证明如下:过点A作AH⊥ON于H.∵3 tan tan4AOHα∠==,∴34 AHOH=,∵ Rt △AOH 中,AO =5,222AH OH AO +=, ∴ AH =3,OH =4. ∵AB =∴1BH =. ∴ OB =OH +BH =5. ∴ OA =OB .∴ ∠BAO =∠ABO .∵ AB =AC , ∴ ∠ACB =∠ABO . ∴ ∠BAO =∠ACB .∵ ∠1+∠OAB =180°,∠2+∠ACB =180°, ∴ ∠1=∠2.∵ AC =AB ,AP =OC , ∴ △APB ≌△COA .∴ ∠3=∠AOB .∵ 点C ,D 关于OM 对称, ∴ ∠AOB =∠4. ∴ ∠3=∠4. ∴ PB ∥OD .28. 解(1)①2AP B ∠,3AP B ∠.注:答对一个得1分,含有错误答案得0分. ② ∵∠APB 是AB 关于⊙O 的内直角. ∴∠APB =90°,且点P 在⊙O 的内部.∴满足条件的点P 形成的图形为右图中的半圆H . (点A ,B 均不能取到) 过点B 做BD ⊥y 轴于点D . ∵(0,5),(4,3)A B -, ∴BD =4, AD =8,并可求出直线AB 的解析式为25y x =-. ∴ 当直线2y x b =+过直径AB 时,5b =-.连接OB ,作直线OH 交半圆H 于点E ,过点E 的直线EF ∥AB ,交y 轴于点F . ∵OA =OB ,AH =BH ∴EH ⊥AB , ∴EH ⊥EF .∴ EF 是半圆H 的切线.∵∠OAH =∠OAH ,∠OHB =∠BDA =90°, ∴△OAH ∽△BAD. ∴4182OH BD AH AD ===. ∴1122OH AH EH ==. ∴HO EO =.∵∠EOF =∠AOH ,∠FEO =∠AHO =90°, ∴ △EOF ≌△HOA. ∴OF =OA =5.∵ EF ∥AB ,直线AB 的解析式为25y x =- ∴直线EF 的解析式为25y x =+,此时5b = ∴ b 的取值范围为55b -<≤. (2)n 取得最大值为2.t 的取值范围为15t ≤<.注:本试卷各题中若有其他合理的解法请酌情给分.。
北京四中2019-2020学年九年级中考综合练习二数学试题(含答案及解析)
北京四中2019-2020学年九年级中考综合练习二数学试题一、选择题1.若式子2x x +有意义,则x 的取值范围是( ) A. 0x ≠B. 2x ≥-且0x ≠C. 2x ≥-D. 0x ≥且2x ≠ 【答案】B【解析】【分析】根据二次根式有意义的条件和分式有意义的条件得到x+2≥0且x≠0,然后求出两个不等式的公共部分即可.【详解】解:根据题意得x+2≥0且x≠0,所以x 的取值范围为x≥-2且x≠0.故选:B .【点睛】本题考查了二次根式有意义的条件:式子a 有意义的条件为a≥0.也考查了分式有意义的条件. 2.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( )A. 4.4×108B. 4.40×108C. 4.4×109D. 4.4×1010 【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:4 400 000 000=4.4×109,故选C .3.实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b【解析】【分析】根据实数在数轴上对应点的位置,判断a ,a-b 的正负,再根据绝对值的意义、二次根式的性质进行化简即可得.【详解】由数轴上点的位置知,a<0<b ,则a-b <0,∴原式=-a+a-b=-b .故选C .【点睛】本题考查了实数与数轴,二次根式的化简等,准确识图,熟练掌握和灵活运用相关性质是解题的关键.4.下列各式中,从左边到右边的变形是因式分解的是( )A. ()ax ay a a x y ++=+B. 221()1x y xy xy x y --=--C. 22244(2)a ab b a b -+=-D. 22(2)(2)4x y x y x y +-=- 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、∵(1)ax ay a a x y ++=++,故A 错误;B 、应把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成几个整式积的形式,故C 正确;D 、是整式的乘法,故D 错误;故选:C .【点睛】本题考查了因式分解的定义,因式分解是将一个多项式化为几个整式积的形式,而整式乘法是将几个整式的积展开成一个多项式,它们是互逆的恒等变形.5.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A. 3B. 1C. ﹣1D. ﹣3【答案】D【解析】由11m n -=1利用分式的加减运算法则得出m-n=-mn ,代入原式=222m mn n m mn n--+-计算可得. 【详解】∵11m n-=1, ∴n m mn mn-=1, 则n m mn -=1, ∴mn=n-m ,即m-n=-mn ,则原式=()22m n mnm n mn ---+=22mn mn mn mn ---+=3mn mn-=-3, 故选D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用. 6.已知二次函数2y ax bx c =++中,函数y 与自变量x 的部分对应值如表:则当1x ≥时,y 的最小值是( )A. 2B. 1C. 12D. 0【答案】B【解析】【分析】先用待定系数法求出二次函数的解析式,得出其对称轴的直线方程,进而可得出结论.【详解】解:∵由表可知,当x=-1时,y=10,当x=0时,y=5,当x=1时,y=2, ∵1052a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得145a b c =⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为y=x 2-4x+5,∴其对称轴为直线x=42 22ba--=-=.∵x≥1,∴当x=2时,y最小=2420161 44ac ba--==.故选择:B.【点睛】本题考查的是二次函数的最值,熟知用待定系数法求二次函数的解析式是解答此题的关键.7.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是()A. 12B. 14C. 16D. 18【答案】C【解析】延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】 由抛物线的开口方向、对称轴位置、与y 轴的交点位置判断出a 、b 、c 与0的关系,进而判断①;根据抛物线对称轴为x =2b a-=1判断②;根据函数的最大值为:a+b+c 判断③;求出x =﹣1时,y <0,进而判断④;对ax 12+bx 1=ax 22+bx 2进行变形,求出a (x 1+x 2)+b =0,进而判断⑤.【详解】解:①抛物线开口方向向下,则a <0,抛物线对称轴位于y 轴右侧,则a 、b 异号,即b >0,抛物线与y 轴交于正半轴,则c >0,∴abc <0,故①错误;②∵抛物线对称轴为直线x =2b a-=1, ∴b =﹣2a ,即2a+b =0,故②正确;③∵抛物线对称轴为直线x =1,∴函数的最大值为:a+b+c ,∴当m≠1时,a+b+c >am 2+bm+c ,即a+b >am 2+bm ,故③错误;④∵抛物线与x 轴的一个交点在(3,0)的左侧,而对称轴为直线x =1,∴抛物线与x 轴的另一个交点在(﹣1,0)的右侧,∴当x =﹣1时,y <0,∴a ﹣b+c <0,故④错误;⑤∵ax 12+bx 1=ax 22+bx 2,∴ax 12+bx 1﹣ax 22﹣bx 2=0,∴a (x 1+x 2)(x 1﹣x 2)+b (x 1﹣x 2)=0,∴(x 1﹣x 2)[a (x 1+x 2)+b]=0,而x 1≠x 2,∴a (x 1+x 2)+b =0,即x 1+x 2=﹣b a,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的是②⑤,有2个.故选:B.【点睛】本题主要考查二次函数图象与系数之间的关系,解题的关键是会利用对称轴求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题9.当m= 时,方程133x mx x-=--无解.【答案】2.【解析】【分析】按照一般步骤解方程,用含有m的式子表示x,因为无解,所以x只能使最简公分母为0 的值,从而求出m.【详解】解:原方程化为整式方程得:x-1=m因为方程无解所以:x-3=0∴x=3当x=3时,m=3-1=2.考点:分式方程的解.10.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是_____.【答案】(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=13OD=2,DE=13OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=13OD=2,BE=13OA=1,∴OE=3+2=5,∴B(5,1)故答案为:(5,1)【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA是解题的关键.11.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.12.如图,在平面直角坐标系中,菱形ABCD的顶点A、B在反比例函数y=kx(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为452,则k的值为_____.【答案】5 【解析】【分析】连接AC分别交BD、x轴于点E、F.由菱形ABCD的面积为452,可求出AE的长,设点B的坐标为(4,y),则A点坐标为(1,y+154),由反比例函数图像上点的坐标特征可列方程求出y的值,从而可求出点B的坐标,进而可求出k的值.【详解】连接AC分别交BD、x轴于点E、F.由已知,A、B横坐标分别为1,4,∴BE=3,∵四边形ABCD为菱形,AC、BD为对角线∴S菱形ABCD =4×12AE•BE=452,∴AE=154,设点B的坐标为(4,y),则A点坐标为(1,y+154)∵点A、B同在y=kx图象上∴4y=1•(y+154)∴y=54,∴B 点坐标为(4,54) ∴k =5故答案为5. 【点睛】本题考查了菱形的性质,反比例函数的图像与性质. 反比例函数k y x=(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .13.根据下列表格中2y ax bx c =++的自变量x 与函数值y 的对应值, x6.17 6.18 6.19 6.20 2y ax bx c =++0.03- 0.01- 0.02 0.04判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的范围是________.【答案】6.18<x <6.19.【解析】【分析】利用二次函数和一元二次方程的性质.【详解】解:由表格中的数据看出-0.01和0.02更接近于0,故x 应取对应的范围.故答案为:6.18<x <6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.14.如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为_____.【答案】3【解析】【分析】过A 作关于直线MN 的对称点A ′,连接A′B ,由轴对称的性质可知A′B 即为PA+PB 的最小值,【详解】解:连接OB ,OA′,AA′,∵AA ′关于直线MN 对称,∴''AN A N =∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O 作OQ ⊥A′B 于Q ,Rt △A′OQ 中,OA′=2,∴A′B=2A′Q=即PA+PB 的最小值【点睛】本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键. 15.某鱼塘里养了1600条鲤鱼、若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为_________. 【答案】13【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】解:∵捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x ,可得:0.51600800x x =++ ; 解得:x=2400,经检验:x=2400是原方程的解且符合实际意义∴由题意可得,捞到鲤鱼的概率为16001160024008003=++, 故答案为:13. 【点睛】本题考查了应用频率估计的概率应用,解题的关键是明确题意,由草鱼的数量和出现的频率可以计算出鱼的数量.16.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:a .男生人数多于女生人数;b .女生人数多于教师人数;c .教师人数的2倍多于男生人数.①若教师人数为4,则女生人数的最大值为________ ②该小组人数的最小值为_______ 【答案】 (1). 6 (2). 12 【解析】 【分析】首先根据题意,设男生数,女生数,教师数分别为a b c 、、,然后根据条件列出a b c 、、的大小关系式,即可推断取值.【详解】设男生数,女生数,教师数分别为a b c 、、,则2,,,c a b c a b c N ∈>>> ①max 846a b b ⇒=>>>②min 3,635,412c a b a b a b c =⇒==⇒++=>>> 故答案为:6;12.【点睛】本题主要考查了命题的逻辑分析、简单的合情推理, 题目设计巧妙,解题时要抓住关键,逐步推断.三、解答题17.计算:02021|3(4)2tan60(1)π-+--+-︒. 【答案】3- 【解析】 【分析】根据负指数幂、零指数幂、绝对值、特殊角的三角函数值及二次根式的性质进行化简,然后根据实数的运算法则求得计算结果.【详解】解:原式=3121+- =3-【点睛】本题主要考查了负指数幂、零指数幂、绝对值、特殊角的三角函数值及二次根式的性质在实数混合计算中的综合运,难度适中.属于中考常考的基础题.18.解不等式组:2+1-1{1+2x-13x x ≥>,并把不等式组的解集在数轴上表示出来.【答案】﹣1≤x<4 【解析】【分析】求出两个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 【详解】解:解不等式①得:x≥-1; 解不等式②得:x <4.则不等式组的解集是:-1≤x <4.19.如图,正方形 ABCD 中, G 为 BC 边上一点, BE ⊥ AG 于 E , DF ⊥ AG 于 F ,连接 DE.(1)求证: ∆ABE ≅ ∆DAF ;(2)若 AF = 1,四边形 ABED 的面积为6 ,求 EF 的长. 【答案】(1)证明见详解;(2)2 【解析】 【分析】(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF ,即可根据AAS 证明△ABE ≌△DAF ; (2)设EF=x ,则AE=DF=x+1,根据四边形ABED 的面积为6,列出方程即可解决问题. 【详解】证明:(1)∵四边形ABCD 是正方形, ∴AB=AD ,∵DF ⊥AG ,BE ⊥AG ,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°, ∴∠BAE=∠ADF , 在△ABE 和△DAF 中BAE ADF AEB DFA AB AD ∠∠∠∠⎧⎪⎨⎪⎩=== ,∴△ABE≌△DAF(AAS).(2)设EF=x,则AE=DF=x+1,∵S四边形ABED=2S△ABE+S△DEF=6∴2×12×(x+1)×1+12×x×(x+1)=6,整理得:x2+3x-10=0,解得x=2或-5(舍弃),∴EF=2.【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程,属于中考常考题型.20.已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值.【答案】(1)m<2;(2)m=1.【解析】【分析】(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m2-3)=-8m+16>0,然后解不等式即可;(2)先利用m的范围得到m=0或m=1,再分别求出m=0和m=1时方程的根,然后根据根的情况确定满足条件的m的值.【详解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+16.∵方程有两个不相等的实数根,∴△>0.即﹣8m+16>0.解得m<2;(2)∵m<2,且m 为非负整数,∴m=0 或m=1,当m=0 时,原方程为x2-2x-3=0,解得x1=3,x2=﹣1(不符合题意舍去),当m=1 时,原方程为x2﹣2=0,解得 x 1=x 2=, 综上所述,m=1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 21.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),则当售价x 定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.【答案】(1)y =﹣2x +200 (40≤x ≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x ≤80,理由见解析 【解析】 【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况. (3)求得W =1350时x 的值,再根据二次函数的性质求得W ≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案. 【详解】(1)设y =kx +b ,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩, 解得:k 2b 200=-⎧⎨=⎩,∴y=﹣2x+200 (40≤x≤80);(2)W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当x=70时,W取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W=1350时,得:﹣2x2+280x﹣8000=1350,解得:x=55或x=85,∵该抛物线的开口向下,所以当55≤x≤85时,W≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.【点睛】考查二次函数的应用,解题关键是明确题意,列出相应的函数解析式,再利用二次函数的性质和二次函数的顶点式解答.22.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率m n(结果保留小数点后两位)0.68 0.74 0.68 0.69 0.68 0.70(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.【答案】(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36 【解析】 【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1-360n)=3000,然后解方程即可.【详解】(1)转动该转盘一次,获得铅笔的概率约为0.7; 故答案为 0.7(2)4000×0.5×0.7+4000×3×0.3=5000,所以该商场每天大致需要支出的奖品费用为5000元; (3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度, 则4000×3×360n +4000×0.5(1﹣360n)=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度. 故答案为36.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.23.如图,在平面直角坐标系xOy 中,直线y kx k =+与双曲线4=y x(x >0)交于点1)(,Aa .(1)求a ,k 的值;(2)已知直线l 过点(2,0)D 且平行于直线y kx k =+,点P (m ,n )(m >3)是直线l 上一动点,过点P 分别作x 轴、y 轴的平行线,交双曲线4=y x(x >0)于点M 、N ,双曲线在点M 、N 之间的部分与线段PM 、PN 所围成的区域(不含边界)记为W .横、纵坐标都是整数的点叫做整点.①当4m =时,直接写出区域W 内的整点个数;②若区域W 内的整点个数不超过8个,结合图象,求m 的取值范围.【答案】(1)4a =,=2k ;(2)① 3,② 3 4.5m <≤. 【解析】 【分析】(1)将1)(,Aa 代入4=y x可求出a ,将A 点坐标代入y kx k =+可求出k ; (2)①根据题意画出函数图像,可直接写出区域W 内的整点个数;②求出直线l 的表达式为24y x =-,根据图像可得到两种极限情况,求出对应的m 的取值范围即可.