第8章 马尔可夫预测方法(1)PPT课件
合集下载
马尔可夫预测方法
1
③ 例题:在例1中,设终极状态的状态概率为 [ 1 , 2 , 3 ] 则
0 . 2000 [ 1 , 2 , 3 ] [ 1 , 2 , 3 ] 0 . 5385 0 . 3636 0 . 4667 0 . 1538 0 . 4545 0 . 3333 0 . 3077 0 . 1818
马尔可夫预测方法
对事件的全面预测,不仅要能够指出事件发生的各
种可能结果,而且还必须给出每一种结果出现的概率。
马尔可夫(Markov)预测法,就是一种预测事件 发生的概率的方法。它是基于马尔可夫链,根据事件 的目前状况预测其将来各个时刻(或时期)变动状况 的一种预测方法。马尔可夫预测法是对地理事件进行
xi 1
这样的向量α称为平衡向量,或终极向量。这就是 说,标准概率矩阵一定存在平衡向量。
P
使得:
(3.7.4)
• 状态转移概率矩阵的计算。 计算状态转移概率矩阵P,就是求从每个状态转移到其 它任何一个状态的状态转移概率 。
几 个 基 本 概
念
ij 为了求出每一个,一般采用频率近似概率的思想进行 计算。 • 例题1: 考虑某地区农业收成变化的三个状态,即“丰收”、 “平收”和“欠收”。记E1为“丰收”状态,E2为“平收” 状态,E3为“欠收”状态。表3.7.1给出了该地区1960~ 1999年期间农业收成的状态变化情况。试计算该地区农业 收成变化的状态转移概率矩阵。
状态转移概率。在事件的发展变化过程中,从某一种状
几 个 基 本 概
念
态出发,下一时刻转移到其它状态的可能性,称为状态转 移概率。由状态Ei转为状态Ej的状态转移概率 P(E i E j ) 是
P ( E i E j ) P ( E j / E i ) Pij
决策与预测第八章 马尔可夫预测
( pilk 1) plj , i , j 1, 2,..., N l 1
N
(全概率公式 )
22
一般地,
pij P X n k j X n i
k
P X n k 1 l X n i P xn k j X n k 1 l
24
初始状态概率向量 记 t 0 为过程的开始时刻,
pi 0 PX 0 X t0 i
则称
P 0 p1 0 , p2 0 ,..., pN 0
为初始状态概率向量。
25
初始状态概率向量 记 t 0 为过程的开始时刻,
pi 0 PX 0 X t0 i
p1 (1) ?
p12
p1 (0) p2 (0)
p22
p21
p2 (1) ?
33
p11
p1 (1) ?
p12
p1 (0) p2 (0)
p22
p21
p2 (1) ?
p1 (1) p1 (0) p11 p2 (0) p21
34
p11
p1 (1) ?
