安捷伦EMpro内部培训资料6
2012奇正藏药 安捷伦气相色谱基础培训
转化为易挥发的液体和固体。 分析的有机物,约占全部有机物(约300万种)的20%。 6.不足之处:对被分离组分的定性能力较差。
2019年10月14日星期一
兰州制造中心实验室
1.4 色谱图及有关术语
• 从载气带着组分进入色谱柱起就用检测器 检测流出柱后的气体,并用记录器记录信 号随时间变化的曲线,此曲线就叫色谱流 出曲线,当待测组分流出色谱柱时,检测 器就可检测到其组分的浓度,在流出曲线 上表现为峰状,叫色谱峰。
2019年10月14日星期一
兰州制造中心实验室
• 理解色谱法(Gas Chromatography ) • 主要有2点:一是要 有两相,二是要有差异
。
• 两相:固定相和流动相 • 具体到气相色谱: • 固定相就是色谱柱(column),流动相就是气
体或者称为载气(carrier gas )。 • 差异就是指分配系数的差异。
(HP Part No. 19095Z-123) 载气: Helium, 5.2 psi 炉温: 60 C 进样口: 1 cc, 分流比 5:1 检测器: FID
2019年10月14日星期一
兰州制造中心实验室
药品中溶剂残留: USP 467
1
2
4
1 二氯甲烷(25 ppm) 2 氯仿(12 ppm) 3 苯(25 ppm)
- 不纯样品。 - 固体样品。 - 含有某些不做分析的高沸点 组
分样品。 - 含水量较高的样品。
2019年10月14日星期一
兰州制造中心实验室
应用
水中氯化烃 顶空分析
2
3
1
1. 氯代甲烷 2. 二氯甲烷 3. 三氯甲烷 4. 四氯化碳 4
安捷伦气相色谱仪培训教材
Agilent 7890/5975-GC/MSD (For 1701E02系列工作站)现场培训教材1安捷伦科技有限公司生命科学与化学分析仪器部2培训目的● 初步了解Agilent 7890气相色谱仪和5975质谱仪的操作。
● 正确地执行仪器的开机、关机;初步掌握软件中有关仪器参数设定、分析方法的编辑、谱库检索及报告的打印。
注意事项:1.老化柱子分段老化。
按温度从低到高分段,程序升温老化。
这是最好的老化方法。
如HP-5柱,5-6℃/min至250℃,反复数次;再升至280℃,反复数次;接到MS上看基线情况。
270℃以后基线提高为正常。
再老化到300℃半小时。
无论何种方式,载气必须充足。
2.进样口用红色或灰色隔垫,可减少隔垫流失。
3.GC/MS接口处使用的垫圈是85%vesper材质 (5062-3508)。
注意安装方向(大的一端朝向质谱)。
4.新柱子安装时无方向性,但一旦使用过,不要再改变方向。
保存柱子时注意将两端密封好,避免水和空气破坏柱子内涂层仪器配置:341. 在操作系统桌面双击Config/配置图标进入仪器配置界面2. 如下图所示点击所要配置的仪器。
配置MSD 及GC :以下采用中文工作站界面,英文工作站请参考相应位置及图标在出现的画面中输入仪器名称、序列号等信息后,在质谱仪一栏中选择MSD 的型号,并输入MSD 的IP 地址,选择DC 极性(标注于MSD 侧板的中部金属上部);同样配置GC 后点击确定退出。
5配置完成后桌面上应出现“GCMS ”和“GCMS Data Analysis ”的图标(名称由配置时输入的仪器名称决定)。
如下图所示:开机1. 打开载气钢瓶(He)控制阀,设置分压阀压力至0.5Mpa2. 打开计算机,登录进入Windows XP系统。
3. 打开7890GC、5975MSD电源(若MSD真空腔内已无负压则应在打开MSD电源的同时用手向右侧推真空腔的侧板直至侧面板被紧固地吸牢),等待仪器自检完毕。
安捷伦GCMS培训资料(高级培训)
Author:DengYun
回忆开机操作过程
• • • • • 打开He气; 打开计算机; 打开GC、MSD电源; 进入MSD化学工作站; 观察真空泵状态,分子涡轮泵很快达到
100Percent,扩散泵压力应很快达到 100mToor左右。
• •
观察观察离子源、四极杆温度的实际值 是否达到设定值。 观察空气、水的状态,氮气28/69<10%,
303
M/Z
50
100
150
Abundance Scan 33 (5.289 min): ALKDEMO.D 182 82 1000000 303 166 M/Z 50 100 150 200 250
Abundance Scan 35 (5.305 min): ALKDEMO.D
1000000 182 82 M/Z 50 100 166 150 200 250 303
Author:DengYun
气相色谱/质谱基础 Data System MS Interface GC
1
Author:DengYun
主供气 开关阀 二级减压阀 开关阀
气路连接
脱水管 脱氧管
氦气
HP 6890
主供 气体
常用的气路连接图
2
Author:DengYun
管路和净化器
须使用GC 专用铜管或不锈钢管。 塑料管会渗透O2和其它污染物。还可能会释放其它可被检测到的 干扰物。 管子使用前先用溶剂冲洗,载气吹干。 根据工厂的推荐,每用完3瓶气,应更换过滤器,以防止发生气体 的污染。 每隔一定时间,应对所有外加接头进检漏(大约每30 5.31 5.32 5.33
Time
5.25
安捷伦液相色谱仪讲座 ppt课件
28
Agilent 1100 系列泵的使用须知
更好地使用泵
当泵头安装有冲洗附件时,由于该附件中也有密封垫,这样就 会增加活塞杆运动时的阻力。所以开泵前一定要用10%异丙醇, 并将其流速调至约20滴/分钟使这溶液流过冲洗装置。
10%异丙醇有助于降低水的表面张力,并有抑菌作用。最好不 要用其它溶剂代替。
3.清洗球形单向阀
31
4.更换密封垫,活塞杆
Question?
Agilent 1100 泵的日常维护
1.如何简单判断比例阀是否内漏? 2.何时应该更换Purge阀内的过滤白头? 3.泵压力不正常可能由那些原因引起?
32
Question?