【详解】解:(1)将1)(,A a 代入4=y x得a=4 将14)(,A代入=4+k k ,得=2k (2)①区域W 内的整点个数是3②∵直线l 是过点(2,0)D 且平行于直线22y x =+ ∴直线l 的表达式为24y x =-当24=5-x 时,即=4.5x 线段PM 上有整点 ∴3 4.5m <≤【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.24.如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DFA=45,AN=210,求圆O的直径的长度.【答案】(1)证明见解析;(2)503.【解析】【分析】(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,由圆周角定理结合cos∠DFA=45,AN=210,即可求出CH、AH的长度,设圆的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O 直径的长度.【详解】解:(1)连接OF,则∠OAF=∠OFA,如图所示.∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME ∥AC ,∴∠M=∠C=2∠OAF .∵CD ⊥AB ,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF ,∠BAC=90°﹣∠C=90°﹣2∠OAF ,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC ,∴CA=CN . (2)连接OC ,如图2所示. ∵cos ∠DFA=45,∠DFA=∠ACH ,∴CH AC =45.设CH=4a ,则AC=5a ,AH=3a ,∵CA=CN ,∴NH=a ,∴AN=2222=(3)=10210AH NH a a a ++=,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r ,则OH=r ﹣6,在Rt △OCH 中,OC=r ,CH=8,OH=r ﹣6,∴OC 2=CH 2+OH 2,r 2=82+(r ﹣6)2,解得:r=253,∴圆O 的直径的长度为2r=503.【点睛】本题考查切线的性质;勾股定理;圆周角定理;解直角三角形.25.如图,在Rt ABC 中ACB 90∠=,BC 4=,AC 3.=点P 从点B 出发,沿折线B C A --运动,当它到达点A 时停止,设点P 运动的路程为x.点Q 是射线CA 上一点,6CQ x=,连接BQ.设1CBQ y S =,2ABP y S=.()1求出1y ,2y 与x 的函数关系式,并注明x 的取值范围; ()2补全表格中1y 的值;x1 2 3 4 6 1y______________________________以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,并在x 的取值范围内画出1y 的函数图象:()3在直角坐标系内直接画出2y 函数图象,结合1y 和2y 的函数图象,求出当12y y <时,x 的取值范围.【答案】(1)112y (0x 7)x =<≤,23x(0x 4)y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩;(2)12,6,4,3,2,(3)22x 6<<,见解析. 【解析】 【分析】()1根据题意可以分别求得1y ,2y 与x 的函数关系式,并注明x 的取值范围; ()2根据()1中的函数解析式,可以将表格补充完整,并画出相应的函数图象;()3根据()1中2y 的函数解析式,可以画出2y 的函数图象,然后结合图象可以得到当12y y <时,x 的取值范围,注意可以先求出12y y =时x 的值. 【详解】()1由题意可得,164BC CQ 12x y 22x⨯⋅===, 当0x 4<≤时,2x 33xy 22⋅==, 当4x 7<≤时,()27x 4y 2x 142-⨯==-+,即112y (0x 7)x =<≤,23x(0x 4)y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩;()1122y (0x 7)x=<≤,∴当x 1=时,y 12=;当x 2=时,y 6=;当x 3=时,y 4=;当x 4=时,y 3=;当x 6=时,y 2=; 故答案为12,6,4,3,2;在x 的取值范围内画出1y 的函数图象如图所示;()23x (0x 4)3y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩, 则2y 函数图象如图所示, 当123x x 2=时,得x 22=122x 14x=-+时,x 6=; 则由图象可得,当12y y <时,x 的取值范围是22x 6<<.【点睛】本题考查一次函数的图象、反比例函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.26.平面直角坐标系xOy 中,直线44y x =+与轴,y 轴分别交于点A ,B .抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标和抛物线的对称轴;(2)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.【答案】(1)C (5,4);对称轴x=1;(2)a≥13或a <43-或a=-1. 【解析】【分析】(1)根据坐标轴上点的坐标特征可求点B 的坐标,根据平移的性质可求点C 的坐标;根据坐标轴上点的坐标特征可求点A 的坐标,进一步求得抛物线的对称轴;(2)结合图形,分三种情况:①a>0;②a<0,③抛物线的顶点在线段BC上;进行讨论即可求解【详解】解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B向右平移5个单位长度,得到点C,∴C(5,4);又∵与x轴交点:令y=0代入直线y=4x+4得x=-1,∴A(-1,0),∵点B向右平移5个单位长度,得到点C,将点A(-1,0)代入抛物线y=ax2+bx-3a中得0=a-b-3a,即b=-2a,∴抛物线的对称轴x=21 22b aa a--=-=;(2)∵抛物线y=ax2+bx-3a经过点A(-1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=-3a,∵抛物线与线段BC恰有一个公共点,∴-3a<4,a>43 -,将x=5代入抛物线得y=12a,∴12a≥4,a≥13,∴a≥13;②a<0时,如图2,将x=0代入抛物线得y=-3a,∵抛物线与线段BC恰有一个公共点,∴-3a>4,a<43 -,将x=5代入抛物线得y=12a,∴12a<4∴a<13,∴a<43 -;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a-2a-3a,解得a=-1.综上所述::a≥13或a<43-或a=-1.【点睛】本题考查了待定系数法求函数解析式、二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握解一元一次方程,待定系数法求抛物线解析式.本题属于中档题,难度不大,但涉及知识点较多,需要对二次函数足够了解才能快捷的解决问题.27.在菱形ABCD 中,60BAD ∠=︒.(1)如图1,点E 为线段AB 的中点,连接DE ,CE .若4AB =,求线段EC 的长.(2)如图2,M 为线段AC 上一点(不与A ,C 重合),以AM 为边向上构造等边三角形AMN ∆,线段AN 与AD 交于点G ,连接NC ,DM ,Q 为线段NC 的中点.连接DQ ,MQ 判断DM 与DQ 的数量关系,并证明你的结论.(3)在(2)的条件下,若3AC =DM CN +的最小值.【答案】(1)EC=27(2)DM=2DQ ;(3)DM+CN 的最小值为2.【解析】【分析】(1)如图1,连接对角线BD ,先证明△ABD 是等边三角形,根据E 是AB 的中点,由等腰三角形三线合一得:DE ⊥AB ,利用勾股定理依次求DE 和EC 的长;(2)如图2,作辅助线,构建全等三角形,先证明△ADH 是等边三角形,再由△AMN 是等边三角形,得条件证明△ANH ≌△AMD (SAS ),则HN=DM ,根据DQ 是△CHN 的中位线,得HN=2DQ ,由等量代换可得结论.(3)先判断出点N 在CD 的延长线上时,CN+DM 最小,最小为CH ,再判断出∠ACD=30°,即可用三角函数求出结论.【详解】解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD 是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=12∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE=224223-=,∵DC∥AB,∴∠EDC=∠DEA=90°,在Rt△DEC中,DC=4,EC=22224(23)27DC DE+=+=;(2)如图2,延长CD至H,使DH=CD,连接NH、AH,∵AD=CD ,∴AD=DH ,∵CD ∥AB ,∴∠HDA=∠BAD=60°,∴△ADH 是等边三角形,∴AH=AD ,∠HAD=60°,∵△AMN 是等边三角形,∴AM=AN ,∠NAM=60°,∴∠HAN+∠NAG=∠NAG+∠DAM ,∴∠HAN=∠DAM ,在△ANH 和△AMD 中,AH AD HAN DAM AN AM =⎧⎪∠=∠⎨⎪=⎩∴△ANH ≌△AMD (SAS ),∴HN=DM ,∵D 是CH 的中点,Q 是NC 的中点,∴DQ 是△CHN 的中位线,∴HN=2DQ ,∴DM=2DQ .(3)如图2,由(2)知,HN=DM ,∴要CN+DM 最小,便是CN+HN 最小,即:点C ,H ,N 在同一条线上时,CN+DM 最小,此时,点D 和点Q 重合,即:CN+DM 的最小值为CH ,如图3,由(2)知,△ADH 是等边三角形,∴∠H=60°.∵AC 是菱形ABCD 的对角线,∴∠ACD=12∠BCD=12∠BAD=30°, ∴∠CAH=180°-30°-60°=90°,在Rt △ACH 中,CH=cos30AC =2, ∴DM+CN 的最小值为2.【点睛】此题是四边形综合题,主要考查了菱形的性质、三角形的中位线、三角形全等的性质和判定、等边三角形的性质和判定,本题证明△ANH ≌△AMD 是关键,并与三角形中位线相结合,解决问题;第二问有难度,注意辅助线的构建.28.定义:点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如,如图1,正方形ABCD 满足1,0A ,()2,0B ,()2,1C ,()1,1D ,那么点()0,0O 到正方形ABCD 的距离为1.(1)如果点()0,G b ()0b <到抛物线2yx 的距离为3,请直接写出b 的值________. (2)求点()3,0M 到直线3y x 的距离.(3)如果点N 在直线2x =上运动,并且到直线4y x =+的距离为4,求N 的坐标.【答案】(1)b=-3;(2)()3,0M 到直线3y x 的距离为32;(3)(2, 6-42)或(2, 6+42)【解析】【分析】 (1)作草图可知,当G 在原点下方时,b=-3;(2)过点M 作直线y=x+3的垂线,与直线y=x+3相交于点H ,则线段MH 的长即为点M 到直线y=x+3的距离.由等腰直角三角形MH=22ME 求解即可;(3)分N 在直线y=x+4的上方和下方求解即可.【详解】解:(1)由图可知线段GO 长即为点G 到抛物线2y x 的距离,故GO=3,所以b=-3(2)如图,直线y=x+3与x ,y 轴分别交于点E(-3,0),F(0,3),直线y=x+3与x 轴所成的角为45°,过点M 作MH ⊥EF ,交EF 与H ,线段MH 的长度即为点M 到直线y=x+3的距离,且易知H 点与F 点重合.∵FEM ∆为等腰直角三角形,∴EM=2FM , 又∵EF=3-(-3)=6,∴MF=22EM=22×6=32 ∴MH=32即点()3,0M 到直线3yx 的距离为32;(3)如图K 为直线x=2与x 轴的交点,故K(2,0),F 为直线x=2和直线y=x+4的交点,故F(2,6)①当点N 在直线y=x+4的下方N 1处时,过点N 1作N 1S 垂直直线y=x+4,∵点N 到直线4y x =+距离为4,∴SN 1=4,点E 是直线y=x+4与x 轴的交点,∴E(-4,0),且∠FEK=45°,∴1,EFK SFN ∆∆为等腰直角三角形∴EK=FK=2-(-4)=6,F N 1=21S=42∴KN 1=FK- F N 1=6-42∴N 1(2, 6-42②当点N 在直线y=x+4的上方N 2处时,过点N 2作N 2T 垂直直线y=x+4,同理可得:N 2T=4,N 2F=2T=∴N 2K=KF+FN 2=6+∴N 2(2, 6+故点N 在直线2x =上运动,并且到直线4y x =+的距离为4,N 的坐标为(2, 6-或(2, 6+【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2020年广东省中考模拟试卷·2019-2020学年度第二学期佛山市大沥镇初中教学质量检测九年级数学试题(含答案)
2019-2020学年度第二学期大沥镇初中教学质量检测九 年 级 数 学 试 题命题学校:石门实验学校 命题人:农成遐 审核人:李富泉 把关人:大沥镇教育局左世良一.选择题(共10小题,每小题3分,共30分) 1.﹣2020的相反数是( ) A .B .C .2020D .﹣20202.港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m ,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为( ) A .5.5×105B .55×104C .5.5×104D .5.5×1063.如图,下列结论正确的是( )A .c >a >bB .C .|a |<|b |D .abc >04.如表是我国近六年“两会”会期(单位:天)的统计结果:则我国近六年“两会”会期(天)的众数和中位数分别是( ) A .13,11 B .13,13 C .13,14 D .14,13.5 5.在Rt △ABC ,∠C =90°,sin B =,则sin A 的值是( ) A . B . C . D . 6.下列运算中,计算正确的是( ) A .2a +3a =5a 2 B .(3a 2)3=27a 6C .x 6÷x 2=x 3D .(a +b )2=a 2+b 27.下列命题中,假命题的是()A .分别有一个角是110的两个等腰三角形相似B .若5x =8y (xy ≠0),则58y xC .如果两个三角形相似,则他们的面积比等于相似比D .有一个角相等的两个菱形相似 8.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x 个,那么可列方程为( ) A .=B .=C .=D .=9.如图,点A 是反比例函数y =2x(x >0)的图象上任意一点,AB //x 轴,交反比例函数y =-3x的图象于点B ,以AB 为边作□ABCD ,其中C 、D在x 轴上,则S □ABCD 为( )A. 2B. 3C. 4D. 510.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论: ①abc >0;②2a +b =0;③若m ≠1,则a +b >am 2+bm ;④a ﹣b +c >0;⑤若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则x 1+x 2=2. 其中正确的有( )A .2个B .3个C .4个. D.5个二.填空题(共7小题,每小题4分,共28分) 11.因式分解:x 2﹣9= .12.在平面直角坐标系中点P (﹣2,3)关于x 轴的对称点在第 象限. 13.一个正数a 的平方根分别是2m ﹣1和﹣3m +,则这个正数a 为 .14.已知反比例函数y =(k 是常数,k ≠1)的图象有一支在第二象限,那么k 的取值范围是15.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n = .16.如下左图,DE ∥BC ,DF ∥AC ,AD =4cm ,BD =8cm ,DE =5cm ,则线段BF 长为 cm .17. 如上右图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为 .三.解答题(一)(第18~20题,每题6分,共18分)18.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣119.先化简,再求值(﹣)÷,其中a,b满足a+b ﹣=0.20.如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写作法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.四.解答题(二)(第21~23题,每题8分,共24分)21.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF =,求AB的长.22.2020年4月23日是第二十五个“世界读书日”.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并将获奖人数绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.23.在水果销售旺季,某水果店购进一批优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?五.解答题(三)(第24~25题,每题10分,共20分)24.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB 交于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG(1)判断CG 与的位置关系,并说明理由;(2)求证:2OB2=BC·BF;(3)如图2,当∠DCE=2∠F,CE=3,DG=2时,求DE的长.25.如图,直线23y x c=-+与x轴交于点A(3,0),与y轴交于点B,抛物线243y x bx c=-++经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m 的值.2019-2020学年度第二学期大沥镇初中教学质量检测九年级数学答案及评分标准一.选择题(共10小题,每小题3分,满分30分)1.C .2.C.3.B4.B5.B6.B7.C8.A9.D10.B二.填空题(共7小题,每小题4分,满分28分)11.(x +3)(x ﹣3).12.第三象限.13.414.k <1.15.8.16.10.17.16三.解答题(一)(第18~20题,每题6分,共18分)18.解:原式=2×﹣1+﹣1+2.............4分=1+.......................6分19.解:原式=•.............3分=, (4)分由a +b ﹣=0,得到a +b =,则原式=2...........6分20.解:(1)如图所示:CO 与⊙O 为所求....................4分(2)相切;过O 点作OD ⊥AC 于D 点,∵CO 平分∠ACB ,∴OB =OD ,即d =r ,∴⊙O 与直线AC 相切.......................6分四.解答题(二)(第21~23题,每题8分,共24分)21.解:(1)∵E 是AC 的中点,∴AE =CE ,∵AB ∥CD ,∴∠AFE =∠CDE ,................1分在△AEF 和△CED 中,.6分∵,∴△AEF ≌△CED (AAS ),∴AF =CD ,........3分又AB ∥CD ,即AF ∥CD ,∴四边形AFCD 是平行四边形;........4分(2)∵AB ∥CD ,∴△GBF ∽△GCD ,...............5分∴=,即=,解得:CD =,...............6分∵四边形AFCD 是平行四边形,∴AF =CD =,...................7分.∴AB=AF+BF=+=6................8分22.解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人)..................2分.补全条形图如下:............3分.(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;...............4分(3)树状图如图所示,∵从四人中随机抽到甲和乙两人共有12种可能性结果,每种结果的可能性相同,恰好是甲和乙的结果有两种,分别是(甲,乙),(乙,甲)..............7分∴抽取两人恰好是甲和乙的概率是=........................................................8分23.解:(1)设y与x之间的函数关系式为y=kx+b,..........................1分.