七年级数学(北师版):第四章 4.3.2利用“角边角”“角角边”判定三角形全等

合集下载

北师大版七年级数学下册精品教案 4.3 第2课时 利用“角边角”“角角边”判定三角形全等

北师大版七年级数学下册精品教案   4.3 第2课时 利用“角边角”“角角边”判定三角形全等

第2课时利用“角边角”“角角边”判定三角形全等1.理解并掌握三角形全等的判定方法——“角边角”“角角边”;(重点)2.能运用“角边角”“角角边”判定方法解决有关问题.(难点)一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、合作探究探究点一:全等三角形判定定理“ASA ”如图,AD ∥BC ,BE ∥DF ,AE =CF ,试说明:△ADF ≌△CBE .解析:根据平行线的性质可得∠A =∠C ,∠DFE =∠BEC ,再根据等式的性质可得AF =CE ,然后利用“ASA ”可得到△ADF ≌△CBE .解:∵AD ∥BC ,BE ∥DF ,∴∠A =∠C ,∠DFE =∠BEC .∵AE =CF ,∴AE +EF =CF+EF ,即AF =CE .在△ADF 和△CBE A =∠C ,=CE ,DFA =∠BEC ,∴△ADF ≌△CBE (ASA).方法总结:在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分;在“ASA ”中,“边”必须是“两角的夹边”.探究点二:全等三角形判定定理“AAS ”如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于E .AD 与BE 交于F ,若BF =AC ,试说明:△ADC ≌△BDF .解析:先说明∠ADC =∠BDF ,∠DAC =∠DBF ,再由BF =AC ,根据“AAS ”即可得出两三角形全等.解:∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =∠BDF =∠BEA =90°.∵∠AFE =∠BFD ,∠DAC+∠AEF+∠AFE=180°,∠BDF+∠BFD+∠DBF=180°,∴∠DAC=∠DBF.在△ADC和△BDF DAC=∠DBF,ADC=∠BDF,=BF,∴△ADC≌△BDF(AAS).方法总结:在“AAS”中,“边”是其中一个角的对边.探究点三:全等三角形判定与性质的综合在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试说明:(1)△BDA≌△AEC;(2)DE=BD+CE.解析:(1)由垂直的关系可以得到一对直角相等,利用“同角的余角相等”得到一组对应角相等,再由AB=AC,利用“AAS”即可得出结论;(2)由△BDA≌△AEC,可得BD=AE,AD=CE,根据DE=DA+AE等量代换即可得出结论.解:(1)∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°.∵AB ⊥AC,∴∠BAD+∠CAE=90°,∴∠ABD=∠CAE.在△BDA和△AEC中,∵ADB=∠CEA=90°,ABD=∠CAE,=AC,∴△BDA≌△AEC(AAS);(2)∵△BDA≌△AEC,∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE.方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.三、板书设计1.角边角:两角及其夹边分别相等的两个三角形全等,简写成“角边角”或“ASA”.2.角角边:两角分别相等且其中一组等角的对边相等的两个三角形全等,简写成“角角边”或“AAS”.本节课的教学借助于动手操作、分组讨论等探究出三角形全等的判定方法.在寻找判定方法说明两个三角形全等的条件时,可先把容易找到的条件列出来,然后再根据判定方法去寻找所缺少的条件.从课堂教学的情况来看,学生对“角边角”掌握较好,达到了教学的预期目的.存在的问题是少数学生在方法“AAS”和“ASA”的选择上混淆不清,还需要在今后的教学中进一步加强巩固和训练。

北师大版七年级数学下册4.3.2 探索三角形全等的条件

北师大版七年级数学下册4.3.2  探索三角形全等的条件
.
如图,∠A=∠D,要使△ABC≌△DBC,还需要补充一个条件:
利用“角边角“判定两三角形全等:
所以△BEC≌△CDA(AAS).
解:因为AD是△ABC的中线,所以BD=CD.
因为CF⊥AD,BE⊥AE,
所以∠CFD=∠BED=90°.
BED=CFD,