Agilent 1100 系列泵的日常维护
1.如何简单判断比例阀是否内漏? 设定泵使用一个单独通路(A),打开Purge阀,流 速5ml/min,提起其他溶剂瓶内的溶剂过滤头直至离 开液面,观察这些通路(B、C、D)内的溶剂是否随 着流动,正常时均不应流动。 2.何时应该更换Purge阀内的过滤白头? 使用纯水作流动相,打开Purge阀,流速5ml/min, 观察系统压力,如果超过10bar,应该更换。 3.泵压力不正常可能由那些原因引起? 气泡,主动阀故障,出口阀故障,密封垫或柱塞杆 磨损,渗漏或堵塞,比例阀故障,传感器故障,使用 比例阀混合时盐浓度太高
33
Agilent 1100 自动进样器(G1313A)
34
Agilent 1100 自动进样器工作原理
35
Agilent 1100 自动进样器工作原理
36
Agilent 1100 自动进样器结构
37
Agilent 1100 自动进样器结构
38
Agilent 1100 自动进样器结构
安捷伦气质联用仪培训教材培训课件
气质联用仪能够分析挥发性有机化合物、有 机酸、有机胺等有机化合物
可分析环境样品中挥发性有机物、农药残留 等
食品和农产品分析
制药和化妆品分析
可分析食品和农产品中的农药残留、添加剂 等
可分析药物和化妆品中的成分和杂质
03
使用安捷伦气质联用仪的安全操作规程
仪器的正确操作步骤
仪器电源的连 接
确保仪器电源线连接良 好,电源电压稳定,避 免仪器突然断电或电源 波动影响仪器性能。
数据处理与分析
对采集到的数据进行处理和分析,提取有用的分 析结果。
05
仪器性能优化和常见故障排除
仪器性能的优化技巧
优化气质联用仪的灵敏度和分辨率
01
通过调整仪器的真空度和进样口温度等参数,提高仪器的性能
。
优化气质联用仪的稳定性和耐用性
02
合理安排仪器的使用时间和使用频率,避免仪器过热或过载。
优化气质联用仪的操作便捷性和安全性
03
设计简单易行的操作步骤和安全防护措施,降低操作难度和风
险。
仪器常见故障的排除方法
故障一
进样后无响应:可能是由于进样针堵塞、色谱柱未连接或断裂、 检测器污染等原因引起的。
故障二
谱图异常:可能是由于仪器内部气路有漏气、离子源过热或污染 、真空系统工作异常等原因引起的。
故障三
重现性不好:可能是由于仪器未校准、色谱柱老化或污染、进样量 不准确等原因引起的。
VS
背景
气质联用技术是一种将色谱分离与质谱检 测相结合的分析方法,具有高分离度、高 灵敏度、高选择性等优点,被广泛应用于 化学、生物学、医学等领域。安捷伦气质 联用仪作为市场上的主流设备之一,具有 良好的稳定性和可靠性,被广大用户所认 可。
最新安捷伦高效液相色谱工作站高级操作培训ppt课件
Slide 54
自动积分
•检查开始和结束区域,确定噪音。 •赋予初始Slope Sensitivity和Height Reject值. •对第一次积分赋予一个临时峰宽值。 •设置Area Reject为0。 •执行测试性积分,有可能重复几次。 •基于较早洗脱出的色谱峰宽计算峰宽值。 •优化Slope Sensitivity和Height Reject。 •从初始的峰宽和噪音水平计算Area Reject。
Slide 34
泵的辅助功能
选择Instrument More Pump Auxiliary…菜单,即 可弹出下图窗口。
在该窗口可以设置泵 的最大升流速率、泵 冲程大小以及设置溶 剂的压缩补偿因子。
Slide 35
自动进样器的扩展功能
Slide 36
色谱柱信息的输入
Slide 37
VWD停泵扫描采集光谱
Slide 59
Peak width: (半峰宽)
如果没有设置半峰宽的时间积分表,半峰宽在整个积分过程中自动变化,变化 遵从0.75×exiting peak + 0.25×current peak。
Timed Events :(时间性积分事件)
•Area Sum ON or OFF:设定某一时间段内进行峰面积加和,加和后保 留时间被分配到第一个峰的保留时间上。
使用VWD停泵扫描的功能,可以采集样品的吸收光谱, 主要操作步骤如下: 1.在Online工作站界面的View菜单下打开VWD Scans窗口; 2.按照正常的进样方式采集样品色谱数据,并保证能够在
Online Signal窗口中观测到色谱信号; 3.进样后,色谱图上出现基线时,扫描空白吸收光谱
EZChrom现场培训教材_New
Agilent1120HPLC工作站EZChrom Compact3.3.0现场培训简明教材安捷伦科技有限公司生命科学与化学分析事业部2008年4月目录1概述 (4)手册目的 (4)仪器准备1120HPLC (4)仪器结构组成 (5)1120仪器的可用连接口 (5)溶剂准备 (6)计算机要求 (6)2开机和平衡系统 (7)启动EZChrom工作站 (7)仪器状态监控和开关 (8)冲洗(灌注)系统,排除气泡 (10)3编辑采集方法 (11)启动方法向导来创建方法 (11)设置柱式加热炉(柱温箱)的参数 (12)设置泵的参数 (13)设置VWD检测器的参数 (15)设置自动进样器的参数 (16)辅助谱图的参数设置 (17)触发器 (17)积分事件/参数的设置 (18)峰/组表的设置 (18)高级方法选项 (19)创建和编辑报告 (20)方法属性 (20)下载方法 (21)前处理 (22)4单次运行 (24)预览运行 (24)单次运行 (24)提前结束运行或延长运行时间 (26)样品排队 (27)5建立和编辑序列 (27)序列向导 (28)序列向导--方法 (28)序列向导--未知样品 (29)序列向导--校正 (31)序列向导--报告 (32)编辑和保存序列表 (32)序列属性 (34)6序列运行 (36)开始运行 (36)运行过程中的操作 (37)提前停止序列 (38)运行队列 (39)7色谱图的常用操作及积分 (41)打开色谱数据文件 (41)色谱图的修饰和标注 (43)积分事件 (43)应用积分参数分析当前数据 (46)8定量分析 (47)定义峰 (47)色谱峰表格中各栏的意义 (50)外标的单级校正 (55)内标的单级校正 (58)多级外标校正 (61)9编辑报告模板 (65)打开并修改面积百分比报告模板 (65)打开并修改外标法报告模板 (69)打开并修改内标法报告模板 (71)10实验室监控和诊断软件 (73)添加要监控的仪器 (73)正常开启实验室监控和诊断软件 (75)系统信息 (75)测试 (76)校正 (77)状态报告 (78)日志和结果 (78)工具 (78)停止监控 (79)1概述手册目的了解HPLC的原理和1120HPLC的结构。
安捷伦培训
Agilent 6890N GC 现场培训教材安捷伦科技有限公司化学分析仪器部一、培训目的:•基本了解6890N硬件操作。
•掌握化学工作站的开机,关机,参数设定, 学会数据采集,数据分析的基本操作。
二、培训准备:1、仪器设备: Agilent 6890N GC•进样口: 填充柱进样口 (PPIP);毛细柱进样口 (S/SL); 冷柱头进样口 (COC); PTV 进样口。
•检测器:FID;TCD;ECD;u ECD; NPD;FPD。
•色谱柱:P/N 19091J-433, HP-5毛细柱:30m, 320μχ0.25μ•进样体积: 1ul。
2、气体准备:•FID,NPD,FPD :高纯H2 (99.999%),干燥空气;•ECD, uECD:高纯N2 (99.999%)•载气, 高纯N2 (99.999%)或高纯He (99.999%).基本操作步骤:(一)、开机:1、打开气源(按相应的检测器所需气体)。
2、打开计算机,进入Windows NT (或Windows 2000)画面。
3、打开6890N GC电源开关。
(6890N 的IP地址已通过其键盘提前输入进6890N)4、待仪器自检完毕,双击Instrument 1 Online图标,化学工作站自动与6890N通讯,此时6890N 显示屏上显示“Loading…”。
进入的工作站界面如下图:5、从“View”菜单中选择“Method and run control”画面,单击“Show top toolbar”,“Show status toolbar”,“Instrument diagram”, “Sampling Diagram” ,使其命令前有“√”标志,来调用所需的界面。
(二)数据采集方法编辑:1.开始编辑完整方法:从“Method”菜单中选择“Edit Entire Method”项,如下图所示,选中除“Data Analysis”外的三项,单击OK,进入下一画面。
安捷伦气相色谱仪现场培训教材
GCMS_RTL培训手册(For 7890_5975 and 1701EA chemstation)安捷伦科技有限公司生命科学与化学分析仪器部什麽是保留时间锁定(RTL):保留时间锁定是一种在不同系统之间消除改变仪器带来的保留时间变化的步骤。
既当与另一台GCMS系统使用相同型号的色谱柱时,任何的Agilent GCMS系统均可获得与之相匹配的色谱保留时间的能力,使保留时间重现。
用于不同系统间交换方法。
保留时间锁定(RTL)的用途:RTL节约时间。
RTL提高结果的可信度。
RTL简化了不同实验室之间、不同系统之间以及经过一段时间的数据间的比较。
RTL提供了用于确定未知物的保留时间库的开发与研究的可能RTL提高了不同仪器间转移方法的速度。
保留时间锁定的步骤:1. 5 次“标准”运行2.选择锁定峰3.RTL 计算压力曲线4.确定RTL 并保存方法为了锁定一个给定的方法,必须事先建立保留时间和压力的校正曲线(RT vs P) 即使用相同部件号的柱子(相同内径、固定相、类型、相比(phase ratio)等)。
当使用以下条件时需要单独的/ 不同的锁定校正曲线,1. 具有不同的柱子出口压力的系统(MSD / 真空,FID / 大气压,AED / 升高的压力)2. 柱子和标准长度差别大于15%(例如,由于切齐柱子造成的)3. 系统的预期锁定压力超出当前校正的范围专用的标样(通常是在标准方法的校正标样中使用的一个)必须选择用来建立锁定校正曲线和锁定将来所有系统。
该标样即目标峰必须是容易鉴定的,对称的,且是色谱图的最主要部分。
应避免使用极性强的易分解的溶质。
一旦溶剂选定,并且方法的所有色谱参数也已经决定后,就进行五个校正标准的化合物分析。
这些分析可以通过选择Instrument / Acquire RTLock Calibration Data 来自动设置。
对自动进样,你会被提示将小瓶放在1 的位置,然后提示进行五个样品的分析,如果有任何先前的校正数据存在,必须注意到这一事实,先前的校正数据可以清除或停止处理过程。
安捷伦扩散泵培训资料
•
•
当扩散泵的前级压力超过最大允 许前级压力时,扩散泵的抽气能 力将崩溃,并导致极大的返油量
• • 喷射级的能量和密度将不足以阻挡扩 散泵前级的气体返流 气体将沿着相反的方向流动,并携带 上大量的油蒸汽
• •
扩散泵的工作原理
主要特征参数——极限真空度
极限真空度:当气载=0的情况下的理论值; 一般说来,扩散泵可以很快进入10-6 Torr 量级, 然后则需要一定 时间的脱气过程以进入10-8 Torr,其需要时间的长短取决于多种 因素; 通过使用低温冷阱可以进入10-10 Torr 量级; 在接近极限真空度的情况下,由于气体成分的不确定性和真空计 的误差,所以在该范围内测量抽速没有意义; 每种不同的气体都有各自不同的抽速曲线和极限真空度 实际的空载极限压力受扩散泵油的蒸汽压、裂解程度、和系统中 水蒸气的残留量有关
安捷伦扩散泵的特点 ——不锈钢成型喷射塔
(竞争对手) 铝质扩散塔
扩散塔材料:不锈钢 • 喷嘴间隙热变形小 • 高强度,不易变形 • 抽气性能稳定,经久耐用
安捷伦扩散泵的特点
安捷伦扩散泵的特点 —— 分馏式喷射塔
没有分馏装置 的喷射塔(某竞 争对手)
只有扩散泵油中蒸汽压 最低的、最纯净的组分 才可以进入到中央的第 一级
极限压力
10-9
进气口压力 (Torr)
10--3
10--1
体积流量(升/秒) 扩散泵的抽速与进气口面积大约成正比 对不同的气体抽速不尽相同
扩散泵的工作原理
主要特征参数——最大抽气量
• • • • •
最大抽气量应该是用来选择扩散泵 的一个重要参数 最大抽气量决定了扩散泵正常工作 的上限压力 与输入功率成正比 一般来说,1千瓦的输入功率可以用 来获得1.2-1.5 Torr-l/s抽气量 对于频繁反复抽空以及大流量的高 真空应用,在选择扩散泵的型号时 应着重考虑最大抽气量
empower现场培训教程
Empower 3 软件现场培训教材目录一.登录 1 二.编辑仪器方法和方法组(以2695_2998为例) 2 三.编辑仪器方法和方法组(以2695_2489为例) 7 四.进样12 1.单进样12 2.使用向导建立样品组和样品组方法12 五.建立数据处理方法18 1.2D数据处理方法18 2.建立3D数据处理方法26 六.查看结果和视图筛选36 七.预览结果并创建一个综合报告方法37 八.方法组的建立38 九.数据管理411. 项目的备份412.项目的还原43 十.项目管理47 1.新建项目47 2.察看及更改项目属性50 3.系统配置51一.登录1.双击电脑桌面上的Empower快捷图标出现Empower登录界面,输入用户名和密码。
