2018-2019年大连市数学押题试卷训练试题(2套)附答案
大连市重点名校2018-2019学年高一下学期期末教学质量检测数学试题含解析
大连市重点名校2018-2019学年高一下学期期末教学质量检测数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.将函数sin y x =的图象上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A .sin(2)10y x π=-B .y =sin(2)5x π-C .y =1sin()210x π- D .1sin()220y x π=-【答案】C 【解析】 【分析】 【详解】将函数sin y x =的图象上所有的点向右平行移动10π个单位长度,所得函数图象的解析式为y =sin(x -10π); 再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是1sin()210y x π=-.故选C.2.已知a R ∈且为常数,圆22:220C x x y ay ++-=,过圆C 内一点()1,2的直线l 与圆C 相交于,A B 两点,当弦AB 最短时,直线l 的方程为20x y -=,则a 的值为( ) A .2 B .3 C .4 D .5【答案】B 【解析】 【分析】由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点(1,2)的直线与直线2x ﹣y =0垂直,再由斜率的关系列式求解. 【详解】圆C :22220x x y ay ++﹣=化简为22211x y a a +++()(﹣)=,圆心坐标为1C a (﹣,) 如图,由题意可得,当弦AB 最短时,过圆心与点(1,2)的直线与直线20xy ﹣=垂直. 则21112a -=---,即a =1. 故选:B . 【点睛】本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.3.如图是一圆锥的三视图,正视图和侧视图都是顶角为120°的等腰三角形,若过该圆锥顶点S 的截面三角形面积的最大值为2,则该圆锥的侧面积为A 3πB .23πC .163π D .4π【答案】B 【解析】 【分析】过该圆锥顶点S 的截面三角形面积最大是直角三角形,根据面积为2求出圆锥的母线长,再根据正视图求圆锥底面圆的半径,最后根据扇形面积公式求圆锥的侧面积. 【详解】过该圆锥顶点S 的截面三角形面积最直角三角形, 设圆锥的母线长和底面圆的半径分别为,l r , 则2122l =,即2l =, 又cos303r l =⋅︒=所以圆锥的侧面积12232S r l ππ=⨯⨯=; 故选B. 【点睛】本题考查三视图及圆锥有关计算,此题主要难点在于判断何时截面三角形面积最大,要结合三角形的面积公式21=sin 2S l θ,当2πθ=,即截面是等腰直角三角时面积最大. 4.已知x 与y 之间的一组数据如表,若y 与x 的线性回归方程为ˆ2y bx=-,则ˆb 的值为A .1B .2C .3D .4【答案】D 【解析】 【分析】先求出样本中心点(,)x y ,代入回归直线方程,即可求得ˆb的值,得到答案. 【详解】由题意,根据表中的数据,可得012313571.5,444x y ++++++====,又由回归直线方程ˆ2y bx=-过样本中心点(,)x y , 所以ˆ4 1.52b=⨯-,解得ˆ4b =, 故选D. 【点睛】本题主要考查了线性回归直线方程的应用,其中解答中熟记线性回归直线方程的基本特征是解答的关键,着重考查了推理与运算能力,属于基础题. 5.下列叙述中,不能称为算法的是( ) A .植树需要运苗、挖坑、栽苗、浇水这些步骤B .按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100C .从济南到北京旅游,先坐火车,再坐飞机抵达D .3x >x+1 【答案】D 【解析】 【分析】利用算法的定义来分析判断各选项的正确与否,即可求解,得到答案.由算法的定义可知,算法、程序是完成一件事情的可操作的步骤: 可得A 、B 、C 为算法,D 没有明确的规则和步骤,所以不是算法, 故选D. 【点睛】本题主要考查了算法的概念,其中解答的关键是理解算法的概念,由概念作出正确的判断,着重考查了分析问题和解答问题的能力,属于基础题.6.在△ABC 中,AC=1,30B ︒∠=,△ABC的面积为2,则C ∠=( ) A .30° B .45°C .60°D .75°【答案】C 【解析】 【分析】 【详解】试题分析:由三角形面积公式得,1||sin 302BC ︒⋅=,所以||2BC =.显然三角形为直角三角形,且90A ︒∠=,所以C 60︒∠=. 考点:解三角形.7.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布3531尺,则这位女子织布的天数是( ) A .2 B .3C .4D .1【答案】B 【解析】 【分析】将问题转化为等比数列问题,最终变为求解等比数列基本量的问题. 【详解】根据实际问题可以转化为等比数列问题, 在等比数列{}n a 中,公比2q ,前n 项和为n S ,55S =,3531m S =,求m 的值. 因为()51512512a S -==-,解得1531a =,()51235311231m mS -==-,解得3m =.故选B .本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助. 8.在ABC ∆中,角,,A B C 的对边分别是,,a b c,已知,13A a b π===,则B =( )A .3πB .6π C .56π D .6π或56π【答案】B 【解析】 【分析】 【详解】由已知知b a <,所以B <A=3π,由正弦定理sin sin a b A B=得,sin sin b A B a =1sin π⨯12,所以6B π=,故选B考点:正弦定理910y -+=的倾斜角的大小为( ) A .30 B .60︒ C .120︒ D .150︒【答案】B 【解析】 【分析】 【详解】10y -+=,可知直线的斜率k =设直线的倾斜角为α,则tan α=, 又[0,180)α∈︒︒,所以60α=︒, 故选B .10.已知函数()sin()sin ((0,))2f x x x παααπ⎛⎫=+++-∈ ⎪⎝⎭的最大值是2,则α的值为( ) A .6π B .4πC .3π D .2π 【答案】B 【解析】 【分析】根据诱导公式以及两角和差的正余弦公式化简,根据辅助角公式结合范围求最值取得的条件即可得解. 【详解】由题函数()sin()sin 2f x x x παα⎛⎫=+++- ⎪⎝⎭()sin()cos x x αα=++-sin cos cos sin cos cos sin sin x x x x αααα=+++()()cos sin sin cos sin cos x x αααα=+++)cos sin sin 4x παα⎛⎫=++ ⎪⎝⎭,最大值是2,所以cos sin αα+=,平方处理得:12cos sin 2αα+=, 所以sin21α=,(0,)απ∈,所以4πα=. 故选:B 【点睛】此题考查根据三角函数的最值求参数的取值,考查对三角恒等变换的综合应用.11.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一个白球;③两球至少有一个白球”中的( ) A .①② B .①③ C .②③ D .①②③【答案】A 【解析】试题分析:结合互斥事件和对立事件的定义,即可得出结论解:根据题意,结合互斥事件、对立事件的定义可得,事件“两球都为白球”和事件“两球都不是白球”;事件“两球都为白球”和事件“两球中恰有一白球”;不可能同时发生,故它们是互斥事件. 但这两个事件不是对立事件,因为他们的和事件不是必然事件. 故选A考点:互斥事件与对立事件.12.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,BC 边上的高为h ,且h =则2c a b c c b b ++的最大值是( )A .B .C .4D .6【答案】C 【解析】 【分析】由余弦定理化简可得2222cos c b a a A b c bc bc ++=+,利用三角形面积公式可得2sin a A =,解得22cos 4sin(6c b a A A A b c bc π++=+=+),利用正弦函数的图象和性质即可得解其最大值. 【详解】由余弦定理可得:2222cos b c a bc A +=+,故:22222222cos 22cos c b a a b c a bc A a A b c bc bc bc bc+++++===+, 而2111sin 222ABC S bc A ah a ∆===,故2sin a A =,所以:2222cos 2cos 4sin()46c b a a A A A A b c bc bc π++=+=+=+. 故选C . 【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题. 二、填空题:本题共4小题 13.已知7cos ,(π,2π)25θθ=-∈ ,则sin cos 22θθ+= __________. 【答案】15【解析】π431(,π)sin ,cos ,sin cos 222525225θθθθθ∈∴====-∴+=14.已知点(,)M a b 在直线:3425l x y +=__________. 【答案】5 【解析】 【分析】表示点(0,0)到点(,)a b 的距离,再利用点到直线的距离求解. 【详解】表示点(0,0)到点(,)a b 的距离. 又∵点(,)M a b 在直线:3425l x y +=上, ∴(0,0)到直线34250x y +-=的距离d ,且5d ==.【点睛】本题主要考查点到两点间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题. 15.函数f(x)=cos 2xπcos(1)2x π-的最小正周期为________.【答案】2 【解析】 f(x)=cos2xπcos(1)2x π-=cos2xπ·sin2xπ=12sinπx ,最小正周期为T =2ππ=216.若三棱锥P ABC -的底面是以AB 为斜边的等腰直角三角形,23AB =,6PA PB PC ===,则该三棱锥的外接球的表面积为________. 【答案】12π 【解析】 【分析】由已知计算后知PAB ∆也是以AB 为斜边的直角三角形,这样AB 的中点D 到棱锥四个顶点的距离相等,即为外接球的球心,从而很容易得球的半径,计算出表面积. 【详解】因为222PA PB AB +=,所以PAB ∆是等腰直角三角形,且AB 为斜边,D 为AB 的中点,因为底面ABC 是以AB 为斜边的等腰直角三角形,所以3DA DB DC DP ====D 即为球心,则该三棱锥的外接圆半径3r =2412S r ππ==表.【点睛】本题考查球的表面积,考查三棱锥与外接球,解题关键是找到外接球的球心,证明PAB ∆也是以AB 为斜边的直角三角形,利用直角三角形的性质是本题的关键.也是寻找外接球球心的一种方法. 三、解答题:解答应写出文字说明、证明过程或演算步骤。
2018-2019年大连市中考数学真题(附答案)
2018年辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(分)(2018•大连)﹣3的绝对值是()A.3 B.﹣3 C.D.2.(分)(2018•大连)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(分)(2018•大连)计算(x3)2的结果是()A.x5B.2x3C.x9D.x64.(分)(2018•大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°5.(分)(2018•大连)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体6.(分)(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.37.(分)(2018•大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.8.(分)(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32x+b的图象与反比例函数y=的9.(分)(2018•大连)如图,一次函数y=k1图象相交于A(2,3),B(6,1)两点,当kx+b<时,x的取值范围为()1A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6 10.(分)(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α二、填空题(本题共6小题,每小题3分,共18分)11.(分)(2018•大连)因式分解:x2﹣x= .12.(分)(2018•大连)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.13.(分)(2018•大连)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为cm.14.(分)(2018•大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.15.(分)(2018•大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是,则旗杆AB的高度约为m.(精确到.参考数据:sin53°≈,cos53°≈,tan53°≈)16.(分)(2018•大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(分)(2018•大连)计算:(+2)2﹣+2﹣218.(分)(2018•大连)解不等式组:19.(分)(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.20.(分)(2018•大连)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有人,最喜欢篮球的学生数占被调查总人数的百分比为%;(2)被调查学生的总数为人,其中,最喜欢篮球的有人,最喜欢足球的学生数占被调查总人数的百分比为%;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(分)(2018•大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.22.(分)(2018•大连)【观察】1×49=49,2×48=96,3×47=141,...,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621, (47)3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.23.(分)(2018•大连)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E 在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(分)(2018•大连)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m ≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.25.(分)(2018•大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.26.(分)(2018•大连)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m ﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m 的值.2018年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(分)(2018•大连)﹣3的绝对值是()A.3 B.﹣3 C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(分)(2018•大连)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第二象限内点的符号特点进而得出答案.【解答】解:点(﹣3,2)所在的象限在第二象限.故选:B.【点评】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.3.(分)(2018•大连)计算(x3)2的结果是()A.x5B.2x3C.x9D.x6【分析】根据幂的乘方运算性质,运算后直接选取答案.【解答】解:(x3)2=x6,故选:D.【点评】本题主要考查幂的乘方,底数不变,指数相乘的性质,熟练掌握性质是解题的关键.4.(分)(2018•大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°【分析】先利用等腰直角三角形的性质得出∠1=45°,再利用平行线的性质即可得出结论;【解答】解:如图,∵△ABC是等腰直角三角形,∴∠1=45°,∵l∥l',∴∠α=∠1=45°,故选:A.【点评】此题主要考查了等腰直角三角形的性质,平行线的性质,求出∠1=45°是解本题的关键.5.(分)(2018•大连)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体【分析】由常见几何体的三视图即可判断.【解答】解:由三视图知这个几何体是三棱柱,故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是熟练掌握常见几何体的三视图.6.(分)(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.7.(分)(2018•大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.【分析】列表得出所有等可能的情况数,找出两次摸出小球标号为偶数的情况数,即可求出概率.【解答】解:列表得:所有等可能的情况数有9种,它们出现的可能性相同,其中两次摸出的小球标号的和是偶数的有5种结果,所以两次摸出的小球标号的和是偶数的概率为,故选:D.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.(分)(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.【解答】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.故选:B.【点评】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.(分)(2018•大连)如图,一次函数y=kx+b的图象与反比例函数y=的1x+b<时,x的取值范围为()图象相交于A(2,3),B(6,1)两点,当k1A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6【分析】根据图象直线在反比例函数图象的下方部分的对应的自变量的值即为所求.x+b<时,x的取值范围为0<x<2或x 【解答】解:由图象可知,当k1>6.故选:D.【点评】此题考查了反比例函数与一次函数的交点问题以及待定系数法求解析式.此题难度适中,注意掌握数形结合思想与方程思想的应用.10.(分)(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α【分析】根据旋转的性质和四边形的内角和是360°,可以求得∠CAD的度数,本题得以解决.【解答】解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α,故选:C.【点评】本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本题共6小题,每小题3分,共18分)11.(分)(2018•大连)因式分解:x2﹣x= x(x﹣1).【分析】提取公因式x即可.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.12.(分)(2018•大连)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是189 .【分析】根据中位数的意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:这5名学生跳绳次数从小到大排列为163、184、189、195、201,所以该组数据的中位数是189,故答案为:189.【点评】本题考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.(分)(2018•大连)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为9 cm.【分析】根据弧长公式L=求解即可.【解答】解:∵L=,∴R==9.故答案为:9.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=.14.(分)(2018•大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.15.(分)(2018•大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是,则旗杆AB的高度约为m.(精确到.参考数据:sin53°≈,cos53°≈,tan53°≈)【分析】根据三角函数和直角三角形的性质解答即可.【解答】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°,∵BC=DE=6m,∴AE=DE•tan53°≈6×≈,∴AB=AE+BE=AE+CD=+=≈,故答案为:【点评】此题考查了考查仰角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.16.(分)(2018•大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为6﹣2.【分析】如图作A′H⊥BC于H.由△CDF∽△A′HC,可得=,延长构建方程即可解决问题;【解答】解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3﹣,∵△CDF∽△A′HC,∴=,∴=,∴DF=6﹣2,故答案为6﹣2.【点评】本题考查翻折变换、矩形的性质、勾股定理、直角三角形30度角性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(分)(2018•大连)计算:(+2)2﹣+2﹣2【分析】根据完全平方公式和零指数幂的意义计算.【解答】解:原式=3+4+4﹣4+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(分)(2018•大连)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.19.(分)(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.【分析】只要证明△BEO≌△DFO即可;【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,∵AE=CF,∴OE=OF,在△BEO和△DFO中,,∴△BEO≌△DFO,∴BE=DF.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(分)(2018•大连)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有 4 人,最喜欢篮球的学生数占被调查总人数的百分比为32 %;(2)被调查学生的总数为50 人,其中,最喜欢篮球的有16 人,最喜欢足球的学生数占被调查总人数的百分比为24 %;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.【分析】(1)依据统计图表中的数据即可得到结果;(2)依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比;(3)依据最喜欢排球的学生数占被调查总人数的百分比,即可估计该校最喜欢排球的学生数.