2.7 幂函数

合集下载

高考数学一轮复习专题2.7二次函数及幂函数练习(含解析)

高考数学一轮复习专题2.7二次函数及幂函数练习(含解析)

第七讲二次函数与幂函数1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图象和性质比较R R R{x|x≥0}{x|x≠0}(1)二次函数解析式的三种形式:一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数图像R R考向一 幂函数概念及性质【例1】已知幂函数223(22)n nf x n n x -=+-(n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为________. 【答案】 1【解析】由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意. 【举一反三】1.已知函数f (f )=(f 2−f −1)f f 2+2f −3是幂函数,且其图象与两坐标轴都没有交点,则实数f =() A .−1 B .2 C .3 D .2或−1【答案】A【解析】∵函数f (f )=(f 2−f −1)f f2+2f −3是幂函数,∴f 2−f −1=1,解得:f =2或f =−1,f =2时,f (f )=f ,其图象与两坐标轴有交点不合题意,f =−1时,f (f )=1f 4,其图象与两坐标轴都没有交点,符合题意,故f =−1,故选:A .2.已知函数f(f)=(3f2−2f)f f是幂函数,若f(x)为增函数,则m等于()A.−13B.−1C.1 D.−13或1【答案】C【解析】函数f(x)=(3m2-2m)x m是幂函数,则3m2-2m=1,解得m=1或m=-13,又f(x)为增函数,则m=1满足条件,即m的值为1.故选:C.3.已知幂函数f(f)=f f的图像过点(2,√2),则下列说法正确的是()A.f(f)是奇函数,且在(0,+∞)上单调递增B.f(f)是偶函数,且在(0,+∞)上单调递减C.f(f)既不是奇函数也不是偶函数,且在(0,+∞)上单调递增D.f(f)既不是奇函数也不是偶函数,且在(0,+∞)上单调递减【答案】C【解析】∵幂函数y=xα的图象过点(2,√2),∴√2=2α,解得α=12,故f(x)=√f,故f(x)既不是奇函数也不是偶函数,且在(0,+∞)上是增函数,故选:C.4.设α∈{−1,1,12,3},则使函数y=f f的定义域为R且为奇函数的所有α的值为()A.−1,1,3 B.12,1 C.−1,3 D.1,3【答案】D【解析】当α=﹣1时,函数的定义域为{x|x≠0},不满足定义域为R;当α=1时,函数y=f f的定义域为R且为奇函数,满足要求;当α=12函数的定义域为{x|x≥0},不满足定义域为R;当α=3时,函数y=f f的定义域为R且为奇函数,满足要求;故选:D.考向二图像问题【例2】(1)当f∈{−1,12,1,3}时,幂函数f=f f的图象不可能经过的象限是A.第二象限 B.第三象限 C.第三、四象限 D.第二、四象限(2)在同一直角坐标系中,函数f(x)=f f(x≥0),g(x)=fff f x的图象可能是()A. B.C. D.【答案】(1)D (2)D【解析】(1)因为f=f−1经过第一、三象限;f=f12经过第一象限;f=f1经过第一、三象限;f=f3经过第一、三象限;所以不可能经过的象限是第二、四象限,选D.(2)∵实数a>0且a≠1,∴函数f(x)=x a(x>0)是上增函数,故排除A;∴当a>1时,在同一直角坐标系中,函数f(x)=x a(x>0)是下凹增函数,g(x)=log a x的是增函数,观察四个选项,没有符合条件选项;当0<a<1时,∴在同一直角坐标系中,函数f(x)=x a(x>0)是增函数,g(x)=log a x是减函数,由此排除B和C,符合条件的选项只有D.故选:D.【举一反三】1.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数f=f 12的图象可能是()A.① B.② C.③ D.④【答案】D【解析】幂函数y=f12为增函数,且增加的速度比价缓慢,只有④符合.故选:D.2.下图给出四个幂函数的图象,则图象与函数的大致对应是()①②③④A.①f=f 13,②f=f2,③f=f12,④f=f−1B.①f=f3,②f=f2,③f=f 12,④f=f−1C.①f=f2,②f=f3y=x3,③f=f−1,④f=f 1 2D.①f=f 13,②f=f12,③f=f2,④f=f−1【答案】B【解析】②的图象关于y轴对称,②应为偶函数,故排除选项C,D,①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A故选:B.3.在同一直角坐标系中,函数f(f)=f f(f≥0),f(f)=log f f(f>0,且f≠1)的图象可能是().A. B. C. D.【答案】D【解析】对于A项,对数函数过(1,0)点,但是幂函数不过(0,1)点,所以A项不满足要求;对于B项,幂函数f>1,对数函数0<f<1,所以B项不满足要求;对于C项,幂函数要求0<f<1,而对数函数要求,f>1,所以C项不满足要求;对于D项,幂函数与对数函数都要求0<f<1,所以D项满足要求;故选D.4.如图是幂函数y=x m和y=x n在第一象限内的图象,则( )A.-1<n<0,0<m<1 B.n<-1,0<m<1 C.-1<n<0,m>1 D.n<-1,m>1【答案】B【解析】由题图知,f=f f在[0,+∞)上是增函数,f=f f在(0,+∞)上为减函数,∴f>0,f<0,又当f>1时,f=f f的图象在f=f的下方,f=f f的图象在f=f−1的下方,∴f<1,f<−1,从而0<f <1,f <−1,故选B.考向三 比较大小【例3】设f =(35)25,f=(25)35,f=(25)25,则f ,f ,f 的大小关系是A .f >f >fB .f >f >fC .f >f >fD .f >f >f【答案】A【解析】对于函数f =(25)f ,在(0,+∞)上是减函数,∵35>25,∴(25)35<(25)25,即f <f ;对于函数f =f 25,在(0,+∞)上是增函数,∵35>25,∴(35)25>(25)25,即f >f .从而f <f <f .故A 正确. 【举一反三】1.已知点(f ,9)在幂函数f (f )=(f −2)f f 的图象上,设f =f (f − 13),f =f (ln 13),f =f (√22) 则f ,f ,f 的大小关系为( )A .f <f <fB .f <f <fC .f <f <fD .f <f <f【答案】A【解析】由f (f )=(f −2)f f 为幂函数得f −2=1,f =3, 因为点(3,9)在幂函数f (f )上,所以3f =9,f =2,即f (f )=f 2, 因为f =f (f − 13)=f (3− 13),f =f (ln 13)=f (ff3),又3− 13<√22<1<ff3,所以f <f <f ,选A.2.设f =20.3,f =30.2,f =70.1,则f 、f 、f 的大小关系为( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f【答案】B【解析】由题意得:f =20.3=√2310=√810,f =30.2=√3210=√910,f =70.1=√710f =√f 10在(0,+∞)上是增函数且9>8>7∴f >f >f 本题正确选项:f3..已知f =(√2)125,f =925,f =4log 4f 2,则下列结论成立的是( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f 【答案】A【解析】f =265=6415,f =345=8115,∵64<81,∴6415<8115,即f <f ,f =e 2>4>3>345=f ,故f <f <f ,选A .考向四 二次函数解析式【例4】 (1)已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. (3)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a ≠0),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________.【答案】(1)f (x )=x 2-2x +3 (2)x 2+2x (3)x 2+2x +1【解析】(1)由f (0)=3,得c =3,又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称,∴b2=1,∴b =2,∴f (x )=x 2-2x +3.(2)设函数的解析式为f (x )=ax (x +2)(a ≠0),所以f (x )=ax 2+2ax ,由4a ×0-4a24a=-1,得a =1,所以f (x )=x 2+2x .(3)设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a (a ≠0),又f (x )=ax 2+bx +1,所以a =1, 故f (x )=x 2+2x +1. 【举一反三】1.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 【答案】 x 2-4x +3【解析】因为f (2-x )=f (2+x )对任意x ∈R 恒成立,所以f (x )图象的对称轴为直线x =2.又因为f (x )的图象被x 轴截得的线段长为2,所以f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3),所以3a =3,即a =1,所以f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.2.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【套路总结】1. 求二次函数解析式的方法【答案】f (x )=-4x 2+4x +7.【解析】设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7.3.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式. 【答案】f (x )=x 2-4x +3.【解析】∵f (2-x )=f (2+x )对x ∈R 恒成立,∴f (x )的对称轴为x =2. 又∵f (x )图象被x 轴截得的线段长为2,∴f (x )=0的两根为1和3. 设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0).又∵f (x )的图象过点(4,3),∴3a =3,a =1.∴所求f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.4.已知二次函数f (x )=x 2+2bx +c (b ,c ∈R).(1)若f (x )≤0的解集为{x |-1≤x ≤1},求实数b ,c 的值;(2)若f (x )满足f (1)=0,且关于x 的方程f (x )+x +b =0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b 的取值范围.【答案】⎝ ⎛⎭⎪⎫15,57【解析】(1)设x 1,x 2是方程f (x )=0的两个根.由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=-2b ,x 1x 2=c ,即⎩⎪⎨⎪⎧-2b =0,c =-1.所以b =0,c =-1.(2)由题,知f (1)=1+2b +c =0,所以c =-1-2b .记g (x )=f (x )+x +b =x 2+(2b +1)x +b +c =x 2+(2b +1)x -b -1,则⎩⎪⎨⎪⎧g (-3)=5-7b >0,g (-2)=1-5b <0,g (0)=-1-b <0,g (1)=b +1>0⇒15<b <57,即实数b 的取值范围为⎝ ⎛⎭⎪⎫15,57. 考向五 二次函数的性质【例5】(1)设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是________.