江苏2015届高三数学一校四题卷启东大江中学
江苏省启东中学2015届高三上学期第一次月考数学(理)试题含解析
江苏省启东中学2014-2015学年度第一学期第一次月考高三数学(理)试卷【试卷综析】本试卷是高三文科理试卷,考查学生解决实际问题的综合能力,是份较好的试卷.以基础知识和基本能力为载体突出考查考纲要求的基本能力,重视学生科学素养的考查.试题重点考查:集合、命题,函数模型不等式、复数、向量、导数函数的应用、三角函数的性质、三角恒等变换与解三角形等,是一份非常好的试卷。
一.填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应..... 位置上.... 【题文】1.已知全集}7,5,3,1{},5,4,2{},7,6,5,4,3,2,1{===B A U ,则=⋂)(B C A U ▲ .【知识点】集合及其运算A1 【答案解析】{2,4,5} ∵全集U={1,2,3,4,5,6.7},B={1,3,5,7}, ∴∁U B={2,4,6},又A={2,4,5},则A ∩(∁U B )={2,4,5}.故答案为:{2,4,5} 【思路点拨】找出全集U 中不属于B 的元素,确定出B 的补集,找出A 与B 补集的公共元素,即可确定出所求的集合.【题文】2.若命题“R x ∈∃,有02≤--m mx x ”是假命题,则实数m 的取值范围是 ▲ .【知识点】命题及其关系A2 【答案解析】[-4,0] ∵命题“∃x ∈R ,有x 2-mx-m <0”是假命题,⇔“∀x ∈R ,有x 2-mx-m ≥0”是真命题.令f (x )=x 2-mx-m ,则必有△=m 2-4m ≤0,解得-4≤m ≤0. 故答案为:[-4,0].【思路点拨】令f (x )=x 2-mx-m ,利用“∃x ∈R ,有x 2-mx-m <0”是假命题⇔△=m 2-4m ≤0,解出即可.【题文】3.已知βα,的终边在第一象限,则“βα>”是“βαsin sin >”的 ▲ 条件.【知识点】充分条件、必要条件A2故答案为:既不必要也不充分条件. 【思路点拨】根据三件函数的定义和关系式,结合充分条件和必要条件的定义进行判断.【题文】4.已知)(x f 的定义域是]4,0[,则)1()1(-++x f x f 的定义域为 ▲ .【知识点】函数及其表示B1【答案解析】[1,3] ∵f (x )的定义域是[0,4],∴f (x+1)+f (x-1)的定义域为不等式组014014x x ≤+≤⎧⎨≤-≤⎩的解集,解得:1≤x ≤3. 故答案为:[1,3]. 【思路点拨】由题意可列不等式组014014x x ≤+≤⎧⎨≤-≤⎩,解之即可.【题文】5.已知角α终边上一点P 的坐标是)3cos 2,3sin 2(-,则=αsin ▲ .【知识点】角的概念及任意角的三角函数C1∴|OP|= 【题文】6.已知曲线33:x x y S -=及点)2,2(P ,则过点P 可向曲线S 引切线,其切线共有▲ 条.【知识点】导数的应用B12【答案解析】3 ∵y=3x-x 3,∴y'=f'(x )=3-3x 2,∵P (2,2)不在曲线S 上, ∴设切点为M (a ,b ),则b=3a-a 3,f'(a )=3-3a 2则切线方程为y-(3a-a 3)=(3-3a 2)(x-a ),∵P (2,2)在切线上,∴2-(3a-a 3)=(3-3a 2)(2-a ),即2a 3-6a 2+4=0, ∴a 3-3a 2+2=0,即a 3-a 2-2a 2+2=0,∴(a-1)(a 2-2a-2)=0,解得a=1或a=1±∴切线的条数为3条,故答案为3. 【思路点拨】求函数的导数,设切点为M (a ,b ),利用导数的几何意义,求切线方程,利用点P (2,2)在切线上,求出切线条数即可.【题文】7.化简:=-----++)3sin()3cos()23sin()2cos()tan(αππαπααπαπ ▲ .【知识点】同角三角函数的基本关系式与诱导公式C2【答案解析】=-----++)3sin()3cos()23sin()2cos()tan(αππαπααπαπtan cos cos (cos )sin ∂∂∂-∂∂=-1 【思路点拨】利用三角函数诱导公式同角三角函数基本关系。
2015届江苏省启东中学高三上学期第一次月考数学(理)试题
启东中学2015届高三上学期第一次月考数学试题一.填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应..... 位置上.... 1.已知全集}7,5,3,1{},5,4,2{},7,6,5,4,3,2,1{===B A U ,则=⋂)(B C A U ▲ .2.若命题“R x ∈∃,有02≤--m mx x ”是假命题,则实数m 的取值范围是 ▲ . 3.已知βα,的终边在第一象限,则“βα>”是“βαsin sin >”的 ▲ 条件. 4.已知)(x f 的定义域是]4,0[,则)1()1(-++x f x f 的定义域为 ▲ . 5.已知角α终边上一点P 的坐标是)3cos 2,3sin 2(-,则=αsin ▲ .6.已知曲线33:x x y S -=及点)2,2(P ,则过点P 可向曲线S 引切线,其切线共有 ▲ 条.7.化简:=-----++)3sin()3cos()23sin()2cos()tan(αππαπααπαπ ▲ .8.设函数1cos )(3+=x x x f .若11)(=a f ,则=-)(a f ▲ . 9.函数|cos |sin cos |sin |)(x x x x x f ⋅+⋅=的值域为 ▲ .10.已知函数x y ωtan =在),(ππ-内是减函数,则实数ω的范围是 ▲ .11.已知偶函数)(x f 在),0(+∞单调递减,则满足)1()1(f x f <的实数x 的取值范围是 ▲ .12.已知锐角B A ,满足A B A tan 2)tan(=+,则B tan 的最大值是 ▲ .13.已知)(x f 是R 上最小正周期为2的周期函数,且当20<≤x 时,x x x f -=3)(,则函数)(x f y =的图象在区间]6,0[上与x 轴的交点的个数为 ▲ .14.定义在R 上的可导函数)(x f ,已知)(x f ey '=的图象如图所示,则)(x f y =的增区间是 .二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知集合}0)]4()][1([|{},1121|{<+-+-=++-==a x a x x B x x y x A .分别根据下列条件,求实数a 的取值范围. (1)A B A =⋂; (2)φ≠⋂B A16.(本小题满分14分)设a 为实数,给出命题p :关于x 的不等式a x ≥-|1|)21(的解集为φ,命题q :函数]89)2(lg[)(2+-+=x a ax x f 的定义域为R ,若命题“q p ∨”为真,“q p ∧”为假,求实数a 的取值范围.17.(本小题满分15分)已知定义域为R 的函数mnx f x x ++-=+122)(是奇函数.(1)求实数n m ,的值;(2)若存在]2,1[∈t ,不等式0)2()2(22<-+-k t f t t f 成立,求实数k 的取值范围.18.(本小题满分15分)设函数1cos 3sin )(++=x x x f . (1)求函数)(x f 在]2,0[π的最大值与最小值;(2)若实数c b a ,,使得1)()(=-+c x bf x af 对任意R x ∈恒成立,求acb cos 的值.19.(本小题满分16分)已知某种型号的电脑每台降价x 成(1成为10%),售出的数量就增加mx 成(m 为常数,且0>m ).(1)若某商场现定价为每台a 元,售出b 台,试建立降价后的营业额y 与每台降价x 成所成的函数关系式.并问当45=m ,营业额增加1.25%时,每台降价多少? (2)为使营业额增加,当)100(00<<=x x x 时,求m 应满足的条件.20.(本小题满分16分)设函数)()(R a a ax e x f x∈+-=,其图像与x 轴交于)0,(),0,(21x B x A 两点,且21x x <. (1)求a 的取值范围;(2)证明:0)(21<'x x f ()(x f '为函数)(x f 的导函数); (3)设点C 在函数)(x f y =的图象上,且ABC ∆为等腰直角三角形,记t x x =--1112,求)1)(1(--t a 的值.参考答案15.(本小题满分14分)(1);(2) 16.(本小题满分14分)8≥a 或121≤<a . 17.(本小题满分15分)(1)1,2==n m ;(2)1<k .。
【百强校】2015届江苏省启东中学高三下学期期初调研测试理科数学试卷(带解析)
绝密★启用前【百强校】2015届江苏省启东中学高三下学期期初调研测试理科数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:196分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)第II 卷(非选择题)一、填空题(题型注释)1、已知△ABC 中,∠B =45°,AC =4,则△ABC 面积的最大值为 .2、圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a = .3、函数在区间上存在极值点,则实数的取值范围为 .4、若函数不存在零点,则实数的取值范围是 .5、已知点是椭圆上的一点,是椭圆的两个焦点,若的内切圆的半[径为,则此椭圆的离心率为 .6、在矩形ABCD 中,对角线AC 与相邻两边所成的角为α,β,则有cos 2α+cos 2β=1.类比到空间中的一个正确命题是:在长方体ABCD-A 1B 1C 1D 1中,对角线AC 1与相邻三个面所成的角为α,β,γ,则cos 2α+cos 2β+cos 2γ= _.7、设均为正实数,且,则的最小值为 .8、已知平面上四个互异的点A 、B 、C 、D 满足:,则的形状是 .9、已知函数,若关于x 的方程f(x )=k 有两个不同的实根,则实数k 的取值范围是 .10、设常数使方程在闭区间上恰有三个解,则.11、由命题“∃x ∈R ,x 2+2x +m≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a = .12、已知集合A ={x|log 2x≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c = .二、解答题(题型注释)13、底面边长为2 m ,高为1 m 的正三棱锥的全面积为 m 2.14、(本小题满分为10分)设数列的前项和为,已知(,为常数),,.(1)求数列的通项公式;(2)求所有满足等式成立的正整数,.15、(本小题满分为10分)如图,将长为4,宽为1的长方形折叠成长方体ABCD-A 1B 1C 1D 1的四个侧面,记底面上一边,连接A 1B ,A 1C ,A 1D .(1)当长方体ABCD-A 1B 1C 1D 1的体积最大时,求二面角B-A 1C-D 的值; (2)线段A 1C 上是否存在一点P ,使得A 1C 平面BPD ,若有,求出P 点的位置,没有请说明理由.16、平面直角坐标系中,直线的参数方程是,以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为(1)求直线的极坐标方程(2)若直线与曲线C 相交于A,B 两点,求|AB|17、设矩阵,矩阵A 属于特征值的一个特征向量,属于特征值的一个特征向量,求的值18、(本小题满分为16分)已知函数.(1)若,求函数的极值,并指出极大值还是极小值; (2)若,求函数在上的最值;(3)若,求证:在区间上,函数的图象在的图象下方.19、(本小题满分为16分)设A ,B 分别为椭圆的左、右顶点,椭圆的长轴长为,且点在该椭圆上.(1)求椭圆的方程;(2)设为直线上不同于点的任意一点,若直线与椭圆相交于异于的点,证明:△为钝角三角形.20、(本小题满分为16分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?21、(本小题满分为14分)如图1所示,在Rt △ABC 中,AC =6,BC =3,∠ABC =90°,CD 为∠ACB 的平分线,点E 在线段AC 上,CE =4.如图2所示,将△BCD 沿CD 折起,使得平面BCD ⊥平面ACD ,连结AB ,设点F 是AB 的中点.(1)求证:DE ⊥平面BCD ;(2)在图2中,若EF ∥平面BDG ,其中G 为直线AC 与平面BDG 的交点,求三棱锥B-DEG 的体积.22、(本小题满分为14分)已知函数,点分别是函数图象上的最高点和最低点.(1)求点的坐标以及的值;(2)设点分别在角的终边上,求的值.23、(本小题满分为14分)已知定义域为R 的函数是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f(t 2-2t )+f(2t 2-k )<0恒成立,求k 的取值范围.24、设定义域为的单调函数,对任意,都有,若是方程的一个解,且,则实数= .参考答案1、;2、-4;3、;4、;5、;6、2;7、16;8、等腰三角形;9、(0,1),10、;11、1;12、4;13、;14、(1)(2).15、(1)(2)只有当底面四边形是正方形时才有符合要求的点P,位置是线段A1C上处16、(1).(2)17、-418、(1)极小值是,无极大值.(2)(3)详见解析19、(1)(2)详见解析20、(1)不会获利,至少补贴5 000元(2)40021、(1)详见解析(2)22、(1),(2)23、(1)a=2,b=1.(2)24、1;【解析】1、试题分析:,,得,,△ABC面积的最大值为考点:余弦定理2、试题分析:圆的标准方程为(x+1)2+(y-1)2=2-a,r2=2-a,则圆心(-1,1)到直线x+y+2=0的距离为,由22+()2=2-a,得a=-4.考点:点到直线距离3、试题分析:函数的导数为,令,则或,当时单调递减,当和时单调递增和是函数的极值点,因为函数在区间上存在极值点,所以或或,考点:函数极值点4、试题分析:由题意可知,解得且,由对数的性质可得,可得由于或或,要使函数不存在零点,只需取取值集合的补集,即,当时,函数无意义,故k的取值范围应为:考点:函数零点5、试题分析:一方面的面积为;另一方面的面积为,,∴,∴,∴,又∴,∴椭圆的离心率为.考点:椭圆的离心率6、试题分析:设长方体的棱长分别为a,b,c,如图所示,所以AC1与下底面所成角为∠C1AC,记为α,所以cos2α=,同理cos2β=,cos2γ=,所以cos2α+cos2β+cos2γ=2.考点:长方体性质7、试题分析:由化为,因均为正实数,故;当且仅当取等号,故的最小值为16.考点:基本不等式求最值8、试题分析:,,由,即,由四边形垂直平分可得的是等腰三角形.考点:向量数量积9、试题分析:若f(x)=k有两个不同的实根,也即函数y=f(x)的图象与y=k有两个不同的交点,k的取值范围为(0,1).考点:分段函数图像10、试题分析:,直线与三角函数图象的交点,在上,当时,直线与三角函数图象恰有三个交点,令或,即或,此时,.考点:三角函数图像与性质11、试题分析:由题意得命题“x∈R,x2+2x+m>0”是真命题,所以Δ=4-4m<0,即m>1,故实数m的取值范围是(1,+∞),从而实数a的值为1.考点:命题的否定12、试题分析:由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a),由于A⊆B,则a>4,即c=4.考点:集合包含关系13、试题分析:由条件得斜高为(m).从而全面积(m2).考点:正三棱锥的全面积14、试题分析:(1)由数列和项与通项关系求得数列递推关系:,这表示数列是以首项为2,公比为的等比数列,可利用等比数列通项公式求解(2)化简等式为,这等式包含两个未知数,可利用范围求正整数解:因为,,所以,再分别代入验证即可试题解析:(1)由得,所以又当,所以,又所以数列是以首项为2,公比为的等比数列所以数列的通项公式为(2)所以所以化简得(*)因此,因为,所以当时,由(*)得,所以无正整数解;当时,由(*)得,所以无正整数解;当时,由(*)得,所以.综上可知,存在符合条件的正整数.考点:等比数列15、试题分析:(1)利用空间向量求二面角,先建立空间直角坐标系,再确定点的坐标,本题还需先根据体积取最大值条件确定的值,求二面角时首先确定平面法向量,再根据向量数量积求角.(2)探究P点位置,还是从坐标出发,利用条件A1C平面BPD得到两个方程,从而确定P点坐标及位置试题解析:根据题意可知,AA1, AB,AD两两垂直,以AB为轴,AD为轴,AA1为轴建立如图所示的空间直角坐标系:(1)长方体体积为当且仅当,即时体积有最大值为1 -----------------------1分所以当长方体ABCD-A1B1C1D1的体积最大时,底面四边形ABCD为正方形则,设平面A1BC的法向量,则,取,得:,同理可得平面A1CD的法向量所以,又二面角B-A1C-D为钝角,故值是(也可以通过证明B1A平面A1BC写出平面A1BC的法向量)(2)根据题意有,若线段A1C上存在一点P满足要求,不妨,可得即:解得:即只有当底面四边形是正方形时才有符合要求的点P,位置是线段A1C上处.考点:利用空间向量求二面角16、试题分析:(1)利用代入法消去参数得直线的直角坐标方程:,再根据将其化为极坐标方程:,即(2)将极坐标方程代入得:,从而.试题解析:(1)消去参数得直线的直角坐标方程:由代入得.(也可以是:或)(2)得设,,则.(若学生化成直角坐标方程求解,按步骤对应给分)考点:利用极坐标求弦长17、试题分析:由特征值、特征向量定义可列出四个方程,解方程组可得.从而ad-bc=-4试题解析:由特征值、特征向量定义可知,A,即,得同理可得解得.因此ad-bc=2-6=-4.考点:矩阵特征值及特征向量18、试题分析:(1)由求函数极值步骤依次求解:先确定定义域,再求导函数,在定义域内求导函数零点,列表分析函数单调性变化规律,由函数极值定义得出结论(2)由求函数最值步骤依次求解:先确定定义域,再求导函数,在定义域内求导函数零点,列表分析区间端点函数值及导数为零的点函数值的大小,得出结论(3)先将函数图像问题转化为一个不等式恒成立问题:,利用导数研究左边函数最小值,即可解决问题.试题解析:(1)的定义域是当时在上递减;当时在上递增,的极小值是,无极大值.(2)恒成立对,在上递增,(3)证明:令在上恒成立,在区间上递减,在区间上,函数的图象在的图象下方考点:利用导数求函数极值,利用导数求函数最值,利用导数证不等式19、试题分析:(1)求椭圆的方程一般利用待定系数法求解,本题两个独立条件可求出方程中两个未知数,关键长轴长为的条件不能列错,(2)证明△为钝角三角形,可利用向量数量积求证:,这样只需列出各点坐标即可.试题解析:(1)由题意:,所以.所求椭圆方程为.又点在椭圆上,可得.所求椭圆方程为.(2)证明:由(1)知:.设,.则直线的方程为:由得.因为直线与椭圆相交于异于的点,所以,所以.由,得.所以.从而,.所以.又三点不共线,所以为钝角.所以△为钝角三角形.考点:椭圆标准方程,直线与椭圆位置关系20、试题分析:(1)解决实际问题关键为读懂题意:能否获利,决定于利润是否为正,故列出利润S函数关系式S=200x-=-x2+400x-80 000=-(x-400)2,当x∈[200,300]时,S<0,因此该单位不会获利,补贴的标准为S取得最大值-5 000,而不是最小值(2)先列出每吨的平均处理成本的函数关系式,为一个分段函数,需分段求最值,最后比较两段最小值的较小值为所求.试题解析:(1)当x∈[200,300]时,设该项目获利为S,则S=200x-=-x2+400x-80 000=-(x-400)2,所以当x∈[200,300]时,S<0,因此该单位不会获利.当x=300时,S取得最大值-5 000,所以国家每月至少补贴5 000元才能使该项目不亏损.(2)由题意可知二氧化碳的每吨处理成本为①当x∈[120,144)时,=x2-80x+5 040=(x-120)2+240,所以当x=120时,取得最小值240.②当x∈[144,500]时,=x+-200≥2-200=200,当且仅当x=,即x=400时,取得最小值200.因为200<240,答:当每月的处理量为400吨时,才能使每吨的平均处理成本最低.考点:基本不等式求最值21、试题分析:(1)折叠问题需注意折叠前后垂直关系不变的量:折叠前根据平几知识可计算出有DE⊥CD.折叠后仍有DE⊥CD.再由面面垂直性质定理可得DE⊥平面BCD.(2)求三棱锥体积关键在于确定高,即线面垂直.这仍可由面面垂直性质定理得到:因为平面BCD⊥平面ACD,过点B作BH⊥CD交于点H 则有BH⊥平面ACD.由线面平行可推导出线线平行,从而确定G的位置,这样就可计算底面积,最后根据三棱锥体积公式求体积试题解析:(1)证明:在题图1中,因为AC=6,BC=3,∠ABC=90°,所以∠ACB=60°.因为CD为∠ACB的平分线,所以∠BCD=∠ACD=30°,所以CD=2又因为CE=4,∠DCE=30°,所以DE=2.则CD2+DE2=CE2,所以∠CDE=90°,即DE⊥CD.在题图2中,因为平面BCD⊥平面ACD,平面BCD∩平面ACD=CD,DE⊂平面ACD,所以DE⊥平面BCD.(2)在题图2中,因为EF∥平面BDG,EF⊂平面ABC,平面ABC∩平面BDG=BG,所以EF∥BG.因为点E在线段AC上,CE=4,点F是AB的中点,所以AE=EG=CG=2.过点B作BH⊥CD交于点H.因为平面BCD⊥平面ACD,BH⊂平面BCD,所以BH⊥平面ACD.由条件得BH=.又S△DEG=S△ACD=×AC·CD·sin 30°=,所以三棱锥B-DEG的体积为V=S△DEG·BH=××=.考点:面面垂直性质定理,线面平行性质定理22、试题分析:(1)由三角函数性质知,当时,取最大值1,当时,取最大值,因此可得,从而根据向量数量积得(2)由三角函数定义可得,根据二倍角公式可得,因此试题解析:(1)当时,取最大值1,当时,取最大值,因此所求坐标为,则(2)因为点分别在角的终边上,则考点:三角函数图像与性质,二倍角公式23、试题分析:(1)利用奇函数性质列出两个独立条件解出a,b的值,注意要验证. 因为定义域为R,所以有f(0)=0,从而b=1.再取f(1)=-f(-1)得a=2,代入函数验证(2)利用函数奇偶性及单调性化简不等式:因f(x)是奇函数,从而不等式f(t2-2t)+f(2t2-k)<0等价于f(t2-2t)<-f(2t2-k)=f(-2t2+k). 因为f(x)是减函数,其又等价于t2-2t>-2t2+k.对一切t∈R恒成立,即Δ=4+12k<0,解得试题解析:(1)因为f(x)是奇函数,且定义域为R,所以f(0)=0,即=0,解得b=1.从而有.又由f(1)=-f(-1)知,解得a=2----6分经检验适合题意,∴a=2,b=1.(2)由(1)知由上式易知f(x)在(-∞,+∞)上为减函数.又因f(x)是奇函数,从而不等式f(t2-2t)+f(2t2-k)<0等价于f(t2-2t)<-f(2t2-k)=f(-2t2+k).-----10分因为f(x)是减函数,由上式推得t2-2t>-2t2+k.即对一切t∈R有3t2-2t-k>0.从而判别式Δ=4+12k<0,解得考点:奇函数性质,不等式恒成立24、试题分析:对任意的,都有,又由是定义在上的单调函数,则为定值,设,则,又由,可得,可解得,故,又是方程的一个解,所以是函数的零点,分析易得,故函数的零点介于之间,故考点:函数与方程。
2015年江苏省高考数学试卷答案与解析
2015 年江苏省高考数学试卷参照答案与试题分析一、填空题(本大题共14 小题,每题 5 分,共计 70 分)1.( 5 分)(2015?江苏)已知会集A={1, 2, 3} ,B={2 , 4, 5} ,则会集A∪B中元素的个数为 5 .考并集及其运算.点:专会集.题:分求出 A∪B,再明确元素个数析:解解:会集 A={1 ,2, 3} , B={2, 4,5} ,则 A∪B={1, 2, 3, 4,5} ;答:因此 A∪B中元素的个数为 5;故答案为: 5点题观察了会集的并集的运算,依照定义解答,注意元素不重复即可,属于基础题评:2.( 5 分)(2015?江苏)已知一组数据4,6,5,8, 7,6,那么这组数据的平均数为6.考众数、中位数、平均数.点:专概率与统计.题:分直接求解数据的平均数即可.析:解解:数据4, 6,5, 8, 7,6,答:那么这组数据的平均数为:=6.故答案为: 6.点本题观察数据的均值的求法,基本知识的观察.评:3.( 5 分)(2015?江苏)设复数 z 满足 z2=3+4i ( i 是虚数单位),则 z 的模为.考复数求模.点:专数系的扩大和复数.题:分直接利用复数的模的求解法规,化简求解即可.析:解解:复数z 满足 z2 =3+4i ,答:可得 |z||z|=|3+4i|==5,∴|z|= .故答案为:.点本题观察复数的模的求法,注意复数的模的运算法规的应用,观察计算能力.评:4.( 5 分)(2015?江苏)依照以下列图的伪代码,可知输出的结果S 为7.考伪代码.点:专图表型;算法和程序框图.题:分模拟执行程序框图,依次写出每次循环获取的析:退出循环,输出S 的值为 7.解解:模拟执行程序,可得答:S=1, I=1I ,S 的值,当 I=10时不满足条件I<8,满足条件I < 8,S=3, I=4满足条件I < 8,S=5, I=7满足条件I < 8,S=7, I=10不满足条件I < 8,退出循环,输出S 的值为7.故答案为: 7.点本题主要观察了循环构造的程序,正确判断退出循环的条件是解题的要点,属于基础评:题.5.( 5 分)(2015?江苏)袋中有形状、大小都相同的 4 只球,其中 1 只白球、 1 只红球、 2只黄球,从中一次随机摸出 2 只球,则这 2 只球颜色不相同的概率为.考古典概型及其概率计算公式.点:专概率与统计.题:分依照题意,把 4 个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.析:解解:依照题意,记白球为A,红球为 B,黄球为12 C、C ,则答:一次取出 2 只球,基本事件为AB、 AC1、 AC2、 BC1、 BC2、 C1C2共 6 种,其中 2 只球的颜色不相同的是AB、 AC1、 AC2、 BC1、 BC2共 5 种;因此所求的概率是P=.故答案为:.点评:本题观察了用列举法求古典概型的概率的应用问题,是基础题目.6.( 5 分)(2015?江苏)已知向量=( 2,1), =( 1,﹣ 2),若m+n=(9,﹣ 8)( m,n∈R),则 m﹣ n 的值为﹣3.考平面向量的基本定理及其意义.点:专平面向量及应用.题:分直接利用向量的坐标运算,求解即可.析:解解:向量 =( 2,1), =(1,﹣ 2),若 m+n=( 9,﹣ 8)答:可得,解得m=2,n=5,∴m﹣ n=﹣ 3.故答案为:﹣3.点本题观察向量的坐标运算,向量相等条件的应用,观察计算能力.评:7.( 5 分)(2015?江苏)不等式2< 4 的解集为(﹣ 1,2).考指、对数不等式的解法.点:专函数的性质及应用;不等式的解法及应用.题:分利用指数函数的单调性转变成x2﹣ x< 2,求解即可.析:解解;∵ 2< 4,答:2∴x﹣ x< 2,即 x2﹣ x﹣ 2< 0,解得:﹣ 1< x<2故答案为:(﹣1, 2)点本题观察了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.评:8.( 5 分)(2015?江苏)已知tan α=﹣ 2, tan (α +β) =,则 tan β的值为3.考两角和与差的正切函数.点:专三角函数的求值.题:分直接利用两角和的正切函数,求解即可.析:解解: tan α=﹣ 2,tan (α +β) =,答:可知 tan (α +β) ==,即 =,解得 tan β =3.故答案为: 3.点本题观察两角和的正切函数,基本知识的观察.评:9.( 5 分)(2015?江苏)现有橡皮泥制作的底面半径为5,高为 4 的圆锥和底面半径为2,高为 8 的圆柱各一个,若将它们重新制作成整体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考棱柱、棱锥、棱台的体积.点:专计算题;空间地址关系与距离.题:分由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r ,求出体积,析:由前后体积相等列式求得 r .解解:由题意可知,原来圆锥和圆柱的体积和为:.答:设新圆锥和圆柱的底面半径为r ,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点本题观察了圆柱与圆锥的体积公式,是基础的计算题.评:10.( 5 分)(2015?江苏)在平面直角坐标系xOy 中,以点( 1, 0)为圆心且与直线mx﹣ y﹣2m﹣ 1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为22.( x﹣ 1) +y =2考圆的标准方程;圆的切线方程.点:专计算题;直线与圆.题:分求出圆心到直线的距离 d 的最大值,即可求出所求圆的标准方程.