不等式与一次函数专题练习
3-30一次函数与不等式习题
●积累运用举一反三一、选择题1.直线y=3x+9与x轴的交点是()。
A.(0,-3)B.(-3,0)C.(0,3)D.(0,-3)2.直线y=kx+3与x轴的交点是(1,0),则k的值是()。
A.3B.2C.-2D.-33.已知直线y=kx+b与直线y=3x-1交于y轴同一点,则b的值是()。
A.1B.-1C.1 3D.-1 34.已知直线AB∥x轴,且点A的坐标是(-1,1),则直线y=x与直线AB的交点是()。
A.(1,1)B.(-1,-1)C.(1,-1)D.(-1,1)5.直线y=x-1上的点在x轴上方时对应的自变量的范围是()。
A.x>1B.x≥1C.x<1D.x≤16.已知直线y=2x+k与x轴的交点为(-2,0),则关于x的不等式2x+k<0•的解集是()。
A.x>-2B.x≥-2C.x<-2D.x≤-27.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x 轴的交点是()。
A.(0,1)B.(-1,0)C.(0,-1)D.(1,0)8.如果直线y=3x+6与y=2x-4交点坐标为(a,b),则x ay b=⎧⎨=⎩是方程组_______的解()。
A.36 24 y xy x-=⎧⎨+=-⎩B.36 24 y xy x-=⎧⎨-=⎩C.36 34 x yx y-=⎧⎨-=⎩D.36 24 X YX Y-=-⎧⎨-=-⎩9.已知y1=-x+1和y2=-2x-1,当x>-2时y1>y2;当x<-2时y1<y2,则直线y1=-x+1和直线y2=-2x-1的交点是()。
A.(-2,3)B.(-2,-5)C.(3,-2)D.(-5,-2)10.已知方程2x+1=-x+4的解是x=1,则直线y=2x+1与y=-x+4的交点是()。
A.(1,0)B.(1,3)C.(-1,-1)D.(-1,5)二、填空题1.直线y=3x+6与x轴的交点的横坐标x的值是方程2x+a=0的解,则a•的值是______。
八年级下册数学 一次函数与不等式练习题
八年级下册数学一次函数与不等式练习题1.一次函数与一元一次方程、一元一次不等式1.1 一次函数与一元一次方程1) 一次函数与一元一次方程的关系:① (从数值上看) 方程 $ax+b=(a\neq0)$ 的解$\Leftrightarrow$ 函数 $y=kx+b(a\neq0)$ 中,$y$ 等于时,$x$ 的值。
② (从形式上看) 方程 $ax+b=(a\neq0)$ 的解$\Leftrightarrow$ 函数 $y=kx+b(a\neq0)$ 的图像与 $x$ 轴交点的横坐标。
2) 利用一次函数的图像解一元一次方程的步骤:转化→画图像→ 找交点。
1.2 一次函数与一元一次不等式1) 一次函数与一元一次不等式的关系:① (从数值上看) $ax+b>0$ 的解集 $\Leftrightarrow$ 函数$y=kx+b$ 中 $y>0$ 时 $x$ 的取值范围;$ax+b<0$ 的解集$\Leftrightarrow$ 函数$y=kx+b$ 中$y<0$ 时$x$ 的取值范围。
② (从形式上看) $ax+b>0$ 的解集 $\Leftrightarrow$ 直线位于 $x$ 轴上方的部分对应的 $x$ 的取值范围;$ax+b<0$ 的解集 $\Leftrightarrow$ 直线位于 $x$ 轴下方的部分对应的$x$ 的取值范围。
2) 应用:在同一直角坐标系中,比较两直线上函数值大小的方法:当自变量取同一个值时,对应图像上的点在上方的函数值就大。
例1:已知方程 $x+b=-2$ 的解是 $x=-2$,下列可能为直线 $y=x+b$ 的图象是()。
例2:直线 $y=kx+3$ 经过点 $A(2,1)$,则不等式$kx+3\geq0$ 的解集是()。
针对训练1、一次函数 $y=kx+b$ 的图象如图所示,则方程$kx+b=0$ 的解为()。
2、如图,一次函数 $y=kx+b$ 的图象经过 $A$、$B$ 两点,则不等式 $kx+b<0$ 的解集是()。
(易错题)高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试卷(答案解析)
一、选择题1.如果两个正方形的边长之和为1,那么它们的面积之和的最小值是( ) A .14B .12C .1D .22.已知0a >,0b >,若不等式122m a b a b+≥+恒成立,则实数m 的最大值为( ) A .10B .9C .8D .73.设实数x 满足0x >,函数4231y x x =+++的最小值为( ) A .431-B .432+C .421+D .64.若正数a ,b 满足21a b +=,则下列说法正确的是( ) A .ab 有最大值12B .224a b +有最小值12C .ab 有最小值18 D .224a b +有最大值145.已知A 、B 、C 为ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为( ) A .13B .12C .23D .16.已知AB AC ⊥,1AB t=,AC t =,若P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,则·PB PC 的最大值等于( ). A .13B .15C .19D .217.如图,平行四边形ABCD 的对角线相交于点O ,过点O 的直线与AB ,AD 所在直线分别交于点M ,N ,若AB =m AM ,AN =n AD (m >0,n >0),则mn的最大值为( )A .22B .1C .2D .28.两个正实数a ,b 满足3a ,12,b 成等差数列,则不等式2134m m a b+≥+恒成立时实数m 的取值范围是( )A .[]4,3-B .[]2,6-C .[]6,2-D .[]3,4-9.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .610.已知3x >,13y x x =+-,则y 的最小值为( ) A .2B .3C .4D .511.若a ,b 为正实数,直线2(23)20x a y +-+=与直线210bx y +-=互相垂直,则ab 的最大值为( )A .32B .98C .94D 12.集合{}2230A x x x =--≤,{}1B x x =>,则A B =( ).A .()1,3B .(]1,3C .[)1,-+∞D .()1,+∞二、填空题13.设m ,a R ∈,()()211f x x a x =+-+,2()24mg x mx ax =++,若“对于一切实数x ,()0f x >”是“对于一切实数x ,()0g x >”的充分条件,则实数m 的取值范围是___________.14.若对(,1]x ∈-∞-时,不等式21()2()12xxm m --<恒成立,则实数m 的取值范围是____________..15.已知正数,x y 满足10xy y -+=,则4y x+的最小值为___________. 16.已知a ,b 为正实数,且39ab a b ++=,则3a b +的最小值为_________. 17.已知a 、b 、c 为正实数,则代数式938432a b cb c c a a b+++++的最小值是_________. 18.已知0a >,b R ∈,当0x >时,()1102ax x b x ⎛⎫---≥ ⎪⎝⎭恒成立,则+a b 的最小值是_____________.19.设x ,y 为正实数,若2241x y xy ++=,则266x yxy++的最大值是______.20.已知实数0a b >>,且2a b +=,则22323a ba ab b -+-的最小值为____三、解答题21.在数学探究活动中,某兴趣小组合作制作一个工艺品,设计了如图所示的一个窗户,其中矩形ABCD 的三边AB ,BC ,CD 由长为8厘米的材料弯折而成,BC 边的长为2t 厘米(04t <<);曲线AOD 是一段抛物线,在如图所示的平面直角坐标系中,其解析式为23x y =-,记窗户的高(点O 到BC 边的距离)为f t .(1)求函数f t 的解析式;(2)要使得窗户的高最小,BC 边应设计成多少厘米?(3)要使得窗户的高与BC 长的比值达到最小,BC 边应设计成多少厘米?22.某工厂进行废气回收再利用,把二氧化硫转化为一种可利用的化工产品.已知该单位每月的处理量最少为200吨,最多为500吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为2150400004y x x =-+,且每处理一吨二氧化硫得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的月平均处理成本最低?(2)该工厂每月进行废气回收再利用能否获利?如果获利,求月最大利润;如果不获利,求月最大亏损额.23.已知不等式2320mx x +->的解集为{2}xn x <<∣ (1)求,m n 的值;(2)解关于x 的不等式2()0( , 1)ax n a x m a R a -+->∈<24.已知正实数a ,b 满足4a b +=,求1113a b +++的最小值.25.如图,GH 是东西方向的公路北侧的边缘线,某公司准备在GH 上的一点B 的正北方向的A 处建一仓库,设km AB y =,并在公路同侧建造边长为km x 的正方形无顶中转站CDEF (其中边EF 在GH 上),现从仓库A 向GH 和中转站分别修两条道路AB ,AC ,已知1AB AC =+,且60ABC ∠=︒.(1)求y 关于x 的函数;(2)如果中转站四周围墙造价为1万元/km ,两条道路造价为3万元/km ,问:该公司建中转站围墙和两条道路总造价M 最低为多少?26.设a ,b 为实数,比较22a b +与1ab a b ++-的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设两个正方形的边长分别为x 、y ,可得1x y +=,利用基本不等式可求得两个正方形的面积之和22x y +的最小值.【详解】设两个正方形的边长分别为x 、y ,则0x >,0y >且1x y +=,由基本不等式可得222x y xy +≥,所以,()()22222221x yxy xy x y +≥++=+=,所以,2212x y +≥,当且仅当12x y ==时,等号成立,因此,两个正方形的面积之和22x y +的最小值为12. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.C解析:C 【分析】 由已知可得()122m a b a b ⎛⎫≤++ ⎪⎝⎭,即求()122a b a b ⎛⎫++ ⎪⎝⎭的最小值,由基本不等式可得答案. 【详解】因为0a >,0b >,则()122m a b a b ⎛⎫≤++ ⎪⎝⎭,所以()1242448b a a b a b a b ⎛⎫++=++≥+⎪⎝⎭, 当且仅当4b aa b=即2b a =等号成立,要使不等式恒成立,所以8m ≤ 所以实数m 的最大值为8.故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.A解析:A 【分析】将函数变形为()43111y x x =++-+,再根据基本不等式求解即可得答案. 【详解】解:由题意0x >,所以10x +>, 所以()4423231311y x x x x =++=++-+++()4311111x x =++-≥=+,当且仅当()4311x x +=+,即10x =->时等号成立,所以函数4231y x x =+++的最小值为1. 故选:A . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.B解析:B 【分析】利用基本不等式分析22,4ab a b +的最值,注意取等条件的分析,由此得到结果.【详解】因为21a b +=,所以12a b =+≥18ab ≤,取等号时11,24a b ==, 所以ab 有最大值18,所以A ,C 错误; 又因为()22211241414824a b ab b a ab =+-=-≥-⨯=+,取等号时11,24a b ==, 所以224a b +有最小值12,所以B 正确,D 错误, 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.C解析:C 【分析】将11tan tan B C +化为关于tan A 的式子,然后利用基本不等式可以求出最小值. 【详解】在ABC 中,()tan tan C A B =-+,111111tan tan tan tan tan tan tan tan tan A BB C B A B B A B,tan 2tan B A =,211tan tan 112tan 12tan tan tan tan 2tan 3tan 6tan 3A B AAB A B A AA ,角A 为锐角,tan 0A ∴>,12tan 12tan 226tan 36tan 33A AA A , 当且仅当12tan 6tan 3A A ,即1tan 2A =时,等号成立,∴11tan tan B C +的最小值为23. 故选:C. 【点睛】本题考查三角形中角的互化,和的正切公式的应用,以及利用基本不等式求最值,属于中档题.6.A解析:A 【详解】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P (,4),所以114)PB t=--(,,14)PC t =--(,,因此PB PC ⋅11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.7.B解析:B 【分析】根据向量共线的推论,结合向量的线性运算求得12m n+=,再用基本不等式即可求得结果. 【详解】 因为1122AO AB AD =+,又AB =m AM ,AN =n AD , 故可得 122m AO AM AN n=+,又,,O M N 三点共线, 故可得1122m n +=,即12m n+=. 故211114m m m n n n ⎛⎫=⨯≤+= ⎪⎝⎭,当且仅当1m n ==时取得最大值. 故选:B . 【点睛】本题考查平面向量共线定理的推论以及基本不等式的应用,属综合中档题.8.C解析:C 【分析】由题意利用等差数列的定义和性质求得13a b =+,再利用基本不等式求得112ab,根据题意,2412m m +,由此求得m 的范围. 【详解】 解:两个正实数a ,b 满足3a ,12,b 成等差数列, 13a b ∴=+,123ab ∴,112ab∴,∴112ab. ∴不等式2134m m a b ++恒成立,即234a b m m ab++恒成立, 即214m m ab+恒成立. 2412m m ∴+,求得62m -,故选:C . 【点睛】本题主要考查等差数列的定义和性质,不等式的恒成立问题,基本不等式的应用,属于基础题.9.C解析:C 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.10.D解析:D 【分析】由3x >,得到30x ->,化简113333y x x x x =+=-++--,结合基本不等式,即可求解. 【详解】因为3x >,所以30x ->,则11333533y x x x x =+=-++≥=--, 当且仅当133x x -=-,即4x =时取等号, 故选:D. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中熟记基本不等式的“一正、二定、三相等”的条件,合理运算是解得的关键,着重考查推理与运算能力.11.B解析:B 【分析】由两直线垂直求出23a b +=,再利用基本不等式求出ab 的最大值. 【详解】解:由直线2(23)20x a y +-+=与直线210bx y +-=互相垂直所以22(23)0b a +-= 即23a b +=又a 、b 为正实数,所以2a b +≥即229224a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当a 34=,b 32=时取“=”;所以ab 的最大值为98. 故选:B 【点睛】本题主要考查了由直线垂直求参数,基本不等式求最值的应用,属于中档题.12.B解析:B 【分析】求得集合{}|13A x x =-≤≤,结合集合交集的概念及运算,即可求解. 【详解】由题意,集合{}{}2230|13A x x x x x =--≤=-≤≤,{}1B x x =>,根据集合交集的概念及运算,可得{}(]|131,3A B x x =<≤=.故选:B. 【点睛】本题主要考查了集合交集的概念及运算,其中解答中正确求解集合A ,结合集合交集的概念及运算求解是解答的关键,着重考查推理与运算能力.二、填空题13.【分析】先求出和恒成立时的范围然后根据充分条件的定义求解【详解】在上恒成立则解得在上恒成立首先都不可能恒成立因此解得∵对于一切实数x 是对于一切实数x 的充分条件∴解得故答案为:【点睛】思路点睛:本题考 解析:[6,)+∞【分析】先求出()0f x >和()0>g x 恒成立时a 的范围,然后根据充分条件的定义求解. 【详解】()0f x >在R 上恒成立,则2(1)40a ∆=--<,解得13a -<<,()0>g x 在R 上恒成立,首先0m ≤都不可能恒成立,因此2240m a m >⎧⎨∆=-<⎩,解得22m m a -<<,∵“对于一切实数x ,()0f x >”是“对于一切实数x ,()0g x >”的充分条件, ∴12320m m m ⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,解得6m ≥.故答案为:[6,)+∞.【点睛】思路点睛:本题考查一元二次不等式恒成立问题,考查由充分条件求参数范围,一元二次不等式恒成立问题,注意讨论最高次项系数(若最高次项系数为0,则不等式不是二次不等式),充分条件与必要条件问题可以利用集合的包含关系进行求解.14.【分析】运用换元法参变分离法来求解不等式恒成立问题【详解】不等式转化为化简为令又则即恒成立令又当时取最小值所以恒成立化简得解不等式得故答案为:【点睛】方法点晴:本题考查了不等式恒成立问题在求解过程中 解析:()2,3-【分析】运用换元法,参变分离法来求解不等式恒成立问题.【详解】不等式()21212x x m m ⎛⎫--< ⎪⎝⎭转化为2214x x m m +-<,化简为2211()22x x m m -<+, 令12x t =,又(],1x ∈-∞-,则[)2,t ∈+∞, 即22m m t t -<+恒成立,令2()f t t t =+,又[)2,t ∈+∞, 当2t =时,()f t 取最小值min ()(2)6f t f ==,所以,26m m -<恒成立,化简得260m m --<,解不等式得23m -<<.