【解答】解:(1)由题可得,被调查的学生中,最喜欢乒乓球的有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%,故答案为:4;32;(2)被调查学生的总数为10÷20%=50人,最喜欢篮球的有50×32%=16人,最喜欢足球的学生数占被调查总人数的百分比=×100%=24%;故答案为:50;16;24;(3)根据调查结果,估计该校最喜欢排球的学生数为×450=54人.【点评】本题考查统计表、扇形统计图、样本估计总体等知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.解题的关键是灵活运用所学知识解决问题.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(分)(2018•大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.【分析】设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据题意得:=,解得:x=60,经检验,x=60是原分式方程的解.答:甲平均每分钟打60个字.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(分)(2018•大连)【观察】1×49=49,2×48=96,3×47=141,...,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621, (47)3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为625 ;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50 .【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为900 ,并用你学过的知识加以证明.【分析】【发现】(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;【类比】由于m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900.【解答】解:【发现】(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;【类比】由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.【点评】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.23.(分)(2018•大连)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E 在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.【解答】解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC,∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD,∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=4,在Rt△BCD中,BD==4同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2AF=.【点评】此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(分)(2018•大连)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m ≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.【分析】(1)由图2结合平移即可得出结论;(2)判断出△AOB≌△CEA,得出AE=OB,CE=OA,再由图2知,点C的纵坐标是点B纵坐标的2倍,即可利用三角形ABC的面积求出OB,OA,即可得出结论;(3)分两种情况,利用三角形的面积公式或三角形的面积差即可得出结论.【解答】解:(1)结合△ABC的移动和图2知,点B移动到点A处,就是图2中,m=a时,S=S △A'B'D=,点C移动到x轴上时,即:m=b时,S=S△A'B'C '=S△ABC=,故答案为,(2)如图2,过点C作CE⊥x轴于E,∴∠AEC=∠BOA=90°,∵∠BAC=90°,∴∠OAB+∠CAE=90°,∵∠OAB+∠OBA=90°,∴∠OBA=∠CAE,由旋转知,AB=AC,∴△AOB≌△CEA,∴AE=OB,CE=OA,由图2知,点C的纵坐标是点B纵坐标的2倍,∴OA=2OB,∴AB2=5OB2,由(1)知,S==AB2=×5OB2,△ABC∴OB=1,∴OA=2,∴A(2,0),B(0,1),∴直线AB的解析式为y=﹣x+1;(3)由(2)知,AB2=5,∴AB=,①当0≤m≤时,如图3,∵∠AOB=∠AA'F,∠OAB=∠A'AF,∴△AOB∽△AA'F,∴,由运动知,AA'=m,∴,∴A'F=m,∴S=AA'×A'F=m2,②当<m≤2时,如图4同①的方法得,A'F=m,∴C'F=﹣m,过点C作CE⊥x轴于E,过点B作BM⊥CE于E,∴BM=3,CM=1,易知,△ACE∽△FC'H,∴,∴∴C'H=,在Rt△FHC'中,FH=C'H=由平移知,∠C'GF=∠CBM,∵∠BMC=∠GHC',∴△BMC∽△GHC',∴,∴∴GH=,∴GF=GH﹣FH=∴S=S△A'B'C '﹣S△C'FG=﹣××=﹣(2﹣m)2,即:S=.【点评】此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,三角形的面积公式,平移的性质,相似三角形的判定和性质,构造相似三角形是解本题的关键.25.(分)(2018•大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.【分析】(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.想办法证明△AEC≌△AED即可;方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.想办法证明∠ACD=∠ADC即可;(2)①如图4中,结论:∠DEF=∠FDG.理由三角形内角和定理证明即可;②结论:BD=k•DE.如图4中,如图延长AC到K,使得∠CBK=∠ABC.首先证明△DFE∽△BAK,推出==,推出BK=k•DE,再证明△BCD≌△BCK,可得BD=BK;【解答】解:(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.∵∠CAE=∠DAE,∠CAB=2∠DCB,∴∠CAE=∠CDB,∵∠CDB+∠ACD=90°,∴∠CAE+∠ACD=90°,∴∠AEC=90°,∵AE=AE,∠AEC=∠AED=90°,∴△AEC≌△AED,∴AC=AD.方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.∵∠DCF=∠DCB,∠A=2∠DCB,∴∠A=∠BCF,∵∠BCF+∠ACF=90°,∴∠A+∠ACF=90°,∴∠AFC=90°,∵∠ACF+∠BCF=90°,∠BCF+∠B=90°,∴∠ACF=∠B,∵∠ADC=∠DCB+∠B=∠DCF+∠ACF=∠ACD,∴AC=AD.(2)①如图4中,结论:∠DEF=∠FDG.理由:在△DEF中,∵∠DEF+∠EFD+∠EDF=180°,在△DFG中,∵∠GFD+∠G+∠FDG=180°,∵∠EFD=∠GFD,∠G=∠EDF,∴∠DEF=∠FDG.②结论:BD=k•DE.理由:如图4中,如图延长AC到K,使得∠CBK=∠ABC.∵∠ABK=2∠ABC,∠EDF=2∠ABC,∴∠EDF=∠ABK,∵∠DFE=∠A,∴△DFE∽△BAK,∴==,∴BK=k•DE,∴∠AKB=∠DEF=∠FDG,∵BC=BC,∠CBD=∠CBK,∴△BCD≌△BCK,∴BD=BK,∴BD=k•DE【点评】本题考查三角形综合题、三角形内角和定理、三角形外角的性质、全等三角形的判定和性质.相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.(分)(2018•大连)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m ﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(m,2m﹣5)(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.【分析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=4,可得出点B的坐标为(m+2,4a+2m﹣5),设BD=t,则点C的坐标为(m+2+t,4a+2m﹣5﹣t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC 的值;(3)由(2)的结论结合S=2可求出a值,分三种情况考虑:①当m>2m△ABC﹣2,即m<2时,x=2m﹣2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m﹣5,即m>5时,x=2m﹣5时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.【解答】解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).故答案为:(m,2m﹣5).(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB•CD=﹣.(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.【点评】本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤5及m>5三种情况考虑.2019年辽宁省大连市中考数学真题(附答案)副标题题号一二三总分得分一、选择题(本大题共9小题,共分)1.-2的绝对值是()A. 2B. 12C. −12D. −22.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()3.A. B. C. D.4. 2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg ,将数58000用科学记数法表示为( ) A. 58×103 B. 5.8×103 C. 0.58×105 D. 5.8x1045. 在平面直角坐标系中,将点P (3,1)向下平移2个单位长度,得到的点P ′的坐标为( ) A. (3,−1) B. (3,3) C. (1,1) D. (5,1) 6. 不等式5x +1≥3x -1的解集在数轴上表示正确的是( )A. B. C.D.7. 下列所述图形中,既是轴对称图形又是中心对称图形的是( )A. 等腰三角形B. 等边三角形C. 菱形D. 平行四边形 8. 计算(-2a )3的结果是( )A. −8x 3B. −6x 3C. 6x 3D. 8x 3 9. 不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( )A. 23B. 12C. 13D. 1410. 如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,若AB =4,BC =8.则D ′F 的长为( )A. 2√5B. 4C. 3D. 2二、填空题(本大题共7小题,共分)11. 如图,抛物线y =-14x 2+12x +2与x 轴相交于A 、B 两点,与y 轴相交于点C ,点D 在抛物线上,且CD ∥AB .AD 与y 轴相交于点E ,过点E 的直线PQ 平行于x 轴,与拋物线相交于P ,Q 两点,则线段PQ 的长为______.。
大连市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
大连市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)甲、乙两人参加某体育项目训练,为了便于了解他们的训练情况,教练将他们最近五次的训练成绩用如图所示的复式统计图表示出来,则下面结论错误的是()A. 甲的第三次成绩与第四次成绩相同B. 第三次训练,甲、乙两人的成绩相同C. 第四次训练,甲的成绩比乙的成绩少2分D. 五次训练,甲的成绩都比乙的成绩高【答案】D【考点】折线统计图【解析】【解答】解:如图所示:A、甲的第三次成绩与第四次成绩相同,正确,故选项不符合题意;B、第三次训练,甲、乙两人的成绩相同,正确,故选项不符合题意;C、第四次训练,甲的成绩比乙的成绩少2分,正确,故选项不符合题意;D、五次训练,乙的成绩都比甲的成绩高,错误,故选项符合题意.故答案为:D【分析】根据统计图中对应的数据对选项进行判断即可解答.2、(2分)若某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元,则符合该公司要求的购买方式有()A. 3种B. 4种C. 5种D. 6种【答案】A【考点】解一元一次不等式组,一元一次不等式组的应用【解析】【解答】设要购买轿车x辆,则要购买面包车(10-x)辆,由题意得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x=3,4,5.因此有三种购买方案:①购买轿车3辆,面包车7辆;②购买轿车4辆,面包车6辆;③购买轿车5辆,面包车5辆.故答案为:A.【分析】此题的等量关系是:轿车的数量+面包车的数量=10;不等关系为:购车款≤55;购买轿车的数量≥3,设未知数,列不等式组,解不等式组,求出不等式组的整数解,即可解答。
3、(2分)如图为张小亮的答卷,他的得分应是()A. 100分B. 80分C. 60分D. 40分【答案】B【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,立方根及开立方,平均数及其计算【解析】【解答】解:①-1的绝对值是1,故①正确;②2的倒数是,故②错误;③-2的相反数是2,故③正确;④1的立方根是1,故④正确;⑤-1和7的平均数为:(-1+7)÷2=3,故⑤正确;小亮的得分为:4×20=80分故答案为:B【分析】利用绝对值、相反数、倒数、立方根的定义及平均数的计算方法,对各个小题逐一判断,就可得出小亮答对的题数,再计算出他的得分。
辽宁省大连市甘井子区2018-2019学年八年级(下)期末模拟考试数学试卷(含解析)
2018-2019学年辽宁省大连市甘井子区八年级(下)期末模拟考试数学试卷一、选择题(每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)若使二次根式在实数范围内有意义,则x的取值范围是()A.x≥3B.x>3 C.x<3 D.x≤32.(3分)直角三角形的两条直角边长分别为3和5,则斜边长为()A.2 B.C.4 D.3.(3分)某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是()A.3 B.3.5 C.4 D.54.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.5.(3分)如图,点A坐标为(3,0),B是y轴正半轴上一点,AB=5,则点B的坐标为()A.(4,0)B.(0,4)C.(0,5)D.(0,)6.(3分)如图,正方形ABCD的对角线AC、BD交于点O,AO=3,则AB的长为()A.2 B.3 C.D.37.(3分)如图,菱形ABCD的对角线AC=6,BD=8,则ABCD的周长为()A.4 B.4C.20 D.408.(3分)一次函数y=﹣3x+5的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(本题共8小题,每小题3分,共24分)9.(3分)面积为3的正方形边长是.10.(3分)将直线y=﹣4x+3向下平移4个单位,得到的直线解析式是.11.(3分)正比例函数y=(m﹣2)x的图象从左到右逐渐上升,则m的取值范围是.12.(3分)如图,平行四边形ABCD中,BC=8,AC+BD=20,△BOC的周长为.13.(3分)如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC 的中点D、E,量出DE=20米,则AB的长为米.14.(3分)函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为.15.(3分)某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛.在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:请你根据表中数据选一人参加比赛,最合适的人选是.16.(3分)如图,矩形ABCD中,AB=4,BC=3,以BD为边作等腰△BDE交DC的延长线于点E,则BE的长为.三、解答题(本题共4小题,其中17题、18题、19题各10分,20题9分,共39分)17.(10分)计算:(1)(2).18.(10分)如图,平行四边形ABCD中,E、F是AB、CD边上的点,AE=CF,求证:DE=BF.19.(10分)如图,直线y1=x+1交x、y轴于点A、B,直线y2=﹣2x+4交x、y轴与C、D,两直线交于点E.(1)求点E的坐标;(2)求△ACE的面积.20.(9分)为了解学生参加户外活动的情况,某中学对学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求户外活动时间为1.5小时的学生有多少人?并补全条形统计图(2)每天户外活动时间的中位数是小时?(3)该校共有1800名学生,请估计该校每天户外活动超过1小时的学生人数有多少人?四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)如图,矩形纸片ABCD中,AD=8,点E为AD上一点,将纸片沿BE折叠,使点F落到CD边上,若DF=4,求EF的长.22.(9分)如图,Rt△ABC中,∠B=90°,AB=3,BC=4,CD=12,AD=13,点E是AD的中点,求CE的长.23.(10分)已知,1号探测气球与2号探测气球同时上升,如图是两个气球所在位置的海拔y(m)关于上升时间x(单位:min)的函数图象,其中AC为1号探测气球,BC为2号探测气球(1)求两气球上升10分钟时,各自所在位置的海拔高度;(2)当两个气球海拔相差5m时,求此时气球上升的时间.五、解答题(本题共1小题,其中24题11分,25、26题各12分,共35分)24.(11分)如图,平面直角坐标中,直线AB的函数解析式为y=﹣2x+1,交y轴于A,交x轴于B,点C(2,0),过点D(m,0)作DE⊥x轴,交直线AB于E(0<m<2)(1)请直接写出点E的坐标为(,)(用含m的式子表示)(2)当EA=EC时,求点E的坐标.参考答案与试题解析一、选择题(每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)若使二次根式在实数范围内有意义,则x的取值范围是()A.x≥3B.x>3 C.x<3 D.x≤3【解答】解:∵二次根式在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:A.2.(3分)直角三角形的两条直角边长分别为3和5,则斜边长为()A.2 B.C.4 D.【解答】解:由勾股定理得,斜边长==,故选:D.3.(3分)某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是()A.3 B.3.5 C.4 D.5【解答】解:在这一组数据中3.5出现了3次,次数最多,故众数是3.5.故选:B.4.(3分)下列式子中,属于最简二次根式的是()A.B.C. D.【解答】解:是最简二次根式,A正确;=3,不是最简二次根式,B不正确;=2,不是最简二次根式,C不正确;被开方数含分母,不是最简二次根式,D不正确,故选:A.5.(3分)如图,点A坐标为(3,0),B是y轴正半轴上一点,AB=5,则点B的坐标为()A.(4,0)B.(0,4)C.(0,5)D.(0,)【解答】解:因为点A坐标为(3,0),B是y轴正半轴上一点,AB=5,所以OB=,所以点B的坐标为(0,4),故选:B.6.(3分)如图,正方形ABCD的对角线AC、BD交于点O,AO=3,则AB的长为()A.2 B.3 C.D.3【解答】解:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,OA=OC,OB=OD,∴OA=OB=3,在Rt△AOB中,AB===3.故选:D.7.(3分)如图,菱形ABCD的对角线AC=6,BD=8,则ABCD的周长为()A.4 B.4C.20 D.40【解答】解:∵四边形ABCD为菱形,∴AO=AC=3,BO=BD=4,且AC⊥BD,∴AB==5,∴菱形ABCD的周长=4AB=20,故选:C.8.(3分)一次函数y=﹣3x+5的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【解答】解:∵﹣3<0,∴图象经过二、四象限;∵5>0,∴直线与y轴的交点在y轴的正半轴上,图象还过第一象限.所以一次函数y=﹣3x+5的图象经过一、二、四象限,不经过第三象限.故选:C.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)面积为3的正方形边长是.【解答】解:面积为3的正方形边长是.故答案是:.10.(3分)将直线y=﹣4x+3向下平移4个单位,得到的直线解析式是y=﹣4x﹣1.【解答】解:将直线y=﹣4x+3向下平移4个单位得到直线l,则直线l的解析式为:y=﹣4x+3﹣4,即y=﹣4x﹣1.故答案是:y=﹣4x﹣111.(3分)正比例函数y=(m﹣2)x的图象从左到右逐渐上升,则m的取值范围是m>2.【解答】解:∵正比例函数y=(m﹣2)x的图象从左到右逐渐上升,∴m﹣2>0,∴m>2,故答案为:m>2.12.(3分)如图,平行四边形ABCD中,BC=8,AC+BD=20,△BOC的周长为18.【解答】解:在平行四边形ABCD中,OC=AC,OB=BD,所以,OB+OC=(AC+BD),∵AC+BD=20,∴OB+OC=×20=10,∴△BOC的周长=BC+OB+OC=8+10=18.故答案为:18.13.(3分)如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC 的中点D、E,量出DE=20米,则AB的长为40米.【解答】解:∵点D,E分别是BC和AC的中点,∴DE是△ABC的中位线,∴AB=2DE=2×20=40(米).故答案是:40.14.(3分)函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为x<1.【解答】解:根据图示知:一次函数y=kx+b的图象x轴、y轴交于点(1,0),(0,﹣2);即当x<1时,函数值y的范围是y<0;因而当不等式kx+b<0时,x的取值范围是x<1.故答案为:x<115.(3分)某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛.在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:请你根据表中数据选一人参加比赛,最合适的人选是丙.【解答】解:∵S甲2=5.1,S乙2=4.7,S丙2=4.5,S丁2=5.1,∴S甲2=S2丁>S乙2>S2丙,∴最合适的人选是丙.故答案为:丙.16.(3分)如图,矩形ABCD中,AB=4,BC=3,以BD为边作等腰△BDE交DC的延长线于点E,则BE的长为.【解答】解:∵四边形ABCD是矩形,∴AB=DC=4,∠BCD=90°,∴DE=BD==5,∴CE=DE﹣CD=1,在Rt△BCE中,BE===,故答案为三、解答题(本题共4小题,其中17题、18题、19题各10分,20题9分,共39分)17.(10分)计算:(1)(2).【解答】(1)==0(2)===18.(10分)如图,平行四边形ABCD中,E、F是AB、CD边上的点,AE=CF,求证:DE=BF.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴DE=BF.19.(10分)如图,直线y1=x+1交x、y轴于点A、B,直线y2=﹣2x+4交x、y轴与C、D,两直线交于点E.(1)求点E的坐标;(2)求△ACE的面积.【解答】解:(1)∵,∴,∴E(1,2);(2)当y1=x+1=0时,解得:x=﹣1,∴A(﹣1,0),当y2=﹣2x+4=0时,解得:x=2,∴C(2,0),∴AC=2﹣(﹣1)=3,==3.20.(9分)为了解学生参加户外活动的情况,某中学对学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求户外活动时间为1.5小时的学生有多少人?并补全条形统计图(2)每天户外活动时间的中位数是小时?(3)该校共有1800名学生,请估计该校每天户外活动超过1小时的学生人数有多少人?【解答】解:(1)∵0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:100÷20%=500,1.5小时的人数有:500﹣100﹣200﹣80=120,补全的条形统计图如下图所示,故答案为:500;(2)由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时,故答案为:1;(3)由题意可得,该校每天户外活动时间超过1小时的学生数为:×1800=720人,即该校每天户外活动时间超过1小时的学生有720人.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)如图,矩形纸片ABCD中,AD=8,点E为AD上一点,将纸片沿BE折叠,使点F落到CD边上,若DF=4,求EF的长.【解答】解:设AE=EF=x,∵AD=8,∴DE=8﹣x,∵DF=4在Rt△DEF中,∠D=90°,∴42+(8﹣x)2=x2,∴x=5.答:EF的长为5.22.(9分)如图,Rt△ABC中,∠B=90°,AB=3,BC=4,CD=12,AD=13,点E是AD的中点,求CE的长.【解答】解:在Rt△ABC中,∠B=90°,∵AB=3,BC=4,∴,∵CD=12,AD=13,∵AC2+CD2=52+122=169,AD2=169,∴AC2+CD2=AD2,∴∠C=90°,∴△ACD是直角三角形,∵点E是AD的中点,∴CE=.23.(10分)已知,1号探测气球与2号探测气球同时上升,如图是两个气球所在位置的海拔y(m)关于上升时间x(单位:min)的函数图象,其中AC为1号探测气球,BC为2号探测气球(1)求两气球上升10分钟时,各自所在位置的海拔高度;(2)当两个气球海拔相差5m时,求此时气球上升的时间.【解答】解:(1)设直线AC的解析式为y AC=k1x+b1,将点A(0,5)、C(20,25)代入y AC=k1x+b1得:,解得:,∴直线AC的解析式为y AC=x+5,当x=10时,y AC=10+5=15;设直线BC的解析式为y BC=k2x+b2,将点B(0,15)、C(20,25)代入y BC=k2x+b2得:,解得:,∴直线BC的解析式为y BC=x+15,当x=10时,y BC=×10+15=20.答:当两气球上升10分钟时,1号气球离地15米,2号气球离地20米.(2)当x<20时,y BC﹣y AC=x+15﹣(x+5)=﹣x+10,令y BC﹣y AC=5,即﹣x+10=5,解得:x=10;当x>20时,y AC﹣y BC=x+5﹣(x+15)=x﹣10,令y AC﹣y BC=5,即x﹣10=5,解得:x=30.答:此时气球上升的时间为10分钟或者30分钟.五、解答题(本题共1小题,其中24题11分,25、26题各12分,共35分)24.(11分)如图,平面直角坐标中,直线AB的函数解析式为y=﹣2x+1,交y轴于A,交x轴于B,点C(2,0),过点D(m,0)作DE⊥x轴,交直线AB于E(0<m<2)(1)请直接写出点E的坐标为(m,﹣2m+1)(用含m的式子表示)(2)当EA=EC时,求点E的坐标.【解答】解:(1)依题意得,点E的横坐标为m,把x=m代入y=﹣2x+1,得y=﹣2m+1.故答案是:(m,﹣2m+1);(2)如图,过点E作EF⊥y轴于F,EF=m,AF=1﹣(﹣2m+1)=2m,DE=2m﹣1,CD=2﹣m,∵AF2+EF2=CD2+DE2∴m2+(2m)2=(2﹣m)2+(﹣2m+1)2∴,此时,∴E(,).。
大连市名校联考2018-2019学年八上数学期末质量跟踪监视试题
大连市名校联考2018-2019学年八上数学期末质量跟踪监视试题一、选择题1.一件工作,甲独做x 小时完成,乙独做y 小时完成,那么甲、乙合做全部工作需( )小时A .1x y +B .11x y +C .1x y -D .xy x y+ 2.将分式2x y x y+中的x ,y 的值同时扩大为原来的3倍,则分式的值( ) A .扩大3倍B .缩小到原来的19C .缩小到原来的13 D .不变 3.要使分式1x x +有意义,则x 应满足的条件是( ) A.x≠1B.x≠﹣1C.x≠0D.x >1 4.已知ab =﹣2,a ﹣3b =5,则a 3b ﹣6a 2b 2+9ab 3的值为( )A .﹣10B .20C .﹣50D .40 5.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首.A.28B.30C.32D.346.计算:()()32128164x x x x -+÷-的结果是( ) A.2324x x -+-B.2324x x --+C.2324x x -++D.2324x x -+ 7.已知点A (4,3)和点B 是坐标平面内的两个点,且它们关于直线x =﹣3对称,则平面内点B 的坐标为( )A .(0,﹣3)B .(4,﹣9)C .(4,0)D .(﹣10,3)8.下列说法:(1)线段的对称轴有两条;(2)角是轴对称图形,对称轴是它的角平分线;(3)两个全等的等边三角形一定成轴对称;(4)两个图形关于某条直线对称,则这两个图形一定分别位于这条直线两侧;(5)到直线L 距离相等的点关于L 对称.其中说法不正确的有,( )A.3个B.2个C.1个D.4个9.下列植物叶子的图案中既是轴对称,又是中心对称图形的是( )A .B .C ..D .10.如图,AB ⊥BC ,DC ⊥BC ,AE 平分∠BAD ,DE 平分∠ADC ,以下结论:①∠AED =90°;②点 E 是 BC 的中点;③DE =BE;④AD =AB +CD;其中正确的是( )A .①②③B .①②④C .①③④D .②③④11.如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能是( )A .AE=CFB .BE=FDC .BF=DED .∠1=∠212.如图,已知点B 、E 、C 、F 在同一条直线上,BE =CF ,∠B =∠DEF ,请你添加一个合适的条件,使△ABC ≌△DEF ,其中不正确条件是( )A .AB =DE B .AC =DF C .∠A =∠D D .∠ACB =∠F13.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若A 54∠=︒,B 48∠=︒,则∠CDE 的大小为( )A .38°B .39°C .40°D .44°14.一个多边形的内角和等于360°,它是( )A .四边形B .五边形C .六边形D .七边形15.如果某多边形的每个内角的大小都是其相邻外角的3倍,那么这个多边形是( )A .六边形B .八边形C .正六边形D .正八边形二、填空题16.分式 的值为0,则x=____.17.我们知道下面的结论:若a m =a n (a >0,且a≠1),则m =n .利用这个结论解决下列问题:设2m =3,2n =6,2p =12.现给出m ,n ,p 三者之间的三个关系式:①m+p =2n ,②m+n =2p ﹣3,③n 2﹣mp =1.其中正确的是___.(填编号)【答案】①②③.18.如图,AB AC =,AB 的垂直平分线MN 交AC 于点D ,若36A ∠=︒,则下列结论正确是______(填序号)①72C ∠=︒ ②BD 是ABC ∠的平分线 ③DBC ∆是等腰三角形 ④BCD ∆的周长AB BC =+.19.将一个等腰直角三角形ABC 如图放置,a b ∥,1105∠=︒,则2∠=________.20.已知点(),5A x -与点()2,B y 关于x 轴对称,则x y +=______.三、解答题21.为了鼓励学生参加体育锻炼,王老师计划用270元购买一定数量的跳绳.商店推出优惠,购买达到一定数量之后,购买总金额打八折.王老师发现,享受优惠后,用480元可以买到计划数量的2倍还多10个.跳绳原来的单价是多少?22.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1: .方法2: .(2)从中你能发现什么结论?请用等式表示出来: .(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a 、b ,如果a+b=10,ab=21,求阴影部分的面积.23.如图,ABC 中,AB AC 5==,D 是BC 中点,AD 4.=求BC 的长.24.点D ,E 分别在△ABC 的边AC ,BD 上,BD ,CE 交于点F ,连接AF ,∠FAE =∠FAD ,FE =FD .(1)如图1,若∠AEF =∠ADF ,求证:AE =AD ;(2)如图2,若∠AEF≠∠ADF ,FB 平分∠ABC ,求∠BAC 的度数;(3)在(2)的条件下,如图3,点G 在BE 上,∠CFG =∠AFB 若AG =6,△ABC 的周长为20,求BC 长.25.如图所示,有一边长为(1)图中黑白方砖共有 块;(2)求一块方砖的边长.【参考答案】***一、选择题16.317.无18.①②③④19.60°20.7三、解答题21.跳绳原单价6元22.(1)方法1:a 2+b 2 ;方法2:(a+b )2﹣2ab ;(2)a 2+b 2=(a+b )2﹣2ab ;(3)阴影部分的面积=18.5.23.【解析】【分析】先判断出AD BC ⊥,再用勾股定理求解即可.【详解】 解:AB AC =,点D 是BC 中点,AD BC ∴⊥, ADB 90∠∴=,BD 3∴===,点D 是BC 中点,BC 2BD 6∴==.【点睛】考查了等腰三角形的性质,勾股定理,熟练正确等腰三角形的性质是解题的关键.24.(1)见解析;(2)60BAC ∠=︒;(3)7BC =.【解析】【分析】(1)证明△AEF ≌△ADF ,根据全等三角形的对应边相等证明结论;(2)过点F 分别作AB ,BC ,AC 边上的高,根据角平分线的性质定理得到FP=FQ ,FP=FN ,根据角平分线的判定定理得到CF 平分∠ACB ,证明Rt △PEF ≌Rt △NDF ,根据全等三角形的性质得到∠PEF=∠FDN ,计算得到答案;(3)在BC 上取点R ,使CR=CA ,分别证明△CAF ≌△CRF 、△BGF ≌△BRF ,根据全等三角形的性质、三角形的周长公式计算即可.【详解】(1)∵FAE FAD ∠=∠,AEF ADF ∠=∠,FE FD =.∴AEF ADF ∆≅∆,∴AE AD =.(2)过F 点分别作AB ,BC ,AC 边上的高,FP ,FQ ,FN ,点P ,Q ,N 为垂足. ∵AF ,BF 分别平分BAC ∠和ABC ∠,∴FP FQ =,FP FN =,∴FQ FN =,且FN AC ⊥,FQ BC ⊥,∴CF 平分ACB ∠.∴ACE BCE ∠=∠.∵2BEC BAC ACE BAF ACE ∠=∠+∠=∠+∠,∴2EFD ABF BEC ABF BAF ACE ∠=∠+∠=∠+∠+∠1180902BAF BAF =⨯︒+∠=︒+∠. ∵FE FD =,∴Rt PEF Rt NDF ∆≅∆,∴PEF FDN ∠=∠,∴180PEF ADF ∠+∠=︒, ∴()42180BAC EFD PEF ADF ∠+∠=-⨯︒-∠-∠360180180=︒-︒=︒.∴90180BAF BAC ︒+∠+∠=︒且2BAC BAF ∠=∠,∴60BAC ∠=︒.(3)在BC 上取点R ,使CR CA =,∵CF CF =,FCA FCR ∠=∠,∴CAF CRF ∆≅∆.∴30CRF CAF ∠=∠=︒,180150BRF CRF ∠=︒-∠=︒.∵CFG AFB ∠=∠,∴CFG BFG AFB BFG ∠-∠=∠-∠,∴18060120AFG BFC ∠=∠=︒-︒=︒, ∵1302BAF BAC ∠=∠=︒, ∴30AGF ∠=︒,180150BGF AGF ∠=︒-∠=︒.∴BGF BRF ∠=∠.∵GBF RBF ∠=∠,BF BF =,∴BGF BRF ∆≅∆.∴BG BR =.∵AC AB BC BG AG BC AC ++=+++6220BR AG BC CR BC =+++=+=,∴7BC =.【点睛】本题考查的是全等三角形的判定和性质、角平分线的性质、三角形内角和定理,正确作出辅助性、掌握全等三角形的判定定理和性质定理是解题的关键.25.(1)黑白方砖共有32块;(2)一块方砖的边长为2米.。
辽宁省大连市2018-2019学年高一上学期期末考试数学试题(解析版)
辽宁省大连市2018-2019学年高一上学期期末考试数学试题一、选择题(本大题共12小题,共60.0分)1.设集合,3,,则正确的是A. 3,B. 3,C. D.【答案】D【解析】【分析】根据集合的定义与运算法则,对选项中的结论判断正误即可.【详解】解:集合,3,,则,选项A错误;2,3,,选项B错误;,选项C错误;,选项D正确.故选:D.【点睛】本题考查了集合的定义与运算问题,属于基础题.2.命题P:“,”的否定为A. ,B. ,C. ,D. ,【答案】B【解析】【分析】“全称命题”的否定是“特称命题”根据全称命题的否定写出即可.【详解】解:命题P:“,”的否定是:,.故选:B.【点睛】本题考察了“全称命题”的否定是“特称命题”,属于基础题.3.下列函数在上是增函数的是A. B. C. D.【答案】A【解析】【分析】根据题意,依次分析选项中函数的单调性,综合即可得答案.【详解】解:根据题意,依次分析选项:对于A,,在区间上单调递增,符合题意;对于B,,为指数函数,在区间上单调递减,不符合题意;对于C,,为对数函数,在区间上单调递减,不符合题意;对于D,为反比例函数,在区间上单调递减,不符合题意;故选:A.【点睛】本题考查函数单调性的判断,属于基础题.4.函数的单调递减区间为A. B. C. D.【答案】A【解析】【分析】根据所给的二次函数的二次项系数大于零,得到二次函数的图象是一个开口向上的抛物线,根据对称轴,考查二次函数的变化区间,得到结果.【详解】解:函数的二次项的系数大于零,抛物线的开口向上,二次函数的对称轴是,函数的单调递减区间是故选:A.【点睛】本题考查二次函数的性质,属于基础题.5.某公司位员工的月工资(单位:元)为,,…,,其均值和方差分别为和,若从下月起每位员工的月工资增加元,则这位员工下月工资的均值和方差分别为()A. ,B. ,C. ,D. ,【答案】D【解析】试题分析:均值为;方差为,故选D.考点:数据样本的均值与方差.6.函数的零点所在的区间为A. B. C. D.【答案】B【解析】【分析】根据对数函数单调性和函数单调性的运算法则,可得在上是增函数,再通过计算、的值,发现,即可得到零点所在区间.【详解】解:在上是增函数,,,根据零点存在性定理,可得函数的零点所在区间为.故选:B.【点睛】本题考查基本初等函数的单调性和函数零点存在性定理等知识,属于基础题.7.已知,,则a,b,c的大小关系为A. B. C. D.【答案】D【解析】【分析】利用指数函数与对数函数的单调性即可得出.【详解】解:,,.又,.故选:D.【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.8.函数的图象可能是A. B.C. D.【答案】D【解析】【分析】排除法:利用奇函数排除A、C;利用x∈(0,1)时,f(x)<0排除B.【详解】解:因为f(-x)=-xlg|-x|=-xlg|x|=-f(x),所以f(x)为奇函数,图象关于原点对称,排除A、C,又当x∈(0,1)时,f(x)<0,据此排除B.故选:D.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.9.从含有两件正品,和一件次品的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为A. B. C. D.【答案】B【解析】试题分析:该抽样是有放回的抽样,所以每次抽到正品的概率是,抽到次品的概率是,所以取出的两件产品中恰有一件是次品的概率为考点:本小题主要考查独立重复试验的概率计算公式的应用和学生的运算求解能力.点评:只要有“恰好”字样的用独立重复试验的概率计算公式计算更简单.10.设,则“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】若,则,故不充分;若,则,而,故不必要,故选D.考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.11.已知函数在上的值域为R,则a的取值范围是A. B. C. D.【答案】A【解析】【分析】利用分段函数,通过一次函数以及指数函数判断求解即可.【详解】解:函数在上的值域为R,当函数的值域不可能是R,可得,解得:.故选:A.【点睛】本题考查分段函数的应用,函数的最值的求法,属于基础题.12.已知与分别是函数与的零点,则的值为A. B. C. 4 D. 5【答案】D【解析】【分析】设,,由,互为反函数,其图象关于直线对称,作直线,分别交,的图象为A,B两点,点为A,B的中点,联立方程得,由中点坐标公式得:,又,故得解.【详解】解:由,化简得,设,,由,互为反函数,其图象关于直线对称,作直线,分别交,的图象为A,B两点,点为A,B的中点,联立得;,由中点坐标公式得:,所以,故选:D.【点睛】本题考查了反函数、中点坐标公式及函数的零点等知识,属于难题.二、填空题(本大题共4小题,共20.0分)13.已知,则______.【答案】10【解析】【分析】由已知化指数式为对数式得到a,代入,再由对数的运算性质求解.【详解】解:由,得,再由,得,即.故答案为:10.【点睛】本题考查指数式与对数式的互化,属于基础题.14. 甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80 的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.【答案】1800【解析】试题分析:由题共有产品4800名,抽取样本为80,则抽取的概率为;,再由50件产品由甲设备生产,则乙设备生产有30件,则乙设备在总体中有;。
辽宁省大连市重点名校2018-2019学年高一下学期期末学业水平测试数学试题含解析
辽宁省大连市重点名校2018-2019学年高一下学期期末学业水平测试数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.实数满足121x y y x -+⎧⎨≥-⎩,则3x y +的取值范围为( )A .[]19, B .[]39,C .312⎡⎤⎢⎥⎣⎦,D .392⎡⎤⎢⎥⎣⎦,【答案】A 【解析】 【分析】画出可行域,平移基准直线30x y +=到可行域边界的位置,由此求得目标函数的取值范围. 【详解】画出可行域如下图所示,平移基准直线30x y +=到可行域边界的位置,由图可知目标函数3x y +分别在()()0,1,2,3A B 出取的最小值和最大值,最小值为1,最大值为3239⨯+=,故3x y +的取值范围是[]1,9,故选A.【点睛】本小题主要考查线性规划求最大值和最小值,考查数形结合的数学思想方法,属于基础题. 2330x y -+=的倾斜角是( ) A .6π B .3π C .23π D .56π 【答案】B【解析】 【分析】 先求斜率3k =,即倾斜角的正切值tan 3θ=,易得3πθ=.【详解】33y x =+,可知3k =,即tan 3θ=,3πθ=故选B 【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目. 3.2019︒角的终边落在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【解析】 【分析】由20192195360︒=︒+⨯︒,即可判断. 【详解】20192195360︒=︒+⨯︒,则2019︒与219︒的终边相同,则2019︒角的终边落在第三象限故选:C 【点睛】本题主要考查了判断角的终边所在象限,属于基础题.4.如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π-B .122π- C .2πD .1π【答案】A 【解析】试题分析:设扇形OAB 半径为,此点取自阴影部分的概率是112π-,故选B. 考点:几何概型.【方法点晴】本题主要考查几何概型,综合性较强,属于较难题型.本题的总体思路较为简单:所求概率值应为阴影部分的面积与扇形的面积之比.但是,本题的难点在于如何求阴影部分的面积,经分析可知阴影部分的面积可由扇形面积减去以为直径的圆的面积,再加上多扣一次的近似“椭圆”面积.求这类图形面积应注意切割分解,“多还少补”. 5.下列结论: ①22a b a b >⇒>; ②11a b a b>⇒<; ③a b >,c d a d b c >⇒->-; ④a b >,c d ac bd >⇒>, 其中正确结论的个数是( ). A .1 B .2C .3D .4【答案】A 【解析】 【分析】根据不等式性质,结合特殊值法即可判断各选项. 【详解】对于①,若=1,2a b =-,满足a b >,但22a b >不成立,所以A 错误; 对于②,若=1,2a b =-,满足a b >,但11a b<不成立,所以B 错误; 对于③,c d d c >⇒->-,而a b >,由不等式性质可得a d b c ->-,所以③正确; 对于④,若=1,2,1,3a b c d =-=-=-满足a b >,c d >但ac bd >不成立,所以④错误; 综上可知,正确的为③,有1个正确; 故选:A. 【点睛】本题考查了不等式性质应用,根据不等式关系比较大小,属于基础题. 6.设集合2{|430}A x x x =-+<,{|13}B x x =-<<,则( ) A .A B = B .A B ⊇C .A B ⊆D .AB =∅【答案】C分析:利用一元二次不等式的解法化简集合A ,由子集的定义可得结果. 详解:2 {|430}A x x x =-+<{}|13x x =<<,{|13}B x x =-<<,A B ∴⊆,故选C.点睛:本题主要考查解一元二次不等式,集合的子集的定义,属于容易题,在解题过程中要注意考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇. 7.在下列结论中,正确的为( )A .两个有共同起点的单位向量,其终点必相同B .向量AB 与向量BA 的长度相等C .向量就是有向线段D .零向量是没有方向的 【答案】B 【解析】 【分析】逐一分析选项,得到答案. 【详解】A.单位向量的方向任意,所以当起点相同时,终点在以起点为圆心的单位圆上,终点不一定相同,所以选项不正确;B. 向量AB 与向量BA 是相反向量,方向相反,长度相等,所以选项正确;C.向量是既有大小,又有方向的向量,可以用有向线段表示,但不能说向量就是有向线段,所以选项不正确;D.规定零向量的方向任意,而不是没有方向,所以选项不正确. 故选B. 【点睛】本题考查了向量的基本概念,属于基础题型.8.已知向量a ,b 满足(cos ,sin )a αα=,α∈R ,1a b ⋅=-,则(2)a a b ⋅-=( ) A .3 B .2C .1D .0【答案】A 【解析】 【分析】由()222a a b a a b ⋅-=-⋅,求出2a ,代入计算即可.由题意222sin cos 1a αα=+=,则()222213a a b a a b ⋅-=-⋅=+=. 故答案为A. 【点睛】本题考查了向量的数量积,考查了学生的计算能力,属于基础题. 9.若0,0,a b c d >><<则一定有( ) A .a b c d> B .a b c d< C .a b d c> D .a b d c< 【答案】D 【解析】本题主要考查不等关系.已知0,0a b c d >><<,所以110d c->->,所以a bd c ->-,故a b d c <.故选D10.空间中可以确定一个平面的条件是( ) A .三个点 B .四个点C .三角形D .四边形【答案】C 【解析】 【分析】根据公理2即可得出答案. 【详解】在A 中,不共线的三个点能确定一个平面,共线的三个点不能确定一个平面,故A 错误;在B 中,不共线的四个点最多能确定四个平面,故B 错误;在C 中,由于三角形的三个顶点不共线,因此三角形能确定一个平面,故C 正确; 在D 中,四边形有空间四边形和平面四边形,空间四边形不能确定一个平面,故D 错误. 【点睛】本题对公理2进行了考查,确定一个平面关键是对过不在一条直线上的三点,有且只有一个平面的理解. 