《光谱学与光谱分析》对来稿英文摘要的要求
PrinciplesofFluorescenceSpectroscopy第三版课程设计
Principles of Fluorescence Spectroscopy第三版课程设计背景荧光光谱学是一种用于分析样品的特定分子的荧光特性的技术。
荧光光谱学广泛应用于生物学、化学和材料科学等领域。
荧光光谱学的基本原理是当样品受到光的激发时,荧光分子会发出特定的波长,这是由于荧光分子吸收光子激活后,能量转移到其其他电子上导致的。
目的本课程旨在提供荧光光谱学的基本原理、技术和应用程序,让学生能够熟知这一技术并能够运用于实验室工作和科学研究。
知识、能力和技能1.荧光光谱学的基本原理和理论;2.荧光光谱学的实验技术;3.理解荧光光谱学应用的基本概念和实际应用程序;4.讨论荧光光谱学在化学、生物学和材料科学等领域的应用。
教学方式1.课堂讲授:教师会为学生详细讲解荧光光谱学的基本原理和理论,并讲授其在实验技术中的应用;2.实验室探索:学生会利用荧光光谱学设备进行荧光光谱学实验;3.小组讨论:学生会形成小组,他们将与其他学生合作,并探讨他们所观察到的荧光光谱学实验的结果。
教学计划第一周•第一节课:荧光光谱学和其应用程序的基本原理•第二节课:荧光光谱学的实验技术第二周•第三节课:荧光光谱学的基本原理配合理论(一)•第四节课:荧光光谱学的基本原理配合理论(二)第三周•第五节课:荧光光谱学的实验技术(一)•第六节课:荧光光谱学的实验技术(二)第四周•第七节课:荧光光谱学的应用程序(一)•第八节课:荧光光谱学的应用程序(二)第五周•实验室探索:荧光光谱学实验第六周•小组讨论:荧光光谱学实验的结果教学评价•考试成绩:分别由理论考试和实验报告构成,考察学生理论和实践能力;•课堂表现:学生的课堂表现得到积极评价,包括问题解决、讨论和和与小组的合作;•实验室表现:学生在实验室内的表现得到评价,包括实验的议程,操作程序,数据记录和结果分析。
参考文献kowicz, J. R. Principles of Fluorescence Spectroscopy (3rdEd.). Springer, 2013.2.Geddes, C., Lakowicz, J. R. Fluorescence Spectroscopy ofBiomolecules: New Frontiers. Springer, 2006.3.Lu, Y., Chen, W. Fluorescence Spectroscopy of Materials: NewApproaches. Springer, 2012.。
学术论文英文摘要写作质量标准(试行)
[ 0 a gX H,N h rD oy re crp op oecn edvcswi ihp we cn es nef i c s[ ]Ap 1 11Y n e e .P lme l t h s h rse c e i t hg o r o vri fc n i J . p . e o e h o ie e
和 交流 , 必要规 范 英文摘要 的质 量标 准 : 有
一
、
英 文 摘 要 是 应 用 符 合 英 文语 法 的 文 字语 言 , 提 供 文 献 内 窗 口梗 概 为 目的 , 加 评 论 和 补 充 解 以 不
释 确 切 地 论 述 文 献 重要 内容 的 短 文 。
二、 英文摘要 必 须符合“ 拥有 与论 文 同等量 的主要 信 息” 的原 则 。为此 , 文摘要 应重 点 包括 4个要 英 素, 即研 究 目的 、 法 、 果和结论 。在 这 4个要 素 中 , 2个是 最 重要 的 。在 执 行 上述 原 则 时 , 有 些 方 结 后 在 情况下, 英文摘 要 可 包括研 究 工作的主要 对 象和 范围 , 以及 具有 情报价值 的其 他重要 的信 息 。 当前 学术
A pp1 Phys Le t . . t.,20 04, 8 2 2( 4): 422 卜 3) 4( .
[2 1]马晨 , 华 , 玉 英 , .一 种 新 型 结 构 的黄 光 有 机 电致 发 光 器 件 [1 光谱 学 与光 谱 分 析 ,0 8 2 ( )1 7—4 2 王 郝 等 J. 2 0 ,8 7 :4 918 . [3 11王广 德 , 桂 英 , 文 龙 , . 于 T AHQ n发 光 色 度 稳 定 的 黄 色 O D [] 液 晶 与 显 示 ,0 9 2 ( )4 750 丁 姜 等 基 P Z I E J. 2 0 ,4 4 :9—0 . [ 4 i gW eln , hn n , igG i n , t 1 11J n no g Z a gGag D n uy g e a.Yeo L D i z a i l w O E swt C HQZ sh l ta sot ga de tn l h na o -rnp ri n mi i e n tg lyr J . 导 体 光 电 ,0 93 () 5 25 5 aes[] 半 2 0 ,0 4 :0 0 . [5 1]丁桂 英 ,姜 文 龙 , 津 , 基 于 N 对 甲 氧苯 基 咔 【 ! 汪 等. 一 能 [1 J .物理 化 学 学报 ,0 92 (0 :0 82 7 . 2 0 ,5 1 )2 6 —0 3 [6 11丁桂 英 ,姜 文龙 , 喜 , . 于 N 乙基 咔唑 一一 常 等 基 一 2乙烯 』 基 喹啉 锌 的黄 绿 色 有 机 电 致 发 光 器 件 的 性 能 [1 物 理 IH L J. 化 学 学报 ,0 9 2 ( )9 89 2 2 0 ,5 5 :5—6 . [7 1]丁桂 英 ,姜 文 龙 , 津 , 电 子 传 输 层 中 掺 杂 I( P ) 改 善 白 光 O D 的 效 率 [ ] 汪 等. rP y I E J .固体 电 子 学 研 究 与 进 展 ,
《光谱学与光谱分析》
e vr n n a r tcin,n to a ee s ,me iie g iu t r n n io me t1p o e t o ain 1d fn e dcn ,a rc lu e a d
f r sr ,c e c 1i d s r ,a d c mmo iy c n r 1 o e t y h mia n u t y n o d t o to .