析:解解:圆心到直线的距离d==≤,答:∴m=1时,圆的半径最大为,∴所求圆的标准方程为(22x﹣ 1) +y =2.故答案为:( x﹣1)2 +y2=2.点本题观察所圆的标准方程,观察点到直线的距离公式,观察学生的计算能力,比较基评:础.11.( 5 分)(2015?江苏)设数列{a n} 满足a1=1,且a n+1﹣ a n =n+1(n∈N*),则数列{}的前10项的和为.考数列的求和;数列递推式.点:专等差数列与等比数列.题:分数列 {a n} 满足a1=1,且a n+1﹣ a n=n+1( n∈N*),利用“累加求和”可得a n=.再利用“裂析:解答:项求和”即可得出.解:∵数列 {a n} 满足 a1 =1,且 a n+1﹣ a n=n+1(n∈N*),∴当 n≥2时, a n=( a n﹣ a n﹣1)+ +( a2﹣ a1) +a1=+n++2+1=.当 n=1 时,上式也建立,∴a n=.∴=2.∴数列 {} 的前 n 项的和 S n===.∴数列 {} 的前 10 项的和为.故答案为:.点本题观察了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n 项和公式,评:观察了推理能力与计算能力,属于中档题.12.( 5 分)(2015?江苏)在平面直角坐标系xOy 中, P 为双曲线 x2﹣ y2=1 右支上的一个动点,若点 P 到直线 x﹣ y+1=0 的距离大于 c 恒建立,则实数 c 的最大值为.考双曲线的简单性质.点:专计算题;圆锥曲线的定义、性质与方程.题:分双曲线 x2﹣y2=1 的渐近线方程为 x± y=0,c 的最大值为直线x﹣ y+1=0 与直线 x﹣ y=0析:的距离.解解:由题意,双曲线 x2﹣ y2=1 的渐近线方程为 x±y=0,答:因为点 P 到直线 x﹣ y+1=0 的距离大于 c 恒建立,因此 c 的最大值为直线 x﹣y+1=0 与直线 x﹣ y=0 的距离,即.故答案为:.点本题观察双曲线的性质,观察学生的计算能力,比较基础.评:13.( 5 分)(2015?江苏)已知函数 f ( x) =|lnx| ,g( x)=,则方程 |f( x) +g( x)|=1实根的个数为4.考根的存在性及根的个数判断.点:专综合题;函数的性质及应用.题:分:由 |f( x) +g( x) |=1 可得 g( x)=﹣ f ( x)± 1,分别作出函数的图象,即可得出析:结论.解解:由 |f( x) +g( x) |=1 可得 g( x) =﹣ f (x)± 1.答:g( x)与 h( x)=﹣ f ( x)+1 的图象以下列图,图象有两个交点;g( x)与φ( x)=﹣ f ( x)﹣ 1 的图象以下列图,图象有两个交点;因此方程 |f ( x)+g( x)|=1 实根的个数为4.故答案为: 4.点本题观察求方程 |f ( x) +g( x) |=1 实根的个数,观察数形结合的数学思想,观察学评:生分析解决问题的能力,属于中档题.14.( 5 分)(2015?江苏)设向量=( cos ,sin+cos )( k=0,1, 2,, 12),则( a k?a k+1)的值为.考数列的求和.点:专等差数列与等比数列;平面向量及应用.题:分利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性析:即可得出.解解: =+答:=++++=++=++,∴( a k?a k+1)=+++++++ +++++++ +=+0+0=.故答案为: 9.点本题观察了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的评:周期性,观察了推理能力与计算能力,属于中档题.二、解答题(本大题共 6 小题,共计 90 分,解答时应写出文字说明、证明过程或演算步骤)15.( 14 分)(2015?江苏)在△ ABC 中,已知A B=2, AC=3,A=60°.(1)求 BC的长;(2)求 sin2C 的值.考余弦定理的应用;二倍角的正弦.点:专解三角形.题:分( 1)直接利用余弦定理求解即可.析:( 2)利用正弦定理求出 C的正弦函数值,尔后利用二倍角公式求解即可.解222﹣2AB?ACcosA=4+8﹣2×2×3×=7,解:( 1)由余弦定理可得: BC=AB+AC答:因此 BC=.(2)由正弦定理可得:,则 sinC=== ,∵AB< BC,∴C 为锐角,则 cosC===.因此 sin2C=2sinCcosC=2×=.点本题观察余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解评:题的要点.ABC﹣ A1B1C1中,已知AC⊥BC, BC=CC1,设AB1 16.( 14 分)(2015?江苏)如图,在直三棱柱的中点为D, B1 C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2) BC1⊥AB1.考直线与平面平行的判断;直线与平面垂直的性质.点:专证明题;空间地址关系与距离.题:分( 1)依照中位线定理得DE∥AC,即证 DE∥平面 AA1C1C;析:( 2)先由直三棱柱得出CC1⊥平面 ABC,即证 AC⊥CC1;再证明 AC⊥平面 BCC1B1,即证 BC1⊥AC;最后证明 BC1⊥平面 B1AC,即可证出 BC1⊥AB1.解证明:(1)依照题意,得;答: E 为 B1C 的中点, D 为 AB1的中点,因此DE∥AC;又因为 DE?平面 AA1C1C, AC? 平面 AA1C1C,因此 DE∥平面 AAC C;11( 2)因为棱柱ABC﹣ A1B1C1是直三棱柱,因此 CC1⊥平面 ABC,因为 AC? 平面 ABC,因此 AC⊥CC1;又因为 AC⊥BC,CC1? 平面 BCC1B1,BC? 平面 BCC1B1,BC∩CC1=C,因此 AC⊥平面 BCC1B1;又因为 BC ? 平面平面BCCB ,111因此 BC1⊥AC;因为 BC=CC1,因此矩形BCC1B1是正方形,因此 BC1⊥平面 B1AC;又因为 AB1 ? 平面 B1AC,因此 BC1⊥AB1.点本题观察了直线与直线,直线与平面以及平面与平面的地址关系,也观察了空间想象评:能力和推理论证能力的应用问题,是基础题目.17.( 14 分)(2015?江苏)某山区外面有两条相互垂直的直线型公路,为进一步改进山区的交通现状,计划修建一条连接两条公路和山区界线的直线型公路,记两条相互垂直的公路为l 1, l 2,山区界线曲线为 C,计划修建的公路为 l ,以下列图, M, N 为 C 的两个端点,测得点 M 到 l 1, l 2的距离分别为 5 千米和 40 千米,点 N到 l 1, l 2的距离分别为 20 千米和千米,以 l 2,l 1在的直线分别为 x, y 轴,建立平面直角坐标系 xOy,假设曲线 C 吻合函数 y=(其中 a, b 为常数)模型.(1)求a,b 的值;(2)设公路 l 与曲线 C 相切于 P 点, P 的横坐标为 t .①请写出公路 l 长度的函数分析式 f ( t ),并写出其定义域;②当 t 为何值时,公路 l 的长度最短求出最短长度.考函数与方程的综合运用.点:专综合题;导数的综合应用.题:分( 1)由题意知,点 M, N的坐标分别为( 5, 40),( 20,),将其分别代入y=,建立方析:程组,即可求 a,b 的值;( 2)①求出切线 l 的方程,可得A, B 的坐标,即可写出公路l 长度的函数分析式 f ( t ),并写出其定义域;②设 g( t )=,利用导数,确定单调性,即可求出当t 为何值时,公路 l的长度最短,并求出最短长度.解解:( 1)由题意知,点 M,N 的坐标分别为( 5, 40),(20,),答:将其分别代入 y=,得,解得,(2)①由( 1)y= (5≤x≤20), P( t ,),∴y′=﹣,∴切线 l 的方程为 y﹣ =﹣( x﹣ t )设在点 P 处的切线 l 交 x,y 轴分别于 A, B 点,则 A(, 0), B( 0,),∴f ( t ) ==,t ∈[5 , 20] ;②设 g( t ) =,则 g′( t ) =2t ﹣ =0,解得 t=10 ,t ∈( 5, 10)时, g′( t )< 0,g( t )是减函数; t ∈( 10, 20)时, g′( t )> 0,g( t )是增函数,进而 t=10 时,函数g( t )有极小值也是最小值,∴g( t )min=300,∴f ( t )min=15,答: t=10 时,公路l 的长度最短,最短长度为15 千米.点本题观察利用数学知识解决实责问题,观察导数知识的综合运用,确定函数关系,正评:确求导是要点.18.( 16 分)(2015?江苏)如图,在平面直角坐标系xOy 中,已知椭圆 +=1( a>b> 0)的离心率为,且右焦点 F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过 F 的直线与椭圆交于A, B 两点,线段AB的垂直均分线分别交直线l 和 AB 于点 P,C,若 PC=2AB,求直线AB的方程.考直线与圆锥曲线的综合问题;椭圆的标准方程.点:专直线与圆;圆锥曲线的定义、性质与方程.题:分析:解答:( 1)运用离心率公式和准线方程,可得a,c 的方程,解得a,c,再由 a,b,c系,可得b,进而获取椭圆方程;( 2)谈论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可获取所求直线的方程.解:( 1)由题意可得,e==,且 c+=3,解得 c=1, a=,2则 b=1,即有椭圆方程为+y =1;的关当 AB与 x 轴不垂直,设直线 AB: y=k( x﹣ 1), A( x1, y1), B(x2,y2),将 AB方程代入椭圆方程可得( 1+2k2) x2﹣ 4k2x+2(k2﹣ 1) =0,则 x1+x2=, x1x2 =,则 C(,),且 |AB|=?= ,若 k=0,则 AB 的垂直均分线为y 轴,与左准线平行,不合题意;则 k≠0,故 PC:y+=﹣( x﹣), P(﹣ 2,),进而 |PC|= ,由 |PC|=2|AB| ,可得 =,解得 k=±1,此时 AB的方程为 y=x ﹣ 1 或 y=﹣ x+1.点本题观察椭圆的方程和性质,主要观察椭圆的离心率和方程的运用,联立直线方程,评:运用韦达定理和弦长公式,同时观察两直线垂直和中点坐标公式的运用,属于中档题.19.( 16 分)(2015?江苏)已知函数 f (x) =x3+ax2+b( a,b∈R).(1)试谈论 f ( x)的单调性;(2)若 b=c﹣ a(实数 c 是与 a 没关的常数),当函数 f (x)有三个不相同的零点时, a 的取值范围恰好是(﹣∞,﹣ 3)∪( 1,)∪(, +∞),求 c 的值.考利用导数研究函数的单调性;函数零点的判判定理.点:专综合题;导数的综合应用.题:分( 1)求导数,分类谈论,利用导数的正负,即可得出 f ( x)的单调性;析:( 2)由( 1)知,函数 f (x)的两个极值为 f ( 0) =b, f (﹣) =+b,则函数 f ( x)有三个不相同的零点等价于 f ( 0)f (﹣) =b( +b)< 0,进一步转变成 a> 0 时,﹣ a+c > 0 或 a< 0 时,﹣ a+c< 0.设 g(a) =﹣ a+c,利用条件即可求 c 的值.解解:( 1)∵ f ( x) =x3+ax2+b,答:2∴f ′( x) =3x +2ax ,令 f ′( x) =0,可得 x=0 或﹣.a=0 时, f ′( x)> 0,∴ f ( x)在(﹣∞, +∞)上单调递加;a> 0 时, x∈(﹣∞,﹣)∪(0,+∞)时, f ′( x)> 0,x∈(﹣, 0)时, f ′( x)<0,∴函数 f ( x)在(﹣∞,﹣),( 0,+∞)上单调递加,在(﹣,0)上单调递减;a< 0 时, x∈(﹣∞, 0)∪(﹣, +∞)时, f ′( x)> 0,x∈( 0,﹣)时, f ′( x)<0,∴函数 f ( x)在(﹣∞, 0),(﹣, +∞)上单调递加,在(0,﹣)上单调递减;( 2)由( 1)知,函数 f (x)的两个极值为 f ( 0) =b, f (﹣) =+b,则函数f ( x)有三个不相同的零点等价于 f ( 0) f (﹣) =b(+b)< 0,∵b=c﹣ a,∴a> 0 时,﹣ a+c> 0 或 a< 0 时,﹣ a+c< 0.设 g( a) =﹣ a+c,∵函数 f ( x)有三个不相同的零点时, a 的取值范围恰好是(﹣∞,﹣3)∪( 1,)∪(, +∞),∴在(﹣∞,﹣3)上, g( a)< 0 且在( 1,)∪(, +∞)上g( a)> 0 均恒建立,∴g(﹣ 3) =c﹣1≤0,且 g() =c﹣1≥0,∴c=1,322此时 f ( x) =x +ax +1﹣ a=( x+1) [x +( a﹣ 1) x+1﹣ a] ,2∴x+( a﹣ 1) x+1﹣ a=0 有两个异于﹣ 1 的不等实根,∴△ =( a﹣ 1)2﹣ 4(1﹣ a)> 0,且(﹣ 1)2﹣( a﹣ 1) +1﹣a≠0,解得 a∈(﹣∞,﹣ 3)∪( 1,)∪(, +∞),综上 c=1.点本题观察导数知识的综合运用,观察函数的单调性,观察函数的零点,观察分类谈论评:的数学思想,难度大.20.( 16 分)(2015?江苏)设 a1, a2, a3. a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明: 2, 2, 2, 2 依次构成等比数列;234(2)可否存在 a1, d,使得 a1,a2, a3, a4依次构成等比数列并说明原由;(3)可否存在 a1, d 及正整数 n, k,使得 a1n,a2n+k,a3n+2k,a4n+3k 依次构成等比数列并说明原由.考等比关系的确定;等比数列的性质.点:专等差数列与等比数列.题:分( 1)依照等比数列和等差数列的定义即可证明;析:( 2)利用反证法,假设存在a1, d 使得 a1, a22, a33, a44依次构成等比数列,推出矛盾,否定假设,获取结论;( 3)利用反证法,假设存在n n+k n+2k n+3ka1, d 及正整数 n, k,使得 a1,a2, a3, a4依次n n+2k2( n+k)n+k n+3k 构成等比数列,获取 a1( a1+2d)=( a1+2d),且(a1+d)( a1+3d) =( a1+2d)2 (n+2k),利用等式以及对数的性质化简整理获取ln ( 1+3t ) ln (1+2t) +3ln ( 1+2t )ln (1+t ) =4ln ( 1+3t ) ln ( 1+t ),( ** ),多次构造函数,多次求导,利用零点存在定理,推出假设不行立.解解:( 1)证明:∵ ==2 d,( n=1, 2, 3,)是同一个常数,答:∴2, 2, 2, 2 依次构成等比数列;(2)令 a1 +d=a,则 a1, a2, a3, a4分别为 a﹣d, a, a+d, a+2d(a> d, a>﹣ 2d,d≠0)假设存在 a1, d 使得 a1, a22,a33, a44 依次构成等比数列,43624则 a =( a﹣d)( a+d),且( a+d) =a ( a+2d),令 t= ,则 1=( 1﹣ t )( 1+t )3,且( 1+t )6 =(1+2t )4,(﹣< t < 1,t≠0),化简得 t 3+2t 2﹣ 2=0( * ),且 t 2=t+1 ,将 t 2=t+1 代入( * )式,2t ( t+1 ) +2( t+1 )﹣ 2=t +3t=t+1+3t=4t+1=0,则t=﹣,显然 t= ﹣不是上面方程的解,矛盾,因此假设不行立,因此不存在a1, d,使得 a1, a2 2, a33, a44依次构成等比数列.(3)假设存在 a1, d 及正整数 n, k,使得 a1n, a2n+k, a3n+2k,a4n+3k依次构成等比数列,则 a1n(a1+2d)n+2k=( a1+2d)2(n+k),且( a1+d)n+k( a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以 =a12(n+k), a12(n+2k),并令 t= ,( t >, t ≠0),n+2k 2( n+k) n+k n+3k 2( n+2k)则( 1+2t ) =( 1+t ),且( 1+t )( 1+3t ) =( 1+2t ),将上述两个等式取对数,得( n+2k )ln ( 1+2t ) =2( n+k) ln ( 1+t ),且( n+k) ln ( 1+t ) +( n+3k) ln (1+3t ) =2( n+2k)ln ( 1+2t ),化简得, 2k[ln (1+2t )﹣ ln ( 1+t ) ]=n[2ln ( 1+t )﹣ ln ( 1+2t ) ] ,且 3k[ln ( 1+3t )﹣ ln ( 1+t ) ]=n[3ln ( 1+t )﹣ ln(1+3t ) ] ,再将这两式相除,化简得,ln ( 1+3t ) ln (1+2t ) +3ln ( 1+2t ) ln ( 1+t ) =4ln (1+3t ) ln ( 1+t ),( ** )令 g( t )=4ln ( 1+3t ) ln ( 1+t )﹣ ln ( 1+3t )ln ( 1+2t )+3ln (1+2t )ln ( 1+t ),则g′( t )=[ ( 1+3t )2ln ( 1+3t )﹣ 3( 1+2t )2ln ( 1+2t )+3(1+t )2 ln ( 1+t )] ,令φ( t ) =( 1+3t )2ln ( 1+3t )﹣ 3( 1+2t )2ln ( 1+2t ) +3( 1+t )2ln ( 1+t ),则φ′( t ) =6[ ( 1+3t )ln (1+3t )﹣ 2( 1+2t ) ln ( 1+2t ) +3(1+t )ln (1+t )] ,令φ 1(t)=φ′(t),则φ 1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2( t )=φ1′( t ),则φ2′( t ) =>0,由 g( 0)=φ( 0)=φ1( 0)=φ2( 0) =0,φ2′( t )> 0,知 g( t ),φ( t ),φ1( t ),φ2( t )在(﹣, 0)和( 0,+∞)上均单调,故 g( t )只有唯一的零点t=0 ,即方程( ** )只有唯一解t=0 ,故假设不行立,n n+k n+2k n+3k因此不存在a1, d 及正整数n,k,使得 a1, a2,a3,a4依次构成等比数列.点本题主要观察等差数列、等比数列的定义和性质,函数与方程等基础知识,观察代数评:推理、转变与化归及综合运用数学知识研究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24 题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修 4-1 :几何证明选讲】21.( 10 分)(2015?江苏)如图,在△ ABC 中, AB=AC,△ ABC的外接圆⊙O 的弦 AE 交 BC于点 D.求证:△ ABD∽△ AEB.考相似三角形的判断.点:专推理和证明.题:分直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.析:解答:点证明:∵ AB=AC,∴∠ ABD=∠C,又∵∠ C=∠E,∴∠ ABD=∠E,又∠ BAE可知:△ ABD∽△ AEB.本题观察圆的基本性质与相似三角形等基础知识,观察逻辑推理能力.是公共角,评:【选修 4-2 :矩阵与变换】22.( 10 分)(2015?江苏)已知 x ,y ∈R ,向量 =是矩阵的属于特色值﹣ 2 的一个特色向量,求矩阵 A 以及它的另一个特色值.考 特色值与特色向量的计算.点:专 矩阵和变换.题:分 利用 A=﹣ 2,可得 A=,经过令矩阵 A 的特色多项式为 0 即得结论.析:解解:由已知,可得A=﹣ 2,即 ==,答: 则,即,∴矩阵 A=,进而矩阵 A 的特色多项式 f (λ) =(λ +2)(λ﹣ 1),∴矩阵 A 的另一个特色值为1.点 本题观察求矩阵及其特色值,注意解题方法的积累,属于中档题.评:【选修 4-4 :坐标系与参数方程】23.(2015?江苏)已知圆 C 的极坐标方程为 ρ 2+2ρsi n (θ﹣)﹣ 4=0,求圆 C 的半径. 考 简单曲线的极坐标方程.点:专 计算题;坐标系和参数方程.题:分 先依照 x=ρ cos θ, y=ρ sin θ,求出圆的直角坐标方程,求出半径.析:解解:圆的极坐标方程为ρ2+2ρsin (θ﹣)﹣ 4=0,可得 ρ2﹣ 2ρcos θ +2ρ sin θ﹣答: 4=0,化为直角坐标方程为x 2+y 2﹣ 2x+2y ﹣ 4=0,化为标准方程为(22x ﹣ 1) +( y+1) =6,圆的半径 r= .点本题主要观察把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关评: 键是利用公式 x=ρ cos θ, y=ρ sin θ,比较基础,[ 选修 4-5 :不等式选讲】24.(2015?江苏)解不等式 x+|2x+3| ≥2.考 绝对值不等式的解法. 点: 专 不等式.题:分思路 1(公式法):利用|f ( x )| ≥g ( x )? f (x )≥ g ( x ),或 f ( x )≤﹣ g ( x );析:思路 2(零点分段法):对 x 的值分“ x≥”“ x<”进行谈论求解.解解法 1:x+|2x+3| ≥2变形为 |2x+3| ≥2﹣ x,答:得 2x+3≥2﹣ x,或 2x+3≥﹣( 2﹣x),即 x≥,或 x≤﹣ 5,即原不等式的解集为 {x|x ≥,或 x≤﹣ 5} .解法 2:令 |2x+3|=0 ,得 x=.①当 x≥时,原不等式化为x+( 2x+3)≥ 2,即 x≥,因此 x≥;②x<时,原不等式化为x﹣( 2x+3)≥ 2,即 x≤﹣ 5,因此 x≤﹣ 5.综上,原不等式的解集为 {x|x ≥,或 x≤﹣ 5} .点本题观察了含绝对值不等式的解法.本解答给出的两种方法是常有的方法,无论用哪评:种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为: |f (x)| ≥g( x) ? f (x)≥ g( x),或 f ( x)≤﹣ g( x); |f ( x)| ≤g( x)? ﹣ g( x)≤ f ( x)≤ g( x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10 分,共计20 分,解答时写出文字说明、证明过程或演算步骤25.( 10 分)(2015?江苏)如图,在四棱锥P﹣ ABCD中,已知 PA⊥平面 ABCD,且四边形ABCD为直角梯形,∠ ABC=∠BAD=,PA=AD=2, AB=BC=1.(1)求平面PAB与平面 PCD所成二面角的余弦值;(2)点 Q是线段 BP上的动点,当直线CQ与 DP所成的角最小时,求线段BQ的长.考二面角的平面角及求法;点、线、面间的距离计算.点:专空间地址关系与距离;空间角.题:分以 A 为坐标原点,以AB、AD、 AP所在直线分别为x、y、 z 轴建系 A﹣ xyz .析:(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;2(2)利用换元法可得 cos <,>≤,结合函数 y=cosx 在( 0,)上的单调性,计算即得结论.解答:解:以 A 为坐标原点,以AB、 AD、AP所在直线分别为x、 y、 z 轴建系 A﹣ xyz 如图,由题可知B( 1,0, 0), C( 1, 1,0), D( 0, 2, 0), P( 0, 0, 2).( 1)∵ AD⊥平面 PAB,∴ =( 0, 2, 0),是平面PAB的一个法向量,∵=( 1, 1,﹣ 2), =( 0, 2,﹣ 2),设平面 PCD的法向量为 =(x, y, z),由,得,取 y=1,得 =( 1,1, 1),∴cos<,> ==,∴平面 PAB与平面 PCD所成两面角的余弦值为;( 2)∵ =(﹣ 1,0, 2),设 =λ =(﹣λ, 0, 2λ)(0≤λ≤1),又 =( 0,﹣ 1, 0),则 =+=(﹣λ,﹣ 1, 2λ),又 =( 0,﹣ 2, 2),进而 cos <,> ==,设 1+2λ =t ,t ∈[1 , 3] ,则 cos 2<,> ==≤,当且仅当 t= ,即λ =时, |cos <,> | 的最大值为,DP所成角获取最小值.因为 y=cosx 在( 0,)上是减函数,此时直线 CQ与又∵ BP==,∴ BQ=BP=.点本题观察求二面角的三角函数值,观察用空间向量解决问题的能力,注意解题方法的评:积累,属于中档题.*26.( 10 分)(2015?江苏)已知会集 X={1 ,2,3} ,Y n={1 ,2,3,,n)(n∈N),设S n={( a,b) |a 整除 b 或整除 a,a∈X,B∈Y n} ,令 f (n)表示会集 S n所含元素的个数.(1)写出 f ( 6)的值;(2)当 n≥6时,写出 f ( n)的表达式,并用数学归纳法证明.考数学归纳法.点:专综合题;点列、递归数列与数学归纳法.题:分( 1) f ( 6) =6+2++=13;析:( 2)依照数学归纳法的证明步骤,分类谈论,即可证明结论.解解:( 1) f ( 6)=6+2++=13;答:( 2)当 n≥6时, f ( n)=.下面用数学归纳法证明:①n=6 时, f ( 6)=6+2++=13,结论建立;②假设 n=k(k≥6)时,结论建立,那么 n=k+1 时, S k+1在 S k的基础上新增加的元素在( 1,k+1),(2, k+1),( 3, k+1)中产生,分以下状况谈论:1)若 k+1=6t ,则 k=6( t ﹣ 1)+5,此时有 f ( k+1)=f (k)+3=( k+1)+2++,结论建立;2)若 k+1=6t+1 ,则 k=6t+1 ,此时有 f ( k+1) =f ( k) +1=k+2+++1=( k+1) +2++,结论建立;3)若 k+1=6t+2 ,则 k=6t+1 ,此时有 f ( k+1) =f ( k) +2=k+2+++2=( k+1) +2++,结论建立;4)若 k+1=6t+3 ,则 k=6t+2 ,此时有 f ( k+1) =f ( k) +2=k+2+++2=( k+1) +2++,结论建立;5)若 k+1=6t+4 ,则 k=6t+3 ,此时有 f ( k+1) =f ( k) +2=k+2+++2=( k+1) +2++,结论建立;6)若 k+1=6t+5 ,则 k=6t+4 ,此时有 f ( k+1) =f ( k) +2=k+2+++2=( k+1) +2++,结论建立.综上所述,结论对满足n≥6的自然数n 均建立.点本题观察数学归纳法,观察学生分析解决问题的能力,正确归纳是要点.评:。
(完整word)2015年江苏省高考数学试卷答案与解析.doc