11.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ) A .“至少有1个白球”和“都是红球” B .“至少有2个白球”和“至多有1个红球” C .“恰有1个白球” 和“恰有2个白球” D .“至多有1个白球”和“都是红球” 【答案】C 【解析】结合互斥事件与对立事件的概念,对选项逐个分析可选出答案. 【详解】对于选项A, “至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B, “至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C, “恰有1个白球”表示取出2个球1个红球1个白球, 与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D, “至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意. 故选C. 【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题. 12.在0°到360°范围内,与角 -130°终边相同的角是( ) A .50° B .130° C .170° D .230°【答案】D 【解析】 【分析】先表示与角 -130°终边相同的角,再在0°到360°范围内确定具体角,最后作选择. 【详解】因为与角 -130°终边相同的角为0130360()k k Z -+⋅∈, 所以01,130360230(0,360)k k =-+⋅=∈, 因此选D. 【点睛】本题考查终边相同的角,考查基本分析判断能力,属基本题. 二、填空题:本题共4小题 13.给出下列五个命题: ①函数2sin(2)3y x π=-的一条对称轴是512x π=; ②函数tan y x =的图象关于点(2π,0)对称; ③正弦函数在第一象限为增函数; ④若12sin(2)sin(2)44x x ππ-=-,则12x x k π-=,其中k Z ∈; ⑤函数()sin 2sin [02]f x x x x π=+∈,,的图像与直线y k =有且仅有两个不同的交点,则k 的取值范围为()1,3.以上五个命题中正确的有 (填写所有正确命题的序号) 【答案】①②⑤ 【解析】试题分析:①将512x π=代入可得函数最大值2,为函数对称轴;②函数tan y x =的图象关于点()(),0,,02k k k Z πππ⎛⎫+∈ ⎪⎝⎭对称,包括点,02π();③2,sin 2sin 4343ππππππ⎛⎫+>+< ⎪⎝⎭,③错误;④利用诱导公式()sin sin παα-=,可得不同于21x x k π-=的表达式;⑤对x 进行讨论,利用正弦函数图象,得出函数()sin 2sin [02]f x x x x π=+∈,,与直线y k =仅有有两个不同的交点,则()1,3k ∈.故本题答案应填①②⑤. 考点:三角函数的性质.【知识点睛】本题主要考查三角函数的图象性质.对于()sin y A x ωϕ=+和()cos y A x ωϕ=+的最小正周期为2T πω=.若()sin y A x ωϕ=+为偶函数,则当0x =时函数取得最值,若()sin y A x ωϕ=+为奇函数,则当0x =时,0f x.若要求()f x 的对称轴,只要令()2x k k Z πωϕπ+=+∈,求x .若要求()f x 的对称中心的横坐标,只要令()x k k Z ωϕπ+=∈即可. 14.已知ABC 中内角,,A B C 的对边分别是,,a b c ,6A π=,712B π=,2a =,则c 为_____.【答案】【解析】 【分析】根据正弦定理即可. 【详解】 因为6A π=,712B π=,2a =;所以76124C ππππ,由正弦定理可得sin sin a cc A C=⇒=【点睛】本题主要考查了正弦定理:2sin sin sin a b cR A B C===,属于基础题. 15.已知12cos 413πα⎛⎫-= ⎪⎝⎭,且4πα-是第一象限角,则sin 22sin 4παπα⎛⎫- ⎪⎝⎭⎛⎫+ ⎪⎝⎭的值为__________.【答案】1013; 【解析】【分析】利用两角和的公式把题设展开后求得sin 2α的值,进而利用4πα-的范围判断2α的范围,利用同角三角函数的基本关系求得cos2α的值,最后利用诱导公式和对原式进行化简,把cos2α的值和题设条件代入求解即可. 【详解】12cos 413πα⎛⎫-= ⎪⎝⎭, 12coscos sinsin 4413ππαα∴+=,即)12sin cos 213αα+=,sin cos 13αα∴+=, 两边同时平方得到:2881sin 2169α+=,解得119sin 2169α=,4πα-是第一象限角,22,42k k k Z πππαπ∴<-<+∈,得22,44k k k Z πππαπ-<<+∈,424,22k k k Z πππαπ∴-<<+∈,即2α为第一或第四象限,120cos 2169α∴=, ∴ sin 2cos 2120131021691213sin cos 44πααππαα⎛⎫- ⎪⎝⎭==⨯=⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭. 故答案为:1013. 【点睛】本题考查了两角差的余弦公式、诱导公式以及同角三角函数的基本关系,需熟记三角函数中的公式,属于中档题.16.函数()2sin cos f x x x x =的单调递减区间为______.【答案】()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【解析】 【分析】利用二倍角降幂公式和辅助角公式可得出()sin 232f x x π⎛⎫=-- ⎪⎝⎭,然后解不等式()3222232k x k k Z πππππ+≤-≤+∈,即可得出函数()y f x =的单调递减区间. 【详解】()211cos 21sin cos sin 2sin 2cos 222222x f x x x x x x x +===--sin 23x π⎛⎫=-⎪⎝⎭, 解不等式()3222232k x k k Z πππππ+≤-≤+∈,得()5111212k x k k Z ππππ+≤≤+∈, 因此,函数()y f x =的单调递减区间为()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 故答案为:()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 【点睛】本题考查正弦型三角函数单调区间的求解,一般利用三角恒等变换思想将三角函数解析式化简,考查计算能力,属于中等题.三、解答题:解答应写出文字说明、证明过程或演算步骤。
大连市2018~2019学年第一学期期末考试试卷高一数学答案
高一数学,第 1 页(共6页)2018~2019学年第一学期期末考试试卷高一数学参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一.选择题:(1)D ;(2)B ;(3)A ;(4)A ;(5)C ;(6)B ;(7)B ;(8)B ;(9)C ; (10)D ;(11)A ;(12)D二.填空题:(13)10;(14)1800;(15)⎪⎭⎫ ⎝⎛3,35;(16)⎥⎦⎤ ⎝⎛-∞-31,.三.解答题:17、(1)解:由题意可知()(),3111=+=-+-a a f f ……………………(2分)()()()2221222f f a a a a --+-=+=+- …………………… (4分)高一数学,第 2 页(共6页)2=3-2=7…………………… (6分)(2)证明:因为函数()()()x x a a x f x f x g -+=-+=的定义域为R ,当R x ∈时,.R x ∈- ……………………(8分)又因为()(),x g a a a a x g x x x x =+=+=---所以()x g 是偶函数. …………………(10分)18、解:(1)由调查数据可知,既未参加社会实践活动又未参加社会公益活动的有3人,记“从该班随机选1名同学,该同学没有参加上述活动”为事件A ,………………………………………………(2分)则().151453==A P ……………………………………………(4分)(2) 从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件空间为{()()()()()()()()()()()()()()()}.15,,,,,,,,,,,,,,,,,,,,,,,,,,,,352515342414332313322212312111个共B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A =Ω………………………………………………(8分)根据题意,这些基本事件的出现是等可能的.用B 表示事件“ 被选中且 未被选中”,B 中包含的基本事件有:{()()}3121,,,B A B A B =共2个……(10分) 因此 被选中且 未被选中的概率为().152=B P …………………(12分) 19、解:(1)当0>x 时,()0112>-x 恒成立,此时函数()x f 无零点…(2分) 当0≤x 时,若,1->a 则02>+-a x 恒成立,此时函数()x f 无零点……(4分)若,1-≤a 则由02=+-a x ,解得().log 20a x --= …………(6分)(2)当0≤x 时,有112>--x ,则1-<x , ……………(8分)高一数学,第 3 页(共6页)当0>x 时,有1)1(12>-x ,则,2110<<<<x x 或 ……(10分)综上所述x 的取值范围是()()().2,11,01,U U -∞- ………………(12分)20、解:(1)根据频数分布表,100名学生中参加社团活动次数不少于12次的学生共有6+2+2=10(名), ………………(2分) 所以样本中的学生参加社团活动的次数少于12次的频率是1-10100=0.9. 故从该校随机选取一名学生,估计其参加社团活动次数少于12次的概率为0.9. …………………………………………(4分) (2)参加社团活动次数落在组[4,6)内的有17人,频率为0.17,所以a =频率组距=0.172=0.085.………………………………………(6分)参加社团活动次数落在组[8,10)内的有25人,频率为0.25, 所以b =频率组距=0.252=0.125.………………………………………(8分)(3)由题意可知,数据的平均数为022********0.060.080.170.220.252222210121214141616180.120.060.020.022222+++++⨯+⨯+⨯+⨯+⨯+++++⨯+⨯+⨯+⨯………(10分)=7.68. 所以样本中的100名学生本学期参加社团活动的平均次数为7.68次.(12分)21、解:(1)设每天所支付的总费用为1y 元,则高一数学,第 4 页(共6页)()11919000.66000y x x x =+++⨯⎡⎤⎣⎦………………(2分)9009360936093789,x x=++≥=………………(4分)当且仅当xx 9009=,即10=x 时取等号. 所以该食堂每10天购买一次大米,才能使平均每天所支付的总费用最少. ………………………………………………………………(6分) (3) 若该食堂接受此优惠条件,则至少每35天购买一次大米. ....(7分) 设该食堂接受此优惠条件后,每()35≥x x 天购买一次大米,平均每天支付的总费用为2y ,则()[]2889990080.060006.09001912++=⨯⨯+++=x xx x x y …………………(8分) 令()(),35100≥+=x xx x f 令,3512≥>x x 则()()()().100100100212121221121x x x x x x x x x x x f x f --=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=- 因为,3512≥>x x 所以,100,02121>⋅<-x x x x 即.010021>-x x 所以()(),021<-x f x f 即()().21x f x f <所以()xx x f 100+=在[)+∞,35上为增函数. ……………………(10分) 所以当35=x 时,2y 有最小值,约为3229.7. ……………(11分)此时37897.3229<,所以该食堂应该接受此优惠条件. ………………(12分) (注:没有证明函数f (x )在[)+∞,35上为增函数,扣2分)高一数学,第 5 页(共6页)22、解:(1)由题意,设()().02≠++=a c bx ax x f 因为(),10=f 所以.1=c …………………………………………(1分) 又因为()()x x f x f 21=-+,所以()(),21122x c bx ax c x b x a =---++++即,22x b a ax =++ …………………………………………………(2分)对比系数相等有⎩⎨⎧=+=022b a a ,解得⎩⎨⎧-==11b a所以().12+-=x x x f ………………………………………………(3分)(2)由()()b g a f =,得3212+=+-b a a ,即,222b a a =-- ………………(4分) 因为,02>b 所以.022>--a a …………………………………(5分) 解得1-<a 或2>a ,所以a 的取值范围是()().,21,+∞-∞- ………………………………(6分) (3)由题意知对任意[]1,,21+∈t t x x 都有()()421<-x f x f 成立,故有()[]()[]4min max <-x f x f , ………………(7分) 由()[]1,,12+∈+-=t t x x x x f ①当21-≤t 时,()x f 在[]1,+t t 上为减函数, ()[]()[]()(),2,41min max -><+-=-t t f t f x f x f 所以;212-≤<-t …………(8分)②当021≤<-t 时,()x f 在[]1,+t t 上,最小值是)21()(min f x f =, 最大值是)()(max t f x f =()[]()[](),2523,421min max <<-<⎪⎭⎫ ⎝⎛-=-t f t f x f x f 所以;021≤<-t ……(9分)③当210≤<t 时,()x f 在[]1,+t t 上,最小值是)21()(minf x f =,高一数学,第 6 页(共6页)最大值是)1()(max +=t f x f()[]()[](),2325,4211min max <<-<⎪⎭⎫ ⎝⎛-+=-t f t f x f x f 所以;210≤<t ………(10分)④当21>t 时,()x f 在[]1,+t t 上,最小值是)()(min t f x f =,最大值是)1()(max +=t f x f()[]()[]()(),2,41min max <<-+=-t t f t f x f x f 所以;221<<t ……(11分) 综上:满足题意的()2,2-∈t ………………………………………………(12分)。
2019年大连市高一数学下期末模拟试题含答案
2019年大连市高一数学下期末模拟试题含答案一、选择题1.ABC V 中,已知sin cos cos a b cA B C==,则ABC V 为( ) A .等边三角形B .等腰直角三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形 2.已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( )A .1B .4C .1或4D .2或43.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元4.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3 D .丁地:总体均值为2,总体方差为35.已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意实数x 、y 恒成立,则实数a 的最小值为( ) A .8B .6C .4D .26.已知D ,E 是ABC V 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+u u u r u u u r u u u r,则xy 的取值范围是( ) A .14,99⎡⎤⎢⎥⎣⎦B .11,94⎡⎤⎢⎥⎣⎦C .21,92⎡⎤⎢⎥⎣⎦D .21,94⎡⎤⎢⎥⎣⎦7.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D .8.已知不等式220ax bx ++>的解集为{}12x x -<<,则不等式220x bx a ++<的解集为( ) A .112x x ⎧⎫-<<⎨⎬⎩⎭B .112x x x ⎧⎫<->⎨⎬⎩⎭或 C .{}21x x -<<D .{}21x x x <->或9.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x =f +x -,若(1)2f =,则(1)(2)f +f (3)(2020)f f +++=L ( )A .50B .2C .0D .50-10.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .11.如图,已知三棱柱111ABC A B C -的各条棱长都相等,且1CC ⊥底面ABC ,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角为( )A .2π B . C . D .3π 12.若函数()(),1231,1x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤ ⎥⎝⎦D .2,3⎛⎫+∞ ⎪⎝⎭二、填空题13.在区间[]0,1上随机选取两个数x 和y ,则满足20-<x y 的概率为________. 14.已知函数())2ln11f x x x =++,()4f a =,则()f a -=________.15.已知2a b ==r r ,()()22a b a b +⋅-=-r r r r ,则a r 与b r的夹角为 .16.已知0,0,2a b a b >>+=,则14y a b=+的最小值是__________. 17.函数sin 232y x x =的图象可由函数sin 232y x x =+的图象至少向右平移_______个长度单位得到。
大连市中山区2018-2019学年九年级上期末数学试卷含答案解析
2019-2019学年辽宁省大连市中山区九年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.已知四条线段满足,将它改写成为比例式,下面正确的是()A.B.C.D.2.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3) B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)3.下列事件中,必然事件是()A.抛出一枚硬币,落地后正面向上B.打开电视,正在播放广告C.篮球队员在罚球线投篮一次,未投中D.实心铁球投入水中会沉入水底4.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()A.∠ACD B.∠ADB C.∠AED D.∠ACB5.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=96.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:17.已知函数y=x2+2x﹣3,当x=m时,y<0,则m的值可能是()A.﹣4 B.0 C.2 D.38.一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.20πcm2D.30πcm2二、填空题(本大题共有10小题,每小题3分,共30分)9.方程x 2﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 .10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m .11.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB= °.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是 .13.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值 .14.如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 .15.如图,要使△ABC 与△DBA 相似,则只需添加一个适当的条件是 (填一个即可)16.二次函数y=ax 2+bx+c 的图象如图所示,其对称轴与x 轴交于点(﹣1,0),图象上有三个点分别为(2,y 1),(﹣3,y 2),(0,y 3),则y 1、y 2、y 3的大小关系是 (用“>”“<”或“=”连接).三、解答题(本大题共有4小题,共39分)17.解方程:(1)x 2﹣4x+1=0;(2)x (x ﹣2)+x ﹣2=0.18.如图,△ABC 的三个顶点都在格点上,每个小方格边长均为1个单位长度.(1)请你作出△ABC 关于点O 成中心对称的△A 1B 1C 1(其中A 的对称点是A 1,B 的对称点是B 1,C 的对称点是C 1);(2)直接写出点B 1、C 1的坐标.19.如图,四边形ABCD 内接于⊙O ,E 为AB 延长线上一点,若∠AOC=140°.求∠EBC 的度数.20.一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同,从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号.(1)用树状图或列表法举出所有可能出现的结果;(2)求两次摸出的球都是编号为3的球的概率.四、解答题(本大题共有4小题,共39分)21.如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB于D.(1)求证:△ACB∽△ADE;(2)求AD的长度.22.如图,进行绿地的长、宽各增加xm.(1)写出扩充后的绿地的面积y(m2)与x(m)之间的函数关系式;(2)若扩充后的绿地面积y是原矩形面积的2倍,求x的值.23.如图,AB是⊙O的直径,点C、D在⊙O上,且AC平分∠BAD,点E为AB的延长线上一点,且∠ECB=∠CAD.(1)①填空:∠ACB= ,理由是;②求证:CE与⊙O相切;(2)若AB=6,CE=4,求AD的长.五、解答题(本大题共有3小题,共35分)24.如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)填空:m的值为;(2)求S关于x的函数关系式,并写出x的取值范围;(3)请直接写出△PCQ为等腰三角形时x的值.25.如图(1),将线段AB绕点A逆时针旋转2α(0°<α<90°)至AC,P是过A,B,C的三点圆上任意一点.(1)当α=30°时,如图(1),求证:PC=PA+PB;(2)当α=45°时,如图(2),PA,PB,PC三条线段间是否还具有上述数量关系?若有,请说明理由;若不具有,请探索它们的数量关系.26.如图,抛物线y=a(x﹣m)2﹣m(其中m>1)与其对称轴l相交于点P,与y轴相交于点A (0,m).点A关于直线l的对称点为B,作BC⊥x轴于点C,连接PC、PB,与抛物线、x轴分别相交于点D、E,连接DE.将△PBC沿直线PB翻折,得到△PBC′.(1)该抛物线的解析式为(用含m的式子表示);(2)探究线段DE、BC的关系,并证明你的结论;(3)直接写出C′点的坐标(用含m的式子表示).2019-2019学年辽宁省大连市中山区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.已知四条线段满足,将它改写成为比例式,下面正确的是()A.B.C.D.【考点】比例线段.【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【解答】解:根据四条线段满足,可得ab=cd,A、如果=,那么ad=cb,故此选项错误;B、如果=,那么ad=bc,故此选项错误;C、如果=,那么ab=cd,故此选项正确;D、如果=,那么ac=bd,故此选项错误.故选:C.