)
在△BDE和△CDF中,因为
BDE=CDF,
利用“角角边“判定两三角形全等:
又因为OE⊥AB,OF⊥CB,所以∠OEB=∠OFB.
在△BAC和△EAD中,因为
如图,CE⊥AB,DF⊥AB,垂足分别为E,F,AC∥DB,且AE=BF,那么△AEC≌△BFD的理由是(
所以CE=AD=5 cm,BE=CD,
所以△BDE≌△CDF(AAS).
利用“角边角“判定两三角形全等:
两角及其 夹边
分别相等的两个三角形全等(简写成“角边角”
或“ASA”).
几何语言:
在△ABC与△A'B'C'中,
∠=∠',
='',所以△ABC≌ △A'B'C' (
∠=∠',
ASA
).
1.〈厦门〉已知:如图,点B,F,C,E在一条直线上,∠A=
∠D,AC=DF,且AC∥DF.
试说明:△ABC≌△DEF.
在探索三角形全等条件及其应用过程中,能够进行有条理地思考并进行简单地推理.
如图,CE⊥AB,DF⊥AB,垂足分别为E,F,AC∥DB,且AE=BF,那么△AEC≌△BFD的理由是(
)
∠ACB=∠F
B.
所以△BEC≌△CDA(AAS).
的判定方法看缺什么条件,再去说明什么条件,简言

(北师大版)七年级数学下册:第四章三角形4.3第2课时利用“角边角”“角角边”判定三角形全等授课典案

(北师大版)七年级数学下册:第四章三角形4.3第2课时利用“角边角”“角角边”判定三角形全等授课典案

图4-1-29处理方式:可让学生快乐地回答.【师】同学们都非常喜欢读书,那你们家里一定有漂亮的典案二导学设计4.3探索三角形全等的条件(2)一、学习目标1、探索出三角形全等的条件“ASA ”和“AAS ”并能应用它们来判定两个三角形 是否全等。

2、体会利用转化的数学思想和方法解决问题的过程。

3、能够有条理的思考和理解简单的推理过程,并运用数学语言说明问题。

4、敢于面对数学活动中的困难,并能通过合作交流解决遇到的问题。

二、学习重点掌握三角形全等条件“ASA ”和“AAS ”,并能应用它们来判定两个三 角形是否全等。

三、学习难点 探索 “AAS ”的条件 四、学习设计: 1.温故而知新如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,△ABD 和△ACD 全等吗? 你能说明理由吗? 2、创设情景,引入新课提问:一张三角形的纸片,被斯成三部分,究竟用那部分可 画出原图一样的三角形? 探究练习1. 两角和它们的夹边将学生分组小组分工合作完成下列问题: 画一个△ABC 使它满足以下条件: 第一组:∠A=90°, ∠B=30°,AB=10cm 第二组: ∠A=60°, ∠B=45°,AB=9cm学生动手操作,完成问题后,小组交流比较,看看能得到什么结论?学生表述,老师板书: ________________________对应相等的两个三角形全等;(简写为_____________或者 ______________) 探究练习2.如果“两角及一边”条件中的边是其中一角的对边,比如三角形的两个内角分别是60° 和45°,一条边长为10cm ,情况会怎样呢?ABCD(1) 如果角60°所对的边为10cm ,你能画出这个三角形吗?(2) 如果角45°所对的边为10cm ,那么按这个条件画出的三角形都全等吗?结论___________________________对应相等的两个三角形全等简写为________________________________思考:若两个三角形具备两角和其中一个角的对边分别相等,哪么这两个三角形全等,你认为对吗?能举例说明吗?3.举例应用:例1.如图,已知AO=DO ,∠AOB 与∠DOC 是对顶角,还需补充条件______________=_______________,就可根据“ASA ”说明△AOB ≌△DOC ;或者补充条件_______________=_______________,就可根据“AAS ”,说明△AOB ≌△DOC 。

北师大版七年级数学下册《4.3 第2课时 利用“角边角”“角角边”判定三角形全等》教案

北师大版七年级数学下册《4.3 第2课时 利用“角边角”“角角边”判定三角形全等》教案

北师大版七年级数学下册《4.3 第2课时利用“角边角”“角角边”判定三角形全等》教案一. 教材分析《北师大版七年级数学下册》第4.3节主要讲述了利用“角边角”(AAA)和“角角边”(AAS)判定三角形全等的方法。

学生在学习本节课之前已经掌握了三角形的基本概念、性质以及全等三角形的判定方法“边角边”(SAS)。

本节课的内容是全等三角形判定方法的重要组成部分,是进一步研究三角形相似、解三角形等知识的基础。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象力,能够理解和掌握三角形的全等概念。