2015 年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14 小题,每小题 5 分,共计 70 分)1.( 5 分)( 2015?江苏)已知集合 A={1 ,2, 3} , B={2 , 4, 5} ,则集合 A∪ B 中元素的个数为 5 .考点:并集及其运算.专题:集合.分析:求出 A ∪ B,再明确元素个数解答:解:集合 A={1 , 2, 3} ,B={2 , 4, 5} ,则 A ∪ B={1 ,2, 3, 4,5} ;所以 A ∪ B 中元素的个数为 5;故答案为: 5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.( 5 分)( 2015?江苏)已知一组数据 4,6,5,8, 7,6,那么这组数据的平均数为6.考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据 4, 6,5, 8, 7,6,那么这组数据的平均数为:=6.故答案为: 6.点评:本题考查数据的均值的求法,基本知识的考查.3.( 5 分)( 2015?江苏)设复数z 满足 z 2=3+4i( i 是虚数单位),则 z 的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数 z 满足 z 2=3+4i ,可得 |z||z|=|3+4i|= =5,∴ |z|= .故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.( 5 分)( 2015?江苏)根据如图所示的伪代码,可知输出的结果S 为7.考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I ,S 的值,当 I=10 时不满足条件I< 8,退出循环,输出S 的值为 7.解答:解:模拟执行程序,可得S=1,I=1满足条件I < 8, S=3, I=4满足条件I < 8, S=5, I=7满足条件I < 8, S=7, I=10不满足条件I< 8,退出循环,输出S 的值为 7.故答案为: 7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.( 5 分)( 2015?江苏)袋中有形状、大小都相同的 4 只球,其中 1 只白球、 1 只红球、 2只黄球,从中一次随机摸出 2 只球,则这 2 只球颜色不同的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把 4 个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为 A ,红球为B,黄球为C1、C2,则一次取出 2 只球,基本事件为 AB 、 AC 1、 AC 2、 BC1、 BC2、C1C2共 6 种,其中 2 只球的颜色不同的是 AB 、 AC 1、AC 2、 BC1、 BC2共 5 种;所以所求的概率是P=.故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.( 5 分)( 2015?江苏)已知向量=( 2, 1),=( 1,﹣ 2),若 m +n =( 9,﹣ 8)( m,n∈R),则 m﹣ n 的值为﹣ 3 .考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可. 解答:=( 2, 1), =(1,﹣ 2),若 m +n =( 9,﹣ 8)解:向量 可得,解得 m=2, n=5,∴ m ﹣ n=﹣3.故答案为:﹣ 3.点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.( 5 分)( 2015?江苏)不等式 2 < 4 的解集为 (﹣ 1, 2) .考点 :指、对数不等式的解法.专题 :函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为 x 2﹣ x < 2,求解即可. 解答:解; ∵2< 4,∴ x 2﹣ x < 2,即 x 2﹣ x ﹣ 2< 0,解得:﹣ 1< x <2故答案为:(﹣ 1, 2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.( 5 分)( 2015?江苏)已知 tan α=﹣ 2, tan ( α+β) = ,则 tan β的值为3 .考点 :两角和与差的正切函数. 专题 :三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解: tan α=﹣ 2, tan ( α+β) = ,可知 tan ( α+β) == ,即= ,解得 tan β=3. 故答案为: 3.点评:本题考查两角和的正切函数,基本知识的考查.9.( 5 分)( 2015?江苏)现有橡皮泥制作的底面半径为 5,高为 4 的圆锥和底面半径为 2,高为 8 的圆柱各一个, 若将它们重新制作成总体积与高均保持不变, 但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 .考点 :棱柱、棱锥、棱台的体积.: 算 ;空 位置关系与距离.分析:由 意求出原来 柱和 的体 , 出新的 柱和 的底面半径 r ,求出体 ,由前后体 相等列式求得 r .解答:解:由 意可知,原来 和 柱的体 和 : .新 和 柱的底面半径 r ,新 和 柱的体 和 :.∴,解得:.故答案 :.点 :本 考 了 柱与 的体 公式,是基 的 算 .10.( 5 分)( 2015?江 )在平面直角坐 系xOy 中,以点(1, 0) 心且与直 mx y2m 1=0 ( m ∈R )相切的所有 中,半径最大的 的 准方程 ( x 1) 2+y 2=2 .考点 : 的 准方程; 的切 方程.: 算 ;直 与 .分析:求出 心到直 的距离 d 的最大 ,即可求出所求 的 准方程.解答:解: 心到直 的距离d==≤,∴ m=1 , 的半径最大 ,22∴ 所求 的 准方程 (x 1) +y =2.22故答案 :( x 1) +y =2 .点 :本 考 所 的 准方程,考 点到直 的距离公式,考 学生的 算能力,比 基 .n 1 n+1n=n+1( n ∈N * ), 数列 { } 的前11.( 5 分)( 2015?江 ) 数列 {a} 足 a =1,且 aa10 的和 .考点 :数列的求和;数列 推式.:等差数列与等比数列.分析:数列 {a n1 n+1 n*),利用 “累加求和 ”可得 a n= .再} 足 a =1 ,且 aa =n+1(n ∈N利用 “裂 求和 ”即可得出.解答:解: ∵数列 {a n } 足 a 1=1,且 a n+1a n =n+1 ( n ∈N *),∴ 当 n ≥2 , a n =(a na n ﹣ 1) +⋯+( a 2a 1) +a 1=+n+ ⋯+2+1=.当 n=1 ,上式也成立,∴ a n =.∴ =2.∴ 数列 {} 的前 n 项的和 S =n==.∴ 数列 {} 的前 10 项的和为.故答案为:.点评:本题考查了数列的 “累加求和 ”方法、 “裂项求和 ”方法、等差数列的前 n 项和公式,考查了推理能力与计算能力,属于中档题.12.( 5 分)( 2015?江苏)在平面直角坐标系 xOy 中, P 为双曲线 x 2﹣ y 2=1 右支上的一个动点,若点 P 到直线 x ﹣ y+1=0 的距离大于 c 恒成立,则实数 c 的最大值为.考点 :双曲线的简单性质.专题 :计算题;圆锥曲线的定义、性质与方程.分析:双曲线 x 2﹣ y 2=1 的渐近线方程为 x ±y=0, c 的最大值为直线 x ﹣ y+1=0 与直线 x ﹣ y=0的距离.解答:解:由题意,双曲线 x 2﹣ y 2=1 的渐近线方程为 x ±y=0 ,因为点 P 到直线 x ﹣ y+1=0 的距离大于 c 恒成立,所以 c 的最大值为直线 x ﹣y+1=0 与直线 x ﹣ y=0 的距离,即 .故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.( 5 分)( 2015?江苏)已知函数 f ( x )=|lnx| , g ( x ) = ,则方程|f ( x )+g ( x ) |=1 实根的个数为4 .考点 :根的存在性及根的个数判断. 专题 :综合题;函数的性质及应用.分析::由 |f ( x )+g ( x ) |=1 可得 g (x ) =﹣ f ( x )±1,分别作出函数的图象,即可得出结论. 解答:解:由 |f ( x ) +g ( x ) |=1 可得 g ( x ) =﹣ f ( x ) ±1.g ( x )与 h ( x )=﹣ f ( x ) +1 的图象如图所示,图象有两个交点;g( x)与φ( x) = f(x) 1 的象如所示,象有两个交点;所以方程 |f( x) +g( x) |=1 根的个数4.故答案: 4.点:本考求方程|f( x)+g( x)|=1 根的个数,考数形合的数学思想,考学生分析解决的能力,属于中档.14.( 5 分)( 2015?江)向量=( cos,sin+cos)(k=0,1,2,⋯,12),( a k?a k+1)的.考数列的求和.点:等差数列与等比数列;平面向量及用.:分利用向量数量运算性、两角和差的正弦公式、化和差公式、三角函数的周期性即可析得出.:解解:答+=:=++++=++=++,∴(a k?a k+1)=+++++++⋯+ ++++++ ⋯+=+0+0=.故答案: 9 .点本考了向量数量运算性、两角和差的正弦公式、化和差公式、三角函数的周期性,考了推理能力与算能力,属于中档.:二、解答(本大共 6 小,共90 分,解答写出文字明、明程或演算步)15.( 14 分)( 2015?江)在△ABC 中,已知 AB=2 , AC=3 ,A=60 °.(1)求 BC 的;(2)求 sin2C 的.考点:余弦定理的用;二倍角的正弦.:解三角形.分析:( 1)直接利用余弦定理求解即可.( 2)利用正弦定理求出 C 的正弦函数,然后利用二倍角公式求解即可.解答:解:( 1)由余弦定理可得:BC 2=AB2+AC22AB ?ACcosA=4+82×2×3× =7,所以 BC=.( 2)由正弦定理可得:,sinC===,∵ AB < BC ,∴ C 角,则 cosC===.因此 sin2C=2sinCcosC=2 ×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.( 14 分)( 2015?江苏)如图,在直三棱柱ABC ﹣ A 1B 1C1中,已知 AC ⊥ BC ,BC=CC 1,设AB 1的中点为 D ,B 1C∩BC1=E.求证:(1) DE ∥平面 AA 1C1 C;(2) BC 1⊥ AB 1.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:( 1)根据中位线定理得DE∥AC ,即证 DE∥平面 AA 1C1C;(2)先由直三棱柱得出 CC1⊥平面 ABC ,即证 AC ⊥ CC1;再证明 AC ⊥平面 BCC1B 1,即证 BC 1⊥AC ;最后证明 BC1⊥平面 B 1AC ,即可证出 BC 1⊥ AB 1.解答:证明:(1)根据题意,得;E 为 B 1C 的中点, D 为 AB 1的中点,所以DE∥AC ;又因为 DE ? 平面 AA 1C1C, AC ? 平面 AA 1C1C,所以 DE ∥平面 AA 1C1C;( 2)因为棱柱ABC ﹣ A 1B1C1是直三棱柱,所以 CC1⊥平面 ABC ,因为 AC ? 平面 ABC ,所以 AC ⊥CC1;又因为 AC ⊥ BC,CC1? 平面 BCC 1B1,BC ? 平面 BCC 1B1,BC ∩CC1=C,所以 AC ⊥平面 BCC 1B 1;又因为 BC 1? 平面平面BCC 1B1,所以 BC 1⊥AC ;因为 BC=CC 1,所以矩形BCC 1B1是正方形,所以 BC 1⊥平面 B1AC ;又因为 AB 1? 平面 B1AC ,所以 BC 1⊥AB 1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.( 14 分)( 2015?江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为 C,计划修建的公路为 l,如图所示, M ,N 为 C 的两个端点,测得点 M 到l 1,l 2的距离分别为 5 千米和 40 千米,点 N 到 l1, l2的距离分别为 20 千米和 2.5 千米,以 l 2,l1在的直线分别为 x,y 轴,建立平面直角坐标系xOy ,假设曲线 C 符合函数 y=(其中 a, b 为常数)模型.(1)求 a,b 的值;(2)设公路 l 与曲线 C 相切于 P 点, P 的横坐标为 t.①请写出公路l 长度的函数解析式f( t),并写出其定义域;②当 t 为何值时,公路l 的长度最短?求出最短长度.考点:函数与方程的综合运用.专题:综合题;导数的综合应用.分析:( 1)由题意知,点 M ,N 的坐标分别为(5,40),( 20,2.5),将其分别代入 y= ,建立方程组,即可求a, b 的值;( 2)① 求出切线 l 的方程,可得 A ,B 的坐标,即可写出公路l 长度的函数解析式 f ( t),并写出其定义域;②设 g( t) = ,利用导数,确定单调性,即可求出当t 为何值时,公路 l的长度最短,并求出最短长度.解答:解:( 1)由题意知,点M ,N 的坐标分别为( 5, 40),( 20, 2.5),将其分别代入y= ,得,解得,( 2)①由( 1) y= (5≤x≤20),P( t,),∴ y′=﹣,∴切线 l 的方程为 y﹣=﹣(x﹣t)设在点 P 处的切线 l 交 x, y 轴分别于 A ,B 点,则 A (, 0), B (0,),∴ f( t) ==,t∈[5,20];②设 g( t) =,则g′(t)=2t﹣=0,解得 t=10,t∈( 5, 10)时,g′(t)<0,g(t)是减函数;t∈( 10,20)时,g′(t)>0,g( t)是增函数,从而 t=10时,函数g( t)有极小值也是最小值,∴g( t)min=300 ,∴ f( t)min=15 ,答: t=10 时,公路 l 的长度最短,最短长度为15 千米.点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.( 16 分)(2015?江苏)如图,在平面直角坐标系xOy 中,已知椭圆+=1( a>b> 0)的离心率为,且右焦点 F 到左准线 l 的距离为3.(1)求椭圆的标准方程;(2)过 F 的直线与椭圆交于 A ,B 两点,线段 AB 的垂直平分线分别交直线l 和 AB 于点 P,C,若 PC=2AB ,求直线AB 的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:( 1)运用离心率公式和准线方程,可得a, c 的方程,解得 a, c,再由 a, b, c 的关系,可得 b,进而得到椭圆方程;(2)讨论直线 AB 的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达10解答:解:( 1)由题意可得, e= =且 c+ =3,解得 c=1, a= , 则 b=1 ,即有椭圆方程为( 2)当 AB ⊥ x 轴, AB=, CP=3,不合题意;当 AB 与 x 轴不垂直,设直线 AB : y=k ( x ﹣ 1),A ( x 1, y 1), B ( x 2, y 2),将 AB 方程代入椭圆方程可得( 1+2k 2)x 2﹣ 4k 2x+2( k 2﹣ 1) =0, 则 x 1+x 2=, x 1x 2=,则 C ( ,),且|AB|= ? = ,若 k=0 ,则 AB 的垂直平分线为 y 轴,与左准线平行,不合题意;则 k ≠0,故 PC : y+=﹣ ( x ﹣), P (﹣ 2,),从而 |PC|= ,由 |PC|=2|AB|,可得 =,解得 k= ±1,此时 AB 的方程为y=x ﹣ 1 或 y= ﹣ x+1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式, 同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.( 16 分)( 2015?江苏)已知函数 f ( x )=x 3+ax 2+b (a , b ∈R ). (1)试讨论 f ( x )的单调性;(2)若 b=c ﹣a (实数 c 是与 a 无关的常数),当函数 f ( x )有三个不同的零点时, a 的取值 范围恰好是(﹣ ∞,﹣ 3)∪ ( 1, ) ∪( , +∞),求 c 的值.考点 :利用导数研究函数的单调性;函数零点的判定定理. 专题 :综合题;导数的综合应用.分析:( 1)求导数,分类讨论,利用导数的正负,即可得出f (x )的单调性;( 2)由( 1)知,函数 f ( x )的两个极值为 f ( 0) =b ,f (﹣)=+b ,则函数+y 2=1;,f ( x )有三个不同的零点等价于f ( 0) f (﹣ )=b ( +b )< 0,进一步转化为a > 0 时,﹣ a+c > 0 或 a < 0 时,﹣a+c < 0.设 g ( a ) =﹣ a+c ,利用条件即可求 c 的值.解答:解:( 1) ∵ f ( x ) =x 3+ax 2+b ,∴ f ′(x ) =3x 2+2ax ,令 f ′(x ) =0 ,可得 x=0 或﹣ .a=0 时, f ′( x )> 0, ∴ f ( x )在(﹣ ∞, +∞)上单调递增;a > 0 时, x ∈(﹣ ∞,﹣ ) ∪( 0, +∞)时, f ′(x )> 0,x ∈(﹣ ,0)时, f ′( x ) < 0,∴ 函数 f ( x )在(﹣ ∞,﹣ ),( 0,+∞)上单调递增,在(﹣ ,0)上单调递减;a < 0 时, x ∈(﹣ ∞,0) ∪(﹣ , +∞)时, f ′(x )> 0,x ∈( 0,﹣ )时, f ′( x )< 0,∴ 函数 f ( x )在(﹣ ∞,0),(﹣ ,+∞)上单调递增,在( 0,﹣)上单调递减;( 2)由( 1)知,函数 f ( x )的两个极值为 f ( 0) =b ,f (﹣ )=+b ,则函数f ( x )有三个不同的零点等价于f ( 0) f (﹣)=b (+b )< 0,∵ b=c ﹣ a ,∴ a > 0 时, ﹣ a+c > 0 或 a < 0 时, ﹣ a+c < 0.设 g ( a ) =﹣a+c ,∵ 函数 f (x )有三个不同的零点时,a 的取值范围恰好是(﹣ ∞,﹣ 3) ∪( 1, )∪ ( , +∞),∴ 在(﹣ ∞,﹣ 3)上, g ( a )< 0 且在( 1, ) ∪ ( , +∞)上 g (a )> 0 均恒成立,∴ g (﹣ 3) =c ﹣ 1≤0,且 g ( )=c ﹣ 1≥0,∴ c=1,此时 f ( x )=x 3+ax 2+1﹣a=( x+1 )[x 2+( a ﹣ 1)x+1 ﹣ a],∵ 函数有三个零点,∴ x 2+(a ﹣ 1) x+1﹣ a=0 有两个异于﹣ 1 的不等实根,∴ △ =( a ﹣ 1) 2﹣ 4( 1﹣ a )> 0,且(﹣ 1) 2﹣( a ﹣ 1) +1﹣ a ≠0,解得 a ∈(﹣ ∞,﹣ 3) ∪( 1, ) ∪ ( ,+∞),综上 c=1.点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.( 16 分)( 2015?江苏)设 1 2 3 4d ( d ≠0)的等差数列. a ,a , a . a 是各项为正数且公差为 (1)证明: 2 , 2 , 2 , 2 依次构成等比数列;(2)是否存在 a 1 12 2, a 33, a 44 依次构成等比数列?并说明理由;, d ,使得 a , ann+kn+2kn+3k依次构成等比数列?并(3)是否存在 a 1,d 及正整数 n ,k ,使得 a 1 ,a 2 ,a 3,a 4 说明理由.考点 :等比关系的确定;等比数列的性质. 专题 :等差数列与等比数列.分析:( 1)根据等比数列和等差数列的定义即可证明;( 2)利用反证法,假设存在 a 1 ,d 使得 a 1,a 22,a 33,a 44依次构成等比数列,推出矛 盾,否定假设,得到结论;( 3)利用反证法,假设存在 a 1,d 及正整数 n ,k ,使得 a 1 n ,a 2n+k,a 3 n+2k , a 4n+3k 依次构成等比数列, 得到 a 1n ( a 1+2d )n+2k =( a 1+2d )2 n+k ,且( a 1+d )n+k ( a 1+3d )n+3k =( a 1+2d )2( n+2k ),利用等式以及对数的性质化简整理得到ln ( 1+3t ) ln ( 1+2t ) +3ln ( 1+2t )ln ( 1+t )=4ln (1+3t )ln ( 1+t ),( ** ),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.解答:解:( 1)证明: ∵==2d,(n=1 , 2,3,)是同一个常数,∴ 2, 2 , 2 , 2 依次构成等比数列;( 2)令 a 1+d=a ,则 a 1,a 2,a 3,a 4 分别为 a ﹣d ,a ,a+d ,a+2d ( a > d ,a >﹣ 2d ,d ≠0)假设存在 a 11 22, a 33, a 44依次构成等比数列,, d 使得 a, a43624则 a =( a ﹣d )( a+d ) ,且( a+d ) =a ( a+2d ) ,令 t=,则 1= (1﹣ t )( 1+t ) 3,且( 1+t ) 6=( 1+2t )4,(﹣ < t < 1, t ≠0), 化简得 t 3+2t 2﹣ 2=0( * ),且 t 2=t+1 ,将 t 2=t+1 代入( *)式, t ( t+1) +2( t+1 )﹣ 2=t 2+3t=t+1+3t=4t+1=0 ,则 t=﹣ ,显然 t=﹣ 不是上面方程的解,矛盾,所以假设不成立,因此不存在 a 1, d ,使得 a 1,a 2 2, a 33, a 44依次构成等比数列.( 3)假设存在 a 11 n ,a 2n+k ,a 3n+2k ,a 4n+3k 依次构成等比数,d 及正整数 n ,k ,使得 a列,则 a 1 ( )( ) n ( a 1+2d )n+2k =( a 1+2d ) 2 n+k ,且( a 1+d )n+k ( a 1+3d )n+3k =( a 1+2d )2 n+2k, 分别在两个等式的两边同除以 =a2( n+k) 2( n+2k),( t > , t ≠0),1, a 1 ,并令 t=则( 1+2t )n+2k=( 1+t ) 2 (n+k )( n+2k ),且( 1+t ) n+k ( 1+3t )n+3k=( 1+2t ) 2 , 将上述两个等式取对数,得( n+2k )ln (1+2t ) =2( n+k ) ln ( 1+t ), 且( n+k ) ln ( 1+t ) +( n+3k ) ln ( 1+3t ) =2(n+2k )ln (1+2t ),化简得, 2k[ln ( 1+2t )﹣ ln ( 1+t ) ]=n[2ln ( 1+t )﹣ ln ( 1+2t ) ],且 3k[ln ( 1+3t )﹣ ln (1+t ) ]=n[3ln ( 1+t )﹣ ln (1+3t ) ] ,再将这两式相除,化简得,ln ( 1+3t ) ln ( 1+2t ) +3ln ( 1+2t ) ln (1+t )=4ln ( 1+3t ) ln ( 1+t ),( ** ) 令 g ( t ) =4ln (1+3t ) ln ( 1+t )﹣ ln ( 1+3t ) ln ( 1+2t ) +3ln ( 1+2t ) ln ( 1+t ),则 g ′( t )=[( 1+3t )2ln ( 1+3t )﹣ 3( 1+2t ) 2ln ( 1+2t )2+3 ( 1+t ) ln ( 1+t ) ],令 φ( t ) =( 1+3t )2ln ( 1+3t )﹣ 3( 1+2t )2 ln (1+2t ) +3( 1+t )2ln ( 1+t ),则 φ′(t )=6[ (1+3t ) ln ( 1+3t )﹣ 2( 1+2t ) ln ( 1+2t ) +3 (1+t ) ln ( 1+t ) ] ,令 φ1 1( t ) =φ′(t ),则 φ ′( t ) =6[3ln ( 1+3t )﹣ 4ln ( 1+2t ) +ln ( 1+t ) ], 令 φ2 1 2> 0, ( t ) =φ ′( t ),则 φ ′( t ) =由 g ( 0) =φ( 0) =φ1 2 2( 0) =φ ( 0) =0,φ ′( t )> 0,知 g ( t ), φ( t ), φ, 0)和( 0, +∞)上均单调,1( t ), φ2( t )在(﹣ 故 g ( t )只有唯一的零点 t=0 ,即方程( ** )只有唯一解 t=0 ,故假设不成立,所以不存在n n+k n+2k n+3k依次构成等比数列. a 1, d 及正整数 n ,k ,使得 a 1,a 2 ,a 3 ,a 4 点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分) 【选做题】本题包括 21-24 题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.( 10 分)( 2015?江苏)如图,在 △ABC 中, AB=AC , △ ABC 的外接圆 ⊙O 的弦 AE 交BC 于点 D .求证: △ ABD ∽ △ AEB .考点 :相似三角形的判定. 专题 :推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明: ∵AB=AC ,∴ ∠ABD= ∠C ,又 ∵ ∠ C=∠ E ,∴∠ ABD= ∠ E ,又 ∠ BAE 是公共角,可知: △ ABD ∽ △ AEB .点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修 4-2:矩阵与变换】22.( 10 分)( 2015?江苏)已知 x ,y ∈R ,向量 = 是矩阵 的属于特征值﹣ 2 的一个特征向量,求矩阵A 以及它的另一个特征值.考点 :特征值与特征向量的计算. 专题 :矩阵和变换.分析:利用 A =﹣ 2 ,可得 A=,通过令矩阵 A 的特征多项式为 0 即得结论.解答:解:由已知,可得 A =﹣ 2 ,即 = = ,则,即 ,∴ 矩阵 A= ,从而矩阵 A 的特征多项式 f ( λ) =( λ+2)( λ﹣1),∴ 矩阵 A 的另一个特征值为 1.点评:本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修 4-4:坐标系与参数方程】23.( 2015?江苏)已知圆2ρsin ( θ﹣ )﹣ 4=0 ,求圆 C 的半径.C 的极坐标方程为 ρ+2考点 :简单曲线的极坐标方程.专题 :计算题;坐标系和参数方程.分析:先根据 x= ρcos θ,y= ρsin θ,求出圆的直角坐标方程,求出半径. 解答: 2 ρsin ( θ﹣ 2ρsin θ﹣4=0 ,解:圆的极坐标方程为 ρ+2 )﹣ 4=0 ,可得 ρ﹣ 2ρcos θ+2化为直角坐标方程为 x 2+y 2﹣ 2x+2y ﹣ 4=0 ,化为标准方程为(x ﹣ 1)2+( y+1 ) 2=6,圆的半径 r= .点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式 x= ρcos θ, y=ρsin θ,比较基础,[ 选修 4-5:不等式选讲】24.( 2015?江苏)解不等式 x+|2x+3| ≥2. 考点 :绝对值不等式的解法.分析:思路 1(公式法):利用 |f( x) |≥g( x) ? f( x)≥g( x),或 f (x)≤﹣ g( x);思路 2(零点分段法):对 x 的值分“x≥”“x<”进行讨论求解.解答:解法 1: x+|2x+3| ≥2 变形为 |2x+3|≥2﹣ x,得2x+3≥2﹣ x,或 2x+3 ≥﹣( 2﹣x),即 x≥,或 x≤﹣ 5,即原不等式的解集为{x|x ≥,或x≤﹣5}.解法 2:令 |2x+3|=0 ,得 x=.①当 x≥时,原不等式化为x+ ( 2x+3)≥2,即 x≥,所以 x≥;② x<时,原不等式化为x﹣( 2x+3 )≥2,即 x≤﹣ 5,所以 x≤﹣ 5.综上,原不等式的解集为{x|x ≥,或x≤﹣5}.点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为: |f( x) |≥g(x) ? f (x)≥g( x),或 f ( x)≤﹣ g(x); |f( x) |≤g(x) ?﹣g( x)≤f( x)≤g( x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10 分,共计20 分,解答时写出文字说明、证明过程或演算步骤25.( 10 分)(2015?江苏)如图,在四棱锥P﹣ ABCD 中,已知 PA⊥平面 ABCD ,且四边形ABCD 为直角梯形,∠ ABC=∠ BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB 与平面 PCD 所成二面角的余弦值;(2)点 Q 是线段 BP 上的动点,当直线CQ 与 DP 所成的角最小时,求线段BQ 的长.考点:二面角的平面角及求法;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:以 A 为坐标原点,以AB 、 AD 、AP 所在直线分别为 x、 y、 z 轴建系 A ﹣xyz .( 1)所求值即为平面 PAB 的一个法向量与平面 PCD 的法向量的夹角的余弦值的绝对值,计算即可;( 2)利用换元法可得 cos 2<, > ≤ ,结合函数 y=cosx 在( 0, )上的单调性,计算即得结论.解答:解:以 A 为坐标原点,以AB 、AD 、 AP 所在直线分别为 x 、 y 、z 轴建系 A ﹣ xyz 如图,由题可知 B ( 1, 0, 0), C (1, 1, 0), D ( 0, 2, 0), P ( 0,0, 2).( 1) ∵AD ⊥ 平面 PAB ,∴=( 0, 2,0),是平面 PAB 的一个法向量,∵=( 1, 1,﹣ 2), =(0, 2,﹣ 2),设平面 PCD 的法向量为=( x ,y , z ),由,得 ,取 y=1,得 =( 1, 1,1),∴ cos <, > = = ,∴ 平面 PAB 与平面 PCD 所成两面角的余弦值为;( 2) ∵=(﹣ 1, 0,2),设 =λ =(﹣ λ, 0, 2λ)(0≤λ≤1),又=( 0,﹣ 1, 0),则 =+=(﹣ λ,﹣ 1, 2λ),又=( 0,﹣ 2, 2),从而 cos < , > = = ,设 1+2 λ=t , t ∈[1, 3],则 cos 2<, > = =≤ ,当且仅当 t= ,即 λ= 时, |cos < , > |的最大值为 ,因为 y=cosx 在( 0, )上是减函数,此时直线CQ 与 DP 所成角取得最小值.又 ∵ BP== , ∴ BQ= BP=.点:本考求二面角的三角函数,考用空向量解决的能力,注意解方法的累,属于中档.26.( 10 分)( 2015?江)已知集合 X={1 ,2,3} ,Y n={1 ,2,3,⋯,n)(n∈N *), S n={( a,b) |a 整除 b或整除 a, a∈X ,B ∈Y n} ,令 f( n)表示集合 S n所含元素的个数.(1)写出 f(6)的;(2)当 n≥6 ,写出 f (n)的表达式,并用数学法明.考点:数学法.:合;点列、数列与数学法.分析:(1) f ( 6) =6+2+ + =13 ;(2)根据数学法的明步,分,即可明.解答:解:( 1) f( 6) =6+2+ + =13;( 2)当 n≥6 , f ( n) =.下面用数学法明:①n=6 , f ( 6) =6+2+ + =13,成立;②假 n=k( k≥6),成立,那么 n=k+1 , S k+1在 S k的基上新增加的元素在( 1,k+1 ),( 2, k+1 ),( 3, k+1 )中生,分以下情形:1)若 k+1=6t , k=6( t 1)+5 ,此有 f( k+1)=f (k) +3=( k+1)+2++,成立;2)若 k+1=6t+1 ,则 k=6t+1 ,此时有 f( k+1 ) =f ( k) +1=k+2+ + +1=( k+1 )+2+ + ,结论成立;3)若 k+1=6t+2 ,则 k=6t+1 ,此时有 f( k+1 )=f(k)+2=k+2+ + +2=( k+1 )+2+ + ,结论成立;4)若 k+1=6t+3 ,则 k=6t+2 ,此时有 f( k+1 ) =f ( k) +2=k+2+ + +2=( k+1 )+2+ + ,结论成立;5)若 k+1=6t+4 ,则 k=6t+3 ,此时有 f( k+1 ) =f ( k) +2=k+2+ + +2=( k+1 )+2+ + ,结论成立;6)若 k+1=6t+5 ,则 k=6t+4 ,此时有 f( k+1 ) =f ( k) +2=k+2+ + +2=( k+1 )+2+ + ,结论成立.综上所述,结论对满足n≥6 的自然数 n 均成立.点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。