将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y=﹣2x+80.......................................................................3分当x=29.6,y=25.2和x=28,y=26也满足上述关系式∴y与x之间的函数关系式为y=﹣2x+80.................................4分当x=23.5时,y=﹣2x+80=33...答:当天该水果的销售量为33千克................................5分(2)根据题意得:(x﹣20)(﹣2x+80)=150,...............................6分解得:x1=35,x2=25.∵20≤x≤32,∴x=25...............................7分答:如果某天销售这种水果获利150元,那么该天水果的售价为25元................................8分五.解答题(三)(第24~25题,每题10分,共20分)24.解:(1)CG与⊙O相切,理由如下:..........1分如图1,连接OC,∵AB是⊙O的直径,∠ACB=∠ACF=90°点G是EF的中点,∴GF=GC=GE∴∠AEO=∠GEC=∠GCE.............................2分∵OF⊥AB ∴∠OAC+∠AEO=90°∴∠OCA+∠GCE=90°∴OC⊥CG∵OC 是⊙O 的半径∴CG 是⊙O 相切...............................3分(2)∵∠AOE=∠FCE=90°,∠AEO=∠FEC ∴∠OAE=∠F 又∵∠B=∠B,∴△ABC∽△FBO .............................4分∴BC:BO=AB:BF 即OB·AB=BC·BF ..............................5分∵AB=2OB∴2OB 2=BC·BF ..................6分(3)由(1)知GC=GE=GF ∴∠F=∠GCF∴∠EGC=2∠F...........................7分∵∠DCE=2∠F ∴∠EGC=∠DCE ∵∠DEC=∠CEG ∴△ECD∽△EGC ...............................8分∴EC:EG=ED:EC ∵EC=3,DG=2∴3:(DE+2)=DE:3整理,得:DE 2+2DE-9=0....................................................9分010 1.............10DE DE >∴=- 分2(3,0)3y x c x A =-+25.(1)与轴交于∴0=-2+c,解得:c=2∴B(0,2)..............................1分24+,3y x bx c A B =-+ 抛物线经过(3,0)(0,2)两点-12+3010,223b c b c c +=⎧∴∴==⎨=⎩24102 (333)y x x ∴=-++抛物线的解析式为:分()()22123y x =-+由可知直线AB的解析式为,∵M(m,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N ,2410333P ∴2(m,-m+2),N(m,-m +m+2)222410242,3,2(2)4 (433333)PM m AM m PN m m m m m ∴=-+=-=-++--+=-+分24103332M(m,0),(m,-m+2),N(m,-m +m+2)∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°当∠BNP=90°时,BN⊥MN,N 点的纵坐标为241033∴2-m +m+2=2解得:m=0或m=2.5M(2.5,0).....................................................................5分当∠NBP=90°时,过点N 作NC⊥y 轴于点C,241090, ,33NBC BNC NC m BC m m∠+∠=︒==-+则∵∠NBP=90°,∴∠NBC+∠ABO=90°∴∠ABO=∠BNC ∴Rt△NCB∽Rt△BOA∴NC:OB=BC:OA2410:2():333110811(,0) (68)m m m m m M ∴=-+==∴解得:或分综上可知当以B ,P ,N 为顶点的三角形与△AMP 相似时,点M 的坐标为或;②M ,P ,N 三点为“共谐点”,有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,2241012,3()3332P MN m m m m ++==当为线段的中点时,则有2(-m+2)=-解得:三点重合,舍去或224102)0,3()1333M PN m m m ++===-当为线段的中点时,则有-m+2+(-解得:舍去或2241012),3()3334N PM m m m ++==-当为线段的中点时,则有-m+2=2(-解得:舍去或11“” (1024)M P N m 综上可知当,,三点成为共谐点时的值为或-1或-.分。
2018-2019学年第二学期期中九年级数学试卷(含答案)
ABCD第4题图第6题图天水市藉口中学2018—2019学年度九年级期中考试卷数学试题A 卷(满分100分)一、选择题(共10小题,每小题4分,共40分) 1()A .BC D .2 2.函数9-=x y 中自变量x 的取值范围是( )A .x > 0B .x ≥0C .x >9D .x ≥93.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:方差若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择 ( )A .甲B .乙C .丙D .丁4.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为 ( )A .60°B .50°C .45°D .30°5.已知1-=x 是一元二次方程012=++mx x 的一个根,那么m 的值是( )A .0B .1C .2D .-26.如图,AB 、CD 是⊙O 的两条弦,连接AD 、BC .若60AD ∠=︒B ,则CD ∠B 的度数为( ) A .40︒ B .50︒ C .60︒ D .70︒7.如图,每个大正方形均由边长为1的小正方形组成,则下列图中的三角形与△ABC 相似的是 ( )81a =-,则a 的取值范围是( )A .a >1B .a <1C .a ≥1D .a ≤19.如图,在Rt △ABC 中,∠C=900,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cos α的值为 ( )A .53 B .54 C .34 D .3410.已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:① a+b+c<0;② a-b+c<0;③b+2a<0;④ abc>0 . 其中所有正确结论的序号是 ( )A .③④BC .②③ D第9题图 第13题图 第18题图二、填空题(共8小题,每小题4分,共32分)11.在网络上搜索“奔跑吧,兄弟”,能搜索到与之相关的结果为35 800 000个,将35 800 000用科学记数法表示为______ . 12.分解因式:x 2-9=______.13.如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是14.已知方程 221211x x x x +-=+,设21x y x +=,则用换元法得到的方程为 ; 15.方程1352(5)(2)x x ax x x x +++=----有增根x=2,则a=16.如图,圆锥的底面半径为1,母线长为3,则这个圆锥的侧面积是 .(结果保留π) 17.若a 2-3a +1=0,则221a a+= 18.如图,二次函数342+-=x x y 的图象交x 轴于A .B 两点,交y 轴于点C ,则△ABC 的面积等于。
2019-2020学年度第二学期期中检测九年级数学试题及答案
2019—2020学年度第二学期期中考试初三数学试题(考试时间:120分钟 试卷分值:150分) 命题、校对:一、选择题(每题只有一个是正确的,每题3分,共18分) 1、-12 的相反数是( )A 、12B 、-2C 、-12D 、22、在一条东西向的跑道上,小亮先向东走了8米,记作“+8米”,又向西走了10米,此时他的位置可记作( )A 、+2米B 、-2米C 、+18米D 、-18米 3、在下列四个几何体中,主视图与俯视图都是圆的为( )4、一组数据3,4,x ,6,8的平均数是5,则这组数据的中位数是( )A 、4B 、5C 、6D 、7 5、如图,AB 、AC 是⊙O 的两条切线,B 、C 是切点,若∠A =70°, 则∠BOC 的度数为( )A 、130°B 、120°C 、110°D 、100°6.如图,在钝角△ABC 中,分别以AB 和AC 为斜边向△ABC 的外侧作等腰直角三角形ABE 和等腰直角三角形ACF ,EM 平分∠AEB 交AB 于点M ,取BC 中点D ,AC 中点N ,连接DN 、DE 、DF .下列结论: ①EM=DN ; ②S △CDN =31S 四边形ABDN ; ③DE=DF ; ④DE ⊥DF .其中正确的结论的个数是( )7、实数16的算术平方根是__________.8、在函数y = 1x -2中,自变量x 的取值范围是__________.9、今年一季度东台财政收入列江苏沿海各县市区财政收入前茅达3 230 000 000元,将这个数用科学计数法表示为________________________10、分解因式:2ax ax -= .11、抛物线y =x 2-bx +3的对称轴是直线x =1,则b 的值为__________. 12、已知圆锥的底面半径为3,高为4,则这个圆锥的侧面积为 . 13、如图,在2×2的网格中,每个小正方形的边长都是1,图中的阴影部分图案是由一个点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积为 .14、在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1), 将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的 坐标为(-2,2),则点N ′的坐标为 .15、质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子 一次,则向上一面的数字是偶数的概率为 . 16、如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =﹣x +4上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S 2019=. 三、解答题(共11大题,合计102分) 17、(8分)计算: 203(4)(π3)2|5|-+----18、(8分)解不等式组⎩⎨⎧-≥+>+14201x x x19、(8分) 化简)31(96922a a a a -÷++-,并选一个你喜欢的a 的值代入求值。
2019-2020学年浙江省杭州市余杭区九年级(上)期中数学试卷 解析版
2019-2020学年九年级(上)期中数学试卷一、选择题1.比较二次函数y=2x2与y=﹣x2+1,则()A.开口方向相同B.开口大小相同C.顶点坐标相同D.对称轴相同2.已知圆的半径为r,圆外的点P到圆心的距离为d,则()A.d>r B.d=r C.d<r D.d≤r3.如图,点A,B,C在⊙O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.36°C.18°D.54°4.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A.B.C.D.15.一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°6.如图,三角形与⊙O叠合得到三条相等的弦AB,CD,EF,则以下结论正确的是()A.2∠AOB=∠AEBB.==C.==D.点O是三角形三条中线的交点7.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m 的取值范围是()A.m≤0 B.0<m≤1 C.m≤1 D.m≥18.若点A(﹣,y1),B(﹣1,y2),C(,y3)都在抛物线y=﹣x2﹣4x+m上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y1>y3>y2D.y2>y1>y39.如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB 于点D,交AC于点E,则∠A的度数为()A.45°﹣αB.αC.45°+αD.25°+α10.已知二次函数y=x2﹣bx+1(﹣1≤b≤1),当b从﹣1逐渐变化到1的过程中,图象()A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.向往右下方移动,再往右上方移动二、填空题:本题有6个小题,每小题4分,共24分.11.甲、乙、丙三人排成一排,其中甲、乙两人位置恰好相邻的概率是.12.二次函数y=ax2+bx+c(a≠0)的部分对应值如右表,则不等式ax2+bx+c>0的解集为.x﹣3 ﹣2 ﹣1 0 1 2 3 4y 6 0 ﹣4 ﹣6 ﹣7 ﹣4 0 613.如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为.14.如图,A、B是⊙O上两点,弦AB=a,P是⊙O上不与点A、B重合的一个动点,连结AP、PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=.(用含a的代数式表示).15.已知⊙O的半径OA=r,弦AB,AC的长分别是r,r,则∠BAC的度数为.16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=.三、解答题:本题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.已知二次函数的图象与x轴交于点(﹣1,0)和(3,0),并且与y轴交于点(0,3).求这个二次函数表达式.18.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于点D,BC于点E,连接ED.求证:ED=EC.19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0(a≠0)的实数解;(2)若方程ax2+bx+c=k有两个不相等的实数根,写出k的取值范围;(3)当0<x<3时,写出函数值y的取值范围.20.一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球.(2)搅匀后从中任意摸出2个球,2个都是白球.(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?21.在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上的一点,连接BD、AD、OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6cm,求图中劣弧的长.22.如图,在同一平面直角坐标系中,二次函数y=ax2+bx+c与二次函数y=(a+3)x2+(b ﹣15)x+c+18的图象与x轴的交点分别是A,B,C.(1)判断图中经过点B,D,C的图象是哪一个二次函数的图象?试说明理由.(2)设两个函数的图象都经过点B、D,求点B,D的横坐标.(3)若点D是过点B、D、C的函数图象的顶点,纵坐标为﹣2,求这两个函数的解析式.23.四边形ABCD是⊙O的内接四边形,连结AC、BD,且DA=DB.(1)如图1,∠ADB=60°.求证:AC=CD+CB.(2)如图2,∠ADB=90°.①求证:AC=CD+CB.②如图3,延长AD、BC交于点P,且DC=CB,探究线段BD与DP的数量关系,并说明理由.参考答案一、选择题:本题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项最符合题目要求.1.比较二次函数y=2x2与y=﹣x2+1,则()A.开口方向相同B.开口大小相同C.顶点坐标相同D.对称轴相同【分析】根据题意的函数解析式和二次函数的性质可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵二次函数y=2x2与y=﹣x2+1,∴函数y=2x2的开口向上,对称轴是y轴,顶点坐标为(0,0);函数y=﹣x2+1的开口向下,对称轴是y轴,顶点坐标为(0,1);故选项A、C错误,选项D正确;∵二次函数y=2x2中的a=2,y=﹣x2+1中的a=﹣,∴它们的开口大小不一样,故选项B错误;故选:D.2.已知圆的半径为r,圆外的点P到圆心的距离为d,则()A.d>r B.d=r C.d<r D.d≤r【分析】直接根据点与圆的位置关系即可得出结论.解:∵⊙O的半径为r,点P到圆心的距离为d,P点在圆外,∴d>r,故选:A.3.如图,点A,B,C在⊙O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.36°C.18°D.54°【分析】由点A,B,C在⊙O上,∠BOC=72°,直接利用圆周角定理求解即可求得答案.解:∵点A,B,C在⊙O上,∠BOC=72°,∴∠BAC=∠BOC=36°.故选:B.4.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A.B.C.D.1【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率.解:设两双只有颜色不同的手套的颜色为红和绿,列表得:(红,绿)(红,绿)(绿,绿)﹣(红,绿)(红,绿)﹣(绿,绿)(红,红)﹣(绿,红)(绿,红)﹣(红,红)(绿,红)(绿,红)∵一共有12种等可能的情况,恰好是一双的有4种情况,∴恰好是一双的概率=.故选:B.5.一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°【分析】利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.解:∵一个扇形的弧长是10πcm,面积是60πcm2,∴S=Rl,即60π=×R×10π,解得:R=12,∴S=60π=,解得:n=150°,故选:B.6.如图,三角形与⊙O叠合得到三条相等的弦AB,CD,EF,则以下结论正确的是()A.2∠AOB=∠AEBB.==C.==D.点O是三角形三条中线的交点【分析】根据圆心角,弧,弦之间的关系解决问题即可.解:∵AB=CD=EF,∴==,故选:B.7.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m 的取值范围是()A.m≤0 B.0<m≤1 C.m≤1 D.m≥1【分析】根据函数解析式可知,开口方向向下,在对称轴的右侧y随x的增大而减小,在对称轴的左侧,y随x的增大而增大.解:∵函数的对称轴为x=m,又∵二次函数开口向下,∴在对称轴的右侧y随x的增大而减小,∵x>1时,y随x的增大而减小,∴m≤1.故选:C.8.若点A(﹣,y1),B(﹣1,y2),C(,y3)都在抛物线y=﹣x2﹣4x+m上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y1>y3>y2D.y2>y1>y3【分析】先求出二次函数y=﹣x2﹣4x+m的图象的对称轴,然后判断出A(﹣,y1),B(﹣1,y2),C(,y3)在抛物线上的位置,再根据二次函数的增减性求解.解:∵二次函数y=﹣x2﹣4x+m中a=﹣1<0,∴开口向下,对称轴为x=﹣=﹣2,∵A(﹣,y1)到对称轴的距离大于B(﹣1,y2)到对称轴的距离,∴y1<y2,又∵B(﹣1,y2),C(,y3)都在对称轴的右侧,而在对称轴的右侧,y随x得增大而减小,故y2>y3.∵A(﹣,y1)到对称轴的距离小于C(,y3)到对称轴的距离,∴y1>y3,∴y2>y1>y3.故选:D.9.如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB 于点D,交AC于点E,则∠A的度数为()A.45°﹣αB.αC.45°+αD.25°+α【分析】连接OD,求得∠DCE=α,得到∠BCD=90°﹣α,根据等腰三角形的性质和三角形的内角和即可得到结论.解:连接OD,∵的度数为α,∴∠DCE=α,∵∠ACB=90°,∴∠BCD=90°﹣α,∵BC=DC,∴∠B=(180°﹣∠BCD)=(180°﹣90°+α)=45°+α,∴∠A=90°﹣∠B=45°﹣α,故选:A.10.已知二次函数y=x2﹣bx+1(﹣1≤b≤1),当b从﹣1逐渐变化到1的过程中,图象()A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.