【点评】此题主要考查了比例线段,掌握比例的基本性质,根据比例的基本性质实现比例式和等积式的互相转换是解题关键.2.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3) B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【考点】二次函数的性质.【分析】根据二次函数顶点式解析式写出顶点坐标即可.【解答】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.3.下列事件中,必然事件是()A.抛出一枚硬币,落地后正面向上B.打开电视,正在播放广告C.篮球队员在罚球线投篮一次,未投中D.实心铁球投入水中会沉入水底【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:抛出一枚硬币,落地后正面向上是随机事件,A不正确;打开电视,正在播放广告是随机事件,B不正确;篮球队员在罚球线投篮一次,未投中是随机事件,C不正确;实心铁球投入水中会沉入水底是必然事件,D正确.故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()A.∠ACD B.∠ADB C.∠AED D.∠ACB【考点】圆周角定理.【专题】几何图形问题.【分析】根据圆周角定理即可判断A、B、D,根据三角形外角性质即可判断C.【解答】解:A、∵∠ABD对的弧是弧AD,∠ACD对的弧也是AD,∴∠ABD=∠ACD ,故A 选项正确;B 、∵∠ABD 对的弧是弧AD ,∠ADB 对的弧也是AB ,而已知没有说=,∴∠ABD 和∠ACD 不相等,故B 选项错误;C 、∠AED >∠ABD ,故C 选项错误;D 、∵∠ABD 对的弧是弧AD ,∠ACB 对的弧也是AB ,而已知没有说=, ∴∠ABD 和∠ACB 不相等,故D 选项错误;故选:A .【点评】本题考查了圆周角定理和三角形外角性质的应用,注意:在同圆或等圆中,同弧或等弧所对的圆周角相等.5.用配方法解一元二次方程x 2﹣4x=5时,此方程可变形为( )A .(x+2)2=1B .(x ﹣2)2=1C .(x+2)2=9D .(x ﹣2)2=9【考点】解一元二次方程-配方法.【专题】配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x 2﹣4x=5,∴x 2﹣4x+4=5+4,∴(x ﹣2)2=9.故选D .【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.6.若△ABC ∽△A′B′C′,相似比为1:2,则△ABC 与△A′B′C′的面积的比为( )A .1:2B .2:1C .1:4D .4:1【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方计算即可得解.【解答】解:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选:C.【点评】本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.7.已知函数y=x2+2x﹣3,当x=m时,y<0,则m的值可能是()A.﹣4 B.0 C.2 D.3【考点】抛物线与x轴的交点.【专题】计算题.【分析】根据函数图象得到﹣3<x<1时,y<0,即可作出判断.【解答】解:令y=0,得到x2+2x﹣3=0,即(x﹣1)(x+3)=0,解得:x=1或x=﹣3,由函数图象得:当﹣3<x<1时,y<0,则m的值可能是0.故选B.【点评】此题考查了抛物线与x轴的交点,利用了数形结合的思想,求出x的范围是解本题的关键.8.一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.20πcm2D.30πcm2【考点】圆锥的计算.【专题】计算题.【分析】首先根据圆锥的高和底面半径求得圆锥的母线长,然后计算侧面积即可.【解答】解:∵圆锥的高是4cm,底面半径是3cm,∴根据勾股定理得:圆锥的母线长为=5cm,则底面周长=6π,侧面面积=×6π×5=15πcm2.故选:B.【点评】考查了圆锥的计算,首先利用勾股定理求得圆锥的母线长是解决此题的关键.二、填空题(本大题共有10小题,每小题3分,共30分)9.方程x 2﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 c <4 .【考点】根的判别式.【分析】利用方程有两个不相等的实数根时△>0,建立关于c 的不等式,求出c 的取值范围即可.【解答】解:由题意得△=b 2﹣4ac=16﹣4c >0,解得c <4,故答案为c <4.【点评】本题考查了根的判别式,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2﹣4ac 有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 15 m .【考点】相似三角形的应用.【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x 米,由题意得,=,解得x=15.故答案为:15.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.11.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB= 70 °.【考点】旋转的性质.【专题】探究型.【分析】直接根据图形旋转的性质进行解答即可.【解答】解:∵将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,∠AOB=30°,∴△OAB ≌△OA 1B 1,∴∠A 1OB 1=∠AOB=30°.∴∠A 1OB=∠A 1OA ﹣∠AOB=70°.故答案为:70.【点评】本题考查的是旋转的性质,熟知图形旋转前后对应边、对应角均相等的性质是解答此题的关键.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是 . 【考点】列表法与树状图法. 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与它们恰好同色的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,它们恰好同色的有4种情况,∴它们恰好同色的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.13.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值 ﹣1 .【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义把x=2代入方程x2+px﹣2=0得到关于P的一元一次方程,然后解此方程即可.【解答】解:把x=2代入方程x2+px﹣2=0得4+2p﹣2=0,解得p=﹣1.故答案为:﹣1.【点评】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.14.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为 3 .【考点】垂径定理;勾股定理.【分析】作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=4,然后在Rt△AOC中利用勾股定理计算OC即可.【解答】解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是∠C=∠BAD (填一个即可)【考点】相似三角形的判定.【专题】开放型.【分析】根据相似三角形的判定:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似,进行添加即可.【解答】解:∵∠B=∠B (公共角),∴可添加:∠C=∠BAD .此时可利用两角法证明△ABC 与△DBA 相似.故答案可为:∠C=∠BAD .【点评】本题考查了相似三角形的判定,注意掌握相似三角形判定的三种方法,本题答案不唯一.16.二次函数y=ax 2+bx+c 的图象如图所示,其对称轴与x 轴交于点(﹣1,0),图象上有三个点分别为(2,y 1),(﹣3,y 2),(0,y 3),则y 1、y 2、y 3的大小关系是 y 3<y 2<y 1 (用“>”“<”或“=”连接).【考点】二次函数图象上点的坐标特征.【专题】数形结合.【分析】先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到y 1、y 2、y 3的大小关系.【解答】解:∵抛物线的对称轴与x 轴交于点(﹣1,0),∴抛物线的对称轴为直线x=﹣1,∵点(2,y 1)到直线x=﹣1的距离最大,点(0,y 3)到直线x=﹣1的距离最小,∴y 3<y 2<y 1.故答案为y 3<y 2<y 1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.运用二次函数的性质是解决本题的关键.三、解答题(本大题共有4小题,共39分)17.解方程:(1)x 2﹣4x+1=0;(2)x (x ﹣2)+x ﹣2=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)方程常数项移到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;(2)分解因式后得出(x+1)(x ﹣2)=0,推出x+1=0,x ﹣2=0,求出方程的解即可.【解答】解:(1)方程变形得:x 2﹣4x=﹣1,配方得:x 2﹣4x+4=3,即(x ﹣2)2=3,开方得:x ﹣2=±,则x 1=2+,x 2=2﹣;(2)(x+1)(x ﹣2)=0,(x+1)(x ﹣2)=0,解得x 1=﹣1,x 2=2.【点评】本题考查了解一元一次方程和解一元二次方程的应用,解(1)小题的关键是正确配方,解(2)小题的关键是将一元二次方程转化成一元一次方程,题目比较典型,难度也适中.18.如图,△ABC 的三个顶点都在格点上,每个小方格边长均为1个单位长度.(1)请你作出△ABC 关于点O 成中心对称的△A 1B 1C 1(其中A 的对称点是A 1,B 的对称点是B 1,C 的对称点是C 1);(2)直接写出点B 1、C 1的坐标.【考点】作图-旋转变换.【分析】(1)作出点A 、B 、C 关于坐标原点O 成中心对称的点,顺次连接即可.(2)根据图形直接写出点B 1、C 1的坐标.【解答】解:(1)如图所示:.(2)根据上图可知,B 1(2,2),C 1(5,﹣1).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应点的连线段的夹角都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.19.如图,四边形ABCD 内接于⊙O ,E 为AB 延长线上一点,若∠AOC=140°.求∠EBC 的度数.【考点】圆内接四边形的性质.【分析】根据圆周角定理得到∠D=∠AOC=70°,根据圆内接四边形的性质得到答案.【解答】解:由圆周角定理得,∠D=∠AOC=70°,由圆内接四边形的性质得,∠EBC=∠D=70°.【点评】本题考查的是圆内接四边形的性质和圆周角定理的应用,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.20.一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同,从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号.(1)用树状图或列表法举出所有可能出现的结果;(2)求两次摸出的球都是编号为3的球的概率.【考点】列表法与树状图法.【分析】(1)直接画树状图或列表法举出所有可能出现的结果即可;(2)由(1)中的树状图,找到两次摸出的球都是编号为3的球的情况数,然后利用概率公式求解即可.【解答】解:(1)画树状图如下:由树状图可知所有可能出现的结果共9种;(2)由(1)中考共有9种等可能的结果,两次摸出的球都是编号为3的球的情况数是1种,所以其概率为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(本大题共有4小题,共39分)21.如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB于D.(1)求证:△ACB∽△ADE;(2)求AD的长度.【考点】相似三角形的判定与性质.【分析】(1)求出∠EDA=∠C=90°,根据相似三角形的判定得出相似即可;(2)根据相似得出比例式,代入求出即可.【解答】(1)证明:∵DE⊥AB,∠C=90°,∴∠EDA=∠C=90°,∵∠A=∠A,∴△ACB∽△ADE;(2)解:∵△ACB∽△ADE,∴=,∴=,∴AD=4.【点评】本题考查了相似三角形的性质和判定的应用,能推出△ACB∽△ADE是解此题的关键.22.如图,进行绿地的长、宽各增加xm.(1)写出扩充后的绿地的面积y(m2)与x(m)之间的函数关系式;(2)若扩充后的绿地面积y是原矩形面积的2倍,求x的值.【考点】二次函数的应用.【专题】几何图形问题.【分析】(1)由图可以直接得到扩充后的绿地的面积y(m2)与x(m)之间的函数关系式,然后写出关系,化简即可;(2)根据扩充后的绿地面积y是原矩形面积的2倍,可以得到相应的关系式,从而得到x的值.【解答】解:(1)由图可得,扩充后的绿地的面积y(m2)与x(m)之间的函数关系式是:y=(30xm+m)(20xm+m)=600x2m2+50xm2+m2,即扩充后的绿地的面积y(m2)与x(m)之间的函数关系式是:y=600x2m2+50xm2+m2;(2)∵扩充后的绿地面积y是原矩形面积的2倍,∴600x2m2+50xm2+m2=2×30xm×20xm,解得(舍去),即扩充后的绿地面积y是原矩形面积的2倍,x的值是.【点评】本题考查二次函数的应用,解题的关键是明确题意,找出题目中的数量关系,利用数形结合的思想解答问题.23.如图,AB是⊙O的直径,点C、D在⊙O上,且AC平分∠BAD,点E为AB的延长线上一点,且∠ECB=∠CAD.(1)①填空:∠ACB= 90°,理由是直径所对的圆周角是直角;②求证:CE与⊙O相切;(2)若AB=6,CE=4,求AD的长.【考点】切线的判定.【分析】(1)①根据圆周角定理即可求得;②连接OC.欲证明CE是⊙O的切线,只需证明CE⊥OC即可;(2)根据弦切角定理求得BE,进一步求得AC=4,得出△ACE和△BCE是等腰三角形,得出BC=BE=2,进一步证得∠DAB=∠ABC,从而证得AD=BC=2.【解答】解:①∵AB为⊙O的直径,∴∠ACB=90°,故答案为90°,直径所对的圆周角是直角;②连接OC,则∠CAO=∠ACO,∵AC平分∠BAB,∴∠BAC=∠CAD,∵∠ECB=∠CAD.∴∠BAC=∠ECB.∴∠ECB=∠ACO,∵∠ACO+∠OCB=90°,∴∠ECB+∠OCB=90°,即CE⊥OC.∴CE与⊙O相切;(2)∵CE与⊙O相切,∴CE2=BE•AE,∵AB=6,CE=4,∴42=BE(BE+6),∴BE=2,∴AE=6+2=8,∵△ACE∽△CBE,∴=,即=,∴AC=4,∴AC=CE=4,∴∠CAB=∠E,∴∠ECB=∠E,∴∠ABC=2∠ECB=2∠BAC,BC=BE=2,∴∠DAB=∠ABC,∴AD=BC=2.【点评】本题考查了切线的判定与性质,等腰三角形的判定和性质,相似三角形的性质等;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.五、解答题(本大题共有3小题,共35分)24.如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)填空:m的值为8;(2)求S关于x的函数关系式,并写出x的取值范围;(3)请直接写出△PCQ为等腰三角形时x的值.【考点】动点问题的函数图象.【分析】(1)根据题意求出BC的长即可.(2)分三种情形①0≤m≤8,②8<x≤16,③8<x≤16,分别求出△APQ面积即可.(3)分三种情形讨论①当点P在AB上,点Q在BC上,△PQC不可能为等腰三角形.②当点P在AC 上,点Q在BC上,根据PQ=QC列出方程即可③当点P在AC上,点Q在BC的延长线,根据CP=CQ列出方程即可.【解答】解:(1)如图1中,作AM⊥BC,PN⊥BC,垂足分别为M,N.由题意AB=AC=8,∠A=120°,∴∠BAM=∠CAM=60°,∠B=∠C=30°,∴AM=AB=4,BM=CM=4,∴BC=8,∴m=BC=8,故答案为8.(2)①当0≤m≤8时,如图1中,在RT△PBN中,∵∠PNB=90°,∠B=30°,PB=x,∴PN=x.s=•BQ•PN=•x••x=x2.②当8<x≤16,如图2中,在RT△PBN中,∵PC=16﹣x,∠PNC=90°,∠C=30°,∴PN=PC=8﹣x,∴s=•BQ•PN=•x•(8﹣x)=﹣x2+4x.③当8<x≤16时,s=•8•(8﹣•x)=﹣2x+32.(3)①当点P在AB上,点Q在BC上时,△PQC不可能是等腰三角形.②当点P在AC上,点Q在BC上时,PQ=QC,∵PC=QC,∴16﹣x=(8﹣x),∴x=4+4.③当点P在AC上,点Q在BC的延长线时,PC=CQ,即16﹣x=x﹣8,∴x=8+4.∴△PCQ为等腰三角形时x的值为4+4或8+4.【点评】本题考查动点问题、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是读懂图象信息,学会分类讨论的思想,属于中考常考题型.25.如图(1),将线段AB绕点A逆时针旋转2α(0°<α<90°)至AC,P是过A,B,C的三点圆上任意一点.(1)当α=30°时,如图(1),求证:PC=PA+PB;(2)当α=45°时,如图(2),PA,PB,PC三条线段间是否还具有上述数量关系?若有,请说明理由;若不具有,请探索它们的数量关系.【考点】全等三角形的判定与性质;圆周角定理.【分析】(1)首先在PC上截取PD=PA,易知△ABC是等边三角形,可得△PAD是等边三角形,继而可证明△ACD≌△BAP,则CD=PB,从而得出PC=PB+PA;(2)PC=PA+PB,作AD⊥AP与PC交于一点D,易证△ACD≌△ABP,则CD=PB,AD=AP,根据勾股定理PD=PA,所以PC=PA+PB.【解答】证明:(1)如图(1),在PA上截取PD=PA,∵AB=AC,∠CAB=60°,∴△ABC为等边三角形,∴∠APC=∠CPB=60°,∴△APD为等边三角形,∴AP=AD=PD,∴∠ADC=∠APB=120°,在△ACD和△ABP中,,∴△ACD≌△ABP(AAS),∴CD=PB,∵PC=PD+DC,∴PC=PA+PB;(2)PC=PA+PB,如图(2),作AD⊥AP与PC交于一点D,∵∠BAC=90°,∴∠CAD=∠BAP,在△ACD和△ABP中,,∴△ACD≌△ABP,∴CD=PB,AD=AP,根据勾股定理PD=PA,∴PC=PD+CD=PA+PB.【点评】此题考查了圆周角定理、等边三角形的判定与性质以及全等三角形的判定与性质.掌握辅助线的作法以及熟练掌握全等三角形的判定与性质是解决问题的关键.26.如图,抛物线y=a(x﹣m)2﹣m(其中m>1)与其对称轴l相交于点P,与y轴相交于点A (0,m).点A关于直线l的对称点为B,作BC⊥x轴于点C,连接PC、PB,与抛物线、x轴分别相交于点D、E,连接DE.将△PBC沿直线PB翻折,得到△PBC′.(1)该抛物线的解析式为y=;(用含m的式子表示);(2)探究线段DE、BC的关系,并证明你的结论;(3)直接写出C′点的坐标(用含m的式子表示).【考点】二次函数综合题.【分析】(1)将点A的坐标代入抛物线解析式,即可求出a的值;(2)根据抛物线的解析式,求出顶点P的坐标,根据对称轴,求出点B,C的坐标,根据待定系数法求出直线BP、CP的解析式,求出点D、E的坐标,进而求出DE,BC的长度,即可解得;(3)连接CC′交直线BP于点F,则CC′⊥BP,且CF=C′F,求出CC′的解析式,进而求得点F的坐标,根据CF=C′F,即可解答.【解答】解:(1)把点A(0,m)代入y=,得:2am2﹣m=m,am﹣1=0,∵am>1,∴a=,∴y=,故答案为:y=;(2)DE=BC .理由:又抛物线y=,可得抛物线的顶点坐标P (m ,﹣m ),由l :x=m ,可得:点B (2m ,m ),∴点C (2m ,0).设直线BP 的解析式为y=kx+b ,点P (m ,﹣m )和点B (2m ,m )在这条直线上,得:,解得:,∴直线BP 的解析式为:y=x ﹣3m ,令y=0,x ﹣3m=0,解得:x=,∴点D (,0);设直线CP 的解析式为y=k 1x+b 1,点P (m ,﹣m )和点C (2m ,0)在这条直线上,得:,解得:,∴直线CP 的解析式为:y=x ﹣2m ;抛物线与直线CP 相交于点E ,可得:,解得:,(舍去),∴点E (,﹣);∵x D =x E ,∴DE ⊥x 轴,∴DE=y D ﹣y E =,BC=y B ﹣y C =m=2DE ,即DE=BC ;(3)C′(,). 连接CC′,交直线BP 于点F ,∵BC′=BC,∠C′BF=∠CBF ,∴CC′⊥BP,CF=C′F,设直线BP的解析式为y=kx+b,点B(2m,m),P(m,﹣m)在直线上,∴,解得:,∴直线BP的解析式为:y=x﹣3m,∵CC′⊥BP,,∴设直线CC′的解析式为:y=x+b1∴,解得:b=2m,1联立①②,得:,解得:,∴点F(,),∴CF==,设点C′的坐标为(a,),∴C′F==,解得:a=,∴,∴C′(,).【点评】本题主要考查二次函数与一次函数的综合运用,能够熟练求出直线的解析式和各点的坐标是解决此题的关键.。
辽宁省大连市2019-2020学年中考数学第三次押题试卷含解析