江苏省启东市大江中学高三数学一轮复习练习---圆锥曲线含参考答案
高中数学一轮复习练习---圆锥曲线(1)一、选择题(每题5分)1)如果实数y x ,满足等式3)2(22=+-y x ,那么xy的最大值是( ) A 、21 B 、33 C 、23 D 、3 2)若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为( )A 、1,1-B 、2,2-C 、1D 、1-3)已知椭圆125222=+y ax )5(>a 的两个焦点为1F 、2F ,且8||21=F F ,弦AB 过点1F ,则△2ABF 的周长为( )(A )10 (B )20 (C )241(D ) 414 4)椭圆13610022=+y x 上的点P 到它的左准线的距离是10,那么点P 到它的右焦点的距离是( )(A )15 (B )12 (C )10 (D )85)椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( )(A )9 (B )12 (C )10 (D )86)椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( ) (A )3(B )11(C )22(D )107)以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是( )(A )222=-y x (B )222=-x y(C )422=-y x 或422=-x y (D )222=-y x 或222=-x y8)双曲线191622=-y x 右支点上的一点P 到右焦点的距离为2,则P 点到左准线的距离为( ) (A )6 (B )8 (C )10 (D )129)过双曲线822=-y x 的右焦点F 2有一条弦PQ ,|PQ|=7,F 1是左焦点,那么△F 1PQ 的周长为( )(A )28 (B )2814-(C )2814+(D )2810)双曲线虚轴上的一个端点为M,两个焦点为F 1、F 2,︒=∠12021MF F ,则双曲线的离心率为( )(A )3(B )26(C )36(D )3311)过抛物线2y ax =(a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别为p 、q ,则11p q+等于( ) (A )2a (B )12a (C )4a (D )4a12) 如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) (A )02=-y x (B )042=-+y x (C )01232=-+y x (D )082=-+y x二、填空题(每题5分)13)与椭圆22143x y +=具有相同的离心率且过点(2,_____ 14)离心率35=e ,一条准线为3=x 的椭圆的标准方程是_______。
2015年江苏省高考数学试卷及答案Word版(K12教育文档)
(直打版)2015年江苏省高考数学试卷及答案Word版(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2015年江苏省高考数学试卷及答案Word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2015年江苏省高考数学试卷及答案Word版(word版可编辑修改)的全部内容。
2015年江苏省高考数学试卷一、填空题1.已知集合{}123A =,,,{}245B =,,,则集合AB 中元素的个数为_______。
2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______。
4.根据如图所示的伪代码,可知输出的结果S 为________.5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________。
6.已知向量()21a =,,()2a =-1,,若()()98ma nb mn R +=-∈,,则m-n 的值为______.7.不等式224x x-<的解集为________。
8。
已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______。
9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 。
10。
在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 。
2015年江苏省高考数学试卷及答案 word
2015年江苏省高考数学试卷一、填空题1.已知集合{}123A =,,,{}245B =,,,则集合A B U 中元素的个数为_______.2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.4.根据如图所示的伪代码,可知输出的结果S 为________.5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.6.已知向量()21a =r ,,()2a =-r 1,,若()()98ma nb mn R +=-∈r r,,则m-n 的值为______. 7.不等式224x x-<的解集为________.8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。
若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 。
10.在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 。
11.数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 。
12.在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点。
若点P 到直线01=+-y x 的距离对c 恒成立,则是实数c 的最大值为 。
13.已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为 。
14.设向量)12,,2,1,0)(6cos 6sin ,6(cos Λ=+=k k k k a k πππ,则∑=+⋅121)(k k ka a的值为 。
2015江苏省高考数学,WORD版
2015年江苏省高考数学试卷一、填空题:本大题共14题,每小题5分,共计70分1、已知集合{1,2,3},B {2,4,5},A ==则集合B A ⋃中元素的个数为2、已知一组数据4,6,5,8,7,6,那么这组数据的平均数为3、设复数z 满足234i(i )z =+是虚数单位,则z 的模为4、根据如图所示的伪代码,可知输出的结果S 为5、袋中又形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球。
从中一次随机摸出2只球,则这2只球颜色不同的概率为6、已知向量(2,1),b (1,2).m +nb=(9,-8)(m,n R),m-n a a ==-∈若则的值为7、不等式224x x -<的解集为8、已知1tan 2,tan(),tan 7ααββ=-+=则的值为 9、现有橡皮泥制作的底面积半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为10、在平面直角坐标系xoy 中,以点(1,0)为圆心且与直线210(m R)mx y m ---=∈相切的所有圆中,半径最大的圆的标准方程为11、设数列*1n+11{}=11(n N ),{}10n n n a a a a n a -=+∈满足,且则数列前项的和为 12、在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点.若点P 到直线10x y -+=的距离大于c 恒成立,则实数c 的最大值为13、已知函数20,01,(x)ln ,(x)(x)g(x)142,1x f x g f x x <≤⎧⎪==+=⎨-->⎪⎩则方程实根的个数为14、设向量1110(cos sin cos )(k 0,1,2,,12),()666k k k k k k k a a a +==+=⋅∑πππ,则的值为 二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)在△ABC 中,已知02360AB AC A ===,,,(1)求BC 的长;(2)求sin 2C 的值16、(本小题满分14分)如图,在直三棱柱111ABC A B C -中,已知1AC BC BC CC ⊥=,,设1AB 的中点为D ,11B C BC E ⋂=求证:(1)11//DE AAC C 平面; (2)11BC AB ⊥17(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路.记两条相互垂直的公路为12,l l ,山区边界曲线为C ,计划修建的公路为l .如图所示,,M N C 为的两个端点,1212,,M l l l l 测得点到的距离分别为5千米和40千米,点N 到的距离分别为20千米和2.5千米,以21l l ,所在的直线分别为,x y 轴,建立平面直角坐标系xoy ,假设曲线C 符合函数2(,)a y a b x b =+其中为常数模型(1)求,a b 的值(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . 1、请写出公路l 长度的函数解析式(t)f ,并写出其定义域;2、当t 为何值时,公路l 的长度最短?求出最短长度.18、(本小题满分16分)如图,在平面直角坐标系xoy 中,已知椭圆22221(0)x y a b a b+=>> 232F l 的离心率为,且右焦点到左准线的距离为 (1)求椭圆的标准方程;2,F l AB P C PC AB AB =(2)过的直线与椭圆交于A,B 两点,线段AB 的垂直平分线分别交直线和于点,,若求直线的方程19、(本小题满分16分)32()(,)f x x ax b a b R =++∈已知函数(1)()f x 试讨论的单调性;(c )()33--+22b c a a f x a =-∞⋃⋃∞(2)若实数是与无关的常数,当函数有三个不同的零点时,的取值范围恰好是(,3)(1,)(,),求c 的值20、(本小题满分16分)()()3124123423411234,,,(0)122222,,,a a a a a a a a d d a d a a a a ≠设是各项为正数且公差为的等差数列证明:,,,依次构成等比数列;是否存在,,使得依次构成等比数列?并说明理由;。
江苏省四市2015届高三第一次调研考试(一模)数学试题及答案
徐州、淮安、宿迁、连云港四市2015届高三第一次模拟考试数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.不需写出解题过程,请把答案直接填写在答题卡相应位置上,1.己知集合{}{}0,1,2,3,2,3,4,5A B ==,则AB 中元素的个数为_______.2.设复数z 满足(4)32i z i -=+(i 是虚数单位),则z 的虚部为_______.3.如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为_______.4.某用人单位从甲、乙、丙、丁4名应聘者中招聘2人,若每名应聘者被录用的机会均等,则甲、乙2人中至少有1入被录用的概率为_______.5.如图是一个算法的流程图,若输入x 的值为2,则输出y 的值为_____.6. 已知圆锥的轴截面是边长为2的正三角形,则该圆锥的体积为______. 7. 已知()f x 是定义在R 上的奇函数,当0x <时,2()log (2)f x x =-,则(0)(2)f f +的值为_____. 8. 在等差数列{}n a 中,已知2811a a +=,则3113a a +的值为______. 9. 若实数,x y 满足40x y +-³,则226210z x y x y =++-+的最小值为_____. 10. 已知椭圆22221(0)x y a b a b +=>>,点12,,,A B B F 依次为其左顶点、下顶点、上顶点和右焦点,若直线2AB 与直线1B F 的交点恰在椭圆的右准线上,则椭圆的离心率为______. 11.将函数2sin()(0)4y x pw w =->的图象分别向左、向右各平移4p个单位长度后,所得的两个图象对称轴重合,则w 的最小值为______.12.己知a ,b 为正数,且直线60ax by +-=与直线2(3)50x b y +-+=互相平行,则2a +3b 的最小值为________. 13.已知函数22,0,()2,0x x f x x x x +ì-³ï=í<ïî,则不等式(())3f f x £的解集为______. 14.在△ABC 中,己知中,己知 3,45AC A =Ð=,点D 满足满足 2CD BD =,且,且 13AD =,则BC 的长为_______ .二、解答题:本大题共6小题.15~17每小题14分,18~20每小题16分,共计90分.请在答题卡指定的区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)分) 己知向量(1,(1,2sin 2sin ),(sin(),1)3a b p q q ==+,R q Î.(1)若a b ^,求tan q 的值:的值:(2)若//a b ,且(0,)2p qÎ,求q 的值.的值.16.(本小题满分14分)分)如图,在三棱锥P - ABC 中,已知平面PBC ^平面ABC . (1)若AB ^BC ,CD ^PB ,求证:CP ^P A :(2)若过点A 作直线上平面ABC ,求证:,求证: //平面PBC .17.(本小题满分14分) 在平面直角坐标系xOy 中,己知点(3,4),(9,0)A B -,C ,D 分别为线段OA ,OB 上的动点,且满足AC =BD . (1)若AC =4,求直线CD 的方程; (2)证明:D OCD 的外接圈恒过定点(异于原点O ). 18.(本小题满分16分) 如图,有一个长方形地块ABCD ,边AB 为2km ,AD 为4 4 km.km.,地块的一角是湿地(图中阴影部分),其边缘线AC 是以直线AD 为对称轴,以A 为顶点的抛物线的一部分.现要铺设一条过边缘线AC 上一点P 的直线型隔离带EF ,E ,F 分别在边AB ,BC 上(隔离带不能穿越湿地,且占地面积忽略不计).设点P 到边AD 的距离为t (单位:km),△BEF 的面积为S (单位: 2km ). (I)求S 关于t 的函数解析式,并指出该函数的定义域; (2)是否存在点P ,使隔离出的△BEF 面积S 超过32km ?并说明理由. 19.(本小题满分16分) 在数列{}na中,已知12211,2,nn n a a aaa n N l *++==+=+Î,l 为常数. (1)证明: 14,5,a a a 成等差数列; (2)设22n na a n c +-=,求数列,求数列 的前n 项和项和 n S ;(3)当0l ¹时,数列数列 {}1n a -中是否存在三项1111,1,1s t p a a a +++---成等比数列,且,,s t p 也成等比数列若存在,求出,,s t p 的值;若不存在,说明理由. 20.(本小题满分16分) 己知函数21()ln ,2f x x ax x a R =-+Î(1)若(1)0f =,求函数,求函数 ()f x 的单调递减区间; (2)若关于x 的不等式()1f x ax £-恒成立,求整数恒成立,求整数 a 的最小值: (3)若 2a =-,正实数,正实数 12,x x 满足满足 1212()()0f x f x x x ++=,证明: 12512x x -+³附加题部分21.【选做题】本题包括A, B, C, D 四小题,请选定其中两题,并在相应的答题区域内作答.解答时应写出文字说明、证明过程或演算步骤.A 选修4-1:几何证明选讲(本小题满分10分) 如图,O 是△ABC 的外接圆,AB = A C AC ,延长BC 到点D ,使得CD = AC ,连结AD 交O 于点E .求证:BE 平分ÐABC .B.选修4-2:矩阵与变换(本小题满分10分) 已知,a b R Î,矩阵1 3a A b -éù=êúëû所对应的变换A T 将直线将直线 10x y --=变换为自身,求a ,b 的值。
江苏省启东市启东中学2015届高三数学下学期期初调研测试试卷 理
江苏省启东市启东中学2015届高三数学下学期期初调研测试试卷 理注 意 事 项1.本试卷包含填空题(第1题~第14题,共14题)、解答题(第15题~第20题,共6题),总分160分,考试时间为120分钟.2.答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米签字笔填写在答题纸上.3.请认真核对监考员所粘贴的条形码上的姓名、考试证号是否与您本人的相符.4.请用书写黑色字迹的0.5毫米签字笔在答题卡纸的指定位置答题,在其它位置作答一律无效.一、填空题:本大题共14小题,每小题5分,共70分。
不需写出解答过程,请把答案直接填写在答题卡相应位置上。
1.已知集合A ={x|log2x≤2},B =(-∞,a),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c = ▲ . 2.由命题“∃x ∈R ,x2+2x +m ≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a = ▲ .3.底面边长为2 m ,高为1 m 的正三棱锥的全面积为 ▲ m2.4.圆x2+y2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a = ▲ . 5.已知△ABC 中,∠B =45°,AC =4,则△ABC 面积的最大值为 ▲ .6.设常数a 使方程 a x x =+cos 3sin 在闭区间]2,0[π上恰有三个解321,,x x x ,则=++321x x x ▲ .7. 已知函数⎪⎩⎪⎨⎧<-≥=2)1(223x x x xy ,若关于x 的方程f(x)=k 有两个不同的实根,则实数k 的取值范围是 ▲ .8.已知平面上四个互异的点A 、B 、C 、D 满足:()()20AB AC AD BD CD -⋅--=,则ABC ∆ 的形状是 ▲ .9.设y x ,均为正实数,且33122x y +=++,则xy 的最小值为 ▲ .10.在矩形ABCD 中,对角线AC 与相邻两边所成的角为α,β,则有cos2α+cos2β=1. 类比到空间中的一个正确命题是:在长方 体ABCD-A1B1C1D1中,对角线AC1与相邻三个面所成的角为α,β,γ,则cos2α+cos2β+cos2γ= ▲ _.11.已知点(,4)P m 是椭圆22221+=x y ab (0)>>a b 12,F F 是椭圆的两个焦点,若12∆PF F 的内切圆的半径为32,则此椭圆的离心率为 ▲ .12.若函数)1ln(2ln )(+-=x kxx f 不存在零点,则实数k 的取值范围是 ▲ .13.函数xe x xf 2)(=在区间)1,(+a a 上存在极值点,则实数a 的取值范围为 ▲ . 14.设定义域为),0(+∞的单调函数)(x f ,对任意),0(+∞∈x ,都有6]log )([2=-x x f f ,若0x 是方程4)()(='-x f x f 的一个解,且))(1,(*0N a a a x ∈+∈,则实数a = ▲ . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答. 解答时应写出 文字说明、证明过程或演算步骤.15.(本小题满分为14分)已知定义域为R 的函数f(x)=-2x +b2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k 的取值范围.16.(本小题满分为14分)已知函数)50)(36cos(2)(≤≤+=x x f ππ,点B A ,分别是函数)(x f y =图象上的最高点和最低点.(1)求点B A ,的坐标以及OB OA ⋅的值;(2)设点B A ,分别在角])2,0[,(,πβαβα∈的终边上,求)22sin(βα-的值.17.(本小题满分为14分)如图1所示,在Rt △ABC 中,AC =6,BC =3,∠ABC =90°,CD 为∠ACB 的平分线,点E 在线段AC 上,CE =4.如图2所示,将△BCD 沿CD 折起,使得平面BCD ⊥平面ACD ,连结AB ,设点F 是AB 的中点.(1)求证:DE ⊥平面BCD ;(2)在图2中,若EF ∥平面BDG ,其中G 为直线AC 与平面BDG 的交点,求三棱锥B-DEG 的体积.18.(本小题满分为16分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为:⎪⎩⎪⎨⎧∈+-∈+-=]500,144[8000020021)144,120[50408031223x x x x x x x y ,且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低? 19.(本小题满分为16分)设A ,B 分别为椭圆22221+=x y a b (0)>>a b 的左、右顶点,椭圆的长轴长为4,且点在该椭圆上.(1)求椭圆的方程;(2)设P 为直线4=x 上不同于点(4,0)的任意一点,若直线AP 与椭圆相交于异于A 的点M ,证明:△MBP 为钝角三角形.20.(本小题满分为16分)已知函数x a x x f ln 21)(2+=.(1)若1-=a ,求函数)(x f 的极值,并指出极大值还是极小值; (2)若1=a ,求函数)(x f 在],1[e 上的最值;(3)若1=a ,求证:在区间),1[+∞上,函数)(x f 的图象在332)(xx g =的图象下方.2015届高三第二学期期初调研测试数学(Ⅱ)加试题22.(本小题满分为10分)如图,将长为4,宽为1的长方形折叠成长方体ABCD-A1B1C1D1的四个侧面,记底面上一边(),02AB t t=<<,连接A1B,A1C,A1D.(1)当长方体ABCD-A1B1C1D1的体积最大时,求二面角B-A1C-D的值;(2)线段A1C上是否存在一点P,使得A1C⊥平面BPD,若有,求出P点的位置,没有请说23.(本小题满分为10分)设数列}{na的前n项和为nS,已知λ+=+nnSS12(*N∈n,λ为常数),21=a,12=a.(1)求数列}{na的通项公式;(2)求所有满足等式111+=--+mnnamSmS成立的正整数m,n.C1AB CDA1B1D12015届高三寒假作业测试答案 数学(Ⅰ)试题1.答案:4;由log2x≤2,得0<x≤4,即A ={x|0<x≤4},而B =(-∞,a),由于A ⊆B ,则a>4,即c =4;2. 答案:1;由题意得命题“∀x ∈ R ,x2+2x +m>0”是真命题,所以Δ=4-4m<0,即m>1,故实数m 的取值范围是(1,+∞),从而实数a 的值为1.3. 答案:33;由条件得斜高为32)33(12=+ (m).从而全面积S =34×22+3×12×2×23=3 3 (m2).4. 答案:-4;圆的标准方程为(x +1)2+(y -1)2=2-a ,r2=2-a ,则圆心(-1,1)到直线x +y+2=0的距离为|-1+1+2|2= 2.由22+(2)2=2-a ,得a =-4.5. 答案:4+;BC AB BC AB S ⨯=⨯=424sin 21π,BC AB BC AB ⨯-+=2164cos 22π,得BC AB BC AB BC AB ⨯≥+=⨯+221622,)22(8+≤⨯BC AB ,6. 答案:37π;ax x x x x =+=+=+)3sin(2)cos 23sin 21(2cos 3sin π,直线与三角函数图象的交点,在]2,0[π上,当3=a 时,直线与三角函数图象恰有三个交点,令32323)3sin(ππππ+=+⇒=+k x x 或)(3223Z k k x ∈+=+πππ,即πk x 2=或)(32Z k k x ∈+=ππ,∴此时ππ2,3,0321===x x x ,37321π=++∴x x x .7. 答案:(0,1),解析 画出分段函数f(x)的图象如图所示,结合图象 可以看出,若f(x)=k 有两个不同的实根,也即函数y =f(x)的图象 与y =k 有两个不同的交点,k 的取值范围为(0,1). 8. 答案:等腰三角形;ACAB DC AD DB AD CD BD AD +=+++=--)()(2,BC AC AB =-,由()()20AB AC AD BD CD -⋅--= ,即)(AC AB BC +⊥,由四边形垂直平分可得ABC ∆的是等腰三角形.9.答案:16;法一;由33122x y +=++化为xy y x xy 28≥+=-,因y x ,均为正实数,故4≥xy ;法二:由于33122x y+=++和xy 都是对称式,故令x=y=4.10.答案:2;设长方体的棱长分别为a ,b ,c ,如图所示,所以AC1与下底 面所成角为∠C1AC ,记为α,所以cos2α=AC2AC21=a2+b2a2+b2+c2,同理cos2 β=a2+c2a2+b2+c2,cos2γ=b2+c2a2+b2+c2,所以cos2α+cos2β+cos2γ=2.答案:cos2α+cos2β+cos2γ=211. 答案:35;一方面12∆PF F 的面积为1(22)2a c r +⋅;另一方面12∆PF F 的面积为122⋅p y c,11(22)222+⋅=⋅p a c r y c ,∴()+⋅=⋅p a c r y c ,∴+=p y a c c r ,∴(1)+=p y a c r ,又4=p y ∴4511332p y a c r =-=-=,∴椭圆的离心率为35==c e a . 12. 答案:)4,0(;由题意可知⎪⎪⎩⎪⎪⎨⎧+=>+>)1ln(2ln 010x kx x kx ,解得1->x 且0≠x ,由对数的性质可得2)1ln()1ln(2ln +=+=x x kx ,可得2)1(+=x kx )0,1(,21)1(2≠->++=+=⇒x x x x x x k由于,21-<+x x 或02121<++⇒≥+x x x x 或421≥++x x , 要使函数)1ln(2ln )(+-=x kx x f 不存在零点,只需k 取21++x x 取值集合的补集,即}40|{<≤k x ,当0=k 时,函数无意义,故k 的取值范围应为:)4,0(13. 答案:)0,1()2,3(-⋃--;函数x e x x f 2)(=的导数为)2(22+=+='x xe e x xe y xx x ,令0='y ,则0=x 或2-=x ,当)0,2(-∈x 时)(x f 单调递减,当)2,(--∞∈x 和),0(+∞∈x 时)(x f 单调递增0∴和2是函数的极值点,因为函数x e x x f 2)(=在区间)1,(+a a 上存在极值点,所以12+<-<a a 或2310-<<-⇒+<<a a a 或01<<-a ,14. 