向往右下方移动,再往右上方移动【分析】先分别求出当b=﹣1、0、1时函数图象的顶点坐标即可得出答案.解:当b=﹣1时,此函数解析式为:y=x2+x+1,顶点坐标为:(﹣,);当b=0时,此函数解析式为:y=x2+1,顶点坐标为:(0,1);当b=1时,此函数解析式为:y=x2﹣x+1,顶点坐标为:(,).故函数图象应先往右上方移动,再往右下方移动.故选:C.二、填空题:本题有6个小题,每小题4分,共24分.11.甲、乙、丙三人排成一排,其中甲、乙两人位置恰好相邻的概率是.【分析】根据题意可以画出相应的树状图,从而可以求得相应的概率.解:由题意可得,所列树状图如下图所示,故甲、乙两人位置恰好相邻的概率是,故答案为:.12.二次函数y=ax2+bx+c(a≠0)的部分对应值如右表,则不等式ax2+bx+c>0的解集为x>3或x<﹣2 .x﹣3 ﹣2 ﹣1 0 1 2 3 4y 6 0 ﹣4 ﹣6 ﹣7 ﹣4 0 6【分析】本题通过描点画出图象,即可根据图象在x轴上部的那部分得出不等式ax2+bx+c >0的解集.解:通过描点作图如下,从图中可看出不等式ax2+bx+c>0的解集为x>3或x<﹣2.13.如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为6acm.【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30°,再根据锐角三角函数的知识求解.解:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=6cm,∠AOB=60°,∴cos∠BAC=,∴AM=6×=3(cm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=6(cm).故答案为6cm.14.如图,A、B是⊙O上两点,弦AB=a,P是⊙O上不与点A、B重合的一个动点,连结AP、PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=a.(用含a的代数式表示).【分析】先根据垂径定理得出AE=PE,PF=BF,故可得出EF是△APB的中位线,再根据中位线定理即可得出EF∥AB,EF=AB即可.解:连接AB,∵OE⊥AP于E,OF⊥PB于F,∴AE=PE,PF=BF,∴EF是△APB的中位线,∴EF∥AB,EF=AB=,故答案为:a.15.已知⊙O的半径OA=r,弦AB,AC的长分别是r,r,则∠BAC的度数为15°或75°.【分析】根据圆的轴对称性知有两种情况:两弦在圆心的同旁;两弦在圆心的两旁.根据垂径定理和三角函数求解.解:过点O作OM⊥AC于M,在直角△AOM中,OA=r.根据OM⊥AC,则AM=AC=r,所以cos∠OAM=,则∠OAM=30°,同理可以求出∠OAB=45°,当AB,AC位于圆心的同侧时,∠BAC的度数为45°﹣30°=15°;当AB,AC位于圆心的异侧时,∠BAC的度数为45°+30°=75°.故答案为15°或75°.16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=1或0或.【分析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m的值.解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与Y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1或0或.三、解答题:本题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.已知二次函数的图象与x轴交于点(﹣1,0)和(3,0),并且与y轴交于点(0,3).求这个二次函数表达式.【分析】根据二次函数的图象与x轴交于点(﹣1,0)和(3,0),并且与y轴交于点(0,3),可以设该函数的交点式,然后根据与y轴交于点(0,3),即可求得a的值,从而可以得到该函数的解析式.解:设二次函数的解析式为y=a(x+1)(x﹣3),∵该二次函数的图象与y轴交于点(0,3),∴3=a(0+1)×(0﹣3),解得,a=﹣1,∴该函数解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3,即这个二次函数表达式是y=﹣x2+2x+3.18.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于点D,BC于点E,连接ED.求证:ED=EC.【分析】连接AE,根据圆周角定理可得∠AEB=90°,再根据等腰三角形三线合一可得∠BAE=∠CAE,进而可得弧BE=弧DE,根据等弧所对的弦相等可得结论.【解答】证明:连接AE,∵AB是直径,∴∠AEB=90°,∵AB=AC,∴BE=CE,∠BAE=∠CAE,∴弧BE=弧DE,∴BE=ED,∴ED=EC19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0(a≠0)的实数解;(2)若方程ax2+bx+c=k有两个不相等的实数根,写出k的取值范围;(3)当0<x<3时,写出函数值y的取值范围.【分析】(1)根据函数图象中的数据可以得到方程ax2+bx+c=0(a≠0)的实数解;(2)根据图象中的数据可以得到方程ax2+bx+c=k有两个不相等的实数根时,k的取值范围;(3)根据图象中的数据可以得到当0<x<3时,函数值y的取值范围..解:(1)由图象可得,当y=0时,x=﹣1或x=3,故方程ax2+bx+c=0(a≠0)的实数解是x1=﹣1,x2=3;(2)由图象可知,函数y=ax2+bx+c(a≠0)的最小值是y=﹣4,故方程ax2+bx+c=k有两个不相等的实数根,k的取值范围是k>﹣4;(3)由图象可知,当0<x<3时,函数值y的取值范围﹣4≤y<0.20.一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球.(2)搅匀后从中任意摸出2个球,2个都是白球.(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?【分析】(1)由概率公式计算即可;(2)列举得出所有等可能的情况数,找出两次都是白球的情况数,即可求出所求的概率;(3)由题意得出方程,解方程即可.解:(1)将“恰好是白球”记为事件A,则P(A)==.(2)画树状图如图所示:共有12个等可能的结果,从中任意摸出2个球,“2个都是白球”记为事件B,则P(B)==.(3)设放入n个黑球,由题意得=,解得n=10,即放入了10个黑球.21.在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上的一点,连接BD、AD、OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6cm,求图中劣弧的长.【分析】(1)由在⊙O中,弦BC垂直于半径OA,根据垂径定理可得=,则可求得∠AOC的度数;(2)首先连接OB,由弦BC=6cm,可求得半径的长,继而求得图中劣弧的长.解:(1)∵在⊙O中,弦BC垂直于半径OA,∴=,∴∠AOC=2∠ADB=2×30°=60°;(2)连接OB,∴∠BOC=2∠AOC=120°,∵弦BC=6cm,OA⊥BC,∴CE=3cm,∴OC==2cm,∴劣弧的长为:=π.22.如图,在同一平面直角坐标系中,二次函数y=ax2+bx+c与二次函数y=(a+3)x2+(b ﹣15)x+c+18的图象与x轴的交点分别是A,B,C.(1)判断图中经过点B,D,C的图象是哪一个二次函数的图象?试说明理由.(2)设两个函数的图象都经过点B、D,求点B,D的横坐标.(3)若点D是过点B、D、C的函数图象的顶点,纵坐标为﹣2,求这两个函数的解析式.【分析】(1)根据a+3>a作出判断;(2)联立方程组,通过解方程组求得答案;(3)设所求解析式为y=a(x﹣3)2﹣2,把点B的坐标(2,0)代入求值.解:(1)因为a+3>a,所以经过B、D、C的图象是y=(a+3)x2+(b﹣15)x+c+18的图象.(2)解方程组解得x1=2,x2=3,∴点B,D的横坐标分别为2,3.(3)设所求解析式为y=a(x﹣3)2﹣2,把点B的坐标(2,0)代入,解得a=2,即y=2x2﹣12x+16,因此左边抛物线的解析式为y=﹣x2+3x﹣2.23.四边形ABCD是⊙O的内接四边形,连结AC、BD,且DA=DB.(1)如图1,∠ADB=60°.求证:AC=CD+CB.(2)如图2,∠ADB=90°.①求证:AC=CD+CB.②如图3,延长AD、BC交于点P,且DC=CB,探究线段BD与DP的数量关系,并说明理由.【分析】(1)如图1中,在AC上截取AF=BC,连结DF.证明△DAF≌△DBC(SAS),推出△DFC为等边三角形即可解决问题.(2)①结论:AC=CD+CB,如图2,在AC上截取AF=BC,连结DF.证明△DAF≌△DBC(SAS)即可解决问题.②结论:BD=2DP.如图3,过点D作DF⊥AC于点F,证明△DFE≌△CBE(AAS),△ADE≌△BDP(ASA)即可解决问题.【解答】(1)证明:如图1中,在AC上截取AF=BC,连结DF.在△DAF与△DBC中,∴△DAF≌△DBC(SAS),∴DF=DC,∠CDB=∠ADF,∵∠CDF=∠CDB+∠EDF=∠ADF+∠EDF=∠ADB=60°,∴△DFC为等边三角形,∴DC=FC,∴AC=AF+FC=BC+CD.(2)①解:结论:AC=CD+CB.理由:如图2,在AC上截取AF=BC,连结DF.在△DAF与△DBC中,∴△DAF≌△DBC(SAS),∴DF=DC,∠CDB=∠ADF,∵∠CDF=∠CDB+∠EDF=∠ADF+∠EDF=∠ADB=90°,∴△DFC为等腰直角三角形,∴FC=DC,∴AC=AF+FC=CD+CB.②解:结论:BD=2DP.理由:如图3,过点D作DF⊥AC于点F,∵∠ACD=∠ABD=45°,∴△CFD是等腰直角三角形,∴CD=DF,∵CD=CB,∴DF=CB,在△DFE和△CBE中,,∴△DFE≌△CBE(AAS),∴DE=BE=BD,在△ADE和△BDP中,,∴△ADE≌△BDP(ASA),∴DP=DE=BE=BD,即BD=2DP.。
2019-2020学年人教新版重庆八中九年级第二学期(3月份)定时练习数学试卷 含解析
2019-2020学年九年级第二学期(3月份)定时练习数学试卷一、选择题1.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°2.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF 3.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6B.8C.10D.124.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,若∠FBE=40°,则∠DFE=()A.35°B.40°C.50°D.30°5.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.186.如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF =60°,则CF的长是()A.B.C.﹣1D.二.填空题7.如图,在矩形ABCD中,AD=4,DC=3,将△ADC按逆时针方向绕点A旋转到△AEF (点A、B、E在同一直线上),连接CF,则CF=.8.如图平行四边形ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△BGC=.9.已知矩形ABCD的两对角线交于点O,该矩形的周长为24,△AOD与△AOB的周长之差为2,则矩形ABCD的面积为.10.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=.三.解答题11.如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD.(1)求证:四边形BCED是平行四边形;(2)若DA=DB=2,cos A=,求点B到点E的距离.12.如图,在矩形ABCD中,EF垂直平分BD.(1)判断四边形BEDF的形状,并说明理由.(2)已知BD=20,EF=15,求矩形ABCD的周长.13.在平行四边形ABCD中,BE⊥AD,F为CD边上一点,满足BF=BC=BE.(1)如图1,若BC=12,CD=13,求DE的长;(2)如图2,过点G作DG∥BE交BF于点G.求证:BG=AE+DG.14.如图,正方形ABCD中,点E为边BC边上一点,连接AE,以AE为边在正方形内部作等腰直角△AEF,且∠AFE=90°,连接DF.(1)如图1,点M为AE的中点,若∠BAE=30°,BM=2,求四边形ABEF的周长;(2)如图2,求证:AB=DF+BE.参考答案一.选择题1.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.2.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF 解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD是平行四边形.故选:D.3.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6B.8C.10D.12解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故选:C.4.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,若∠FBE=40°,则∠DFE=()A.35°B.40°C.50°D.30°解:如图,延长EF、BC交于点G.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠CGF=∠DEF,∵F为DC中点,∴DF=CF=CD,在△EDF和△GCF中:∴△EDF≌△GCF(AAS),∴EF=GF,∵BE⊥AD,∴BE⊥BG,∴∠EBG=90°,∴BF=EF=GF,∴∠FEB=∠FBE=40°,∴∠BFG=∠FEB+∠FBE=80°,∴∠FBG=∠FGB=50°,∵CD=2AD,∴CF=BC,∴∠CFB=∠FBG=50°,∴∠CFG=∠BFG﹣∠CFB=30°,∴∠DFE=∠CFG=30°.故选:D.5.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,(本题也可以证明两个阴影部分的面积相等,由此解决问题)故选:C.6.如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF =60°,则CF的长是()A.B.C.﹣1D.解:∵四边形ABCD是正方形,∴∠B=∠D=∠BAD=90°,AB=BC=CD=AD=1,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴∠BAE=∠DAF,∵∠EAF=60°,∴∠BAE+∠DAF=30°,∴∠DAF=15°,在AD上取一点G,使∠GFA=∠DAF=15°,如图所示:∴AG=FG,∠DGF=30°,∴DF=FG=AG,DG=DF,设DF=x,则DG=x,AG=FG=2x,∵AG+DG=AD,∴2x+x=1,解得:x=2﹣,∴DF=2﹣,∴CF=CD﹣DF=1﹣(2﹣)=﹣1;故选:C.二.填空题(每题6分,共24分)7.如图,在矩形ABCD中,AD=4,DC=3,将△ADC按逆时针方向绕点A旋转到△AEF (点A、B、E在同一直线上),连接CF,则CF=5.解:∵△ADC按逆时针方向绕点A旋转到△AEF,∴△ADC≌△AEF,∴∠EAF=∠DAC,AF=AC,∴∠EAF+∠EAC=∠DAC+∠EAC,∴∠FAC=∠BAD,又∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠FAC=90°,又∵在Rt△ADC中,AC===5,∴在Rt△FAC中,CF===5.8.如图平行四边形ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△BGC=2:9.解:如图,连接BG∵四边形ABCD是平行四边形∴AD∥BC,AD=BC∴∠E=∠CFG∵F为BC中点∴FC=BC=AD∵DE:AD=1:3∴DE:BC=1:3∴DE:CF=2:3∵∠E=∠CFG,∠DGE=∠CGF∴△DGE∽CGF∴S△DEG:S△CFG=4:9∵F为BC中点∴S△BGC=2S△CFG∴S△DEG:S△BGC=4:18=2:9故答案为:2:9.9.已知矩形ABCD的两对角线交于点O,该矩形的周长为24,△AOD与△AOB的周长之差为2,则矩形ABCD的面积为120.解:∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠BAD=90°,BO=DO,∵矩形的周长为24,△AOD与△AOB的周长之差为2,∴2AB+2AD=24,(AD+AO+OD)﹣(AB+AO+BD)=2,∴AB+AD=12,AD﹣AB=2,∴AD=12,AB=10,∴矩形ABCD的面积为AD×AB=12×10=120,故答案为:120.10.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=30°.解:∵,∴平行四边形A'B'C'D'的底边A′D′边上的高等于A′D′的一半,∴∠A'=30°.故答案为:30°三.解答题(每题10分)11.如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD.(1)求证:四边形BCED是平行四边形;(2)若DA=DB=2,cos A=,求点B到点E的距离.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,∴DE=BC,DE∥BC,∴四边形BCED是平行四边形;(2)解:连接BE,∵DA=DB=2,DE=AD,∴AD=BD=DE=2,∴∠ABE=90°,AE=4,∵cos A=,∴AB=1,∴BE==.12.如图,在矩形ABCD中,EF垂直平分BD.(1)判断四边形BEDF的形状,并说明理由.(2)已知BD=20,EF=15,求矩形ABCD的周长.解:(1)四边形BEDF是菱形.在△DOF和△BOE中,∠FDO=∠EBO,OD=OB,∠DOF=∠BOE=90°,所以△DOF≌△BOE,所以OE=OF.又因为EF⊥BD,OD=OB,所以四边形BEDF为菱形.(2)如图,在菱形EBFD中,BD=20,EF=15,则DO=10,EO=7.5.由勾股定理得DE=EB=BF=FD=12.5.S菱形EBFD=EF•BD=BE•AD,即所以得AD=12.根据勾股定理可得AE=3.5,有AB=AE+EB=16.由2(AB+AD)=2(16+12)=56,故矩形ABCD的周长为56.13.在平行四边形ABCD中,BE⊥AD,F为CD边上一点,满足BF=BC=BE.(1)如图1,若BC=12,CD=13,求DE的长;(2)如图2,过点G作DG∥BE交BF于点G.求证:BG=AE+DG.解:(1)如图1中,作DM⊥BC于M.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=12∵BC=BE,∴BE=12,∵BE⊥AD,AD∥BC,DM⊥BC,∴四边形DMBE是矩形,∴DE=BM=BC﹣MC,DM=BE=12,在Rt△DCM中,MC===5,∴BM=BC﹣CM=12﹣5=7,∴DE=BM=7.(2)如图2中,延长GD到N,使得DN=AE,则GN=GD+DN=AE+DG.连接BN,AN.∵BE=AD,∠AEB=∠ADN=90°,AE=DN,∴△AEB≌△NDA(SAS),∴AN=AB,∠BAE=∠AND,∵BF=BC,∴∠C=∠BFC,∵四边形ABCD是平行四边形,∴AB∥CD,∠BAE=∠C,∴∠ABF=∠BFC,∴∠ABF=∠AND,∵AN=AB,∴∠ANB=∠ABN,∴∠GNB=∠GBN,∴BG=NG=AE+DG.14.如图,正方形ABCD中,点E为边BC边上一点,连接AE,以AE为边在正方形内部作等腰直角△AEF,且∠AFE=90°,连接DF.(1)如图1,点M为AE的中点,若∠BAE=30°,BM=2,求四边形ABEF的周长;(2)如图2,求证:AB=DF+BE.解:(1)∵点M为AE的中点,∠ABC=90°,∴AE=2BM=4,∵∠BAE=30°,∠ABC=90°,∴BE=AE=2,AB=BE=2,∵△AEF是等腰直角三角形,∴AF=EF==2,∴四边形ABEF的周长=AB+BE+EF+AF=2+4+2,(2)如图,过点F作MN⊥AD,交AD于N,交BC于M,∵BC∥AD,MN⊥AD,∴MN⊥BC,∴∠MEF+∠MFE=90°,且∠MFE+∠AFN=90°,∴∠MEF=∠AFN,且EF=AF,∠EMF=∠ANF=90°,∴△MEF≌△NFA(AAS),∴AN=MF,EM=FN,∵四边形ABCD是正方形,∴AB=AD,∠CBD=∠ADB=45°,∵MN⊥BC,MN⊥AD,∴MF=BM,FN=DN=FD,∴BM=AN,EM=FD,∴AB=AD=AN+DN=BM+FD=BE+EM+FD=FD+BE.。
2019-2020年九年级下数学综合试题西城区学习探究诊断-第22章--一元二次方程