但是,对于“角边角”(AAA)和“角角边”(AAS)判定三角形全等的方法,他们可能还比较难以理解,需要通过大量的练习来巩固。

此外,学生可能对全等三角形的判定方法之间的联系和区别还不够清晰,需要教师进行引导和讲解。

三. 教学目标1.让学生掌握“角边角”(AAA)和“角角边”(AAS)两种判定三角形全等的方法。

2.使学生能够运用这两种方法解决实际问题。

3.培养学生空间想象能力和逻辑思维能力。

四. 教学重难点1.教学重点:掌握“角边角”(AAA)和“角角边”(AAS)两种判定三角形全等的方法。

2.教学难点:理解“角边角”(AAA)和“角角边”(AAS)判定三角形全等的原理,能够灵活运用这两种方法解决实际问题。

五. 教学方法采用讲授法、演示法、练习法、讨论法等教学方法。

通过教师的讲解和演示,学生的练习和讨论,使学生理解和掌握全等三角形的判定方法。

六. 教学准备1.教师准备PPT,内容包括全等三角形的判定方法、实例讲解等。

2.准备一些三角形模型或图片,用于展示和练习。

七. 教学过程1.导入(5分钟)通过一个实例引出全等三角形的判定方法,激发学生的兴趣。

例如,展示一个三角形模型,让学生观察并判断它是否与另一个三角形全等。

2.呈现(10分钟)教师通过PPT呈现“角边角”(AAA)和“角角边”(AAS)两种判定三角形全等的方法,并进行讲解。

北师大版七年级下册(新)第四章《4.3.2利用“角边角”“角角边”判定三角形全等》教案

北师大版七年级下册(新)第四章《4.3.2利用“角边角”“角角边”判定三角形全等》教案
2.教学难点
-难点一:理解并区分ASA和AAS判定条件。学生可能会混淆两种判定方法中角的对应关系和边的对应关系。
-举例:学生需要明确ASA中的边是夹在两组相等角之间的边,而AAS中的边不是夹在两组相等角之间的边。
-难点二:在实际问题中灵活应用判定方法。学生在面对具体的几何图形时,可能难以确定使用哪种判定方法。
2.利用“角角边”(AAS)判定三角形全等:学生通过实例分析,掌握当两个三角形中,有两组角和非夹边相等时,这两个三角形全等。
本节课将结合教材内容,通过实际例题和练习,使学生熟练运用“角边角”和“角角边”判定方法,证明三角形全等。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过引导学生运用“角边角”和“角角边”判定方法证明三角形全等,使其掌握几何图形的基本证明方法,提高逻辑推理能力。
北师大版七年级下册(新)第四章《4.3.2利用“角边角”“角角边”判定三角形全等》教案
一、教学内容
本节课选自北师大版七年级下册(新)第四章《几何图形的尺规作图与证明》中的4.3.2节,主要内容包括以下两点:
1.利用“角边角”(ASA)判定三角形全等:学生通过观察和实际操作,理解当两个三角形中,有两组角和它们之间的夹边相等时,这两个三角形全等。
2.培养学生的空间观念:通过观察、分析、操作几何图形,使学生形成对三角形全等的空间观念,提高对几何图形的理解和认识。
3.培养学生的数学应用意识:将三角形全等的判定方法应用于解决实际问题,使学生体会数学与现实生活的联系,提高数学应用意识。
三、教学难点与重点
1.教学重点
- “角边角”(ASA)判定方法的掌握:学生需要理解并熟练运用ASA判定方法,通过两组角和它们之间的夹边相等来证明两个三角形全等。

北师大版七年级数学下册4.3.3用“边角边”判定三角形全等(教案)