答案:1;对任意的),0(+∞∈x ,都有6]log )([2=-x x f f ,又由)(x f 是定义在),0(+∞上的单调函数,则x x f 2log )(-为定值,设x x f t 2log )(-=,则x t x f 2log )(+=,又由6)(=t f ,可得6log 2=+t t ,可解得4=t ,故2ln 1)(,log 4)(2x x f x x f ='+=,又0x 是方程4)()(='-x f x f 的一个解,所以0x 是函数2ln 1log 4)()()(2x x x f x f x F -=-'-=的零点,分析易得04ln 112ln 211)2(,02ln 1)1(>-=-=<-=F F ,故函数)(x F 的零点介于)2,1(之间,故1=a ,故答案为:1二、解答题:15. 解 (1)因为f(x)是奇函数,且定义域为R ,所以f(0)=0,-------------------------2分 即-1+b2+a=0,解得b =1. ---------------------------------------------------------4分 从而有f(x)=-2x +12x +1+a .又由f(1)=-f(-1)知-2+14+a =--12+11+a ,解得a =2----6分经检验适合题意,∴a =2,b =1.-------------------------------------------------------7分 (2)由(1)知f(x)=-2x +12x +1+2=-12+12x +1.由上式易知f(x)在(-∞,+∞)上为减函数.又因f(x)是奇函数,从而不等式f(t2-2t)+f(2t2-k)<0等价于f(t2-2t)<-f(2t2-k)=f(-2t2+k).-----10分 因为f(x)是减函数,由上式推得t2-2t>-2t2+k.即对一切t ∈R 有3t2-2t -k>0.------------------------------------------------------------12分 从而判别式Δ=4+12k<0,解得k<-13---------------------------------------------------14分17. 解:(1)证明:在题图1中,因为AC =6,BC =3,∠ABC =90°, 所以∠ACB =60°.因为CD 为∠ACB 的平分线,所以∠BCD =∠ACD =30°,所以CD =2 3.------------------------==--------------------------------------------------2分 又因为CE =4,∠DCE =30°,所以DE =2.则CD2+DE2=CE2,所以∠CDE =90°,即DE ⊥CD.-------------=-----------------------------------------5分在题图2中,因为平面BCD ⊥平面ACD ,平面BCD∩平面ACD =CD ,DE ⊂平面ACD ,所以DE ⊥平面BCD.--------------------------------======----------------------------------7分 (2)在题图2中,因为EF ∥平面BDG ,EF ⊂平面ABC ,平面ABC∩平面BDG =BG ,所以EF ∥BG.--------------10分 因为点E 在线段AC 上,CE =4,点F 是AB 的中点, 所以AE =EG =CG =2.过点B 作BH ⊥CD 交于点H.因为平面BCD ⊥平面ACD ,BH ⊂平面BCD ,所以BH ⊥平面ACD.-------------------------==-------------------------------------12分 由条件得BH =32.又S △DEG =13S △ACD =13×12AC·CD·sin 30°=3,所以三棱锥B-DEG 的体积为V =13S △DEG·BH =13×3×32=32.-------=------14分 18. 解 (1)当x ∈[200,300]时,设该项目获利为S ,则S =200x -⎪⎭⎫ ⎝⎛+-80000200212x x =-12x2+400x -80 000=-12(x -400)2, 所以当x ∈[200,300]时,S<0,因此该单位不会获利.--------------------------3分当x =300时,S 取得最大值-5 000,----------------------------------------------5分 所以国家每月至少补贴5 000元才能使该项目不亏损.-------------------------7分 (2)由题意可知二氧化碳的每吨处理成本为⎪⎩⎪⎨⎧∈-+∈+-=]500,144[2008000021)144,120[504080312x x x x x x x y -------------------------------------------9分①当x ∈[120,144)时,y x =13x2-80x +5 040=13(x -120)2+240,所以当x =120时,yx 取得最小值240.-------------------------------------------------12分 ②当x ∈[144,500]时,y x =12x +80 000x -200≥212x×80 000x -200=200,当且仅当12x =80 000x ,即x =400时,yx 取得最小值200.因为200<240,------15分 答:当每月的处理量为400吨时,才能使每吨的平均处理成本最低.----------16分19.解析:(1)由题意:24=a ,所以2=a .所求椭圆方程为22214+=x y b .又点在椭圆上,可得21=b .所求椭圆方程为2214+=x y .-----------5分 (2)证明:由(1)知:(2,0),(2,0)-A B .设(4,)P t ,(,)M M M x y . 则直线PA 的方程为:(2)6=+ty x .--------------------------------------------------7分由22(2),644,⎧=+⎪⎨⎪+=⎩t y x x y 得2222(9)44360+++-=t x t x t .----------------------------------8分 因为直线PA 与椭圆相交于异于A 的点M ,所以22429--+=+M t x t ,所以222189-+=+M t x t .----------------------------------------10分 由(2)6=+M M t y x ,得269=+M ty t .所以2222186(,)99-+++t t M t t .从而22246(,)99=-++ t t BM t t ,(2,)= BP t .------------------------------------------12分所以22228699⋅=-+++ t t BM BP t t 22209=-<+t t .------------------------------------14分 又,,M B P 三点不共线,所以∠MBP 为钝角.-------------------------------------15分 所以△MBP 为钝角三角形.----------------------------------------------------------16分20. 解:(1))(x f 的定义域是),0(+∞x x x x x x x x f )1)(1(11)(2-+=-=-='当)1,0(∈x 时)(0)(x f x f ⇒<'在)1,0(上递减;-------------------------------2分 当),1(+∞∈x 时)(0)(x f x f ⇒>' 在),1(+∞上递增, )(x f ∴的极小值是21)1(=f ,无极大值.------------------------------------------4分(2)01)(ln 21)(2>+='⇒+=x x x f x x x f 恒成立对],1[e x ∈,)(x f ∴在],1[e 上递增,------------------------------------------------------------------6分.21)1()(,121)()(min 2max ==+==∴f x f e e f x f --------------------------------10分(3)证明:令)1(32ln 21)()()(32≥-+=-=x x x x x g x f x h)12)(1(1221)(2232≤++--=++-=-+='x x x x x x x x x x x h 在),1[+∞上恒成立,)(x h ∴在区间),1[+∞上递减,-----------------------------------------------------------12分 0613221)1()(<-=-=≤∴h x h -----------------------------------------------------------15分∴在区间),1[+∞上,函数)(x f 的图象在332)(xx g =的图象下方--------------16分数学(Ⅱ)加试题21.(本小题共2小题,满分20分).B .解:由特征值、特征向量定义可知,A 1α1λ=1α,即11111 a b c d ⎡⎤⎡⎤⎡⎤=-⨯⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11.a b c d -=-⎧⎨-=⎩,------------------5分同理可得3212328a b c d +=⎧⎨+=⎩,, 解得2321,, , a b c d ====. 因此ad -bc =2-6=-4. ---------------------10分 C .解:(1)消去参数得直线l 的直角坐标方程:x y 3=- --------2分由⎩⎨⎧==θρθρsin cos y x 代入得 θρθρcos 3sin =)(3R ∈=⇒ρπθ.( 也可以是:3πθ=或)0(34≥=ρπθ) ----------------5分(2)⎪⎩⎪⎨⎧==--+303sin 2sin cos 2222πθθρθρθρ得0332=--ρρ -----------------------------7分 设)3,(1πρA ,)3,(2πρB , 则154)(||||2122121=--=-=ρρρρρρAB . ------10分 (若学生化成直角坐标方程求解,按步骤对应给分) 22.解:根据题意可知,AA1, AB,AD 两两垂直, 以AB 为x 轴,AD 为y 轴,AA1为z 轴建立如图所示 的空间直角坐标系:(1)长方体体积为()()2221212t t V t t t t +-⎛⎫=-⨯=-≤= ⎪⎝⎭当且仅当2t t =-,即1t =时体积V 有最大值为1 -----------------------1分 所以当长方体ABCD-A1B1C1D1的体积最大时,底面四边形ABCD 为正方形 则()()()()()110,0,1,1,0,0,1,1,0,1,0,1,0,1,0A B C A B BC =-=,设平面A1BC 的法向量(),,m x y z =,则00x z y -=⎧⎨=⎩,取1x z ==,得:()1,0,1m = , 同理可得平面A1CD 的法向量()0,1,1n =所以,1cos ,2m n m n m n ⋅==⋅-----------------------------4分又二面角B-A1C-D 为钝角,故值是120︒ ---------------------------5分 (也可以通过证明B1A ⊥平面A1BC 写出平面A1BC 的法向量) (2)根据题意有()()(),0,0,,2,0,0,2,0B t C t t D t --,若线段A1C 上存在一点P 满足要求,不妨11A P AC λ=,可得()(),2,1P t t λλλ-- ()()(),2,1,,2,0BP t t t BD t t λλλ=---=--1100BP A C BD A C ⎧⋅=⎪⎨⋅=⎪⎩ 即:()()()()22221020t t t t t t λλλ⎧-+---=⎪⎨-+-=⎪⎩解得:21,3t λ==------------------------------------------------------------------9分即只有当底面四边形是正方形时才有符合要求的点P , 位置是线段A1C 上1:2:1A P PC =处. ---------------------------------------------10分当2=m 时,由(*)得622=⨯n,所以无正整数解; 当3=m 时,由(*)得82=n,所以3=n .综上可知,存在符合条件的正整数3==n m . ---------------------------10分。
2015年高考数学江苏卷含答案
.
答案:9√3.
建议解法:������������
=
(cos
������π 6
,
√2
sin(
������π 6
+
π 4
)),������������+1
=
(cos
(������
+ 6
1)π
,
√2 sin( (������
+ 1)π 6
+
π 4
)),
所以
������������
⋅
������������+1
.
答案:√5. 建议解法:因为 |������|2 = |������2| = √32 + 42 = 5,所以 |������| = √5.
S 数学 I 试卷 第 1 页(共 11 页)
4. 根据如图所示的伪代码,可知输出的结果 ������ 为
答案:7. 建议解法:列表如下:
������ 1 3 5 7 ������ 1 4 7 10 当 ������ = 10 时,循环结束,此时 ������ = 7.
2. 答题前,请您务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定 位置。
3. 请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。 4. 作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其它位置作答一律无
效。 5. 如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
1)π
+
1 2
cos
(2������
+ 6
1)π
2015年江苏高考数学试题及答案word精校版(江苏卷)
2015年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ试题参考公式圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高。
圆锥的体积公式:V 圆锥13Sh ,其中S 是圆锥的底面积,h 为高。
一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.已知集合{}123A =,,,{}245B =,,,则集合AB 中元素的个数为_______.2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.4.根据如图所示的伪代码,可知输出的结果S 为________.5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.6.已知向量a v =(2,1),b v =(1,-2),若ma nb +v v=(9,-8)(m ,n ∈R ),则m-n 的值为______. 7.不等式224x x-<的解集为________.8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。
若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 。
10.在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 。
11.数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 前10项的和为 。
12.在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点。
若点P 到直线01=+-y x 的距离大于c 恒成立,则是实数c 的最大值为 。
2015年江苏高考数学真题及答案(精校版)
2015年江苏高考数学真题及答案(精校版)2绝密★启用前2015年普通高等学校招生全国统一考试(江苏卷)数学I参考公式: 圆柱的体积公式:shV=圆柱,其中s 为圆柱的表面积,h 为高. 圆锥的体积公式:sh V 31=圆锥,其中s 为圆锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置.......注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含填空题(第1题—第14题)、解答题(第15题 - 第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回. 2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字3上.. 1. 已知集合{}3,2,1=A ,{}5,4,2=B ,则集合BA Y 中元素的个数为 ▲ .2. 已知一组数据4, 6, 5, 8, 7, 6,则这组数据的平均数为 ▲ .3. 设复数z 满足iz 432+=(i 是虚数单位),则z 的模为 ▲ .4. 根据如图所示的伪代码,可知输出的结果S 为 ▲ .5. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球. 从中一次随机摸出2只球,则这2只球颜色不同的概率为 ▲ . 6. 已知向量a =)1,2(,b=)2,1(-, 若ma +nb =)8,9(-(R n m ∈,), nm -的值为 ▲ .7. 不等式422<-xx 的解集为 ▲ .1←S1←IWhile48. 已知2tan -=α,71)tan(=+βα,则βtan 的值为▲ .9. 现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个. 若将它们重新制作成总体积和高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 ▲ . 10. 在平面直角坐标系x O y 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 ▲ . 11. 设数列{}na 满足11=a,且11+=-+n a an n (*N n ∈), 则数列⎭⎬⎫⎩⎨⎧na1前10项的和为 ▲ .12. 在平面直角坐标系x O y 中,P 为双曲线122=-y x 右支上的一个动点,若点P 到直线51=+-y x 的距离大于c 恒成立,则实数c 的最大值为 ▲ . 13. 已知函数x x f ln )(=,⎪⎩⎪⎨⎧>--≤<=,1,24,10,0)(2x x x x g ,则方程1)()(=+x g x f 实根的个数为 ▲ .14. 设向量a k=(6cos 6sin ,6cos πππk k k +),(12,,2,1,0Λ=k ),则∑=+⋅111)(k k ka a的值为▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分) 在ABC ∆中,已知ο60,3,2===A AC AB .(1)求BC 的长; (2)求C 2sin 的值.616.(本题满分14分)如图,在直三棱柱111C B A ABC -中,已知BC AC⊥, 1CC BC =,设1AB 的中点为D ,E BCC B =11I . 求证:(1)C C AA DE 11//平面;(2)11AB BC ⊥.17.(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建 一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边 界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l ,的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l ,所在的直线分别为x ,y 轴,建立平面直角ABCDEA BC7坐标系xOy ,假设曲线C 符合函数2a y xb =+(其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t .①请写出公路l 长度的函数解析式()f t ,并写出其定义域;②当t 为何值时,公路l 的长度最短?求出最短长度.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b+=>>2,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;8(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于 点P ,C ,若PC =2AB ,求直线AB 的方程.19.(本小题满分16分) 已知函数),()(23R b a b ax xx f ∈++=.(1)试讨论)(x f 的单调性;BAO x ylP C9(2)若a c b -=(实数c 是a 与无关的常数),当函数)(x f 有三个不同的零点时,a的取值范围恰好是),23()23,1()3,(+∞--∞Y Y ,求c 的值.20.(本小题满分16分)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列(1)证明:31242,2,2,2a a a a 依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a aa a 依次成等比10数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得kn k n k n n a a a a 342321,,,+++依次成等比数列,并说明理由.★ 启用前绝密2015年普通高等学校招生全国统一考试(江苏卷) 数学II21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.(选修4—1:几何证明选讲)如图,在ABC ∆中,AC AB =,ABC ∆的外接圆圆O 的弦AE 交BC 于点D求证:ABD ∆∽AEB ∆ 注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1. 本试卷只有解答题,供理工方向考生使用.本试卷第21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回. 2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试B .(选修4—2:矩阵与变换)已知R y x ∈,,向量⎥⎦⎤⎢⎣⎡-=11α是矩阵⎢⎣⎡⎥⎦⎤=01y x A 的属性特征值2-的一个特征向量,矩阵A 以及它的另一个特征值.C .(选修4—4:坐标系与参数方程)已知圆C 的极坐标方程为222sin()404πρρθ+--=,求圆C 的半径. AB C ED O (第21D.(选修4—5:不等式选讲)解不等式|23|3x x ++≥【必做题】第22、23题,每小题10分,计20分.请把答案写在答题....卡.的指定区域内....... 22.(本小题满分10分)如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯 形,2ABC BAD π∠=∠=,2,1PA AD AB BC ==== (1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长23.(本小题满分10分) 已知集合{}3,2,1=X ,{})(,,3,2,1*N n n Yn ∈=Λ,{,),(a b b a b a S n 整除或整除= }n Y b X a ∈∈,,令()f n 表示集合n S 所含元素的个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.PAB C D Q。
(完整word)2015年江苏省高考数学试卷答案与解析.doc
2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015?江苏)已知集合A={1 , 2, 3}, B={2 , 4, 5},则集合AU B中元素的个数为 _考点:并集及其运算.专题:集合.分析:求出A U B,再明确元素个数解答:解:集合A={1 , 2, 3} , B={2 , 4, 5},则A U B={1 , 2, 3, 4,5};所以AUB中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(2015?江苏)已知一组数据4, 6, 5, 8, 7, 6,那么这组数据的平均数为_6_考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4, 6, 5, 8, 7, 6,那么这组数据的平均数为:44-6+548+7^6 =6>6故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(2015?江苏)设复数z满足z2=3+4i ( i是虚数单位),则z的模为一. 考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i ,可得lzllzl=l3+4il=Jj莓梓巧,A lzl=^故答案为:•街点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(2015?江苏)根据如图所示的伪代码,可知输出的结果S为7WTulft Z<Sgg 4 2冲+ 3End ^hile Print S考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I, S的值,当1=10时不满足条件IV 8,退出循环,输出S的值为7・解答:解:模拟执行程序,可得S = 1, 1=1满足条件1< 8, S=3, 1=4满足条件1< 8, S=5, 1=7满足条件I < 8, S=7, 1=1不满足条件1<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(2015?江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为虫・考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可. 解答:解:根据题意,记白球为A,红球为B,黄球为Cl、C2,则一次取出2只球,基本事件为AB、AC1、AC 2、BC1、BC2、C1C2共6不申,其中2只球的颜色不同的是AB、AC 1、AC 2、BC1、BC2共5种;所以所求的概率是P伞.故答案为:卫.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5 分)(2015?江苏)已知向量3= ( 2, 1) , b= ( 1, - 2),若( 9, - 8) ( m, neR),则m - n的值为_H—考点:平面向量的基本定理及其意义. 专题:平面向量及应用.分析: 解答: 直接利用向量的坐标运算,求解即可.解:向量-2),点评2n可得,解得m=2, n=5,考查计算能力.< 4的解集为(- 1, 2).8. (5分)(2015?江苏)已知3 2, tan考点:指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2 - x< 2,求解即可.解答:x2 -K解;V2 <4,2・・・x - x< 2,7即x - x - 2< 0,解得:- 1< x<2故答案为:(- 1, 2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:〒解:tan a = - 2, tan ( a + 3 )'=,可知(an( a + 0)L- tan ^ tanP =T,即l+2tan® = 7,解得tan B =3. 故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.7.9. (5分)(2015?江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个, 若将它们重新制作成总押只与高均保持不变, 但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为考点:棱柱、棱锥、棱台的体积.2 11.(5 分)(2015?