2019-2020年九年级下数学综合试题西城区学习探究诊断-第22章--一元二次方程学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题.2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.只含有______个未知数,并且未知数的______次数是2的方程,叫做一元二次方程,它的一般形式为________________________.2.把2x2-1=6x化成一般形式为____________,二次项系数为______,一次项系数为____ ____,常数项为______.3.若(k+4)x2-3x-2=0是关于x的一元二次方程,则k的取值范围是______.4.把(x+3)(2x+5)-x(3x-1)=15化成一般形式为____________,a=______,b=______,c=______.5.若(m-2)+x-3=0是关于x的一元二次方程,则m的值是______.6.方程y2-12=0的根是______.二、选择题7.下列方程中一元二次方程的个数为( ).①2x2-3=0;②x2+y2=5;③;④(A)1个(B)2个(C)3个(D)4个8.ax2+bx+c=0是关于x的一元二次方程的条件是( ).(A)a、b、c为任意实数(B)a、b不同时为零(C)a不为零(D)b、c不同时为零9.x2-16=0的根是( ).(A)只有4 (B)只有-4 (C)±4 (D)±810.3x2+27=0的根是( ).(A)x1=3,x2=-3 (B)x=3(C)无实数根(D)以上均不正确三、解答题(用直接开平方法解一元二次方程)11.2y2=8.12.(x+3)2=2.13.14.3(2x-1)2-12=0.综合、运用、诊断一、填空题15.把方程化为一元二次方程的一般形式(二次项系数为正)是________________________,一次项系数是______.16.把关于x的一元二次方程(2-n)x2-n(3-x)+1=0化为一般形式为__________________,二次项系数为____________,一次项系数为______,常数项为______.17.关于x的方程(m2-9)x2+(m+3)x+5m-1=0,当m=______时,方程为一元二次方程;当m______时,方程为一元一次方程.二、选择题18.若x=-2是方程x2-2ax+8=0的一个根.则a的值为( ).(A)-1 (B)1 (C)-3 (D)319.若x=b是方程x2+ax+b=0的一个根,b≠0,则a+b的值是( ).(A)-1 (B)1 (C)-3 (D)320.若是关于x的一元二次方程,则m的取值范围是( ).(A)m≠1 (B)m>1 (C)m≥0且m≠1 (D)任何实数三、解答题(用直接开平方法解下列方程)21.(3x-2)(3x+2)=8.22.(5-2x)2=9(x+3)2.23.24.(x-m)2=n.(n为正数)拓展、探究、思考一、填空题25.如果一元二次方程ax2+bx+c=0(a≠0)有两个根1和-1,那么a+b+c=______,a-b+c=______.二、选择题26.如果(m-2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为( ).(A)2或-2 (B)2 (C)-2 (D)以上都不正确三、解答题27.已知关于x的一元二次方程(m-1)x2+2x+m2-1=0有一个根是0,求m的值.28.已知m是方程x2-x-1=0的一个根,求代数式5m2-5m+xx的值.测试2 配方法解一元二次方程学习要求掌握配方法的概念,会用配方法解一元二次方程.课堂学习检测一、填上适当的数使下面各等式成立1.x2-8x+______=(x-______)2.2.x2+3x+______=(x+______)2.3.+______=(x-______)2.4.+______=(x+______)2.5.x2-px+______=(x-______)2.6.+______=(x-______)2.二、选择题7.用配方法解方程,应该先把方程变形为( ).(A) (B)(C) (D)8.用配方法解一元二次方程x2-4x=5的过程中,配方正确的是( ).(A)(x+2)2=1 (B)(x-2)2=1 (C)(x+2)2=9 (D)(x-2)2=99.配成完全平方式需加上( ).(A)1 (B) (C) (D)10.若x2+px+16是一个完全平方式,则p的值为( ).(A)±2 (B)±4 (C)±8 (D)±16三、解答题(用配方法解一元二次方程)11.x2-2x-1=0.12.y2-6y+6=0.综合、运用、诊断一、选择题13.用配方法解方程3x2-6x+1=0,则方程可变形为( )(A) (B) (C)(3x-1)2=1 (D)14.若关于x的二次三项式x2-ax+2a-3是一个完全平方式,则a的值为( ).(A)-2 (B)-4 (C)-6 (D)2或615.将4x2+49y2配成完全平方式应加上( ).(A)14xy(B)-14xy(C)±28xy(D)016.用配方法解方程x2+px+q=0,其配方正确的是( ).(A) (B)(C) (D)二、解答题(用配方法解一元二次方程)17.3x2-4x=2.18.拓展、探究、思考19.用配方法说明:无论x取何值,代数式x2-4x+5的值总大于0,再求出当x取何值时,代数式x2-4x+5的值最小?最小值是多少?测试3 公式法解一元二次方程学习要求熟练掌握用公式法解一元二次方程.课堂学习检测一、填空题1.关于x的一元二次方程ax2+bx+c=0(a≠0)的根是______.2.一元二次方程(2x+1)2-(x-3)(2x-1)=3x中的二次项系数是______,一次项系数是______,常数项是______.3.方程x2-2x-2=0的两个根为( ).(A)x1=1,x2=-2 (B)x1=-1,x2=2(C) (D)4.用公式法解一元二次方程,它的根正确的应是( ).(A) (B)(C) (D)5.方程mx2-4x+1=0(m≠0)的根是( ).(A) (B)(C) (D)6.若代数式x2-6x+5的值等于12,则x的值应为( ).(A)1或5 (B)7或-1 (C)-1或-5 (D)-7或1三、解答题(用公式法解一元二次方程)7.x2+4x-3=0.8.3x2-8x+2=0.综合、运用、诊断一、填空题9.若关于x的方程x2+mx-6=0的一个根是2,则m=______,另一根是______.二、选择题10.关于x的一元二次方程的两个根应为( ).(A) (B),(C) (D)三、解答题(用公式法解下列一元二次方程)11.2x-1=-2x2.12.(x+1)(x-1)=拓展、探究、思考一、解答题(用公式法解关于x的方程)13.x2+mx+2=mx2+3x(m≠1).14.x2-4ax+3a2+2a-1=0.测试4 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,能灵活应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax2+bx+c=0(a≠0)根的判别式为 =b2-4ac,当b2-4ac______0时,方程有两个不相等的实数根;当b2-4ac______0时,方程有两个相等的实数根;当b2-4ac______0时,方程没有实数根.2.若关于x的方程x2-2x-m=0有两个不相等的实数根,则m______.3.若关于x的方程x2-2x-k+1=0有两个实数根,则k______.4.若方程2x2-(2m+1)x+m=0根的判别式的值是9,则m=______.5.方程x2-3x=4根的判别式的值是( ).(A)-7 (B)25 (C)±5 (D)56.若一元二次方程ax2+bx+c=0有两个实数根,则根的判别式的值应是( ).(A)正数(B)负数(C)非负数(D)零7.下列方程中有两个相等实数根的是( ).(A)7x2-x-1=0 (B)9x2=4(3x-1)(C)x2+7x+15=0 (D)8.方程( ).(A)有两个不相等的实数根(B)有两个相等的有理根(C)没有实数根(D)有两个相等的无理根三、解答题9.k为何值时,一元二次方程kx2-6x+9=0①有两个不相等的实数根;②有两个相等的实数根;③没有实数根.10.关于x的一元二次方程-x2+(2k+1)x+2-k2=0有实数根,求k的取值范围.11.求证:不论m取任何实数,方程都有两个不相等的实数根.综合、运用、诊断一、选择题12.方程ax2+bx+c=0(a≠0)根的判别式是( ).(A) (B)(C)b2-4ac(D)a、b、c13.若关于x的方程(x+1)2=1-k没有实数根,则k的取值范围是( ).(A)k<1 (B)k<-1(C)k≥1 (D)k>114.若关于x的方程3kx2+12x+k+1=0有两个相等的实数根,则k的值为( ).(A)-4 (B)3(C)-4或3 (D)或15.若关于x的一元二次方程(m-1)x2+2mx+m+3=0有两个不相等的实数根,则m的取值范围是( ).(A) (B)且m≠1(C)且m≠1 (D)16.如果关于x的二次方程a(1+x2)+2bx=c(1-x2)有两个相等的实数根,那么以正数a、b、c为边长的三角形是( ).(A)锐角三角形(B)钝角三角形(C)直角三角形(D)任意三角形17.已知方程mx2+mx+5=m有两个相等的实数根,求方程的解.18.求证:不论k取何实数,方程(k2+1)x2-2kx+(k2+4)=0都没有实根.拓展、探究、思考19.已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程x2-4x+b=0有两个相等的实数根,试判断△ABC的形状.20.已知关于x的一元二次方程x2+2(k-1)x+k2-1=0有两个不相等的实数根.(1)求实数k的取值范围:(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.测试5 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、写出下列一元二次方程的根1.x(x-3)=0 ______.2.(2x-7)(x+2)=0 ______.3.3x2=2x ______.4.x2+6x+9=0 ______.5.______.6.______.7.(x-1)2-2(x-1)=0 ______.8.(x-1)2-2(x-1)=-1 ______.二、选择题9.方程(x-a)(x-b)=0的两个根是( ).(A)x1=a,x2=b (B)x1=a,x2=-b(C)x1=-a,x2=b(D)x1=-a,x2=-b10.下列解方程的过程,正确的是( ).(A)x2=x,两边同除以x,得x=1(B)x2+4=0,直接开平方法可得,x=±2(C)(x-2)(x+1)=3×2 ∵x-2=3,x+1=2,∴x1=5,x2=1(D)(2-3x)+(3x-2)2=0整理得3(3x-2)(x-1)=0 ∴x1=,x2=1三、用因式分解法解下列方程(*题用十字相乘法因式分解解方程)11.3x(x-2)=2(x-2).12.x2-4x+4=(2-3x)2.*13.x2-3x-28=0.*14.x2-6x+8=0.*15.(2x-1)2-2(2x-1)=3.*16.x(x-3)=3x-9.综合、运用、诊断一、写出下列一元二次方程的根17.______________________________.18.(x+1)(x-1)=2._______________________________.19.(x-2)2=(2x+5)2.______________________________.二、选择题20.方程x(x-2)=2(2-x)的根为( ).(A)x=-2 (B)x=2(C)x1=2,x2=-2 (D)x1=x2=221.方程(x-1)2=1-x的根为( ).(A)0 (B)-1和0 (C)1 (D)1和0 22.若实数x、y满足(x-y)(x-y+3)=0,则x-y的值是( ).(A)-1或-2 (B)-1或2 (C)0或3 (D)0或-3三、用因式分解法解下列关于x的方程23.x2+2mx+m2-n2=0.24.25.x2-bx-2b2=0.拓展、探究、思考一、解答题26.已知x2-5x=14,求(x-1)(2x-1)-(x+1)2+1的值.27.解关于x的方程:x2-2x+1-k(x2-1)=0.测试6 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、写出下列一元二次方程的根1.3(x-1)2-1=0._____________________________.2.(2x+1)2-2(2x+1)=3._______________________.3.3x2-5x+2=0._____________________________.4.x2-4x-6=0.______________________________.二、选择题5.方程x2-4x+4=0的根是( ).(A)x=2 (B)x1=x2=2 (C)x=4 (D)x1=x2=4 6.的根是( ).(A)x=3 (B)x=±3 (C)x=±9 (D)7.的根是( ).(A) (B)x1=0,x2=(C)x1=0,x2=(D)x=8.(x-1)2=x-1的根是( ).(A)x=2 (B)x=0或x=1(C)x=1 (D)x=1或x=2三、用适当方法解下列方程9.6x2-x-2=0.10.(x+3)(x-3)=3.四、解关于x的方程11.x2-2mx+m2-n2=0.12.2a2x2-5ax+2=0(a≠0).综合、运用、诊断一、填空题13.若分式的值是0,则x=______.14.x2+2ax+a2-b2=0的根是____________.二、选择题15.关于方程3x2=0和方程5x2=6x的根,下列结论正确的是( ).(A)它们的根都是x=0 (B)它们有一个相同根x=0(C)它们的根都不相同(D)以上结论都不正确16.关于x的方程abx2-(a2+b2)x+ab=0(ab≠0)的根是( ).(A)x1=,x2=(B)x1=,x2=(C)x1=,x2=0 (D)以上都不正确三、解下列方程17.18.(y-5)(y+3)+(y-2)(y+4)=26.19.x 2+5x +k 2=2kx +5k -6. 20..066)3322(2=++-x x四、解答题21.已知:x 2+3xy -4y 2=0(y ≠0),求的值.22.求证:关于x 的方程(a -b )x 2+(b -c )x +c -a =0(a ≠b )有一个根为1.拓展、探究、思考一、填空题23.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________.24.在实数范围内把x 2-2x -1分解因式为__________.测试7 实际问题与一元二次方程学习要求会应用一元二次方程处理常见的各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系:(1)工作效率=__________________;(2)距离=__________________.2.某工厂xx 年的年产量为a (a >0),如果每年递增10%,那么xx 年的年产量是______,xx 年的年产量是______,这三年的总产量是____________.3.某商品连续两次降价10%后的价格为a 元,该商品的原价为____________.二、选择题4.两个连续奇数中,设较大一个为x ,那么另一个为( ).(A)x +1 (B)x +2 (C)2x +1 (D)x -25.某厂一月份生产产品a 件,如果二月份比一月份增加2倍,三月份的产量是二月份的2倍,那么三个月的产品总件数是( ).(A)5a (B)7a (C)9a (D)10a三、解答题6.三个连续奇数的平方和为251,求这三个数.7.直角三角形的周长为,斜边上的中线长为1,求这个直角三角形的三边长.8.某工厂1月份产值是5万元,3月份的产值是11.25万元,求2、3月份的月平均增长率.综合、运用、诊断一、填空题9.某县为发展教育事业,加强了对教育经费的投入,xx年投入3000万元,预计xx年投入5000万元.设教育经费的年平均增长率为x,则列出的方程为______.10.一种药品经过两次降价,药价从原来的每盒60元降至现在的48.6元,则平均降价的百分率是______.11.在一幅长50cm,宽30cm的风景画的四周镶一圈金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是1800cm2,设金色纸边的宽为x cm,那么x满足的方程为____________.二、选择题12.某市xx年国内生产总值(GDP)比xx年增长了12%,由于受到国际金融危机的影响,预计xx年比xx年增长7%,则这两年GDP年平均增长率x%满足的关系是( ).A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2x%D.(1+12%)(1+7%)=(1+x%)2三、解答题13.上海市某电脑公司xx年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%.该公司预计xx年经营总收入要达到2160万元,且计划从xx年到xx年,每年经营总收入的年增长率相同.问xx年经营总收入为多少万元?14.某商场销售一批衬衫,现在平均每天可售出20件,每件盈利40元.为扩大销售量,增加盈利,减少库存,商场决定采用适当降价的措施.经调查发现,如果每件衬衫的售价每降低1元,那么商场平均每天可多售出2件,商场若要平均每天盈利1200元,每件衬衫应降价多少元?15.在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是2∶1。
2019-2020年中考数学专题训练二次函数与反比例函数1
2019-2020年中考数学专题训练二次函数与反比例函数1一、选择题1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)2.对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.43.已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧4.二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣25.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣16.如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<07.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0) B.(3,0) C.(﹣3,0)D.(0,﹣4)8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数 C.反比例函数D.二次函数9.二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小10.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)211.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<012.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.13.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为()A .B .C .D .14.数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x 2+1与y=的交点的横坐标x 0的取值范围是( )A .0<x 0<1B .1<x 0<2C .2<x 0<3D .﹣1<x 0<015.已知二次函数y=a (x ﹣1)2﹣c 的图象如图所示,则一次函数y=ax+c 的大致图象可能是( )A .B .C .D .16.下列三个函数:①y=x+1;②;③y=x 2﹣x+1.其图象既是轴对称图形,又是中心对称图形的个数有( )A .0B .1C .2D .3 17.在同一直角坐标系中,函数y=mx+m 和y=﹣mx 2+2x+2(m 是常数,且m ≠0)的图象可能是( )A .B .C .D .18.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0二、填空题19.抛物线y=x2+2x+3的顶点坐标是.20.已知二次函数y=(x﹣2)2+3,当x 时,y随x的增大而减小.21.二次函数y=x2+2x的顶点坐标为,对称轴是直线.22.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.23.函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x的增大而(填写“增大”或“减小”).24.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2(x>0);④y=﹣.25.下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx (x<0)中,y的值随x的值增大而增大的函数有个.26.二次函数y=x2﹣2x+3图象的顶点坐标为.27.二次函数y=x2﹣4x﹣3的顶点坐标是(,).三、解答题28.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.29.