故答案为:()2,3-【点睛】方法点晴:本题考查了不等式恒成立问题,在求解过程中运用了参变分离法,注意题目中变量的取值范围.15.9【分析】由已知条件得出将代数式与相乘展开后利用基本不等式可求得的最小值【详解】因为正数满足所以即所以当且仅当即时等号成立故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条 解析:9【分析】由已知条件得出11x y +=,将代数式1x y +与4y x+相乘,展开后利用基本不等式可求得4y x+的最小值. 【详解】因为正数,x y 满足10xy y -+=, 所以1xy y +=,即11x y+=,所以4144()()559y x y xy x y x xy +=++=++≥+=, 当且仅当2xy =,即3y =,23x =时,等号成立. 故答案为:9【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.6【分析】利用基本不等式得出的不等式解之可得的最小值【详解】∵∴∴当且仅当即时等号成立故答案为:6【点睛】方法点睛:本题考查用基本不等式求最小值解题方法是用基本不等式得出关于的不等式然后通过解不等式 解析:6【分析】利用基本不等式得出3a b +的不等式,解之可得3a b +的最小值.【详解】∵0,0a b >>,∴211933(3)(3)(3)312ab a b a b a b a b a b =++=⋅++≤+++. (318)(36)0a b a b +++-≥,∴36a b +≥,当且仅当3a b =,即3,1a b ==时等号成立,故答案为:6.【点睛】方法点睛:本题考查用基本不等式求最小值,解题方法是用基本不等式得出关于3a b +的不等式,然后通过解不等式得出结论.不是直接由基本不等式得最小值,解题时也要注意基本不等式成立的条件.即最小值能否取到.17.【分析】先由题意令得到代入所求式子化简整理根据基本不等式即可求出结果【详解】因为abc 为正实数不妨令则所以当且仅当即即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三 解析:4748【分析】先由题意,令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,得到111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩,代入所求式子,化简整理,根据基本不等式,即可求出结果.【详解】因为a 、b 、c 为正实数,不妨令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,则111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩, 所以11113139393862164216438432x y z x y z x y z a b c b c c a a b x y z-++-++-++=+++++ 1339338621642164y z x z x y x x y y z z =-+++-+++- 6139488262164y x z x y z x y x z z y ⎛⎫⎛⎫⎛⎫=-++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭61474848≥-+=, 当且仅当823629164y x x y z x x z y z z y ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,即::1:2:3x y z =,即::10:21:1a b c =时,等号成立. 故答案为:4748. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.18.【分析】根据题中条件先讨论根据不等式恒成立求出;再讨论根据不等式恒成立求出结合题意得到再由基本不等式即可求出结果【详解】因为(1)当时;不等式恒成立可化为在上恒成立即在上恒成立因为在上显然单调递增所【分析】 根据题中条件,先讨论10x a<<,根据不等式恒成立求出12a b a ≥-;再讨论1x a ≥,根据不等式恒成立,求出12a b a ≤-,结合题意,得到12a b a =-,再由基本不等式,即可求出结果.【详解】因为0a >, (1)当10x a <<时,10ax ;不等式()1102ax x b x ⎛⎫---≥ ⎪⎝⎭恒成立,可化为102x b x --≤在10,a ⎛⎫ ⎪⎝⎭上恒成立,即12b x x ≥-在10,a ⎛⎫ ⎪⎝⎭上恒成立, 因为12y x x =-在10,a ⎛⎫ ⎪⎝⎭上显然单调递增,所以1122a x x a -<-, 因此只需12a b a ≥-; (2)当1x a ≥时,10ax -≥;不等式()1102ax x b x ⎛⎫---≥ ⎪⎝⎭恒成立,可化为102x b x --≥在1,a ⎛⎫+∞ ⎪⎝⎭上恒成立,即12b x x ≤-在1,a ⎛⎫+∞ ⎪⎝⎭上恒成立, 因为12y x x =-在1,a ⎛⎫+∞ ⎪⎝⎭上显然单调递增,所以1122a x x a ->-, 因此只需12a b a ≤-; 综上,只能12a b a =-,所以12a b a a b =+≥==+当且仅当12a a=,即a =.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方19.【分析】先得到当且仅当时接着得到当且仅当时从而化简得到再求取最小值最后求出的最大值【详解】解:∵即∵当且仅当即时取等号∴当且仅当时取等号∵即∴当且仅当时取等号令则∴∵当时取最小值此时最大为:故答案为【分析】先得到当且仅当2x y =时15xy ≤,接着得到当且仅当2x y =时2x y +=≤266x y xy ++得到142m m+,再求42m m +取最小值,最后求出266x y xy++的最大值. 【详解】解:∵2241x y xy ++=,即2241x y xy =-+∵22414xy x x y y ≥=-=+,当且仅当224x y =即2x y =时,取等号, ∴15xy ≤,当且仅当2x y =时,取等号, ∵2241x y xy ++=,即2(2)31x y xy +-=∴2x y +=≤2x y =时,取等号,令2x y m +==≤231xy m =-, ∴221466242x y m xy m m m+==+++, ∵当m =42m m +266x y xy ++故答案为:18. 【点睛】 本题考查基本不等式求最值,是基础题.20.【分析】由a+b =2得出b =2﹣a 代入代数式中化简后换元t =2a ﹣1得2a =t+1得出1<t <3再代入代数式化简后得出然后在分式分子分母中同时除以t 利用基本不等式即可求出该代数式的最小值【详解】解:解析:34+ 【分析】由a +b =2得出b =2﹣a ,代入代数式中,化简后换元t =2a ﹣1,得2a =t +1,得出1<t <3,再代入代数式化简后得出()2265t t t -+,然后在分式分子分母中同时除以t ,利用基本不等式即可求出该代数式的最小值.【详解】解:由于a +b =2,且a >b >0,则0<b <1<a <2, 所以,()()()()][()()()()()()2232221334223322622262232a a a a b a b a a ab b a b a b a a a a a a a a ------====+--+----⎡⎤--⋅+-⎣⎦,令t =2a ﹣1∈(1,3),则2a =t +1, 所以,()()()()()()()()22222132222523226215161656a a b t t t a ab b a a t t t t t t t t --=====+-----⎡⎤⎛⎫--+-+⎣⎦-+ ⎪⎝⎭.当且仅当()513t t t=<<,即当t = 因此,22323a b a ab b-+-【点睛】本题考查利用基本不等式求最值,解本题的关键就是对代数式进行化简变形,考查计算能力,属于中等题.三、解答题21.无22.无23.无24.无25.无26.无。
一次函数与方程不等式专项练习60题(有答案)15页
一次函数与方程、不等式专项练习60题(有答案)1.一次函数y=kx+b 的图象如图所示.则方程kx+b=0的解为( )A . x=2B . y=2C . x=﹣1D .y=﹣12.如图.函数y=2x 和y=ax+4的图象相交于点A (m.3).则不等式2x <ax+4的解集为( )A . x <B . x <3C . x >D . x >33.如图.一次函数y=kx+b 的图象与y 轴交于点(0.1).则关于x 的不等式kx+b >1的解集是( )A . x >0B . x <0C . x >1D .x <14.已知一次函数y=ax+b 的图象过第一、二、四象限.且与x 轴交于点(2.0).则关于x 的不等式a (x ﹣1)﹣b >0的解集为( )A . x <﹣1B . x >﹣1C . x >1D .x <15.如图.直线y 1=k 1x+a 与y 2=k 2x+b 的交点坐标为(1.2).则使y 1<y 2的x 的取值范围为( )A .x >1B . x >2C . x <1D .x <2 6.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示.则关于x 的不等式k 2x <k 1x+b 的解A . x <﹣1B . x >﹣1C . x >2D .x <27.如图.直线y=kx+b 经过点A (﹣1.﹣2)和点B (﹣2.0).直线y=2x 过点A.则不等式2x <kx+b <0的解集为( )A . x <﹣2B . ﹣2<x <﹣1C . ﹣2<x <0D .﹣1<x <08.已知整数x 满足﹣5≤x≤5.y 1=x+1.y 2=﹣2x+4.对任意一个x.m 都取y 1.y 2中的较小值.则m 的最大值是( ) A . 1 B . 2 C . 24 D .﹣99.如图.直线y 1=与y 2=﹣x+3相交于点A.若y 1<y 2.那么( )A . x >2B . x <2C . x >1D .x <110.一次函数y=3x+9的图象经过(﹣.1).则方程3x+9=1的解为x= _________ .11.如图.已知直线y=ax+b.则方程ax+b=1的解x= _________ .12.如图.一次函数y=ax+b 的图象经过A.B 两点.则关于x 的方程ax+b=0的解是 _________ .13.已知直线与x轴、y轴交于不同的两点A和B.S△AOB≤4.则b的取值范围是_________ .14.已知关于x的方程mx+n=0的解是x=﹣2.则直线y=mx+n与x轴的交点坐标是_________ .15.已知ax+b=0的解为x=﹣2.则函数y=ax+b与x轴的交点坐标为_________ .16.一次函数y=kx+b的图象如图所示.则关于x的方程kx+b=0的解为______ .当x ______ 时.kx+b<0.17.如图.已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2.﹣5).根据图象可得方程2x+b=ax﹣3的解是_________ .18.一元一次方程0.5x+1=0的解是一次函数y=0.5x+1的图象与_________ 的横坐标.19.如图.已知直线y=ax﹣b.则关于x的方程ax﹣1=b的解x= _________ .20.一次函数y1=kx+b与y2=x+a的图象如图.则方程kx+b=x+a的解是_________ .21.一次函数y=2x+2的图象如图所示.则由图象可知.方程2x+2=0的解为_________ .22.一次函数y=ax+b的图象过点(0.﹣2)和(3.0)两点.则方程ax+b=0的解为_________ .23.方程3x+2=8的解是x= _________ .则函数y=3x+2在自变量x等于_________ 时的函数值是8.24.一次函数y=ax+b的图象如图所示.则一元一次方程ax+b=0的解是x= _________ .25.观察下表.估算方程1700+150x=2450的解是_________ .x的值 1 2 3 4 5 6 7 …1700+150x的值1850 2000 2150 2300 2450 2600 2750 …26.已知y1=3x+1. y2=21-3x.当x取何值时.y1比21y2小2.27.计算:(4a﹣3b)•(a﹣2b)28.我们知道多项式的乘法可以利用图形的面积进行解释.如(2a+b)(a+b)=2a2+3ab+b2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式:_________ .(2)试画出一个图形.使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2.29.如图.直线l是一次函数y=kx+b的图象.点A、B在直线l上.根据图象回答下列问题:(1)写出方程kx+b=0的解;(2)写出不等式kx+b>1的解集;(3)若直线l上的点P(m.n)在线段AB上移动.则m、n应如何取值.31.如图.过A 点的一次函数y=kx+b 的图象与正比例函数y=2x 的图象相交于点B.则不等式0<2x <kx+b 的解集是( )A . x <1B . x <0或x >1C . 0<x <1D .x >132.已知关于x 的一次函数y=kx+b (k≠0)的图象过点(2.0).(0.﹣1).则不等式kx+b≥0的解集是( ) A . x≥2 B . x≤2 C . 0≤x≤2 D .﹣1≤x≤233.当自变量x 的取值满足什么条件时.函数y=3x ﹣8的值满足y >0( )A . x=B . x≤C . x >D .x≥﹣34.已知函数y=8x ﹣11.要使y >0.那么x 应取( )A . x >B . x <C . x >0D .x <035.如图.已知直线y=3x+b 与y=ax ﹣2的交点的横坐标为﹣2.根据图象有下列3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b >ax ﹣2的解集.其中正确的个数是( )A . 0B . 1C . 2D . 336.如图.直线y=ax+b 经过点(﹣4.0).则不等式ax+b≥0的解集为 _________ .37.如图.直线y=kx+b 经过A (﹣2.﹣1)和B (﹣3.0)两点.则不等式﹣3≤﹣2x ﹣5<kx+b 的解集是 _________ .38.如图所示.函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1.1).(2.2)两点.当y1>y2时.x的取值范围是_________ .39.如图.直线y=ax+b与直线y=cx+d相交于点(2.1).直线y=cx+d交y轴于点(0.2).则不等式组ax+b<cx+d <2的解集为_________ .40.如图.直线y=kx+b经过点(2.1).则不等式0≤x<2kx+2b的解集为_________ .41.一次函数y=kx+b的图象如图所示.由图象可知.当x _________ 时.y值为正数.当x _________ 时.y为负数.42.如图.直线y=kx+b经过A(1.2).B(﹣2.﹣1)两点.则不等式x<kx+b<2的解集为_________ .44.如图.直线y=kx+b与x轴交于点(﹣3.0).且过P(2.﹣3).则2x﹣7<kx+b≤0的解集_________ .45.已知一次函数y=ax﹣b的图象经过一、二、三象限.且与x轴交于点(﹣2.0).则不等式ax>b的解集为_________ .46.已知一次函数y=ax+b的图象过第一、二、四象限.且与x轴交于点(2.O).则关于x的不等式a(x﹣l)﹣b >0的解集为_________ .47.如图.直线y=ax+b经过A(﹣2.﹣5)、B(3.0)两点.那么.不等式组2(ax+b)<5x<0的解集是_________ .48.已知函数y1=2x+b与y2=ax﹣3的图象交于点P(﹣2.5).则不等式y1>y2的解集是_________ .49.如图.直线y=kx+b经过A(2.0).B(﹣2.﹣4)两点.则不等式y>0的解集为_________ .50.已知点P(x.y)位于第二象限.并且y≤x+4.x、y为整数.符合上述条件的点P共有 6个.51.作出函数y=2x﹣4的图象.并根据图象回答下列问题:(1)当﹣2≤x≤4时.求函数y的取值范围;(2)当x取什么值时.y<0.y=0.y>0;(3)当x取何值时.﹣4<y<2.52.画出函数y=2x+1的图象.利用图象求:(1)方程2x+1=0的根;(2)不等式2x+1≥0的解;53.用画函数图象的方法解不等式5x+4<2x+10.54.画出函数y=3x+12的图象.并回答下列问题:(1)当x为什么值时.y>0;(2)如果这个函数y的值满足﹣6≤y≤6.求相应的x的取值范围.55.如图.直线y=x+1和y=﹣3x+b交于点A(2.m).(1)求m、b的值;(2)在所给的平面直角坐标系中画出直线y=﹣3x+b;(3)结合图象写出不等式﹣3x+b<x+1的解集是_________ .56.如图.图中是y=a1x+b1和y=a2x+b2的图象.根据图象填空.的解集是_________ ;的解集是_________ ;的解集是_________ .57.在平面直角坐标系x0y中.直线y=kx+b(k≠0)过(1.3)和(3.1)两点.且与x轴、y轴分别交于A、B两点.求不等式kx+b≤0的解.58.用图象法解不等式5x﹣1>2x+5.59.(1)在同一坐标系中.作出函数y1=﹣x与y2=x﹣2的图象;(2)根据图象可知:方程组的解为_________ ;(3)当x _________ 时.y2<0.(4)当x _________ 时.y2<﹣2(5)当x _________ 时.y1>y2.60.做一做.画出函数y=﹣2x+2的图象.结合图象回答下列问题.函数y=﹣2x+2的图象中:(1)随着x的增大.y将_________ 填“增大”或“减小”)(2)它的图象从左到右_________ (填“上升”或“下降”)(3)图象与x轴的交点坐标是_________ .与y轴的交点坐标是_________(4)这个函数中.随着x的增大.y将增大还是减小?它的图象从左到右怎样变化?(5)当x取何值时.y=0?(6)当x取何值时.y>0?一次函数与方程不等式60题参考答案:1.∵一次函数y=kx+b的图象与x轴的交点为(﹣1.0).∴当kx+b=0时.x=﹣1.故选C.2.∵函数y=2x和y=ax+4的图象相交于点A(m.3).∴3=2m.m=.∴点A的坐标是(.3).∴不等式2x<ax+4的解集为x<;故选A3.由一次函数的图象可知.此函数是减函数.