江)数列{a 1}足 a*),数列{ 丄}的前10的和 20—考点:数列的求和;数列推式.:等差数列与等比数列. 分析:務別J数歹 I {a n1n+1 n}足 a =1,且 a a =n+l (n WN 利用“裂求和”即可得出. *),利用“累加求和”可得an n解答:解:•* an=n二 当 n 》2 ,n (n+1)当n=l ,上式也成立,解答:解:由意可知,原来和柱的体和: 吉心5冗1, 0)心且与直 mx y(x 1) ?+y 2=2分析:求出心到直的距离 d 的解答::算;空位置关系与距离.分析:由 意求出原来柱和 的体,出新的柱和 的底面半径r,求出体,由前后体相等列式求得r.新和柱的底面半径 r,新和柱的体和: —X4K r 2+8^ r ?二竺仝 |3 3•••空£$竺,解得:rWr-33故答案:低 点:本 考了柱与 的体公式,是基的算.10. ( 5分)(2015?江)在平面直角坐系 xOy 中,以点( 2m 1=0 ( mWR )相切的所有中,半径最大的的准方程考点:的准方程;的切方程.:算;直与.故答案:(x1) +y=2 . 点:本 考所的准方程,考点到直的距离公式,考学生的算能力,比基.解:心到直的距离 x 1) +y =2.a n n. (n+1)2[(「扣20故答案为:n 项和公7 7 12. (5x -y+l=』-占)• ・・・数列{ 1 }的前n 项的和S =n2n ~n+l数列{—-)的前io 项的和为22.务1120点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前 查了推理能力与计算能力,属于中档题.右支上的一个动点,若点P 到直线x- y+l=0的距离大于c 恒成立,则实数c 的最大值为 丄 考点:双曲线的简单性质. 专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线x - y =1的渐近线方程为 x±y=o, c 的最大值为直线 的距离. 解答:解:由题意,双曲线x 2- y 2=l 的渐近线方程为x±y=0 , 因为点P 到直线x- y+l=0的距离大于c 恒成立,所以c 的最大值为直线x-y+l=0与直线x- y=0的距离,即 故答案为:愛.|2点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.a o<x<i13. ( 5分)(2015?江苏)已知函数亍(x) =llnxl , g ( x) 4.,则方程| x 24 | =2, X^>1If ( x) +g ( x) 1=1实根的个数为4 .考点:根的存在性及根的个数判断. 专题:综合题;函数的性质及应用.分析::由lf(x)+g(x) 1=1可得g (x) = - f ( X)± 1 ,分别作出函数的图象,即可得出 结论. 解答:解:由 If ( x) +g ( x) 1 = 1 可得 g ( x) = - f ( X) ± 1 .g( X)与h ( x) = - f ( x) +1的图象如图所示,图象有两个交点;-4」Jg(x)与(f) ( x) = f(x) 1的象如所示,象有两个交点;•4_-S L所以方程lf( x) +g ( x) 1=1根的个数 4.故答案:4.点:本考求方程lf( x)+g(x)l=l根的个数,考数形合的数学思想,考学生分析解决的能力, 属于中档•—k开上兀fi G罠14.(5 分)(2015?江)向量=(cos ° , sin ° +cos ° ) ( k=0, 1, 2,…,12),11£ _皿_k=0( ak?ak+i)的・考数列的求和.点■等差数列与等比数列;平面向量及用.■■分利用向量数量运算性、两角和差的正弦公式、化和差公式、三角函数的周期性即可析得出.解解:=k 兀飞.k 冗 (k+1)冗 sin~g- cos-------------- ----kTT (k+1)兀kH(k+1) cos 可・cos p+sirr ---- 一 kTl . (k+1)兀kTl (k+n Kcos p sin 1GOJs QOS g2・3H ・咔・97T,+5开C05_T.¥开丄・11兀 sinrV 11兀丄 I -.13H 1-+化和差公6 | ・k 兀 k 兀、厂.(k+1)兀siri ——+cos —— J ( sm --------- ---- cos --6 6 6 6 7T —+JI_3、范・ 2k+1l 1 2H1TT二、解答(本大共 6小,共 90分,解答 写出文字明、明程或演算步)15. ( 14 分)(2015?江)在 AABC 中,已知 AB=2 , AC=3 , A=60 ° .(1) 求BC 的; (2) 求 sin2C 的.考点:余弦定理的用;二倍角的正弦. :解三角形.・ 2k+L 仃」/ _2k+l “丄 n .= COS"^S1 _— n+7; ^cos -17+COS —''分析:(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数,然后利用一倍角公式求解即可.解答・•解:(1)由余弦定理可得:BC 2=AB 2+AC 2 2AB ?ACcosA=4+8 2X2X3^: =7, 所以BC=听.(2)由正弦定理可得:••• AB < BC , C 角,16.( 14ABC -A [B则cosC=71- sin2C=^l -孑等•因此sin2C=2sinCcosC=2 ・7 7 7点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE〃AC ,即证DE〃平面AA1C1C;(2)先由直三棱柱得出CC1丄平面ABC ,即证AC丄CC1;再证明AC丄平面BCC1B 1, 即证BC 1丄AC ;最后证明BC1丄平面B 1AC ,即可证出BC 1丄AB 1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE〃AC;又因为DE ?平面AA 1C1C, AC ?平面AA 1C1C,所以DE 〃平面AA 1C1C;(2)因为棱柱ABC・A 1B1C1是直三棱柱,所以CC1丄平面ABC ,因为AC ?平面ABC ,所以AC丄CC1;又因为AC丄BC,CC1?平面BCC 1B1,BC ?平面BCC冷\BC ACC1=C,所以AC丄平面BCC 1B 1;又因为BC 1?平面平面BCC 1B1,所以BC 1丄AC ;因为BC=CC 1,所以矩形BCC 1B1是正方形,所以BC 1丄平面B1AC ;又因为AB 1?平面B1AC , 所以BC 1±AB 1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(2015?江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为11, 12,山区边界曲线为C,计划修建的公路为1,如图所示,M, N为C的两个端点,测得点M到11, 12的距离分别为5千米和40千米,点N到11, 12的距离分别为20千米和2.5千米,以12, 11在的直线分别为x, y轴,建立平面直角坐标系xOy ,假设曲线C符合函数尸」_,+b (其中a, b为常数)模型.(1)求a, b的值;(2)设公路1与曲线C相切于P点,P的横坐标为t.①请写出公路1长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路1的长度最短?求出最短长度.考点:函数与方程的综合运用.专题:综合题;导数的综合应用.分析:(1)由题意知,点M, N的坐标分别为(5, 40) ,(20, 2.5),将其分别代入yf ,x2+b 建立方程组,即可求a, b的值;(2)① 求出切线1的方程,可得A, B的坐标,即可写出公路1长度的函数解析式f(t),并写出其定义域;、 2 4X105②设g (t) --- ,利用导数,确定单调性,即可求出当{为何值时,公路1 的长度最短,并求岀最短长度.(20, 2.5),解答:解:(1)由题意知,点M, N的坐标分别为(5,(b= 0 =40 25+将其解得(2)v ,10QQ 2 X (5Wx W20):•寸-200・・・切y- 1000t 2_设在点PSt 2 ' .・・2=3t 2 +4XlQt e[5,②设g (t)t 4 6・,(t)iq/2)t e ( 5,o ,g((t) <0,t )是减函,20)时, g f( t) >x 2 y 218. (16分)(2015?江苏)如图,在平面直角坐标系xOy^4,已知椭圆a 2+b 2=l ( a>b> 0)的离心率为 2 ,且右焦点F 到左准线1的距离为3.(1) 求椭圆的标准方程;(2)过F 的直线与椭圆交于 A, B 两点,线段AB 的垂直平分线分别交直线1和AB 于点P,C,若PC=2琴鼻求直线 AB 的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程. 专题:直线与圆;圆锥曲线的定义、性质与方程. 分析:(1)运用离心率公式和准线方程,可得a, c 的方程,解得a, c,再由a, b, c 的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和屮点坐标公式,即可得到所求直线的方程.1 0a= V2则b=l ,即有椭圆方程将AB 方程代入椭圆方程可得(CP=3,不合题意;(x - 1) , A (xi, yi) , B ( X2, y2), 2AB : y=k 22 2 -4k x+21) =0,2(k 2 L+2k 22 娠 tl+k 2) 1+2 k 2若k=0 ,则AB 的垂直平分线为 y 轴,与左从而IPCd |k|(1+丄(2k 2l+2P (- 2」共二解答:解:(l)由题意可得,e2且c+生3,解得c=l,c此时AB 的方程为 y=x - 1或y= - x+1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用, 属于中档题. 19. (16 分)(2015?江苏)已知函数 f ( x) -x'+ax'+b (a, beR). (1)试讨论f ( x)的单调性;(2)若b=c-a (实数c 是与a 无关的常数),当函数f ( x)有三个不同的零点时,a 的取值 范围恰好是(- g, - 3) U (1上)U (J, +8),求c 的值.>2 2考点:利用导数研究函数的单调性;函数零点的判定定理. 专题:综合题;导数的综合应用.2(3k 2+ l)右+/4^2 <l+k 2) |k| (l+2k 2)~lt2k 2由 IPCI=2IABI,可得,解得k= ± 1,则Xl+X),且X1X2=严丿IABI =分析: (1)求导f (x)的单2a). _3 ?2(2)由(1)知,函数f ( X)的两个极值为f ( 0) =b, f (-+b,则函a=0 时,f ' ( x) > 0,・・・ f(X)在a> 0 时, xe (- )U( 0,・・・函数f2a(X)在(-8,-,(0, +8)a< 0 时, xe ( - < 0, ・・・函数f(X)在(-8,0), 2*(2)由 (1)知,函数f ( x)的两个极值为 f ( 0)二b, f (-2a-詈)上单调递减; 4 3+b,则函f( X)有三2a f ( o) f(・爷)=b(寻「27 +b) < 0, T b=c - a, 4 3・•・a> 0时,设 g ( a) 一 a+c, •・・函数8,U (T +°・••在(- 8,- 3)上,g+ 8)上g (a) > 0均恒成f ( x)有三个不同的零点等价于 f ( 0) f ( - g?) =b (吕 J +b) < 0,进一步转化为3274 14 T4 3a> 0 时,—a ' - a+c> 0 或 a V 0 时,—a" - a+c< 0・设 g ( a )- a+c,利用条件即可求c 的值.解答:解:(1) V f ( x) =x ^+ax^+b ,f z(x) =3x +2ax,令 f' (x) =0 ,可得 x=0 或3< 0,立,• • C = 1 y,f‘( x)此时f ( x) =x、+ax +1 - a= ( x+l ) [x + ( a - 1) x+1 - a],•・・函数有三个零点,9x_+ (a - 1) x+1 - a=0有两个异于-1的不等实根,•••△=( a 一1) z - 4 ( 1 - a) > 0,且(一1) — ( a - 1) +1 - aHO,20. ( (1) 证(2015?辽苏)设 a , a , ",2 幻,2 ", 22 al 1 2 ,,d,使得a , a (3)是否存在 说明理由.解答: 解解得 aG (- 8, 一 3) U ( 1,虽)U +8),2综上C = 1・点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.12 3 4a ・a 是各项为正数且公差为 d ( dHO)的等差数列.5依次构成等比数列; as 3, a/依次构成等比数列?并说明理由; nn+kn+2k n+3kai, d 及正整数n, k,使得ai , a2 , a3, a4依次构成等比数列?并考点:等比关系的确定;等比数列的性质. 专题:等差数列与等比数列.分析:(1)根据等比数列和等差数列的定义即可证明;7 3 4(2) 利用反证法,假设存在 an d 使得ai, a22, a3', af 依次构成等比数列,推岀矛 盾,否定假设,得到结论;(3) 利用反证法,假设存在 ai, d 及正整数n, k,使得ai a2n+k , a 3 n +2k, a 4n+3k 依 次构成等比数列,得到 ai n( al+2d ) n+2k 二(al+2d )2 n+k,且(al+d) n+k( al+3d )n+3k(ai+2d) 2(n+2k),利用等式以及对数的性质化简整理得到g( i +3t ) In ( l+2t) +3In (l+2t) In ( 1+t) =4In (l+3t) In ( 1+t) ,( ** ),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.n 監十1 . ——=2^n &a =2d, (n=l , 2, 3,)是同一个常数,/. 2 '】,2叫,2 %,2幻依次构成等比数列;(2) 令 al+d=a,则 al, a2, a3, a4 分别为 a - d, a, a+d, a+2d ( a> d, a> - 2d, d#0)假设存在ai i 22, a33, a4°依次构成等比数列,・d 便却a ・、43624则 a = ( a - d) ( a+d),且(a+d) =a ( a+2d),令 t=—,则 1= (1 - t ) ( 1+t ) 3,且(1+t) 6= ( l+2t) 4 ,(t< 1, tHO), 化简得 t ^+2t 2 - 2=0 ( * ),且 t^=t+l ,将 t^=t+l 代入(*)式,t ( t+I ) +2 ( t+l ) - 2=t^+3t=t4-14-3t=4t4-l =0 ,贝!J t= -显然匸-寺是上面方程的解,矛盾,所以假设不成立,7 34因此不存在ai, d,使得ai, a2 ,町',昭 依次构成等比数列. (3) 假设存在ai i n , a2n+K , a3n+2K , a4n+3K ^次构成等比数,d 及正整数n, k,使得a列,( ) ( ) rmi n / 小八 n+2K ( 小八 2 n+K 口 / 八 n+K z “、n+3K ( c i 、2 n+2K 则 ai ( ai+2d) = ( ai+2d) ,且(ai+d) ( ai+3d ) = ( ai+2d ) ,2 ' n+k ?2 ' n+2k ?d_ 1分别在两个等式的两边同除以=a 1 , ai ,并令吨;,(t> "3, tHO),则(l+2t )n+2k=( 1O (/ n-In ( (1+t 1+t ) ]=],+2t)In ( l++31n ( 1+t) , 则 g‘ z2[(l+3t) _ln ( (1+t) (l+2t) (l+3t)29 l+3t) - 3 ( l+2t) In ( l+2t)7 (1+t ) In ( 1+t ),则' (t 令 1号)-4)'> o,0) 1 (t), 2 2再将这两式相除,化简得,三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括 21・24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或 演算步骤【选修 4-1:几何证明选讲】21. ( 10分)(2015?江苏)如图,在AABC 中,AB=AC , △ ABC 的外接圆OO 的弦AE 交 BC 于点D.求证:△ ABD s △ AEB •考点:相似三角形的判定. 专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明:・/AB=AC ,・\ ZABD= ZC,又 T Z C=Z E, A Z ABD= Z E,又 Z BAE 是公共 角,22. ( 10分)(2015?江苏)已知~ax1 y 三R,向量X 1特征值-2的-1y 0是矩阵的属于分析: 通过令矩解答: 解:由已知,可得【选修P +2 P sin ( 7T -4=0,求可知:△ ABD s △ AEB .点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.考点:特征值与特征向量的计算.-1 1・・.矩阵A =L2 0一从而矩阵A 的特征多项式f (入)=(入+2) ( x - 1), ・・・矩阵A 的另一个特征值为1.点评:本题考查求矩阵及其特征值,注意解题方法的积累,属于屮档题.考点:简单曲线的极坐标方程. 专题:计算题;坐标系和参数方程.分析:先根据X 二p cos H , y= PsinB,厂求岀圆的直用坐标方程,求出半径. 解答:2寸空-y2解:圆的极坐标方程为 P +2 P sin ( H -) - 4=0 ,可得 P - 2 P cos B +2 P sin B -4=0 ,2 2化为直角坐标方程为 x +y - 2x+2y - 4=0 , 化为标准方程换(x- 1) ?+( y+i )2=6, 圆的半径r=.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x= P cos B , y= P sin 0 ,比较基础,[选修4・5:不等式选讲】24. ( 2015?江苏)解不等式 X +I2X +3I N2.考点:绝对值不等式的解法. 专题:不等式.【选修4-2:矩阵与变换】 -个特征向量,求矩阵 A 以及它的另一个特征值. 矩阵和变换.I a 利用A = - 2--- *1 ---- -- a a分析:思路1 (公式法):利用If ( X) I2g ( X) ? f ( X) 2g ( X),或f (x) W - g ( x); 思路2 (零点分段法):对x的值分“XV0”进行讨论求解.2 2解答:解法1: x+l2x+引22变形为I2x+引22 - X,得2X+3M2 - X,或2x+3 2 -( 2 -x) , BP-i ,或xW - 5,3即原不等式的解集为(xlX 2— 3,或XW - 5}・3解法2:令I2x+:3I=O,得只=一卫.2①当寸,原不等式化为x+ ( 2x+3) 22,即x>-l,2 3所以x± -丄;3②x< 一爭'原不等式化为X・(2x+3 ) 22,即xW・5,所以xW - 5.综上,原不等式的解集为{xlx事-丄,或xW - 5}.3点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:If ( x) I2g (x) ? f (x) Mg ( x),或f ( x) W ・ g (x) ; If ( x) iWg (x) ?-g( x) Wf ( x) Wg ( x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤ABCD为直角梯形, ZABC=25.( 10分)(2015?江苏)如图,在四棱锥P - ABCD中,已知PA丄平面ABCD ,且四边形TT2[(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.考点:二面角的平面角及求法;点、线、面间的距离计算. 专题:空间位置关系与距离;空间角.分析:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A - xyz . ( 1 ) 所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝3•・・PG1, - 2) ,PD= (0, 2,・ 2),x, y, z),cos < AD,・・・平设1+2 7 则COS入t [1, 3],2t 2<CQ,_______ 2 ______ F9_g (丄一知t /*9,icos<CQ ,.DP> I 的最人值为10勺F-10t+9因为 y=co对值,计算即可;(2)利用换元法可得COS 2<CQ, DP> 总,结合函数y=cosx 在(0,—)上的单调10 2性,计算即得结论.解答:解:以A 为坐标原点,以 AB 、AD 、AP 所在直线分别为x 、y 、z 轴建系A - xyz 如 图,由题可知 B ( 1, 0, 0) , C (1, 1, 0) , D ( 0, 2, 0) , P ( 0, 0, 2).(1 ) VAD 丄平面PAB ,・••石二(0, 2, 0),是平面PAB 的一个法向量,(0, - i, o),贝CQ=CB+BQ=( - 入,(0, - 2, 2),从而 cos<C0,DP> =兀)上是减函数,此时直线 CQ 与DP 所成角取得最小值. 又•・・B P £] 2 + 2? 並,・•・BQ# BP=由巨逻专得 广K +卩- 2z=01 n\ • PD 二 0] ^2y — 2z 二Q设平面PCD 的法向量为IT取 y== 1,得 IF ( 1 ‘ 1,1),(2)0,当且点:本 考求二面角的三角函数,考用空向量解决 的能力,注意解方法的累,属于中档.*26. ( 10 分)(2015?江)已知集合 X={1 , 2, 3), Yn={l , 2, 3,…,n) (n^N ), Sn={( a, b) 或整除a, aex, B ey n },令f( n)表示集合Sn 所含元素的个数.(1) 写出f(6)的;(2) 当26,写出f(n)的表达式,并用数学 法明.la 整除b考点:数学法.:合;点列、数列与数学法. 分析•( 1) f (6) =6+2+ +|=咼;(2)根据数学法的明步,分,即可明・ 角军答: 口 •解:(1) f(6) =6+2+3;(2)当 n>6 , f(n)=n+24-〔专申 f «=6t n+2f,n=6t+ln n _ 2n+2+ (刁—-—)« n-6t+2 z Jn+24-〔二^丄 晋),n=6t43 n+2f (詈 4^二)• n=61+4 n+2f (”;1 l ";2) , n=6H5下面用数学法明:①"6, f( 6) =6+2++購成立;②假n=k( k>6),成立,那么n=k+l , Sk+i 在Sk 的基上新增加的元素在(1, k+1 (2, k+1 ),(3, k+1 )中生,分以下情形: 1)若 k+l=6t , k=6 (t1)+5 ,此有 f( k+l)=f (k) +3=( k+l)+2+― ),1 k+132)若 k+l=6t+l ,则 k=6t+l ,此时有 f ( k+1 ) =f ( k) +l=k+2+—2T1=(k+1)+2+(k+1) 2-1(k+1) -1"nr"1,结论成立;3)若 k+l=6t+2 ,则 k=6t+l ,此时有 (k+1=f(k) +2=k+2+ □ +k-l^3~+2= ( k+1 ) +2+k+1 (k+1 )-2 ~2,结论成立;4)若 k+l=6t+3 ,则 k=6t+2 ,此时有 (k+1 =f ( k)+2=k+2+g ¥2 3+2= ( k+1(k+1) "1 k+1 2 」3,结论成立;+2+5)若 k+l=6t+4 ,则 k=6t+3 ,此时有 (k+1 =f ( k)k - 1 k+2=k +2+— E+2= ( k+1+2+吐 1 (k+1)~2,结论成立;6)若 k+l=6t+5 ,则 k=6t+4 ,此时有 (k+1 =f ( k) +2= ( k+1+2+ (k+1〕- 1 (k+1) " 2" * 3n26的自然数n 均成立.2 | ' 综上所述,结论对满足,结论成立.点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。
2015年江苏省高考的数学试卷(2020必考).doc
2015 年江苏省高考数学试卷一、填空题(本大题共14 小题,每小题 5 分,共计 70 分)1(.5 分)已知集合 A={ 1,2,3} ,B={ 2,4,5} ,则集合 A∪B 中元素的个数为.2.(5 分)已知一组数据 4,6,5,8,7,6,那么这组数据的平均数为.3.(5 分)设复数 z 满足 z2=3+4i(i 是虚数单位),则 z 的模为.4.(5 分)根据如图所示的伪代码,可知输出的结果S 为.5.(5 分)袋中有形状、大小都相同的 4 只球,其中 1 只白球、 1 只红球、 2 只黄球,从中一次随机摸出 2 只球,则这 2 只球颜色不同的概率为.6.(5 分)已知向量=( 2,1), =(1,﹣ 2),若 m +n =(9,﹣ 8)(m, n∈R),则 m﹣n 的值为.7.(5 分)不等式 2 <4 的解集为.8.(5 分)已知 tan α=﹣2,tan(α+β)= ,则 tan β的值为.9.(5 分)现有橡皮泥制作的底面半径为5,高为 4 的圆锥和底面半径为2,高为 8 的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.( 5 分)在平面直角坐标系 xOy 中,以点( 1,0)为圆心且与直线mx﹣ y﹣2m﹣1=0( m∈R)相切的所有圆中,半径最大的圆的标准方程为..(5 分)设数列n 1 ,且n+1 n *),则数列 { } 的前11 { a } 满足 a =1 a ﹣ a =n+1( n∈N10 项的和为.12.(5 分)在平面直角坐标系xOy 中, P 为双曲线 x2﹣y2=1 右支上的一个动点,若点 P 到直线 x﹣y+1=0 的距离大于 c 恒成立,则实数 c 的最大值为.13.( 5 分)已知函数 f( x)=| lnx| ,g(x)=,则方程| f(x)+g(x) | =1 实根的个数为.14.( 5 分)设向量=(cos,sin+cos)(k=0,1,2,,12),则( a k?a k+1)的值为.二、解答题(本大题共 6 小题,共计 90 分,解答时应写出文字说明、证明过程或演算步骤)15.( 14 分)在△ ABC中,已知 AB=2, AC=3, A=60°.(1)求 BC的长;(2)求 sin2C的值.16.( 14 分)如图,在直三棱柱ABC﹣A1B1C1中,已知 AC⊥BC,BC=CC1,设 AB1 的中点为 D,B1C∩BC1=E.求证:(1)DE∥平面 AA1C1C;(2) BC1⊥ AB1.17.( 14 分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为 l1,l2,山区边界曲线为 C,计划修建的公路为 l,如图所示, M ,N 为 C 的两个端点,测得点 M 到 l1, l2的距离分别为 5 千米和 40 千米,点 N 到 l1,l2的距离分别为20 千米和 2.5 千米,以 l2, 1 在的直线分别为,y 轴,建立平面l x直角坐标系 xOy,假设曲线 C 符合函数 y= (其中 a,b 为常数)模型.(1)求 a,b 的值;(2)设公路 l 与曲线 C 相切于 P 点, P 的横坐标为 t.①请写出公路 l 长度的函数解析式 f( t),并写出其定义域;②当t 为何值时,公路 l 的长度最短?求出最短长度.18.( 16 分)如图,在平面直角坐标系 xOy 中,已知椭圆+=1( a> b> 0)的离心率为,且右焦点 F 到左准线 l 的距离为 3.(1)求椭圆的标准方程;(2)过 F 的直线与椭圆交于 A,B 两点,线段 AB 的垂直平分线分别交直线 l 和AB 于点 P,C,若 PC=2AB,求直线 AB 的方程.19.( 16 分)已知函数 f (x)=x3+ax2 +b( a, b∈ R).(1)试讨论 f( x)的单调性;(2)若 b=c﹣a(实数 c 是与 a 无关的常数),当函数 f( x)有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣3)∪( 1,)∪(,+∞),求c的值.20.( 16 分)设 a1,a2,a3. a4是各项为正数且公差为d(d≠0)的等差数列.( 1)证明: 2,2,2,2依次构成等比数列;(2)是否存在 a1, d,使得 a1,a22, a33,a44依次构成等比数列?并说明理由;(3)是否存在 a1,d 及正整数 n,k,使得 a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括 21-24 题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修 4-1:几何证明选讲】21.