辽宁省大连市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,左、右并排的两棵树AB 和CD ,小树的高AB=6m ,大树的高CD=9m ,小明估计自己眼睛距地面EF=1.5m ,当他站在F 点时恰好看到大树顶端C 点.已知此时他与小树的距离BF=2m ,则两棵树之间的距离BD 是( )A .1mB .43mC .3mD .103m 2.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >3.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC ,若∠CAB=22.5°,CD=8cm ,则⊙O 的半径为( )A .8cmB .4cmC .2D .5cm4.下列手机手势解锁图案中,是轴对称图形的是( )A.B.C.D.5.若等式x2+ax+19=(x﹣5)2﹣b成立,则a+b的值为()A.16 B.﹣16 C.4 D.﹣46.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( )A.4200.5x+-420x=20 B.420x-4200.5x+=20C.4200.5x--420x=20 D.420420200.5x x-=-7.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤168.某商品价格为a元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.0.96a元B.0.972a元C.1.08a元D.a元9.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.34B.43C.35D.4510.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧»AC的长是()A.12πB.13πC.23πD.43π11.某青年排球队12名队员年龄情况如下:年龄18 19 20 21 22 人数 1 4 3 2 2A.20,19 B.19,19 C.19,20.5 D.19,2012.在下列交通标志中,是中心对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是_____.15.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.16.如图,点E在正方形ABCD的外部,∠DCE=∠DEC,连接AE交CD于点F,∠CDE的平分线交EF于点G,AE=2DG.若BC=8,则AF=_____.17.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是18.函数y1x 的自变量x的取值范围为____________.19.(6分)(1)计算:0353tan60502-+-+sin45°(2)解不等式组:3(1)5 2111 32x xx x++-⎧⎪+-⎨-≤⎪⎩f20.(6分)如图1,反比例函数kyx=(x>0)的图象经过点A(23,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.21.(6分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.求证:△AED≌△EBC;当AB=6时,求CD的长.22.(8分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.23.(8分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(1)若点A′落在矩形的对角线OB上时,OA′的长=;(2)若点A′落在边AB的垂直平分线上时,求点D的坐标;(3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).24.(10分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:(1)求两人相遇时小明离家的距离;(2)求小丽离距离图书馆500m时所用的时间.25.(10分)阅读下列材料:数学课上老师布置一道作图题:已知:直线l和l外一点P.求作:过点P的直线m,使得m∥l.小东的作法如下:作法:如图2,(1)在直线l上任取点A,连接PA;(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE.所以直线PE就是所求作的直线m.老师说:“小东的作法是正确的.”请回答:小东的作图依据是________.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求⊙O的半径.27.(12分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH 的长即BD的长即可.【详解】由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴EGAG=EHCH=EG GHCH+,即24.5=27.5GH+,解得:GH=43,则BD=GH=43m , 故选:B .【点睛】 本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.2.B【解析】【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方,∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.3.C【解析】【分析】连接OC ,如图所示,由直径AB 垂直于CD ,利用垂径定理得到E 为CD 的中点,即CE=DE ,由OA=OC ,利用等边对等角得到一对角相等,确定出三角形COE 为等腰直角三角形,求出OC 的长,即为圆的半径.【详解】解:连接OC ,如图所示:∵AB 是⊙O 的直径,弦CD ⊥AB , ∴14cm 2CE DE CD ===, ∵OA=OC ,∴∠A=∠OCA=22.5°,∵∠COE 为△AOC 的外角,∴∠COE=45°,∴△COE 为等腰直角三角形,∴OC ==, 故选:C .【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.4.D【解析】【分析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.5.D【解析】分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,则a+b=-10+6=-4,故选D.点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6.C【解析】【分析】关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1.【详解】原价买可买420x瓶,经过还价,可买4200.5x-瓶.方程可表示为:4200.5x-﹣420x=1.故选C.考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意讨价前后商品的单价的变化.7.C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数kyx=经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数kyx=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.8.B【解析】【分析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.【详解】第一次降价后的价格为a×(1-10%)=0.9a元,第二次降价后的价格为0.9a×(1-10%)=0.81a元,∴提价20%的价格为0.81a×(1+20%)=0.972a元,故选B.【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.9.A【解析】【分析】根据锐角三角函数的定义求出即可.【详解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴ tanA=34 BCAC=.故选A.【点睛】本题考查了锐角三角函数的定义,熟记锐角三角函数的定义内容是解题的关键.【解析】【分析】由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB是⊙O的切线,∴∠OAB=90°,∵半径OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:602180π⨯=23π,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算. 11.D【解析】【分析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202+=1.故选D.【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.12.C【解析】【分析】【详解】解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.【详解】设母线长为x,根据题意得2πx÷2=2π×5,解得x=1.故答案为2.【点睛】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.14.3 2【解析】【分析】由△ABC中,点D、E分别在边AB、BC上,DE∥AC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【详解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=92,∴EC=BC﹣BE=92﹣3=32.故答案为32.【点睛】考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.15【解析】【分析】根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△A n B n C n的面积是,从而求出第8个正△A8B8C8的面积.正△A1B1C1的面积是3,而△A2B2C2与△A1B1C1相似,并且相似比是1:2,则面积的比是,则正△A2B2C2的面积是3×14;因而正△A3B3C3与正△A2B2C2的面积的比也是14,面积是3×(14)2;依此类推△A n B n C n与△A n-1B n-1C n-1的面积的比是14,第n个三角形的面积是34(14)n-1.所以第8个正△A8B8C8的面积是34×(14)7=834.故答案为3.【点睛】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.16.46【解析】【详解】如图作DH⊥AE于H,连接CG.设DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四边形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC与△GDE中,DG DG GDC GDE DC DE =⎧⎪∠=∠⎨⎪=⎩,∴△GDC ≌△GDE (SAS ),∴GC=GE ,∠DEG=∠DCG=∠DAF ,∵∠AFD=∠CFG ,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt △ADH 中,AD=8,AH=x ,DH=22x , ∴82=x 2+(2x )2, 解得:x=863, ∵△ADH ∽△AFD ,∴AD AH AF AD=, ∴AF=64863=46. 故答案为46.17.k≥,且k≠1【解析】 试题解析:∵a=k ,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,解得:k≥-,∵原方程是一元二次方程,∴k ≠1.考点:根的判别式.18.x≥-1【解析】试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.考点:函数自变量的取值范围.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)7;(2)﹣2<x≤1.【解析】【分析】(1)根据绝对值、特殊角的三角函数值可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.【详解】(1)0 3-++1(2)(2)()315211132x xx x>①②⎧++-⎪⎨+--≤⎪⎩由不等式①,得x>-2,由不等式②,得x≤1,故原不等式组的解集是-2<x≤1.【点睛】本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.20.(1)(2)3,13y x=-;(3)14【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,),则1,﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠AD⊥y轴,则OD=1,后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=﹣1;(3)利用M点在反比例函数图象上,可设M点坐标为(t(0<t<),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(tt﹣1),则MN=t﹣3t+1,根据三角形面积公式得到S△CMN=12•t•(t﹣3t+1),再进行配方得到S=t﹣2)2+8(0<t<),最后根据二次函数的最值问题求解.试题解析:(1)把A(1)代入y=kx,得(2)作BH⊥AD于H,如图1,把B(1,a)代入反比例函数解析式y=x,得,∴B点坐标为(1,,∴﹣1,1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=3;∵AD⊥y轴,∴OD=1,tan∠DAC=CDDA∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(1)、C(0,﹣1)代入得11bb⎧+=⎪⎨=-⎪⎩,解得1kb⎧=⎪⎨⎪=-⎩,∴直线AC的解析式为﹣1;(3)设M点坐标为(t)(0<t<,∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t,33t﹣1),∴MN=23﹣(3t﹣1)=23﹣3t+1,∴S△CMN=12•t•(23﹣3t+1)=﹣3t2+12t+3=﹣3(t﹣3)2+93(0<t<23),∵a=﹣3<0,∴当t=3时,S有最大值,最大值为93.21.(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明:∵AD∥EC∴∠A=∠BEC∵E是AB中点,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD= 12AB=3点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22.(1)不可能;(2)1 6 .【解析】【分析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.23.(1)1;(2)点D(8﹣2,0);(3)点D的坐标为(3﹣1,0)或(﹣3﹣1,0).【解析】分析:(Ⅰ)由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA′=1,据此可得答案;(Ⅱ)连接AA′,利用折叠的性质和中垂线的性质证△BAA′是等边三角形,可得∠A′B D=∠ABD=30°,据此知AD=ABtan∠ABD=2,继而可得答案;(Ⅲ)分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得.详解:(Ⅰ)如图1,由题意知OA=8、AB=1,∴OB=10,由折叠知,BA=BA′=1,∴OA′=1.故答案为1;(Ⅱ)如图2,连接AA′.∵点A′落在线段AB的中垂线上,∴BA=AA′.∵△BDA′是由△BDA折叠得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等边三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=2,∴OD=OA﹣AD=8﹣2,∴点D(8﹣2,0);(Ⅲ)①如图3,当点D在OA上时.由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵点A′在线段OA的中垂线上,∴BM=AN=OA=4,∴A′M===2,∴A′N=MN﹣A′M=AB﹣A′M=1﹣2,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,则=,即=,解得:DN=3﹣5,则OD=ON+DN=4+3﹣5=3﹣1,∴D(3﹣1,0);②如图4,当点D在AO延长线上时,过点A′作x轴的平行线交y轴于点M,延长AB交所作直线于点N,则BN=CM,MN=BC=OA=8,由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵点A′在线段OA的中垂线上,∴A′M=A′N=MN=4,则MC=BN==2,∴MO=MC+OC=2+1,由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,则=,即=,解得:ME=,则OE=MO﹣ME=1+.∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴=,即=,解得:DO=3+1,则点D的坐标为(﹣3﹣1,0).综上,点D的坐标为(3﹣1,0)或(﹣3﹣1,0).点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点.24.(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为1856分.【解析】【分析】(1)根据题意得出小明的速度,进而得出得出小明离家的距离;(2)由(1)的结论得出小丽步行的速度,再列方程解答即可.【详解】解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),300×5=1500(米),∴两人相遇时小明离家的距离为1500米;(2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),设小丽离距离图书馆500m时所用的时间为x分,根据题意得,1500+120(x﹣10)=4500﹣500,解得x=1856.答:小丽离距离图书馆500m时所用的时间为1856分.【点睛】本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键.25.内错角相等,两直线平行【解析】【分析】根据内错角相等,两直线平行即可判断.【详解】∵∠EPA=∠CAP,∴m∥l(内错角相等,两直线平行).故答案为:内错角相等,两直线平行.【点睛】本题考查了作图﹣复杂作图,平行线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.26.(1)证明见解析;(1)【解析】试题分析:(1)求出∠OED=∠BCA=90°,根据切线的判定即可得出结论;(1)求出△BEC ∽△BCA ,得出比例式,代入求出即可.试题解析:(1)证明:连接OE 、EC .∵AC 是⊙O 的直径,∴∠AEC=∠BEC=90°.∵D 为BC 的中点,∴ED=DC=BD ,∴∠1=∠1.∵OE=OC ,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB .∵∠ACB=90°,∴∠OED=90°,∴DE 是⊙O 的切线;(1)由(1)知:∠BEC=90°.在Rt △BEC 与Rt △BCA 中,∵∠B=∠B ,∠BEC=∠BCA ,∴△BEC ∽△BCA ,∴BE :BC=BC :BA ,∴BC 1=BE•BA .∵AE :EB=1:1,设AE=x ,则BE=1x ,BA=3x .∵BC=6,∴61=1x•3x ,解得:x=,即AE=,∴AB=,∴AC==,∴⊙O 的半径=.点睛:本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA 和△BEC ∽△BCA 是解答此题的关键.27.(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.【解析】【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可.【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩, 解得:1210x y =⎧⎨=⎩, 则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备m 台,乙型设备()10m -台,则()121010110m m +-≤,∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =,∴有6种购买方案;(3)由题意:()240180102040m m +-≥,∴4m ≥,∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元),当5m =时,购买资金为:125105110⨯+⨯=(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.。
2018-2019学年辽宁省大连市中山区八年级上期末数学试卷及答案解析
2018-2019学年辽宁省大连市中山区八年级上期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.2.使二次根式有意义的x的取值范围是()A.x≠3B.x>3C.x≥3D.x≤33.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.04.在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)5.下列运算正确的是()A.(a2)3=a5B.a2•a4=a8C.a6÷a3=a2D.(a﹣1b3)﹣2=6.工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB上分别取OM =ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL7.下列计算﹣的结果是()A.4B.3C.2D.8.如图,OC平分∠AOB,CM⊥OB于点M,CM=3,则点C到射线OA的距离为()A.5B.4C.3D.29.计算,结果正确的是()A.1B.x C.D.10.运用乘法公式计算(x+3)2的结果是()A.x2+9B.x2﹣6x+9C.x2+6x+9D.x2+3x+9二、填空题(本题共6小题,每小题3分,共18分)11.分解因式:3a2﹣3=.12.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的大小为°.13.化简×=.14.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点F,在直CD上任取一点E,连接EA,EB.若EA=5,则EB=.15.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD为∠CAB的角平分线,若CD =3,则DB=.16.分式方程的解是.三、解答題(本题共4小题,其中17、18、19题各10分,20题9分,共39分)17.(10分)计算:(1)(﹣3)(﹣2);(2)(+2)﹣+2﹣2.18.(10分)计算:(1)(6x4y﹣8x3y)÷2x2y;(2)(2x+y+z)(2x﹣y﹣z).19.(10分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.20.(9分)先化简,再求值:(﹣)÷,其中x=3.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)甲乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做多少个零件?22.(9分)【观察】方程=2的解是x=7;=2的解是x=6;=2的解是x=5;=2的解是x=10…,【发现】根据你的阅读回答问题:方程=2的解为;关于x的方程(a≠4)的解为(用含a的代数式表示),并利用“方程的解的概念”验证;【类比】关于x的方程=2(a≠b)的解为(用含a、b的代数式表示).23.(10分)如图1,△ABC是等边三角形,点D是BC上一点,点E在CA的延长线上,连结EB、ED,且EB=ED.(1)求证:∠DEC=∠ABE;(2)点D关于直线EC的对称点为M,连接EM、BM:①依题意将图2补全;②求证:EB=BM.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)如图,某小区有一块长为8a米(a>),宽为(8a﹣4)米的长方形地块.该长方形地块正中间是一个长为(4a+2)米的长方形,四个角是大小相同的正方形,该小区计划将如图阴影部分进行绿化,对四个角的四个正方形采用A绿化方案,对正中间的长方形采用B绿化方案.(1)采用A绿化方案的每个正方形边长是米,采用B绿化方案的长方形的另一边长是米(用含a的代数式表示);(2)若采用A、B两种绿化方案的总造价相同,均为2700元,请你判断哪种方案单位面积造价高?并说明理由.25.(12分)阅读下面材料小明遇到这样一个问题:如图1,在△ABC中,∠B=2∠C,AD ⊥BC于点D,求证:BC=AB+2BD.小明利用条件AD⊥BC在CD上截取DH=BD,如图2,连接AH既构造了等腰△ABH,又得到BH=2BD,从而命题得证.(1)根据阅读材料证明BC=AB+2BD;(2)参考小明的方法解决下面的问题;如图3在△ABC中,∠BAC=90°,∠ABD=∠BCE,∠ABC=∠DCE,请探究AD与BE的数量关系,并说明理由.26.(12分)已知等腰Rt△ABC,∠BAC=90°,D为△ABC内部一点,连接AD,BD,CD,H为BD的中点,连接AH,且∠BAH=∠ACD.(1)如图1,若∠ADB=90°,求证:∠DAH=45°;(2)如图2,若∠ADB<90°(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由.2018-2019学年辽宁省大连市中山区八年级上期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【分析】分别根据轴对称图形的定义即可判断;【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.2.使二次根式有意义的x的取值范围是()A.x≠3B.x>3C.x≥3D.x≤3【分析】二次根式的被开方数是非负数,即x﹣3≥0.【解答】解:依题意得:x﹣3≥0.解得x≥3.故选:C.