∵一次函数y=kx+b的图象与y轴交于点(0.1).∴当x<0时.关于x的不等式kx+b>1.故选B.4.∵一次函数y=ax+b的图象过第一、二、四象限.∴b>0.a<0.把(2.0)代入解析式y=ax+b得:0=2a+b.解得:2a=﹣b =﹣2.∵a(x﹣1)﹣b>0.∴a(x﹣1)>b.∵a<0.∴x﹣1<.∴x<﹣1.故选A5.由图象可知.当x<1时.直线y1落在直线y2的下方.故使y1<y2的x的取值范围是:x<1.故选C.6.两条直线的交点坐标为(﹣1.2).且当x>﹣1时.直线l2在直线l1的下方.故不等式k2x<k1x+b的解集为x>﹣1.故选B7.不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上.位于直线y=2x上方.x轴下方的那部分点.显然.这些点在点A与点B之间.故选B8.联立两函数的解析式.得:.解得;即两函数图象交点为(1.2).在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大.y2的函数值随x的增大而减小;因此当x=1时.m值最大.即m=2.故选B9.从图象上得出.当y1<y2时.x<2.故选B.10.方程3x+9=1的解.即函数y=3x+9中函数值y=1时.x的值.∵一次函数y=3x+9的图象经过(﹣.1).即函数值是1时.自变量x=﹣.因而方程3x+9=1的解为x=﹣11.根据图形知.当y=1时.x=4.即ax+b=1时.x=4.∴方程ax+b=1的解x=412.由图可知:当x=2时.函数值为0;因此当x=0时.ax+b=0.即方程ax+b=0的解为:x=213.由直线与x轴、y轴交于不同的两点A和B.令x=0.则y=b.令y=0.则x=﹣2b.∴S△AOB=×2b2=b2≤4.解得:﹣2≤b≤2且b≠0.故答案为:﹣2≤b≤2且b≠014.∵方程的解为x=﹣2.∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0.∴当y=0时.则有mx+n=0.∴x=﹣2时.y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2.0)15.∵ax+b=0的解为x=﹣2.∴函数y=ax+b与x轴的交点坐标为(﹣2.0).故答案为:(﹣2.0)16.从图象上可知则关于x的方程kx+b=0的解为的解是x=﹣3.当x<﹣3时.kx+b<0.故答案为:x=﹣3.x<﹣317.根据题意.知点P(﹣2.﹣5)在函数y=2x+b的图象上.∴﹣5=﹣4+b.解得.b=﹣1;又点P(﹣2.﹣5)在函数y=ax﹣3的图象上.∴﹣5=﹣2a﹣3.解得.a=1;∴由方程2x+b=ax﹣3.得2x﹣1=x﹣3.解得.x=﹣2;故答案是:x=﹣218. ∵0.5x+1=0.∴0.5x=﹣1.∴x=﹣2.∴一次函数y=0.5x+1的图象与x轴交点的横坐标为:x=﹣2.故答案为:x轴交点.19.根据图形知.当y=1时.x=4.即ax﹣b=1时.x=4.故方程ax+b=1的解x=4.故答案为:420.一次函数y1=kx+b与y2=x+a的图象的交点的横坐标是3.故方程的解是:x=3.故答案是:x=321.由一次函数y=2x+2的图象知:y=2x+2经过点(﹣1.0).∴方程2x+2=0的解为:x=﹣1.故答案为:x=﹣1.22.一次函数y=ax+b 的图象过点(0.﹣2)和(3.0)两点.∴b=﹣2.3a+b=0.解得:a=.∴方程ax+b=0可化为:x ﹣2=0.∴x=3.23.解方程3x+2=8得到:x=2.函数y=3x+2的函数值是8.即3x+2=8.解得x=2.因而方程3x+2=8的解是x=2 即函数y=3x+2在自变量x 等于2时的函数值是8.故填2、824.∵一次函数y=ax+b 的图象与x 轴交点的横坐标是﹣2.∴一元一次方程ax+b=0的解是:x=﹣2.故填﹣225.设y=1700+150x.由图中所给的表可知:当x=5时.y=1700+150x=2450.∴方程1700+150x=2450的解是5. 故答案为:526.∵y 1比21 y 2小2..y 1=3x +1. y 2=21-3x ∴3x +1= 21(21-3x )-2=41-23x-2 两边都乘12得.4x+12=3-18x-24.移项及合并得22x=-33.解得x=-1.5.当x=-1.5时.y 1比21 y 2小2. 27.原式=4a •a ﹣8ab ﹣3ab+6b •b=4a 2﹣11ab+6b 228.(1)∵长方形的面积=长×宽.∴图3的面积=(a+2b )(2a+b )=2a 2+5ab+2b 2.故图3所表示的一个等式:(a+2b )(2a+b )=2a 2+5ab+2b 2.故答案为:(a+2b )(2a+b )=2a 2+5ab+2b 2;(2)∵图形面积为:(a+b )(a+3b )=a 2+4ab+3b 2.∴长方形的面积=长×宽=(a+b )(a+3b ).由此可画出的图形为:29.函数与x 轴的交点A 坐标为(﹣2.0).与y 轴的交点的坐标为(0.1).且y 随x 的增大而增大.(1)函数经过点(﹣2.0).则方程kx+b=0的根是x=﹣2;(2)函数经过点(0.1).则当x >0时.有kx+b >1.即不等式kx+b >1的解集是x >0;(3)线段AB 的自变量的取值范围是:﹣2≤x≤2.当﹣2≤m≤2时.函数值y 的范围是0≤y≤2. 则0≤n≤2.30. 函数y=﹣2x+7中.令y=﹣2.则﹣2x+7=﹣2.解得:x=4.5.31.一次函数y=kx+b 经过A 、B 两点.∴.解得:k=﹣.b=3. 故:y=﹣.∵0<2x <﹣.解得:0<x <1.故选C32.由于x 的一次函数y=kx+b (k≠0)的图象过点(2.0).且函数值y 随x 的增大而增大.∴不等式kx+b≥0的解集是x≥2.故选A33.函数y=3x ﹣8的值满足y >0.即3x ﹣8>0.解得:x >.故选C34.函数y=8x ﹣11.要使y >0.则8x ﹣11>0.解得:x >.故选A .35. 由图象可知.a >0.故①正确;b >0.故②正确;当x >﹣2是直线y=3x+b 在直线y=ax ﹣2的上方.即x >﹣2是不等式3x+b >ax ﹣2.故③正确.故选D .36.由图象可以看出:当x≥﹣4时.y≥0.∴不等式ax+b≥0的解集为x≥﹣4.故答案为:x≥﹣437.∵直线y=kx+b经过A(﹣2.﹣1)和B(﹣3.0)两点.∴.解得.∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3.解得﹣2<x≤﹣1.故答案为﹣2<x≤﹣138.∵函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1.1).(2.2)两点.∴根据图象可以看出.当y1>y2时.x的取值范围是x>2或x<﹣1.故答案为:x<﹣1或x>239. 如图.直线y=ax+b与直线y=cx+d相交于点(2.1).直线y=cx+d交y轴于点(0.2).则不等式组ax+b<cx+d<2的解集为(0.2).40.由直线y=ax+b与直线y=cx+d相交于点(2.1).直线y=cx+d交y轴于点(0.2).根据图象即可知不等式组ax+b<cx+d<2的解集为(0.2).故答案为:(0.2).41. 一次函数y=kx+b的图象如图所示.由图象可知.当x x>﹣3 时.y值为正数.当x x<﹣3 时.y为负数.42.由图形知.一次函数y=kx+b经过点(﹣3.0).(0.2)故函数解析式为:y=x+2.令y>0.解得:x>﹣3.令y<0.解得:x<﹣3.故答案为:x>﹣3.x<﹣343.直线y=kx+b经过A(2.1)和B(﹣1.﹣2)两点.可得:.解得;则不等式组x≥kx+b≥﹣2可化为x≥x﹣1≥﹣2.解得:﹣1≤x≤244.直线y=kx+b与x轴交于点(﹣3.0).且过P(2.﹣3).∴结合图象得:kx+b≤0的解集是:x≥﹣3.∵2x﹣7<﹣3.∴x<2.∴2x﹣7<kx+b≤0的解集是:﹣3≤x<2.故答案为:﹣3≤x<245.如右图所示:不等式ax>b的解集就是求函数y=ax﹣b>0.当y>0时.图象在x轴上方.则不等式ax>b的解集为x>﹣2.故答案为:x>﹣2.46.∵一次函数y=ax+b的图象过第一、二、四象限.∴b>0.a<0.把(2.0)代入解析式y=ax+b得:0=2a+b.解得:2a=﹣b.=﹣2.∵a(x﹣1)﹣b>0.∴a(x﹣1)>b.∵a<0.∴x﹣1<.∴x<﹣147.把A(﹣2.﹣5)、B(3.0)两点的坐标代入y=ax+b.得﹣2a+b=﹣5.3a+b=0.解得:a=1.b=﹣3.解不等式组:2(x﹣3)<5x<0.得:﹣2<x<0.故答案为:﹣2<x<048.由图象可知x>﹣2时.y1>y2;故答案为x>﹣249.∵一次函数y=kx+b的图象经过A、B两点.由图象可知:直线从左往右逐渐上升.即y随x的增大而增大.又A(2.0).所以不等式y>0的解集是x>2.故答案为x>250.∵已知点P(x.y)位于第二象限.∴x<0.y>0.又∵y≤x+4.∴0<y<4.x<0.又∵x、y为整数.∴当y=1时.x可取﹣3.﹣2.﹣1.当y=2时.x可取﹣1.﹣2.当y=3时.x可取﹣1.则P坐标为(﹣1.1).(﹣1.2).(﹣1.3).(﹣2.1).(﹣2.2).(﹣3.1)共6个.故答案为:651.当x=0时.y=﹣4.当y=0时.x=2.即y=2x﹣4过点(0.﹣4)和点(2.0).过这两点作直线即为y=2x﹣4的图象.从图象得出函数值随x的增大而增大;(1)当x=﹣2时.y=﹣8.当x=4.y=4.∴当﹣2≤x≤4时.函数y的取值范围为:﹣8≤y≤4;(2)由于当y=0时.x=2.∴当x<2时.y<0.当x=2时.y=0.当x>2时.y>0;(3)∵当y=﹣4时.x=0;当y=2时.x=3.∴当x的取值范围为:0<x<3时.有﹣4<y<2.52.列表:描点.过(0.1)和(﹣.0)两点作直线即可得函数y=2x+1的图象.如图:(1)由图象看出当x=﹣时.y=0.即2x+1=0.所以x=﹣是方程2x+1=0的解;(2)不等式2x+1≥0的解应为函数图象上不在x轴下方的点的横坐标.所以x≥﹣是不等式2x+1≥0的解;(3)由勾股定理得它们之间的距离为53.令y1=5x+4.y2=2x+10.对于y1=5x+4.当x=0时.y=4;当y=0时.x=﹣.即y1=5x+4过点(0.4)和点(﹣.0).过这两点作直线即为y1=5x+4的图象;对于y2=2x+10.当x=0时.y=10;当y=0时.x=﹣5.即y2=2x+10过点(0.10)和点(﹣5.0).过这两点作直线即为y2=2x+10的图象.图象如图:由图可知当x<2时.不等式5x+4<2x+10成立.54. 当x=0时.y=12;当y=0时.x=﹣4.即y=3x+12过点(0.12)和点(﹣4.0).过这两点作直线即为y=3x+12的图象.从图象得出函数值随x的增大而增大;(1)函数图象经过点(﹣4.0).并且函数值y随x的增大而增大.因而当x>﹣4时y>0;(2)函数经过点(﹣6.﹣6)和点(﹣2.6)并且函数值y随x的增大而增大.因而函数y的值满足﹣6≤y≤6时.相应的x的取值范围是:﹣6≤x≤﹣2.55.(1)根据题意得:解得:(2)画出直线如图:(3)自变量的取值范围是:x>2.56.由题意知:由图象知y=a1x+b1>0时有x>﹣3.函数y=a2x+b2>0时有x<1.∴不等式组的解集的解集为:﹣3<x<1;故答案为:﹣3<x<1;由题知:由图象知y=a1x+b1<0时有x<﹣3.根据函数图象知y=a2x+b2<0时有x<1.∴不等式组的解集为:x<﹣3;故答案为:x<﹣3;由题意知:根据函数图象知y=a1x+b1<0时有x<﹣3.根据函数图象知y=a2x+b2<0时有x>1. ∴不等式组的解集是空集;故答案为:空集57.∵直线y=kx+b(k≠0)过(1.3)和(3.1)两点.∴.解得:.∴直线AB的解析式为:y=﹣x+4.∵当y=0时.x=4.∴A(4.0).∴不等式kx+b≤0的解集为:x<4.58.5x﹣1>2x+5可变形为x﹣2>0.画一次函数y=x﹣2的图象.如图所示:根据图象可得:当y>0时.图象在x轴的上方.故x>2.59.(1)解:如图所示:.(2)解:由图象可知:方程组的解为.故答案为:.(3)解:根据题意得:x﹣2<0.解得:x<2.故答案为:<2.(4)解:根据题意得:x﹣2<﹣2.解得:x<0.故答案为:<0.(5)解:根据题意得:﹣x>x﹣2.解得:x<1.故答案为:x<1.60.函数y=﹣2x+2的图象为:(1)由图象知:随着x的增大.y将减小.(2)由图象知:图象从左向右下降.(3)由图象知:与x轴的交点坐标是(1.0).与y轴的交点坐标是(0.2).(4)由图象知:这个函数中.随着x的增大.y将减小.图象从左向右下降.(5)由图象知:当x=1时.y=0.(6)由图象知:当x<1时.y>0.。
6.6一次函数、一元一次方程和一元一次不等式同步练习附答案
6.6 一次函数、一元一次方程和一元一次不等式1.当自变量x_______时,函数y=5x+4的值大于0;当x_______时,函数的值小于0.2.已知函数y1=x-2,y2=2x-4,当_______时,y1-y2<3._______.3.如图,直线l是一次函数y=kx+b的图像,观察图像,可知:(1)b=_______,k=_______;(2)当y>2时.x_______.4.如图,已知函数y=x+b和y=ax+3的图像交点为P,则不等式x+b>ax+3的解集为_______.5.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图像如图.根据图像回答下列问题:(1)_______先出发,先出发_______;_______先到达终点,先到_______;(2)甲、乙两人的行驶速度分别为_______、________;(3)在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内,请你根据下列情形,分别列出关于行驶时间x(m1n)的方程或不等式(不化简,也不求解):①甲在乙的前面____________________________;②甲与乙相遇____________________________;③甲在乙的后面____________________________.6.已知函数y=-2x+4.(1)画出它的图像;(2)当x 为何值时,y<-4?(3)当y 为何值时,-12≤x<32?7.折线ABC 是某人乘出租车所付的费用y (元)与乘车的里程数x(km)之间的函数关系的图像.(1)乘车3 km 和6 km 各需付乘车费多少元?(2)当x ≥3时,求乘车费用y (元)与乘车的里程数x(km)之间的关系式;(3)某乘客所付车费在14元~18元之间,求他乘车路程的范围.8.为了鼓励居民节约用水,我市某地水费按下表规定收取:(1)若某户用水量为x 吨,需付水费y 元,则水费y (元)与用水量x (吨)之间的函数关系式是:y =()_______(010)_______10x x ≤≤⎧⎪⎨>⎪⎩(2)若小华家四月份付水费17元,则他家四月份用水多少吨?(3)已知某住宅小区100户居民五月份交水费共1682元,且该月每户用水量均不超过15吨(含15吨),求该月用水量不超过10吨的居民最多有多少户?9.某校准备在暑假期间组织在这学年中受表彰的部分学生去旅游,甲旅行社收费标准为:除两名带队教师,其余学生可享受半价优惠;乙旅行社收费标准为:两名带队教师和所有学生均按六折优惠,这两个旅行社的全票价均为200元.(1)若共有20名学生,选择哪一家旅行社较优惠?(2)若有x名学生,选择哪一家旅行社较优惠与学生的人数有没有关系?试说明理由.10.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( ).A.x<-2 B.-2<x<-1C.-2<x<0 D.-1<x<011.南宁市狮山公园计划在健身区铺设广场砖,现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系如图所示;乙工程队铺设广场砖的造价y乙(元)与铺设面积x(m2)满足函数关系式为y乙=kx.(1)根据图写出甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系式;(2)如果狮山公园铺设广场砖的面积为1600 m2,那么公园选择哪个工程队施工更合算?12.一次函数y=kx+b的图像如图所示,则方程kx+b=0的解为( ).A.x=2 B.y=2C.x=-1 D.y=-113.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2012年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:2012年5月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元,该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=_______;b=_______;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?参考答案1.>-45<-452.x>-13.(1)3-k (2)x<14.x>15.(1)甲10min 乙5min (2)12 km/h 24 km/h(3)①甲在乙的前面:15x>25x-4;②甲与乙相遇:15x=25x-4;③甲在乙后面:15x<25x-4;6.(1)略(2)当x>4时,y<-4(3)当1<y≤5时,-12≤x<327.(1)10元,16元,(2)y=2x+4,x≥3.(3)5km~7km8.(1)1.3x 13+2(x-10)(2)12吨.(3)61户.9.(1)选择甲旅行社较优惠(2)选择哪家旅行社较优惠与学生人数x的多少有关系,10.B11.(1)y甲=()() 560500 40800500x xx x⎧≤<⎪⎨+≥⎪⎩(2)当k>45时,选择甲工程队更合算;当0<k<45时,选择乙工程队更合算;当k=45时,选择两个工程队的花费一样.12.C13.(1)0.6 0.65 (2)当x≤150时,y=0.6x;当150<x≤300时,y=0.65x-7.5;当x>300时,y=0.9x-82.5.(3)0.62元.。
一元一次不等式与一次函数练习题
• (一题多变题)x为何值时,一次函数 y=-2x+3的值小于一次函数y=3x-5的值? (1)一变:x为何值时,一次函数y=-2x+3 的值等于一次函数y=3x-5的值; (2)二变:x为何值时,一次函数y=-2x+3 的图象在一次函数y=3x-5的图象的上方? (3)三变:已知一次函数y1=-2x+a, y2=3x-5a,当x=3时,y1>y2,求a的取 值范围.