(2) 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________ (3) 已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 【答案】(1)[0,2] (2)[-3,0] (3)38或-3【解析】(1)二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0, 又由--2a 2a=1得图象的对称轴是直线x =1,所以a >0.所以函数的图象开口向上,且在[1,2]上单调递增,f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2. (2)当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意.当a ≠0时,f (x )的对称轴为x =3-a2a ,由f (x )在[-1,+∞)上单调递减,知⎩⎪⎨⎪⎧a <0,3-a2a≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. (3)f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3. 综上可知,a 的值为38或-3.【举一反三】1.已知函数f (x )=-x 2+2ax +1-a ,x ∈[0,1]有最大值2,则a =________. 【答案】 2或-1【解析】函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,其图象的对称轴方程为x =a .当a <0时,f (x )max =f (0)=1-a ,所以1-a =2,所以a =-1;当0≤a ≤1时,f (x )max =f (a )=a 2-a +1,所以a 2-a +1=2,所以a 2-a -1=0,所以a =1±52(舍去);当a >1时,f (x )max =f (1)=a ,所以a =2.综上可知,a =-1或a =2.2.已知函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,那么f (2)的取值范围是______.【答案】 [7,+∞)【解析】 函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,由于其图象(抛物线)开口向上,所以其对称轴x =a -12或与直线x =12重合或位于直线x =12的左侧,即应有a -12≤12,解得a ≤2,所以f (2)=4-(a -1)×2+5≥7,即f (2)≥7.3.若函数φ(x )=x 2+m |x -1|在[0,+∞)上单调递增,则实数m 的取值范围是__________. 【答案】 [-2,0]【解析】当0≤x <1时,φ(x )=x 2-mx +m ,此时φ(x )单调递增,则m2≤0,即m ≤0;当x ≥1时,φ(x )=x 2+mx -m ,此时φ(x )单调递增,则-m2≤1,即m ≥-2.综上,实数m 的取值范围是[-2,0].考向六 二次函数恒成立【例6】 (1)已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值范围为____________.((2)函数f (x )=a 2x+3a x-2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________.【答案】(1) (-∞,-1) (2)2【解析】(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m =⎝ ⎛⎭⎪⎫x -322-54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1.(2) 令a x =t ,因为a >1,x ∈[-1,1],所以1a≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎣⎢⎡⎦⎥⎤1a ,a ,显然g (t )在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以1<a ≤2,所以a 的最大值为2.1.已知函数f (x )=ax 2+bx +1(a ,b ∈R),x ∈R.(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. 【答案】【解析】(1)由题意得f (-1)=a -b +1=0,a ≠0,且-b2a =-1,∴a =1,b =2.∴f (x )=x 2+2x +1,单调减区间为(-∞,-1],单调增区间为[-1,+∞).(2)解法一:f (x )>x +k 在区间[-3,-1]上恒成立,转化为x 2+x +1>k 在区间[-3,-1]上恒成立. 设g (x )=x 2+x +1,x ∈[-3,-1],则g (x )在[-3,-1]上递减.∴g (x )min =g (-1)=1. ∴k <1,即k 的取值范围为(-∞,1).解法二:f (x )>x +k 在区间[-3,-1]上恒成立,转化为x 2+x +1-k >0在区间[-3,-1]上恒成立,设g (x )=x 2+x +1-k ,则g (x )在[-3,-1]上单调递减,∴g (-1)>0,得k <1.2.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________.【答案】 ⎝ ⎛⎭⎪⎫12,+∞【解析】由题意得a >2x -2x 2对1<x <4恒成立,又2x -2x 2=-2⎝ ⎛⎭⎪⎫1x -122+12,14<1x <1,∴⎝ ⎛⎭⎪⎫2x -2x 2max =12,∴a >12.3.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________. 【答案】 ⎝ ⎛⎭⎪⎫-22,0 【解析】 因为函数图象开口向上,所以根据题意只需满足⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0. 考向七 二次函数根的分布【例7】一元二次方程02)12(2=-+-+a x a x 的一根比1大,另一根比-1小,则实数a 的取值范围是.【答案】203a <<【解析】记2()(21)2f x x a x a =+-+-,由已知得,(1)0,(1)0,f f <⎧⎨-<⎩解得203a <<.【举一反三】1.已知关于x 的方程11()()2042x x a -+=在区间[]1,0-上有实数根,则实数a 的取值范围是. 【答案】[]1,0-【解析】当0a =时,方程为1()202x -+=,解得1x =-,符合;当0a ≠时,记2()2f m am m =-+,其中1()2x m =.当[1,0]x ∈-时,1()[1,2]2x m =∈,所以题目条件等价于函数2()2f m am m =-+在区间[1,2]内有零点. 当0a >时有函数对称轴102x a =>,若180a ∆=-=,即18a =,此时21()28f m m m =-+的零点为4m =,不符合.因为(2)40f a =>,180a ∆=->,即18a <,所以可知对称轴142x a=>,画图可知此时()f m 在区间[1,2]内无零点. 当0a <时有函数对称轴102x a=<,此时180a ∆=->恒成立.因为(2)40f a =<,所以有(1)10f a =+≥,解得1a ≥-.所以此时10a -≤<.综上可得,10a -≤≤.2.若方程210x mx -+=的两实根分别为,αβ,且012αβ<<<<,则m 的取值范围是. 【答案】5(2,)2【解析】因为关于x 的方程012=+-mx x 的两个根为,αβ,且012αβ<<<<则满足(1)020(2)0520<-<⎧⎧∴⎨⎨>->⎩⎩f m f m ,这样可以解得m 的范围5(2,)2. 3.已知二次函数()2f x x bx c =++的两个零点分别在区间()2,1--和()1,0-内,则()3f 的取值范围是 ( )A .()12,20B .()12,18C .()18,20D .()8,18 【答案】A【解析】由题意得()()()20420{10{1000f b c f b c f c ->-+>-<⇒-+<>>,可行域如图三角形内部(不包括三角形边界,其中三角形三顶点为()()()2,0,1,0,3,2A B C ):,而()393f b c =++,所以直线()393f b c =++过C 取最大值20,过B 点取最小值12,()3f 的取值范围是()12,20,选A .4.已知函数()42f x xx x =-+,存在3210x x x >>≥,使得()()()123f x f x f x ==,则()123x x f x ⋅⋅的取值范围是__________. 【答案】()64,81【解析】根据题意,()222,442{ 6,4x x x f x x x x x x x -≥=-+=-+<,由图象可知,126,x x +=()()()1231116x x f x x x f x ∴⋅⋅=⋅-⋅()()2111166x x x x =⋅-⋅-+=()22116x x -+=()22139x ⎡⎤--+⎣⎦,()()21123,398,9x x <<∴--+∈,()()12364,81x x f x ∴⋅⋅∈,故答案为()64,81.1.已知函数f(f)=(f−1)2f f2−4f+2是在(0,+∞)上单调递增的幂函数,则f=( ) A.0或4 B.0或2 C.0 D.2【答案】C【解析】∵f(x)是幂函数,∴(m﹣1)2=1,得m=0,或m=2,∵f(x)在(0,+∞)上单调递增,∴m2﹣4m+2>0,则当m=0时,2>0成立,当m=2时,4﹣8+2=﹣2,不成立,故选C.2.已知幂函数f(x)=x a(a是常数),则()A.f(x)的定义域为R B.f(x)在(0,+∞)上单调递增C.f(x)的图象一定经过点(1,1)D.f(x)的图象有可能经过点(1,−1)【答案】C【解析】(1)对于A,幂函数f(x)=x a的定义域与a有关,不一定为R,A错误;(2)对于B,a>0时,幂函数f(x)=x a在(0,+∞)上单调递增,a<0时,幂函数f(x)=x a在(0,+∞)上单调递减,B错误;(3)对于C,幂函数f(x)=x a的图象过定点(1,1),C正确;(4)对于D,幂函数f(x)=x a的图象一定不过第四象限,D错误.故选:C.3.如图所示的曲线是幂函数f=f f在第一象限的图象,已知f∈{−4,−14,14,4},相应曲线f1,f2,f3,f4对应的f值依次为()A.−4,−14,14,4 B.4,14,−14,−4 C.−14,−4,4,14D.4,14,−4,−14【答案】B【解析】结合幂函数的单调性及图象,易知曲线f1,f2,f3,f4对应的f值依次为4,14,−14,−4.故选B.4.函数f=2|f|−f2(f∈f)的图象为( )A .B .C .D .【答案】A【解析】由于函数y=2|x|﹣x 2(x ∈R )是偶函数,图象关于y 轴对称,故排除B 、D . 再由x=0时,函数值y=1,可得图象过点(0,1),故排除C ,从而得到应选A ,故选:A .5.已知函数g (x )=log a (x ﹣3)+2(a >0,a ≠1)的图象经过定点M ,若幂函数f (x )=x α的图象过点M ,则α的值等于( )A .﹣1B .12 C .2 D .3 【答案】B【解析】∵y=log a (x ﹣3)+2(a >0,a ≠1)的图象过定点M ,∴M (4,2),∵点M (4,2)也在幂函数f (x )=x α的图象上,∴f (4)=4α=2,解得α=12,故选:B . 6.已知幂函数y =x n 在第一象限内的图象如图所示,则曲线C 1、C 2、C 3、C 4的n 值可能依次为A .–2,–12,12,2B .2,12,–12,–2C .–12,–2,2,12D .2,12,–2,–12 【答案】B【解析】由图象可知:C 1的指数n>1,C 2的指数0<n<1,C 3,C 4的指数小于0,且C 3的指数大于C 4的指数.据此可得,只有B 选项符合题意.故选B .7.幂函数y =x n是奇函数,但图象不与坐标轴相交,则n 的值可以是 A .3 B .1 C .0 D .–1 【答案】D【解析】根据幂函数的性质判断出幂函数f =f f 是奇函数时,指数f 为奇数;幂函数f =f f 的图象与两坐标轴不相交时,幂函数的指数f 小于0,对照选项,只有D 正确.故选D . 8.