源 期刊 。 刊登 的主要 内容有 : 光光谱 测量 、 外 、 曼 、 动 、 外、 激 红 拉 振 紫 可
见 、 射、 发 吸收 、 射线荧 光光谱各 领域 的最 新研 究成果 、 X 学科 发展 前 沿和进展 。设有 高科 技 研 究论 文报 告 、 究简 报 、 研 综合 评述 、 仪 器 装置 、 新仪器 、 问题讨论 、 新书评述 、 学术 i f r a i n o c d mi c iiis I S i t n e o o k r ve n n o m to n a a e c a t te . ti n e d d f r v
r a e s f o v ro s f l s e d r r m a iu i d ,s c s me a l r y g o o y,ma h n r e u h a t l g , e lg u c i e y,
《 光谱学与光谱分析》
Sp C r S Op n e ta alss e tO C y a d Sp c r l An y i 《 谱 学 与光谱 分 析 》 中 国光 学 学会 主 办 的学术 刊 物。 光 是 IS 10 —5 3 C 1-2 0 04 月刊 , 1 S N 0 00 9 , N 2 0 / ; 1 大 6开本 ,8 2 8页 。系 中
o a e , i f a e , Ra n, v b a in, u ta ilt vsb e e iso f ls r n r r d ma ir t o lr vo e , ii l , m s i n, a s r t n,X—a n l o e c n e s e t u b o pi o r y a d fu r s e c p c r m. Th r r u h c l mn e ea e s c o u s
光谱专业英语
紫外-可见光谱(Ultraviolet –visible,UV)Spectrum 光谱图,(pl.)spectraSpectroscopy 光谱法Spectrophotometry 分光光度法Wave length 波长microwave微波radiowave无线电波Configuration 构象;conformation 构型;End absorption 末端吸收Strong band/weak band强带/弱带Hyper-chromic effect/ Hypo-chromic effect增色效应/减色效应Red/blue shift红移/蓝移Shoulder peak肩峰Colorimetry 比色法红外光谱(infrared ,IR)Absorbance 吸光度;absorptivity吸收系数;molar absorptivity 摩尔吸收系数;absorption 吸收;grating 光栅Wave number 波数Fermi resonance 费米共振Hydrogen bond 氢键Field effect 场效应Inductive effect诱导效应Conjugative effect共轭效应Steric effect 空间效应Hyper-conjugation 超共轭Transannular effect 跨环效应Symmetrical/asymmetrical Stretching Vibration(不)对称伸缩振动In-plane/Out-of-plane Bending vibration 面内/面外弯曲振动Scissoring/rocking Bending vibration (面内)剪切/摇摆振动Wagging/twisting Bending vibration (面外)摇摆/扭曲振动chirality 手性;chiral drug 手性药物荧光光谱(Fluorescence)核磁共振谱(Nuclear Magnetic Resonance,NMR)DEPT谱(distortionless enhancement by polarization transfer) 选择氢核去偶谱(SPD selective proton decoupling spectrum)及远程选择氢核去偶谱(LSPD long range selective proton decoupling spectrum)噪音去偶谱(PND proton noise decoupling spectrum)、全氢去偶谱(COM proton complete decoupling spectrum)、宽带去偶谱(BBD broad band decoupling spectrum)偏共振去偶谱(OFR)核Overhauser效应(NOE)HMQCHMBCTOESYNOESYH-H COSYINADEQUATETOCSYROESYFID (free induced decay)自由感应衰减(信号)PFT(pulse-fourier transfer)脉冲-傅里叶变换IRRRelexation 弛豫;Saturation 饱和;Chemical shift 化学位移;coupling constant耦合常数;integrated peak area积分峰面积;质谱 (Mass spectroscopy)Mass Spectrum :质谱图(pl. spectra)ION SOURCE (INTERFACE) 离子源(接口)电子轰击质谱(EI electron impactionization)化学电离质谱(CI chemical ionization)场致电离质谱(FI field ionization)场解析质谱(FD field desorption ionization)快速原子轰击质谱(FAB fast atom bombardment)电喷雾质谱(ESI electrospray ionization)大气压化学电离(APCI)(atmospheric pressure chemical ionization)TSI 热喷雾(thermal spray ionization)PB (particle beam)粒子束LDI 激光解析电离基质辅助激光解析电离(MALDI,Matrix assistant laser dissociation ionization)ICP-MS,电感耦合等离子体质谱(inductively coupled plasma )MASS ANALYZER(质量分析器)Double focus magnetic mass analyzer 双聚焦磁质量分析器the quadrupole mass analyzer(四极杆质量分析器)Q-MStime of flight MS,TOF-MS 飞行时间质谱Ion trap MS,IT-MS,离子阱质谱FT-ICR,傅利叶变换-离子回旋共振Vacuum system:真空系统Mass spectrometry with soft ionization techniques such as electrospray ionization (ESI) or atmospheric pressure chemical become a popular tool for the structural elucidation and quantitation of naturally occurring compounds.ionization (APCI) hyphenated to(联用)liquid chromatography has The product ion(产物离子)spectrum(谱图)of......in-source collision induced dissociation(in-source CID)The fragmentation behavior of..........was studied by atmospheric pressure chemical ionization(APCI+) quadrupole time-of-flight(Q-TOF) tandem mass spectrometry (MS/MS) in the positive /negative ion mode(正/负离子模式)The fragmentation pathways (裂解途径)for the protonated molecules (质子化分子)of......Molecular ion peak 分子离子峰Isotope ion peak 同位素离子峰Pseudo-molecular ion peak 准分子离子Metastable ion 亚稳离子Fragment ion 碎片离子Protonated ion 质子化峰RDA rearrangement RDA重排McLafferty rearrangement 麦氏重排Homolytic bond cleavage 均裂(α)Heterolytic bond cleavage 异裂(β;i)Semi-heterolytic bond cleavage 半异裂(σ)the elemental compositions (元素组成)high resolution and mass accuracy(高分辨率及质量准确度).......was also helpful in elaborating the fragmentation pathways and mechanism./elucidation of the fragmentation mechanism and pathways of a complex molecule.(复杂大分子裂解途径及机制的阐述)precursor ion /parent ion (母离子);product ion / daughter ion (子离子);neutral loss scan 中性丢失扫描tandem MS 串联质谱full-scan;positive / negative mode scan ;Total ion chromatogram ,TIC ,总离子流图Mass chromatogram,MC,质量色谱图即Extracted Ion Chromatogram,EIC,提取离子流图BPC (base peak chromatogram)基峰色谱图Selective(Multiple)Ion Monitoring(Recording),SIM,SIR(MIM),选择(多)离子监测Selective(Multiple)Reaction Monitoring,SRM(MRM),选择反应监测Building block compound 模块式化合物(多糖、多肽等生物大分子)Centroid 棒状图Continuum 轮廓图Dwell time 驻留时间(the interval between twice full-scan)LC stop time (for protecting the MS parts)MCA方式(Multiple ContinuumAveraging) 将多个质谱图加和成一张质谱图,可以提高弱信号的灵敏度ACPI/ESI probe & probe heater探针(探针加热器)Nebulizing gas 雾化气Desolvation gas 脱溶剂气Corona discharge needle 电晕放电针Sampling cone 取样锥Extraction cone 萃取锥Z-spray (Z型喷雾)Hexapole RF Lens 六极杆射频透镜Pre-filter 预滤过器Quadrupole 四级杆Post-filter 后滤过器Collision cell(chamber)碰撞室(Q2)初级泵(机械泵)primary pump (mechanic pump)Compartments:stator定子;rotor 转子;blade & springExhaust outlet;exhaust valve ;inlet;pump oil 泵油;oil reservoir 储油罐涡轮分子泵molecular pumpCleanable baffle 清洗板;isolation valve 隔离阀Heat block 加热块(ion block 离子块?)CDL 曲形脱溶剂装置Ion detector:electron multiplier;micro-channel plateDynode 打拿极;photo multiplier;Nebulizing gas (sheath gas?)Desolvation gas (dry gas)Cone gas 反吹(锥孔)气Collision gas 碰撞气Auxiliary gas 辅助气(?)Heating capillary (temp)。
analytical chemistry acta投稿经验
analytical chemistry acta投稿经验标题:Analytical Chemistry Acta投稿经验引言概述:Analytical Chemistry Acta是一本国际知名的分析化学期刊,对于分析化学领域的学者和研究人员来说,投稿到这个期刊是一项重要的任务。
本文将从五个大点出发,详细阐述Analytical Chemistry Acta投稿的经验和注意事项。
正文内容:1. 选择合适的研究主题1.1 了解期刊的研究范围:在投稿之前,仔细研究Analytical Chemistry Acta的官方网站或最近几期的论文,了解期刊的研究范围和重点领域。
1.2 确定研究创新点:确保研究主题在分析化学领域具有独特性和创新性,能够吸引读者和编辑的兴趣。
2. 撰写高质量的论文2.1 结构合理:论文应包括引言、实验方法、结果与讨论、结论和参考文献等部分,结构清晰明了。
2.2 数据准确:确保实验数据的准确性和可重复性,使用适当的统计方法进行数据分析。
2.3 图表清晰:图表应具有良好的可读性,标注清晰,图表标题和图例应准确描述实验结果。
2.4 文字流畅:文章应使用准确、简练的语言,避免冗长和模糊的表达,确保文章的可读性。
2.5 参考文献规范:参考文献应按照期刊要求的格式进行标注和排版,确保引用的准确性和完整性。
3. 提交前的准备工作3.1 格式要求:确保论文的格式符合期刊的要求,包括字体、字号、行距等。
3.2 语言修饰:对于非英语母语的作者,建议请母语为英语的同行进行语言修饰,确保文章的语法和表达准确无误。
3.3 附加材料:根据期刊要求,准备好所有需要提交的附加材料,如实验数据、图表原始文件等。
4. 投稿过程中的注意事项4.1 尊重期刊要求:仔细阅读期刊的投稿指南和要求,确保投稿过程中的每一步都按照要求进行。
4.2 选择合适的编辑:在投稿时,可以根据自己的研究领域和兴趣选择合适的编辑,提高论文的被接受几率。
光学工程主要协会、及章程、出版刊物
7-9周第一次作业光电学院2120130544 黄秀杰一、光学工程专业的主要协/学会1、中国光学学会主办刊物:中国光学学会主办刊物8种:他们是《光学学报》、《中国激光》、《红外与毫米波学报》、《光子学报》、《光谱学与光谱分析》、《中国激光医学杂志》、《光机电信息》和《ChineseOpticsLetters》,其中中文刊物7种,英文刊物1种。
重要章程第二条本会的性质:中国光学学会是全国光学科技工作者自愿组成并依法登记的全国性、学术性、公益性和非营利性的法人社会团体,是中国科学技术协会(简称中国科协)的组成部分,是党和政府发展中国光学科技事业的重要社会力量。
第三条本会的宗旨:遵守宪法、法律、法规和国家政策,遵守社会道德风尚,团结广大光学科技工作者,开展光学科技国际国内学术交流与合作,促进我国光学事业的发展。
第四条本会接受业务主管单位中国科协和社团登记管理机关国家民政部的业务指导和监督管理。