• 5.直线L1:y=k1x+b与直线L2:y=k2x 在同一平面直角坐标系中的图象如图 所示,则关于x的不等式k1x+b>k2x的 解为( ) A.x>-1 B.x<-1 C.x<-2 D.无法确定
(2008,沈阳,3分)一次函数 y=kx+b的图象如图所示,当y<0时, x的取值范围是( ) • A.x>0 B.x<0 C.x>2 D.x<2
堂清作业
• 某学校需刻录一批光盘,若在电脑公 司刻录每张需8元(包括空白光盘费); 若学校自制,除租用刻录机需120元外, 每张还需成本4元(包括空白光盘 费).问刻录这批电脑光盘到电脑公 司刻录费用省,还是自制费用省?请 你说明理由.
• 解:设需刻录x张光盘,学校自刻的总费用 为y1元,电脑公司刻录的总费用为y2 元.由题意,得y1=4x+120,y2=8x. (1)当y1>y2时,即4x+120>8x,解得x<30; (2)当y1=y2时,即4x+120=8x,解得x=30; (3)当y1<y2时,即4x+120<8x,解得 x>30. 所以,当刻录光盘小于30张时,到电脑公司 刻录费用省;当刻录光盘等于30张时,两 个地方都行;当刻录光盘大于30张时,学 校自刻费用省.
(完整版)一元一次不等式与一次函数习题精选(含答案)
一元一次不等式与一次函数1.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()(5)A.x<B.x<3 C.x>D.x>32.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b >0的解集为()A.x<﹣1 B.x>﹣1 C.x>1 D.x<13.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<24.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c 的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣25.如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0解集是()A.x>0 B.x>﹣3 C.x>2 D.﹣3<x<26.如图,函数y=kx和y=﹣x+3的图象相交于(a,2),则不等式kx<﹣x+3的解集为()A.x<B.x>C.x>2 D.x<27.(如图,直线l是函数y=x+3的图象.若点P(x,y)满足x<5,且y>,则P点的坐标可能是()A.(4,7)B.(3,﹣5)C.(3,4)D.(﹣2,1)8.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣49.如图,一次函数y=kx+b的图象经过点(2,0)与(0,3),则关于x的不等式kx+b>0的解集是()(10) (11)A.x<2 B.x>2 C.x<3 D.x>310.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x >﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题)11.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为_________.12.如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须_________.(13) (14) (15)13.如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为_________.14.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集为_________.15.如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是_________.16.如图,已知函数y=x+b和y=ax+3的图象相交于点P,则关于x的不等式x+b<ax+3的解集为_________.(17) (18)17.如图,直线y=kx+b经过点A(﹣1,1)和点B(﹣4,0),则不等式0<kx+b<﹣x的解集为_________.18.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,5)两点,则不等式﹣kx﹣b<0的解集是_________.三.解答题19.在平面直角坐标系中,直线y=kx﹣15经过点(4,﹣3),求不等式kx﹣15≥0的解.20.如图,直线l1与l2相交于点P,点P横坐标为﹣1,l1的解析表达式为y=x+3,且l1与y轴交于点A,l2与y轴交于点B,点A与点B恰好关于x轴对称.(1)求点B的坐标;(2)求直线l2的解析表达式;(3)若点M为直线l2上一动点,直接写出使△MAB的面积是△PAB的面积的的点M的坐标;(4)当x为何值时,l1,l2表示的两个函数的函数值都大于0?21.已知:直线l1的解析式为y1=x+1,直线l2的解析式为y2=ax+b(a≠0);两条直线如图所示,这两个图象的交点在y轴上,直线l2与x轴的交点B的坐标为(2,0)(1)求a,b的值;(2)求使得y1、y2的值都大于0的取值范围;(3)求这两条直线与x轴所围成的△ABC的面积是多少?(4)在直线AC上是否存在异于点C的另一点P,使得△ABC与△ABP的面积相等?请直接写出点P的坐标.22.如图,直线y=kx+b经过点A(0,5),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.AACBBAAAAD﹣2<x<﹣1.大于4.x<.x>﹣1.x>1.x<1.﹣4<x<﹣1.x>﹣19 x≥5.20.解:(1)当x=0时,x+3=0+3=3,∴点A的坐标是(0,3),∵点A与点B恰好关于x轴对称,∴B点坐标为(0,﹣3);(2)∵点P横坐标为﹣1,∴(﹣1)+3=,∴点P的坐标是(﹣1,),设直线l2的解析式为y=kx+b,则,解得,∴直线l2的解析式为y=﹣x﹣3;(3)∵点P横坐标是﹣1,△MAB的面积是△PAB的面积的,∴点M的横坐标的长度是,①当横坐标是﹣时,y=(﹣)×(﹣)﹣3=﹣3=﹣,②当横坐标是时,y=(﹣)×﹣3=﹣﹣3=﹣,∴M点的坐标是(﹣,﹣)或(,﹣);(4)l1:y=x+3,当y=0时,x+3=0,解得x=﹣6,l2:y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣,∴当﹣6<x<﹣时,l1、l2表示的两个函数的函数值都大于0.21 解:(1)由直线l1的解析式为y1=x+1,可求得C(0,1);解得:.(2)由(1)知,直线l2:y=﹣x+1;∵y1=x+1>0,∴x>﹣1;∵;∴﹣1<x<2.(3)由题意知A(﹣1,0),则AB=3,且OC=1;∴S△ABC=AB•OC=.(4)由于△ABC、△ABP同底,若面积相等,则P点纵坐标为﹣1,代入直线l1可求得:P的坐标为(﹣2,﹣1).22. 解:(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),∴,解方程组得,∴直线AB的解析式为y=﹣x+5;(2)∵直线y=2x﹣4与直线AB相交于点C,∴解方程组,解得,∴点C的坐标为(3,2);(3)由图可知,x≥3时,2x﹣4≥kx+b.。
一元一次不等式与一次函数练习
一元一次不等式与一次函数练习练习一:一、选择题1.已知函数y =8x -11,要使y >0,那么x 应取( )A .x >B .x <C .x >0D .x <02.已知一次函数y =kx +b 的图像,如图所示,当x <0时,y 的取值范围是( •) A .y >0B .y <0C .-2<y <0D .y <-23.已知y 1=x -5,y 2=2x +1.当y 1>y 2时,x的取值范围是( )A .x >5B .x <C .x <-6D .x >-6 4.已知一次函数的图象如图所示,当x <1时,y 的取值范围是( )A .-2<y <0B .-4<y <0C .y <-2D .y <-45.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论①k <0;②a >0;③当x <3 时,y 1<y 2中,正确的个数是( )A .0 B .1 C .2 D .36.如图,直线交坐标轴于A,B 两点,则不等式的解集是( )A .x >-2B .x >3C .x <-2D .x <37.已知关于x 的不等式ax +1>0(a≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是( )A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)6题 8题81181112y kx b =+y kx b =+0kx b +>xb +x)x +akx +b5题 题 题14题8.直线:与直线:在同一平面直角坐标系中的图象如图所示,则关于的不等式的解为( )A 、x >-1B 、x <-1C 、x <-2D 、无法确定二、填空题9.若一次函数y =(m -1)x -m +4的图象与y 轴的交点在x 轴的上方,则m 的取值范围是________.10.如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.11.当自变量x 时,函数y =5x +4的值大于0;当x 时,函数y =5x +4的值小于0.12.已知2x -y =0,且x -5>y ,则x 的取值范围是________.13.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是_______________.14.如图,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象相交于A (3,2),则不等式(k 2-k 1)x +b 2-b 1>015.已知关于x 的不等式kx -2>0(k≠0)的解集是x <-3,则直线y =-kx +2与x•轴的交点是__________.16.已知不等式-x +5>3x -3的解集是x <2,则直线y =-x +5与y =3x -3•的交点坐标是_________.三、能力提升17.已知:y 1=x+3,y 2=-x+2,求满足下列条件时x 的取值范围:(1)y 1 <y 2 (2)2y 1-y 2≤41l 1y k x b =+2l 2y k x =x 12k x b k x +>(千克)10题ax -3 13题18.在同一坐标系中画出一次函数y 1=-x +1与y 2=2x -2的图象,并根据图象回答下列问题:(1)写出直线y 1=-x +1与y 2=2x -2的交点P 的坐标.(2)直接写出:当x 取何值时y 1>y 2;y 1<y 2四、聚沙成塔如果x ,y 满足不等式组,那么你能画出点(x ,y )所在的平面区域吗?练习二:一、选择题1.荆门市的中小学每学年都要举行春季体育达标运动会,为进一步科学地指导学生提高运动成绩,某体育老师在学校的春季达标运动会上根据一名同学 1 500m 跑的测试情况汇成下图,图中OA 是一条折线段,图形反映的是这名同学跑的距离与时间的关系,由图可知下列说法错误的是( )A .这名同学跑完1 500m 用了6分钟,最后一分钟跑了300m ;B .这名同学的速度越来越快;C .这名同学第3至第5分钟的速度最慢;D .这名同学第2、第3这两分钟的速度是一样的.2.某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折 B .7折 C .8折 D .9折3.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x≤2B .x <2C .x≥2D .x >23050x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩(1题4.小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12 B。
初中数学试题分类汇编:一次函数与方程、不等式综合训练1(选择 附答案)
初中数学试题分类汇编:一次函数与方程、不等式综合训练1(选择附答案)1.若函数y=kx﹣b的图象如图所示,则关于x的不等式kx﹣b>0的解集为()A.x<2 B.x>2 C.x<4 D.x>42.若直线l1经过点(﹣1,0),l2经过点(2,2),且l1与l2关于直线x=1对称,则l1和l2的交点坐标为()A.(1,4)B.(1,2)C.(1,0)D.(1,3)3.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3 D.x<34.在同一直角坐标系内,若直线y=2x-1与直线y=-2x+m的交点在第四象限,则m的取值范围是()A.m>—1 B.m<1 C.—1<m<1 D.—1≤m≤1 5.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m <kx﹣1的解集在数轴上表示正确的是()A.B.C.D.6.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()7.如图,直线y 1=kx+2与直线y 2=mx 相交于点P(1,m),则不等式mx <kx+2的解集是( )A .x <0B .x <1C .0<x <1D .x >18.若以二元一次方程x +2y ﹣b=0的解为坐标的点(x ,y )都在直线y=﹣12x+b ﹣l 上,则常数b=( )A .12B .2C .﹣1D .19.如图,直线y =kx +b (k ≠0)经过点(-1,3),则不等式kx +b ≥3解集为( )A .x ≤-1B .x ≥-1C .x ≤3D .x ≥310.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣311.如图所示,函数1y x =和21433y x =+的图象相交于(–1,1),(2,2)两点.当12y y >时,x 的取值范围是( )12.如图所示,函数y=2x和y=ax+4的图象相交于点A(3 2,3),则关于x的不等式2x≥ax+4的解集为()A.x≤32B.x≤3C.x≥32D.x≥313.直线y=kx+b(k<0)与x轴交于点(3,0),关于x的不等式kx+b>0的解集是()A.x<3 B.x>3 C.x>0 D.x<014.如图,一次函数11y k x b=+,的图象1l与22y k x b=+的图象2l相交于点P,则方程组111222y k x by k x b=+⎧⎨=+⎩的解是()A.23xy=-⎧⎨=⎩B.32xy=⎧⎨=-⎩C.23xy=⎧⎨=⎩D.23xy=-⎧⎨=-⎩15.一次函数y kx b=+(0k≠)的图象如图所示,则关于x的不等式0kx b+>的解集为()A.1x>-B.1x<-C.2x>D.0x>16.如图,在平面直角坐标系xOy 中,如果一个点的坐标可以用来表示关于x ,x 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解,那么这个点是A .MB .NC .ED .F17.若直线y=-2x -4与直线y=4x +b 的交点在第三象限,则b 的取值范围是( ) A .-4<b<8 B .-4<b<0 C .b<-4或b>8 D .-4≤6≤818.直线y kx b =+与y mx =在同一平面直角坐标系中的图象如图所示,则关于 x 的不等式kx b mx +≤的解集为( )A .x >﹣2B .x <﹣2C .x ≥﹣1D .x <﹣119.如图,已知一次函数y=k x+b 的图象与x 轴,y 轴分别交于点(2,0),点(0,3).有下列结论:①关于x 的方程0kx b +=的解为2x =;②关于x 的方程3kx b +=的解为0x =;③当2x >时,0y <;④当0x <时,3y <.其中正确的是( )A .①②③B .①③④C .②③④D .①②④20.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题可迎刃而解,且解法简洁.如图,直线y =3x 和直线y =ax +b 交于点(1,3),根据图象分析,方程3x =ax +b 的解为( )A .x =1B .x =﹣1C .x =3D .x =﹣321.如图,在同一直角坐标系中作出一次函数1y k x =与2y k x b =+的图象, 则二元一次方程组21y k x b y k x =+⎧⎨=⎩的解是( )A .20x y =-⎧⎨=⎩B .20x y =⎧⎨=⎩C .12x y =⎧⎨=-⎩D .12x y =⎧⎨=⎩22.如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx +b >ax 的解集是( )A .x >1B .x <1C .x >2D .x <223.已知点A (-1,3),点B (-1,-4),若常数a 使得一次函数y =ax +1与线段AB 有交点,且使得关于x 的不等式组45(3)65425x x a ⎧+≥⎪⎪⎨⎪-<-⎪⎩无解,则所有满足条件的整数a 的个数为( )24.一次函数1y kx b =+与2y x a =+的图象如图所示,有下列结论:①0a >;②0k >;③当4x <时,kx b x a +>+其中正确的结论有( )A .0个B .1个C .2个D .3个25.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<26.如图,直线与y 轴交于点(0,3)、与x 轴交于点(a ,0),当a 满足时,k 的取值范围是( )A .B .C .D .27.一次函数y 1=kx +b 与y 2=x +a 的图象如下图所示,则下列结论:①k <0;②a >0;③b >0;④当x <3时,y 1<y 2;其中正确的个数是( )A .1个B .2个C .3个D .4个28.观察图中的函数图象,则关于的不等式的解集为( )A .B .C .D .29.已知一次函数y kx b =+的图象如图所示,当2x <时,y 的取值范围是( )A .4y <-B .40y -<<C .2y <D .0y <30.一次函数1y ax b 与2y cx d =+ 的图象如图所示,下列说法:①0ab < ;②函数y ax d =+ 不经过第一象限;③不等式ax b cx d ++> 的解集是3x < ;④()13a c db -=- .其中正确的个数有( )A .4B .3C .2D .1参考答案1.A【解析】【分析】观察函数图象得到即可.【详解】由图象可得:当2x <时,函数y kx b =-的图象在x 轴的上方,所以关于x 的不等式0kx b ->的解集是2x <,故选:A .【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.2.A【解析】【分析】根据对称的性质得出两个点关于直线x =1对称的对称点,再根据待定系数法确定函数关系式,求出交点坐标即可.