北师大版七年级数学下册4.3.3用“边角边”判定三角形全等(教案)
2.注重分层教学:针对不同水平的学生,我要设计不同难度的练习题,使每个学生都能在课堂上得到锻炼和提升。对于基础薄弱的学生,我要多给予关心和指导,帮助他们逐步提高。
3.创设有趣的情境:在课堂教学中,我要尽量创设有趣、贴近生活的情境,激发学生的学习兴趣。通过让学生动手操作、小组讨论等形式,提高他们的参与度,使课堂氛围更加活跃。
3.通过实际操作、观.能够运用“边角边”全等条件,结合已知信息,证明两个三角形全等。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生的逻辑推理能力,通过“边角边”全等条件的探索与应用,使学生能够运用严谨的逻辑推理方法解决问题。
4.加强课堂互动:在讲授过程中,我要注重与学生的互动,鼓励他们提问和发表见解。对于学生的疑问,我要耐心解答,并及时给予反馈,帮助他们巩固所学知识。
5.注重学生思维能力的培养:在讲解全等条件时,我要引导学生从多个角度去思考问题,培养他们的空间想象力和逻辑推理能力。同时,鼓励学生尝试用不同的方法解决问题,提高他们的解题技巧。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解“边角边”(SAS)全等的基本概念。SAS全等是指两个三角形中有两边和它们之间的夹角对应相等时,这两个三角形全等。它是解决几何问题中判断三角形全等的重要依据。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何运用SAS全等条件解决实际问题,如求三角形的未知边长。
难点解析:学生在解决问题时,容易忽略题目中给出的全等条件,或者在复杂的图形中找不到对应的全等关系。
(3)运用“边角边”全等条件证明两个三角形全等时,注意证明过程的逻辑性和严密性。
难点解析:学生需要熟练掌握全等证明的基本步骤,并在实际操作中避免逻辑错误,如错用全等条件、漏掉关键步骤等。

北师大版七年级数学下册第四章 三角形3 第2课时 利用“角边角”“角角边”判定三角形全等

北师大版七年级数学下册第四章  三角形3 第2课时 利用“角边角”“角角边”判定三角形全等
所以△CDE≌△ABC. 所以 DE = BC.
下面的两个三角形是否全等,并说明理由.
不全等,因为并不符合
A
ASA 或 AAS 的判定条件. B
C
D
2. (陕西·中考) 如图,在 △ABC 中,点 D 在边 BC 上, CD = AB, DE∥AB,∠DCE =∠A. 求证:DE = BC. 解:因为 DE∥AB, 所以∠ABC =∠CDE. 在△CDE 和△ABC 中, 因为 ∠CDE =∠ABC, CD = AB, ∠DCE =∠BAC,
B
图二 C
“两角和其中一角的对边”
做一做
如果“两角及一边”条件中的边是两角所夹的边
,比如三角形的两个内角分别是 60° 和 80°,它们所夹
的边为 2 cm,你能画出这个三角形吗?你画的三角形
与同伴画的一定全等吗?
改变角度和边长,你
能得到同样的结论吗?
60°
80°
2 cm
归纳总结
“角边角”判定方法
60°
80°
2 cm
归纳总结
“角角边”判定方法 文字语言:两角分别相等且其中一组等角的对边相
等的两个三角形全等.简写成“角角边”或“AAS”.
几何语言: 在△ABC 和△A′B′C′ 中,
A
A′
因为 ∠A =∠A′, ∠B =∠B′,
AC = A′C′,
B
C B′
C′
所以 △ABC≌△A′B′C′(AAS).
有四种可能:三条边、 三个角、两边一角和 两角一边.
由前面的讨论我们知道,如果给出一个三角形三 条边的长度,那么由此得到的三角形都是全等的.
探究新知
1 三角形全等的判定(“角边角”)

北师版七年级数学下册第4章 4.3.3 用“边角边”判定三角形全等 PPT课件

北师版七年级数学下册第4章 4.3.3  用“边角边”判定三角形全等 PPT课件

OD=OB, 解:在△ODC和△OBA中,因为 DOC=BOA, OC=OA, 所以△ODC≌△OBA(SAS).
所以∠C=∠A(或者∠D=∠B)(全等三角形的对应 角相等), 所以DC∥AB(内错角相等,两直线平行).
(来自《点拨》)
知1-讲


本题可运用分析法寻找说明思路,分析法就是执
段的两线段相等,即等量代换;⑤全等三角形的对应边相
等等.
(来自《点拨》)
知1-讲
例2 〈武汉〉如图,AC和BD相交于点O,OA=OC,
OB=OD.试说明:DC∥AB. 导引:根据“边角边”可说明 △ODC≌△OBA, 可得∠C=∠A(或者∠D=∠B), 即可说明DC∥AB.
(来自《点拨》)
知1-讲
第四章 三角形
4.3
探索三角形全等的条件
第 3 课时
用“边角边”判定
三角形全等
1
课堂讲解 三角形全等的条件:边角边
全等三角形判定“边角边”的简单应用
2
课时流程
逐点 导讲练 课堂 小结 作业 提升
如果已知一个三角形的两边及一角,那么有几种 可能的情况呢?每种情况下得到的三角形都全等吗?
知1-导
而∠AEB=∠CFD由BE∥DF可得;
AE=CF由AF=CE可得.
(来自《点拨》)
知1-讲
解:因为BE∥DF,所以∠AEB=∠CFD. 又因为AF=CE,所以AF+FE=CE+EF, 即AE=CF.
AE=CF, 在△ABE和△CDF中,因为 AEB=CFD, BE=DF,
所以△ABE≌△CDF (SAS).
C.2个 D.3个
(来自《典中点》)
知2-导