注:出厂设置的默认用户帐号为system,密码为manager。
建议每个系统都建立自己的用户帐号和密码。
己的用户帐号和密码2. 单击高级键, 选择用户类型和QuickStart界面3. 选择QuickStart界面,点击“确定”,然后选择待选定的操作项目以及色谱系统(仅查看数据可选择色谱系统中的“没有系统”),单击“确定”。
4.登录Empower的QuickStart界面。
二、编辑仪器方法和方法组(以2695_2998为例) 1.采集栏单击方法组编辑向导:2. 选择选项3.弹出仪器方法编辑器。
4.单击2690/5,弹出2695编辑界面。
1) Alliance 系统(包括2695、2795和2695D)通用编辑页面中,可选择单次输送体积,请针对不同的流速选定适当的单次输送体积,以确保最佳的流速精度与准度。
2)查看脱气选项,确认设置正确。
3)流量选项中设置泵模式、总流量以及流动相配比。
a. 等度模式如下图所示:b. 梯度模式如下图所示:5.单击2998,弹出2998编辑界面。
1) 3D数据采集:在通用栏中选择启用3D数据,输入检测波长的范围;2)采集2D数据,点击,最多可同时采集8个不同波长的通道的数据;个点为准。
2019奇正藏药 安捷伦气相色谱基础培训
2019年10月16日星期三
兰州制造中心实验室
“极性”一词常用来描述或评价固定液的性质。气相色谱中
的所谓极性,是指含有不同功能团的固定液与分析物质的功
能团和亚甲基之间相互作用的程度。如果一种固定液保留某
种化合物的能力大于另一类,则认为这种固定液对于前一类
化合物有较高的选择性。人们最初用来描述和区别固定液分
2019年10月16日星期三
兰州制造中心实验室
根据固定液的化学性能,色谱柱可分为非极性、极性与手性 色谱分离柱等。固定液的种类繁多,极性各不相同。色谱柱 对混合样品的分离能力,往往取决于固定液的极性。常用的 固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈 醚类等。新近发展的手性色谱柱使用的是手性固定液,主要 有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环 糊精衍生物等。其中以环糊精及其衍生物为色谱固定液的手 性色谱柱,用于分离各种对映体十分有效,是近年来发展极 为迅速且应用前景相当广阔的一种手性色谱柱。 在进行气相色谱分析时,色谱柱的选择是至关重要的。不仅 要考虑被测组分的性质,实验条件例如柱温、柱压的高低, 还应注意和检测器的性能相匹配。有关内容我们将在以后章 节中加以详细讨论。
注意事项
★进样口温度过低,将导致高分子量化合物气化不完全 ,并且不能有效转移到色谱柱中。(样品气化不完全 )
★进样口温度过高,导致热稳定性差的化合物分 解。 (样品分解)
★样品从进样针注入时,不同组分的气化程度不 同,高沸点组分残留量比例高。
一般情况下进样速度必须很快,因为当进样时 间太长时,试样原始宽度将变大,色谱峰半峰宽 随之变宽,有时甚至使峰变形。一般地,进样时 间应在1s以内。
成。 5.应用广泛:可以分析气体试样,也可分析易挥发或可衍生
安捷伦气相色谱基础培训资料 共97页
2019/7/19
兰州制造中心实验室
• 如图所示为一色谱流出曲线
:
• 1)基线:在实验条件下,
色谱柱后仅有纯流动相进
入检测器时的流出曲线称
为基线。基线在稳定的条
件下应是一条水平的直线。
2019/7/19
兰州制造中心实验室
• 理解色谱法(Gas Chromatography ) • 主要有2点:一是要 有两相,二是要有差异
。
• 两相:固定相和流动相 • 具体到气相色谱: • 固定相就是色谱柱(column),流动相就是气
体或者称为载气(carrier gas )。 • 差异就是指分配系数的差异。
2019/7/19
兰州制造中心实验室
分子筛干燥器
氧气捕集器
微量的氧气会破坏色谱柱,特别是对毛细管柱。氧气也会降低ECD检测器的功能。 氧气捕集器 (P/N 3150-0414) 应连接在分子筛干燥器和仪器安装设备的进样口 之间。
管路:使用GC专用铜管, 使用前先用溶剂冲洗,载气吹干。
2019/7/19
5)半峰高宽度W ½ :色谱峰高一半处的峰宽。也称为色谱峰半高宽
度。
2019/7/19
兰州制造中心实验室
1.5 气相色谱构成示意图
2019/7/19
兰州制造中心实验室
1.6 气相色谱基本流路图
进样垫100次更换
一般为1:10
吸 咐 不 被 气 化 的 物 质 2019/7/19
500次更换
N2尾吹
2019/7/19
兰州制造中心实验室
安捷伦气相色谱基础培训
06
常见问题与解决方案
仪器故障排查
仪器启动困难
检查仪器电源、气路和进样系统是否正常。
基线漂移
检查仪器温度、气路和检测器是否正常,以及是否需要更换色谱柱。
峰形异常
检查进样技术、色谱柱和检测器是否正常。
实验误差来源与控制
1 2
温度波动
保持仪器恒温,减小温度波动对实验结果的影响。
气体纯度
使用高纯度的载气和燃气,确保实验结果的准确 性。
拓展了专业知识领域 培训让我了解了气相色谱在各个 领域的应用,如环境监测、食品 检测和药物分析等,拓展了我的 专业知识领域。
实验操作技能提升
在培训过程中,我进行了实际操 作,学会了如何设置仪器参数、 进样和分析数据,提高了实验技 能。
解决问题的能力
通过解决培训过程中遇到的问题, 我学会了如何分析问题、提出解 决方案并实施,提高了解决问题 的能力。
药物残留检测
总结词
安捷伦气相色谱在药物残留检测中具有高灵敏度、高特异性和高准确性的特点, 能够检测多种药物残留,保障食品安全和公众健康。
详细描述
安捷伦气相色谱技术广泛应用于药物残留检测,如兽药残留、农药残留、兴奋 剂残留等。该技术能够准确测定多种药物残留的量,为食品药品监管部门提供 有力支持,确保食品和药品的安全性和有效性。
培训背景
气相色ห้องสมุดไป่ตู้技术是一种广泛应用于 化学、制药、食品、环保等领域
的分离分析方法
安捷伦气相色谱仪器在市场上具 有较高的知名度和应用广泛性
随着分析检测技术的发展,气相 色谱技术在实际应用中不断更新
和完善
02
安捷伦气相色谱仪介绍
仪器基本结构
进样系统
负责将样品引入色谱柱,通常 包括进样阀和进样针。
安捷伦培训资料:数字无线通信介绍
安捷伦培训资料:数字无线通信介绍RFCM 102: Introduction to Digital Wireless Communications RF Microwave e-Academy ProgramPowerful tools that keep you on top of your gameRFCM 102: Introduction to Digital Wireless Communications Technical data is subject to change. Copyright@2003 Agilent Technologies Printed on Oct. 1, 2003 5988-8497ENA 2-1 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications RFCM 102: Introduction to Digital Wireless Communications Chapter 1: Introduction and drivers for digital municationse to this module RFCM 102, an Introduction to Digital Wireless Communications. We mend that you go through module RFCM 101 before you study this. This is a big module, we expect it will take you 90 to 120 minutes to go through this.2-2 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications ContentsDrivers for digital munications Signal bandwidth and pulse shaping filters, power/bandwidth efficiency trade-offsModulation schemes Speech and channel coding Channelization Digital munication systems are different from analog systems. This module will examine the things that are unique about digital munication systems. We will look at the need for digital munication systems, bandwidth aspects, different modulation and channel coding schemes.2-3 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Drivers for Digital Communications Compatibility with data sources/sinks Control over bandwidth efficiency via modulation scheme Exploitation of digital signal processing Error correction, encryption, data pressionChannel sharing: multiplexing, multiple accessThe past two decades have seen an explosive growth in the use of digital munications techniques, particularly over wireless links. Whilst digital quadrature modulation schemes have been used since the 1960s in satellite munication systems, almost all wireless munication now employ digital modulation. In addition to being patible with the devices that generate and receive data (e.g. PCs), the use of digital modulation schemes can yield improved bandwidth efficiencies (the amount of frequencybandwidth required to transmit data at a given rate). This is particularly important since the current spectral allocations are extremely congested and often expensive. Further, digital munication systems can also exploit error correction techniques to improve power efficiency and provide efficient sharing of the channel capacity through multiplexing techniques.2-4 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Digital vs. Analog1.5 1.5110.50.5VoltageVoltage0 2 4 6 8 10 12 14-0.5-0.5-1-1-1.5-1.52468101214TimeTimeAnalog: Faithful reproduction of signal at RX?Digital: Decide which symbol was sent from a pre-defined alphabetIn an analog munication system, the fidelity of the signal must be maintained between the