【详解】解:∵直线l 1经过点(﹣1,0),l 2经过点(2,2),关于直线x =1对称,∴点(﹣1,0)关于直线x =1对称点为(3,0),点(2,2)关于直线x =1对称点为(0,2),∴直线l 1经过点(﹣1,0),(0,2),l 2经过点(2,2),(3,0),∴直线l 1的解析式为:y =2x+2,直线l 2的解析式为:y =﹣2x+6,解方程组2226y x y x =+⎧⎨=-+⎩得,14x y =⎧⎨=⎩∴l 1和l 2的交点坐标为(1,4),故选:A .【点睛】此题主要考查了一次函数图象与几何变换,正确得出l 1与l 2的交点坐标为l 1与l 2与y 轴的交点是解题关键.3.B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.4.C【解析】【分析】联立两直线的解析式求出交点坐标,再根据交点在第四象限列出不等式组求解即可.【详解】解:联立方程组212y xy x m=-⎧⎨=-+⎩,解得:1412mxmy+⎧=⎪⎪⎨-⎪=⎪⎩,∵交点在第四象限,∴1412mm+⎧>⎪⎪⎨-⎪<⎪⎩,解得:11m-<<.故选:C.【点睛】本题考查了两直线的交点和一元一次不等式组的解法,属于常考题型,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活应用.5.D【解析】【分析】利用函数图象,找出直线y=x+m在直线y=kx-1的下方所对应的自变量的范围即可【详解】解析根据图象得,当x<-1时,x+m<kx-1故选D【点睛】此题考查在数轴上表示不等式的解集和一次函数与ー元一次不等式,解题关键在于判定函数图象的位置关系6.D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+3.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.7.B【解析】【分析】根据两直线的交点坐标和函数的图象即可求出答案.【详解】解:∵直线y1=kx+2与直线y2=mx相交于点P(1,m),∴不等式mx<kx+2的解集是x<1,故选:B.【点睛】本题考查了对一次函数与一元一次不等式的应用,主要考查学生的观察图形的能力和理解能力,题目比较好,但是一道比较容易出错的题目.8.B【解析】【分析】直线解析式乘以2后和方程联立解答即可.【详解】因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣12x+b﹣l上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0,所以﹣b=﹣2b+2,解得:b=2,故选B.【点睛】本题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.9.B【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x -时,3kx b +,故选:B .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.10.D【解析】∵方程ax +b =0的解是直线y =ax +b 与x 轴的交点横坐标,∴方程ax +b =0的解是x =-3.故选D.11.B【解析】试题解析:当x≥0时,y 1=x ,又21433y x =+, ∵两直线的交点为(2,2),∴当x <0时,y 1=-x ,又21433y x =+, ∵两直线的交点为(-1,1),由图象可知:当y 1>y 2时x 的取值范围为:x <-1或x >2.故选B .12.C【解析】【分析】根据函数的图象即可写出不等式的解集.【详解】解:已知函数y=2x和y=ax+4的图象相交于点A(32,3),根据函数图象可以看出,当x=32时,2x=ax+4;当x>32时,2x>ax+4;当x<32时,2x<ax+4;故关于x的不等式2x≥ax+4的解集为32x .故选择C.【点睛】本题考查了一次函数与一元一次不等式,根据函数图像及交点坐标,判断关于x的不等式的解集是解答本题的关键.13.A【解析】【分析】由图知:一次函数与x轴的交点横坐标为3,且函数值y随自变量x的增大而减小,根据图形可判断出解集.【详解】解:直线y=kx+b(k<0)与x轴交于点(3,0),当x=3时,y=0,函数值y随x的增大而减小;根据y随x的增大而减小,因而关于x的不等式kx+b>0的解集是x<3.故选:A.【点睛】本题考查了一次函数与一元一次不等式,由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,求自变量相应的取值范围.14.A【解析】【分析】根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【详解】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),∴方程组111222y k x b y k x b =+⎧⎨=+⎩的解是23x y =-⎧⎨=⎩, 故选A.【点睛】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.15.A【解析】【分析】直接从一次函数的图象上即可得到答案.【详解】解:由题图可知,当x >﹣1时,y=kx b +>0,则不等式0kx b +>的解集为1x >-.故选A.【点睛】本题主要考查一次函数与不等式,解此题的关键在于从一次函数的图象上获取信息. 16.C【解析】【分析】本题可以通过直线与方程的关系得到两直线都过定点E ,得到本题结论.【详解】解:两直线都过定点E ,所以点E 表示关于x 、y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解,故选C .【点睛】本题考查的是直线与方程的关系,还可以用解方程组的方法加以解决.【解析】【分析】联立y=-2x-4和y=4x+b,求解得交点坐标,x和y的值都用b来表示,再根据交点坐标在第三象限表明x、y都小于0,即可求得b的取值范围:【详解】解:由244y xy x b=--⎧⎨=+⎩解得4683bxby+⎧=-⎪⎪⎨-⎪=⎪⎩∵交点在第三象限,∴4683bb+⎧-<⎪⎪⎨-⎪<⎪⎩,解得48 bb>-⎧⎨<⎩∴-4<b<8.故选A.18.C【解析】【分析】根据函数图象交点左侧直线y=kx+b图象在直线y=mx图象的下面,即可得出不等式kx+b≤mx 的解集.【详解】解:由图可知,在x≥-1时,直线y=mx在直线y=kx+b上方,关于x的不等式kx+b≤mx的解是x≥-1.故选:C.本题考查了一次函数与一元一次不等式:观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.19.A【解析】【分析】根据一次函数的性质及一次函数与一元一次方程的关系对各结论逐一判断即可得答案.【详解】∵一次函数y=k x+b 的图象与x 轴,y 轴分别交于点(2,0),点(0,3),∴x=2时,y=0,x=0时,y=3,∴关于x 的方程0kx b +=的解为2x =;关于x 的方程3kx b +=的解为0x =, ∴①②正确,由图象可知:x>2时,y<0,故③正确,x<0时,y>3,故④错误,综上所述:正确的结论有①②③,故选A.【点睛】本题考查一次函数图象上点的坐标特征及一次函数与一元一次方程的关系,利用数形结合的思想是解题关键.20.A【解析】【分析】根据方程的解即为函数图象的交点横坐标解答.【详解】解:∵直线y =3x 和直线y =ax +b 交于点(1,3)∴方程3x =ax +b 的解为x =1.故选:A .【点睛】本题主要考查了一次函数与一元一次方程.函数图象交点坐标为两函数解析式组成的方程组21.D【解析】【分析】观察图象,直接根据两直线的交点坐标写出方程组的解,即可作答.【详解】解:由题图可知:一次函数1y k x =与2y k x b =+的图象交于(1,2),所以方程组21y k x b y k x =+⎧⎨=⎩的解是:12x y =⎧⎨=⎩; 故选:D .【点睛】函数1y k x =与2y k x b =+的交点坐标就是方程组21y k x b y k x =+⎧⎨=⎩的解,明确此知识点是解题的关键.22.D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x >2时,kx+b <ax ,故选C .点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.23.D【解析】【分析】根据一次函数y=ax+1与线段AB 有交点,求得-2≤a≤5,且a≠0,再解不等式组得18525x x a ⎧≥⎪⎪⎨⎪-⎪⎩< ,由题意得a≤4,据此a 的值为-2,-1,1,2,3,4,即可得整数a 的个数.【详解】解:把点A (﹣1,3)代入y =ax +1得,3=﹣a +1,解得a =﹣2,把点B (﹣1,﹣4)代入y =ax +1得,﹣4=﹣a +1,解得a =5,∵一次函数y =ax +1与线段AB 有交点,∴﹣2≤a ≤5,且a ≠0, 解不等式组45365425x x a ⎧⎛⎫+≥ ⎪⎪⎪⎝⎭⎨⎪--⎪⎩< 得18525x x a ⎧≥⎪⎪⎨⎪-⎪⎩< , ∵不等式组无解,∴a ﹣25 ≤185, 解得:a ≤4,则所有满足条件的整数a 有:﹣2,﹣1,1,2,3,4.故选D .【点睛】本题考查一次函数的图象与性质,解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解题的关键.24.B【解析】【分析】利用一次函数的性质分别判断后即可确定正确的选项.【详解】解:①∵2y x a =+的图象与y 轴的交点在负半轴上,∴a <0,故①错误;②∵1y kx b =+的图象从左向右呈下降趋势,∴k <0,故②错误;③两函数图象的交点横坐标为4,当x <4时,1y kx b =+ 在2y x a =+的图象的上方,即y 1>y 2,故③正确;故选:B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标.利用数形结合是解题的关键.25.C【解析】【分析】【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=32.∴点A的坐标是(32,3).∵当3x2<时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为3x2 <.故选C.26.C【解析】【分析】【详解】解:把点(0,3)(a,0)代入,得b=3.则a=,∵,∴,解得:k≥1.故选C.【点睛】本题考查一次函数与一元一次不等式,属于综合题,难度不大.27.B【解析】【分析】根据一次函数12,y kx b y x a =+=+的图象及性质逐一分析可得答案.【详解】解:根据图象1y kx b =+经过第一、二、四象限,∴k <0,b >0, 故①③正确;∵2y x a =+与y 轴负半轴相交,∴a <0, 故②错误;当x <3时,图象1y 在2y 的上方,所以:当x <3时,1y >2y ,故④错误.所以正确的有①③共2个.故选:B .【点睛】本题考查了一次函数图象的性质,一次函数与不等式的关系,准确识图并熟练掌握一次函数的性质是解题的关键.28.D【解析】【分析】根据图象得出两图象的交点坐标是(1,2)和当x <1时,ax <bx+c ,推出x <1时,ax <bx+c ,即可得到答案.【详解】解:由图象可知,两图象的交点坐标是(1,2),当x >1时,ax >bx+c ,∴关于x 的不等式ax-bx >c 的解集为x >1.故选:D .【点睛】本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.29.D【解析】观察图象得到直线与x轴的交点坐标为(2,0),且图象经过第一、三象限,y随x的增大而增大,所以当x<2时,y<0.【详解】解:∵一次函数y=kx+b与x轴的交点坐标为(2,0),且图象经过第一、三象限,∴y随x的增大而增大,∴当x<2时,y<0.故选:D.【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k >0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y 随x的增大而减小.30.A【解析】【分析】仔细观察图象:①a的正负看函数y1=ax+b图象从左向右成何趋势,b的正负看函数y1=ax+b图象与y轴交点即可;②c的正负看函数y2=cx+d从左向右成何趋势,d的正负看函数y2=cx+d与y轴的交点坐标;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④看两直线都在x轴上方的自变量的取值范围.【详解】由图象可得:a<0,b>0,c>0,d<0,∴ab<0,故①正确;函数y=ax+d的图象经过第二,三,四象限,即不经过第一象限,故②正确,由图象可得当x<3时,一次函数y1=ax+b图象在y2=cx+d的图象上方,∴ax+b>cx+d的解集是x<3,故③正确;∵一次函数y1=ax+b与y2=cx+d的图象的交点的横坐标为3,∴3a+b=3c+d∴3a−3c=d−b,∴a−c=13(d−b),故④正确,【点睛】本题考查了一次函数与一元一次不等式,一次函数的图象与性质,利用数形结合是解题的关键.。
不等式与一次函数专题练习
不等式与一次函数专题练习题型一:方程、不等式的直接应用:典型例题1、李晖到“宁泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设月销售件数为x件,月总收入为y元,销售1件奖励a元,营业员月基本工资为b元.(1)求a,b的值;(2)若营业员小俐某月总收入不低于1800元,则小俐当月至少要卖服装多少件?对应练习:1.开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?2.自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?题型二:方案设计:典型例题2、迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?典型例题3、“5.12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D 两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从地运往处的蔬菜为x吨.x的值;(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C地的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线的运费不变,试讨论总运费最小的调运方案.对应练习:1.某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.2.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.•现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,农机租赁公司这50台联合收割机一天获得的租金为y(元),求y与x之间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.3.某食品加工厂,准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉410克,核桃粉520克.计划利用这两种主要原料,研制加工上述两种口味的巧克力共50块.加工一块原味核桃巧克力需可可粉13克,需核桃粉4克;加工一块益智核桃巧克力需可可粉5克,需核桃粉14克.加工一块原味核桃巧克力的成本是1.2元,加工一块益智核桃巧克力的成本是2元.设这次研制加工的原味核桃巧克力x块.(1)求该工厂加工这两种口味的巧克力有哪几种方案?(2)设加工两种巧克力的总成本为y元,求y与x的函数关系式,并说明哪种加工方案使总成本最低?总成本最低是多少元?题型三:不等式与一次函数的实际应用:典型例题4、某学校计划租用6辆客车送一批师生参加一年一度的哈尔滨冰雕节,感受冰雕艺术的魅力.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x辆,租车总费用为y元.(1)求出y(元)与x(辆)之间的函数关系式,指出自变量的取值范围;(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元?典型例题5、送家电下乡活动开展后,某家电经销商计划购进A、B、C三种家电共70台,每种家电至少要购进8台,且恰好用完资金45000元.设购进A种家电x台,B种家电y台.三种家电的进价和预售价如下表:(1)用含x,y的式子表示购进C种家电的台数;(2)求出y与x之间的函数关系式;(3)假设所购进家电全部售出,综合考虑各种因素,该家电经销商在购销这批家电过程中需另外支出各种费用共1000元.对应练习:1.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?。
初二数学一次函数与一次方程一次不等式试题
初二数学一次函数与一次方程一次不等式试题1.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在( ).A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】由直线y=-x+3经过第一,二,四象限,一定不经过第三象限,即可判断结果.由于直线y=-x+3的图象不经过第三象限.因此无论m取何值,直线y=2x+m与直线y=-x+3的交点不可能在第三象限.故选C.【考点】本题考查了两条直线相交的问题点评:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.2.当x=2时,函数y=kx+10与y=3x+3k的值相等,则k的值是.【答案】4【解析】把x=2直接代入y=kx+10与y=3x+3k中,即可得到关于y、k的方程组,解出即得结果。
由题意得,则,解得【考点】本题考查的是本题考查的是一次函数上的点的坐标特征点评:解答本题的关键是掌握点在函数解析式上,点的横纵坐标就适合这个函数解析式.3.当x=1时,函数y="k" x +10与y="3" x +3k的值相等,则k的值是______.【答案】3.5【解析】把x=1直接代入y=kx+10与y=3x+3k中,即可得到关于y、k的方程组,解出即得结果。