在函数f =1f 2,f =2f 2,f =f 2+f ,f =3f 中,幂函数的个数为A .0B .1C .2D .3 【答案】B【解析】显然,根据幂函数定义可知,只有f =1f 2=f −2是幂函数,故选B .9.已知函数f =f f ,f =f f ,f =f f 的图象如图所示,则f ,f ,f 的大小关系为( )A .f <f <fB .f <f <fC .f <f <fD .f <f <f 【答案】A【解析】由图像可知,f >1,f =12,0<f <12,得f >f >f ,故答案为:A. 10.当f ∈{−1,12,3}时,幂函数f =f f 的图象不可能经过的象限是 A .第二象限 B .第三象限C .第四象限 D .第二、四象限 【答案】D【解析】f =f −1的图象经过第一、三象限,f =f 12的图象经过第一象限,f =f 的图象经过第一、三象限,f =f 3的图象经过第一、三象限.故选D .11.已知正实数f ,f ,f 满足log f 2=2,log 3f =13,f 6=172,则f ,f ,f 的大小关系是( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f【答案】B【解析】由题得f 2=2,∴f 6=8,f =313,∴f 6=32=9, 因为8<172<9,a,b,c 都是正数,所以f <f <f .故选:B12.已知幂函数f (x )=x a的图象经过点(2,√2),则函数f (x )为( ) A .奇函数且在(0,+∞)上单调递增 B .偶函数且在(0,+∞)上单调递减 C .非奇非偶函数且在(0,+∞)上单调递增D .非奇非偶函数且在(0,+∞)上单调递减【答案】C,【解析】∵幂函数f(x)=x a的图象经过点(2,√2),∴2a=√2,解得a=12∴函数f(x)=f12,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增.故选:C.13.已知函数f=f f2−5f+4(m∈Z)为偶函数且在区间(0,+∞)上单调递减,则m=()A.2或3 B.3 C.2 D.1【答案】A【解析】幂函数f=f f2−5f+4为偶函数,且在(0,+∞)递减,∴f2−5f+4<0,且f2−5f+4是偶数,由f2−5f+4<0得1<f<4,又由题设f是整数,故f的值可能为2或3,验证知f=2或者3时,都能保证f2−5f+4是偶数,故f=2或者3即所求.故选:A14.已知函数f(f)为偶函数,当f>0时,f(f)=f2−3f,则()A.f(tan70∘)>f(1.4)>f(−1.5)B.f(tan70∘)>f(−1.5)>f(1.4)C.f(1.4)>f(tan70∘)>f(−1.5)D.f(−1.5)>f(1.4)>f(tan70∘)【答案】A【解析】当f>0时,f(f)=(f−1.5)2−1.52,tan70∘−1.5>tan60∘−1.5≈0.232,又函数f(f)为偶函数,所以f(−1.5)=f(1.5),1.5−1.4=0.1,根据二次函数的对称性以及单调性,所以f(tan70∘)>f(1.4)>f(−1.5).故选A15.已知函数f(f)=f2+ff+1在区间(−∞,−1]上是减函数,在区间[1,+∞)上是增函数,则实数f的取值范围是( )A.[−2,2]B.(−∞,−2]C.[2,+∞)D.R【答案】A【解析】由题意,函数f(f)=f2+ff+1表示开口向上,且对称轴的方程为f=−f2,要使得函数f(f)在区间(−∞,−1]上是减函数,在区间[1,+∞)上是增函数,≤1,解得−2≤f≤2,故选A.则−1≤−f216.幂函数f(f)=(f2−2f+1)f2f−1在(0,+∞)上为增函数,则实数f的值为____________.【答案】2【解析】由函数f(f)=(f2−2f+1)f2f−1是幂函数,则f2−2f+1=1,解得f=0或f=2;当f=0时,f(f)=f−1,在(0,+∞)上为减函数,不合题意;当f=2时,f(f)=f3,在(0,+∞)上为增函数,满足题意.故答案为:2.17. 已知函数f (f )=(f 2−f −1)f f 是幂函数,且f (f )在(0,+∞)上单调递增,则实数f =________. 【答案】2【解析】∵幂函数f (x )=(m 2﹣m ﹣1)x m在区间(0,+∞)上单调递增,∴{f 2−f −1=1f>0,解得m =2或-1(舍).故答案为:2.18.已知幂函数f (f )=(f 2−2f −7)f f −1在(0,+∞)上是减函数,则实数f 的值为__________. 【答案】-2【解析】因为函数f (f )=(f 2−2f −7)f f −1是幂函数,所以f 2−2f −7=1,即(f +2)(f −4)=0, 解得f =−2或f =4,当f =−2时,f (f )=f −3,满足在(0,+∞)上是减函数,当f =4时,f (f )=f 3,在(0,+∞)上是增函数,所以f =−2,故答案是:−2. 19.若f (f )=(f −1)2f f 是幂函数且在(0,+∞)单调递增,则实数f =_______. 【答案】2【解析】f (f )=(f −1)2f f 为幂函数,所以(f −1)2=1,解得f =0或2. 当f =0时,f (f )=f 0=1,在(0,+∞)不单调递增,舍去; 当f =2时,f (f )=f 2,在(0,+∞)单调递增成立.故答案为:f =2. 20.已知幂函数f (x )=(m 3–m +1)x12(1−8f −f 2)的图象与x 轴和y 轴都无交点.(1)求f (x )的解析式;(2)解不等式f (x +1)>f (x –2). 【答案】(1)f (x )=x –4;(2){x |x <12,x ≠0}.【解析】(1)因为f (x )是幂函数,所以m 3–m+1=1,解得m ∈{0,±1},又f (x )的图象与x 轴和y 轴都无交点,经检验,只有当m=1时符合题意,所以m=1,此时f (x )=x –4; (2)f (x )=x –4是偶函数且在(0,+∞)递减,所以要使f (x+1)>f (x –2)成立,只需|x+1|<|x –2|,解得x<12, 又f (x )的定义域为{x|x ≠0},所以不等式的解集为{x|x<12,x ≠0}. 21.已知幂函数y =f (x )=f −2f2−f +3,其中m ∈[–2,2],m ∈Z ,①定区间(0,+∞)的增函数;②对任意的x ∈R ,都有f (–x )+f (x )=0;求同时满足①、②两个条件的幂函数f (x )的解析式,并求x ∈[0,3]时,f (x )的值域.【答案】f (f )=f 3;[0,27]. 【解析】∵幂函数y =f (x )=f −2f2−f +3在区间(0,+∞)为增函数,∴–2m 2–m +3>0,即2m 2+m –3<0,解得m ∈(−32,1), 又∵m ∈Z ,∴m =–1或m =0,当m =–1时,y =f (x )=x 2为偶函数,不满足f (–x )+f (x )=0; 当m =0时,y =f (x )=x 3为奇函数,满足f (–x )+f (x )=0. ∴同时满足①、②两个条件的幂函数f (x )=x 3,当x ∈[0,3]时,f (x )∈[0,27],即函数f (x )的值域为[0,27]. 22.已知函数f (f )=(f 2−2f −2)log f f 是对数函数.(1)若函数f (f )=log f (f +1)+log f (3−f ),讨论函数f (f )的单调性;(2)在(1)的条件下,若f ∈[13,2],不等式f (f )−f +3≤0的解集非空,求实数f 的取值范围. 【答案】(1)见解析;(2)[4,+∞).【解析】(1)由题意可知{f 2−2f −2=1f >0且f ≠1,解得f =3(负值舍去),所以f (f )=log 3f .因为f (f )=log f (f +1)+log f (3−f ),所以{f +1>03−f >0 ,即{f >−1f <3,即−1<f <3,故f (f )的定义域为{f |−1<f <3}.由于f (f )=log 3(f +1)+log 3(3−f )=log 3(−f 2+2f +3), 令f (f )=−f 2+2f +3(−1<f <3),则由对称轴f =1可知,f (f )在(−1,1)上单调递增,在(1,3)上单调递减; 因为f =log 3f 在(0,+∞)上单调递增,所以函数f (f )的单调递增区间为(−1,1),单调递减区间为(1,3).(2)因为不等式f (f )−f +3≤0的解集非空,所以f −3≥f (f )min ,f ∈[13,2], 由(1)知,当f ∈[13,2]时,函数f (f )的单调递增区间为[13,1],单调递减区间为(1,2], 因为f (13)=log 3329,f (2)=1,所以f (f )min =1,所以f −3≥1,即f ≥4,故实数f 的取值范围为[4,+∞). 23.设二次函数f (f )=f 2+ff +f ,f ,f ∈f .(1)若f (f )满足:对任意的f ∈f ,均有f (−f )≠−f (f ),求f 的取值范围; (2)若f (f )在(0,1)上与f 轴有两个不同的交点,求f 2+(1+f )f 的取值范围.【答案】(1) (0,+∞) (2) (0,116)【解析】(1)∵f (−f )+f (f )=(−f )2+f (−f )+f +f 2+ff +f =2(f 2+f )≠0恒成立, 所以,方程f 2+f =0无实数解所以,f 取值范围为(0,+∞)(2)设f (f )=0的两根为f 1,f 2,且0<f 1<f 2<1,则f (f )=(f −f 1)(f −f 2), 所以f 2+(1+f )f =f (1+f +f )=f (0)f (1)=(0−f 1)(0−f 2)(1−f 1)(1−f 2)=f 1f 2(1−f 1)(1−f 2)=(−f 12+f 1)(−f 22+f 2)=[−(f 1−12)2+14][−(f 2−12)2+14]≤116.又因为f 1,f 2不能同时取到12,所以f 2+(1+f )f 取值范围为(0,116). 24. 已知函数f (f )=f 2−2(f −1)f +4. (Ⅰ)若f (f )为偶函数,求f (f )在[−1,2]上的值域;(Ⅱ)若f (f )在区间(−∞,2]上是减函数,求f (f )在[1,f ]上的最大值. 【答案】(Ⅰ)[4,8];(Ⅱ)7-2f【解析】(Ⅰ)因为函数f (f )为偶函数,故f (−f )=f (f ),得f =1.f (f )=f 2+4,因为−1≤f ≤2,所以4≤f (f )≤8,故值域为:[4,8].(Ⅱ)若f (f )在区间(−∞,2]上是减函数,则函数对称轴f =f −1≥2,f ≥3因为1<f −1<f ,所以f ∈[1,f −1]时,函数f (f )递减,[f −1,f ]时,函数f (f )递增,故当f ∈[1,f ]时,f (f )max {f (1),f (f )} ,∴f (1)=7−2f ,f (f )=−f 2+2f +4,f (1)−f (f )=(7−2f )−(−f 2+2f +4)=f 2−4f +3=(f −2)2−1由于f ≥3∴f (1)≥f (f ) ,故f (f )在[1,f ]上的最大值为7-2f .25.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域; (2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 【答案】(1)⎣⎢⎡⎦⎥⎤-214,15. (2)a =-13或-1【解析】(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],函数图象的对称轴为x =-32∈[-2,3],∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-214,15. (2)函数图象的对称轴为直线x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13,满足题意; ②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意. 综上可知,a =-13或-1. 26.设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.【答案】见解析【解析】 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t +2. 综上可知,f (x )min =⎩⎪⎨⎪⎧ t 2+1,t ≤0,1,0<t <1,t 2-2t +2,t ≥1.。