2.国际光学工程学会(Society of Photo-Optical Instrumentation Engineers,SPIE)SPIE 期刊光学工程 (Optical Engineering ) ,回溯至 1990 年。
生物光学期刊 (Journal of Biomedical Optics) ,回溯至 1996 年。
电子成像期刊 (Journal of Electronic Imaging) ,回溯至 1992 年。
微印刷、微制造和微系统期刊 (Journal of Microlithography, Microfabrication,& Microsystems) , 2002 年创刊。
应用遥感期刊 (Journal of Applied Remote Sensing) , 2007 年创刊。
纳米光子学期刊 (Journal of Nanophotonics) , 2007 年创刊。
3.美国光学学会(OSA)主要期刊:Applied Optics、Applied Spectroscopy、Chinese Optics Letters、J. Opt. Soc. Am.、J. Opt. Soc. Am. A、J. Opt. Soc. Am. B、Journal of Display Technology [A joint IEEE/OSA publication]、Journal of Lightwave Technology、Journal of Optical Networking二、光学工程专业国内外最重要的三种期刊1、光学学报英文名称:Acta Optica Sinica主管单位:中国科学技术协会主办单位:中国光学学会A.刊期:月刊b.国际刊号:0253-2239国内刊号:31-1252/O4c.中文期刊影响因子(参考CNKI最新数据)复合影响因子 2.419综合影响因子 2.04d.发文特点(1) 题目、摘要来稿标题应鲜明,字数在20字以内,不使用外文缩写词。
光谱学与光谱分析投稿须知
主要栏目
• • • • • • • • 原创性论文、 研究简报、 动态进展、 综合评述、 新技术、 新仪器、 边缘学科介绍、 新书评介
获奖信息
• 1992年北京市出版局编辑、质量、效益 奖 • 1996年中国科协优秀科技期刊三等奖 • 1997-2000获中国科协择优支持基础性高 科技学术期刊奖 • 2001年获中国光学学会优秀期刊奖
• 4 投稿方式 • 作者进入《光谱学与光谱分析》网站 (/)登录“在线投稿 系统”,可以方便实行在线投稿,实时查询稿 件审理进度,在线修改稿件;审稿专家在线审 稿,既缩短了稿件处理周期,又降低了运行成 本。《光谱学与光谱分析》在2007年7月以后, 不再接收以邮寄方式或e-mail的投稿,修改稿 件必须用A4复印纸打印,稿件图、表须工整清 楚,不得自造简化字。修改稿一式两份,通过 邮局挂号或特快专递寄回本刊,不符合上述要 求的稿件,本刊将不予受理。
• 5 有关文摘转载的声明 • 为扩大《光谱学与光谱分析》及《光谱学与 光谱分析》发表过的文章在学术界的影响,加 速科技信息交流,《光谱学与光谱分析》已同 意国内外各检索刊物免费摘录《光谱学与光谱 分析》所载论文。根据《国家版权局公告》文 件精神,必须征得作者认可。现特敬告投稿作 者,凡不同意被检索刊物无稿酬摘引者,在投 稿时请事先声明。无声明者,《光谱学与光谱 分析》均认为已获得作者认可。作者论文的著 作权使用费与稿酬《光谱学与光谱分析》一次 付清,不再另付其他报酬。
•
• • • •
[4] Sucha L, Kotrly S. Solution Equilibria in Analytical Chemistry(分 析化学中的溶液平衡). Translated by ZHOU Xi-shun,DAI Ming, LI Jun-yi((周锡顺,戴 明,李俊义,译). Beijing:People′s Education Press(北京:人民教育出版社),1979. 25~30. [5] Malinowski E R. Factor Analysis in Chemistry. 2nd ed. New York: Wiley Interscience, 1991.40. [6] Stevens T M, Miller Jr T E. U. S. Patent, 4290775,1981. 3 对稿件的处理程序 作者对稿件有关事宜需和期刊社联系时,请务必说明您的稿件编 号。从收稿到确定是否录用,一般需要一个月时间。作者在接到 编辑部录用通知后,应根据录用通知上提出的意见逐条修改,并 在编辑部限定时间内将修改稿连同逐条修改说明一并返回编辑部。 修改稿超过三个月不返回期刊社,即按自行撤稿处理。作者收到 编辑部的清样时,应认真校对,并由通讯联系人签字后寄回。稿 件定稿后,文责由作者自负,千万不要在清样上再作大的补充或 更改。不录用的稿件,期刊社将在一个月内通知作者。
【材料研究方法】光谱分析(英文)
Vibrational spectroscopy6.3.1 Fundamentals of vibrational spectroscopyDefinition Vibrational spectroscopy:is concerned with the d t ti f t iti detection of transitions between energy levels in molecules that result from stretching and bending vibrations of the interatomic bonds.asymmetricalVibrational spectroscopyKinds of vibrational spectroscopy ¾Infra-red spectroscopy(more sensitive to polarized group)6.3.1 Fundamentals of vibrational spectroscopysymmetrical¾Raman spectroscopy (moresensitive to non-polarized)Both methods are concerned with vibrations in molecules , they differ in the manner in which interaction with the exciting radiation occurs .Linear PE: (a) IR, (b)RamanFig. 6-14 Dipole moment of HClVibrational spectroscopyVibrating of Disulfide carbonSymmetrical stretchingInfrared inactive 6.3.2 Infrared spectroscopyAsymmetrical stretchingBendingInfrared activeInfrared inactive Fig. 6-15 Vibration of Disulfide carbonm1lowHigh/cm-1High/cm-1lowVibrational spectroscopy Methylbenzene(甲苯)2005.2 S. Guv =0 represents the ground state v =l the excited vibrational state6.3.3 Raman spectroscopy(1)(2)(3)Vibrational spectroscopy ¾The essential prerequisite for Raman scattering is a change in the polarizability of the bond when vibrations occur.Polarizability may be thought of as a measure of 6.3.3 Raman spectroscopy¾Polarizability may be thought of as a measure of theFig. 6-16 Motion state of linear molecules Degrees of freedom (H2O) : 3×3−6 = 3Vibraitonal modes (methylene group):2926cm-1(s)asνAsymmetricalsν: 2853 cm Symmetricalδ:1468 cm-1(m) δr:720 cm-1(CH1306~1303cm-1(w)γt :1250cmscissoring rocking waggingHexaneFour peakspSpectral interpretation always starts at the high end, because there are the best group frequencies and they are the easiest to interpret. No peaks appear above 3000 cm-1, the cut-off for unsaturated C-H. the four peaks below 3000 cm-1 are saturated C-H stretching modes.HexaneThe peak at 2962 cm-1 isassigned to the antisymmetricassigned to the antisymmetricstretch of the CH3group. Thisvibration is always found inthe range 2962±10 cm-1. thereare actually two degenerateantisymmetric stretchingmodes (only one shown).HexaneAt 2926cm-1, the CH2antisymmetric stretchabsorbs.Normal range:2926±10 cm-1.HexaneAt 2872cm-1, the CH3symmetric stretchabsorbs.Normal range:2872±10 cm-1.HexaneAt2853-1,the CHAt 2853cm, the CH2symmetric stretchabsorbs.Normal range:2853±10 cm-1.Vibrational spectroscopy Hexane1470cm-1This is the C-H bendingregion, expanded to show thenearly overlapping peaks forthe CH3and CH2bends.Vibrational spectroscopyHexanerocking When four or more CH2groups arein a chain, a vibration at 720±10cm-1corresponds to concertedrocking of all of the CH2’s.Vibrational spectroscopyHexanol3334 cm-1–OH stretch. Normal range: 3350±150 cm-1.This is a very characteristic group frequency. All of thepeaks due to the OH group are broad due to hydrogenbonding.Vibrational spectroscopy Hexanol 1430 cm -1–OH bend . Normal range: 1400±100 cm -1. This broad peak is buried under the CH bending modes.Vibrational spectroscopyHexanol660 cm -1–OH wag. While not a group frequency, this is another band due to the OH.Vibrational spectroscopy Aromatic ring expansion (Methylbenzene )At 1601 cm -1, thesymmetric ring strethch absorbs. Normal range: 1590±10 cm -1. This ib ti h di lOnly notsymmetrically substituted.vibration has a dipole change (and absords in IR) only when notsymmetrically substituted. The intensity of this band also varies with thesubstituent. Compare to p-xylene from the overlay menu.Vibrational spectroscopyAromatic ring expansion (Methylbenzene )At 1500cm -1, a different ring stretch absorbs. Range: 1500±10cm -1. Variable intensityVibrational spectroscopy 6.3.6 Comparing of IR and Raman SpectroscopyasymmetricalsymmetricalFig. 6-17 Linear PE: (a) IR, (b) Raman。
有机化学中的光谱学第6版(英语红外部分)