由题意得,则,解得【考点】本题考查的是本题考查的是一次函数上的点的坐标特征点评:解答本题的关键是掌握点在函数解析式上,点的横纵坐标就适合这个函数解析式.4.对于一次函数,当_______时,图象在轴下方.【答案】【解析】当一次函数的图象在x轴下方时,函数值y<0,即-2x-3<0,通过解不等式可求得x的取值范围.由题意得-2x-3<0,解得【考点】本题考查了一次函数与一元一次不等式的关系点评:解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.当一次函数的图象在x轴上方时,说明函数值大于0,反之小于0.5.已知一次函数y=kx-3的图象经过点M(-2,1),求此图象与x、y轴的交点坐标.【答案】与x轴的交点坐标为(,0),与y轴的交点坐标为(0,-3).【解析】把点M的坐标代入一次函数即可求得k的值,然后让横坐标等于0得到图象与y轴的交点;让纵坐标等于0得到图象与y轴的交点.∵一次函数y=kx-3的图象经过点M(-2,1),∴-2k-3=1.解得:k=-2.∴此一次函数的解析式为y=-2x-3.令y=0,可得,∴一次函数的图象与x轴的交点坐标为(,0).令x=0,可得y=-3.∴一次函数的图象与y轴的交点坐标为(0,-3).【考点】本题考查了一次函数图象上点的坐标特征点评:解决此类问题关键是掌握在这条直线上的各点的坐标一定适合这条直线的解析式;x轴上的点纵坐标为0;y轴上的点横坐标为0.6.已知函数y1=3x+5,y2=2x-1,当x 时,有y1<y2.【答案】<-6【解析】根据题意,列出不等式,解不等式即可.由题意得,解得【考点】本题考查的是一次函数与一元一次不等式点评:根据题意,正确的列出不等式是解题的关键.7.当x=4时,函数y=kx+10与y=3x+3k的值相等,则k的值是 .【答案】2【解析】把x=4直接代入y=kx+10与y=3x+3k中,即可得到关于y、k的方程组,解出即得结果。
一次函数与一元一次不等式训练题及答案
精心整理一次函数与一元一次不等式训练题及答案一、选择题(共10小题;共30分)1.如图,以两条直线,的交点坐标为解的方程组是A. B.C. D.2.将一次函数的图象向上平移个单位,平移后,若,则的取值范围是?()A. B. 4 C. D.3.如图所示,函数和的图象相交于,两点.当时,的取值范围是A. B.C. D.或4.一次函数的图象如图所示,则方程的解为?()A. B. C. D.5.如图,直线是函数的图象.若点满足,且,则点的坐标可能是?().A. B. C. D.6.如图,一次函数与一次函数的图象交于点,则关于的不等式的解集是?()A. B. C. D.7.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是?().A. B.C. D.8.已知函数,,的图象交于一点,则值为?()A. B. C. D.9.如图,函数和的图象相交于点,则不等式的解集为?()A. B. C. D.10.已知关于的一次函数在上的函数值总是正的,则的取值范围是A. B.C. D.以上答案都不对二、填空题(共5小题;共15分)11.如图,已知函数和的图象交于点,根据图象可得方程组的解是?.12.一次函数与的图象如图,则的解集是?.13.如图,已知函数与函数的图象交于点,则不等式的解集是?.14.方程组的解是则直线和的交点坐标是?.15.观察函数的图象,根据图所提供的信息填空:(1)当?时,;(2)当?时,;(3)当?时,;(4)当?时,.三、解答题(共5小题;共55分)16.如图,函数和的图象相交于点,(1)求点的坐标;(2)根据图象,直接写出不等式的解集.17.已知一次函数的图象过点,,求函数表达式并画出它的图象,再利用图象求:(1)当为何值时,,,;(2)当时,的取值范围;(3)当时,的取值范围.18.甲、乙两地相距,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段表示货车离甲地的距离与时间之间的函数关系,折线表示轿车离甲地的距离与时间之间的函数关系.根据图象,解答下列问题:(1)线段表示轿车在途中停留了?;(2)求线段对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.19.如图,直线经过点,.(1)求直线的解析式;(2)若直线与直线相交于点,求点的坐标;(3)根据图象,写出关于的不等式的解集.20.如图,在平面直角坐标系中,过点的直线与直线相交于点,动点沿路线运动.(1)求直线的解析式.(2)求的面积.(3)当的面积是的面积的时,求出这时点的坐标.答案第一部分1.C2.B3.D4.C5.B6.C7.D8.B9.A 10.A第二部分11.12.13.14.15.(1);(2);(3);(4)第三部分16.(1)由题意,得方程组解得的坐标为.(2)由图象,得不等式的解集为:.17.(1)设一次函数的表达式为.把点,分别代入,得解得所以.一次函数的图象如图所示.由图可知,直线与轴交于点,当时,;当时,;当时,.(2)当时,.(3)当时,.18.(1)(2)设线段对应的函数解析式是.,,故线段对应的函数解析式是.(3)设线段对应的函数解析式是,,.线段对应的函数解析式是.解方程组得(小时).答:轿车从甲地出发后经过小时追上货车.19.(1)直线经过点,,所以解方程得直线的解析式为.(2)直线与直线相交于点,解方程组得点的坐标为.(3)当时.直线位于直线上方.不等式的解集为.20.(1)设直线的解析式是,根据题意得:解得则直线的解析式是:;(2)在中,令,解得,;(3)设的解析式是,则,解得:,则直线的解析式是:,当的面积是的面积的时,的横坐标是,在中,当时,,则的坐标是;在中,则,则的坐标是.则的坐标是:或().。
练习-一次函数与一元一次不等式 同步训练
一次函数与一元一次不等式 同步训练教材基础知识针对性训练一、选择题1.如图1,直线y=kx+b 与x 轴交于点A (-4,0),则当y>0时,x 的取值范围是( • ) A .x>-4 B .x>0 C .x<-4 D .x<0(1) (2)2.已知一次函数y=kx+b 的图像,如图2所示,当x<0时,y 的取值范围是( •) A .y>0 B .y<0 C .-2<y<0 D .y<-23.已知y 1=x-5,y 2=2x+1.当y 1>y 2时,x 的取值范围是( ). A .x>5 B .x<12C .x<-6D .x>-64.函数y=12x-3与x 轴交点的横坐标为( ).A .-3B .6C .3D .-65.对于函数y=-x+4,当x>-2时,y 的取值范围是( ). A .y<4 B .y>4 C .y>6 D .y<6二、填空题 1.对于一次函数y=2x+4,当______时,2x+4>•0;•当________•时,•2x+•4<•0;•当_______时,2x+4=0.2.已知y 1=2x-5,y 2=-2x+3,当_______时,y 1≤y 2. 3.已知关系x 的方程ax-5=7的解为x=1,则一次函数y=ax-12与x•轴交点的坐标为________. 4.已知2x-y=0,且x-5>y ,则x 的取值范围是________. 5.关于x 的方程3x+3a=2的解是正数,则a________. 三、解答题1.已知y 1=-x+2,y 2=3x+4.(1)当x 分别取何值时,y 1=y 2,y 1<y 2,y 1>y 2?(2)在同一坐标系中,分别作出这两个函数的图像,请你说说(1)中的解集与函数图像之间的关系.2.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一国营出租车公司签订月租车合同.设汽车每月行驶x(cm),应付给个体车主的月费用为y1元,•应付给汽车出租公司的月费用为y2元,y1,y2分别与x之间的函数关系的图像(两条射线)如图所示,观察图像回答下列问题:(1)每月行驶的路程在什么范围内,租出租公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家车合算?3.某学校计划购买若干台电脑,•现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%,那么甲商场的收费y1(元)与所买电脑台数x之间的关系式是________.乙商场的优惠条件是:每台优惠20%,那么乙商场的收费y2(元)与所买电脑台数x 之间的关系式是_________.(1)什么情况下到甲商场购买更优惠?(2)什么情况下到乙商场购买更优惠?(3)什么情况下两家商场的收费相同?探究应用拓展性训练1.(与现实生活联系的应用题)某单位要制作一批宣传材料.甲公司提出:每份材料收费20元,另收3000元设计费;乙公司提出:每份材料收费30元,不收设计费.问:让哪家公司制作这批宣传比较合算?2.(学科内综合题)下图表示学校浴室淋浴器水箱中的水量y(L)•与进水时间x(min)的函数关系.(1)求y与x之间的函数关系式.(2)进水多少分钟后,水箱中的水量超过100L?3.小明准备将平时的零用钱节约一些储存起来,他已存有50元,从现在起每个月存12元.(1)试写出小明的存款数与从现在开始的月份数之间的函数关系式.(2)小明的同学小丽以前没有存过零用钱,听到小明在存零用钱,•表示从现在起每个月存18元,争取超过小明.请你在同一平面直角坐标系中分别画出小明和小丽存款数和月份数的函数关系的图像.半年以后小丽的存款数是多少?能否超过小明?•至少几个月后小丽的存款数超过小明?4.(探究题)某企业急需一辆汽车,但无资金购买,公司经理决定租一辆汽车,•使用期限为一个月.甲汽车出租公司的出租条件为每千米的租车费为1.2元,•乙汽车出租公司的条件是每月须支付司机800元的工资,另外每千米的租车费为1元,设在这一个月中汽车行驶x(km),租用甲公司的费用为y1(元),租用乙公司的费用为y2(元).(1)试分别写出y1,y2与x之间的函数关系式.(2)当汽车行驶路程为多少千米时,租用乙公司的汽车合算?5.(2003年郑州卷)某学校餐厅计划购买12张餐桌和一批餐椅,现从甲、•乙两商场了解到同一型号的餐桌报价均为每张200元,餐椅每把50元.甲商场称:每张餐桌送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售.那么,什么情况下甲商场更优惠?答案:教材基础知识针对性训练一、1.A 解析:由图像可看出y>0(即x轴上方的图像)对应的x的范围为x>-4,故选A.提示:本题只能通过一次函数y=kx+b的图像确定x的取值范围.2.D 解析:由图像可以看出,当x<0时,对应的图像位于y轴的左侧,•这部分图像对应的y值的范围为y<-2,故应选D.提示:此题已知自变量x的取值范围确定y的取值范围,可以通过图像直接观察,•也可先求出一次函数的解析式,借助不等式作答.3.C 解析:∵y1>y2,∴x-5>2x+1,-x>6,x<-6,故选C.4.B 解析:当y=0时,12x-3=0,12x=3,x=6,故应选B.5.D 解析:∵y=-x+4,∴x=4-y.又∵x>-2,∴4-y>-2,-y>-6,y<6,故选D.提示:此题打破常规,将解析式进行变形,用含y的代数式表示x(可认为y•是自变量,x是因变量),然后借助不等式求出y的取值范围.此题还可画出图像,•借助图像的直观性直接确定y的取值范围.二、1.解析:∵2x+4>0,∴2x>-4,x>-2.∵2x+4<0,∴2x<-4,x<-2.∵2x+4=0,∴2x=-4,x=-2.答案:x>-2 x<-2 x=-22.解析:∵y1≤y2,∴2x-5≤-2x+3,4x≤8,x≤2,∴x≤2时,y1≤y2.答案:x≤23.解析:∵ax-5=7,∴ax-12=0.又y=ax-12与x轴的交点的横坐标就是方程ax-5=7的解,即x=1,∴y=ax-12与x轴的交点坐标为(1,0).答案:(1,0)提示:此题还可通过先确定a的值,进而再确定y=ax-12与x轴的交点坐标.4.解析:∵2x-y=0,∴y=2x.又∵x-5>y,∴x-5>2x,x<-5.∴x的取值范围为x<-5.答案:x<-55.解析:∵3x+3a=2,∴x=23-a.∵3x+3a=2的解为正数,即x>0.∴23-a>0,-a>-23,a<23.答案:a<2 3三、1.解析:(1)当y1=y2时,-x+2=3x-4,-4x=-6,x=32.当y1>y2时,-x+2>3x-4,-4x>-6,x<32,当y1<y2时,-x+2<3x-4,-4x<-6,x>32.所以当x=32时,y1=y2;当x<32时,y1>y2;当x>32时,y1<y2.(2)y1与y2的图像如答图所示.通过图像,也能得出(1)中相同的答案.2.解析:(1)当x<1500km时,租出租公司的车合算.(2)当x=1500km时,租两家的费用相同.(3)当x>2300km时,对应的y1在y2的下方,所以租个体车主的车合算.3.解析:y1=6000+(1-25%)×6000(x-1),化简得y1=4500x+1500.y1=(1-20%)6000x,化简,得y2=4800x.(1)当y1<y2时,4500x+1500<4800x,即300x<1500,x>5,•所以当所买电脑台数大于5时,甲商场更优惠.(2)当y2<y1时,4800x<4500x+1500,即300x<1500,x<5,•所以当所买电脑台数小于5台时,乙商场更优惠.(3)当y1=y2时,4500x+1500=4800x,即300x=1500,x=5,当购买5台时,两家商场收费相同.探究应用拓展性训练1.解析:设甲公司的总费用为y1元,乙公司的总费用y2元.制作材料x份,则y1=3000+20x,y2=30x.(1)当y1<y2时,3000+20x<30x,10x>3000,x>300.当制作的材料大于300份时,•选甲公司合算.(2)当y2<y1时,30x<3000+20x,10x<3000,x<300.当制作的材料小于300份时,•选乙公司合算.(3)当y2=y1时,3000+20x=30x,10x=3000,x=300,当制作的材料等于300份时,•两家公司收费相同.2.解析:(1)设y=kx+b,由图像可看出图像经过(10,50),(50,150)两点,∴1050,50150,k bk b+=⎧⎨+=⎩解得5,225.kb⎧=⎪⎨⎪=⎩∴y=52x+25.(2)水箱中的水超过100L,即y>100,∴52x+25>100,52x>75,x>30.当进水时间多于30min后,水箱中的水量超过100L.3.解析:(1)设小明的存款为y1,从现在开始的月份数为x,则y1=12x+50.(2)设小丽的存款数为y2,则y2=18x.图像略.当x=6时,y1=12×6+50=72+50=122,y2=18×6=108.因108<122,所以半年后小丽的存款为108元,不能超过小明.当y2>y1时,18x>12x+50,x>813,∴至少9个月后小丽的存款数超过小明.4.解析:(1)y1=1.2x,y2=x+800.(2)当y2<y1时,x+800<1.2x,0.2x>800,x>4000.所以当汽车行驶路程多于4000km时,租用乙公司的汽车合算.5.解析:设学校餐厅计划购买x把椅子,在甲商场购买的总费用为y1元,•在乙商场购买的总费用为y2元,则y1=200×12+50(x-12),即y1=50x+1800.当y1<y2时,50x+1800<852x+2040,152x<240,x<32.所以当购买的椅子把数小于32时,甲商场更优惠.。
八年级数学-一元一次不等式与一次函数练习
一元一次不等式与一次函数练习一填空题1.已知正比例函数y=xb(b为常数),当x>0时,y随x的增大而增大,则一次函数y=x+b的图象不经过第象限.【解析】∵正比例函数y=xb(b为常数),当x>0时,y随x的增大而增大,∴b<0,∵一次函数y=x+b中k=1>0,b<0,∴此函数的图象经过一、三、四限,∴此函数的图象不经过第二象限.2 已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x 的增大而(增大或减小).【解析】∵点(2,-3)在正比例函数y=kx(k≠0)上,∴2k=-3,解得:k=-32,∴正比例函数解析式是:y=-32x,∵k=-32<0,∴y随x的增大而减小,故答案为:减小.3 在正比例函数y=-3mx中,函数y的值随x值的增大而增大,则P (m,5)在第象限.【解析】∵正比例函数y=-3mx中,函数y的值随x值的增大而增大,∴-3m>0,解得m<0,∴点P(m,5)在第二象限.4 若直线y=kx+b(k≠0)不经过第二象限,则k、b的取值范围是k,b.【解析】由一次函数y=kx+b的图象经过第一、三、四象限,又有k>0时,直线必经过一、三象限,故知k>0.再由图象过三、四象限或者原点,所以b≤0.故答案为:>,≤.5 已知m是整数,且一次函数(y m=象限,则m为.【解析】∵一次函数y=(m+4)x+m ∴m+4>0 m+2≤0解得-4<m≤-2,而m是整数,则m=-3或-2.故填空答案:-3或-26 若直线axy+-=和直线xy+==+ba.【解析】∵直线y=-x+a和直线y=x+∴8=-m+a①,8=m+b②,①+②,得16=a+b,即a+b=16.7 在同一直角坐标系内,直线y=点.【解析】当x+3=-2x+3时,解得:x ∴y=3,∴两条直线的交点坐标为(0,3),∴直线y=x+3与直线y=-2x+3都经过故答案为:(0,3).8 如图是函数(1)自变量x的(2)当x取(3)在(1)中大而 . 【解析】(1)0<x≤5;(2)当x=5时,y 取最小值,最小值为2.5; (3)y 随x 的增大而减小。
专题十三 不等式与一次函数应用题(含答案)