【北师大版】初一七年级数学下册《4.3.2 用“角边角、角角边”判定三角形全等》课件共34页PPT

【北师大版】初一七年级数学下册《4.3.2 用“角边角、角角边”判定三角形全等》课件共34页PPT
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
【北师大版】初一七年级数学下册 《4.3.2 用“角边角、角角边”判定三
角形全等》课件
16、云无心以出岫,鸟倦飞而知还。 17、童孺纵行歌,斑白欢游诣。 18、福不虚至,祸不易来。 19、久在樊笼里,复得返自然。的阅读

春七年级数学下册第4章三角形4.3.2用“角边角、角角边”判定三角形全等教案北师大版(new)

春七年级数学下册第4章三角形4.3.2用“角边角、角角边”判定三角形全等教案北师大版(new)

4.3。

2 用“角边角、角角边”判定三角形全等〖教学目的:〗〖知识与技能目标:〗1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2.掌握三角形的“角边角"“角角边”条件,了解三角形的稳定性.〖过程与方法:〗探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.〖情感态度与价值观:〗通过动手作图,让学生接触事物、感之事物,获得请、亲身体验和直接经验,从中发现问题。

〖教学重点、难点:〗重点:三角形“角边角”“角角边”的全等条件.难点:用三角形“角边角"“角角边”的条件进行有条理的思考并进行简单的推理。

〖教学过程:〗Ⅰ。

创设现实情景,引入新课1.如果“两角及一边"条件中的边是两角所夹的边,比如三角形的两个内角分别是60°和80°,它们所夹的边为2cm,你能画出这个三角形吗?你画的三角形与同伴画的一定全等吗?2.如果“两角及一边”条件中的边是其中一角的对边,比如三角形两个内角分别是60°和45°,一条边长为3cm。

你画的三角形与同伴画的一定全等吗?Ⅱ.根据现实情景,讲授新课一.结论:1、两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”2、两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”二.巩固练习:1、两角和它们的夹边对应相等的两个三角形全等,简写成或2、两角和其中一角的对边对应相等的两个三角形全等,简写成 或3、如图,AB =AC ,∠B =∠C ,你能证明△ABD ≌△ACE 吗?证明: △ABD 和△ACE 中⎪⎪⎩⎪⎪⎨⎧∠∠∠=∠(公共角)=(已知)=(已知) ∴ ≌ ( )4、如图,已知AC 与BD 交于点O ,AD ∥BC ,且AD =BC ,你能说明BO=DO 吗?证明:∵AD ∥BC(已知)∴∠A= ,( )∠D= ,( )在 中,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∴ ≌ ( )∴BO=DO ( )Ⅲ.做一做1.如图,AB ∥CD ,∠A =∠D ,BF =CE,∠AEB =110°,求∠CFD 的度数。

北师版七年级数学下册4.3 第2课时 利用“角边角”“角角边”判定三角形全等教案与反思

北师版七年级数学下册4.3 第2课时 利用“角边角”“角角边”判定三角形全等教案与反思

第2课时 利用“角边角”“角角边”判定三角形全等原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!东宫白庶子,南寺远禅师。