Infrared spectraIntroductionThe infrared spectra of organic compounds are associated with transitions between vibrational energy level. Molecular vibrations may be detected and measured either in an infrared spectrum or indirectly in a Raman spectrum. The most useful vibrations, from the point of view of the organic chemist , occur in the narrower range of 2.5-16μm. The position of an absorption band in the spectrum may be expressed in microns, but standard practice uses a frequency scale in the form of wavenumbers, which are the reciprocals of the wavelength,cm-1.The useful range of the infrared for an organic chemist is between 4000 cm-1 at the high-frequency end and 625 cm-1 at the low frequency end.Many function groups have vibration frequencies,characteristic of that functional group,within well-defined regions of the range;these are summarised in Charts 1-4 at the end of this chapter, with more detail in the tables of data that follow.because many functional groups can be identified by their characteristic vibration frequencies,the infrared spectrum is the simplest, most rapid, and often most most reliable means for identifying the functional groups.Equation 2.1,which is derived from the model of a mass mvibrating at frequency v on the end of a fixed spring, is useful in understanding the range of values of the vibrational frequencies of various kinds of bonds.Where k is a measure of the strength of spring.However,in chemical bonds, one end of the “spring”(bond) is not fixed, but rather there are two mass(m1 and m2)involved and each is able to move.the m of Eq.2.1 is mow determined by the relationship in Eq.2.2If one of the masses (say,m1) is infinitely large 1/m1 is then zero,and the relevant mass m for Eq.2.1 is simply that of m2 --making it analogous to the case where one end of the “spring”is fixed.Simple substitutions of masses in these equations allow us to understand that with other things being equal:(1)C-H bonds will have higher stretching frequencies than C-C bonds , which in turn are likely to be higher than C-halogen bonds;(2)O-H bonds will have higher stretching frequencies than O-D bonds ;and (3),since k increases with increasing bond order ,the relative stretching frequencies of carbon-carbon bonds lie in the order:These generalisations are useful, and Eqs. 2.1and 2.2 allow an increased understanding of the empirical data that are subsequently presented in this chapter. You may often be able toextend the use of the model in a way that will make it easier to understand the trends that are observed.However, because of the other variables that influence vibrational frequencies,the equations should be taken as no more than a frequently useful guide.2.2Preparetion of samples and examination in an infrared spectrometerOlder spectrometers used a source of infrared light which had been split into two beams of equal intensity.Only one of these was passed through the sample, and the difference in intensities of the two beams was then plotted as a function of ing this old technology,a scan typically took about 10 minutes . Most spectrometers in use today use a Fourier transform method,and the spectra are called Fourier transform infrared (FTIR) spectra. A source of infrared light , emitting radiation throughout the whole frequency range of the instrument,typically 4600-400cm-1,is again divided into two beams of equal intensity. Either one beam is passed through the sample , or both are passed,but one beam is made to traverse a longer path than the other . Recombination of the two beams produces an interference pattern that is the sun of all the interference patterns created by each wavelength in the beam.By systematically changing the difference into the paths,the interference patterns change to produce a detected signal varying with optical path difference,as modified by the selective absorption by the sample of some frequencies. This pattern is known as the interferogram , and looks nothing like a spectrum . However Fourier transformation of the interferogram, using a computer built into the instrument, converts it into a plot of absorption against wavenumber just like that from the older method . There are several advantages to FTIR over the old method , and few whole spectrum is measured in at most a few seconds .Because it is not necessary to scan each wavenumber successively , the whole spectrum is measured in at most a few seconds.Because it is not dependent upon a slit and a prism or grating , high resolution in FTIR iseasier to obtain without sacrificing sensitivity.FTIR is especially useful for examining small samples (several scans can be added together ) and for taking the spectrum of compounds produced only for a short period in the outflow of a chromatograph. Finally,the digital form in which the data are handled in the computer allows for adjustment and refinement. For example,by subtracting the background absorption of the medium in which the spectrum was taken, or by subtracting the spectrum of a known impurity from that of a known impurity from that of a mixture to reveal the spectrum of the purecomponent . However, the way in which infrared spectra are taken does not affect their appearance.The older spectra and FTIR spectra look very similar , and older spectra in the literature are still valuable for comparison . Compounds may be examined in the vapour phase , as pure liquids , in solution,and in the solid state.In the vapour phase.The vapour is introduced into a cell ,usually about 10 cm long,which can then be placed directly in the path of one of the infrared beams.The end walls of the cell are usually made of sodium chloride , which is transparent to infrared in the usual range . Most organic compounds have too low a vapour pressure for this phase to be useful .As a liquid.A drop of the liquid is squeezed between flat plates of sodium chloride (transparent through the 4000-625cm-1 region). This is the simplest of all produces. Alternatively,if the sample of the liquid is not suitable for dispensing as a drop , a solution in a volatile and dry solvent may be deposited directly onto the surface of a sodium chloride plate , and the solvent allowed to evaporate in a dry atmosphere to leave a thin film.In solution. The compound is dissolved to give ,typically, a 1-5% solution in carbon tetrachloride or ,for its better solvent properties , alcohol-free chloroform . This solution is introducedinto a cell , 0.1-1 mm thick ,made of sodium chloride . A second cell of equal thickness , but containing pure solvent , is placed in the path of the other beam of the spectormeter in order that solvent absorptions should be balanced.Spectra taken in such dilute solutions in non-polar solvents are generally the most desirable ,because they are normally better resolved than spectra taken on solids, and also because intermolecular forces ,which are especially strong in the crystalline state, are minimised. On the other hand , many compounds are not soluble in non-polar solvents,and all solvents absorb in the infrared; when the solvent absorption exceeds about 65% of the incident light, useful spectra cannot be obtained because insufficient light is transmitted to work the detection mechanism efficiently . Carbon tetrachloride and chloroform , fortunately, absorb over 65% of the incident light only in those region(Fig.2.1)which are of little interest in diagnosis. Other solvents, of course , may be used but the areas of usefulness in each case should be checked beforehand, taking account of the size of the cell being used. In rare cases aqueous solvents are useful ; special calcium