p12
p1 (0) p2 (0)
S {1,2,, N }
(与时刻无关)
称其为状态空间。
X tn
Xn
5
设有一离散型随机过程,它在时刻 t n 所有可 能处于的状态的集合为
S {1,2,, N }
(与时刻无关)
称其为状态空间。
X tn
Xn
定义3 若 X n 只与 X n1 有关,而与 X n 2 ,..., X 1 等无关,称 {X t , t T } 为马尔可夫链,即
定义6 k步状态转移概率,k步状态转移概率矩阵
马尔可夫预测方法
Copyright 2007 Geocomputation Lab SNNU
状态转移概率。在事件的发展变化过程中, 状态转移概率。在事件的发展变化过程中, 从某一种状态出发, 从某一种状态出发,下一时刻转移到其它状 态的可能性,称为状态转移概率。由状态Ei 态的可能性,称为状态转移概率。由状态 转为状态E 转为状态 j的状态转移概率 P(E i → E j ) 是 P(Ei → E j ) = P(E j / Ei ) = Pij
Copyright 2007 Geocomputation Lab SNNU
主要内容: 主要内容:
几个基本概念 1、状态 、 2、状态转移过程 、 3、马尔可夫过程 、 4、状态转移概率 、 5、状态转移概率矩阵 、 马尔可夫预测法 1、状态转移概率 、 2、状态转移概率矩阵 、
Copyright 2007 Geocomputation Lab SNNU
二、马尔可夫预测法
表示事件在初始( = ) 状态概率 π j (k ):表示事件在初始(k=0)状 态为已知的条件下,经过k次状态转移后 次状态转移后, 态为已知的条件下,经过 次状态转移后,在 个时刻(时期) 的概率。 第k 个时刻(时期)处于状态 E j 的概率。 且:
j =1 根据马尔可夫过程的无后效性及Bayes条件概 条件概 根据马尔可夫过程的无后效性及 率公式, 率公式,有
(7.1) 7.1)
状态转移概率矩阵。 状态转移概率矩阵。假定某一个事件的发展 过程有n个可能的状态 个可能的状态, 过程有 个可能的状态,即E1,E2, …,En。 , 记为从状态E 转变为状态E 记为从状态 i转变为状态 j的状态转移概 率 P ( E i → E j ) ,则矩阵
Copyright 2007 Geocomputation Lab SNNU
状态转移概率。在事件的发展变化过程中, 状态转移概率。在事件的发展变化过程中, 从某一种状态出发, 从某一种状态出发,下一时刻转移到其它状 态的可能性,称为状态转移概率。由状态Ei 态的可能性,称为状态转移概率。由状态 转为状态E 转为状态 j的状态转移概率 P(E i → E j ) 是 P(Ei → E j ) = P(E j / Ei ) = Pij
Copyright 2007 Geocomputation Lab SNNU
主要内容: 主要内容:
几个基本概念 1、状态 、 2、状态转移过程 、 3、马尔可夫过程 、 4、状态转移概率 、 5、状态转移概率矩阵 、 马尔可夫预测法 1、状态转移概率 、 2、状态转移概率矩阵 、
Copyright 2007 Geocomputation Lab SNNU
二、马尔可夫预测法
表示事件在初始( = ) 状态概率 π j (k ):表示事件在初始(k=0)状 态为已知的条件下,经过k次状态转移后 次状态转移后, 态为已知的条件下,经过 次状态转移后,在 个时刻(时期) 的概率。 第k 个时刻(时期)处于状态 E j 的概率。 且:
j =1 根据马尔可夫过程的无后效性及Bayes条件概 条件概 根据马尔可夫过程的无后效性及 率公式, 率公式,有
(7.1) 7.1)
状态转移概率矩阵。 状态转移概率矩阵。假定某一个事件的发展 过程有n个可能的状态 个可能的状态, 过程有 个可能的状态,即E1,E2, …,En。 , 记为从状态E 转变为状态E 记为从状态 i转变为状态 j的状态转移概 率 P ( E i → E j ) ,则矩阵
Copyright 2007 Geocomputation Lab SNNU
马尔可夫介绍PPT课件