transmitter and the receiver. Any interference, distortion or noise will have a direct impact upon the signal quality at the receiver. In a digital munication system, the role of the receiver is to decide which symbol from a pre-defined alphabet of symbols has been sent. For instance,in a binary signalling system (signals are encoded either‘1’ or‘0’), the receiver must decide whether a‘1’ or‘0’ was sent. In a very simple system, this could be achieved using threshold detection. In the illustration above, it is evident that in the presence of a small amount of noise, the receiver can easily determine the bits in the data stream that was sent.2-5 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Bandwidth of a Signal1Response10.5 00.8Response0.6012345678Response (dB)-3 -2 -1 0 1 2 3 40.4-10 -20 -30 -40 -50 0 1 2 3 4 5 6 7 80.20 -4Time (t/Tb)Normalised Frequency (f.Tb)Bandwidth of pulse of duration Tb is infinite Spectrum has sinc(x) shape extending from -∞ to+∞ First sidelobe -13 dB down, rolls off at 20 dB/dec Some form of filtering is required In a digital munication system, the bits (or symbols) are usually represented as pulses. Consider a single pulse of width Tb. It can be shown that this pulse will occupy an infinite amount of bandwidth! This is due to the infinitely sharp rise and fall times of the pulse. The spectrum of this pulse extends from -∞ to+∞ Hz and has a sinc(x) shape (sinc(x)=sin(x)/x). The plots on the right show the spectrum in both real and absolute terms. Clearly, any practical munication system will not have infinite bandwidth. Thisis particularly true in wireless munication systems, where bandwidth is at a premium. (Consider cellular telephone operators - they typically pay the regional government for the spectrum that they use). Thus, how much bandwidth is required to transmit our pulse of data?2-6 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Chapter 2: Filtering and Pulse ShapingFiltering a PulseLow Pass FilterTime Low pass filtering of pulse - causes ringing Pulse spread in time domain - intersymbol interferenceTimePerhaps a better question to have asked is: what is the effect of bandlimiting the pulse spectrum, or, what is the effect of filtering the pulse. Passing our pulse through a low pass filter will cause‘ringing’ or ripples in the time domain. The rise and fall times are no longer infinitely fast and the duration of the response extends beyond the original pulse width. The exact shape of the output pulse will depend upon the frequency response of the low pass filter. However, the important thing to realize is that some ofthe energy from the pulse falls outside of the original pulse width. Thus, where we have a stream of data, energy from previous bits (due to the ringing) will interfere with the current bit. This effect is known as intersymbol interference.2-7 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Bandwidth Requirements and Pulse ShapingTbChannel BW: Bit rate (NRZ): Bit period (NRZ): e.g. Rb=10 kb/s Max sine wave freq: f=Rb/2=5 kHz0 to B Hz Rb Tb=1/Rb Tb=0.1 msVoltageT=2Tb f=0.5Rbsine NRZ Apr. 10, 2001TimeTheory: Practice:B=Rb/2 B=0.7-0.8RbConsider a simple bit stream. Let the bit pattern be ***-*****10 (a square wave) - since this is the most rapidly changing bit stream pattern, it will have the highest frequency content. From the illustration above it can be seen that we can fit one pletecycle of a sine wave into two bit periods. Thus, if the bit rate is Rb (bits/sec), then the frequency of the sine wave that we can fit to the square wave pattern is Rb/2. This suggests that for a bit rate of Rb, we require a transmission bandwidth of 0 to Rb/2 Hz.2-8 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Nyquist Brickwall Filter5 0 -5 -10 Pulse Response Nyquist Brickwall Filter1 0.8Impulse Response0 0.5 1 1.5 2 2.5 3 3.5 4Response (dB)0.6 0.4 0.2 0-15 -20 -25 -30 -35 -40 -45 -50-0.2 -0.4 -6Normalised Frequency (f/Rb)-4-2246Normalised Time (t/Tb)Nyquist filter - achieves zero crossings at integer multiples of symbol period e.g.‘brickwall’ filter with cut-off at RS/2 Zero crossings at symbol interval - no ISI at sample pointImagine a brickwall low pass filter with a passband from 0 to Rb/2 Hz, where Rb is the bit rate. The impulse response from such a filter contains ringing, as we would expect. However, such a filter has zero-crossings at integer multiples of the bit interval, Tb (where Tb=1/Rb). What is the significance of this? In a munication system, we would normally sample (make our decision) at the centre point (t=0 in the plot above). The next bit of data would be sampled at t=1. The signal from our first pulse, zero crosses at this instant - thus it does not interfere with the decision made on the t=1 pulse. Zero crossings at integer multiples of the bit period effectively means that we do not have any interference from previous or future bits when we make the current bit decision - we have mitigated intersymbol interference. Filters exhibiting such zero-crossing characteristics are known as Nyquist filters.2-9 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Mitigating Intersymbol Interference1 0.8 0.6 0.4Voltage (V)0.2 0 -0.2 -0.4 -0.6 -0.8 -1 -5 -4 -3 -2 -1 0 1 2 3 4 5Normalised Time (t/Ts)Filtered pulse is spread in time domain At sampling (decision point) tails are zero - ISI mitigatedThe slide above illustrates the mitigation of ISI. It can be seen that the tails (ringing) of all the filtered pulses are zero at integer multiples of the bit period. Filters with brickwall responses are impossible to realise. The