fluoride cells are then used.In the solid state.About 1mg of a solid is finely ground in a small agate mortar with a drop of a liquid hydrocarbon (Nujol Kaydol)or ,if C-H vibration are to be examined ,withhexachlorobutadiene. The mull is then pressed between highly polished flat plates of sodium chloride. Alternatively,the solid ,often much less than 1 mg ,is ground with 10-100 times its bulk of pure potassium bromide and the mixture pressed into a disc using a mould and a hydraulic press. The use of KBr eliminates the problem (usually not troublesome)of bands from the mulling agent and tends,on the whole ,to give rather almost always appears(see Fig.2.7).Solids may alsobe deposited,either from a melt or ,as with liquids described above,by evaporation from a solution directly onto the surface of a sodium chloride plate ,with a sacrifice ,usually small ,from scattering off a crystalline surface.Because of intermolecular interactions,band positions in solid state spectra are offen different from those of the corresponding solution spectra. This is particularly true of those functional groups which take part in hydrogen bonding.On the other hand ,the number of resolve lines is often greater in solid state spectra,so that comparison of the spectra of,for example,synthetic and natural samples in order to determine identify is best done in the solid state. This is only true,of course,when the same crystalline modification is in use; racemic,synthetic material,for example,should be compared with enantiomerically pure,nature material in solution.2.3Examination in a Raman spectrometerRaman spectra are generally taken on instruments using laser sources,and the quantity of material needed is now of the order of a few mg.A liquid or a concentrated solution is irradiated with monochromatic light,and the scattered light is examined by a spectometer using photoelectric detection.Most of the scattered light consists of the parent line produced by absorption and re-emission.Much weaker lines,which constitute the Raman spectrum,occur at lower and higher energy and are caused by absorption and re-emission of light coupled with vibrational excitation or decay,respectively.The difference in frequency between the parent line and the Raman line is the frequency of the corresponding vibration.Raman spectroscopy is not used by organic chemists routinely for structure determination,but for the detection of certain functional groups(see Fig.2.12)and for the analysis of mixtures-of deuterated compounds for example-it has found some use,especilly by analytical chemists.2.4 Selection rulesIf the frequency of a vibration of the sample molecule falls within the range of the instrument,the molecule may absorb energy of this frequency from the light,but only when theoscillating dipole moment (from a molecular vibration)interacts with the oscillating electric vector of the infrared beam.A simple rule for deciding if this interaction (and hence absorption of light)occurs is that the dipole moment at one extreme of a vibration must be different from the dipole moment at the other extreme of the vibration.In the Raman effect a corresponding interaction occurs between the light and the molecule's polarisability,resulting in different selection rules. The most important consequence of these selection rules is that in a molecule with a center of symmetry those vibrations symmetrical about the center of symmetry are active in the Raman and inactive in the infrared (see Fig.2.12);those vibrations which are not centrosymmetric are inactive in the Raman and usually active in the infrared. This is doubly useful,for it means that that the two types of spectrum are complementary.Furthermore ,the more easily obtained,the infrared ,is the more useful ,because most functional groups are not centrosymmetric.The symmetry properties of a molecule in a solid can be different from those of an isolated molecule. This can lead to the appearance of infrared absorption bands in a solid state spectrum which would be forbidden in solution or in the vapour phase.2.5The infrared spectrumA complex molecule has many vibrational modes which involve the whole molecule.To a good approximation,however,many of these molecular vibrations are largely associated with the vibrations of individual bonds and are called localised vibrations.These localised vibrations are useful for the identification of functional groups,especially the sterching vibrations of O-H and N-H single bonds and all kinds of triple and double bonds,almost all of which occur with frequencies greater than 1500cm-1.The stretching vibrations of other single bonds,most bending vibrations and the soggier vibrations of the molecule as a whole give rise to a series of absorption bands at lower energy,blow 1500cm-1,the positions of which are characteristic of that molecule.The net result is a region above 1500cm-1 showing absorption bands assignable to a number of functional groups,and a region containing many bands,characteristic of the compound in question and no other compound,below 1500cm-1 .For obvious reasons,this is called the fingerprint region.Fig.2.2shows a representative infrared spectrum,that of cortisone acetate1.It shows the strong absorption from the stretching vibrations above 1500cm-1 demonstrating thepresence of each of the functional groups:the O-H group,three different C=O groups and the weaker absorption of the C=C double bond ,as well as displaying a characteristic fingerprint below 1500cm-1.By convention absorbance is plotted downwards,opposite to the convention for ultraviolet spectra,but the maxima are still called peaks or bands.Rotational fine structure is smoothed out,and the intensity is frequently not recorded.When intensity is recorded,it is usually experssed subjectively as strong(s),medium(m),or weak(w).To obtain a high-quality spectrum,the quantity of substance is adjusted so that the strongest peaks absorb something close to 90% of the light.The scale on the abscissa is linear in frequency,but most instruments change the scale,either at 2200cm-1 or at 2000cm-1 to double the scale at the low-frequency end .The ordinate is linear in percent transmittance,with 100% at the top and 0% at the bottom.The regions in which the different functional groups absorb are summarised below F.2.2.The stretching vibrations of single bonds to hydrogen give rise to the absorption at the high-frequency end of the spectrum as a result of the low mass of the hydrogen atom,making it easy to detect the presence of O-H and N-H groups.Since most organic compounds have C-Hbonds,the absorption close to 3000cm-1 is rarely usefully although C-H bonds attached to double and triple bonds van be usefully identified. Thereafter,the order of stretching frequencies follows