100 0 5 15 70
合计 205 239 135
78
补充 100 305 339 235
178
这些数字怎么来的?如:175=250*0.7
8
2021/2/11
t=2
305 213 61 0 339 51 271 0 235 0 35 176 178 0 9 27
合计 264 376 203 补充 100 364 476 303
外部招聘
A
将提升到上一层次
退休+辞职
B
(提升受阻) 将提升到本层次
A现有人员 B可提升人员
11
2021/2/11
管理人员接替模型
12
2021/2/11
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
马尔可夫法
基本思路:通过收集历史数据,找出组织过去人事变动的规律
步骤
1.根据组织的历史资料,计算出人员流动的平均概率; 2.根据计算出来的概率,建立一个人员变动矩阵表; 3.根据期末的种类人数和所建立的变动矩阵表,预测下一期组
织可供给的人数。
例子:某企业在2000-2002年的三年时间中,管理人员从第二级提升到 第一级的人数分别为10人,12人和9人,而这三年中管理人员第二级的人 数分别是52、55和50。那么,这个企业管理人员从第二级提升到第一级 的概率是:(10+12+9/52+55+50)*100%=26.1%。同样可以计算出其他每 一类员工从一个级别流向另一个级别的平均概率。接着可以建立人员变 动矩阵表。
1
08马尔柯夫预测法
2 7
0 7 3
5 5 7
所以
3 7 1 P 5 2 7
4 4 1 5 0
3 5 5 7 0
18
第四步,预测第21个月的销售情况。由于第20个月销售量处 于畅销状态,而经由一次转移到达三种状态的概率分别为
p 31 2 7 p 32 0 7
p 33 5 7
15
fi M i M
就是Ei出现的
频率,这里用它近似地表示Ei出现的概率。即
– 第三步,计算状态转移概率。仍然以频率近似地表示概率进行计算。 首先计算状态
Ei E j
(由Ei转移到Ej)的频率
f ij f ( E j E i )
从第二步知道Ei出现了Mi次,接着从Mi个Ei出发,计算下一步转 移到Ej的个数Mij,于是得到
P
j 1
ij
( m , m k ) 1, i 1, 2 ,
6
当转移概率
Pij ( m , m k )
只与i,j及时间间距k有关时,即
Pij ( m , m k ) Pij ( k )
时,称转移概率具有平稳性,同时也称
此链是齐次的或时齐的,本章只限于讨论齐次马氏链。
f ij M
ij
并令 f p ij ij
M
i
– 第四步,根据转移概率进行预测。由第三步可得状态转移概率矩阵 P。如果目前预测对象处于状态Ei。这时 p ij 就描述了目前状态Ei在 未来将转向状态 Ej(j=1,2,…,N)的可能性。按最大概率原则, 这里选择 ( p i 1 , p i 2 , , p iN ) 中最大者对应的状态为预测结果。即当
为一步转移概率矩阵。 一步转移概率矩阵具有如下性质:
0 7 3
5 5 7
所以
3 7 1 P 5 2 7
4 4 1 5 0
3 5 5 7 0
18
第四步,预测第21个月的销售情况。由于第20个月销售量处 于畅销状态,而经由一次转移到达三种状态的概率分别为
p 31 2 7 p 32 0 7
p 33 5 7
15
fi M i M
就是Ei出现的
频率,这里用它近似地表示Ei出现的概率。即
– 第三步,计算状态转移概率。仍然以频率近似地表示概率进行计算。 首先计算状态
Ei E j
(由Ei转移到Ej)的频率
f ij f ( E j E i )
从第二步知道Ei出现了Mi次,接着从Mi个Ei出发,计算下一步转 移到Ej的个数Mij,于是得到
P
j 1
ij
( m , m k ) 1, i 1, 2 ,
6
当转移概率
Pij ( m , m k )
只与i,j及时间间距k有关时,即
Pij ( m , m k ) Pij ( k )
时,称转移概率具有平稳性,同时也称
此链是齐次的或时齐的,本章只限于讨论齐次马氏链。
f ij M
ij
并令 f p ij ij
M
i