infinitely sharp cut-off would require an infinite number of filter poles. Fortunately, the Nyquist criteria for zero-crossings can be met with a class of filters known as raised-cosine filters (RCFs). With these filters, the roll-off between the passband and stopband is a cosine wave function. These filters are typically implemented as a Finite Impulse Response (FIR) filter in some form of DSP.2 - 10 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Raised Cosine Filters1alpha=0.0 alpha=0.5 alpha=1.01alpha=0.0 alpha=0.5 alpha=1.00.8Norm Impulse Response 0.8Norm Freq Response 0.60.60.40.20.40.2-0.20.10.20.30.40.50.60.70.80.91-0.4 -4-3-2-11234Norm. Freq (f/Rb)Norm. Time (t/Tb)Smallerα, less bandwidth but higher sidelobe levels Timing overshoot problems, filter implementation α=0.2 to 0.5 typically used currentlyThe slide above shows frequency and impulse responses for the RCF. Note, the smaller the roll-off factor (a), the sharper the cut-off. However, with this sharper cut-off es greater sidelobelevels - this places tighter tolerances on sample timing (more ISI energy at small given offset). Note that the occupied bandwidth of a R CF filtered signal is approximately (1+α)RS, where RS is the symbol rate.2 - 11 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Raised Cosine Filters and Root Raised Cosine FiltersTransmitter Spectral containment Receiver Filter noise Max SNR@ decision ptData√Raised Cosine√Raised CosineDEMOD√Raised Cosine filters at TX RX form overall Raised Cosine response Matched filter is optimum for AWGN channel So far we have developed the idea of raised cosine filters and shown that they satisfy the Nyquist zero-crossing criteria. The question now is where should they be placed. If the RCF was placed at the receiver, then we would have no band-limiting at the transmitter and would thus be occupying a very large bandwidth! If we placed the RCF at the transmitter, then we wouldcontain the spectrum, but what would be used to reject the noise at the receiver (placing another filter here would upset the zero-crossing property). The solution to fil ter placement is to place‘half’ the filtering at the transmitter and‘half’ at the receiver. Thus root raised cosine filters (RRCFs) are used at both the transmitter and receiver to obtain an overall response that is raised cosine. In addition to filtering the noise at the receiver, the receiver RRCF also maximises the signal to noise ratio at the decision point (this is a property of the matched filter pair).2 - 12 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications FIR ImplementationImpulse Data Traink0 T T T T T T Tk1k2k3k4k5k6k7FIR Response1 0.5 0 -4 -3 -2 -1 0 1 Time (t/Tb) 23 4Pulse Shaped Data StreamFIR Response1 0.5 0 0 5 10 15 20 Tap Number 25 30This slide illustrates how RRCFs are implemented using a finite impulse response (FIR) filter structure. Typically these filters are specified in terms of the oversampling ratio (the number of samples per data bit or symbol) and the number of symbols. The total number of taps in the filter is the product of the oversampling ratio and the number of symbols in the filter. In general, the smaller the roll-off factor (a), the greater the number of taps required - which in turn increases the processing delay. In the plot above, an oversampling ratio of 4 is used and the filter contains 8 symbols. Thus, the data stream[1,1,0,1,0,1] would be level shifted and oversampled such that the input to the FIR was of the form:[1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0] This signal would be clocked through the FIR to provide the pulse shaped data stream at the output.2 - 13 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Matched FilterData Signal Filter at RX to reduce noiseChoose filter response to be mirror image of ing signal Filter is‘matched’ e.g. RRCF pair Signal output from filter: E Noise output from filter: NOSymbol TimingFilter h(t)Output SNR depends on signal energy (E) and noise power spectral density (NO)NoiseThe essence of the problem in a digital munication receiver is to determine which symbol from a pre-defined alphabet was sent in the presence of noise. Thus, we are not so much concerned with maintaining the fidelity of the digital signal, but maximising the signal to noise ratio (SNR) at the decision point, to provide a better chance of making the correct decision. A‘matched’ filter is used to achieve this. It can be shown that the matched filter is the time mirror image of the transmitted signal. In mathematical terms, if the signal pulse is denoted x(t), then the impulse response of the matched filter is: h(t)=x(T-t) where T is the sampling instant. The signal output from such a filter is simply E, the energy contained in the signal. The average noise output is given by the expression above - note that it only depends upon the noise power spectral density NO (W/Hz) at the receiver input.2 - 14 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Increasing Number of Symbol StatesBinary Signal1 0.8 0.6 0.4 0.2 0 0 2 1 23456789 10 11 12 13 14Represent groups of bits as symbols Increase bandwidth efficiency by reducing symbol rate e.g. 4-PAM: two bits encoded int o one symbol Symbol period: TS=2Tb→RS=0.5Rb Trade-off against noise immunityTime (bit periods) 4-level Signal1 0 -1 -2 0 1 2 3 4 5 6 7Time (symbol periods)At this stage it is worth examining the concepts introduced so far - those of bandwidth and power efficiency. It has been shown that for a binary signaling system, the bandwidth required to transmit the data stream is proportional