高考数学知识点 幂函数知识点_知识点总结

高考数学知识点 幂函数知识点_知识点总结

高考数学知识点幂函数知识点_知识点总结幂函数是高中数学中重要的知识点之一,它在高考数学考试中经常出现。

掌握幂函数的知识点对于顺利解决各类与幂函数相关的数学题目至关重要。

本文将对幂函数的相关知识点进行总结和归纳,帮助同学们理清思路,加强对该知识点的掌握。

一、幂函数的定义幂函数是指函数y = x^n,其中x为自变量,n为常数。

在幂函数中,x的指数是常数,y与x之间存在特定的关系。

二、幂函数的图像特点1. 当n为正整数时,幂函数的图像是以原点为中心的相似变换。

当n为正奇数时,函数具有奇对称性,图像关于坐标原点对称;当n为正偶数时,函数具有偶对称性,图像关于y轴对称,并且右侧都是正数部分;当n为正数时,函数图像都通过第一象限。

2. 当n为负整数时,幂函数的图像将关于x轴对称,并且经过第一象限和第三象限的两点。

3. 当n为0时,幂函数的图像为直线y = 1,是一个常数函数。

三、幂函数的性质1. 定义域:所有实数。

2. 值域:当n为正奇数时,函数的值域为(-∞, +∞);当n为正偶数时,函数的值域为[0, +∞);当n为负奇数时,函数的值域为(-∞, 0);当n为负偶数时,函数的值域为[0, +∞)。

3. 单调性:当n为正数时,幂函数在定义域上是递增函数;当n为负数时,幂函数在定义域上是递减函数。

4. 对称性:当n为正奇数时,幂函数的图像关于原点对称;当n为正偶数时,幂函数的图像关于y轴对称;当n为负整数时,幂函数的图像关于x轴对称。

5. 渐近线:当n为正数时,幂函数的图像与x轴无交点;当n为负整数时,幂函数的图像与y轴无交点。

四、幂函数的应用幂函数广泛应用于数学中的各种实际问题中,比如面积、体积、变量关系等。

在解决这些问题时,我们可以通过列方程、求导等方法将其转化为幂函数的求解过程。

例如,求解一个正方形的面积与边长之间的关系。

我们可以将正方形的面积设为y,边长设为x,那么根据正方形的性质可得 y = x^2,这就是一个幂函数的表达式,通过对该函数进行数学分析,我们可以得出边长与面积之间的关系,并解决相关的数学问题。

幂函数8个基本公式

幂函数8个基本公式

幂函数8个基本公式好的,以下是为您生成的关于幂函数 8 个基本公式的文章:在咱们数学这个奇妙的世界里,幂函数可是个相当重要的角色。

就像生活中的各种小工具,幂函数的公式们也都有各自独特的用处。

先来说说幂函数的定义吧。

一般地,形如y = x^α(α 为常数)的函数,就叫做幂函数。

这里的α可以是任意实数,比如2、-1、0.5 等等。

接下来,咱们就聊聊幂函数的 8 个基本公式。

公式一:当α = 1 时,y = x,这是最简单不过的了,就像我们每天走的直路,平平直直,没有什么弯弯绕绕。

公式二:当α = 2 时,y = x^2,这就像一个向上开口的抛物线,还记得我小时候和小伙伴在院子里玩弹弓,把石子射出去,它在空中划过的轨迹就有点像这个抛物线。

那时候我们可不管什么数学公式,只知道玩得开心,后来学了这个公式,才发现原来生活中的好多现象都能用数学来解释。

公式三:当α = 3 时,y = x^3,它的图像就更有趣了,就像一个不断上升的陡坡。

公式四:当α = -1 时,y = 1/x,这个公式在很多实际问题中都能派上用场。

比如说,分一堆苹果,如果有 x 个苹果要分给 n 个人,那么每个人能分到的苹果数就是 1/x 乘以 n 。

公式五:当α = -2 时,y = 1/x^2,它的图像就像一个向下的碗,碗口越来越宽。

公式六:当α = 0 时,y = 1(x≠0),这个就像一个永恒不变的常数,不管 x 怎么变,y 始终是 1。

公式七:当α = 1/2 时,y = √x,想象一下我们切西瓜,从西瓜的中心开始,每一刀下去都是在做平方根的动作。

公式八:当α = -1/2 时,y = 1/√x,这就像是一个反比例的平方根关系。

学习幂函数的这些公式,可不能死记硬背,得结合实际去理解。

就像上次我去菜市场买菜,老板说某种蔬菜的价格和重量之间的关系可以用幂函数来表示,我一听,这不就是我熟悉的知识嘛,然后很快就算出了最划算的购买方式。

总之,幂函数的这 8 个基本公式虽然看起来有点复杂,但只要我们用心去感受,多在生活中找找它们的影子,就能轻松掌握,让数学为我们的生活服务。

必修一幂函数(含答案)

必修一幂函数(含答案)