– 第四步,根据转移概率进行预测。由第三步可得状态转移概率矩阵 P。如果目前预测对象处于状态Ei。这时 p ij 就描述了目前状态Ei在 未来将转向状态 Ej(j=1,2,…,N)的可能性。按最大概率原则, 这里选择 ( p i 1 , p i 2 , , p iN ) 中最大者对应的状态为预测结果。即当
为一步转移概率矩阵。 一步转移概率矩阵具有如下性质:
《马尔可夫预测》PPT课件
Байду номын сангаас
二、状态和状态转移 1、状态:系统在某时刻出现的某种结果。 常用Ei表示(i=1,2,…,N)。 2、状态变量Xt=i:表示系统在时刻t处于 Ei 。 3、状态转移:系统由一种状态转移为另一种状态 。常用Ei →Ej表示。
状态举例: 例1:人民生活水平可分为三种水平状态:温 饱、小康、富裕。 例2:企业经营状况可分为:盈利、不盈不亏、 亏损。 例3:商品销售状况可分为:畅销、平销、滞 销。 状态转移举例: 例4:营业情况由盈利→亏损。
例:设一步转移矩阵为:
0.5 0.5 P 求P(2) 0.6 0.4 0.5 0.5 解: P(2) 0.6 0.4 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.4 = 0.6 0.5 0.4 0.6 0.6 0.5 0.4 0.4 0.55 0.45 = 0.54 0.46
0≤ Pij ≤1 ∑ Pij =1
所有Pij构成的矩阵为:
P 11 P P 21 PN 1 P 12 P22 PN 2 P 1N P2 N P ij N N PNN
称为一步转移概率矩阵。
在多步转移中,k步转移概率记为:
解:状态转移概率为
400 P 0.8 11 500 20 P21 0.05 400 10 P31 0.1 100 50 P 0.1 12 500 300 P22 0.75 400 10 P32 0.1 100 50 P 0.1 13 500 80 P23 0.2 400 80 P33 0.8 100
五、状态转移概率和转移概率矩阵
设系统有N个状态Ei(i=1,2,…,N),以状态变量 xt=i表示在时刻t处于Ei(i=1,2,…,N),如果系统在时 刻t处于Ei而在时刻t+1转移到Ej的概率只与Ei有关而与t以 前处的状态无关,则此概率可表示为: Pij=P(Ei→Ej)=P( xt+1 =j∣xt =i) 并称为一步转移概率。
二、状态和状态转移 1、状态:系统在某时刻出现的某种结果。 常用Ei表示(i=1,2,…,N)。 2、状态变量Xt=i:表示系统在时刻t处于 Ei 。 3、状态转移:系统由一种状态转移为另一种状态 。常用Ei →Ej表示。
状态举例: 例1:人民生活水平可分为三种水平状态:温 饱、小康、富裕。 例2:企业经营状况可分为:盈利、不盈不亏、 亏损。 例3:商品销售状况可分为:畅销、平销、滞 销。 状态转移举例: 例4:营业情况由盈利→亏损。
例:设一步转移矩阵为:
0.5 0.5 P 求P(2) 0.6 0.4 0.5 0.5 解: P(2) 0.6 0.4 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.4 = 0.6 0.5 0.4 0.6 0.6 0.5 0.4 0.4 0.55 0.45 = 0.54 0.46
0≤ Pij ≤1 ∑ Pij =1
所有Pij构成的矩阵为:
P 11 P P 21 PN 1 P 12 P22 PN 2 P 1N P2 N P ij N N PNN
称为一步转移概率矩阵。
在多步转移中,k步转移概率记为:
解:状态转移概率为
400 P 0.8 11 500 20 P21 0.05 400 10 P31 0.1 100 50 P 0.1 12 500 300 P22 0.75 400 10 P32 0.1 100 50 P 0.1 13 500 80 P23 0.2 400 80 P33 0.8 100
五、状态转移概率和转移概率矩阵