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.30.已知点A(﹣2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是﹣4,请画出点P(x ﹣1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.2019-2020年中考数学专题训练二次函数与反比例函数21.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.2.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?3.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.4.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B 点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.5.如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.6.如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.7.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连接AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.8.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P 的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.9.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.10.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.11.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.12.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C (0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.13.如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E (0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q 在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P 做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?15.如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y 轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB 于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.16.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.17.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.18.如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.19.如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P 为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△OBD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.20.如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C 为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线AC的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E 点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求出P点的坐标,若不存在,请说明理由.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D.①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.②如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.22.如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.23.如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?。
XXX2019-2020学年第二学期北师大版初三年级数学练习2试卷
XXX2019-2020学年第二学期北师大版初三年级数学练习2试卷2019-2020学年度第二学期初三年级数学练2本试卷共10页,共三道大题,28道小题,满分100分。
考试时间120分钟。
注意事项:1.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
2.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
3.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
4.考试结束,将答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)1.截止到3月26日时,全球感染肺炎的人数已经突破380,000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓。
将380,000用科学记数法表示为8.A。
0.38×10^6B。
3.8×10^5C。
38×10^4D。
3.8×10^62.在下列图案中,既是轴对称图形,又是中心对称图形的是:四个选项)3.实数a,b在数轴上的对应点的位置如图所示,如果ab= c,那ab符么实数c在数轴上的对应点的位置可能是:四个选项)4.若一个正多边形的每一个外角都是40°,则这个多边形的边数为:A。
6B。
7C。
8D。
95.右图是某几何体的三视图,则这个几何体是:A。
球B。
圆柱C。
圆锥D。
三棱柱6.如果a-b=1,那么代数式a+2b的值是:A。
2B。
-2C。
1D。
-17.某校交响乐团有90名成员,下表是合唱团成员的年龄分布统计表:年龄(单位:岁)频数(单位:名)13 1714 2915 x16 26-x17 18对于不同的x,下列关于年龄的统计量不会发生改变的是:A。
平均数、中位数B。
平均数、方差C。
众数、中位数D。
众数、方差8.XXX设计了一个随机碰撞模拟器:在模拟器中有A,B,C三种型号的小球,它们随机运动,当两个小球相遇时会发生碰撞(不考虑多个小球相撞的情况)。
若相同型号的两个小球发生碰撞,会变成一个C型小球;若不同型号的两个小球发生碰撞,则会变成另外一种型号的小球,例如,一个A型小球和一个C型小球发生碰撞,会变成一个B型小球。
考点05 绝对值(解析版)
考点05 绝对值1.(辽宁省丹东市2020年中考数学试题)-5的绝对值等于()A.-5 B.5 C.15-D.15【答案】B【解析】解:因为-5的绝对值等于5,所以B正确;故选:B.【点睛】本题考查绝对值的算法,正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值为0.2.(湖南省株洲市2020年中考数学试题)一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A.B.C.D.【答案】D【解析】∵|+1.2|=1.2,|–2.3|=2.3,|+0.9|=0.9,|–0.8|=0.8,0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项D中的元件,故选D.【点睛】本题考查了绝对值以及正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.3.(贵州省安顺市紫云县2019–2020学年七年级上学期期末数学试题)计算32--+的结果是()A.1B.5C.2 D.–1【答案】A【解析】解:32321--+=-=,故选:A.【点睛】本题考查绝对值的性质,掌握绝对值的性质是解题的关键.4.(山东省烟台市2020年中考数学试题)实数a,b,c在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是()A.a B.b C.c D.无法确定【答案】A【解析】解:观察有理数a ,b ,c 在数轴上的对应点的位置可知,这三个数中,实数a 离原点最远,所以绝对值最大的是:A .故选:A .【点睛】此题主要考查了绝对值的意义,以及有理数大小的比较,正确掌握绝对值的意义是解题关键. 5.(内蒙古呼伦贝尔市2020年数学中考试题)已知实数a 在数轴上的对应点位置如图所示,则化简|1|a -A .32a -B .1-C .1D .23a -【答案】D【解析】由图知:1<a <2,∴a −1>0,a −2<0,原式=a −1–2a =a −1+(a −2)=2a −3.故选D .【点睛】此题主要考查了二次根式的性质与化简,正确得出a −1>0,a −2<0是解题关键.6.(内蒙古包头市2020年中考数学试题)点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为()A .2-或1B .2-或2C .2-D .1 【答案】A【解析】解:由题意得:|2a +1|=3当2a +1>0时,有2a +1=3,解得a =1当2a +1<0时,有2a +1=–3,解得a =–2所以a 的值为1或–2.故答案为A .【点睛】本题考查了绝对值的几何意义,根据绝对值的几何意义列出绝对值方程并求解是解答本题的关键. 7.(湖南省湘潭市2020年中考数学试题)在数轴上到原点的距离小于4的整数可以为________.(任意写出一个即可)【答案】3(答案不唯一,3,2,1,0,–1,–2,–3任意一个均可)【解析】解:在数轴上到原点的距离小于4的整数有:–3,3,,–2,2,–1,1,0从中任选一个即可 故答案为:3(答案不唯一,3,2,1,0,–1,–2,–3任意一个均可) 【点睛】本题考查了数轴、数轴特点、绝对值等知识,熟练掌握这些知识是解题的关键.8.(云南省昆明市官渡区第一中学2019–2020学年九年级下学期期中数学试题)数-2020的绝对值是______.【答案】2020 【解析】解:20202020-=.故答案为:2020.【点睛】本题考查了绝对值,正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数,熟练掌握绝对值的性质是解题的关键.9.(山西省2019–2020学年七年级下学期期末数学试题)若()220,x y y -+-=则1xy +的值为_______.【答案】5 【解析】∵()220-+-=x y y ,∴-=0x y ,-=20y ,∴22x y ==,,∴12215+=⨯+=xy .故答案为5.【点睛】本题主要考查了代数式的求解计算,准确利用绝对值和平方的非负性求解是关键.10.(江苏省宿迁市钟吾初级中学、钟吾国际学校2019–2020学年七年级上学期期末数学试题)若│a │=5,│b │=3,且a –b >0,那么a +b 的值是______.【答案】8或2【解析】解:∵|a |=5,b =|3|,∴a =±5,b =±3, ∵a –b >0,∴a >b ,∴a =5,b =3或b =–3,①当a =5,b =3时,a +b =8;②当a =5,b =–3时,a +b =2.故答案为:8或2.【点睛】此题主要考查了绝对值的性质与有理数的加法,能够根据已知条件正确地判断出a 、b 的值是解答此题的关键.11.(山东省菏泽市鄄城县2019–2020学年八年级下学期期末数学试题)有理数,a b 在数轴上的位置如图所示,用不等式表示:①+a b ______0;②||a _______||b ;③-a b ______0【答案】<<>【解析】∵从数轴可知:b <0<a ,|b |>|a |,∴①a +b <0,②|a |<|b |,③a –b >0,故答案为:<,<,>.【点睛】本题考查数轴和有理数的大小比较以及整式的加减等知识点,能从数轴得出b <0<a 和|b |>|a |是解答此题的关键.12.(江苏省泰州市姜堰区2019–2020学年七年级上学期期末数学试题)已知a 、b 两数在数轴上的位置如图所示,则化简代数式22a b a b +--++的结果是____.【答案】24b +【解析】解:根据数轴上点的位置得:–2<b <–1,2<a <3,且|a |>|b |,∴a +b >0,2–a <0,b +2>0,则原式=a +b –a +2+b +2=2b +4.【点睛】本题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解题的关键.13.已知零件的标准直径是100mm ,超过标准直径的数量记作正数,不足标准直径的数量记作负数,检验员抽查了五件样品,检查结果如下:(1)指出哪件样品的直径最符合要求;(2)如果规定误差的绝对值在0.18mm 之内是正品,误差的绝对值在0.18~0.22mm 之间是次品,误差的绝对值超过0.22mm 是废品,那么这五件样品分别属于哪类产品?【解析】解:(1)∵0.050.100.150.200.25-<+<-<+<+,∴第4件样品的直径最符合要求.(2)因为|0.10|0.100.18,|0.15|0.150.18+=<-=<,|0.05|0.050.18-=<.所以第1,2,4件样品是正品;因为0.200.20,0.180.200.22+=<<,所以第3件样品为次品;因为0.250.250.22+=>,所以第5件样品为废品.【点睛】考查了绝对值,绝对值越小表示数据越接近标准数据,绝对值越大表示数据越偏离标准数据. 14.一条直线流水线上有5个机器人,它们站的位置在数轴上依次用点12345,,,,A A A A A 表示,如图所示.(1)站在点_____上的机器人表示的数的绝对值最大,站在点_____和点______,点______和点_____上的机器人到原点的距离相等;(2)怎样移动点3A ,使它先到达点2A ,再到达点5A ?请用文字语言说明.(3)若原点是零件供应点,则5个机器人到达供应点取货的总路程是多少?(人教版2020年七年级上第一章有理数1.2有理数1.2.4绝对值课时1绝对值【解析】(1)因为|4|-最大,所以站在点1A 上的机器人表示的数的绝对值最大.因为|3||3|,|1||1|-=-=,所以站在点2A 和点5A ,点3A 和点4A 上的机器人到原点的距离相等.故答案为12534,,,,A A A A A . (2)将点3A 向左移动2个单位长度到达点2A ,再向右移动6个单位长度到达点5A .(3)|4||3||1||1||3|12-+-+-++=.答:5个机器人到达供应点取货的总路程是12.【点睛】本题考查了绝对值的概念和性质、数轴的概念,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.。
2019-2020年九年级数学中考专题练习 解直角三角形50题(含答案)
2019-2020年九年级数学中考专题练习解直角三角形50题(含答案)一、选择题:1.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底端G为BC的中点,则矮建筑物的高CD为( )A.20米B.10 米C.15 米D.5 米2.若一个三角形三个内角度数的比为1:2:3,那么这个三角形最小角的正切值为()A. B. C. D.3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AmB上的一点,则cos∠APB的值是()A.45°B.1C.D.无法确定4.如图,梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A.sinA的值越大,梯子越陡B.cosA的值越大,梯子越陡C.tanA的值越小,梯子越陡D.陡缓程度与∠A的函数值无关5.当锐角α>30°时,则cosα的值是()A.大于B.小于C.大于D.小于6.在Rt△ABC中,∠C=90°,∠B=60°,那么sinA+cosB的值为()A.1B.C.D.7.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2mB.2mC.(2﹣2)mD.(2﹣2)m8.如图,有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是( )A.10海里B.(10-10)海里C.10海里D.(10-10)海里9.在Rt△ABC中,∠C=90°,若tanA=,则sinA=()A. B. C. D.10.一座楼梯的示意图如图,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米211.已知∠A为锐角,且sinA≤0.5,则()A.0°≤A≤60° B.60°≤A <90° C.0°<A ≤30° D.30°≤A≤90°12.如图,已知∠α的一边在x轴上,另一边经过点A(2,4),顶点为(﹣1,0),则sinα的值是()A.0.4B.C.0.6D.0.813.如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48B.41.68C.43.16D.55.6314.2sin60°的值等于()A.1B.C.D.15.在Rt△ABC中,∠ABC=90°、tanA=,则sinA的值为()A. B. C. D.16.已知tanα=,则锐角α的取值范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°17.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端O点30米的B处,测得树顶4的仰角∠ABO为α,则树OA的高度为( )A.米B.30sinα米C.30tanα米D.30cosα米18.在Rt△ABC中,∠C=90°,BC=3,AB=4,则sinA的值为()A. B. C. D.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.kmB.kmC.kmD.km20.如图,要焊接一个等腰三角形钢架,钢架的底角为35°,高CD长为3米,则斜梁AC长为()米.A. B. C.3sin35° D.二、填空题:21.在Rt△ABC中,∠C=90°,AB=4,BC=2,则sin= .22.如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为 m(结果保留根号)23.如图所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为米.(保留根号)24.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是海里(结果保留根号).25.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为 m(结果保留根号).26.如图,李明在一块平地上测山高,现在B出测得山顶A的仰角为30°,然后再向山脚直行100米到达C处,再测得山顶A的仰角为60°,那么山高AD为米.27.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE,若BE=5,BC=6,则sinC= .28.某同学沿坡比为1:的斜坡前进了90米,那么他上升的高度是米.29.如图,为测量某物体AB的高度,在在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为米.30.同角三角函数的基本关系为:(sinα)2+(cosα)2=1, =tanα.利用同角三角函数的基本关系求解下题:已知tanα=2,则= .31.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan ∠OBC为32.如图,将三角板的直角顶点放置在直线AB上的点O处.使斜边CD∥AB,则∠a的余弦值为__________.33.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosC= .34. (1)如图1,如果ɑ,β都为锐角,且tanɑ=,tanβ=,则ɑ+β= ;(2)如果ɑ,β都为锐角,当tanɑ=5,tanβ=时,在图2的正方形网格中,利用已作出的锐角ɑ,画出∠MON,使得∠MON=ɑ-β.此时ɑ-β= 度.35.