必修⼀幂函数(含答案)2.7幂函数⼀、幂函数定义的应⽤〖例1〗已知函数f(x)=(m 2-m-1)x -5m-3,m 为何值时,f(x): (1)是幂函数;(2)是幂函数,且是(0,+∞)上的增函数; (3)是正⽐例函数; (4)是反⽐例函数.〖例2〗已知y=(m 2+2m-2)·211m x -+(2n-3)是幂函数,求m 、n 的值.⼆、幂函数的图象与性质〖例1〗已知点在幂函数()f x 的图象上,点124?-,,在幂函数()g x 的图象上.定义()()()()()()()≤??=?>??f x f xg x h x g x f x g x ,,,.试求函数h(x)的最⼤值以及单调区间.〖例2〗已知函数2245()44x x f x x x ++=++(1)求()f x 的单调区间;(2)⽐较()f π-与(2f -的⼤⼩(⼆)幂函数的性质与应⽤【例1】(1)试⽐较0.40.2,0.20.2,20.2,21.6的⼤⼩.(2)已知幂函数y=x 3m-9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增⼤⽽减⼩,求满⾜() ()--+<-m m 33a 132a 的a 的取值范围.三、幂函数中的三类讨论题〖例1〗已知函数223()()m m f x xm -++=∈Z 为偶函数,且(3)(5)f f <,求m 的值,并确定()f x 的解析式.例2已知函数2()f x x =,设函数()[()](21)()1g x qf f x q f x =-+-+,问是否存在实数(0)q q <,使得()g x 在区间(]4--,∞是减函数,且在区间(40)-,上是增函数?若存在,请求出来;若不存在,请说明理由.例3讨论函数2221()kk y k k x--=+在0x >时随着x 的增⼤其函数值的变化情况.【⾼考零距离】(2010陕西⽂数)7.下列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满⾜f (x +y )=f (x )f (y )”的是[]()幂函数()对数函数()指数函数()余弦函数【考点提升训练】⼀、选择题(每⼩题6分,共36分)1.(2012·西安模拟)已知幂函数y=f(x)通过点,则幂函数的解析式为( ) ()y=212x()y=12x ()y= 32x()y=521x 22.函数y=1x-x 2的图象关于( ) ()y 轴对称 ()直线y=-x 对称 ()坐标原点对称()直线y=x 对称3.已知(0.71.3)m<(1.30.7)m,则实数m 的取值范围是( ) ()(0,+∞)()(1,+∞) ()(0,1) ()(-∞,0)4.已知幂函数f(x)=x m的部分对应值如表,则不等式f(|x|)≤2的解集为( )(){x|0){x|0≤x ≤4} (){x|x ){x|-4≤x ≤4}5.设函数f(x)=x1()7,x 02,x 0?-?≥<若f(a)<1,则实数a 的取值范围是( )()(-∞,-3) ()(1,+∞) ()(-3,1) ()(-∞,-3)∪(1,+∞) 6.(2012·漳州模拟)设函数f(x)=x 3,若0≤θ≤2π时,f(mcos θ)+f(1-m)>0恒成⽴,则实数m 的取值范围为( )()(-∞,1) ()(-∞, 12) ()(-∞,0) ()(0,1)⼆、填空题(每⼩题6分,共18分)7.(2012·武汉模拟)设x∈(0,1),幂函数y=x a的图象在直线y=x的上⽅,则实数a的取值范围是__________.8.已知幂函数f(x)=12x-,若f(a+1)<f(10-2a),则a的取值范围是_______.9.当0三、解答题(每⼩题15分,共30分)10.(2012·宁德模拟)已知函数f(x)=x m-2x且f(4)=72.(1)求m的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.11.(易错题)已知点(2,4)在幂函数f(x)的图象上,点(12,4)在幂函数g(x)的图象上.(1)求f(x),g(x)的解析式;(2)问当x取何值时有:①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).【探究创新】(16分)已知幂函数y=f(x)=2p3p22x-++(p∈Z)在(0,+∞)上是增函数,且是偶函数.(1)求p的值并写出相应的函数f(x);(2)对于(1)中求得的函数f(x),设函数g(x)=-qf(f(x))+(2q-1)f(x)+1.试问:是否存在实数q(q<0),使得g(x)在区间(-∞,-4]上是减函数,且在(-4,0)上是增函数;若存在,请求出来,若不存在,说明理由.答案解析1.【解析】选.设y=x α,则由已知得,α,即322=2α,∴α=32,∴f(x)= 32x .2.【解析】选.因为函数的定义域为{x|x ≠0},令y=f(x)=1x-x 2, 则f(-x)=1x -(-x)2=1x-x 2=f(x), ∴f(x)为偶函数,故选.3.【解析】选.因为0<0.71.3<0.70=1, 1.30.7>1.30=1,∴0<0.71.3<1.30.7.⼜(0.71.3)m <(1.30.7)m,∴函数y=x m在(0,+∞)上为增函数,故m >0.4.【解题指南】由表中数值,可先求出m 的值,然后由函数的奇偶性及单调性,得出不等式,求解即可.【解析】选.由(12)m m=12,∴f(x)= 12x ,∴f(|x|)=12x ,⼜∵f(|x|)≤2,∴12x ≤2,即|x|≤4,∴-4≤x ≤4.5.【解题指南】分a <0,a ≥0两种情况分类求解. 【解析】选.当a <0时,(12)a-7<1, 即2-a<23,∴a >-3,∴-3<a <0.当a ≥01,∴0≤a <1,综上可得:-3<a <1.6.【解题指南】求解本题先由幂函数性质知f(x)=x 3为奇函数,且在R 上为单调增函数,将已知不等式转化为关于m 与cos θ的不等式恒成⽴求解.【解析】选.因为f(x)=x 3为奇函数且在R 上为单调增函数,∴f(mcos θ)+f(1-m)>0? f(mcos θ)>f(m-1)? mcos θ>m-1?mcos θ-m+1>0恒成⽴,令g(cos θ)=mcos θ-m+1, ⼜0≤θ≤2π,∴0≤cos θ≤1, 则有:()()g 00g 10>,>即m 10m m 10-+??-+?>,>解得:m <1. 7.【解析】由幂函数的图象知a ∈(-∞,1).答案:(-∞,1) 8.【解析】由于f(x)= 12x-在(0,+∞)上为减函数且定义域为(0,+∞),则由f(a+1)<f(10-2a)得a 10102a 0,a 1102a +??-??+-?>>>解得:3<a <5. 答案:(3,5)9.【解题指南】在同⼀坐标系内画出三个函数的图象,数形结合求解. 【解析】画出三个函数的图象易判断f(x)答案:f(x)72,所以4m -24=72.所以m=1. (2)因为f(x)的定义域为{x|x ≠0},关于原点对称, ⼜f(-x)=-x-2x - =-(x-2x)=-f(x),所以f(x)是奇函数. (3)⽅法⼀:设x 1>x 2>0,则f(x 1)-f(x 2)= x 1-12x -(x 2-22x )=(x 1-x 2)(1+122x x ),[来源:/doc/7210e201581b6bd97e19ea07.html ]因为x 1>x 2>0,所以x 1-x 2>0,1+122x x >0. 所以f(x 1)>f(x 2).所以f(x)在(0,+∞)上为单调递增函数. ⽅法⼆:∵f(x)=x-2x,∴f ′(x)=1+22x >0在(0,+∞)上恒成⽴,∴f(x)在(0,+∞)上为单调递增函数.11.【解析】(1)设f(x)=x α, ∵点(2,4)在f(x)的图象上,∴4=2α,∴α=2,即f(x)=x 2. 设g(x)=x β,∵点(12,4)在g(x)的图象上,∴4=(12)β,∴β=-2,即g(x)=x -2. (2)∵f(x)-g(x)=x 2-x -2=x 2-21x=()()222x 1x 1x-+(*)∴当-1<x <1且x ≠0时,(*)式⼩于零,即f(x)<g(x);当x=±1时,(*)式等于零,即f(x)=g(x);当x >1或x <-1时,(*)式⼤于零,即f(x)>g(x). 因此,①当x >1或x <-1时,f(x)>g(x);②当x=±1时,f(x)=g(x);③当-1<x <1且x ≠0时,f(x)<g(x).【误区警⽰】本题(2)在求解中易忽视函数的定义域{x|x ≠0}⽽失误.失误原因:将分式转化为关于x 的不等式时,忽视了等价性⽽致误.【探究创新】【解析】(1)∵幂函数y=x α在(0,+∞)上是增函数时,α>0,∴-12p 2+p+32>0,即p 2-2p-3<0,解得-1<p <3,⼜p ∈Z,∴p=0,1,2. 当p=0时,y=32x 不是偶函数;当p=1时,f(x)=x 2是偶函数;当p=2时,f(x)=32x 不是偶函数,∴p=1,此时f(x)=x 2.(2)由(1)得g(x)=-qx 4+(2q-1)x 2+1,设x 1<x 2,则g(x 1)-g(x 2)=q(4421x x -)+(2q-1)·(2212x x -)=(2221x x -)[q(2212x x +)-(2q-1)].若x 1<x 2≤-4,则2221x x -<0且2212x x +>32,要使g(x)在(-∞,-4]上是减函数,必须且只需q(2212x x +)-(2q-1)<0恒成⽴. 即2q-1>q(2212x x +)恒成⽴. 由2212x x +>32且q <0,得q(2212x x +)<32q ,只需2q-1≥32q 成⽴,则2q-1>q(2212x x +)恒成⽴.∴当q ≤-130时,g(x)在(-∞,-4]上是减函数,同理可证, 当q ≥-130时,g(x)在(-4,0)上是增函数, ∴当q=-130时,g(x)在(-∞,-4]上是减函数,在(-4,0)上是增函数.[来源:学科⽹ZXXK]。

幂函数知识点总结

幂函数知识点总结

幂函数知识点总结幂函数是数学中常见的一类函数,它的形式可以表示为f(x) = x^a,其中a为常数。

幂函数的特点是变量x的指数是常数,因此它的图像通常呈现出一种非常特殊的形状。

1.幂函数的定义域和值域:幂函数的定义域为实数集R,即它对于任意实数x都有定义。

而值域则取决于幂函数的指数a的取值范围。

当a为正数时,幂函数的值域为正实数集(0, +∞),即函数的值始终大于0;当a为负数时,幂函数的值域为负实数集(-∞, 0),即函数的值始终小于0;当a为0时,幂函数的值域只包含一个点1,即函数的值始终等于1。

2.幂函数的图像:幂函数的图像形状取决于指数a的正负和大小。

当a为正数时,幂函数的图像呈现出从左下方无限趋近于x轴的曲线,且经过点(0,0)。

随着a的增大,曲线的增长速度越来越快。

当a为负数时,幂函数的图像呈现出从右上方无限趋近于x轴的曲线,且经过点(0,0)。

随着a的减小,曲线的增长速度越来越慢。

当a为0时,幂函数的图像为一条水平直线,过点(0,1)。

3.幂函数的性质:•幂函数是奇函数还是偶函数取决于指数a的奇偶性。

当a为奇数时,幂函数是奇函数;当a为偶数时,幂函数是偶函数。

•当指数a为正整数时,幂函数的增长速度越来越快,当a为负整数时,幂函数的增长速度越来越慢。

•当指数a大于1时,幂函数的增长速度超过线性函数;当指数a介于0和1之间时,幂函数的增长速度介于线性函数和指数函数之间。

•幂函数的导数为f’(x) = a * x^(a-1),其中a为指数。

当指数a为正数时,导数始终大于0,说明幂函数在整个定义域上是递增的;当指数a为负数时,导数始终小于0,说明幂函数在整个定义域上是递减的。

综上所述,幂函数是一种常见的函数形式,它的图像和性质都受到指数a的影响。

通过对幂函数的研究,我们可以更好地理解函数的变化规律和特点。

幂函数的性质与变化规律

幂函数的性质与变化规律

幂函数的性质与变化规律幂函数是高中数学中的重要概念之一,它具有独特的性质和变化规律。

本文将介绍幂函数的定义和图像特点,并探讨幂函数的性质及其变化规律。

一、幂函数的定义和图像特点幂函数是形如f(x) = ax^n的函数,其中a为常数,n为指数,且a ≠ 0。

特别地,当n为正整数时,我们称其为正整数幂函数;当n为负整数时,我们称其为负整数幂函数。

幂函数的图像特点主要体现在以下几个方面:1. 当n为正整数时,幂函数的图像呈现出两种不同的变化规律:(1)当a > 0时,幂函数图像从第三象限的原点出发,向右上方逐渐拉长,经过第一象限,逐渐趋近于x轴正半轴。

(2)当a < 0时,幂函数图像同样从第三象限的原点出发,但在第二、四象限经过x轴正半轴的点,逐渐趋近于x轴负半轴。

2. 当n为负整数时,幂函数的图像呈现出另一种变化规律:幂函数的图像在x轴正半轴的点(x, 0)上,有n个切点(n为负整数的绝对值),即幂函数的图像与x轴的交集点为x1, x2, ..., xn,其中xi < xi+1。

在切点x = xn的左侧,幂函数的图像在x轴上是增函数,在切点x = xn的右侧,幂函数的图像在x轴上是减函数。

二、幂函数的性质1. 定义域和值域:幂函数的定义域为全部实数集,即Df = (-∞, +∞)。

对于正整数幂函数和负整数幂函数,其值域均为正实数集R+。

2. 奇偶性:当指数n为偶数时,幂函数的图像关于y轴对称,即f(-x) = f(x),为偶函数;当指数n为奇数时,幂函数的图像关于原点对称,即f(-x) = -f(x),为奇函数。