the order:triple bonds at higher frequency than double bond between two similar atoms the higher the frequency of the vibration.Bending vibrations are of lower frequency and usually appear in the fingerprint region below 1500cm-1,but one exception N-H bending vibration,which appears in the 1600-1500cm-1 region.Polysyrene is sometimes used to provide accurately placed calibration lines at 2924,1603,1028,and 906cm-1.Although many absorption bands are associated with the vibrations of individual bonds,other vibrations are coupled vibrations of two or more components of the whole molecule .Whether localised or not ,stretching vibrations are given the symbol v,and the various bending vibrations are given the symbol o.Coupled vibrations may be subdivided into asymmetric and symmetric stretching,and the various bending modes into scissoring ,rocking ,wagging and twisting,as defined for a methylene group in Fig.2.3. A coupled asymmetric and symmetric stretching pair is also found with many other groups,like carboxylic anhydrides,carboxylate ions and nitrogroups,each of which has two equal bonds close together.2.6 The use of the tables of characteristic group frequencies Reference charts and tables of data are collected together at the end of this chapter for ready reference.Each of the three frequency ranges above 1500cm-1 shown in Fig.2.2 is expanded to give more detail in Charts 1-4 in Sec.2.13.Thesa charts summarise the narrower ranges within which each of the functional groups absorbs.The absorption bands which are found in the fingerprint region and which are assignable to functional groups are occasionally useful,either because they are sometimes strong bands in otherwise featureless regions or because their absence may rule out incorrect structures,but such identifications should be regarded as helpful rather than as definitive,since there are usually many bands in this area. Tables of detailed information can be found in Sec.2.14 at the end of this chapter,arranged by functional groups roughly in descending order of their stretching frequencies.One could deal with the spectrum of an unknown as follows. Examine each of the three main regions of the spectrum above the fingerprint regions of the spectrum above the fingerprint region,as identified on Fig.2.2; at this stage certain combinations of structures can be ruled out --the absence of O-Hor C=O ,for example --and some tentative conclusions reached.Where there is still ambiguity --which kind of carbonyl group,for example -the tables corresponding to those groups that might be present should be consulted.It is important to be sure that the bands under consideration are of the appropriate intensity for the structure suspected.A weak signal in the carbonyl region,for example,for example ,it is more likely to be an overtone or to have been produced by an impurity.The text following this section amplifies some of the detail for each the main functional groups,and shows the appearance,sometimes characteristic,of several of the functional groups,and shows the appearance,sometimes characteristic,of several of the bands.Cross-reference to the tables at the end is inevitable and will need to be frequent.2.7 Absorption frequencies of single bonds to hydrogen 3600-2000cm-1C-H Bonds. The precise position of the various CH,CH2,and CH3 symmetrical and unsymmetrical vibration frequencies are well known.C-H bonds do not take part in hydrogen bonding and so their position is little affected by the state of measurement or their chemical environment.C-C vibrations,which absorb in the fingerprint region,are generally weak and not practically useful . Since many organic molecules possess saturated C-H bonds,their absorption bands,stretching in the 3000-2800cm-1 region and bending in the fingerprint region,are of little diagnostic value,but a few special structral features in saturated C-H groupings do give rise to characteristic absorption bands(Table 2.1).Thus,methyl and methylene groups usually show two sharp bands from the symmetric and asymmetric stretching(Fig.2.3),which can sometimes be picked out but the general appearance of the accumulation of all the saturated C-H stretching vibrations often leads to broader and not fully resolved bands like those illustrated in many of the spectra below . The absence of saturated C-H absorption in a spectrum is ,of course,diagnostic evidence for the absence of such a part structure in the corresponding compound. Unsaturated and aromatic C-H stretching frequencies (Table 2.1)can be distinguished from the saturated C-H absorption,since they occur a little above 3000cm-1 and are relatively weak,as in the spectrum of ethyl benzoate 2(Fig.2.4)and benzonitrile 14(Fig.2.7).Terminal acetylenes give rise to a characteristic strong,sharp line close to 3300cm-1 from ¥C-H stretching,as in the spectrum of hexyne3(Fig.2.4),and ethers and aminesalso show bands in the low-frequency region 2850-2750cm-1.When the antiperiplanar arrangement is rigidly fixed ,as in axially-oriented C-H bonds in six-membered cyclic amines,C-H stretching has an unusually low frequency,giving rise to absorption known as Bohlmann bands.The C-H bending vibrations are in the fingerprint region,with methine C-H bending and CH3 and CH2 symmetrical bending giving rise in many organic compounds to two bands close to 1450and 1380cm-1,as seen in the common mulling agent Nujol.The out-of -plane vibration of trans-C=CH- diuble bonds is one of the more usefully diagnostic bending vibrations .It occurs in a narrow range 970-960cm-1,or at slightly higher frequency if conjugated ,and it is always strong.In contrast,the corresponding vibration of the cis isomer is of lower intensity and at lower frequency,typically in the range 730-675cm-1.The band at 975cm-1in the fingerprint of ethyl trans-crotonate5(Fig.2.4)clearly shows that such a feature may be present ;if it were not there,it would be diagnostic of the absence of this feature,as in the spectrum of the cis-alkene 20 in Fig.2.12。
中国医学论坛报编辑谈医学期刊的评价
医学期刊的评价、选择及医学论文英文摘要的撰写中国医学论坛报照日一、医学期刊的评价及投稿目标期刊的选择1、医学期刊的评价标准我国有关管理机构对各类期刊都有比较明确的质量要求和评估标准。
学术类科技期刊质量要求:政治要求坚持基本路线、方针,贯彻体现有关政策、法令、条例,正确执行保密、版权、专利、国界,......学术要求1)反映学科学术水平、报道本学科重大科研成果、科研进展、代表前沿,有超前意识2)创新性、突破性、立论科学、充分、有较高的学术价值3)理论与实践、当前与长远、应用与储备、发展与新生、填补空白、高新技术与转化为生产力4)提高在国际上的学术地位和影响编辑要求1)选题配置和栏目设计合理、体例一致2)有计划性3)学术上无误、正确、真实4)层次、结构、条理、逻辑性、文字符号5)名词术语统一、标准、规范出版要求1)版式设计科学、美观、合理、协调,出版周期短、近期出版2)印刷装帧质量好学术类科技期刊评估标准政治方向与社会效益1)路线、方针、法令2)导向、计划3)社会和经济效益4)获奖5)发行量增长学术质量1)是否进入核心期刊、排名2)发表获省、部级以上科技奖项目的论文篇数3)刊出论文属国家或省、部级基金项目的比例4)被收录至国内外重要数据库和文摘期刊的数目编辑质量1)执行国家标准情况2)计量单位3)图表4)文字表达、标点符号5)刊出周期出版质量1)封面和片面设计2)准期率3)印刷、装订质量以上标准中学术质量第4)条,是评价期刊质量和影响力的一个重要指标,包括期刊被SCI、Index Medicus和Medline数据库等收录的情况。
科技期刊及论文被SCI收录和引用的数量,普遍被认为是评价其国家或地区基础科学研究水平、科学实力和科技论文质量高低的重要标准之一。
但是,SCI 作为评价标准,也存在许多不足。