——白居易《远师》1.理解并掌握三角形全等的判定方法——“角边角”“角角边”;(重点)2.能运用“角边角”“角角边”判定方法解决有关问题.(难点)一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、合作探究探究点一:全等三角形判定定理“ASA ”如图,AD ∥BC ,BE ∥DF ,AE =CF ,试说明:△ADF ≌△CBE .解析:根据平行线的性质可得∠A =∠C ,∠DFE =∠BEC ,再根据等式的性质可得AF =CE ,然后利用“ASA ”可得到△ADF ≌△CBE .解:∵AD ∥BC ,BE ∥DF ,∴∠A =∠C ,∠DFE =∠BEC .∵AE =CF ,∴AE +EF=CF +EF ,即AF =CE .在△ADF 和△CBE 中,∵⎩⎨⎧∠A =∠C ,AF =CE ,∠DFA =∠BEC ,∴△ADF ≌△CBE (ASA).方法总结:在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分;在“ASA ”中,“边”必须是“两角的夹边”.探究点二:全等三角形判定定理“AAS ”如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于E .AD 与BE 交于F ,若BF =AC ,试说明:△ADC ≌△BDF .解析:先说明∠ADC =∠BDF ,∠DC =∠DBF ,再由BF =AC ,根据“AAS ”即可得出两三角形全等.解:∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =∠BDF =∠BEA =90°.∵∠AFE =∠BFD ,∠DAC +∠AEF +∠AFE =180°,∠BDF +∠BFD +∠DBF =180°,∴∠DAC =∠DBF .在△ADC 和△BDF 中,∵⎩⎨⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,∴△ADC ≌△BDF (AAS).方法总结:在“AAS ”中,“边”是其中一个角的对边.探究点三全等三角形判定与性质的综合在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .试说明:(1)△BDA ≌△AEC ;(2)DE =BD +CE .解析:(1)由垂直的关系可以得到一对直角相等,利用“同角的余角相等”得到一组对角相等,再由AB =AC ,利用“AAS ”即可得出结论;(2)由△BDA ≌△AEC ,可得BD =AE ,AD =CE ,根据D =DA +AE 等量代换即可得出结论.解:(1)∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠ABD +∠BAD =90°.∵AB ⊥AC ,∴∠BAD +∠CAE =90°,∴∠ABD =∠CAE .在△BDA 和△AEC 中,∵错误!∴△BDA≌△AEC(AAS);(2)∵△BDA≌△AEC,∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE.方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.三、板书设计1.角边角:两角及其边分别相等的两个三角形全等,简写成“角边角”或“ASA”.2.角角边:两角分别相等且其中一组等角的对边相等的两个三角形全等,简写成“角角边”或“AAS”.本节课的教学借助于动手操作、分组讨论等探究出三角形全等的判定方法.在寻找判定方法说明两个三角形全等的条件时,可先把容易找到的条件列出来,然后再根据判定方法去寻找所缺少的条件.从课堂教学的情况来看,学生对“角边角”掌握较好,达到了教学的预期目的.存在的问题是少数学生在方法“AAS”和“ASA”的选择上混淆不清,还需要在今后的教学中进一步加强巩固和训练【素材积累】1、人生只有创造才能前进;只有适应才能生存。