3. 单调性:当指数n为正时,幂函数在定义域内是单调递增的;当指数n为负时,幂函数在定义域内是单调递减的。

4. 渐近线:当指数n大于1时,幂函数的图像与x轴无交点,且当x趋于正无穷或负无穷时,幂函数的图像趋于正无穷或负无穷,没有水平渐近线或斜渐近线。

只有当指数n小于1时,幂函数的图像与x轴有一个或多个交点,并且当x趋于正无穷或负无穷时,幂函数的图像趋近于x轴正半轴,即有水平渐近线。

幂函数的概念与计算

幂函数的概念与计算

幂函数的概念与计算幂函数是数学中常见且重要的一类函数,具有形如f(x) = ax^m的特点。

其中,a是实数,而m是自然数或正整数。

幂函数的特点是自变量x的指数是恒定不变的,而系数a可以是任意实数。

一、幂函数的定义和性质幂函数是由实数到实数的映射,在定义域内具有以下特点:1. 幂函数的定义域是实数集R,即幂函数对任意实数都有定义。

2. 幂函数的值域则取决于指数m的奇偶性。

当m为奇数时,值域为全体实数;当m为偶数时,值域为非负实数。

3. 当指数m为正整数时,幂函数是递增函数;当指数m为负整数时,幂函数是递减函数。

4. 当指数m为正偶数时,幂函数的图像呈现上升的开口向上的形状;当指数m为正奇数时,幂函数的图像呈现上升的开口向下的形状。

5. 幂函数在x轴上有一个零点x=0,其它的零点则取决于指数m的取值。

二、幂函数的计算方法在实际问题中,我们需要具体计算幂函数的值。

根据幂函数的特性,我们可以采用以下方法进行计算:1. 零点计算:对于幂函数f(x) = ax^m,我们可以令f(x) = 0,然后求解方程ax^m = 0,从而得到幂函数的零点。

2. 极值计算:当幂函数为单调函数时,可以通过求解f'(x) = 0来得到极值点。

3. 特殊值计算:根据幂函数的定义和性质,我们可以计算一些特殊值,例如当x=1时,f(x) = a;当x=-1时,f(x) = a(-1)^m。

三、幂函数的应用举例幂函数在实际问题中有广泛的应用,下面以几个具体的例子来说明:1. 功率函数:电路中的功率由电流和电压的乘积决定,而功率函数可以表示为P = U^2/R,其中U表示电压,R表示电阻。

这个功率函数就是一个幂函数,其中指数m为2。

2. 面积与体积计算:许多几何图形的面积和体积可以用幂函数来表示。

例如,正方形的面积函数可以表示为A = s^2,其中s表示正方形的边长;球体的体积函数可以表示为V = (4/3)πr^3,其中r表示球体的半径。

幂函数公式汇总

幂函数公式汇总

幂函数公式汇总
幂函数是数学中常见的函数类型,可以表示为 f(x) = a * x^b 的形式,其中 a 和 b 是实数常数。

以下是一些常见的幂函数公式:
1. 幂函数的基本形式:
f(x) = a * x^b
其中,a 表示函数的缩放因子,决定函数图像在 y 轴方向的缩放程度;
b 表示指数,决定函数图像的曲率和增长速度。

2. 幂函数的特殊形式:
a) 平方函数:f(x) = a * x^2
这是最简单的幂函数形式,图像是一个开口朝上或开口朝下的抛物线。

b) 立方函数:f(x) = a * x^3
这是一个指数为3的幂函数,图像通常呈现出两个拐点。

c) 开方函数:f(x) = a * x^(1/2)
这是一个指数为1/2的幂函数,图像是一个开口朝上的抛物线。

d) 倒数函数:f(x) = a * x^(-1)
这是一个指数为-1的幂函数,图像在原点处有一个垂直渐近线。

以上是常见的幂函数公式的汇总。

根据具体问题和场景,可以
利用这些公式计算和分析函数的性质和行为。

注意:本文档提供的公式仅适用于幂函数。

对于其他函数类型,请参考相应的文档。

总结:幂函数是一种常见的函数类型,可以用来描述各种规律
与现象。

本文档提供了幂函数的一些常见形式和特点,帮助读者理
解和应用幂函数公式。

(完整版)幂函数公式汇总

(完整版)幂函数公式汇总

(完整版)幂函数公式汇总1. 幂函数的定义幂函数是形如 f(x) = ax^n 的函数,其中 a 是实数常数,n 是整数。

幂函数包含了多种特定形式的函数,如常函数、线性函数等。

2. 幂函数的图像特征- 当 a > 0 且 n 是偶数时,幂函数的图像在整个定义域上都为正值,并且关于 y 轴对称。

- 当 a > 0 且 n 是奇数时,幂函数的图像在整个定义域上有正有负,并且关于原点对称。

- 当 a < 0 时,幂函数的图像在整个定义域上都为负值,并且关于 y 轴对称。

- 当 a = 0 时,幂函数的常函数图像与 x 轴重合。

3. 幂函数的性质- 幂函数的定义域是全体实数。

- 幂函数的值域取决于 a 和 n 的取值范围。

- 当 a > 0 且 n > 0 时,幂函数是递增函数;当 a > 0 且 n < 0 时,幂函数是递减函数。

- 幂函数在 x = 0 处取得最小值或最大值,取决于 a 和 n 的符号。

4. 幂函数的常见公式- 幂函数的线性公式:f(x) = ax- 幂函数的平方公式:f(x) = ax^2- 幂函数的立方公式:f(x) = ax^3- 幂函数的平方根公式:f(x) = a√x- 幂函数的绝对值公式:f(x) = |a|x^n5. 幂函数的应用领域- 幂函数广泛应用于物理学、经济学、工程学等领域,用于描述各种与指数关系相关的现象和规律。

- 幂函数在建模和优化问题中具有重要作用,如生产函数、成本函数等。

以上是对幂函数的定义、图像特征、性质、常见公式和应用领域的汇总。

幂函数是数学中重要的函数类型之一,深入理解幂函数的特点和应用将有助于我们解决各种实际问题。

此为大致800字的幂函数公式汇总文档,你可以根据需要适当添加内容或进行修改。

中学学习幂函数特性 掌握常见幂函数性质

中学学习幂函数特性  掌握常见幂函数性质

中学学习幂函数特性掌握常见幂函数性质幂函数是数学中的一种特殊函数形式,其中的自变量以指数的形式出现。

在中学数学中,学习并掌握幂函数的性质对于深入理解和应用其他数学概念具有重要意义。

本文将介绍常见幂函数的性质,并提供相关例子来帮助读者更好地理解和掌握。

一、幂函数的定义和表达式形式幂函数可以用以下形式表示:f(x) = x^a其中,f(x)表示函数名,x为自变量,a为幂指数。

幂函数的图象通常为曲线,在平面直角坐标系中以原点为对称中心呈现对称性。

二、幂函数的特性1. 定义域和值域:幂函数 f(x) = x^a 的定义域为空集(a为负偶数),零(a为正偶数),或者实数集(a为非零实数)。

此外,幂函数的值域也与定义域有关,因为 a 的奇偶性质会影响幂函数函数图像的正负情况。

2. 增减性和奇偶性:对于幂函数 f(x) = x^a,当 a 为正数时,f(x) 随着 x 的增大而增大,反之亦然;当 a 为负数时,f(x) 随着 x 的增大而减小,反之亦然。