专题十三 不等式与一次函数应用题1.(2007年眉山市)某县响应“建设环保节约型社会”的号召,决定资助部分付镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A 型、B 型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表: 沼气池 修建费用(万元/个) 可供使用户数(户/个) 占地面积(m 2/个)A 型3 20 48 B 型2 3 6 政府相关部门批给该村沼气池修建用地708m 2.设修建A 型沼气池x 个,修建两种型号沼气池共需费用y 万元.(1)求y 与x 之间的函数关系式;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种; (3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.2.(2007年泰州市)通过市场调查,一段时间内某地区某一种农副产品的需求数量y (千克)与市场价格x (元/千克)(030x <<)存在下列关系: x (元/千克) 5 10 15 20 y (千克) 4500 4000 3500 3000又假设该地区这种农副产品在这段时间内的生产数量z (千克)与市场价格x (元/千克)成正比例关系:400z x =(030x <<).现不计其它因素影响,如果需求数量y 等于生产数量z ,那么此时市场处于平衡状态.(1)请通过描点画图探究y 与x 之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z 与市场价格x 的函数关系发生改变,而需求数量y 与市场价格x 的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元? (1)描点略. ······························ 1分 设y kx b =+,用任两点代入求得1005000y x =-+, ············· 3分 再用另两点代入解析式验证. ························ 4分 (2)y z = ,1005000400x x ∴-+=,10x ∴=. ································ 6分∴总销售收入10400040000=⨯=(元) ·················· 7分∴农副产品的市场价格是10元/千克,农民的总销售收入是40000元. ······················· 8分 (3)设这时该农副产品的市场价格为a 元/千克,则(1005000)4000017600a a -+=+, ··················· 10分 解之得:118a =,232a =.030a << ,18a ∴=. ························· 11分∴这时该农副产品的市场价格为18元/千克.················· 12分3.(南充)今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝、香蕉各2吨; (1)该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来; (2)若甲种货车第辆要付运输费2000元,乙种货车每辆要付运输费1300元,则该果农应选择哪种方案,使运费最少?最少运费是多少元? 解:(1)设安排甲种货车x 辆,则安排乙种货车(10-x )辆,依题意,得⎩⎨⎧≥-+≥-+13)10(230)10(24x x x x 解这个不等式组,得 ⎩⎨⎧≤≥75x x75≤≤∴x x 是整数,∴x 可取5、6、7,既安排甲、乙两种货车有三种方案:甲种货车5辆,乙种货车5辆;① 甲种货车6辆,乙种货车4辆;甲种货车7辆,乙种货车3辆;(2)方法一:由于甲种货车的运费高于乙种货车的运费,两种货车共10辆,所以当甲种货车的数量越少时,总运费就越少,故该果农应选择① 运费最少,最少运费是16500元; 方法二:方案①需要运费 2000×5+1300×5=16500(元) 方案②需要运费 2000×6+1300×4=17200(元) 方案③需要运费 2000×7+1300×3=17900(元) ∴该果农应选择① 运费最少,最少运费是16500元;5 10 15 x (元/千y (千克) 5000 450400(第28题O4.(2007山东青岛)某饮料厂开发了A 、B 两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A 、B 两种饮料共100瓶.设生产A 种饮料x 瓶,解答下列问题:(1)有几种符合题意的生产方案?写出解答过程;(2)如果A 种饮料每瓶的成本为2.60元,B 种饮料每瓶的成本为2.80元,这两种饮料成本总额为y 元,请写出y 与x 之间的关系式,并说明x 取何值会使成本总额最低?⑴ 设生产A 种饮料x 瓶,根据题意得:解这个不等式组,得20≤x ≤40.因为其中正整数解共有21个,所以符合题意的生产方案有21种.⑵ 根据题意,得 y =2.6x +2.8(100-x).整理,得 y =-0.2x +280.∵k =-0.2<0,∴y 随x 的增大而减小.∴当x =40时成本总额最低. 5、(2007年长沙)某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念品.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册. (1)求每件文化衫和每本相册的价格分别为多少元?(2)有几购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?解:(1)设每件文化衫和每本相册的价格分别为x 元和y 元,则⎩⎨⎧=+=-200529y x y x ,解得⎩⎨⎧==2635y x , ∴每件文化衫和每本相册的价格分别为35元和26元.(2)设购买文化衫t 件,则购买相册(50-t)本,则1500≤35t+26(50-t)≤1530. 解得9200≤t ≤9230. ∵t 为正整数 ∴t=23,24,25,即有三种方案:第—种方案:购买文化衫23件、相册27本,此时余下资金293元; 第二种方案:购买文化衫24件、相册26本,此时余下资金284元; 第三种方案:购买文化衫25件、相册25本,此时余下资金275元. ∴第一种方案用于购买教师纪念品的资金更充足.6、(河南省)某商场用36万元购进A 、B 两种商品,销售完后共获利6万元,其进价和售价如下表:A B 进价(元/件)1200 1000 售价(元/件)13801200(注:获利=售价-进价)(1) 该商场购进A 、B 两种商品各多少件?(2) 商场第二次以原进价购进A 、B 两种商品.购进B 种商品的件数不变,而购进A 种商品的件数是第一次的2倍,A 种商品按原价出售,而B 种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B 种商品最低售价为每件多少元?(1)设购进A 种商品x 件,B 种商品y 件.根据题意,得12001000360000,(13801200)(12001000)60000.x y x y +=⎧⎨-+-=⎩化简,得651800,9103000.x y x y +=⎧⎨+=⎩解之,得200,120.x y =⎧⎨=⎩答:该商场购进A 、B 两种商品分别为200件和120件.(2)由于A 商品购进400件,获利为(1380-1200)×400 = 72000(元).从而B 商品售完获利应不少于81600-72000 = 9600(元). 设B 商品每件售价为x 元,则120(x -1000)≥9600.所以,B 种商品最低售价为每件1080元. 7.(2007年日照市)某水产品市场管理部门规划建造面积为2400m 2的集贸大棚,大棚内设A 种类型和B种类型的店面共80间,每间A 种类型的店面的平均面积为28m 2,月租费为400元;每间B 种类型的店面的平均面积为20m 2,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.(1)试确定A 种类型店面的数量;(2)该大棚管理部门通过了解业主的租赁意向得知, A 种类型店面的出租率为75%,B 种类型店面的出租率为90%.为使店面的月租费最高,应建造A 种类型的店面多少间? 解:(1)设A 种类型店面的数量为x 间,则B 种类型店面的数量为(80-x )间,根据题意,得:⎩⎨⎧⨯≤-+⨯≥-+%.852400)80(2028%,802400)80(2028x x x x ……………………………………………………3分解之,得⎩⎨⎧≤≥.55,40x x∴A 种类型店面的数量为40≤x ≤55,且x 为整数. …………………………………5分 (2) 设应建造A 种类型的店面x 间,则店面的月租费为: W =400×75%·x +360×90%·(80-x )=-24x +25920, …………………………………………………………………………7分∵-24<0,40≤x ≤55,∴为使店面的月租费最高,应建造A 种类型的店面40间.…………………………9分8、我市为绿化城区,计划购买甲、乙两种树苗共计500棵,甲种树苗每棵50元,乙种树苗每棵80元,调查统计得:甲、乙两种树苗的成活率分别为90%、95%.(1)如果购买两种树苗共用28000元,那么甲、乙两种树苗各买了多少棵?(2)市绿化部门研究决定,购买树苗的钱数不得超过34000元,应如何选购树苗?(3)要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?2030(100)28004020(100)2800x x x x +-+-⎧⎨⎩,.≤ ≤解:(1)设购买甲种树苗x 棵,则乙种树苗(500-x )棵,由题意得:50x+80(500-x )=28000 解得x=400 所以500-x=100 答:购买甲种树苗400棵,则乙种树苗100棵.(2)由题意得:50x+80(500-x )≤34000解得x ≥200,(注意x ≤500) 答:购买甲种树苗不少于200棵,其余购买乙种树苗.(若为购买乙种树苗不多于300棵,其余购买甲种树苗也对)(3)由题意得:90%x+95%(500-x )≥500×92%,解得x ≤300 设购买两种树苗的费用之和为y ,则y=50x+80(500-x )=40000-30x在此函数中,y 随x 的增大而减小所以当x=300时,y 取得最小值,其最小值为40000-30×300=31000 答:购买甲种树苗300棵,乙种树苗200棵,即可满足这批树苗的成活率不低于92%,又使购买树苗的费用最低,其最低费用为31000.9、在一条笔直的公路上有A 、B 两地,它们相距150千米,甲、乙两部巡警车分别从A 、B 两地同时出发,沿公路匀速相向而行,分别驶往B 、A 两地.甲、乙两车的速度分别为70千米/ 时、80千米/ 时,设行驶时间为x 小时.(1)从出发到两车相遇之前,两车的距离是多少千米?(结果用含x 的代数式表示)(2)已知两车都配有对讲机,每部对讲机在15千米之内(含15千米)时能够互相通话,求行驶过程中两部对讲机可以保持通话的时间最长是多少小时?解:(1)(150—150x) 千米.………………………………………3分(2)相遇之后,两车的距离是(150 x —150)千米,…………………4分依题意可得不等式组: ⎩⎨⎧≤-≤-.15150150,15150150x x ……………………………………………6分解得1.19.0≤≤x ,…………………………………………8分2.09.01.1=-.答:两部对讲机可以保持通话的时间最长是0.2小时.. ……………9分10、某园林的门票每张10元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A 、B 、C 三类,A 类年票每张120元,持票者进人园林时,无需再购买门票;B 类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C 类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式;(2)求一年中进入该园林至少超过多少次时,购买A 类年票比较合算解:(1)根据题意,需分类讨论.因为80<120,所以不可能选择A 类年票;若只选择购买B 类年票,则能够进入该园林 (80-60)÷2=10(次); 若只选择购买C 类年票,则能够进入该园林( 80-40)÷3≈13(次); 若不购买年票,则能够进入该园林 80÷10=8(次). 所以,计划在一年中用80元花在该园林的门票上,通过计算发现:可使进入该园林的次数最多的购票方式是选择购买C 类年票. (2)设一年中进入该园林至少超过x 次时,购买A 类年票比较合算,根据题意, 得 {60+2x >120① 40+3x >120②10x >120③.由①,解得x >30;由②,解得x >26 23;由③,解得x >12. 解得原不等式组的解集为x >30.答:一年中进入该园林至少超过30次时,购买A 类年票比较合算.11、某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水价格x 的一次函数. (1)根据下表提供的数据,求y 与x 的函数关系式;当水价为每吨10元时,1吨水生产出的饮料所获利润是多少?(2)为节约用水,这个市场规定:该长日用水量不超过20吨时,水价每吨按4元收费,日用水量超过20吨时,超过部分按每吨40元收费,已知该厂日用水量不少于20吨,设该长日用水量为t 吨,当日获利润为w 元,求w 与t 的函数关系式;该厂加强管理,积极节水,使用水量不超过25吨,但仍不少于20吨,求该厂的日利润的取值范围.解:(1) 用1吨水生产的饮料所获利润y (元)是1吨水的价格x (元)的一次函数式为: b kx y +=,根据题意得:⎩⎨⎧+=+=b k b k 61984200 解得:⎩⎨⎧=-=2041b k∴所求一次函数式是:204+-=x y 当x =10时,y=-10+204=194(元)(2)当1吨水的价格为40元时,所获利润是:y =-40+204=164(元).∴W 与t 的函数关系式是:164)20(20200⨯-+⨯=x w即:720164+=t w∵20 ≤ t ≤ 25, ∴4000≤w ≤4820。
(完整版)一次函数与一元一次不等式练习(1)附答案
一次函数与一元一次不等式练习(1)附答案一、选择题1.如图1,直线y=kx+b与x轴交于点A(-4,0),则当y>0时,x的取值范围是( • ) A.x>-4 B.x>0 C.x<-4 D.x<0(1)(2)2.已知一次函数y=kx+b的图像,如图2所示,当x<0时,y的取值范围是( •)A.y>0 B.y<0 C.-2<y<0 D.y<-23.已知y1=x-5,y2=2x+1.当y1>y2时,x的取值范围是().A.x>5 B.x<12C.x<-6 D.x>-64.函数y=12x-3与x轴交点的横坐标为().A.-3 B.6 C.3 D.-65.对于函数y=-x+4,当x>-2时,y的取值范围是().A.y<4 B.y>4 C.y>6 D.y<6二、填空题1.对于一次函数y=2x+4,当______时,2x+4>•0;•当________•时,•2x+•4<•0;•当_______时,2x+4=0.2.已知y1=2x-5,y2=-2x+3,当_______时,y1≤y2.3.已知关系x的方程ax-5=7的解为x=1,则一次函数y=ax-12与x•轴交点的坐标为________.4.已知2x-y=0,且x-5>y,则x的取值范围是________.5.关于x的方程3x+3a=2的解是正数,则a________.三、解答题1.已知y1=-x+2,y2=3x+4.(1)当x分别取何值时,y1=y2,y1<y2,y1>y2?(2)在同一坐标系中,分别作出这两个函数的图像,请你说说(1)中的解集与函数图像之间的关系.2.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一国营出租车公司签订月租车合同.设汽车每月行驶x(cm),应付给个体车主的月费用为y1元,•应付给汽车出租公司的月费用为y2元,y1,y2分别与x之间的函数关系的图像(两条射线)如图所示,观察图像回答下列问题:(1)每月行驶的路程在什么范围内,租出租公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家车合算?3.某学校计划购买若干台电脑,•现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%,那么甲商场的收费y1(元)与所买电脑台数x之间的关系式是________.乙商场的优惠条件是:每台优惠20%,那么乙商场的收费y2(元)与所买电脑台数x 之间的关系式是_________.(1)什么情况下到甲商场购买更优惠?(2)什么情况下到乙商场购买更优惠?(3)什么情况下两家商场的收费相同?探究应用拓展性训练1.(与现实生活联系的应用题)某单位要制作一批宣传材料.甲公司提出:每份材料收费20元,另收3000元设计费;乙公司提出:每份材料收费30元,不收设计费.问:让哪家公司制作这批宣传比较合算?2.(学科内综合题)下图表示学校浴室淋浴器水箱中的水量y(L)•与进水时间x(min)的函数关系.(1)求y与x之间的函数关系式.(2)进水多少分钟后,水箱中的水量超过100L?3.小明准备将平时的零用钱节约一些储存起来,他已存有50元,从现在起每个月存12元.(1)试写出小明的存款数与从现在开始的月份数之间的函数关系式.(2)小明的同学小丽以前没有存过零用钱,听到小明在存零用钱,•表示从现在起每个月存18元,争取超过小明.请你在同一平面直角坐标系中分别画出小明和小丽存款数和月份数的函数关系的图像.半年以后小丽的存款数是多少?能否超过小明?•至少几个月后小丽的存款数超过小明?4.(探究题)某企业急需一辆汽车,但无资金购买,公司经理决定租一辆汽车,•使用期限为一个月.甲汽车出租公司的出租条件为每千米的租车费为1.2元,•乙汽车出租公司的条件是每月须支付司机800元的工资,另外每千米的租车费为1元,设在这一个月中汽车行驶x(km),租用甲公司的费用为y1(元),租用乙公司的费用为y2(元).(1)试分别写出y1,y2与x之间的函数关系式.(2)当汽车行驶路程为多少千米时,租用乙公司的汽车合算?5.(2003年郑州卷)某学校餐厅计划购买12张餐桌和一批餐椅,现从甲、•乙两商场了解到同一型号的餐桌报价均为每张200元,餐椅每把50元.甲商场称:每张餐桌送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售.那么,什么情况下甲商场更优惠?答案:教材基础知识针对性训练一、1.A 解析:由图像可看出y>0(即x轴上方的图像)对应的x的范围为x>-4,故选A.提示:本题只能通过一次函数y=kx+b的图像确定x的取值范围.2.D 解析:由图像可以看出,当x<0时,对应的图像位于y轴的左侧,•这部分图像对应的y值的范围为y<-2,故应选D.提示:此题已知自变量x的取值范围确定y的取值范围,可以通过图像直接观察,•也可先求出一次函数的解析式,借助不等式作答.3.C 解析:∵y1>y2,∴x-5>2x+1,-x>6,x<-6,故选C.4.B 解析:当y=0时,12x-3=0,12x=3,x=6,故应选B.5.D 解析:∵y=-x+4,∴x=4-y.又∵x>-2,∴4-y>-2,-y>-6,y<6,故选D.提示:此题打破常规,将解析式进行变形,用含y的代数式表示x(可认为y•是自变量,x是因变量),然后借助不等式求出y的取值范围.此题还可画出图像,•借助图像的直观性直接确定y的取值范围.二、1.解析:∵2x+4>0,∴2x>-4,x>-2.∵2x+4<0,∴2x<-4,x<-2.∵2x+4=0,∴2x=-4,x=-2.答案:x>-2 x<-2 x=-22.解析:∵y1≤y2,∴2x-5≤-2x+3,4x≤8,x≤2,∴x≤2时,y1≤y2.答案:x≤23.解析:∵ax-5=7,∴ax-12=0.又y=ax-12与x轴的交点的横坐标就是方程ax-5=7的解,即x=1,∴y=ax-12与x轴的交点坐标为(1,0).答案:(1,0)提示:此题还可通过先确定a的值,进而再确定y=ax-12与x轴的交点坐标.4.解析:∵2x-y=0,∴y=2x.又∵x-5>y,∴x-5>2x,x<-5.∴x的取值范围为x<-5.答案:x<-55.解析:∵3x+3a=2,∴x=23-a.∵3x+3a=2的解为正数,即x>0.∴23-a>0,-a>-23,a<23.答案:a<2 3三、1.解析:(1)当y1=y2时,-x+2=3x-4,-4x=-6,x=32.当y1>y2时,-x+2>3x-4,-4x>-6,x<32,当y1<y2时,-x+2<3x-4,-4x<-6,x>32.所以当x=32时,y1=y2;当x<32时,y1>y2;当x>32时,y1<y2.(2)y1与y2的图像如答图所示.通过图像,也能得出(1)中相同的答案.2.解析:(1)当x<1500km时,租出租公司的车合算.(2)当x=1500km时,租两家的费用相同.(3)当x>2300km时,对应的y1在y2的下方,所以租个体车主的车合算.3.解析:y1=6000+(1-25%)×6000(x-1),化简得y1=4500x+1500.y1=(1-20%)6000x,化简,得y2=4800x.(1)当y1<y2时,4500x+1500<4800x,即300x<1500,x>5,•所以当所买电脑台数大于5时,甲商场更优惠.(2)当y2<y1时,4800x<4500x+1500,即300x<1500,x<5,•所以当所买电脑台数小于5台时,乙商场更优惠.(3)当y1=y2时,4500x+1500=4800x,即300x=1500,x=5,当购买5台时,两家商场收费相同.探究应用拓展性训练1.解析:设甲公司的总费用为y1元,乙公司的总费用y2元.制作材料x份,则y1=3000+20x,y2=30x.(1)当y1<y2时,3000+20x<30x,10x>3000,x>300.当制作的材料大于300份时,•选甲公司合算.(2)当y2<y1时,30x<3000+20x,10x<3000,x<300.当制作的材料小于300份时,•选乙公司合算.(3)当y2=y1时,3000+20x=30x,10x=3000,x=300,当制作的材料等于300份时,•两家公司收费相同.2.解析:(1)设y=kx+b,由图像可看出图像经过(10,50),(50,150)两点,∴1050,50150,k bk b+=⎧⎨+=⎩解得5,225.kb⎧=⎪⎨⎪=⎩∴y=52x+25.(2)水箱中的水超过100L,即y>100,∴52x+25>100,52x>75,x>30.当进水时间多于30min后,水箱中的水量超过100L.3.解析:(1)设小明的存款为y1,从现在开始的月份数为x,则y1=12x+50.(2)设小丽的存款数为y2,则y2=18x.图像略.当x=6时,y1=12×6+50=72+50=122,y2=18×6=108.因108<122,所以半年后小丽的存款为108元,不能超过小明.当y2>y1时,18x>12x+50,x>813,∴至少9个月后小丽的存款数超过小明.4.解析:(1)y1=1.2x,y2=x+800.(2)当y2<y1时,x+800<1.2x,0.2x>800,x>4000.所以当汽车行驶路程多于4000km 时,租用乙公司的汽车合算.5.解析:设学校餐厅计划购买x把椅子,在甲商场购买的总费用为y1元,•在乙商场购买的总费用为y2元,则y1=200×12+50(x-12),即y1=50x+1800.当y1<y2时,50x+1800<852x+2040,152x<240,x<32.所以当购买的椅子把数小于32时,甲商场更优惠.。