( 10 分)如图,在△ ABC中, AB=AC,△ ABC的外接圆⊙ O 的弦 AE 交 BC于点 D.求证:△ ABD∽△ AEB.【选修 4-2:矩阵与变换】22.( 10 分)已知 x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵 A 以及它的另一个特征值.【选修 4-4:坐标系与参数方程】23.已知圆 C 的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.[ 选修 4-5:不等式选讲】24.解不等式 x+| 2x+3| ≥2.【必做题】每题10 分,共计 20 分,解答时写出文字说明、证明过程或演算步骤25.(10 分)如图,在四棱锥 P﹣ ABCD中,已知 PA⊥平面 ABCD,且四边形ABCD 为直角梯形,∠ ABC=∠ BAD= , PA=AD=2, AB=BC=1.(1)求平面 PAB与平面 PCD所成二面角的余弦值;(2)点 Q 是线段 BP 上的动点,当直线 CQ 与 DP 所成的角最小时,求线段 BQ 的长.26.(10 分)已知集合 X={ 1,2,3} ,Y n={ 1,2,3,,n)(n∈N*),设 S n ={(a,b)| a 整除 b 或 b 整除 a,a∈X,B∈Y n} ,令 f(n)表示集合 S n所含元素的个数.(1)写出 f(6)的值;(2)当 n≥6 时,写出 f(n)的表达式,并用数学归纳法证明.2015 年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14 小题,每小题 5 分,共计 70 分)1.(5 分)已知集合 A={ 1,2,3} , B={ 2, 4, 5} ,则集合 A∪B 中元素的个数为5.【分析】求出 A∪ B,再明确元素个数【解答】解:集合A={ 1,2,3} , B={ 2, 4, 5} ,则 A∪B={ 1,2,3,4,5} ;所以 A∪B 中元素的个数为5;故答案为: 5【点评】题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5 分)已知一组数据 4, 6, 5, 8, 7, 6,那么这组数据的平均数为6.【分析】直接求解数据的平均数即可.【解答】解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为: 6.【点评】本题考查数据的均值的求法,基本知识的考查.3.(5 分)设复数 z 满足 z2=3+4i(i 是虚数单位),则 z 的模为.【分析】直接利用复数的模的求解法则,化简求解即可.【解答】解:复数z 满足 z2 =3+4i,可得 | z|| z| =| 3+4i| = =5,∴ | z| =.故答案为:.【点评】本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5 分)根据如图所示的伪代码,可知输出的结果S 为7.【分析】模拟执行程序框图,依次写出每次循环得到的I, S 的值,当 I=10 时不满足条件 I< 8,退出循环,输出S 的值为 7.【解答】解:模拟执行程序,可得S=1, I=1满足条件 I< 8, S=3, I=4满足条件 I< 8, S=5, I=7满足条件 I< 8, S=7, I=10不满足条件 I<8,退出循环,输出S 的值为 7.故答案为: 7.【点评】本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5 分)袋中有形状、大小都相同的 4 只球,其中 1 只白球、 1 只红球、 2 只黄球,从中一次随机摸出 2 只球,则这 2 只球颜色不同的概率为.【分析】根据题意,把 4 个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.【解答】解:根据题意,记白球为 A,红球为 B,黄球为 C1、C2,则一次取出 2 只球,基本事件为 AB、AC1、 AC2、BC1、BC2、C1C2共 6 种,其中 2 只球的颜色不同的是 AB、AC1、AC2、 BC1、 BC2共 5 种;所以所求的概率是P= ,故答案为:.【点评】本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5 分)已知向量=( 2,1), =(1,﹣ 2),若 m +n =(9,﹣ 8)(m, n∈R),则 m﹣n 的值为﹣3.【分析】直接利用向量的坐标运算,求解即可.【解答】解:向量=( 2, 1),=(1,﹣ 2),若 m +n =( 9,﹣ 8)可得,解得 m=2,n=5,∴m﹣n=﹣ 3.故答案为:﹣ 3.【点评】本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5 分)不等式 2<4的解集为(﹣1,2).【分析】利用指数函数的单调性转化为x2﹣x<2,求解即可.【解答】解;∵ 2 <4,∴x2﹣x< 2,即x2﹣x﹣2<0,解得:﹣ 1< x<2故答案为:(﹣ 1,2)【点评】本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5 分)已知 tan α=﹣2,tan(α+β)=,则tanβ的值为3.【分析】直接利用两角和的正切函数,求解即可.【解答】解: tan α=﹣ 2, tan(α+β)=,可知 tan(α+β) ==,即=,解得 tan β=3.故答案为: 3.【点评】本题考查两角和的正切函数,基本知识的考查.9.(5 分)现有橡皮泥制作的底面半径为5,高为 4 的圆锥和底面半径为 2,高为 8 的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.【分析】由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.【解答】解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.【点评】本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.( 5 分)在平面直角坐标系xOy 中,以点( 1,0)为圆心且与直线mx﹣ y﹣2m﹣ 1=0( m∈ R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2 .【分析】求出圆心到直线的距离 d 的最大值,即可求出所求圆的标准方程.【解答】解:圆心到直线的距离d= = ≤ ,∴m=1 时,圆的半径最大为,∴所求圆的标准方程为( x﹣ 1)2+y2=2.故答案为:( x﹣1)2 +y2=2.【点评】本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础..( 5 分)设数列 ,且 +*),则数列 { } 的前 11 { a n } 满足 a 1=1 a n 1﹣ a n =n+1( n ∈N10 项的和为 .【分析】数列 { a n } 满足 a 1=1,且 a n +1﹣ a n =n+1(n ∈N * ),利用 “累加求和 ”可得a n =.再利用 “裂项求和 ”即可得出.【解答】解:∵数列 { a n 满足 1 ,且 n +1﹣ n ( ∈ N *),} a =1 a a =n+1 n ∴当 n ≥2 时, a ( ﹣ ﹣ )( ﹣ a 1 ) +a 1.n = a n a n 1 + + a 2 =n+ +2+1= 当 n=1 时,上式也成立, ∴ a n = .∴ =2.∴数列 { } 的前 n 项的和 S n ===.∴数列 {} 的前 10 项的和为.故答案为:.【点评】本题考查了数列的 “累加求和 ”方法、 “裂项求和 ”方法、等差数列的前 n 项和公式,考查了推理能力与计算能力,属于中档题.12.( 5 分)在平面直角坐标系 xOy 中, P 为双曲线 x 2﹣y 2=1 右支上的一个动点,若点 P 到直线 x ﹣y+1=0 的距离大于 c 恒成立,则实数 c 的最大值为.【分析】双曲线 x 2﹣y 2=1 的渐近线方程为 x ±y=0,c 的最大值为直线 x ﹣y+1=0与直线 x ﹣y=0 的距离.【解答】解:由题意,双曲线x 2﹣y 2=1 的渐近线方程为 x ±y=0,因为点 P 到直线 x ﹣ y+1=0 的距离大于 c 恒成立,所以 c 的最大值为直线 x ﹣y+1=0 与直线 x ﹣y=0 的距离,即.故答案为:.【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.13.( 5 分)已知函数 f( x)=| lnx| ,g(x)=,则方程| f(x)+g(x) | =1 实根的个数为4.【分析】:由| f( x)+g(x)| =1 可得 g(x)=﹣ f(x)±1,分别作出函数的图象,即可得出结论.【解答】解:由 | f(x) +g(x)| =1 可得 g(x)=﹣f(x)± 1.g(x)与 h( x) =﹣ f(x)+1 的图象如图所示,图象有 2 个交点g(x)与φ(x) =﹣ f(x)﹣ 1 的图象如图所示,图象有两个交点;所以方程 | f(x) +g(x)| =1 实根的个数为 4.故答案为: 4.【点评】本题考查求方程| f(x)+g( x)| =1 实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.( 5 分)设向量=(cos,sin+cos)(k=0,1,2,,12),则( a k?a k+1)的值为.【分析】利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.【解答】解:=+=++++=++=++,∴(a k?a k+1)=+++++++ +++++++ +=+0+0=.故答案为: 9 .【点评】本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共 6 小题,共计 90 分,解答时应写出文字说明、证明过程或演算步骤)15.( 14 分)在△ ABC中,已知 AB=2, AC=3, A=60°.(1)求 BC的长;(2)求 sin2C的值.【分析】(1)直接利用余弦定理求解即可.( 2)利用正弦定理求出 C 的正弦函数值,然后利用二倍角公式求解即可.【解答】解:(1)由余弦定理可得:2 2 2﹣ 2AB?ACcosA=4+9﹣2×2×3 BC =AB +AC× =7,所以 BC= .( 2)由正弦定理可得:,则 sinC= = =,∵AB<BC,BC= ,AB=2,角 A=60°,在三角形 ABC中,大角对大边,大边对大角,>2,∴角 C<角 A,角 C 为锐角. sinC>0,cosC>0 则 cosC===.因此 sin2C=2sinCcosC=2×=.【点评】本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.( 14 分)如图,在直三棱柱ABC﹣A1B1C1中,已知 AC⊥BC,BC=CC1,设 AB1 的中点为 D,B1C∩BC1=E.求证:(1)DE∥平面 AA1C1C;(2) BC1⊥ AB1.【分析】(1)根据中位线定理得DE∥ AC,即证 DE∥平面 AA1C1C;(2)【方法一】先由直三棱柱得出 CC1⊥平面 ABC,即证 AC⊥CC1;再证明 AC⊥平面 BCC1B1,即证 BC1⊥AC;最后证明 BC1⊥平面 B1AC,即可证出 BC1⊥ AB1.【方法二】建立空间直角坐标系,利用向量数量积证明异面直线垂直.【解答】证明:(1)如图所示,由据题意得,E 为 B1C 的中点, D 为 AB1的中点,所以 DE∥AC;又因为 DE?平面 AA1C1C, AC? 平面 AA1C1C,所以 DE∥平面 AA1C1C;( 2)【方法一】因为棱柱ABC﹣ A1 B1C1是直三棱柱,所以 CC1⊥平面 ABC,因为 AC? 平面 ABC,所以 AC⊥CC1;又因为 AC⊥BC,CC1? 平面 BCC1B1,BC? 平面 BCC1B1,BC∩CC1=C,所以 AC⊥平面 BCC1B1;又因为 BC1? 平面 BCC1B1,所以 BC1⊥AC;因为 BC=CC1,所以矩形 BCC1B1是正方形,所以 BC1⊥平面 B1AC;又因为 AB1? 平面 B1AC,所以 BC1⊥AB1.【方法二】根据题意, A1C1⊥B1C1, CC1⊥平面 A1B1C1,以 C1为原点建立空间直角座标系,C1A1为 x 轴, C1B1为 y 轴, C1C 为 z 轴,如图所示;设 BC=CC1=a,AC=b,则 A(b,0,a), B1(0,a,0), B( 0, a, a),C1( 0, 0, 0);∴=(﹣ b,a,﹣ a),=(0,﹣ a,﹣ a),∴?=﹣ b× 0+a×(﹣ a)﹣ a×(﹣ a)=0,∴⊥,即 AB1⊥BC1.【点评】本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题.17.( 14 分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为 l1,l2,山区边界曲线为C,计划修建的公路为 l,如图所示, M ,N 为C 的两个端点,测得点 M 到 l , l 的距离分别为 5 千米和 40 千米,点 N 到 l ,l1 2 12 的距离分别为 20 千米和 2.5 千米,以 l2, 1 在的直线分别为,轴,建立平面l x y直角坐标系 xOy,假设曲线 C 符合函数 y= (其中 a,b 为常数)模型.(1)求 a,b 的值;(2)设公路 l 与曲线 C 相切于 P 点, P 的横坐标为 t.①请写出公路 l 长度的函数解析式 f( t),并写出其定义域;②当t 为何值时,公路 l 的长度最短?求出最短长度.【分析】(1)由题意知,点M,N 的坐标分别为( 5, 40),(20,2.5),将其分别代入 y=,建立方程组,即可求a,b 的值;(2)①求出切线 l 的方程,可得 A,B 的坐标,即可写出公路 l 长度的函数解析式f( t),并写出其定义域;②设 g(t )=,利用导数,确定单调性,即可求出当t 为何值时,公路 l 的长度最短,并求出最短长度.【解答】解:(1)由题意知,点 M ,N 的坐标分别为( 5, 40),( 20,2.5),将其分别代入 y=,得,解得,( 2)①由( 1) y= (5≤x≤20),P(t ,),∴ y′=﹣,∴切线 l 的方程为 y﹣=﹣(x﹣t)设在点 P 处的切线 l 交 x,y 轴分别于 A,B 点,则 A(,0),B(0,),∴ f(t )==,t∈[ 5,20];②设 g(t )=,则g′(t)=2t﹣=0,解得 t=10,t ∈( 5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)> 0, g(t )是增函数,从而 t=10时,函数g(t)有极小值也是最小值,∴ g( t)min ,=300∴ f(t )min=15 ,答: t=10 时,公路 l 的长度最短,最短长度为15 千米.【点评】本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.( 16 分)如图,在平面直角坐标系 xOy 中,已知椭圆+=1( a> b> 0)的离心率为,且右焦点 F 到左准线 l 的距离为 3.(1)求椭圆的标准方程;(2)过 F 的直线与椭圆交于 A,B 两点,线段 AB 的垂直平分线分别交直线 l 和AB 于点 P,C,若 PC=2AB,求直线 AB 的方程.【分析】(1)运用离心率公式和准线方程,可得a,c 的方程,解得 a,c,再由a,b,c 的关系,可得 b,进而得到椭圆方程;(2)讨论直线 AB 的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【解答】解:(1)由题意可得, e= = ,且 c+ =3,解得 c=1, a= ,则 b=1,即有椭圆方程为+y2 ;=1( 2)当 AB⊥x 轴, AB=,CP=3,不合题意;当 AB 与 x 轴不垂直,设直线 AB:y=k(x﹣1), A( x1,y1),B(x2,y2),将 AB 方程代入椭圆方程可得( 1+2k2)x2﹣ 4k2 x+2( k2﹣1)=0,则 x1 2 , 1 2 ,+x = x x =则C(,),且|AB|=?=,若 k=0,则 AB 的垂直平分线为y 轴,与左准线平行,不合题意;则 k≠0,故 PC:y+=﹣(x﹣),P(﹣2,),从而| PC| =,由 | PC| =2| AB| ,可得=,解得k=±1,此时 AB 的方程为 y=x﹣ 1 或 y=﹣x+1.【点评】本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.( 16 分)已知函数 f (x)=x3+ax2 +b( a, b∈ R).(1)试讨论 f( x)的单调性;(2)若 b=c﹣a(实数 c 是与 a 无关的常数),当函数 f( x)有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣3)∪( 1,)∪(,+∞),求c的值.【分析】(1)求导数,分类讨论,利用导数的正负,即可得出f( x)的单调性;( 2)由( 1)知,函数 f(x)的两个极值为 f(0)=b,f(﹣) = +b,则函数 f(x)有三个不同的零点等价于 f(0)f(﹣)=b(+b)< 0,进一步转化为 a>0 时,﹣a+c>0 或 a< 0 时,﹣ a+c< 0.设 g(a)=﹣ a+c,利用条件即可求c 的值.【解答】解:(1)∵ f( x) =x3+ax2+b,∴ f (′ x)=3x2+2ax,令 f ′(x) =0,可得 x=0 或﹣.a=0 时, f ′(x)> 0,∴ f(x)在(﹣∞, +∞)上单调递增;a>0 时, x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f ′(x)< 0,∴函数f( x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0 时, x∈(﹣∞, 0)∪(﹣,+∞)时,f(′x)>0,x∈(0,﹣)时,f ′(x)< 0,∴函数f( x)在(﹣∞, 0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;( 2)由( 1)知,函数 f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数 f(x)有三个不同的零点等价于f( 0)> 0,且 f (﹣)<0,∴ b> 0 且+b<0,∵b=c﹣a,∴ a> 0 时,﹣a+c>0或a<0时,﹣a+c<0.设 g(a) =﹣a+c,∵函数 f(x)有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣ 3)∪( 1,)∪(, +∞),∴在(﹣∞,﹣ 3)上, g(a)< 0 且在( 1,)∪(,+∞)上 g(a)> 0 均恒成立,∴g(﹣ 3) =c﹣1≤0,且 g()=c﹣ 1≥ 0,∴c=1,此时 f (x) =x3+ax2 +1﹣a=(x+1)[ x2+(a﹣ 1) x+1﹣a] ,∵函数有三个零点,∴ x2+( a﹣ 1)x+1﹣ a=0 有两个异于﹣ 1 的不等实根,∴△ =(a﹣ 1)2﹣ 4( 1﹣ a)> 0,且(﹣ 1)2﹣( a﹣ 1) +1﹣a≠0,解得 a∈(﹣∞,﹣ 3)∪( 1,)∪(, +∞),综上 c=1.【点评】本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.( 16 分)设 a1,a2,a3. a4是各项为正数且公差为d(d≠0)的等差数列.( 1)证明: 2,2,2,2依次构成等比数列;(2)是否存在 a1, d,使得 a1,a22, a33,a44依次构成等比数列?并说明理由;(3)是否存在 a1,d 及正整数 n,k,使得 a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.【分析】(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在 a1,d 使得 a1,a22,a33,a44依次构成等比数列,推第20页(共 28页)( 3)利用反证法,假设存在 a 1,d 及正整数 n ,k ,使得 a 1n ,a 2n +k ,a 3n +2k ,a 4n +3k 依次构成等比数列,得到 a 1n ( a 1+2d )n +2k =( a 1+d )2(n +k ),且( a 1+d )n +k (a 1+3d )n +3k =( a 1+2d )2( n +2k ),利用等式以及对数的性质化简整理得到 ln ( 1+3t )ln (1+2t )+3ln (1+2t ) ln (1+t )=4ln ( 1+3t )ln ( 1+t ),(** ),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.【解答】解:(1)证明:∵==2d ,( n=1,2,3,)是同一个常数,∴2,2 ,2 ,2 依次构成等比数列;( 2)令 a 1+d=a ,则 a 1,a 2,a 3,a 4 分别为 a ﹣d ,a ,a+d ,a+2d ( a > d ,a >﹣ 2d ,d ≠0)假设存在 a 1,d 使得 a 1, a 22,a 3 3,a 44 依次构成等比数列,则 a 4=(a ﹣d )( a+d )3,且( a+d )6=a 2(a+2d )4,令 t= ,则 1=( 1﹣ t )(1+t )3,且( 1+t ) 6=(1+2t ) 4,(﹣ < t < 1, t ≠0),化简得 t 3+2t 2 ﹣2=0(* ),且 t 2=t+1,将 t 2=t+1 代入( * )式, t (t+1)+2( t+1)﹣ 2=t 2+3t=t +1+3t=4t+1=0,则 t=﹣ ,显然 t=﹣ 不是上面方程的解,矛盾,所以假设不成立,因此不存在 a 1, d ,使得 a 1,a 22, a 33, a 44 依次构成等比数列.( 3)假设存在 a 1,d 及正整数 n ,k ,使得 a 1n ,a 2n +k ,a 3n +2k ,a 4n +3k 依次构成等比数列,则 a 1n ( a 1+2d )n +2k =( a 1 +d )2( n +k ),且( a 1+d ) n +k (a 1+3d ) n +3k =(a 1+2d ) 2( n +2k ),( + )(+ ),(t >, t ≠ 0),分别在两个等式的两边同除以 a 12 n k , a 12n 2k,并令 t= +)2 ( + )+ +( + ) 则( 1+2t ) n 2k( 1+t n k,且( 1+t )n k (1+3t )n 3k ( 1+2t )2 n 2k ,= =将上述两个等式取对数,得( n+2k )ln ( 1+2t )=2(n+k )ln (1+t ),且( n+k )ln (1+t ) +( n+3k )ln ( 1+3t )=2(n+2k )ln (1+2t ),化简得, 2k[ ln ( 1+2t )﹣ ln (1+t )] =n[ 2ln ( 1+t )﹣ ln ( 1+2t )] ,且 3k[ ln (1+3t )﹣ ln ( 1+t ) ] =n[ 3ln (1+t )﹣ ln (1+3t ) ] ,再将这两式相除,化简得,ln ( 1+3t )ln ( 1+2t ) +3ln (1+2t ) ln (1+t )=4ln ( 1+3t )ln ( 1+t ),(** )令 g (t ) =4ln (1+3t )ln (1+t )﹣ ln (1+3t ) ln (1+2t ) +3ln (1+2t )ln (1+t ),则 g ′(t )= [ (1+3t )2 ln ( 1+3t )﹣ ( 1+2t )2 ( 1+2t )+33 ln( 1+t ) 2ln (1+t ) ] ,令 φ(t )=(1+3t ) 2ln (1+3t )﹣ 3(1+2t )2ln ( 1+2t ) +3(1+t )2ln (1+t ),则 φ′(t )=6[ (1+3t )ln (1+3t )﹣ 2(1+2t )ln ( 1+2t )+3(1+t )ln (1+t )] ,令 φ1( t )=φ′(t ),则 φ1′(t )=6[ 3ln (1+3t )﹣ 4ln (1+2t ) +ln ( 1+t ) ] , 令 φ ) =>0, 2( t )=φ1′(t ),则 φ2′( t由 g (0)=φ( 0) =φ1( ) φ2( ) , φ2′( )> ,0 =0 =0 t0 知 g (t ),φ(t ),φ1( ),φ2( )在(﹣, )和( , ∞)上均单调, tt0 0 +故 g (t )只有唯一的零点 t=0,即方程( ** )只有唯一解 t=0,故假设不成立,所以不存在 a 1, d 及正整数 n ,k ,使得 a 1n,a 2n +k, a 3n +2k, a 4n +3k依次构成等比数列.【点评】本题主要考查等差数列、 等比数列的定义和性质, 函数与方程等基础知识,考查代数推理、 转化与化归及综合运用数学知识探究与解决问题的能力, 属于难题.三、附加题(本大题包括选做题和必做题两部分) 【选做题】本题包括 21-24 题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修 4-1:几何证明选讲】21.( 10 分)如图,在△ ABC 中, AB=AC ,△ ABC 的外接圆⊙ O 的弦 AE 交 BC 于点 D .求证:△ ABD ∽△ AEB .【分析】直接利用已知条件, 推出两个三角形的三个角对应相等, 即可证明三角形相似.【解答】证明:∵AB=AC,∴∠ ABD=∠C,又∵∠ C=∠E,∴∠ ABD=∠E,又∠BAE 是公共角,可知:△ ABD∽△ AEB.【点评】本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修 4-2:矩阵与变换】22.( 10 分)已知 x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵 A 以及它的另一个特征值.【分析】利用 A =﹣ 2,可得A=,通过令矩阵 A 的特征多项式为0 即得结论.【解答】解:由已知,可得 A =﹣2,即==,则,即,∴矩阵 A=,从而矩阵 A 的特征多项式 f(λ) =(λ+2)(λ﹣ 1),∴矩阵 A 的另一个特征值为1.【点评】本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修 4-4:坐标系与参数方程】23.已知圆 C 的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.【分析】先根据x=ρcos,θy=ρsin,θ求出圆的直角坐标方程,求出半径.【解答】解:圆的极坐标方程为2ρsin(θ﹣2 ρ+2 )﹣ 4=0,可得ρ﹣2ρ cos+2θρ sin﹣θ4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为( x﹣ 1)2+(y+1)2=6,圆的半径 r=.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcos,θy=ρsin,θ比较基础,[ 选修 4-5:不等式选讲】24.解不等式 x+| 2x+3| ≥2.【分析】思路 1(公式法):利用 | f(x)| ≥g(x) ? f( x)≥ g( x),或 f(x)≤﹣ g( x);思路 2(零点分段法):对 x 的值分“x≥”“x<”进行讨论求解.【解答】解法 1:x+| 2x+3| ≥2 变形为 | 2x+3| ≥2﹣x,得 2x+3≥ 2﹣ x,或 2x+3≤﹣( 2﹣x),即 x≥,或 x≤﹣ 5,即原不等式的解集为 { x| x≥,或x≤﹣5}.解法 2:令 | 2x+3| =0,得 x=.①当 x≥时,原不等式化为x+(2x+3)≥ 2,即 x≥,所以 x≥;② x<时,原不等式化为x﹣( 2x+3)≥ 2,即 x≤﹣ 5,所以 x≤﹣ 5.综上,原不等式的解集为{ x| x≥,或x≤﹣5}.【点评】本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:| f(x)| ≥g(x)? f(x)≥g(x),或f(x)≤﹣g (x);| f( x)| ≤ g(x)? ﹣ g( x)≤ f(x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10 分,共计 20 分,解答时写出文字说明、证明过程或演算步骤25.(10 分)如图,在四棱锥 P﹣ ABCD中,已知 PA⊥平面 ABCD,且四边形 ABCD为直角梯形,∠ ABC=∠ BAD=,PA=AD=2,AB=BC=1.(1)求平面 PAB与平面 PCD所成二面角的余弦值;(2)点 Q 是线段 BP 上的动点,当直线 CQ 与 DP 所成的角最小时,求线段 BQ的长.【分析】以 A 为坐标原点,以 AB、 AD、AP 所在直线分别为 x、 y、z 轴建系 A﹣xyz.(1)所求值即为平面 PAB的一个法向量与平面 PCD的法向量的夹角的余弦值的绝对值,计算即可;( 2)利用换元法可得 cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.【解答】解:以 A 为坐标原点,以 AB、AD、AP 所在直线分别为 x、y、z 轴建系A ﹣xyz 如图,由题可知 B(1,0,0),C(1,1,0),D(0,2,0), P( 0,0, 2).(1)∵ AD⊥平面 PAB,∴ =(0, 2, 0),是平面 PAB的一个法向量,∵ =(1,1,﹣ 2), =(0,2,﹣ 2),设平面 PCD的法向量为 =(x,y,z),由,得,取 y=1,得 =(1,1,1),∴ cos<,>==,∴平面 PAB与平面 PCD所成两面角的余弦值为;(2)∵ =(﹣ 1, 0, 2),设 =λ =(﹣λ,0,2λ)(0≤λ≤1),又 =(0,﹣ 1,0),则 = + =(﹣λ,﹣ 1,2λ),又=(0,﹣ 2,2),从而 cos<,>==,设 1+2λ=t,t∈ [ 1,3] ,则 cos2<,>==≤,当且仅当 t=,即λ=时,| cos<,>|的最大值为,因为 y=cosx在( 0,)上是减函数,此时直线CQ与 DP 所成角取得最小值.又∵ BP==,∴ BQ= BP=.【点评】本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.26.(10 分)已知集合 X={ 1,2,3} ,Y n={ 1,2,3,,n)(n∈N*),设 S n ={(a,b)| a 整除 b 或 b 整除 a,a∈X,B∈Y n} ,令 f(n)表示集合 S n所含元素的个数.(1)写出 f(6)的值;(2)当 n≥6 时,写出 f(n)的表达式,并用数学归纳法证明.【分析】(1)f(6) =6+2+ + =13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.【解答】解:(1)f(6)=6+2+ + =13;( 2)当 n≥6 时, f( n) =.下面用数学归纳法证明:①n=6 时, f(6)=6+2+ + =13,结论成立;②假设 n=k(k≥ 6)时,结论成立,那么 n=k+1 时, S k+1在k的基础上新增加的S元素在( 1, k+1),(2,k+1),( 3, k+1)中产生,分以下情形讨论:1)若 k+1=6t,则 k=6(t ﹣1)+5,此时有 f( k+1)=f(k)+3=( k+1)+2+ +,结论成立;2)若 k+1=6t+1,则 k=6t,此时有 f ( k+1) =f( k) +1=k+2+ + +1=( k+1)+2+ + ,结论成立;3)若 k+1=6t+2,则 k=6t+1,此时有 f( k+1)=f(k)+2=k+2+ + +2=(k+1)+2+ + ,结论成立;4)若 k+1=6t+3,则 k=6t+2,此时有 f (k+1)=f( k) +2=k+2+ + +2=(k+1)+2+ + ,结论成立;5)若 k+1=6t+4,则 k=6t+3,此时有 f (k+1)=f( k) +2=k+2+ + +2=(k+1)+2+ + ,结论成立;6)若 k+1=6t+5,则 k=6t+4,此时有 f (k+1)=f( k) +2=k+2+ + +2=(k+1)+2+ + ,结论成立.综上所述,结论f( n) =n+[ ]+[ ]+ 2,对满足 n≥6 的自然数 n 均成立.【点评】本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。