当 a 为偶数时,幂函数呈现对称性,对称轴位于 y 轴上,并且函数图像在对称轴两侧呈现相同的形状;当 a 为奇数时,函数图像则不具有对称性。

3. 零点和交点:幂函数的零点即为方程 f(x) = 0 的解,可以通过解方程得到。

当 a为正偶数时,幂函数的零点为 x = 0;当 a 为正奇数时,幂函数的零点只有 x = 0;当 a 为负数时,幂函数没有零点。

幂函数与其他函数的交点可以通过求解两个函数的方程得到。

4. 渐近线:幂函数的函数图像可能存在水平渐近线、垂直渐近线或斜渐近线。

水平渐近线一般位于 y 轴上方或者下方;垂直渐近线一般位于 x 轴左侧或右侧;斜渐近线一般以一定的倾角出现在图像的一侧。

渐近线的存在可以通过求解极限来确定。

5. 最值与极值点:当幂函数的幂指数为正数时,函数图像在定义域内无最值和极值点。

当幂指数为负数时,函数图像的最值和极值点取决于幂函数的正负情况。

幂函数运算公式

幂函数运算公式

幂函数运算公式幂函数运算公式是数学中常用的一种运算方法,它可以用来计算一个数的幂次方。

幂函数运算公式可以表示为x的n次方,其中x是底数,n是指数。

在数学中,幂函数运算公式有着广泛的应用,不仅在代数、微积分等领域中起着重要作用,而且在物理、经济等实际问题的建模和解决中也有着重要的应用。

我们来看一下幂函数运算公式的定义。

幂函数运算公式是指将一个数x自乘n次的结果,即x的n次方。

其中,x是底数,n是指数。

底数x可以是任意实数,指数n可以是任意整数。

当指数n是正整数时,幂函数运算公式表示为x乘以自身n次。

当指数n是负整数时,幂函数运算公式表示为x的倒数乘以自身的绝对值n次。

当指数n是零时,幂函数运算公式表示为1。

例如,2的3次方等于2乘以2乘以2,即8。

而2的-3次方等于1除以2乘以2乘以2,即1/8。

2的0次方等于1。

在幂函数运算公式中,底数x可以是任意实数,但指数n需要满足一定的条件。

当底数x为正数时,指数n可以是任意实数;当底数x为负数时,指数n只能是整数或分数,且分母为奇数。

这是因为负数的幂次方涉及到奇数次根的概念,而偶数次根在实数范围内是没有定义的。

幂函数运算公式在代数中的应用非常广泛。

它可以用来解决各种方程和不等式问题。

例如,我们可以利用幂函数运算公式来计算方程x的2次方等于4的解。

根据幂函数运算公式,我们可以得到x的2次方等于4,即x乘以x等于4。

解这个方程可以得到x等于正负2,即x等于2或者x等于-2。

在微积分中,幂函数运算公式是求导和积分的基本工具之一。

对于幂函数y=x的n次方来说,求导后得到的结果是y的导数等于n乘以x的n-1次方。

而对于幂函数y=x的n次方来说,积分后得到的结果是y的不定积分等于1除以n+1乘以x的n+1次方。

这些公式在计算导数和积分时非常有用,可以帮助我们简化计算过程,得到更加精确的结果。

幂函数运算公式还在物理和经济等实际问题的建模和解决中有着重要的应用。

例如,在物理学中,幂函数运算公式可以用来描述物体的运动规律、能量的变化规律等。

幂函数知识点

幂函数知识点

幂函数知识点幂函数是数学中的一种常见函数形式,它的数学表达式为f(x) = x^a,其中a是实数。

幂函数在数学和科学中有着广泛的应用,它可以描述许多自然界中的现象。

本文将带您逐步了解幂函数的定义、性质和应用。

一、幂函数的定义幂函数是指以自变量为底数的指数函数。

它的一般形式为f(x) = x^a,其中x为自变量,a为实数。

在这里,a被称为幂指数,控制着函数的形状。

二、幂函数的性质1.定义域和值域:幂函数的定义域为所有正实数和0,值域则取决于幂指数的奇偶性。

当a为正偶数时,函数图像在y轴的右侧无上界;当a为负偶数时,函数图像在y轴的左侧无上界。

当a为正奇数时,函数图像在整个坐标平面上,有上下界;当a为负奇数时,函数图像在整个坐标平面上,有左右界。

2.对称性:当幂指数为偶数时,幂函数关于y轴对称;当幂指数为奇数时,幂函数关于原点对称。

3.增减性:幂函数的增减性取决于幂指数的正负。

当a大于0时,函数在定义域上是严格递增的;当a小于0时,函数在定义域上是严格递减的。

4.特殊情况:当幂指数为0时,函数为常数函数f(x) = 1;当幂指数为1时,函数为恒等函数f(x) = x。

三、幂函数的应用幂函数在许多科学领域中有着重要的应用。

以下是一些常见的实际应用示例:1.物理学中的运动学:在运动学中,幂函数可以描述物体的位移、速度和加速度之间的关系。

例如,当幂指数为2时,函数表示匀加速运动中的位移和时间的关系。

2.经济学中的成本函数:在经济学中,幂函数可以用于描述成本与产量之间的关系。

例如,当幂指数为1时,函数表示线性成本函数,可以用来分析单位成本随产量变化的情况。

3.生物学中的生长模型:在生物学中,幂函数可以用来描述生物体的生长模型。

例如,当幂指数为正时,函数表示指数生长模型,可以用来研究细菌、植物等生物体的增长规律。

4.工程学中的功率函数:在工程学中,幂函数可以用来描述电力、声音和光的功率与强度之间的关系。

例如,当幂指数为2时,函数表示光强随距离的平方衰减规律。

2.7幂函数

2.7幂函数
·
典 例
·
突 破
目 录 考 点
·
考 情
·
考 向
·
考 题
·
关 注 基 础
·
研 究 课 时 提 能 演 练 教 师 精 品 题 库
知 能
·
回 扣 热 点
·
典 例
·
突 破
目 录 考 点
·
考 情
·
考 向
·
考 题
·
关 注 基 础
·
研 究 课 时 提 能 演 练 教 师 精 品 题 库
知 能
·
回 扣 热 点
考 情
·
考 向
·
数m的值为(
(A)m=2

(B)m=-1
考 题
·
关 注 基 础
·
研 究 课 时 提 能 演 练 教 师 精 品 题 库
知 能
·
1 5 (C)m=-1或2 (D)m≠ 2 2 【解析】选A.∵y=(m2-m-1) x m -2m-3 为幂函数;
回 扣 热 点
·
∴m2-m-1=1,解得m=2或m=-1.
·
典 例
·
突 破
目 录 考 点
·
考 情
·
考 向
·
考 题
·
关 注 基 础
·
研 究 课 时 提 能 演 练 教 师 精 品 题 库
知 能
·
回 扣 热 点
·
典 例
·
突 破
目 录 考 点
·
考 情
·
考 向
·
考 题
·
关 注 基 础
·
研 究 课 时 提 能 演 练 教 师 精 品 题 库

幂函数知识点总结

幂函数知识点总结

幂函数知识点总结幂函数是高中数学中的一个重要概念,它在数学的各个领域中都有着广泛的应用。

从初中开始,我们就接触到了简单的幂函数,随着学习的深入,我们逐渐掌握了更多关于幂函数的知识。

在本文中,我们将对幂函数的相关概念、性质和应用进行总结和探讨。

1. 幂函数的定义和表示方式幂函数是指以一个常数为底数,自变量为指数的函数。

一般表示为:f(x) = a^x,其中a为常数,x为自变量,f(x)为函数值。

2. 幂函数的基本性质2.1 幂函数的奇偶性与增减性:当底数a为正数且不等于1时,幂函数f(x) = a^x在定义域内是奇函数;当底数a为负数时,幂函数f(x) = a^x是偶函数。

当底数a大于1时,幂函数是增函数,当底数a在(0,1)之间时,幂函数是减函数。

2.2 幂函数的单调性:当底数大于1时,幂函数是递增的;当底数小于1时,幂函数是递减的。

2.3 幂函数的相关性质:a^0=1,a^1=a,a^m * a^n = a^(m+n),(a^m)^n = a^(m*n),(a^m)/(a^n)=a^(m-n),(a/b)^n=a^n/b^n。

3. 幂函数图像和特征幂函数的图像具有一些独特的特征,这在解析题或者问题求解时具有重要意义。

3.1 幂函数的渐近线:当底数大于1时,幂函数的图像在y轴上有一个水平渐近线;当底数小于1时,幂函数的图像在x轴上有一个水平渐近线。

3.2 幂函数的特殊点:当底数大于1时,幂函数的图像经过点(0,1);当底数小于1时,幂函数的图像经过点(0,1)和点(1,a)。

3.3 幂函数的拐点:当幂函数的底数a大于1时,图像经过点(1,a)并且有一个拐点;当底数a小于1时,图像经过点(1,a)但没有拐点。

4. 幂函数的应用幂函数在实际问题的解决中有着广泛的应用,以下是一些典型的应用场景:4.1 音乐和声音强度的计算:声音的强度与音源与听者距离的幂函数关系密切,通过对幂函数的建模和计算,可以获得声音强度的变化规律。

幂函数的定义与像特点

幂函数的定义与像特点

幂函数的定义与像特点幂函数是数学中一类常见且重要的函数类型,它的定义与像特点具有广泛的应用和理论意义。

本文将介绍幂函数的定义、图像特点以及实际应用,以帮助读者更好地理解和运用幂函数。

一、幂函数的定义幂函数是指形式为y = x^a的函数,其中x是自变量,a是常数,y是因变量。

幂函数的定义中,底数x可以是任意实数,指数a可以是任意实数或有理数。

幂函数的特殊情况包括平方函数(a=2)、立方函数(a=3)等。

幂函数的定义包含了一系列特殊函数,如y = x^(-a)是幂函数的倒数函数,y = a^x是以a为底的指数函数。

在幂函数中,指数a的大小和符号决定了函数的性质和图像形态。

二、幂函数的像特点幂函数的像特点主要集中在函数的图像、定义域、值域和奇偶性方面。

1. 图像:幂函数的图像与指数a的值密切相关。

当a>0且a≠1时,幂函数是递增函数;当a<0且a≠-1时,幂函数是递减函数;当a=1时,幂函数是恒等函数。

指数a的绝对值越大,幂函数的变化速率越快。

2. 定义域:幂函数的定义域通常是实数集R。

但对于某些指数a的值,可能存在对应的定义域限制,如x^(-a)的定义域需要满足x≠0。

3. 值域:幂函数的值域与指数a的奇偶性相关。

当a为任意实数时,幂函数的值域是正实数集R+或负实数集R-;当a为有理数且分母为奇数时,幂函数的值域是全体实数集R;当a为有理数且分母为偶数时,幂函数的值域是非负实数集R+∪{0}或非正实数集R-∪{0}。

4. 奇偶性:幂函数的奇偶性与指数a的奇偶性一致。

当a为偶数时,幂函数是偶函数;当a为奇数时,幂函数是奇函数。

三、幂函数的实际应用幂函数在自然科学、经济学以及工程技术等领域具有广泛的应用。

1. 自然科学:生物学中的生长规律、物理学中的速度与时间关系等现象可以用幂函数描述。

例如,动物的体重和身高之间的关系、自由落体运动的位移和时间之间的关系等。

2. 经济学:经济学中的成本函数、收益函数等经济关系可以用幂函数来表示。

高中数学 2.7幂函数配套课件 苏教版

高中数学 2.7幂函数配套课件 苏教版

y=x2
y y=x3
y=x
y=x2
1
2
y x2
1
-2 -1
y=x-1
y=x-1
O1 2
x
-1
-2
第六页,共46页。
【即时应用】
(1)判断下列命题是否正确(请在括号内填“√”或“×”)
①幂函数的图象都经过点(1,1)和点(0,0);
()
②幂函数的图象不可能在第四象限(xiàngxiàn);
()
③ n=0时,函数y=xn的图象是一条直线;
第七节 幂函数
第一页,共46页。
内容
…………高考(ɡāo kǎo)指
数:★
要求
A
B
C
幂函数

第二页,共46页。
1.幂函数(hánshù)的概念
函数(hánshyù=)x式α:_______;自变x量:__;常数α:__.
第三页,共46页。
【即时应用】
(1)判断下列(xiàliè)函数是否是幂函数(请在括号内填“是”或
第二十六页,共46页。
2.幂函数y=xα的性质 (1)定义域、值域及奇偶性,要视α的具体(jùtǐ)值而定. (2)当α>0时,幂函数在(0,+∞)上是增函数,当α<0时,幂函 数在(0,+∞)上是减函数.
第二十七页,共46页。
【例3】(1)试比较(bǐjiào)0.40.2,源自.20.2,20.2,21.6的大小.



x 0, + 时, 增 增,x -,0时, 增

非奇(fēi qí)非偶


x (0, +) 时 减,x (-,0)时 减
(1,1)

幂函数公式的讲解

幂函数公式的讲解

幂函数公式的讲解
幂函数公式,是数学中一个非常重要的概念,它能够帮助我们求解许多数学问题。

幂函数公式的基本形式为:y = x^n,其中,x为自变量,n为常数指数,y为因变量,表示x的n次方。

幂函数公式中的指数n可以是正整数、负整数、分数、小数甚至是无理数,因此,幂函数具有较广泛的适用范围。

在实际问题中,幂函数常常用来表示与时间、空间、物质等相关的量的变化规律。

幂函数的图像呈现出不同的形态,其中,当n为正偶数时,图像为向上开口的“U”形曲线,当n为正奇数时,图像为向上开口的“∩”形曲线,当n为负偶数时,图像为向下开口的“n”形曲线,当n为负奇数时,图像为向下开口的“∪”形曲线。