to the bit rate. In creasing the signaling alphabet, can reduce the effective bit rate - or rather the‘symbol’ rate and improve bandwidth efficiency. In the example above, we encode 2 bits of binary data into one of 4 voltage levels (symbol alphabet size is 4) as follows: 11 10 00 01+1.5 V+0.5 V -0.5 V -1.5 VEach symbol now represents 2 bits of data. Thus, to maintainthe same data rate (bits/s), the symbols (2 bits/symbol) can be transmitted at half the data rate. Thus we halve the bandwidth requirements. Note: it is extremely important to distinguish between the‘bit rate’ (data bits/s) and the‘symbol rate’ (s ymbols/sec). Symbol rate is sometimes referred to as‘baud rate’. As an example, consider a system which transmits data using a phase shift keyed scheme, in which each symbol is encoded into one of 32 phases of a carrier frequency. 5 bits of information are required to map into each of the phase states (25 phase states). Imagine the phase is changed every 0.5 ms - thus the symbol rate is 2000 symbols/sec. Thus the channel capacity (or effective bit rate) is five times the symbol rate (5 bits per symbol) giving 10,000 bits/sec.2 - 15 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Limitation on Symbol StatesBandwidth efficiency achieved by increasing symbol states Limit set by POWER *****NCY n bits encoded into M=2n symbol states Example: Information rate: 2 Mbits/s Channel bandwidth: 75 kHz Symbol rate: 150 ksymbol/s Bits/sym required: (2x106/150x103)=14 bits/symbol No. of symbol states:M=214=16,384 states Assume symbols correctly identified if separated by 5 mV Pk-pk voltage of waveform: 82 VWhat is the limit on improving bandwidth efficiency? The answer is power efficiency. Consider the example above where the data rate is 2 Mbit/s and the channel bandwidth is 75 kHz. The theoretical maximum symbol rate that we could transmit down this channel would be 150 ksymbols/sec (a very optimistic estimate). Thus, the number of bits/symbol required is 14. This means that we require 214 symbol states, in other words 16,384 different voltage levels. Now, assume that our receiver can correctly decode the symbols if they are separated by at least 5 mV (again optimistic). This means that the pk-pk voltage of the waveform is 82 V - not particularly practical for any line system!2 - 16 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Power-Bandwidth Efficiency Trade-offIncrease symbol states to increase bandwidth efficiency Harder to distinguish symbols in presence of noise Hence reduced power efficiency Power/BW efficiency trade-off101.0Bandwidth Efficiency Rb/B8 7 6 5 4 3 2100.08 7 6 5 4 3 2Case: RbC Practical radios operate here i.e. theoretical capacity always better than what can be achieved practically C= B log 2(1+ SNR ) E C C= log 2 1+ b N B B O10-1.0 -6.00.06.012.018.024.030.036.0shannon curve Apr. 11, 2001Power Efficiency Eb/NO (dB)Shannon developed a relationship between bandwidth efficiency and power efficiency. The plot above gives a theoretical maximum limit for this trade-off. Note that it assumes additive Gaussian white noise (AWGN) and a perfect transceiver.2 - 17 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless CommunicationsDigital Modulation Schemes Brief review of binary modulation schemes (ASK, FSK, PSK) Overview of I-Q (vector) modulation Quadrature PSK and variants Continuous phase FSK Chapter 3: Digital Modulation SchemesIn this module, we will briefly review some binary modulation schemes in order to introduce some basic transmission concepts. Binary amplitude and phase shift keyed systems are no longer monly used due to their poor bandwidth efficiency. Instead, they have been superseded by quadrature modulation schemes (and higher order variants whichmonly bine both amplitude and phase encoding for the symbol states). Thus, vector modulation concepts will be introduced before moving on to examining QPSK techniques and their variants. Some attention will also be paid to examining higher order modulation schemes. In addition, consideration will also be given to‘constant envelope’ modulation schemes, which fall into the class of modulation techniques known as continuous phase frequency shift keyed’ (CP-FSK) systems. CP-FSK systems rely on modulating the frequency of the carrier - however, the phase of the carrier between the symbols is carefully controlled to control the spectral occupancy of the signal. The advantage ofCP-FSK is that the envelope of the carrier remains constant, allowing efficient RF power amplification.2 - 18 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Amplitude and Frequency Shift Keying (ASK and FSK)ASK Simple TX implementation No power transmitted when no data sent NC-ASK receiver simple to construct Coherent ASK rarely used (small power penalty using NC-ASK) Threshold level adjustment to track RSS - AGC usually required Short range telemetry applicationsFSK Similar TX plexity cf ASK (usually increased frequency stability) Simple thresholding (symmetry about dc) NC-FSK RXs: simple to construct NC-FSK BW reqASK Power efficiency: no ASK peak power problems Filtered FSK schemes used in many radio systems (e.g. GSM, DECT)In an amplitude shift keyed (ASK) system, the amplitude of the carrier is modulated according to the data stream. Typically, the carrier is pulsed on and off. At the receiver, the signal can be either coherently or non-coherently detected. In the non-coherent case, this means that we can simply detect the envelope of the signal to recover the transmitted signal. In a coherentreception scheme, a phase locked