首先,这个标准有明显的地域性和语种分布倾向,其次,SCI收录的几乎全部是基础研究领域的期刊,不收录应用领域的期刊。
《光谱学与光谱分析》2013年(第33卷)总目次(第1~12期)
刘
桦
叶 晓岚
杨
光 亓 云鹏 范 国 荣 (9 8)
基于近红外光谱 和模 式识 别技术鉴别大米产地 的研究 ……………………………… 夏 立娅 申世 刚 刘峥颢
孙汉文 ( 1 0 2)
饱和一元醇类分 子拉曼光谱振 动峰的归属研究 … ………………………… 邹 乔 杜显元 张 琛 李兴春 微分谱结合独立成分分析对 三维荧光重叠光谱 的解析 ………… 于绍慧 张 玉钧 赵 南京 肖 雪 王欢博 基于邻菲咯啉 的反应 型三元铕配合物的合成与荧光性 质 ………………………………………………… 徐存进 荧光光谱法研究新 型碳硼烷金 属有机衍生物与牛血清 白蛋 白的相互作用
… … … … … … … … … … … … … … … … … … … … … … … … … … … … … …
李 贺 张志波( 7 ) 邵颖慧 丁 黎 (1 4)
杨 勇 周大成(1 9) 林文晶 刘红利(2 3) 李常福 李文先(2 7) 王显盛 赵 慧(3 1) 邱 西振 王文春 靳 伟佳 宋 倩 张方辉 (3 6) 郑 殊(4 0) 郑海明(4 4) 嵇 亚飞(4 8)
第1 2 期
光谱学与光谱分析
3 4 3 7
《 光谱学 与光谱分 析) > 2 0 1 3 年( 第3 3 卷) 总 目次 ( 第1 ~1 2 期)
第 1 期
Ex a mi n a t i o n o f El e me n t Co n c e n t r a t i o n s i n Gr o u n d wa t e r b y I Cp - MS f o r Mo n i t o r i n g o f P r  ̄E a r t h q u a k e Ac t i v i t i e s
铟网位置对无极灯253.7nm共振谱线的影响
度的变化情 况相 吻合 , I 『 『 在耦合线 圈两端时最大 , 即 H 和 El 在耦合线圈 中部时较 小 , 远离耦合线 圈时最小 。这可 以在一 定程度上解释实验现象 :当铟 网位 于耦 合线 圈两 端时 ,电磁 场能量密度较大 , 启动 瞬间有更多的汞原子被激活 并从 铟 网
释放 出来 , 进而在 I P等离子体 中有更 多的汞原子 参与气体 C
Fi. g 8 I du to i e st ds rb i n a o nd o lng c l n c in nt n iy iti uto r u c up i oi
粒子 的碰撞l_ _ 并发出 2 37m 共振 辐射 ;当铟 网位 于耦合 】 3 5 . 线 圈中部或远离耦合线圈时 , 情况则相反 。 另一方面 ,Hg23 7n 5 . l n共振谱线 的辐射效率 与泡体 内 汞蒸气压是直接相关 的。 一般认 为 , 无极 灯稳定发 光时泡体 内汞蒸气压 由冷端汞齐控制 , 实验过程 中数 据采集却是在 而 无极灯发光稳定后进行 的,是否 可以说 明铟网的存在不仅 可 提高无极灯 的启 动性能 , 且在很大程度 上决定了稳定发 光 而 时泡体 内的汞蒸气压 ,当然 , 只是一个大 胆的猜想 , 这 具体 物理机制则有待 更深入 的研究 。
afr W J da [2 Sh fe 。Go y k V ]
J u n l f h l mi aig E gn eig S c t ,1 9 , 8 1 :1 2 o r a eI u n t n ie r o i y 9 9 2 ( ) 4 . ot l n n e
《光谱学与光谱分析》对来稿英文摘要的要求
176光谱学与光谱分析第41卷Fluorescence%Raman spectra and scanning electron microscopy revealed that the composite silver nanostructure in polydopamine film result in the AgN has the advantage of not being oxidized.The silver nanoparticles could enhance the optically stimulated luminescence emission of FCDs as the separation distance was optimally designed between FCDs and AgN surface,the fluorescent intensity of FCDs in SAMs increased by nearly3times with the corresponding fluorescence lifetime reduced from6.08to 2.98ns.The characteristics of the AgN-enhanced fluorescence which has distance-dependence,accelerated radiation attenuation andcorrelationwiththereductiondegreeofAgN wereadditionalevidenceforalocalsurfaceplasmonresonancee f ectbetween AgN and FCDs.The experimental results showed that the addition of puerarin(Pue)quenched the fluorescence signal of FCDs, and the degree of quenching had a good linear relation1hip with the content of puerarin in the range of3.33X10-7〜1.50X10-5 mol•L1.The linear regression equation is J0/J=2.843X104“皿+1068,the correlation coefficient R=0.99856,and the detection limit QL=2.31X107mol•L1.This established AgN-enhanced fluorescence system based on the SAMs could increase the sensitivity of the detection for puerarin as the detection limit was reduced about an order of magnitude.Keywords Ag manoparticles;Polydopamine;Metal-enhanced fluorescence;Self-assembled membrane;Puerarin(Received Dec.2,2019-accepted Apr.12,2020)《光谱学与光谱分析》对来稿英文摘要的要求来稿英文摘要不符合下列要求者,本刊要求作者重写,这可能要推迟论文发表的时间!1请用符合语法的英文,要求言简意明、确切地论述文章的主要内容,突出创新之处!2.应拥有与论文同等量的主要信息,包括四个要素,即研究目的、方法、结果、结论。
《光谱学与光谱分析》编委会
(北京大学校内,邮政编码:100871)
北京新华印刷有限公司 北京市报刊发行局 中国国际图书贸易总公司
(北京399信箱)
全国各地邮电 局
ISSN 1000-0593 CN 11-2200/O4
国外发行代码:M905
国内邮发代码:82-68 广告经营许可:京海市监广登字20170260号
B. V. L#ov (Russia)
Kay Niemax (Germany)
Isao Noda (Japan)
Yukihiro Ozaki (Japan)
J. P・ Reid (UK)
R. E. Sturgeon (Canada)
社
长
名
编
主
编
常
编
副
编
常
委
编
委
特邀青年编委
编辑部主任 责任编辑 助理编辑
国内定价:95. 00元
龚旗煌
杨季冬 徐征
毕树平 闵顺耕 何文绚 胡继明 冯宝华
赵建章
唐波
张汉辉 贾云海
阳明辉 李萍 吴海龙 俞书勤 聂书明
张怡卓
光谱学与光谱分析
(1981年创刊,2004年起改为月刊)
第39卷 第9期
2019年9月出版
主办 编辑
出版 印刷 发行处
订阅处
中 国光学学 会 《光谱学与光谱分析》期刊社
北京市海淀区魏公村学院南路76号 钢铁研究总院,邮政编码:100081 电话:(010)62181070 e-mail: chngpxygpfx@vip. sina. com 网址:http: //www. gpxygpfx. com
江桂斌 孙素琴 刘会洲 姚建林
《光谱学与光谱分析》投稿简则
第5期光谱学与光谱分析1349 Keywords Spectroscopy technology;Aquatic product quality;Spectral data processing;Predictionmodel*Correspondingau2hor(Received Jan.20,2020;accepted Apr.19,2020%《光谱学与光谱分析》投稿简则《光谱学与光谱分析》是由中国科协主管,中国光学学会主办,钢铁研究总院、中国科学院物理研究所、北京大学、清华大学共同承办的专业学术期刊#国内外公开发行,从2004年起为月刊,大16开本,2020年仍为月刊,每期332页#《光谱学与光谱分析》主要报道我国光谱学与光谱分析领域内具有创新性科研成果,及时反映国内外光谱学与光谱分析的进展和动态;发现并培育人才;推动和促进光谱学与光谱分析的发展#为科教兴国服务#读者对象为从事光谱学与光谱分析的科研人员、教学人员、分析测试人员和科研管理干部#栏目设置和要求1.研究报告要求具有创新性的研究成果,一般文章以8000字(包括图表、参考文献、作者姓名、单位和中文、英文摘要,下同)为宜#2.研究简报要求在前人研究的基础上有重大改进或阶段性研究成果,一般不超过5000字#3.评述与进展要求评述国内外本专业的发展前沿和进展动态,一般不超过10000字#4.新仪器装置要求介绍新型光谱仪器的研制、开发、使用性能和应用,一般不超过5000字#5.来稿摘登要求测试手段及方法有改进并有应用交流价值,一般以3000〜4000字为宜#稿件要求1.投稿者请经本刊编委(或历届编委)一人或本专业知名专家推荐,并附单位保密审查意见及作者署名顺序,主要作者介绍#文章有重大经济效益或有创新者,请说明,同时注明受国家级基金或国家自然科学基金资助情况#2.来稿要观点明确、数据真实可靠、层次分明、言简意明、重点突出#来稿必须是网上在线投稿(含各种符号和外文字母大写、小写、正体、斜体;希腊字母、拉丁字母;上角、下角标位置应标清楚)。
《有机波谱分析》全英文教学的实践与思考
《有机波谱分析》全英文教学的实践与思考IntroductionOrganic spectroscopy is an important tool for analyzing themolecular structure of organic compounds. It involves the use ofvarious techniques that enable the determination of the composition and arrangement of atoms in molecules. The study of spectroscopyrequires a high level of expertise, and students need to develop anunderstanding of theoretical concepts and practical skills to analyze complex spectra.Teaching organic spectroscopy in English presents several challenges for both teachers and students. Students who are non-native speakers of English may find it challenging to understand the terminology and concepts. In contrast, teachers who are not fluent in English may struggle to explain complex concepts and engage students in discussions. This paper reflects on the challenges and opportunities of teaching organic spectroscopy in English and provides recommendations for successful instruction.Challenges of teaching organic spectroscopy in Englishnguage barriersThe primary challenge of teaching organic spectroscopy in Englishis the language barrier. Students who are not fluent in English may feelintimidated and struggle to understand the terminology and concepts. They may find it difficult to follow lectures, read textbooks, and take notes. Additionally, English-language journals and textbooks may present obstacles to non-native speakers.2.Technical knowledgeAnother challenge in teaching organic spectroscopy in English isthe depth of technical knowledge required to understand and analyzespectrum data. Students need to be proficient in various mathematicaland theoretical concepts to interpret spectra correctly. This can bechallenging for students who lack a solid foundation in subjects like mathematics, physics, and chemistry.3.Cultural differencesCultural differences can also be a challenge when teaching organicspectroscopy in English. Learning about spectroscopy requires interacting and engaging with peers and instructors, which can bedifficult for students who come from different