【点评】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.0【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0,∴x﹣3=0,解得:x=3,故选:A.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.4.在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,∴点A的坐标是:(4,1).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.下列运算正确的是()A.(a2)3=a5B.a2•a4=a8C.a6÷a3=a2D.(a﹣1b3)﹣2=【分析】分别根据幂的乘方运算法则,同底数幂的乘法法则,同底数幂的除法法则以及负整数指数幂的运算法则逐一判断即可.【解答】解:A.(a2)3=a6,故本选项不合题意;B.a2•a4=a6,故本选项不合题意;C.a6÷a3=a3,故本选项不合题意;D.(a﹣1b3)﹣2=,故本选项符合题意.故选:D.【点评】本题主要考查了负整数指数幂,同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.6.工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB上分别取OM =ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL【分析】已知两三角形三边分别相等,可考虑SSS证明三角形全等,从而证明角相等.【解答】解:做法中用到的三角形全等的判定方法是SSS证明如下∵OM=ONPM=PNOP=OP∴△ONP≌△OMP(SSS)所以∠NOP=∠MOP故OP为∠AOB的平分线.故选:A.【点评】本题考查全等三角形在实际生活中的应用.对于难以确定角平分线的情况,利用全等三角形中对应角相等,从而轻松确定角平分线.7.下列计算﹣的结果是()A.4B.3C.2D.【分析】先化简,再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法,关键是熟练掌握二次根式的加减法法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.8.如图,OC平分∠AOB,CM⊥OB于点M,CM=3,则点C到射线OA的距离为()A.5B.4C.3D.2【分析】作CN⊥OA于N,如图,利用角平分线的性质得到CN=CM=3.【解答】解:作CN⊥OA于N,如图,∵OC平分∠AOB,CM⊥OB,CN⊥OA,∴CN=CM=3,即点C到射线OA的距离为3.故选:C.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.9.计算,结果正确的是()A.1B.x C.D.【分析】根据分式的运算法则即可求出答案.【解答】解:原式==1故选:A.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.10.运用乘法公式计算(x+3)2的结果是()A.x2+9B.x2﹣6x+9C.x2+6x+9D.x2+3x+9【分析】根据完全平方公式,即可解答.【解答】解:(x+3)2=x2+6x+9,故选:C.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.二、填空题(本题共6小题,每小题3分,共18分)11.分解因式:3a2﹣3=3(a+1)(a﹣1).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).故答案为:3(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的大小为130°.【分析】根据全等三角形的性质求出∠C的度数,根据四边形内角和定理计算即可.【解答】解:∵△ABD≌△CBD,∴∠C=∠A=80°,∵∠ABC=70°,∴∠ADC=360°﹣80°×2﹣70°=130°,故答案为:130.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.13.化简×=3.【分析】根据二次根式的乘法法则进行计算.【解答】解:原式===3,故答案为:3.【点评】主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则=.14.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点F,在直CD上任取一点E,连接EA,EB.若EA=5,则EB=5.【分析】根据线段垂直平分线的作法可知,直线CD是线段AB的垂直平分线,利用线段垂直平分线性质即可解决问题.【解答】解:由题意直线CD是线段AB的垂直平分线,∵点E在直线CD上,∴EA=EB,∵EA=5,∴EB=5.故答案为:5.【点评】本题考查基本作图、线段垂直平分线的性质,解题的关键是掌握线段垂直平分线的作法,利用线段垂直平分线上的点到两个端点的距离相等解决问题.15.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD为∠CAB的角平分线,若CD =3,则DB=6.【分析】先计算出∠BAC=60°,再利用角平分线的定义得到∠CAD=∠BAD=30°,则在Rt△ACD中利用含30度的直角三角形三边的关系得到AD=2CD=3,然后根据∠BAD=∠B得到BD=AD.【解答】解:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,∵AD为∠CAB的角平分线,∴∠CAD=∠BAD=30°,在Rt△ACD中,AD=2CD=3,在△ADB中,∵∠BAD=∠B=30°,∴BD=AD=6.故答案为6.【点评】本题考查了角平分线的性质:角平分线把某一个角分成相等的两个角;角的平分线上的点到角的两边的距离相等.16.分式方程的解是x=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:6x+3=6﹣2x,移项合并得:8x=3,解得:x=,经检验:x=是分式方程的解.故答案为:x=.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.三、解答題(本题共4小题,其中17、18、19题各10分,20题9分,共39分)17.(10分)计算:(1)(﹣3)(﹣2);(2)(+2)﹣+2﹣2.【分析】(1)利用乘法公式展开,然后合并即可;(2)利用负整数指数幂的意义计算.【解答】解:(1)原式=3﹣2﹣3+6=9﹣5;(2)原式=+2﹣3+=﹣2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(10分)计算:(1)(6x4y﹣8x3y)÷2x2y;(2)(2x+y+z)(2x﹣y﹣z).【分析】(1)直接利用整式的除法运算法则计算得出答案;(2)直接利用乘法公式计算得出答案.【解答】解:(1)(6x4y﹣8x3y)÷2x2y=6x4y÷2x2y﹣8x3y÷2x2y=3x2﹣4x;(2)(2x+y+z)(2x﹣y﹣z)=[2x+(y+z)][2x﹣(y+z)]=4x2﹣(y+z)2=4x2﹣y2﹣2yz﹣z2.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.19.(10分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.20.(9分)先化简,再求值:(﹣)÷,其中x=3.【分析】先根据分式的加减法则算括号里面的,同时把除法变成乘法,再进行约分,最后把x=3代入求出即可.【解答】解:原式=[﹣]÷,=×,=×,=,当x=3时,原式==1.【点评】本题综合考查了分式的加减法则、乘除法则,约分等知识点的应用,关键是考查学生的运算能力,培养学生的解决问题的能力,题目比较典型,是一道很好的题目.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)甲乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做多少个零件?【分析】设乙每小时做x个零件,甲每小时做(x+6)个零件,根据时间=总工作量÷工作效率,即可得出关于x的分式方程,解之并检验后即可得出结论.【解答】解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件,甲每小时做18个零件.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(9分)【观察】方程=2的解是x=7;=2的解是x=6;=2的解是x=5;=2的解是x=10…,【发现】根据你的阅读回答问题:方程=2的解为x=3;关于x的方程(a≠4)的解为x=8﹣a(用含a的代数式表示),并利用“方程的解的概念”验证;【类比】关于x的方程=2(a≠b)的解为x=2b﹣a(用含a、b的代数式表示).【分析】根据阅读观察方程可得x=2×4﹣a,进而类比得x=2b﹣a.【解答】解:观察已知几个方程可知:方程=2的解为:x=2×4﹣5=3;关于x的方程(a≠4)的解为:x=2×4﹣a=8﹣a;关于x的方程=2(a≠b)的解为:x=2b﹣a.故答案为x=3、x=8﹣a、x=2b﹣a.【点评】本题考查了解分式方程、列代数式、分式方程的解,解决本题的关键是通过观察方程进行类比.23.(10分)如图1,△ABC是等边三角形,点D是BC上一点,点E在CA的延长线上,连结EB、ED,且EB=ED.(1)求证:∠DEC=∠ABE;(2)点D关于直线EC的对称点为M,连接EM、BM:①依题意将图2补全;②求证:EB=BM.【分析】(1)如图1,过点E作EM∥AB交CB的延长线于M.由等边三角形的性质和平行线的性质可得∠ABC=∠M=60°,∠BAC=∠MEC=60°,∠MEB=∠ABE,由“AAS”可证△EBM≌△EDC,可得∠MEB=∠DEC=∠ABE;(2)①根据题意补全图形;②通过全等三角形的性质和三角形的外角性质,可得∠BED+2∠DEC=60°,由轴对称的性质可得DE=EM,∠DEC=∠MEC,可证△EBM是等边三角形,可得结论.【解答】证明:(1)如图1,过点E作EM∥AB交CB的延长线于M.∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠BAC=60°∵AB∥EM,∴∠ABC=∠M=60°,∠BAC=∠MEC=60°,∠MEB=∠ABE,∵EB=ED,∴∠DBE=∠BDE,∴∠EBM=∠EDC,在△EBM和△EDC中,∴△EBM≌△EDC(AAS),∴∠MEB=∠DEC,∴∠DEC=∠ABE;(2)①补全图形如下:②由(1)可知∠DEC=∠ABE,∵∠BAC=∠ABE+∠BEA=60°,∴∠BED+2∠DEC=60°,∵点D关于直线EC的对称点为M,∴DE=EM,∠DEC=∠MEC,∴BE=DE=EM,∵∠BEM=∠BED+∠DEC+∠MEC=∠BED+2∠DEC=60°,且EB=EM,∴△EBM是等边三角形,∴EB=BM.【点评】本题是三角形综合题,考查了等边三角形的性质和判定,全等三角形的判定和性质,轴对称等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)如图,某小区有一块长为8a米(a>),宽为(8a﹣4)米的长方形地块.该长方形地块正中间是一个长为(4a+2)米的长方形,四个角是大小相同的正方形,该小区计划将如图阴影部分进行绿化,对四个角的四个正方形采用A绿化方案,对正中间的长方形采用B绿化方案.(1)采用A绿化方案的每个正方形边长是(2a﹣1)米,采用B绿化方案的长方形的另一边长是(4a﹣2)米(用含a的代数式表示);(2)若采用A、B两种绿化方案的总造价相同,均为2700元,请你判断哪种方案单位面积造价高?并说明理由.【分析】(1)根据大长方形的长减去中间长方形的长再乘以2即可得正方形的边长,进而可求中间长方形的另一边长;(2)根据总造价除以总面积可得单位面积造价,A、B两种绿化方案的总造价相同,比较总面积大小即可.【解答】解:(1)根据题意,得[8a﹣(4a+2)]=(4a﹣2)=2a﹣1,8a﹣4﹣2(2a﹣1)=8a﹣4﹣4a+2=4a﹣2.故答案为(2a﹣1)、(4a﹣2).(2)A种绿化方案的单位面积造价高.理由如下:∵A、B两种绿化方案的总造价相同,总造价除以总面积可得单位面积造价,∴4S正方形=4(2a﹣1)2=16a2﹣16aa+4S长方形=(4a+2)(4a﹣2)=16a2﹣4∴4S正方形﹣S长方形=(16a2﹣16aa+4)﹣(16a2﹣4)=8﹣16a∵∴8﹣16a<0∴4S正方形﹣S长方形<0,∴4S正方形<S长方形,答:A种绿化方案的单位面积造价高.【点评】本题考查了多项式乘以多项式、单项式乘以多项式、数学常识,解决本题的关键是求阴影部分的边长.25.(12分)阅读下面材料小明遇到这样一个问题:如图1,在△ABC中,∠B=2∠C,AD ⊥BC于点D,求证:BC=AB+2BD.小明利用条件AD⊥BC在CD上截取DH=BD,如图2,连接AH既构造了等腰△ABH,又得到BH=2BD,从而命题得证.(1)根据阅读材料证明BC=AB+2BD;(2)参考小明的方法解决下面的问题;如图3在△ABC中,∠BAC=90°,∠ABD=∠BCE,∠ABC=∠DCE,请探究AD与BE的数量关系,并说明理由.【分析】(1))由DH=BD,AD⊥BC,得到AB=AH,∠ABH=∠AHB,再由∠B=2∠C,以及三角形外角∠AHB=∠C+∠HAC,所以∠HAC=∠C,由等角对等边得到AH=HC,即有AB=HC,从而得出BC=CH+BH=AB+2BD;(2)延长DA至F,使AF=AD,连接BF.设∠ABD=∠BCE=x,∠ABC=∠DCE=y,证明AB垂直平分DF,因此BF=BD,得到∠1=∠DBA=x,∠FBC=∠1+∠ABC=x+y,所以∠ACB=∠DCE+BCE=x+y,于是∠FBC=∠ACB,得到BF=CF,由于BF=BD,因此BD=FC,又由∠2=∠3+x=∠ABC=y=∠DCE,得到DE=DC,结合BD=FC,即可得到结论BE=2AD.【解答】解:(1)∵DH=BD,AD⊥BC,∴AB=AH,∠ABH=∠AHB,∵∠B=2∠C,∴∠AHB=2∠C,∵∠AHB=∠C+∠HAC,∴∠HAC=∠C,∴AH=HC∴AB=HC,∴BC=CH+BH=AB+2BD;(2)BE=2AD.理由如下:延长DA至F,使AF=AD,连接BF.设∠ABD=∠BCE=x,∠ABC=∠DCE=y,∵AF=AD,∠BAC=90°,∴AB垂直平分DF,∴BF=BD,∴∠1=∠DBA=x,∠FBC=∠1+∠ABC=x+y,∠ACB=∠DCE+BCE=x+y,∴∠FBC=∠ACB,∴BF=CF,∵BF=BD,∴BD=FC∵∠2=∠3+x=∠ABC=y=∠DCE,∴DE=DC,∴BE+DE=CF=CD+DF=CD+2AD,∴BE=2AD.【点评】本题考查了等腰三角形的性质与判定,熟练掌握等腰三角形的相关性质是解题的关键.26.(12分)已知等腰Rt△ABC,∠BAC=90°,D为△ABC内部一点,连接AD,BD,CD,H为BD的中点,连接AH,且∠BAH=∠ACD.(1)如图1,若∠ADB=90°,求证:∠DAH=45°;(2)如图2,若∠ADB<90°(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由.【分析】(1)证明△BAH≌△ACD(ASA),得出BH=AD,证出△ADH是等腰直角三角形,即可得出结论;(2)延长AH至E,使EH=AH,连接DE,延长CD交AB于F,交AH于G,证明△ABH≌△EDH(SAS),得出AB=ED,∠BAH=∠E,再证明△DGE≌△AGC(AAS),得出DG=AG,证出△ADG是等腰直角三角形,即可得出∠DAH=45°.【解答】(1)证明:∵∠BAC=90°,∴∠BAD+∠CAD=90°,∵∠ADB=90°,∴∠BAD+∠ABH=90°,∴∠CAD=∠ABH,在△BAH和△ACD中,,∴△BAH≌△ACD(ASA),∴BH=AD,∵H为BD的中点,∴BH=DH,∴AD=DH,∵∠ADB=90°,∴△ADH是等腰直角三角形,∴∠DAH=∠DHA=45°;(2)解:若∠ADB<90°,(1)中的结论成立,理由如下:延长AH至E,使EH=AH,连接DE,延长CD交AB于F,交AH于G,如图2所示:在△ABH和△EDH中,,∴△ABH≌△EDH(SAS),∴AB=ED,∠BAH=∠E,∵AB=AC,∴ED=AC,∵∠BAH=∠ACD,∴∠E=∠ACD,∵∠BAC=90°,∴∠BAH+∠GAC=90°,∴∠ACD+∠GAC=90°,∴∠CGA=90°,∴∠EGD=90°=∠CGA,在△DGE和△AGC中,,∴△DGE≌△AGC(AAS),∴DG=AG,∴△ADG是等腰直角三角形,∴∠DAH=45°.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.。
2018-2019学年辽宁省大连市普通高中学生学业水平考试模拟数学试题 解析版
绝密★启用前辽宁省大连市2019年普通高中学生学业水平考试模拟数学试题一、单选题1.集合,则()A.B.C.D.【答案】D【解析】【分析】直接利用并集的定义求解即可.【详解】因为,所以=,故选D.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.2.函数在区间[-2,-1]上的最大值是( )A.1 B.2 C.4 D.【答案】C【解析】【分析】根据函数的单调性,判断出当时函数取得最大值,并由此求得最大值.【详解】由于为定义域上的减函数,故当时函数取得最大值为.故选C. 【点睛】本小题主要考查指数函数的单调性,考查指数运算,考查函数最值的求法,属于基础题. 3.函数的最小正周期是()A.B.C.D.【答案】B【解析】【分析】根据求得函数的最小正周期.【详解】依题意可知,函数的最小正周期为,故选B.【点睛】本小题主要考查的最小正周期计算,属于基础题.4.已知,则的值是()A.0 B.–1 C.1 D.2【答案】A【解析】【分析】利用函数解析式,直接求出的值.【详解】依题意.故选A.【点睛】本小题主要考查函数值的计算,考查函数的对应法则,属于基础题.5.如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为()A.B.C.D.【答案】A首先根据三视图得到几何体为圆柱,根据圆柱的表面积公式计算出表面积.【详解】由三视图可知,该几何体为圆柱,故其表面积为,故选A.【点睛】本小题主要考查三视图还原为原图,考查圆柱的表面积计算公式,属于基础题.6.已知向量,向量,若,则实数的值为()A.B.3 C.D.1【答案】B【解析】【分析】根据两个向量垂直的坐标表示列方程,由此求得的值.【详解】由于两个向量垂直,故,故选B.【点睛】本小题主要考查两个向量垂直的坐标表示,考查方程的思想,属于基础题.7.在某次考试中,共有100个学生参加考试,如果某题的得分情况如表:那么这些得分的众数是()A.37.0% B.20.2% C.0分D.4分【答案】C【解析】由题意得,得分为0分的比例为37.0%,所占比例最大,所以这些得分的众数是0。
大连市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
大连市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,在五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()A. 150°B. 135°C. 120°D. 90°【答案】D【考点】对顶角、邻补角,平行线的性质,三角形内角和定理【解析】【解答】解:连接BD,∵BC⊥CD,∴∠C=90∘,∴∠CBD+∠CDB=180∘−90∘=90∘∵AB∥DE,∴∠ABD+∠EDB=180∘,∴∠1+∠2=180∘−∠ABC+180∘−∠EDC=360∘−(∠ABC+∠EDC)=360∘−(∠ABD+∠CBD+∠EDB+∠CDB)=360∘−(90∘+180∘)=90∘故选D.【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB=90°,根据平行线的性质求出∠ABD+∠EDB=180°,然后根据邻补角的定义及角的和差即可求出答案.2、(2分)如图,直线AB,CD相交于点O,∠EOD=90°,若∠AOE=2∠AOC,则∠DOB的度数为()A. 25°B. 30°C. 45°D. 60°【答案】B【考点】角的运算,对顶角、邻补角【解析】【解答】∵∠EOD=90°,∴∠COE=90°,∵∠AOE=2∠AOC,∴∠AOC=30°,∴∠AOE=2∠AOC=30°,故答案为:B.【分析】根据图形和已知得到∠EOD、∠COE是直角,由∠AOE=2∠AOC,对顶角相等,求出∠DOB的度数.3、(2分)如图,AB//CD,那么∠A , ∠D ,∠E 三者之间的关系为()A. ∠A+∠D+∠E=360°B. ∠A-∠D+∠E=180°C. ∠A+∠D-∠E=180°D. ∠A+∠D+∠E=180°【答案】B【考点】平行线的判定与性质【解析】【解答】解:过点E作EF∥AB∵AB∥CD∴AB∥CD∥EF∴∠1+∠A=180°①,∠2=∠D②由①+②得:∠1+∠A+∠2=180°+∠D∴∠A-∠D+∠AED=180°故答案为:B【分析】过点E作EF∥AB,根据平行线的性质,得出∠1+∠A=180°①,∠2=∠D②,由①+②,即可得出结论。
大连市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
大连市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)甲、乙两人参加某体育项目训练,为了便于了解他们的训练情况,教练将他们最近五次的训练成绩用如图所示的复式统计图表示出来,则下面结论错误的是()A. 甲的第三次成绩与第四次成绩相同B. 第三次训练,甲、乙两人的成绩相同C. 第四次训练,甲的成绩比乙的成绩少2分D. 五次训练,甲的成绩都比乙的成绩高【答案】D【考点】折线统计图【解析】【解答】解:如图所示:A、甲的第三次成绩与第四次成绩相同,正确,故选项不符合题意;B、第三次训练,甲、乙两人的成绩相同,正确,故选项不符合题意;C、第四次训练,甲的成绩比乙的成绩少2分,正确,故选项不符合题意;D、五次训练,乙的成绩都比甲的成绩高,错误,故选项符合题意.故答案为:D【分析】根据统计图中对应的数据对选项进行判断即可解答.2、(2分)若某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元,则符合该公司要求的购买方式有()A. 3种B. 4种C. 5种D. 6种【答案】A【考点】解一元一次不等式组,一元一次不等式组的应用【解析】【解答】设要购买轿车x辆,则要购买面包车(10-x)辆,由题意得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x=3,4,5.因此有三种购买方案:①购买轿车3辆,面包车7辆;②购买轿车4辆,面包车6辆;③购买轿车5辆,面包车5辆.故答案为:A.【分析】此题的等量关系是:轿车的数量+面包车的数量=10;不等关系为:购车款≤55;购买轿车的数量≥3,设未知数,列不等式组,解不等式组,求出不等式组的整数解,即可解答。