江苏省高三数学一校四题卷 启东市大江中学
启东市大江中学(一校四题)1.函数)11lg()(22+--++=x x x x x f 的值域为解析:函数的定义域为()+∞,0,1122+--++x x x x =22)230()21(-++x —22)230()21(-+-x 表示)0,(x 到⎪⎪⎭⎫ ⎝⎛-23,21的距离减去)0,(x 到⎪⎪⎭⎫ ⎝⎛23,21的距离,从而得到1122+--++x x x x )1,0(∈,所以范围为()0,∞-2.在ABC ∆中,三个内角C B A ,,的对边分别是c b a ,,,其中,,35==C B 且满足.12cos sin 2sin 22sin 2=+-A A A A求(1))cos(C B -的值;(2)的外心为ABC O ∆,若n m +=,求n m +的值。
解:(1)由.12cos sin 2sin 22sin 2=+-A A A A 得 21cos -=A )20(π,∈A Θ 32π=∴A .在ABC ∆中,由余弦定理得:A bc c b a cos 2222-+= ∴7=a在ABC ∆中,由正弦定理得:Cc B b A a sin sin sin ==,1433sin ,1435sin ==C B 1413cos ,1411cos ==∴C B 4947sin sin cos cos )cos(=+=-C B C B C B 。
- (2)建立直角坐标系得)631125(),23323-(),05(0,0(,,,),O C B A由n m +=得.911,32-=-=n m 917-=+∴n m 3.设椭圆:E 22221(0)x y a b a b+=>>2倍,过焦点且垂直于x 轴的直线被椭圆截得的弦长为3(I )求椭圆E 的方程;(II )点P 是椭圆E 上横坐标大于2的动点,点,B C 在y 轴上,圆22(1)1x y -+=内切于PBC ∆,试判断点P 在何位置时PBC ∆的面积S 最小,并证明你的判断.XB C A Y . Oa b ==,故所求椭圆方程为221126x y +=. (II )设000(,)(2P x y x <≤,(0,),(0,)B m C n .不妨设m n >,则直线PB 的方程为0:PB y m l y m x x --= 即000()0y m xx y x m --+=,又圆心(1,0)到直线PB 的距离为1,01,2x =>,化简得2000(2)20x m y m x -+-=,同理,2000(2)20x n y n x -+-=,∴,m n 是方程2000(2)20x x y x x -+-=的两个根, ∴00002,22y x m n mn x x --+==--,则22200020448()(2)x y x m n x +--=-, ∵00(,)P x y 是椭圆上的点,∴22006(1)12x y =-,∴2200202824()(2)x x m n x -+-=-. 则214S =⋅222222000000002220002824412(2)8(2)2(2)2(2)x x x x x x x xx x x -+-+-+⋅=⋅=⋅---, 令02(01))x t t -=<≤,则02x t =+,令222(8)(2)()2t t f t t++=, 化简,得2211616()262f t t t t t=++++,则32331632(2)(16)()2t t f t t tt t +-'=+--=,令()0f t '=,得t =,而1)<,∴函数()f t 在[0,1)]上单调递减,当1)t =时,()f t 取到最小值, 此时0x =P 的横坐标为0x =时,PBC ∆的面积S 最小.4.假设有穷数列{}n a 各项均不相等,将数列从小到大重新排序后相应的项数构成的新数列成为数列{}n a 的排序数列,例如:数列132a a a <<,满足则排序数列为2,3,1(1)写出2,4,3,1的排序数列;(2)求证:数列{}n a 的排序数列为等差数列的充要条件是数列{}n a 为单调数列。
江苏省启东市启东中学2015届高三数学下学期期初调研测试试卷 文
江苏省启东市启东中学2015届高三数学下学期期初调研测试试卷 文注 意 事 项1.本试卷包含填空题〔第1题~第14题,共14题〕、解答题〔第15题~第20题,共6题〕,总分160分,考试时间为120分钟.2.答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米签字笔填写在答题纸上.3.请认真核对监考员所粘贴的条形码上的姓名、考试证号是否与您本人的相符.4.请用书写黑色字迹的0.5毫米签字笔在答题卡纸的指定位置答题,在其它位置作答一律无效.一、填空题:本大题共14小题,每一小题5分,共70分。
不需写出解答过程,请把答案直接填写在答题卡相应位置上。
1.集合A ={x|log2x≤2},B =(-∞,a),假设A ⊆B ,如此实数a 的取值范围是(c ,+∞),其中c = ▲ .2.由命题“∃x ∈R ,x2+2x +m ≤0〞是假命题,求得实数m 的取值范围是(a ,+∞),如此实数a = ▲ .3.底面边长为2 m ,高为1 m 的正三棱锥的全面积为 ▲ m2.4.圆x2+y2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,如此实数a =▲. 5.△ABC 中,∠B =45°,AC =4,如此△ABC 面积的最大值为 ▲ .6.设常数a 使方程a x x =+cos 3sin 在闭区间]2,0[π上恰有三个解321,,x x x ,如此=++321x x x ▲ .7. 函数⎪⎩⎪⎨⎧<-≥=2)1(223x x x xy ,假设关于x 的方程f(x)=k 有两个不同的实根,如此实数k 的取值范围是 ▲ .8.平面上四个互异的点A 、B 、C 、D 满足:()()20AB AC AD BD CD -⋅--=,如此ABC ∆的形状是 ▲ .9.设y x ,均为正实数,且33122x y +=++,如此xy 的最小值为 ▲ .10.在矩形ABCD 中,对角线AC 与相邻两边所成的角为α,β,如此有cos2α+cos2β=1. 类比到空间中的一个正确命题是:在长方体ABCD-A1B1C1D1中,对角线AC1与相邻三个面所 成的角为α,β,γ,如此cos2α+cos2β+cos2γ= ▲ _.11.点(,4)P m 是椭圆22221+=x y a b (0)>>a b 上的一点, 12,F F 是椭圆的两个焦点,假设12∆PF F 的内切圆的半径为32,如此此椭圆的离心率为 ▲ .12.假设函数)1ln(2ln )(+-=x kxx f 不存在零点,如此实数k 的取值范围是 ▲ .13.函数xe x xf 2)(=在区间)1,(+a a 上存在极值点,如此实数a 的取值范围为 ▲ . 14.设定义域为),0(+∞的单调函数)(x f ,对任意),0(+∞∈x ,都有6]log )([2=-x x f f ,假设0x 是方程4)()(='-x f x f 的一个解,且))(1,(*0N a a a x ∈+∈,如此实数a = ▲ . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答. 解答时应写出 文字说明、证明过程或演算步骤.15.〔本小题总分为为14分〕定义域为R 的函数f(x)=-2x +b2x +1+a是奇函数.〔1〕求a ,b 的值;〔2〕假设对任意的t ∈R ,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k 的取值范围.16.〔本小题总分为为14分〕函数)50)(36cos(2)(≤≤+=x x f ππ,点B A ,分别是函数)(x f y =图象上的最高点和最低点.〔1〕求点B A ,的坐标以与OB OA ⋅的值;〔2〕设点B A ,分别在角])2,0[,(,πβαβα∈的终边上,求的值.1F 2F yxP17.〔本小题总分为为14分〕如图1所示,在Rt △ABC 中,AC =6,BC =3,∠ABC =90°,CD 为∠ACB 的平分线,点E 在线段AC 上,CE =4.如图2所示,将△BCD 沿CD 折起,使得平面BCD ⊥平面ACD ,连结AB ,设点F 是AB 的中点. (1)求证:DE ⊥平面BCD ;(2)在图2中,假设EF ∥平面BDG ,其中G 为直线AC 与平面BDG 的交点,求三棱锥B-DEG 的体积.18.〔本小题总分为为16分〕为了保护环境,开展低碳经济,某单位在国家科研部门的支持下,进展技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理本钱y(元)与月处理量x(吨)之间的函数关系可近似地表示为:⎪⎩⎪⎨⎧∈+-∈+-=]500,144[8000020021)144,120[50408031223x x x x x x x y ,且每处理一吨二氧化碳得到可利用的化工产品价值为200元,假设该项目不获利,国家将给予补偿.〔1〕当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,如此国家每月至少需要补贴多少元才能使该项目不亏损?〔2〕该项目每月处理量为多少吨时,才能使每吨的平均处理本钱最低?19.〔本小题总分为为16分〕设A ,B 分别为椭圆22221+=x y ab (0)>>a b 的左、右顶点,椭圆的长轴长为4,且点在该椭圆上.〔1〕求椭圆的方程;〔2〕设P 为直线4=x 上不同于点(4,0)的任意一点,假设直线AP 与椭圆相交于异于A 的点,证明:△MBP 为钝角三角形.20.〔本小题总分为为16分〕函数x a x x f ln 21)(2+=.〔1〕假设1-=a ,求函数)(x f 的极值,并指出极大值还是极小值; 〔2〕假设1=a ,求函数)(x f 在],1[e 上的最值;〔3〕假设1=a ,求证:在区间),1[+∞上,函数)(x f 的图象在332)(xx g =的图象下方.2015届高三寒假作业测试答案 数学〔Ⅰ〕试题1.答案:4;由log2x≤2,得0<x≤4,即A ={x|0<x≤4},而B =(-∞,a),由于A ⊆B ,如此a>4,即c =4;2. 答案:1;由题意得命题“∀x ∈R ,x2+2x +m>0〞是真命题,所以Δ=4-4m<0,即m>1,故实数m 的取值范围是(1,+∞),从而实数a 的值为1.3. 答案:33;由条件得斜高为32)33(12=+ (m).从而全面积S =34×22+3×12×2×23=3 3 (m2).4. 答案:-4;圆的标准方程为(x +1)2+(y -1)2=2-a ,r2=2-a ,如此圆心(-1,1)到直线x +y +2=0的距离为|-1+1+2|2= 2.由22+(2)2=2-a ,得a =-4.7. 答案:(0,1),解析 画出分段函数f(x)的图象如下列图,结合图象 可以看出,假设f(x)=k 有两个不同的实根,也即函数y =f(x)的图象 与y =k 有两个不同的交点,k 的取值范围为(0,1). 8. 答案:等腰三角形;AC AB DC AD DB AD CD BD AD +=+++=--)()(2,BC AC AB =-,由()()20AB AC AD BD CD -⋅--=,即)(AC AB BC +⊥,由四边形垂直平分可得ABC ∆的是等腰三角形.9.答案:16;法一;由33122x y +=++化为xy y x xy 28≥+=-,因y x ,均为正实数,故4≥xy ;法二:由于33122x y+=++和xy 都是对称式,故令x=y=4.10.答案:2;设长方体的棱长分别为a ,b ,c ,如下列图,所以AC1与下底 面所成角为∠C1AC ,记为α,所以cos2α=AC2AC21=a2+b2a2+b2+c2,同理cos2 β=a2+c2a2+b2+c2,cos2γ=b2+c2a2+b2+c2,所以cos2α+cos2β+cos2γ=2.答案:cos2α+cos2β+cos2γ=211. 答案:35;一方面12∆PF F 的面积为1(22)2a c r +⋅;另一方面12∆PF F 的面积为122⋅p y c,11(22)222+⋅=⋅p a c r y c ,∴()+⋅=⋅p a c r y c ,∴+=p y a c c r ,∴(1)+=p y a c r ,又4=p y ∴4511332p y a c r =-=-=,∴椭圆的离心率为35==c e a . 12. 答案:)4,0(;由题意可知⎪⎪⎩⎪⎪⎨⎧+=>+>)1ln(2ln 010x kx x kx ,解得1->x 且0≠x ,由对数的性质可得2)1ln()1ln(2ln +=+=x x kx ,可得2)1(+=x kx )0,1(,21)1(2≠->++=+=⇒x x x x x x k由于,21-<+x x 或02121<++⇒≥+x x x x 或421≥++x x , 要使函数)1ln(2ln )(+-=x kx x f 不存在零点,只需k 取21++x x 取值集合的补集,即}40|{<≤k x ,当0=k 时,函数无意义,故k 的取值范围应为:)4,0(13. 答案:)0,1()2,3(-⋃--;函数x e x x f 2)(=的导数为)2(22+=+='x xe e x xe y xx x ,令0='y ,如此0=x 或2-=x ,当)0,2(-∈x 时)(x f 单调递减,当)2,(--∞∈x 和),0(+∞∈x 时)(x f 单调递增0∴和2是函数的极值点,因为函数xe x xf 2)(=在区间)1,(+a a 上存在极值点,所以12+<-<a a 或2310-<<-⇒+<<a a a 或01<<-a ,14. 答案:1;对任意的),0(+∞∈x ,都有6]log )([2=-x x f f ,又由)(x f 是定义在),0(+∞上的单调函数,如此x x f 2log )(-为定值,设x x f t 2log )(-=,如此x t x f 2log )(+=,又由6)(=t f ,可得6log 2=+t t ,可解得4=t ,故2ln 1)(,log 4)(2x x f x x f ='+=,又0x 是方程4)()(='-x f x f 的一个解,所以0x 是函数2ln 1log 4)()()(2x x x f x f x F -=-'-=的零点,分析易得04ln 112ln 211)2(,02ln 1)1(>-=-=<-=F F ,故函数)(x F 的零点介于)2,1(之间,故1=a ,故答案为:1 二、解答题:15. 解 (1)因为f(x)是奇函数,且定义域为R ,所以f(0)=0,-------------------------2分 即-1+b2+a=0,解得b =1. ---------------------------------------------------------4分 从而有f(x)=-2x +12x +1+a .又由f(1)=-f(-1)知-2+14+a =--12+11+a ,解得a =2----6分经检验适合题意,∴a =2,b =1.-------------------------------------------------------7分 (2)由(1)知f(x)=-2x +12x +1+2=-12+12x +1.由上式易知f(x)在(-∞,+∞)上为减函数.又因f(x)是奇函数,从而不等式f(t2-2t)+f(2t2-k)<0等价于f(t2-2t)<-f(2t2-k)=f(-2t2+k).-----10分 因为f(x)是减函数,由上式推得t2-2t>-2t2+k.即对一切t ∈R 有3t2-2t -k>0.------------------------------------------------------------12分 从而判别式Δ=4+12k<0,解得k<-13---------------------------------------------------14分16. 解:〔1〕∵,21)36cos(16736350≤+≤-∴≤+≤∴≤≤ππππππx x x --------3分当,336πππ=+x 即0=x 时,)(x f 取得最大值1,当即4=x 时,)(x f 取得最小值.2-因此,所求的坐标为).2,4(),1,0(-B A --------------------------------------------------5分如此;2).2,4(),1,0(-=⋅∴-==OB OA OB OA ----------------------------------------7分〔2〕∵点).2,4(),1,0(-B A 分别在角])2,0[,(,πβαβα∈的终边上,如此,552cos ,55sin ,2=-==ββπα-------------------------------------------------10分如此,54552)55(2cos sin 22sin -=⨯-⨯==βββ.531)552(21cos 22cos 22=-⨯=-=ββ---------------------------------------------12分.1027)5453(22)24sin()22sin(=+=-=-∴βπβα--------------------------------------14分18. 解 (1)当x ∈[200,300]时,设该项目获利为S ,如此S =200x -⎪⎭⎫ ⎝⎛+-80000200212x x =-12x2+400x -80 000=-12(x -400)2, 所以当x ∈[200,300]时,S<0,因此该单位不会获利.--------------------------3分 当x =300时,S 取得最大值-5 000,----------------------------------------------5分 所以国家每月至少补贴5 000元才能使该项目不亏损.-------------------------7分 (2)由题意可知二氧化碳的每吨处理本钱为⎪⎩⎪⎨⎧∈-+∈+-=]500,144[2008000021)144,120[504080312x x x x x x x y -------------------------------------------9分①当x ∈[120,144)时,y x =13x2-80x +5 040=13(x -120)2+240,所以当x =120时,yx 取得最小值240.-------------------------------------------------12分 ②当x ∈[144,500]时,y x =12x +80 000x -200≥212x×80 000x -200=200,当且仅当12x =80 000x ,即x =400时,yx 取得最小值200.因为200<240,------15分 答:当每月的处理量为400吨时,才能使每吨的平均处理本钱最低.----------16分20. 解:〔1〕)(x f 的定义域是),0(+∞x x x x x x x x f )1)(1(11)(2-+=-=-='当)1,0(∈x 时)(0)(x f x f ⇒<'在)1,0(上递减;-------------------------------2分 当),1(+∞∈x 时)(0)(x f x f ⇒>'在),1(+∞上递增,)(x f ∴的极小值是21)1(=f ,无极大值.------------------------------------------4分〔2〕01)(ln 21)(2>+='⇒+=x x x f x x x f 恒成立对],1[e x ∈,)(x f ∴在],1[e 上递增,------------------------------------------------------------------6分.21)1()(,121)()(min 2max ==+==∴f x f e e f x f --------------------------------10分word- 11 - / 11 〔3〕证明:令)1(32ln 21)()()(32≥-+=-=x x x x x g x f x h0)12)(1(1221)(2232≤++--=++-=-+='x x x x x x x x x x x h 在),1[+∞上恒成立, )(x h ∴在区间),1[+∞上递减,-----------------------------------------------------------12分 0613221)1()(<-=-=≤∴h x h -----------------------------------------------------------15分 ∴在区间),1[+∞上,函数)(x f 的图象在332)(x x g =的图象下方--------------16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
启东市大江中学(一校四题)
1.函数
)11lg()(22+--++=x x x x x f 的值域为
解析:函数的定义域为
()+∞,0,
1122+--++x x x x =2
2)2
3
0()21(-++x —
2
2)
2
30()21(-+-x 表示)0,(x 到⎪⎪⎭⎫ ⎝⎛-
23,21的距离减去)0,(x 到⎪⎪⎭
⎫
⎝⎛23,21的距离,从而得到
1122+--++x x x x )1,0(∈,所以范围为()0,∞-
2.在ABC ∆中,三个内角C B A ,,的对边分别是c b a ,,,其中,,35==C B 且满足.12cos sin 2sin 22sin 2=+-A A A A 求(1))cos(C B -的值;
(2)的
外心为ABC O ∆,若n m +=,求n m +的值。
解:(1)由.12cos sin 2sin 22sin 2
=+-A A A A 得
21c o s
-=A )20(π,∈A 3
2π=∴A .在ABC ∆中,由余弦定理得:A bc c b a cos 22
22-+= ∴7=a
在ABC ∆中,由正弦定理得:C c B b A a sin sin sin ==,14
3
3sin ,1435sin ==C B 14
13
cos ,1411cos ==∴C B 4947
sin sin cos cos )cos(=+=-C B C B C B 。
-
(2)建立直角坐标系得
0,0(),B A
由n m +=得.9
11
,32-=-=n m 9
17
-
=+∴n m 3.设椭圆:E 22
221(0)x y a b a b
+=>>x 轴的
直线被椭圆截得的弦长为(I )求椭圆E 的方程;(II )点P 是椭圆E 上横坐标大于2的
动点,点,B C 在y 轴上,圆22
(1)1x y -+=内切于PBC ∆,试判断点P 在何位置时PBC ∆的
面积S 最小,并证明你的判断.
a
b ==
故所求椭圆方程为
22
1126
x y +=. (II )设000(,)(2P x y x <≤,(0,),(0,)B m C n .
不妨设m n >,则直线PB 的方程为00
:PB y m
l y m x x --=
即000(
)0y m x x y x m --+=,又圆心(1,0)到直线PB 的距离为1,
01,2x =>,化简得2000(2)20x m y m x -+-=,
同理,2000(2)20x n y n x -+-=,∴,m n 是方程2000(2)20x x y x x -+-=的两个根,
∴00002,22y x m n mn x x --+==--,则22
2
0002
0448()(2)
x y x m n x +--=-, ∵00(,)P x y 是椭圆上的点,∴22
00
6(1)12x y =-,∴2
2
002
02824()(2)
x x m n x -+-=-. 则2
14S =⋅22
2222
00000000222
0002824412(2)8(2)2(2)2(2)
x x
x x x x x x x x x -+-+-+⋅=⋅=⋅---, 令02(01))x t t -=<≤,则02x t =+,令22
2
(8)(2)()2t t f t t
++=, 化简,得2211616()262f t t t t t =++++,则3233
1632(2)(16)
()2t t
f t t t t t +-'=
+--=,
令()0f t '=,得t =
,而
1)<
∴函数()f t
在1)]上单调递减,当
1)t =时,()f t 取到最小值, 此时0x =,即点P 的横坐标为0x =时,PBC ∆的面积S 最小.
4.假设有穷数列{}n a 各项均不相等,将数列从小到大重新排序后相应的项数构成的新数列成为数列{}n a 的排序数列,例如:数列132a a a <<,满足则排序数列为2,3,1(1)写出2,4,3,1的排序数列;(2)求证:数列{}n a 的排序数列为等差数列的充要条件是数列{}n a 为单调数列。
解:(Ⅰ)排序数列为4,1,3,2.- (Ⅱ)证明:充分性:
当数列{}n a 单调增时,∵
12a a <<…n a <,
∴排序数列为1,2,3,…,n. ∴排序数列为等差数列.
当数列{}n a 单调减时,∵1n n a a -<<…1a <,
∴排序数列为n,n-1,n-2,…,1 . ∴排序数列为等差数列.
综上,数列{}n a 为单调数列时,排序数列为等差数列. 必要性: ∵排序数列为等差数列 ∴排序数列为1,2,3,...,n 或n,n-1,n-2,...,1. ∴12a a <<...n a <或1n n a a -<< (1)
a <
∴数列{}n a 为单调数列.。