幂函数公式在数学、物理、化学、经济等领域都有广泛的应用。

例如,在经济学中,通过幂函数公式可以描述消费者的财富分布,研究社会经济的不平等性问题;在物理学中,通过幂函数公式可以描述物体受力后的运动规律,研究物理现象的本质规律。

因此,掌握幂函数公式的应用方法,对于我们理解和解决实际问题具有非常重要的意义。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础自测 1 1.下列函数中:①y= 3;②y=3x-2;③y=x4+x2; x ④y= x2是幂函数的个数为________ . 2
3
解析 ①中 y=x 3, ④中 y= x 符合幂函数的定义; 而

2 3
②中 y=3x-2,③中 y=x4+x2 不符合幂函数的定义.
2.幂函数
1 =27 的 x 的值是________ . 3
>3.8
>(-1.9) .
(3) 由 于 指 数 函 数 y = 0.2x 在 R 上 是 减 函 数 , 所 以 0.20.5<0.20.3.又由于幂函数 y=x0.3 在(0,+∞)上是递增函 数,所以 0.20.3<0.40.3,故有 0.20.5<0.40.3.
探究提高
有关幂值的大小比较, 可结合幂值的特点, 选
α
1 y=f(x)的图象经过-2,-8,则满足
f(x)
1 解析 设幂函数 y=x ,则- =(-2)α, 8 1 ∴α=-3,即 y=x ,又 x =27,∴x= . 3
-3 -3
3.设
1 α∈ -1,1,2,3,则使函数
y=xα 的定义域为
2
1 2
研究用描点法画出图象.
1 1 4.幂函数 y=x,y=x ,y=x ,y=x ,y=x的性质 2
2 3
y= x 定义域 R
y=x2 R
y=x3 R
yx
1 2
y=x-1 (-∞,0) ∪ (0,+∞) (-∞,0) ∪ (0,+∞) 奇 (-∞,0)减, (0,+∞)减 (1,1)
[0,+∞)
题型二
幂函数的图象和性质
例 2 比较下列各组值的大小:
(1) 8

1 3
1 3 和( ) ; 9
2 5
1
( 2 ) 4 .1 、 3 .8
2 5
和( 1.9)

3 5
;
(3)0.2 0.5 和0.4 0.3.
思维启迪
观察符号指数的特点,利用性质插入中间值进
行转化,从而得到结果.

1 (1)-9
1,3 R 且为奇函数的所有 α 值为________ .
4.如图所示曲线是幂函数 y=xn 在第一象限内 1 的图象.已知 n 分别取± 1, ,2 四个值,则 2 相应曲线 C1、C2、C3、C4 的 n 依次为( B ) 1 A.-1, ,1,2 2 1 C. ,-1,2,1 2 1 B.2,1, ,-1 2 1 D.2, ,-1,1 2
解析 幂函数 y=xα 在(0,1)的图象为“指大图低”,所 1 以 C1,C2,C3,C4 的 n 依次为:2,1, ,-1,故选 B. 2
5.若幂函数
1 f(x)的图象经过点3,9,则其定义域为(
C )
A.{x|x∈R,x>0} C.{x|x∈R,且 x≠0}
B.{x|x∈R,x<0} D.R

2 . 2
思想与方法 1.利用转化思想求参数范围 试题:(12 分)若函数 f(x)=(mx2+4x+m+2)
3 4

(x2-mx+1)0 的定义域为 R, 求实数 m 的取值范围.
审题视角 3 (1)从幂函数的视角看,幂指数为- .f(x)的 4
定义域为 R,转化为 mx2+4x+m+2>0 恒成立,且 x2 -mx+ 1≠0.(2)mx2+ 4x +m + 2>0 恒成立转化为 y= mx2+4x+m+2 开口向上,且与 x 轴无交点.
1 3
=-9

1 3
,由于幂函数 y=x ,
1 3

1 3
在(0,+∞)
上是减函数,所以 8 >9 因此-8
1 3
<- 9
2 5

1 3
,即-8
2 5
1 <-9
1 3
.
3 5
(2)由于 4.1 因此 4.1
2 5
>1,0<3.8
2 5
<1,(-1.9)
3 5
<0,
5,或m>-1+ 5, [8 分] [10 分] [12 分]
∴m>-1+ 5. 由②得 Δ2=(-m)2-4<0,即-2<m<2. 综上可得 5-1<m<2.
批阅笔记
(1)有关幂函数 y=xα 的定义域的确定,当 α
为分数时,可转化为根式考虑,当 α=0 时,底是非零 的, 不可忽视. 本题将原题转化为对一切 x∈R 有 g(x)>0 且 h(x)≠0 恒成立是解题的关键. (2)不等式恒成立问题, 可利用数形结合思想, 如 g(x)>0 和 h(x)≠0 在 R 上恒成 立作进一步转化.(3)易错分析:第一,不能将问题转化 为 mx2+4x+m+2>0 恒成立问题,也就是缺乏转化的 意识;第二,易忽略 x2-mx+1≠0 的隐含条件,致使 范围扩大.
题型三
幂函数的综合应用
m2 2 m3
例 3 已知幂函数 f(x)= x
m 3
(m∈N+)的图象关于 y
m 3
轴对称,且在(0,+∞)上是减函数,求满足 (a 1)
(3 2a)

的 a 的取值范围.
由 f(x)=x
m2 2 m3
思维启迪
(m∈N+)的图象关于 y 轴对
m 3
2 m -m-1=1 则 -5m-3>0
,∴m=-1.
(3)若 f(x)是正比例函数,则-5m-3=1, 4 解得 m=- , 5 4 2 此时 m -m-1≠0,故 m=- . 5 (4)若 f(x)是反比例函数,则-5m-3=-1, 2 2 2 则 m=- ,此时 m -m-1≠0,故 m=- . 5 5 (5)若 f(x)是二次函数,则-5m-3=2, 即 m=-1,此时 m2-m-1≠0,故 m=-1. 综上所述,当 m=2 或 m=-1 时,f(x)是幂函数; 当 m=-1 时,f(x)既是幂函数,又是(0,+∞)上的增函数; 4 当 m=- 时,f(x)是正比例函数; 5 2 当 m=- 时,f(x)是反比例函数; 5 当 m=-1 时,f(x)是二次函数.


2 的大小. 2
x2+4x+5 1 ∵f(x)= 2 =1+ x +4x+4 (x+2)2
=1+(x+2)-2, 其图象可由幂函数 y=x
-2
的图象向左平移 2 个单位,再
向上平移 1 个单位得到,
该函数在(-2,+∞)上是减函数,在(-∞,-2)上是增 函数,且其图象关于直线 x=-2 对称(如图所示). 2 2 又∵-2-(-π)=π-2<- -(-2)=2- , 2 2 ∴f(-π)>f
探究提高
本题集幂函数的概念、 图象及单调性、 奇偶性
于一体, 综合性较强, 解此题的关键是弄清幂函数的概念 及性质.解答此类问题可分为两大步:第一步,利用单调 性和奇偶性(图象对称性)求出 m 的值或范围;第二步,利 用分类讨论的思想, 结合函数的图象求出参数 a 的取值范 围.
x2+4x+5 变式训练 3 指出函数 f(x)= 2 的单调区间, 并比 x +4x+4 较 f(-π)与 f
k 数为 y=x (k≠0);(3)幂函数为 y=xα.解这类题目, 要紧扣 定义.
变式训练 1 值时,f(x)
已知函数 f(x)=(m2-m-1)x-5m-3,m 为何
(1)是幂函数; (2)是幂函数,且是(0,+∞)上的增函数; (3)是正比例函数; (4)是反比例函数; (5)是二次函数.
解 (1)因 f(x)是幂函数,故 m2-m-1=1,即 m2-m-2=0, 解得 m=2 或 m=-1. (2)若 f(x)是幂函数且又是(0,+∞)上的增函数,
解析
设 f(x)=x
α
1 .∵图象过点3,9,
1 - ∴ =3α,即 3 2=3α,∴α=-2, 9 1 即 f(x)=x = 2,∴x2≠0,即 x≠0, x
-2
其定义域为{x|x∈R,且 x≠0}.
题型分类
题型一 例1 幂函数的概念
2
深度剖析
,m 为何值时,f(x)是
已知 f(x)=(m +2m) x
变式训练 2
已知幂函数
yx
43mm2
(m∈Z)的图象与 y
轴有公共点,且其图象关于 y 轴对称,求 m 的值,并 作出其图象.
解 依题意,其图象与 y 轴有公共点,则
4-3m-m2>0,即 m2+3m-4<0,解得-4<m<1. 又∵m∈Z,∴m=-3,-2,-1,0. 当 m=-3 或 m=0 时,函数可化为 y=x4,符合题意,其 图象如图①. 当 m=-2 或 m=-1 时, 函数可化为 y=x6,符合题 意,其图象如图②.
2 m +m-1=-1 2 m +2m≠0
,解得 m=-1.
所以当 m=-1 时,f(x)为反比例函数. (3)若 f(x)为幂函数,则 m2+2m=1. ∴m=-1± 2, 所以当 m=-1± 2时,f(x)为幂函数.
探究提高 (1)正比例函数为 y=kx (k≠0);(2)反比例函
(3)幂函数的图象一定会出现在第一象限内, 一定不会出现在第四 象限内,至于是否出现在第二、三象限内,要看函数的奇偶性; 幂函数的图象最多只能同时出现在两个象限内;如果幂函数的图 像与坐标轴相交,则交点一定是原点. (4)幂函数的定义域的求法可分 5 种情况,即:①α 为零;②α 为 正整数;③α 为负整数;④α 为正分数;⑤α 为负分数. (5)作幂函数的图象要联系函数的定义域、值域、单调性、奇偶性 等,只要作出幂函数在第一象限内的图象,然后根据它的奇偶性 就可作出幂函数在定义域内完整的图象.
相关文档
最新文档