oscillator is required (usually at some lower intermediate frequency) to translate the signal to baseband. The power penalty for employing a non-coherent pared to a coherent scheme is small and thus non-coherent detection is normally employed (avoiding the plexity of phase locking and carrier recovery). When transmitted over a wireless link, the amplitude of the received signal will vary, thus the threshold detection level needs to track this variation. Thus, some form of automatic gain control (AGC) will typically be employed to adjust the received signal strength (RSS). Due to the simplicity in implementation, ASK is typically used in some very low cost, short range telemetry applications. In a frequency shift keyed (FSK) system, the carrier frequency is modulated so that a data bit‘1’ is encoded as f1 and a data bit‘0’ is encoded as f2. In simple FSK systems, transmitter plexity is similar to that of an ASK system (except that the local oscillator usually requires better frequency stability). Note that the modulated signal has a constant envelope, allowing power efficient RF amplification. Non-coherent receivers are typically implemented using either a frequency discriminator (output voltage is proportional to input frequency) or two bandpass filters centred on the twosignalling frequencies. In the latter case, the characteristics of the bandpass filters set the frequency spacing of the two tones. Alternatively, FSK can be demodulated using a phase locked loop (PLL) which has a sufficient tracking range. Note also that energy is sent for both data 1’s and 0’s and so the peak power is the same as the mean power. Thus, whilst power efficiency of non-coherent FSK and ASK are the same on a mean power basis, ASK is poorer on a peak power basis. FSK is a very popular modulation technique and is used in many different systems. Cellular and cordless radio systems such as GSM and DECT both use FSK. Some form of filtering is employed in both these systems to reduce the spectral occupancy and thus improve bandwidth efficiency. These will be discussed later. The frequency occupancy of an FSK-modulated signal depends upon the bit rate and the frequency deviation. For the case fTb1, it is convenient to think of the FSK signal as prising two ASK signals, each with a different carrier. With no pulse shaping, each carrier has a sinc2 spectrum. The tone carriers are offset from the carrier freq uency by± f.2 - 19 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Phase Shift Keying (PSK)Best power efficiency (of binary schemes) Information in PHASE of carrier Must have coherent demodulation Increases RX plexitySignal at IFMatched FilterPhase LockSymbol TimingIn a phase shift keyed (PSK) system, the phase of the carrier is modulated according to the bit stream - typically in a binary system the carrier phase is switched between 0 and 180 degrees. In order to extract the data at the receiver, the signal is coherently demodulated (the data is in the phase of the carrier!). This increases the plexity of the receiver, since the local oscillator at the receiver must have the same frequency AND phase of the ing signal. Thus, some form of carrier recovery circuit is required to establish this phase lock. Note that whilst the slide above illustrates the PSK waveform having a constant envelope, in practice the transmission signal will be filtered, usually with a RRCF. This filtering destroys the constant envelope properties.2 - 20 2001 Agilent TechnologiesRFCM 102: Introduction to Digital Wireless Communications Phase Shift Keying (PSK): Phase RecoveryBPF@ 2fo or PLL Signal at IF div by 2 Carrier focos(2πfot) or cos(2πfot+180) cos(2πfot+0/180) cos(4πfot+0/360)=cos(4πfot)Use squaring loop to remove modulation PLL required if PSK signal is filtered Problem of p phase ambiguity after div. by 2 Solutions: Training sequence - poor choice for unreliable channel, overhead Differential encodingThe slide above illustrates one approach to carrier recovery. Consider the received signal being switched between 0 and 180 degrees i.e. cos(2πfot±0/180) (ignoreany filtering considerations at this point). What we require as a signal for the LO is cos(2πfot), thus we effectively need to strip off the modulation. This can be done using a squaring loop. If the ing signal is squared, the sum and difference ponents are obtained, that is a dc term and cos(4πfot±0/360)= cos(4πfot) - which is a signal at twice the carrier frequency. Passing this signal through a divide by two circuit gives us our carrier frequency, without any modulation. Such circuits are being used less frequently due to the poor phase noise performance arising from the squaring process. However, there is aπ phase ambiguity problem - we may have recovered the carrier or a 180 degree shifted version of the carrier. If it is the latter case, our data streamwill be invert ed and 1’s will be recovered as 0’s and vice versa (a 100% bit error rate!). One solution to this problem would be to transmit a training sequence at the start of each burst, which has a known pattern. This would be recovered at the receiver and with a priori knowledge, the bit stream could be inverted if necessary. However, this technique represents overhead and is a poor choice for wireless links which generally provide an unreliable channel over which to transmit data. A more effective approach is to use differential encoding.2 - 21 2001 Agilent Technologies。
安捷伦气质联用仪培训教材培训课件
常见问题一及解决方案
仪器无法启动
检查电源连接是否正常,仪器是 否处于休眠状态,以及仪器前面 板上的电源开关是否已打开。
真空系统故障
检查真空泵是否正常工作,真空 管道连接处是否有漏气现象,以 及仪器是否需要更换真空泵油。
仪器基线漂移