北师大版数学七年级下册 利用“角边角”“角角边”判定三角形全等教案与反思

北师大版数学七年级下册 利用“角边角”“角角边”判定三角形全等教案与反思

第2课时利用“角边角”“角角边”判定三角形全等路漫漫其修远兮,吾将上下而求索。

屈原《离骚》原创不容易,【关注】店铺,不迷路!【知识与技能】1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2.掌握三角形的“角边角”“角角边”的全等条件,了解三角形的稳定性.【过程与方法】学生经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,由此带动知识发生、发展的全过程.【情感态度】学生积极参与三角形全等条件的探究过程,从中体味协作与成功的快乐,建立学习好数学的自信心,体会三角形全等条件在现实生活中的应用价值.【教学重点】三角形“角边角”“角角边”的全等条件.【教学难点】用三角形“角边角”“角角边”的条件进行有条理的思考并进行简单的推理.一、情景导入,初步认知1.我们已学过识别两个三角形全等的简便方法是什么,识别三角形全等是不是还有其它方法呢?2.有一块三角形纸片撕去了一个角,要去剪一块新的,如果你手头没有测量的仪器,你能保证新剪的纸片形状.大小和原来的一样吗?【教学说明】既复习了全等三角形的“SSS”的识别方法,又唤起学生对新知识探索学习的渴望,引发学生兴趣,从而提高学生学习的热情.二、思考探究,获取新知探究:如果给出一个三角形的“两角一边”能确定这个三角形吗?1.让学生拿出提前准备好的60°角80°角和2厘米的线段,以小组为单位,进行操作拼接成三角形,再进行对比,看一看组成的三角形是否全等.【教学说明】通过实践操作,使学生对三角形全等条件有了一个更清楚的理解——两角和它们的夹边对应相等的两个三角形全等,让他们尝到成功的喜悦.让学生懂得数学就来自于我们的生活,体会到数学与我们生活的联系.【归纳结论】如果两个三角形有两个角及其夹边分别对应相等,那么这两个三角形全等.简写成“角边角”或简记为“ASA”用符号语言表达为:在△ABC和△DEF中,∵∠B=∠E,BC=EF,∠C=∠F,∴△ABC≌△DEF(ASA).2.让学生拿出提前准备好的60°角45°角和3厘米的线段,以小组为单位,进行操作拼接成三角形.(1)如果60°角所对的边是3厘米.所组成的三角形是否全等.(2)如果45°角所对的边是3厘米.所组成三角形是否全等.组员之间,小组之间进行对比.【归纳结论】如果两个三角形有两个角及其一个角的对边分别对应相等,那么这两个三角形全等.简写成“角角边”或简记为“AAS”.用符号语言表达为:在△ABC和△DEF中∵∠B=∠E,∠C=∠F,AC=DF∴△ABC≌△DEF(AAS)【教学说明】通过学生实践,让学生在合作学习中共同解决问题,使学生主动探究三角形全等的条件,培养学生分析、探究问题的能力,提高他们归纳知识的能力和语言组织能力、表达能力.三、运用新知,深化理解1.如图,填什么就有△AOC≌△BOD:∠A=∠B(已知);AC=BD(已知);∠C=∠D(已知);所以△AOC≌△BOD(ASA).如图,应填什么就有△AOC≌△BOD:∠A=∠B(已知);CO=DO(已知);∠C=∠D(已知);所以△AOC≌△BOD(AAS).如图,应填什么就有△AOC≌△BOD:∠A=∠B(已知);AO=BO(已知);∠C=∠D(已知);所以△AC≌△BOD(AAS).2.如图,AB与CD相交于点O,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为么?解:△AOC≌△BOD.理由是:∵O是AB的中点(已知)∴AO=BO(线段中点定义)又∵AB与CD相交于点O(已知)∴∠1=∠2(对顶角相等)在△AOC与△BOD中,∠A=∠B(已知)AO=BO(已证)∠1=∠2(已证)∴△AOC≌△BODASA)3.如图,1=∠2,∠D=∠C,试说明△ADB≌△ACB.解:∵在△ADB中,∠3=180°-∠1-∠D(三角形内角和定理).∵在△ACB中,∠4=180°-∠2-∠C(三角形内角和定理),而∠1=∠2,∠D=∠C(已知),∴∠3=∠4(等量代换),∴在△ADB和△ACB中,∠1=∠2(已知),AB=AB(公共边),∠3=∠4(已证),∴△DB≌△ACB(ASA).4.如图,AB=AC,∠B=∠C,△ABD≌△ACE吗?为什么?解:△ABD≌△ACE.理由:△ABD和△ACE中∠B=∠C(已知)AB=AC(已知)∠A=∠A(公共角)∴△ABD≌△ACE(ASA)5.如图,∠B=∠C,AD平分∠BAC,你能说明△ABD≌△ACD吗?若BD=3cm,则CD有多长?解:∵AD平分∠BAC,∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,∠B=∠C(已知),∠BAD=∠CAD(已证),AD=AD(公共边).∴△ABD≌△ACD(AAS),∴BD=CD,∵BD=3cm(已知),∴CD=BD=3cm(等量代换).6.如图,在△ABC中,BE⊥AD于E,CF⊥AD于F,且BE=CF,那么BD与DC 相等吗?你能说明理由吗?解:BD=DC.理由:∵BE⊥AD于E,CF⊥AD于F,∴∠BED=∠CFD=90°.在△BED与△CFD中,∠BED=∠CFD(已证),∠BDE=∠CDF(对顶角相等),BE=CF,∴△BED≌△CFD(AAS),∴BD=DC.【教学说明】使学生对三角形全等条件有了一个更清楚的理解——两角和它们的夹边对应相等的两个三角形全等.在学生做题的过程中,学生还能体会到严谨的数学思想.