如图,直线l与⊙相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为.36.在△ABC中,∠C=90°,若BC=5,AB=13,则sinA= .37.如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值是.38.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF.以下结论:(1)△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为12.其中一定成立的是(把所有正确结论的序号都填在横线上).39.如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为.40.如图,等腰△ABC中,AB=AC,tan∠B=,BC=30,D为BC中点,射线DE⊥AC.将△ABC绕点C顺时针旋转(点A的对应点为A′,点B的对应点为B′),射线A′B′分别交射线DA、DE于M、N.当DM=DN时,DM长为.三、解答题:41.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.42.如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=43°,求飞机A与指挥台B的距离(结果取整数)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)43.先化解,再求值:,已知,.44.如图,某建筑物BC上有一旗杆AB,小刘在与BC相距24m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小刘的观测点与地面的距离EF为1.6m.(1)求建筑物BC的高度;(2)求旗杆AB的高度.(结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)45.图①、②分别是某种型号跑步机的实物图与示意图.已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)46.在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.求BC的长.47.如图,小明家小区空地上有两颗笔直的树CD、EF.一天,他在A处测得树顶D的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A、B两处的距离为2米,两棵树之间的距离CE=3米,A、B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)48.如图,某居民小区有一栋居民楼,在该楼的前面32米处要再盖一栋30米的新楼,现需了解新楼对采光的影响,当冬季正午的阳光与水平线的夹角为37°时,求新楼的影子在居民楼上有多高?(参考数值:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)49.如图,在东西方向的海岸线l有一长为2km的码头AB,在码头的西端A的正西29km处有一观测站P,某时刻测得一艘匀速直线航行的轮船位于P的南偏西30°,且与P相距30km 的C处;经过1小时40分钟,又测得该轮船位于P的南偏东60°,且与P相距10的D处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么该轮船能否正好行至码头AB靠岸?请说明理由.50.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由参考答案1.A2.C3.C4.A5.D6.A7.B8.D9.D10.D11.C12.D13.B14.C15.A16.B17.C18.C19.B20.D21.答案为:0.5.22.答案为:(5+5).23.答案为:10.24.答案为:。
2019年南京市鼓楼区九年级期中数学试卷及答案-九年级试卷一答案及评分标准
2019年南京市鼓楼区九年级(下)期中考试数学试题参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.3,-13 8.2.5×104 9.6a 10.x <3 11.81 12.20π 13.220° 14.(1,-2) 15.19 16.①②④. 三、解答题(本大题共11小题,共88分) 17.(7分)解:2-1×6-(-2)4÷4+cos60°=12×6-16÷4+12 ………………………………………………………………………3分 =3-4+12…………………………………………………………………………………5分 =-12.……………………………………………………………………………………7分18.(7分)解方程组⎩⎨⎧x -3y =-1,①3x +y =7. ②解:由①+②×3,得x =2,……………………………………………………………3分 把x =2代入①,得y =1, ……………………………………………………………5分∴方程组⎩⎨⎧x -3y =-1,3x +y =7的解为⎩⎨⎧x =2y =1.…………………………………………………7分19.(9分)解:(1)1x -1+x 2-3x x 2-1=x +1(x +1)(x -1)+x 2-3x (x +1)(x -1) ……………………………………………………………2分 =(x -1)2(x +1)(x -1)……………………………………………………………………………4分 =x -1x +1. …………………………………………………………………………………6分 (2)不正确. …………………………………………………………………………7分因为当x =1时,代数式1x -1+x 2-3x x 2-1中的分母x -1,x 2-1都等于0,该代数式在实数范围内无意义,所以这个说法不正确.………………………………………………………9分20.(7分)(1)解:如图所示: ……………………………………………………………5分(2)450×30%=135(人)答:估计全校九年级男生引体向上测试优秀的人数为135人.…………………………………………………………………………………………………2分 21.(8分)(1)证明:∵△AEF ∽△ABC ,∴AE AB =AFAC ,∵AB =AC ,∴AE =AF ,………………………………………1分 ∵DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,∴∠AED =∠AFD =90°,……………………………………………………2分 在Rt △AED 和Rt △AFD 中,∠AED =∠AFD =90°,⎩⎨⎧AE =AF ,AD =AD ,∴Rt △AED ≌Rt △AFD .………………………………………………………4分(2)证明:∵Rt △AED ≌Rt △AFD ,∴∠EAD =∠F AD , ∵AB =AC ,∴AD ⊥BC ,BC =2BD ,………………………………………………………5分 ∵BC =2AD , ∴BD =AD , ∵AD ⊥BC , ∴∠ADB =90°, ∴∠B =∠BAD =45°,…………………………………………………………6分 ∴∠BAC =2∠BAD =90°, ∵∠AED =∠AFD =90°,∴四边形AEDF 是矩形,………………………………………………………7分 ∵AE =AF ,∴矩形AEDF 是正方形.………………………………………………………8分不及格 10% 及格20% 良好40% 优秀30%某中学抽样九年级男生引体向上 等级人数分布扇形统计图22.(8分)由表格可知,共有36种可能出现的结果,并且它们是等可能的.“两颗骰子的顶面字母相同”记为事件M ,它的发生有16种可能,P (M )=49,“两颗骰子的顶面字母不同”记为事件N ,它的发生有20种可能,P (N )=59,∴甲、乙两人获胜的概率各是49、59. …………………………………………………………………………………………………6分 (2)3.………………………………………………………………………………………8分 23.(8分)解:(1)如图①,四边形ABCD 即为所求.…………………………………4分(2)如图②,四边形EFGH 即为所求.……………………………………………………8分 24.(8分)解:(1)25 km .…………………………………………………………………2分 (2)∵甲从A 地到B 地的速度为25÷50=0.5 km/min ,∴甲从B 地返回A 地的速度也为0.5 km/min , ∵甲到达B 地后停留20 min 再以原速返回A 地,∴甲从B 地返回A 地时以出发70分钟,且距离A 地25 km ,∴y =25-0.5(x -70)=60-0.5x .………………………………………………6分 (3)D .…………………………………………………………………………………8分图① A D 图② P QOEH F G25.(8分)解:(1)设CH =x ,在Rt △CHF 中,∵∠CFH =∠FCH =45°,∴CH =FH =x ,在Rt △CHE 中,∴tan ∠CEH =CH EH ,∴xx +58.8=tan17°=0.30, ∴x =25.2,即CH =25.2(m ),∴CD =CH +DH =25.2+1.6=26.8(m ), 答:这棵树AB 的高度为26.8 m .………………………………………………………4分 (2)原因:小明测量的只是测角器所在位置与古塔底部边缘的最短距离,不是测量测角器所在位置与底面圆心的最短距离.………………………………………………………6分(3)12. …………………………………………………………………………………8分 26.(8分)解:(1)根据情况1,设当每只定价为x 元时,一周销售收入为y 1元.…………………………………………………………………………………………………1分y 1=x [300+25(20-x )]=-25x 2+800x ,当x =16时,y 1有最大值,最大值为6500元.…………………………………3分 答:当定价为16元时,一周销售收入最多,最多为6500元.(2)根据情况2,设当每只定价为x 元时,一周销售收入为y 2元. y 2=x [300-25(x -20)]=-10x 2+500x ,当x =25时,y 2有最大值,最大值为6250元, …………………………………5分 当22≤x ≤24时,y 1随x 的增大而减小,而y 2随x 的增大而增大,……………6分 当x =22时,y 1最大,最大值为5500,当x =24时,y 2最大,最大值为6000>5500.答:当定价为24元时,一周销售收入最多,最多为6000元.…………………8分 27.(10分)(1)①解:如图,设EF 与半圆相切于点G ,过点E 作EH ⊥BC ,垂足为点H . ∵四边形ABCD 是正方形,∴AB =BC =CD =AD =2,∠A =∠B =∠ADC =∠BCD =90°, ∴OD ⊥AD ,且AD 经过半径OD 的外端点D , ∴AD 与半圆相切于点D ,同理可证:BC 与半圆相切于点C , ∴ED =EG =2-t ,CF =FG =2t , ∴EF =2+t ,∵EH ⊥BC ,垂足为点H ,∴∠BHE =90°, ∵∠A =∠B =90°,∴四边形ABHE 是矩形, ∴EH =AB =2,BH =AE =t , ∴HF =2-3t ,在△EHF 中,∠EHF =90°, ∴EH 2+HF 2=EF 2, ∴22+(2-3t )2=(2+t )2,ECF B D H17°45°解这个方程,得t 1=1-22<1,t 2=1+22>1(不合题意,舍去),∴当EF 与半圆相切时,t 的值为1-22.………………………………………………4分 ②解:在△EDO 中,∵∠EDO =90°,∴OE 2=t 2-4t +5, 同理可证:OF 2=1+4t 2, EF 2=9t 2-12t +8, 第一种情况:当OE =OF 时,则OE 2=OF 2, ∴t 2-4t +5=1+4t 2,解这个方程,得t 1=23<1,t 2=-2<0(不合题意,舍去), 第二种情况:当OE =EF 时,则OE 2=EF 2, ∴t 2-4t +5=9t 2-12t +8,此方程无解, 第三种情况:当OF =EF 时,则OF 2=EF 2, ∴1+4t 2=9t 2-12t +8,解这个方程,得t 1=1,t 2=1.4>1(不合题意,舍去),综上所述:当△EOF 是等腰三角形时,t 的值为23或1.………………………………8分 (3)1、32.………………………………………………………………………………10分 不用注册,免费下载!。
2019-2020学年山西省太原市九年级(上)期中数学试卷(解析版)
2019-2020学年山西省太原市九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将其字母序号填入下表相应位置)1.一元二次方程x(x﹣2)=0的解是()A.x=0B.x1=﹣2C.x1=0,x2=2D.x=22.如图,直线a∥b∥c,点A,B在直线a上,点C,D在直线c上,线段AC,BD分别交直线b于点E,F,则下列线段的比与一定相等的是()A.B.C.D.3.中国人民银行于2019年9月10日陆续发行中华人民共和国成立70周年纪念币一套.该套纪念币共7枚,均为中华人民共和国法定货币.任意掷两枚质量均匀的纪念币,恰好都是国徽一面朝上的概率是()A.B.C.D.4.已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC 5.根据中国人民政治协商会议第一届全体会议主席团1949年9月27日公布的国旗制法说明,我国五种规格的国旗旗面为相似矩形,已知一号国旗的标准尺寸是长288cm,高192cm,则如图国旗尺寸不符合标准的是()A.B.C.D.6.若一元二次方程x2+mx+2=0有两个相等的实数根,则m的值是()A.2B.±2C.±8D.±27.如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是()A.65o B.60o C.50o D.40°8.目前,支付宝平台入驻了不少的理财公司,推出了一些理财产品李阿姨用10000元本金购买了一款理财产品,到后期自动续期,两期结束后共收回本息10926元.设此款理财产品每期的平均收益率为x,根据题意可得方程()A.10000(1+2x)=10926B.10000(1+x)2=10926C.10000(1+2x)2=10926D.10000(1+x)(1+2x)=109269.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程.根据规定,我市将垃圾分为了四类:可回收垃圾、餐厨垃圾、有害垃圾和其他垃圾.现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投入进两个不同的垃圾桶,投放正确的概率是()A.B.C.D.10.如图,点E,F分别是正方形ABCD内部、外部的点,四边形ADFE与四边形BCFE均为菱形,连接AF,BF有如下四个结论:①EF=AB;②∠AEF=120°;③EF垂直平分DC;④S菱形ADFE=S△ABF,其中正确的是()A.①②④B.①②③C.①③④D.①③二、填空题(本题含5个小题,每小题2分,共10分)把答案写在题中横线11.已知==(b+d≠0),则的值为.12.对某种品牌的一批酸奶进行质量检验,检验员随机抽取了200瓶该批次的酸奶,经检验有198瓶合格,若在这批酸奶中任取一瓶,恰好取到合格品的概率约为.13.用配方法解一元二次方程x2+4x﹣3=0,配方后的方程为(x+2)2=n,则n的值为.14.如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为,则(AE<BE)的值为.15.已知菱形纸片ABCD中,AB=4,点E是CD边的中点,将该纸片折叠,使点B与点E 重合,折痕交AD,BC边于点M,N,连接ME,NE.请从下面A、B两题中任选一题作答,我选择题.A.如图1,若∠A=60°,则ME的长为.B.如图2,若∠A=90°,则ME的长为.三、解答题(本题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程.16.解下列方程:(1)4x2+4x﹣1=0(2)x(2x﹣1)=2(2x﹣1)17.“共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士,如图是四位院士(依次记为A、B、C、D)为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上A、B、C、D四个标号,然后背面朝上放置,搅匀后每个同学可以从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料制作小报,求小明和小华查找同一位院士资料的概率.18.如图,已知菱形ABCD,延长AD点到F,使DF=AD,延长CD到点E,使DE=CD,顺次连接点A、C、F、E、A,求证:四边形ACFE是矩形.19.方格图中的每个小方格都是边长为1小正方形,我们把小正方形的顶点称为格点,格点连线为边的四边形称为“格点四边形”,图1中的四边形ABCD就是一个格点四边形(1)小彬在图2的方格图中画了一个格点四边形EFGH,借助方格图回答:四边形ABCD与四边形EFGH相似吗?若相似,直接写出四边形ABCD与四边形EFGH 的相似比:若不相似,请说明理由:(2)请在图3的方格图中画一个格点四边形,使它与四边形ABCD相似,但与四边形ABCD、四边形EFGH都不全等.20.为倡导积极健康的生活方式、丰富居民生活,社区推出系列文化活动,其中的乒乓球比赛采用单循环赛制(即每两名参赛者之间都要进行一场比赛)经统计,此次乒乓球比赛男子组共要进行28场单打.(1)参加此次乒乓球男子单打比赛的选手有多少名?(2)在系列文化活动中,社区与某旅行社合作,组织“丰收节”采摘活动,收费标准是:如果人数不超过20人,每人收费200元:如果超过20人,每增加1人,每人费用都减少5元.经统计,社区共支付“采摘活动”费用4500元,求参加此次“丰收节”采摘的人数.21.阅读下列材料,完成相应的任务:我们知道,利用尺规作已知线段的垂直平分线可以得到该线段的中点、四等分点…怎样得到线段的三等分点呢?如图,已知线段MN,用尺规在MN上求作点P,使PM=MN.小颖的作法是:①作射线MK(点K不在直线MN上);②在射线MK上依次截取线段MA,AB,使AB=2MA,连接BN;③作射线AC∥BN,交MN于点P点P即为所求作的点.小颖作法的理由如下:∵AC∥BN(作法),∴=(依据).∵AB=2MA(已知),∴==(等量代换)∵PM+PN=MN(线段和差定义),∴PM=MN(等量代换,等式性质)数学思考:(1)小颖作法理由中所缺的依据是:.拓展应用:(2)如图,已知线段a,b,c,求作线段d,使a:b=c:d.22.如图,已知菱形ABCD中,AB=5,点E是BC边上一点(不与B,C重合),以BE 为边构造菱形BEFG,使点G落在AB的延长线上,连接BD,GE,射线FE交BD于点H.(1)求证:四边形BGEH是平行四边形;(2)请从下面A,B两题中任选一题作答.我选择题.A.若四边形BGEH为菱形,则BD的长为.B.连接HC,CF,BF,若BD=6,且四边形BHCF为矩形,则CF的长为.2019-2020学年山西省太原市九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分。
2019-2020学年九年级数学期中试卷及答案
第 1 页 共 15 页2019-2020学年九年级数学期中试卷2019.11一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.) 1.下列关于x 的方程中,一定是一元二次方程的是( )A .x -1=0B .x 3+x =3C .x 2+3x -5=0D .ax 2+bx +c =02.关于x 的方程x 2+x -k =0有两个不相等的实数根,则k 的取值范围为( )A .k >-14B .k ≥-14C .k <-14D .k >-14且k ≠03.45°的正弦值为( )A .1B .12C .22D .324.已知△ABC ∽△DEF ,∠A =∠D ,AB =2cm ,AC =4cm ,DE =3cm ,且DE <DF , 则DF 的长为( )A .1cmB .1.5cmC .6cmD .6cm 或1.5cm5.在平面直角坐标系中,点A (6,3),以原点O 为位似中心,在第一象限内把线段OA 缩小为原来的13得到线段OC ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)6.已知⊙A 半径为5,圆心A 的坐标为(1,0),点P 的坐标为(-2,4),则点P 与⊙A 的位置关系是( )A .点P 在⊙A 上B .点P 在⊙A 内C .点P 在⊙A 外D .不能确定7.如图,在□ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC =( )A .1︰3B .1︰4C .2︰3D .1︰28.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =12,AD =4,BC =9,点P 是AB 上一动点,若△P AD 与△PBC 相似,则满足条件的点P 的个数有( )AD F CBOE(第7题)CP FEQ(第10题)ACD(第8题)。