检查仪器基线是否稳定,仪器是 否需要重新校准,以及进样口和 色谱柱是否需要更换。
气质联用仪的故障排除
电源故障
仪器泄漏
检查电源插头、电源线和保险丝是否完好, 排除电源故障。
检查气体管路、密封圈和接口是否泄漏,及 时排除泄漏问题。
仪器移动
仪器报警
检查仪器是否稳定固定在实验室台面上,排 除因移动或振动对分析结果的影响。
根据仪器报警提示,及时排查问题并解决, 确保仪器正常运行。
04
它能够将气相色谱仪分离的复杂化合物逐一送 入质谱仪中进行检测,从而获得各组分的分子 量、分子式、官能团等详细信息。
气质联用仪主要用于混合物中各组分的定性和 定量分析,广泛应用于化学、医药、环保等领 域。
气质联用仪基本原理
气质联用仪的核心是接口技术,它将气相色谱仪与 质谱仪连接起来。
接口的作用是将气相色谱仪分离的化合物逐一引入 质谱仪中进行检测。
常见问题二及解决方案
要点一
峰形异常
要点二
定量不准确
检查进样口是否堵塞,进样方式是否 正确,以及色谱柱是否需要更换。
检查标准曲线是否正确,进样量是否 准确,以及仪器是否需要重新校准。
要点三
响应值低
检查样品浓度是否过低,进样量是否 过小,以及仪器是否需要更换部件。
常见问题三及解决方案
01
灵敏度低
02
Empower3软件现场培训教材
Empower3软件现场培训教材Empower 3 软件现场培训教材目录一.登录1 二.编辑仪器方法和方法组(以2695_2998为例) 2 三.编辑仪器方法和方法组(以2695_2489为例) 7 四.进样12 1.单进样12 2.使用向导建立样品组和样品组方法12 五.建立数据处理方法18 1.2D数据处理方法18 2.建立3D数据处理方法26 六.查看结果和视图筛选36 七.预览结果并创建一个综合报告方法37 八.方法组的建立38 九.数据管理411. 项目的备份412.项目的还原43 十.项目管理47 1.新建项目47 2.察看及更改项目属性50 3.系统配置51一.登录1.双击电脑桌面上的Empower快捷图标出现Empower登录界面,输入用户名和密码。
注:出厂设置的默认用户帐号为system,密码为manager。
建议每个系统都建立自己的用户帐号和密码。
己的用户帐号和密码2. 单击高级键, 选择用户类型和QuickStart界面3. 选择QuickStart界面,点击“确定”,然后选择待选定的操作项目以及色谱系统(仅查看数据可选择色谱系统中的“没有系统”),单击“确定”。
4.登录Empower的QuickStart界面。
二、编辑仪器方法和方法组(以2695_2998为例) 1.采集栏单击方法组编辑向导:2. 选择选项3.弹出仪器方法编辑器。
4.单击2690/5,弹出2695编辑界面。
积,以确保最佳的流速精度与准度。
2)查看脱气选项,确认设置正确。
3)流量选项中设置泵模式、总流量以及流动相配比。
a. 等度模式如下图所示:b. 梯度模式如下图所示:5.单击2998,弹出2998编辑界面。
1)3D数据采集:在通用栏中选择启用3D数据,输入检测波长的范围;2)采集2D 数据,点击,最多可同时采集8个不同波长的通道的数据;个点为准。
注:采样速率以一个色谱峰上的采样点不少于15个点为准6.点击“文件”,选择“另存为”,输入仪器方法名称,点击“保存”;点击“文件”,选择“退出”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o Enable “Use GPU Acceleration” option to run the simulation on GPUs
10
FDTD Only
EMPro Workshop Version 2.0
Module 6: Additional Topics
EMPro Workshop Version 2.0 1
Re-use of Previous Mesh and Simulation Data (1)
o EMPro supports the re-use of previous mesh and simulation data when
7
FEM Only
EMPro Workshop Version 2.0
Symmetry Planes
o Reduce simulation time and memory requirements for FEM simulations
Or can solve a bigger problem with less memory
“All frequencies from the frequency plan and mesh frequency” – Default, saves the field data at all frequencies (mesh and adaptive frequencies) “No field data” – No field data saved
The previous adaptive meshing is not fully converged or a lower value of delta-S is required
The previous adaptive frequency sweep is not fully converged or additional frequency (single or band) points are needed to be computed
o Sets maximum edge length of initial mesh cells o Can be automatically set based on wavelength o Can also be manually adjusted for problematic geometries
EMPro 2009
Mesh cells in the free space area are initially large and take several refinement steps to converge
EMPro 2010
Initial mesh cell size automatically reduced, resulting in fewer refinement steps to converge
“User Defined Frequencies” – Saves the field data only for single frequencies entered in the frequency plan
By default, the start and stop frequencies are also saved
o Modify delta-S or increase “Maximum number of passes” if the adaptive meshing is not fully converged o Increase the number of “Sample Points Limit” if the adaptive frequency sweep is not fully converged o Modify or add more frequencies if additional frequency data is required
Creating Bondwires with Bondwire Components
o Creating bondwires with standard drawing tools is hard
o Bondwire component allows users to create the bondwires graphically
5
FEM Only
EMPro Workshop Version 2.0
User Controlled Meshes Initial Target Mesh Size
o Click on “Advanced” tab under “Mesh/Convergence Properties”
o Reduces the size of the initial mesh cells, leading to faster convergence
4
FEM Only
EMPro Workshop Version 2.0
Removing Simulation/Field Solution Data
o Stored simulations or field solution data (Electric and Magnetic fields) can be removed to save disk space o From “Simulations” window, user can remove simulations or field solution data
o Bondwire definition (profile) can be copied or reused
Bondwire Definition
EMPro Workshive GPU Support
o FDTD Time Domain Simulation can be accelerated using GPU (Graphics Processing Unit) cards by splitting the simulation into multiple jobs and run in parallel on GPU cores (240+) 5~20 times typical simulation speed improvement Supports Accelerware CUDA and native CUDA libraries
o Electric/Magnetic symmetry planes are supported o Can be found from “Boundary Conditions Editor”
Half the size
Magnetic Symmetry Plane
8
FEM Only
EMPro Workshop Version 2.0
3
FEM Only
EMPro Workshop Version 2.0
Storing Field Data Option
o Storing field data (Electric and Magnetic fields) typically requires a big size of disk space o User can choose an option not to save the field data in the simulation setup
6
FEM Only
EMPro Workshop Version 2.0
User Controlled Meshes Initial Minimum Mesh Size
o Reduces number of mesh cells for complex CAD geometries, leading to faster solve times o Sets minimum edge length of initial mesh cells o Can be automatically set based on geometry size and Initial Target Mesh Size setting
o Click on “Simulation results to reuse” pull-down menu to select one of previous simulation results
2
FEM Only
EMPro Workshop Version 2.0
Re-use of Previous Mesh and Simulation Data (2)
“Remove Simulation” – Completely delete the simulation result
“Remove fields solution” – Only delete fields (E/H) data, but still being able to see S-parameters
Ratio of Max/Min cell edge length > 10
o Can also be manually adjusted for problematic geometries
EMPro 2010 EMPro 2009
Mesh cells in the curved area are small, resulting in longer solve time Initial mesh cell size automatically increased, resulting in fewer mesh cells and shorter solve time with minimal loss in accuracy