四、师生互动,课堂小结本节课我们经历了对符合两角一边的条件的所有三角形进行画图验证,探索出三角形全等的另两个定理,它们分别是?五、教学板书1.布置作业:教材“习题4.7”中第1、2、3题.2.完成同步练习册中本课时的练习.本节课从复习旧知识入手,把知识点问题化,在教学设计时提供充分探索与交流的空间,使学生进一步经历,实验、猜测、推理、交流、反思等活动,培养学生类比的思想方法,让学生学会一些探究的基本方法与思路,并体会到数学教材在内容安排上螺旋上升的特点.采用自主、探究、合作学习,组内交流的学习方式,让学生自己当老师,一方面让其他学生容易接受,另一方面可增强学生的自信心和学习数学的兴趣,让学生在探究中,经历知识产生发展的过程,体会“做数学”的乐趣.【素材积累】从诞生的那一刻起,我们就像一支离弦的箭,嗖嗖地直向着生命的终点射去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3 探索三角形全等的条件
第2课时 利用“角边角”“角角边”判定三角形全等
1.理解并掌握三角形全等的判定方法——“角边角”“角角边”;(重点)
2.能运用“角边角”“角角边”判定方法解决有关问题.(难点)
一、情境导入
如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?
学生活动:学生先自主探究出答案,然后再与同学进行交流.
教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.
二、合作探究
探究点一:全等三角形判定定理“ASA ”
如图,AD ∥BC ,BE ∥DF ,AE =CF ,试说明:△ADF ≌△CBE .
解析:根据平行线的性质可得∠A =∠C ,∠DFE =∠BEC ,再根据等式的性质可得AF =CE ,然后利用“ASA ”可得到△ADF ≌△CBE .
解:∵AD ∥BC ,BE ∥DF ,∴∠A =∠C ,∠DFE =∠BEC .∵AE =CF ,∴AE +EF =CF +EF ,
即AF =CE .在△ADF 和△CBE 中,∵⎩⎪⎨⎪⎧∠A =∠C ,AF =CE ,∠DF A =∠BEC ,
∴△ADF ≌△CBE (ASA).
方法总结:在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分;在“ASA ”中,“边”必须是“两角的夹边”. 变式训练:见《学练优》本课时练习“课堂达标训练”第4题
探究点二:全等三角形判定定理“AAS ”
如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于E .AD 与BE 交于F ,若BF =AC ,试说明:△ADC ≌△BDF .
解析:先说明∠ADC =∠BDF ,∠DAC =∠DBF ,再由BF =AC ,根据“AAS ”即可得出两三角形全等.
解:∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =∠BDF =∠BEA =90°.∵∠AFE =∠BFD ,∠DAC +∠AEF +∠AFE =180°,∠BDF +∠BFD +∠DBF =180°,∴∠DAC =∠DBF .在△ADC 和△BDF 中,∵⎩⎪⎨⎪⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,
∴△ADC ≌△BDF (AAS).
方法总结:在“AAS ”中,“边”是其中一个角的对边.
变式训练:见《学练优》本课时练习“课堂达标训练”第10题
探究点三:全等三角形判定与性质的综合
在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .试说明:
(1)△BDA ≌△AEC ;
(2)DE =BD +CE .
解析:(1)由垂直的关系可以得到一对直角相等,利用“同角的余角相等”得到一组对应角相等,再由AB =AC ,利用“AAS ”即可得出结论;(2)由△BDA ≌△AEC ,可得BD =AE ,AD =CE ,根据DE =DA +AE 等量代换即可得出结论.
解:(1)∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠ABD +∠BAD =90°.∵AB ⊥AC ,
∴∠BAD +∠CAE =90°,∴∠ABD =∠CAE .在△BDA 和△AEC 中,∵⎩⎪⎨⎪⎧∠ADB =∠CEA =90°,∠ABD =∠CAE ,AB =AC ,

△BDA ≌△AEC (AAS);
(2)∵△BDA ≌△AEC ,∴BD =AE ,AD =CE ,∴DE =DA +AE =BD +CE .
方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.
变式训练:见《学练优》本课时练习“课后巩固提升”第9题
三、板书设计
1.角边角:两角及其夹边分别相等的两个三角形全等,简写成“角边角”或“ASA ”.
2.角角边:两角分别相等且其中一组等角的对边相等的两个三角形全等,简写成“角角边”或“AAS ”.
本节课的教学借助于动手操作、分组讨论等探究出三角形全等的判定方法.在寻找判定方法说明两个三角形全等的条件时,可先把容易找到的条件列出来,然后再根据判定方法去寻找所缺少的条件.从课堂教学的情况来看,学生对“角边角”掌握较好,达到了教学的预期目的.存在的问题是少数学生在方法“AAS ”和“ASA ”的选择上混淆不清,还需要在今后的教学中进一步加强巩固和训练。

相关文档
最新文档