3、(2分)如图为张小亮的答卷,他的得分应是()A. 100分B. 80分C. 60分D. 40分【答案】B【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,立方根及开立方,平均数及其计算【解析】【解答】解:①-1的绝对值是1,故①正确;②2的倒数是,故②错误;③-2的相反数是2,故③正确;④1的立方根是1,故④正确;⑤-1和7的平均数为:(-1+7)÷2=3,故⑤正确;小亮的得分为:4×20=80分故答案为:B【分析】利用绝对值、相反数、倒数、立方根的定义及平均数的计算方法,对各个小题逐一判断,就可得出小亮答对的题数,再计算出他的得分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018中考数学靠前押题试卷一、选择题(本大题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)1.(4分)若a与1互为相反数,则|a+1|等于()A .﹣1 B.0 C.1 D.22.(4分)如图是某几何体的三视图,该几何体是()A 圆柱B 圆锥C正三棱柱 D 正三棱锥3.(4分)某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为()A .6.7×10﹣5B.6.7×10﹣6C.0.67×10﹣5D.6.7×10﹣64.(4分)在天水市汉字听写大赛中,10名学生得分情况如表人数 3 4 2 1分数80 85 90 95那么这10名学生所得分数的中位数和众数分别是()A .85和82.5 B.85.5和85 C.85和85 D.85.5和805.(4分)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是()A .﹣3 B.﹣1 C.2 D.36.(4分)一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A .B.C.或D.或7.(4分)如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A .65°B . 55°C . 50°D .25°8.(4分)如图,在四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P 在四边形ABCD 的边上.若点P 到BD 的距离为,则点P 的个数为( )A . 2B . 3C . 4D .59.(4分)如图,AB 为半圆所在⊙O 的直径,弦CD 为定长且小于⊙O 的半径(C 点与A 点不重合),CF ⊥CD 交AB 于点F ,DE ⊥CD 交AB 于点E ,G 为半圆弧上的中点.当点C 在上运动时,设的长为x ,CF+DE=y .则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B .C .D .10.(4分)定义运算:a ⊗b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a ⊗b=b ⊗a ,③若a+b=0,则(a ⊗a )+(b ⊗b )=2ab ,④若a ⊗b=0,则a=0或b=1,其中结论正确的序号是( )A . ①④B . ①③C . ②③④D .①②④二、填空题(本大题共8小题,每小题4分,共32分。
只要求填写最简结果)11.(4分)相切两圆的半径分别是5和3,则该两圆的圆心距是 .12.(4分)不等式组的所有整数解是.13.(4分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED 的正切值为.14.(4分)一元二次方程x2+3﹣2x=0的解是.15.(4分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.16.(4分)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.17.(4分)下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有个.18.(4分)正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点A3的坐标为.三、解答题(本大题共3小题,共28分。
解答时写出必要的文字说明及演算过程。
)19.(9分)计算:(1)(π﹣3)0+﹣2cos45°﹣(2)若x+=3,求的值.20.(9分)2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)21.(10分)如图,在平面直角坐标系内,O为原点,点A的坐标为(﹣3,0),经过A、O两点作半径为的⊙C,交y轴的负半轴于点B.(1)求B点的坐标;(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理证明过程。
)22.(8分)钓鱼岛是我国固有领土.某校七年级(15)班举行“爱国教育”为主题班会时,就有关钓鱼岛新闻的获取途径,对本班50名学生进行调查(要求每位同学,只选自己最认可的一项),并绘制如图所示的扇形统计图.(1)该班学生选择“报刊”的有人.在扇形统计图中,“其它”所在扇形区域的圆心角是度.(直接填结果)(2)如果该校七年级有1500名学生,利用样本估计选择“网站”的七年级学生约有人.(直接填结果)(3)如果七年级(15)班班委会就这5种获取途径中任选两种对全校学生进行调查,求恰好选用“网站”和“课堂”的概率.(用树状图或列表法分析解答)23.(8分)天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经实验,发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式.(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?24.(10分)如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x 轴于点C,DC=5.(1)求m、n的值并写出该反比例函数的解析式.(2)点E在线段CD上,S△ABE=10,求点E的坐标.25.(12分)如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB 于点E,连结AC,与DE交于点P.求证:(1)AC•PD=AP•BC;(2)PE=PD.26.(12分)在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)1.B 2.B 3.A 4.C 5.D 6.C 7.C 8.A 9.B 10.A二、填空题(本大题共8小题,每小题4分,共32分。
只要求填写最简结果)11.2或8 12.0 13.14.x1=x2=15.8 16.4π17.3 18.(,0)三、解答题(本大题共3小题,共28分。
解答时写出必要的文字说明及演算过程。
)19.20.21.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理证明过程。
)22.636420 23.24.25.26.2018中考数学押题试卷一、选择题(本大题共10小题,每小题3分,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2015的倒数为()A.﹣2015 B.2015 C.﹣D.2.(3分)若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1 B.a≤1 C.a<1 D.a>13.(3分)下列运算正确的是()A.a6÷a3=a2 B.5a2﹣3a2=2a C.(a3)3=a9 D.(a﹣b)2=a2﹣b24.(3分)一元一次不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.5.(3分)下列命题中错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等6.(3分)某中学女子足球队15名队员的年龄情况如下表:年龄(岁)13 14 15 16队员(人)2 3 6 4这支球队队员的年龄的众数和中位数分别是()A.14,15 B.14,14.5 C.15,15 D.15,147.(3分)已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B. 1 C.﹣1 D.﹣28.(3分)如图,正三棱柱的主视图为()A.B.C.D.9.(3分)反比例函数y=﹣的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2 C.y1>y2>0 D.y1>0>y210.(3分)如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(kg)与时间t(s)的函数图象大致是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,满分24分)11.(3分)我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为.12.(3分)从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为.13.(3分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)14.(3分)已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是.15.(3分)下列数据是按一定规律排列的,则第7行的第一个数为.16.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.17.(3分)如图,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=度.18.(3分)一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C的坐标为(﹣3,0),∠B=30°,则点B的坐标为.三、解答题(本大题共2个小题,每小题6分,满分12分)19.(6分)计算:(﹣1.414)0+()﹣1﹣+2cos30°.20.(6分)先化简,再求值:•+,其中x是从﹣1、0、1、2中选取的一个合适的数.四、解答题(本大题共2小题,每小题8分,满分16分)21.(8分)今年5月,某校为了了解九年级学生的体育备考情况,随机抽取了部分学生进行模拟测试,现将学生按模拟测试成绩m分成A、B、C、D四等(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60),并绘制出了如图的两幅不完整的统计图:(1)本次模拟测试共抽取了多少个学生?(2)将图乙中条形统计图补充完整;(3)如果该校今年有九年级学生1000人,试估计其中D等学生的人数.22.(8分)“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)五、解答题(本大题共2小题,每小题9分,满分18分)23.(9分)假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费多少元?24.(9分)如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作A B的平行线EF交⊙A于点F,连接AF,BF,DF.(1)求证:△ABC≌△ABF;(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.六、解答题(本大题共2道小题,每小题10分,满分20分)25.(10分)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.26.(10分)如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求此抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.2018中考数学押题试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2015的倒数为()A.﹣2015 B.2015 C.﹣D.考点:倒数.分析:利用倒数的定义求解即可.解答:解:2015的倒数为.故选:D.点评:本题主要考查了倒数的定义,解题的关键是熟记倒数的定义.2.(3分)若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1 B.a≤1 C.a<1 D.a>1考点:绝对值.分析:根据|a|=a时,a≥0,因此|a﹣1|=a﹣1,则a﹣1≥0,即可求得a的取值范围.解答:解:因为|a﹣1|=a﹣1,则a﹣1≥0,解得:a≥1,故选A点评:此题考查绝对值,只要熟知绝对值的性质即可解答.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.3.(3分)下列运算正确的是()A.a6÷a3=a2 B.5a2﹣3a2=2a C.(a3)3=a9 D.(a﹣b)2=a2﹣b2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析:A、原式利用同底数幂的除法法则计算得到结果,即可做出判断;B、原式合并同类项得到结果,即可做出判断;C、原式利用幂的乘方运算法则计算得到结果,即可做出判断;D、原式利用完全平方公式化简得到结果,即可做出判断.解答:解:A、原式=a3,错误;B、原式=2a2,错误;C、原式=a9,正确;D、原式=a2+b2﹣2ab,错误,故选C.点评:此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握运算法则是解本题的关键.4.(3分)一元一次不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.解答:解:,由①得:x≤1;由②得:x>﹣2,∴不等式组的解集为﹣2<x≤1,表示在数轴上,如图所示:,故选B.点评:此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)下列命题中错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等考点:命题与定理.分析:根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据平行线的性质对C进行判断;根据矩形的性质对D进行判断.解答:解:A、平行四边形的对角线互相平分,所以A选项为真命题;B、菱形的对角线互相垂直,所以B选项为真命题;C、两直线平行,同旁内角互补,所以C选项为假命题;D、矩形的对角线相等,所以D选项为真命题.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)某中学女子足球队15名队员的年龄情况如下表:年龄(岁)13 14 15 16队员(人)2 3 6 4这支球队队员的年龄的众数和中位数分别是()A.14,15 B.14,14.5 C.15,15 D.15,14考点:众数;中位数.分析:根据众数与中位数的意义分别进行解答即可.解答:解:15出现了6次,出现的次数最多,则众数是15,把这组数据从小到大排列,最中间的数是15;故选C.点评:本题考查了众数与中位数的意义,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.(3分)已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B. 1 C.﹣1 D.﹣2考点:代数式求值.专题:计算题.分析:原式前两项提取变形后,将已知等式代入计算即可求出值.解答:解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.8.(3分)如图,正三棱柱的主视图为()A.B.C.D.考点:简单几何体的三视图.分析:根据正三棱柱的主视图是矩形,主视图中间有竖着的实线,即可解答.解答:解:正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B.点评:本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.9.(3分)反比例函数y=﹣的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2 C.y1>y2>0 D.y1>0>y2考点:反比例函数图象上点的坐标特征.分析:先根据反比例函数y=﹣中k=﹣2<0可判断出此函数图象在二、四象限,再根据x1<0<x2,可判断出A、B两点所在的象限,根据各象限内点的坐标特点即可判断出y1与y2的大小关系.解答:解:∵反比例函数y=﹣中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选D.点评:本题考查的是反比例函数图象上点的坐标特点及各象限内点的坐标特点,先根据k <0判断出该函数图象所在象限是解答此题的关键.10.(3分)如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(kg)与时间t(s)的函数图象大致是()A.B.C.D.考点:函数的图象.分析:开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变.解答:解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变.故选:A.点评:本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象.二、填空题(本大题共8小题,每小题3分,满分24分)11.(3分)我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为 1.08×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数解答:解:10.8万=1.08×105.故答案为:1.08×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为.考点:概率公式.分析:由从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的有2种情况,直接利用概率公式求解即可求得答案.解答:解:∵从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的有2种情况,即:、π;∴抽取到无理数的概率为:=.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是∠ABD=∠CBD或AD=CD..(只需写一个,不添加辅助线)考点:全等三角形的判定.专题:开放型.分析:由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个S了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD或AD=CD.解答:解:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.点评:本题主要考查了全等三角形的判定定理,能灵活运用判定进行证明是解此题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.14.(3分)已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是m≤1.考点:根的判别式.专题:探究型.分析:先根据一元二次方程x2+2x+m=0得出a、b、c的值,再根据方程有实数根列出关于m的不等式,求出m的取值范围即可.解答:解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,∵方程有实数根,∴△=22﹣4m≥0,解得m≤1.故答案为:m≤1.点评:本题考查的是一元二次方程根的判别式,根据题意列出关于m的不等式是解答此题的关键.15.(3分)下列数据是按一定规律排列的,则第7行的第一个数为22.考点:规律型:数字的变化类.分析:先找到数的排列规律,求出第n﹣1行结束的时候一共出现的数的个数,再求第n行的第1个数,即可求出第7行的第1个数.解答:解:由排列的规律可得,第n﹣1行结束的时候排了1+2+3+…+n﹣1=n(n﹣1)个数.所以第n行的第1个数n(n﹣1)+1.所以n=7时,第7行的第1个数为22.故答案为:22.点评:此题主要考查了数字的变化规律,找出数字排列的规律是解决问题的关键.16.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.考点:多边形内角与外角.专题:计算题.分析:利用多边形的外角和以及多边形的内角和定理即可解决问题.解答:解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.点评:本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.17.(3分)如图,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=50度.考点:圆周角定理.分析:由在⊙O中,AB为直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由圆周角定理,可求得∠B=∠ACD=40°,继而求得答案.解答:解:∵在⊙O中,AB为直径,∴∠ADB=90°,∵∠B=∠ACD=40°,∴∠BAD=90°﹣∠B=50°.故答案为:50.点评:此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角.18.(3分)一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C的坐标为(﹣3,0),∠B=30°,则点B的坐标为(﹣3﹣,3).考点:相似三角形的判定与性质;坐标与图形性质.分析:过点B作BD⊥OD于点D,根据△ABC为直角三角形可证明△BCD∽△COA,设点B 坐标为(x,y),根据相似三角形的性质即可求解.解答:解:过点B作BD⊥OD于点D,∵△ABC为直角三角形,∴∠BCD+∠CAO=90°,∴△BCD∽△COA,∴=,设点B坐标为(x,y),则=,y=﹣3x﹣9,∴BC==,AC==,∵∠B=30°,∴==,解得:x=﹣3﹣,则y=3.即点B的坐标为(﹣3﹣,3).故答案为:(﹣3﹣,3).点评:本题考查了全等三角形的判定与性质以及坐标与图形的性质,解答本题的关键是作出合适的辅助线,证明三角形的相似,进而求解.三、解答题(本大题共2个小题,每小题6分,满分12分)19.(6分)计算:(﹣1.414)0+()﹣1﹣+2cos30°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1+3﹣+2×=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)先化简,再求值:•+,其中x是从﹣1、0、1、2中选取的一个合适的数.考点:分式的化简求值.专题:计算题.分析:先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取±1,2,所以把x=0代入计算即可.解答:解:原式=•+=+==,当x=0时,原式==﹣.点评:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、解答题(本大题共2小题,每小题8分,满分16分)21.(8分)今年5月,某校为了了解九年级学生的体育备考情况,随机抽取了部分学生进行模拟测试,现将学生按模拟测试成绩m分成A、B、C、D四等(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60),并绘制出了如图的两幅不完整的统计图:(1)本次模拟测试共抽取了多少个学生?(2)将图乙中条形统计图补充完整;(3)如果该校今年有九年级学生1000人,试估计其中D等学生的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)抽查人数可由B等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、B、D的人数求得C等的人数,再画直方图;(3)用样本估计总体,先计算出D等学生所占的百分比,再乘以1000即可解答.解答:解:(1)∵B等人数为100人,所占比例为50%,∴抽取的学生数=100÷50%=200(名);(2)C等的人数=200﹣100﹣40﹣10=50(人);如图所示:(3)D等学生所占的百分比为:=5%,故该校今年有九年级学生1000人,其中D等学生的人数为:1000×5%=50(人).点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.会画条形统计图.22.(8分)“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)考点:勾股定理的应用.分析:根据题意结合锐角三角函数关系得出BH,CH,AB的长进而求出汽车的速度,进而得出答案.解答:解:此车没有超速.理由:过C作CH⊥MN,∵∠CBN=60°,BC=200米,∴CH=BC•sin60°=200×=100(米),BH=BC•cos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∵60千米/小时=m/s,∴=14.6(m/s)<≈16.7(m/s),∴此车没有超速.点评:此题主要考查了勾股定理以及锐角三角函数关系的应用,得出AB的长是解题关键.五、解答题(本大题共2小题,每小题9分,满分18分)23.(9分)假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?。