一次函数与不等式练习
一次函数与不等式(组)练习1.已知一次函数y=﹣x+1和一次函数y=kx+3的图象交于点A,且点A的纵坐标为.(1)求k的值;(2)结合图象,写出不等式0<﹣x+1<kx+3的解集.2.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数的图象经过点B(﹣2,﹣1).(1)求一次函数的解析式;(2)请直接写出不等式组﹣1<kx+b<2x的解集.3.函数y1=mx+n与y2=﹣x+a的图象如图所示,则0≤﹣x+a<mx+n的解集为.4.如图,一次函数y1=x+b与一次函数y2=kx+3的图象交于点P(1,2),则关于不等式0<x+b≤kx+3的解集为.5.如图,已知直线y=mx过点A(﹣2,﹣4),过点A的直线y=nx+b交x轴于点B(﹣4,0),则关于的不等式组nx+b≤mx<0的解集为.6.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则关于x的不等式4x+2<kx+b≤0的解集为.7.如图,一次函数y=﹣x+1与y=2x+m的图象相交于点P(n,2),则关于x的不等式﹣x+1>2x+m>0的解集为.8.如图,直线y=kx+b经过点A(m,﹣2)和点B(﹣2,0),直线y=2x经过点A,则不等式组2x<kx+b<0的解集是.9.直线l1:y=k1x+b与直线l2:y=k2x的图象如图所示.则关于x的不等式k2x>k1x+b的解集为.10.如图,在平面直角坐标系xOy中,直线11,l2分别是函数y=k1x+b1和y=k2x+b2的图象,则关于x的不等式k1x+b1>k2x+b2的解集为.11.如图,若函数y1=﹣x﹣1与y2=ax﹣3的图象相交于点P(m,﹣2),则关于x的不等式﹣x﹣1<ax﹣3的解集是.12.一次函数y1=mx+n与y2=﹣x+a的图象如图所示,则0<mx+n<﹣x+a的解集为.13.如图,直线y=mx过点A(﹣2,﹣4),过点A的直线y=nx+b交x轴于点B(﹣4,0),则关于的不等式组nx+b≤mx<0的解集为.14.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则关于x的不等式4x+2<kx+b≤0的解集为.15.已知一次函数y=﹣x+1和一次函数y=kx+3的图象交于点A,且点A的纵坐标为.(1)求k的值;(2)结合图象,写出不等式0<kx+3<﹣x+1的解集.。
专题一次函数与方程和不等式典型题
一次函数与方程和不等式典型练习1、一次函数y =kx +b 的图象如图所示,则方程kx +b =0的解为( )A .x =2B .y =2C .x =1-D .y =1-2、一次函数y =ax +b 的图象如图所示,则不等式ax +b >0的解集是( )A .x <-2B .x >-2C .x <1D .x >13、已知一次函数y =ax +b 的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式a (x -1)-b >0的解集为( )A .x <-1B .x >-1C .x >1D .x <14、如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax b y kx =+=⎧⎨⎩的解是 .5、(1)已知关于x 的方程mx +n =0的解是x =-2,那么,直线y =mx +n 与x 轴的交点坐标是 .(2)如图,在平面直角坐标系中,直线AB :y =kx +b 与直线OA :y =mx 相交于点A (-1,-2),则关于x 的不等式kx +b <mx 的解是 .6、(1)已知方程2x+1=-x+4的解是x=1,那么,直线y=2x+1与直线y=-x+4的交点坐标是__ __ .(2)在平面直角坐标系中,直线y=kx+1关于直线x=1对称的直线l刚好经过点(3,2),则不等式3x>kx+1的解集是__ __ .(3)如图,直线l1、l2交于点A,试求点A的坐标.8、如图,已知一次函数的图象经过点A(-1,0)、B(0,2).(1)求一次函数的关系式;(2)设线段AB的垂直平分线交x轴于点C,求点C的坐标.9、如图,已知直线y=kx+b经过点A(1,4),B(0,2),与x轴交于点C,经过点D(1,0)的直线DE平行于OA,并与直线AB交于点E.(1)求直线AB的解析式;(2)求直线DE的解析式;(3)求△EDC的面积.10、在平面直角坐标系中,O为坐标原点,已知A(1,1),在x轴上确定点P,使△AOP 为等腰三角形,则符合条件的点P的个数为个.11、在平面直角坐标系中,点A、B的坐标分别为(2,0)、(2,4),点P在坐标轴上,△ABP是等腰三角形,符合条件的点P共有个.12、随着人们节能环保意识的增强,绿色交通工具越来越受到人们的青睐,电动摩托成为人们首选的交通工具,某商场计划用不超过140000元购进A、B两种不同品牌的电动摩托40辆,预计这批电动摩托全部销售后可获得不少于29000元的利润,A、B两种品y元.(1)写出y与x之间的函数关系式;(2)该商场购进A品牌电动摩托多少辆时?获利最大,最大利润是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式与一次函数专题练习题型一:方程、不等式的直接应用典型例题:李晖到“宁泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设月销售件数为x 件,月总收入为y 元,销售1件奖励a 元,营业员月基本工资为b 元. (1)求a ,b 的值;(2)若营业员小俐某月总收入不低于1800元,则小俐当月至少要卖服装多少件?配套练习:1、(2009,益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.2、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套? (2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)题型二:方案设计 典型例题3、(2009,深圳)迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?营业员 小俐 小花月销售件数(件) 200 150月总收入(元) 1400 125典型例题4:(2008、湖北咸宁)“5、12”四川汶川大地震的灾情牵动全国人民的心,某市A 、B 两个蔬菜基地得知四川C 、D 两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区。
已知A 蔬菜基地有蔬菜200吨,B 蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C 、D 两个灾民安置点。
从A 地运往C 、D 两处的费用分别为每吨20元和25元,从B 地运往C 、D 两处的费用分别为每吨15元和18元。
设从地运往处的蔬菜为x 吨。
⑴、请填写下表,并求出两个蔬菜基地调运蔬菜的运费相等时x 的值;⑵、设A 、B 两个蔬菜基地的总运费为w 元,写出w 与x 之间的函数关系式,并求总运费最小的调运方案; ⑶、经过抢修,从B 地到C 地的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余路线的运费不变,试讨论总运费最小的调运方案。
配套练习: 1.(2009,牡丹江)某冰箱厂为响应国家“家电下乡”号召,计划生产A 、B 两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表: (1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.2.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.•现将这50台联合收割机派往A ,B 两地区收割小麦,其中30台派往A 地区,20台派往B 地区. 两地区与该农机租赁公司商定的每天的租赁价格见下表:每台甲型收割机的租金 每台乙型收割机的租金 A 地区 1800元 1600元 B 地区1600元1200元(1)设派往A 地区x 台乙型联合收割机,农机租赁公司这50台联合收割机一天获得的租金为y (元),求y与x 之间的函数关系式,并写出x 的取值范围; (2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议。
解:(1)派往A 地区的乙型收割机为x 台,则派往A 地区的甲型收割机为(30-x )台,派往B 地区的乙型收割机为(30-x )台,派往B 地区的甲型收割机为(x -10)台,则: A 200吨 B x 吨 300吨 总计 240吨 260吨 500吨 型号 A 型 B 型 成本(元/台) 2200 260售价(元/台) 2800 3003.(2009,抚顺)某食品加工厂,准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉410克,核桃粉520克.计划利用这两种主要原料,研制加工上述两种口味的巧克力共50块.加工一块原味核桃巧克力需可可粉13克,需核桃粉4克;加工一块益智核桃巧克力需可可粉5克,需核桃粉14克.加工一块原味核桃巧克力的成本是1.2元,加工一块益智核桃巧克力的成本是2元.设这次研制加工的原味核桃巧克力x 块.(1)求该工厂加工这两种口味的巧克力有哪几种方案?(2)设加工两种巧克力的总成本为y 元,求y 与x 的函数关系式,并说明哪种加工方案使总成本最低?总成本最低是多少元?题型三:不等式与一次函数的实际应用 典型例题5:(南充市2009)某电信公司给顾客提供了两种手机上网计费方式:方式A 以每分钟0.1元的价格按上网时间计费;方式B 除收月基费20元外,再以每分钟0.06元的价格按上网时间计费.假设顾客甲一个月手机上网的时间共有x 分钟,上网费用为y 元.(1)分别写出顾客甲按A 、B 两种方式计费的上网费y 元与上网时间x 分钟之间的函数关系式,并在图7的坐标系中作出这两个函数的图象;(2)如何选择计费方式能使甲上网费更合算?典型例题6:(2009,朝阳)某学校计划租用6辆客车送一批师生参加一年一度的哈尔滨冰雕节,感受冰雕艺术的魅力.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x 辆,租车总费用为y 元. (1)求出y (元)与x (辆)之间的函数关系式,指出自变量的取值范围;(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元?甲种客车 乙种客车 载客量(人/辆) 45 30租金(元/辆) 280 200典型例题7:(2009、唐山)送家电下乡活动开展后,某家电经销商计划购进A 、B 、C 三种家电共70台,每种家电至少要购进8台,且恰好用完资金45000元。
设购进A 种家电x 台,B 种家电y 台。
三种家电的进价和预售价如下表: ⑴、用含x ,y 的式子表示购进C 种家电的台数; ⑵、求出y 与x 之间的函数关系式;⑶、假设所购进家电全部售出,综合考虑各种因素,该家电经销商在购销这批家电过程中需另外支出各种费用共1000元。
①、求出预估利润P(元)与x (台)的函数关系式;②、求出预估利润的最大值,并写出此时购进三种家电各多少台。
配套练习:1、(2009、保定)水果经销商计划将一批苹果从我市运往某地销售,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下:设我市到某地的路程为x 千米,这批水果在途中的损耗为150元/时,若选用汽车运输,其总费用为y 1元,若选用火车运输,其总费用为y 2元。
运输工具 途中平均速度 途中平均费用 装卸费用 汽车 7581000火车100 6 2000⑴、分别写出y 1,y 2与x 之间的函数关系式;⑵、请你为水果经销商设计省钱的运输方案,并说明理由。
3、(2009,清远)某饮料厂为了开发新产品,用A 种果汁原料和B 种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x 千克,两种饮料的成本总额为y 元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y 与x 之间的函数关系式.(2)若用19千克A 种果汁原料和17.2千克B 种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;每千克饮料 果汁含量 果汁甲乙A0.5千克 0.2千克B0.3千克 0.4千克 请你列出关于x 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y 值最小,最小值是多少? 家电种类 A B C 进价(元/台) 500 800 700 预售价(元/台)60010009005、(2009,梧州)某工厂要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别为600元和1000元.(1)设招聘甲种工种工人x人,工厂付给甲、乙两种工种的工人工资共y元,写出y(元)与x(人)的函数关系式;(2)现要求招聘的乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?6、(2009、河南)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台。
三种家电的进价和售价如下表所示:⑴、在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?⑵、国家规定:农民购买家电后,可根据商场售价的13%领取补贴。
在⑴的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?题型四:不等式与一次函数图象性质的应用典型例题10:(2009年江苏省)某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA.AB.BC三段所表示的销售信息中,哪一段的利润率最大?典型例题11:(2009 黑龙江大兴安岭)邮递员小王从县城出发,骑自行车到A村投递,途中遇到县城中学的学生李明从A村步行返校.小王在A村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s(千米)和小王从县城出发后所用的时间t(分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.(2)小王从县城出发到返回县城所用的时间.(3)李明从A村到县城共用多长时间?进价(元/台) 售价(元/台) 电视机2000 2100冰箱2400 2500洗衣机1600 1700配套练习1.(2008贵州贵阳)如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s(千米)和行驶时间t(小时)之间的关系,根据所给图象,解答下列问题:(1)写出甲的行驶路程s和行驶时间t(t≥0)之间的函数关系式.(3分)(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度;在哪一段时间内,甲的行驶速度大于乙的行驶速度.(4分)(3)从图象中你还能获得什么信息?请写出其中的一条.(3分)2、(2009·南宁)南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系如图所示;乙工程队铺设广场砖的造价y乙(元)与铺设面积x(m2)满足函数关系式:y乙=kx.(1)根据图写出甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系式;(2)如果狮山公园铺设广场砖的面积为1600m2,那么公园应选择哪个工程队施工更合算?3.(2009年娄底)娄底至新化高速公路的路基工程分段招标,市路桥公司中标承包了一段路基工程,进入施工场地后,所挖筑路基的长度y(m)与挖筑时间x(天)之间的函数关系如图所示,请根据提供的信息解答下列问题:(1)请你求出:①在0≤x<2的时间段内,y与x的函数关系式;②在x≥2时间段内,y与x的函数关系式.(2)用所求的函数解析式预测完成1620 m的路基工程,需要挖筑多少天?。