socio-cultural backgrounds. Students may find it hard to align their academic interests or norms withthose of the instructor if they are from different countries.Opportunities of teaching organic spectroscopy in English1.Access to international resourcesTeaching organic spectroscopy in English provides access to a widerange of resources, including textbooks, papers, and other literature.These resources may not be available in other languages, which can limit students' exposure to current research and developments in thefield. Additionally, students who are proficient in English may have more opportunities to collaborate with researchers and practitioners globally.2.Improved career prospectsLearning to analyze spectra in English may enhance students'career prospects by increasing their employability and job opportunities.Many international companies require the ability to read, write, andcommunicate effectively in English, and proficiency in spectroscopy is a valuable asset in the job market. Students who learn to analyze spectra in English may also have the chance to pursue further education or research opportunities in leading universities worldwide.3.Develop professional skillsTeaching organic spectroscopy in English presents an opportunityfor students to develop professional skills such as technical writing,critical thinking, and problem-solving. Students who learn to analyzespectra in English may improve their writing and communication skills,increasing their chances of publishing their research in international journals. Additionally, analyzing spectra can enhance students' ability to solve complex problems through logical reasoning and critical thinking.Recommendations for successful instruction1.Address language barriersTo address language barriers, instructors can provide languagesupport by creating a glossary of terminology, providing sample spectra with annotations, or using resources such as vernacular language textbooks or visual aids. Additionally, instructors can encourage students to ask questions and engage in class discussions, creating a conducive learning environment for all students.2.Focus on key conceptsTo account for students’ varying levels of technical knowledge, instructors can focus on the essential concepts in spectroscopy and provide real-world examples to help students understand the concepts better. This approach can help students develop a solid foundation on which they can build their knowledge.3.Foster an inclusive classroom cultureCreating an inclusive learning environment that acknowledges socio-cultural differences is critical. Instructors can encourage interaction and collaboration among students, and provide opportunities for students to learn from one another. Additionally, instructors can use a variety of teaching methods, such as group work, problem-based learning, and inquiry-based learning, to allow students to apply the theory in different contexts.ConclusionTeaching organic spectroscopy in English constitutes a challenge, but it is also an opportunity for students to develop key skills, access new resources, and improve their career prospects. To succeed, instructors need to address language barriers, focus on key concepts, and foster an inclusive classroom culture. With such an approach, students can develop a solid knowledge of spectroscopy that prepares them for successful careers in the field of organic chemistry.。
猫爪草中的脂肪酸及有机酸的GCMS分析
第26卷,第8期 光谱学与光谱分析Vol 126,No 18,pp1550215522006年8月 Spectroscopy and Spectral Analysis August ,2006 猫爪草中的脂肪酸及有机酸的G C 2MS 分析陈 军1,姚 成13,夏黎明1,欧阳平凯21.南京工业大学理学院,江苏南京 2100092.南京工业大学制药与生命科学学院,江苏南京 210009摘 要 研究了用GC 2MS 法测定猫爪草中脂肪酸及有机酸的方法。
河南产猫爪草块根粉碎后过20目筛,分别用石油醚(60~90℃)和乙醚回流提取6h ,提取液经浓缩后进行甲酯化,并由GC 2MS 法对其脂肪酸及有机酸的成分进行分析和鉴定。
分析结果表明:两种提取剂的提取结果基本一致,猫爪草乙醚提取物中检测出含有23种物质,鉴定出其中的15种脂肪酸和有机酸,包括十四烷酸、十六烷酸、十八烷酸、二十烷酸、二十二烷酸、亚油酸、亚麻酸等,其中不饱和脂肪酸占58119%,亚油酸占35168%。
主题词 猫爪草;气相色谱2质谱联用;脂肪酸中图分类号:O65713 文献标识码:A 文章编号:100020593(2006)0821550203 收稿日期:2005209223,修订日期:2005212220 基金项目:江苏省教育厅自然科学基金(OO K JB15003)资助项目 作者简介:陈 军,1971年生,南京工业大学理学院工程师,硕士研究生 3通讯联系人引 言 猫爪草(Ranuncul us ternatus Thunb )系毛莨科植物小毛莨的块根,性味甘、辛、温,收载于1995年版中国药典。
猫爪草在临床上用于治疗肺结核、颈淋巴结核、咽喉炎、淋巴癌、甲状腺肿瘤及乳腺肿瘤等疾病。
据报道[1],猫爪草煎剂治疗淋巴结核180例,其有效率达100%,临床治愈率7319%;其注射液对小鼠S180,S37,EC 等肿瘤株有显著的抑制作用[2];其煎剂对痢疾杆菌、金黄色葡萄球菌、白色葡萄球菌、四联球菌等均有显著抑制作用。
analytical and bioanalytical chemistry杂志的文稿格式
analytical and bioanalytical chemistry杂志的文稿格式【原创版】目录1.引言2.analytical and bioanalytical chemistry 杂志的文稿格式要求3.编写文稿的步骤4.注意事项5.结语正文analytical and bioanalytical chemistry 杂志是一本专门发表分析化学和生物分析化学领域研究成果的学术期刊。
对于想要在该期刊发表文章的作者来说,了解并遵循其文稿格式要求是非常重要的。
该期刊的文稿格式要求包括以下几个方面:1.标题:文章标题应该简洁明了,准确反映文章主题。
同时,需要提供英文和德文的标题、摘要和关键词。
2.摘要:摘要应该包括研究目的、方法、结果和结论,字数在 250 字以内。
3.关键词:关键词应该准确反映文章主题,一般选取 5-8 个。
4.引言:引言部分应该包括研究背景、研究目的和研究意义,字数在500 字以内。
5.方法:方法部分应该详细描述研究的实验设计、实验步骤、数据处理等,以便其他人可以复制研究。
6.结果:结果部分应该清晰、准确地呈现研究数据,可以通过图、表、统计分析等方式展示。
7.讨论:讨论部分应该对研究结果进行分析和解释,指出研究的局限性和未来研究方向。
8.结论:结论部分应该总结研究的主要发现,对研究问题给出明确回答。
9.致谢:致谢部分应该对提供支持和帮助的人或机构表示感谢。
在编写文稿时,需要遵循以下几个步骤:1.确定文章主题和研究目的。
2.根据期刊要求,编写符合格式的摘要和关键词。
3.撰写引言、方法、结果、讨论和结论等各个部分。
4.检查文章逻辑和语言,确保清晰、准确。
5.按照期刊要求,修改文章格式。
在撰写文稿时,还需要注意以下几点:1.确保文章结构清晰,逻辑严密。
2.语言准确、简练,避免使用口语化表达。
3.图表清晰,数据准确。
4.引用文献准确,遵循期刊的引用规范。
总的来说,要想在 analytical and bioanalytical chemistry 杂志发表文章,就需要遵循其文稿格式要求,撰写出结构清晰、语言准确、数据可靠的文章。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6期光谱学与光谱分析1833
the training sample. T he experiments in this paper are based on the Tensorflow deep learning library. The GAN built by Tensor-
flow is robust and encapsulates the internal implementation details, making the algorithm itself better represented. In addition,
the Convolutional Neural Network (CNN) built by Tensor flow was used in this experiment for The experimental results show that the two-dimensional convolutional neural network can use the conv ly extract the convolution characteristics of WDMS spectra and classify them. The convolutional neural network classifier based
on the anti-Bayesian learning strategy achieves an accuracy of about 98. 3 )in the identification task of original WDMS spectra
and GAN generated data. The method can also be used to search for other specific targets such a supernova in the massive spectra of the telescope.
Keywords WDMS;GAN# Anti-Bayesian;CNN
(Received Apr. 18, 2018;acceptedOct. 16, 2018)
% Corresponding author
《光谱学与光谱分析》对来稿英文摘要的要求
来稿英文摘要不符合下列要求者,本刊要求作者重写,这可能要推迟论文发表的时间。
1.请用符合语法的英文,要求言简意明、确切地论述文章的主要内容,突出创新之处。
2.应拥有与论文同等量的主要信息,包括四个要素,即研究目的、方法、结果、结论。
其中后两个要素最重要。
有时一个句子即可包含前两个要素,例如“用某种改进的ICP-AES测量了鱼池水样的痕量铅”。
但有些情况下,英文摘要可包括研究工作的主要对象和范围,以及具有情报价值的其他重要信息。
在结果
部分最好有定量数据,如检测限、相对标准偏差等;结论部分最好指出方法或结果的优点和意义。
3.句型力求简单,尽量采用被动式,建议经专业英语翻译机构润色,与中文摘要相对应。
用A4复印纸单面打印。
4.摘要不应有引言中出现的内容,换言之,摘要中必须写进的内容应尽量避免在引言中出现。
摘要也不要对论文内容作解释和评论,不得简单重复题名中已有的信息;不用非公知公用的符号和术语;不用引
文,除非该论文证实或否定了他人已发表的论文。
缩略语、略称、代号,除相邻专业的读者也能清楚地理
解外,在首次出现时必须加以说明,例如用括号写出全称。