2019--2020下学期九年级数学线上期中模拟测试参考答案
2019—2020学年度下学期期中测试九年级数学参考答案一、选择题(每小题3分,共30分) 题号12345678910答案 D C C B A B A B D A二、填空题(每小题3分,共15分)13. 6x <- ; 14. (,0); 15. 4﹣212n -.11. ﹣2y (x ﹣4)2; 12. 三、解答题16. 原式=()-22-()2-3+1-3×33-4=4-2+3+1-3-2=1. 17. 解:⑴故答案为:200、81°;(2)微信人数为200×30%=60人,银行卡人数为200×15%=30人, 补全图形如下:由条形图知,支付方式的“众数”是“微信”, 故答案为:微信;(3)将微信记为A 、支付宝记为B 、银行卡记为C ,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种, ∴两人恰好选择同一种支付方式的概率为 =.18.(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴BF=AE;(2)解:设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴sin∠EBF===.19.解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20 ∴点C坐标为(﹣4,20)∴n=xy=﹣80 ∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE=S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示各个象限一次函数图象不高于反比例函数图象,∴由图象得,不等式kx+b≤的解集﹣4≤x<0或x≥10.20.解:(1)由题意,设这种水果今年每千克的平均批发价是x元,则去年的批发价为(x+1)元今年的批发销售总额为10(1+20%)=12万元∴整理得x2﹣19x﹣120=0 解得x=24或x=﹣5(不合题意,舍去)故这种水果今年每千克的平均批发价是24元.(2)设每千克的平均售价为m元,依题意由(1)知平均批发价为24元,则有w=(m﹣24)(×180+300)=﹣60m2+4200m﹣66240整理得w=﹣60(m﹣35)2+7260∵a=﹣60<0 ∴抛物线开口向下∴当m=35元时,w取最大值即每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元21.解:【问题探究】(1)①AD⊥BD②如图,过点C作CF⊥AD于点F,∵∠ADC=45°,CF⊥AD,CD=∴DF=CF=1∴AF==3∴AD=AF+DF=4 故答案为:4【拓展延伸】(2)若点D在BC右侧,如图,过点C作CF⊥AD于点F,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∵CD=,CE=1 ∴DE==2∵∠ADC=∠BEC,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=DF+AF=3若点D在BC左侧,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∴∠CED=∠CDF∵CD=,CE=1 ∴DE==2∵∠CED=∠CDF,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=AF﹣DF=222 .解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)如图,由(2)知AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC ∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣=∵S△AMN=AM•MN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级第二学期期中练习数学数 学 2016.5学校__________班级___________姓名___________成绩___________考生须知1.本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、画图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡一并交回。
下面各题均有四个选项,其中只有一个..是符合题意的. 1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日 在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为A .96.5×107B .9.65×107C .9.65×108D .0.965×1092.如图是某个几何体的三视图,该几何体是A .长方体B.正方体C .圆柱D .三棱柱3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色 外,无其他差别,从中随机摸出一个球,恰好是红球的概率为 A .14B .34C .15D .454.下列图形中,是轴对称图形但不是中心对称图形的是A .B .C .D .5.如图,在ABCD 中,AB=3,BC =5,∠ABC 的平分线交AD 于点E ,则DE 的长为A .5B .4C .3D .26.如图,等腰直角三角板的顶点A ,C分别在直线a ,b 上.若a ∥b ,1=35∠︒,则2∠的度数为A .35︒B .15︒E CDBAC.10︒D.5︒7.初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是A.9,8 B.9,8.5 C.8,8 D.8,8.58.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数(,)表示图中承德的位置,“数对”对”19043︒(,)表示图中保定的位置,则与图中张家口160238︒的位置对应的“数对”为(,)A.176145︒(,)B.17635︒(,)C.100145︒(,)D.10035︒9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:油电混动汽车普通汽车购买价格(万元)17.48 15.98每百公里燃油成本(元)31 46某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃 油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算 时,预计平均每年行驶的公里数至少..为 A .5 000 B .10 000C .15 000D .20 00010.小明在暗室做小孔成像实验.如图1,固定光源(线段MN )发出的光经过小孔(动点K ) 成像(线段M'N')于足够长的固定挡板(直线l )上,其中MN// l .已知点K 匀速运动, 其运动路径由AB ,BC ,CD ,DA ,AC ,BD 组成.记它的运动时间为x ,M'N'的长度为y ,若y 关于x的函数图象大致如图2所示,则点K 的运动路径可能为A .A→B→C→D→AB .B→C→D→A→BC .B→C→A→D→BD .D→A→B→C→D图1 图2二、填空题(本题共18分,每小题3分) 11. 分解因式:a 2b -2ab +b =________________.12. 如图,AB 为⊙O 的弦,OC ⊥AB 于点C .若AB=8,OC =3,则⊙O 的半径长为________.13.埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.”设这个数是x ,可列方程为.ABCO14.在下列函数①21y x =+;②22y x x =+;③3y x=;④3y x =-中,与众不同的一 个是_____(填序号),你的理由是________.15.北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为________万人,你的预估理由是____________.16.阅读下面材料:在数学课上,老师提出如下问题:小云的作法如下:尺规作图:过直线外一点作已知直线的平行线. 已知:直线l 及其外一点A .求作:l 的平行线,使它经过点A .lA(1)在直线l 上任取一点B ,以点B 为圆心,AB 长为半径作弧,交直线l 于点C ; (2)分别以A ,C 为圆心,以AB 长为半径作弧,两弧相交于点D ; (3)作直线AD .所以直线AD 即为所求.lDCA B老师说:“小云的作法正确.”请回答:小云的作图依据是________________________________________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.计算:()2156tan 30132π-⎛⎫--︒++- ⎪⎝⎭.18.解不等式组41)3(2),14,2x x x x -≤+⎧⎪⎨-<-⎪⎩(并写出它的所有整数解.... 19.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.20.如图,在△ABC 中,90BAC ∠=︒,AD BC ⊥于点D ,DE 为AC 边上的中线.求证:BAD EDC ∠=∠.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的 能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若 每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多 少步.22.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC的平行线交DC 的延长线于点E . (1)求证:BD=BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.EDBACO ED ABC23.在平面直角坐标系xOy 中,直线y x =-与双曲线ky x=(0k ≠)的一个交点为(6,)P m . (1)求k 的值;(2)将直线y x =-向上平移b (b>0)个单位长度后,与x 轴,y 轴分别交于点A ,点B ,与双曲线ky x =(0k ≠)的一个交点记为Q .若2BQ AB =,求b 的值.24.如图,AB ,AD 是⊙O 的弦,AO 平分BAD ∠.过点B作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO . 延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE . (1)求证:CD 是⊙O 的切线; (2)若3AE DE ==,求AF 的长.25.阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55 亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元;(2)右图为2015年国产..动画电影票房金字塔,则B=;(3)选择统计表或.统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.有这样一个问题:探究函数(1)(2)(3)y x x x =---的图象与性质.小东对函数(1)(2)(3)y x x x =---的图象与性质进行了探究. 下面是小东的探究过程,请补充完成:(1)函数(1)(2)(3)y x x x =---的自变量x 的取值范围是全体实数; (2)下表是y 与x 的几组对应值.x … 2-1- 0 1 2 3 4 5 6 … y…m24-6-62460…①m =;②若M (7-,720-),N (n ,720)为该函数图象上的 两点,则n =;(3)在平面直角坐标系xOy 中, A (,A A x y ),B (,B A x y -)为该函数图象上的两点,且A 为23x ≤≤范围内的最低点,A 点的位置如图所示.①标出点B 的位置;②画出函数(1)(2)(3)y x x x =---(04x ≤≤)的图象.27.在平面直角坐标系xOy 中,抛物线224y mx mx m =-+-(0m ≠)的顶点为A ,与x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含C ,D 两点).若过点A 的直线+(0)y kx b k =≠与图象G 有两个交点,结合函数的图象,求k 的取值范围.28.在△ABC 中,AB =AC ,∠BAC =90︒,点D 在射线BC 上(与B 、C 两点不重合),以AD 为边作正方形ADEF ,使点E 与点B 在直线AD 的异侧,射线BA 与射线CF 相交于点G .(1)若点D 在线段BC 上,如图1.①依题意补全图1;②判断BC 与CG 的数量关系与位置关系,并加以证明;(2)若点D 在线段BC 的延长线上,且G 为CF 中点,连接GE ,AB =2,则GE 的长为_______,并简述求GE 长的思路.图1 备用图29.在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C不重合的点,点P 关于⊙C 的限距点的定义如下:若P '为 直线PC 与⊙C 的一个交点,满足2r PP r '≤≤,则称P ' 为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限 距点P '的示意图. (1)当⊙O 的半径为1时.①分别判断点M (3,4),N 5(,0)2,T (1,2)关 于⊙O 的限距点是否存在?若存在,求其坐标;②点D 的坐标为(2,0),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的 边上.若点P 关于⊙O 的限距点P '存在,求点P '的横坐标的取值范围;(2)保持(1)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E 的方向运动,⊙C 的圆心C 的坐标为(1,0),半径为r .请从下面两个问题中任选一个作答.温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P关于⊙C的限距点P'存在,且P'随点P的运动所形成的路径长为rπ,则r 的最小值为__________.若点P关于⊙C的限距点P'不存在,则r的取值范围为________.2015-2016年海淀区初三数学一模参考答案一、选择题(本题共30分,每小题3分) 题 号 1 2 3 4 5 6 7 8 9 10 答 案 BDCCDCAABB二、填空题(本题共18分,每小题3分)题 号 1112 13答 案 2)1(-a b533712132=+++x x x x题 号141516答 案所填写的理由需支持你填写的结论. 如:③,理由是:只有③的自变量取值范围不是全体实数预估理由需包含统计图提供的信息,且支撑预估的数据. 如:6.53 ,理由是:最近三年下降趋势平稳四条边都相等的四边形是菱形;菱形的对边平行 (本题答案不唯一)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式3164313=-⨯++- ……………………4分43=-.………………………5分解不等式①,得 10≤x .………………………2分 解不等式②,得7>x . ………………………3分∴ 原不等式组的解集为107≤<x .………………………4分∴ 原不等式组的所有整数解为8,9,10.………………………5分19. 解:原式4312222-++-+-=x x x x x ………………………3分 32-+=x x .………………………4分∵ 250x x +-=, ∴ 52=+x x .∴ 原式=532-=. .………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒. ∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分 ∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC . ∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.EDBAC∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分23. 解:(1)∵(6,)P m 在直线y x =-上,∴6m =-. ………………………1分 ∵(6,6)P -在双曲线ky x=上, ∴6(6)6k =⨯-=-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,F EOD ABC∴(,0),(0,)A b B b . ………………………3分 作QH ⊥x 轴于H ,可得△HAQ ∽△OAB . 如图1,当点Q 在AB 的延长线上时, ∵2BQ AB =, ∴3===ABAQOA HA OB HQ . ∵OA OB b ==, ∴3HQ b =,2HO b =. ∴Q 的坐标为(2,3)b b -. 由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时, 同理可得,Q 的坐标为(2,)b b -. 由点Q 在双曲线6y x=-上,可得3b =. 综上所述,1b =或3b =. ………………………5分24. (1) 证明:如图,连接OD . ………………………1分 ∵BC 为⊙O 的切线,∴90CBO ∠=︒. ∵AO 平分BAD ∠, ∴12∠=∠. ∵OA OB OD ==, ∴1=4=2=5∠∠∠∠. ∴BOC DOC ∠=∠. ∴△BOC ≌△DOC . ∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分 (2) ∵AE DE =,∴AE DE =.∴34∠=∠. ………………………3分 ∵124∠=∠=∠, ∴123∠=∠=∠. ∵BE 为⊙O 的直径, ∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分 ∴90AFE ∠=︒ . 在Rt △AFE 中, ∵3AE =,︒=∠303, ∴332AF =. ………………………5分25. (1) 45;………………………2分 (2) 21;………………………3分 (3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表电影 票房(亿元)大圣归来 9.55 哆啦A 梦之伴我同行5.3 超能陆战队 5.26 小黄人大眼萌 4.36 熊出没22.88………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分26. (2) ①60m =-;………………………1分 ②11n =;………………………2分 (3)正确标出点B 的位置,画出函数图象. …………………5分27. 解:(1)224y mx mx m =-+-2(21)4m x x =-+-2(1)4m x =--.∴ 点A 的坐标为(1,4)-. ………………………2分 (2)①由(1)得,抛物线的对称轴为x =1.∵ 抛物线与x 轴交于B ,C 两点(点B 在点C 左侧),BC =4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=. ∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分 ② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分 当直线过点A ,C 时,解得2k =. ………6分 结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021. ∵射线BA 、CF 的延长线相交于点G , ∴︒=∠=∠90BAC CAG . ∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =. ∴31∠=∠.∴△ABD ≌△ACF .…………………3分 ∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分 (2) 10GE =.…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F ,∴切点坐标为13()22,,13()22,-.……………3分 如图所示,不妨设点E 的坐标为13()22,,点F 的坐标为13()22,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()22E --,,13'()22F -,.设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O 的限距点存在,其横坐标x =1.综上所述,点P 关于⊙O 的限距点的横坐标x 的范围为112x -≤≤-或x =1. ……………………6分(2)问题1:39. ………………8分 问题2:0 < r <16. ………………7分。