设系统有N个状态Ei(i=1,2,…,N),以状态变量 xt=i表示在时刻t处于Ei(i=1,2,…,N),如果系统在时 刻t处于Ei而在时刻t+1转移到Ej的概率只与Ei有关而与t以 前处的状态无关,则此概率可表示为: Pij=P(Ei→Ej)=P( xt+1 =j∣xt =i) 并称为一步转移概率。
精编第8章马尔柯夫预测法资料
N
p (k ) ij
1
j 1
i, j 1,2,, N
i
1,2,,
N
(8.1.5)
第八章 马尔可夫预测与决策法
第8.1 马尔柯夫链简介
3. 状态转移矩阵
从状态转移概率矩阵的性质可知,2 步状态转移概率矩阵可由一步状态转移概率矩阵 求出。
N
p (2) ij
pik pkj
p22 p2N p21
pN2
p NN
pN1
p12 p1N
p22 p2N
pN2
p NN
p11 = p21 pN1
p12 p22
pN2
2
p1N p2N
=
P2
pNN
P X mk E j X m Ei
£¨8.1.2£©
ÔÚ ¸Å ÂÊ ÂÛ ÖÐ £¬ Ìõ ¼þ ¸Å ÂÊ P( A | B) ± í ´ï ÁË ÓÉ × ´ ̬ £Â Ïò × ´ ̬ £Á × ª ÒÆ µÄ ¸Å ÂÊ £¬ ¼ò ³Æ Ϊ × ´ ̬ × ª ÒÆ ¸Å
第八章 马尔可夫预测与决策法
第8章 马尔柯夫预测法
马尔柯夫预测法是应用随机过程中马尔 柯夫链的理论和方法研究分析有关经济现 象变化规律并籍此对未来进行预测的一种 方法。
在经济现象中存在一种“无后效性”。 即“系统在每一时刻的状态仅仅取决于前 一时刻的状态,而与其过去的历史无关。”
第八章 马尔可夫预测与决策法
5 7
3 4 0
7 7
马尔柯夫预测法对经济分析PPT模板
pN1(n) pN 2 (n)...pNN (n)
某经济系统有三种状态E1,E2,E3,系统状态转移情况如表。 求系统的二步状态转移概率矩阵
状态1 E1
E2
E3
状态0
E1
21
7
14
E2
16
8
12
E3
10
8
2
P11P12 ...P1N P11P12...P1N
P2
0.6 0.2 0.2
s1
(0.30.40.3)0.1
0.7
0.2
0.1 0.1 0.8
=(0.25 0.37 0.38)
下月市场占有率:
0.6 0.2 0.22 s2 (0.30.40.3)0.1 0.7 0.2
0.1 0.1 0.8
0.4 0.26 0.32 =(0.3 0.4 0.3)0.15 0.53 0.32
经济分析马尔柯夫预测法
马尔柯夫链的简介 马尔柯夫链预测法 市场占有率预测 期望利润预测
无后效性
系统在每一时刻的状态仅仅取 决于前一时刻状态
马尔柯夫链
就是一种随机时间序列,它在将来取什么值 只与它现在的取值有关,而与它过去取什么 值无关. 具备以上这个性质的离散性随机过程, 称为马尔柯夫链
状态
从到 甲
乙
丙
合计
甲 400 50 50 500
乙 20 300 80 400
丙 10 10 80 100
合计 430 360 210 1000
从到 甲
乙
丙
合计
甲 400 50 50 500
乙 20 300 80 400
马尔柯夫预测法标准文档ppt
第三节 市场占有率预测
在经济现象k 中步存转在移一种概“率无矩后效阵性也”具。 有与一步转移概率矩阵类似的性质:
在经济现象中存在一种“无后效性”。
利第本即即第用一期::8““章系系马 节 市统统马尔场在在尔马柯占0jN每每柯尔夫有1一一夫柯链率p时时p预夫i预仅(jki刻刻(j测链)测取k )的的法简模决状状介1型于1态态,上仅仅可期仅仅以市取取根场决决据占于于i现有,前前有率ji一一的及时时市转11刻刻,,场移22的的,占概,状状有率态态,率。,,,NN和而而转与与移其其概过过率去去预的的测企无无业关关未。。来的市场占有率。
p(k) 1N
P(k)
p(k) 21
p(k) 22
p(k) 2N
利用马尔柯夫链预测模型,可p以N(k1根) 据现p有N(k2的) 市场占有率p和N(kN)转移概率预测企业未来的市场占有率。
k 利用为马尔步柯夫转链移预概测模率型矩,阵可以。根据现有的市场占有率和转移概率预测企业未来的市场占有率。
p (2) ij
pik pkj
(k 1,2,N)
(8.1.6)
k 1
即系统从状态 i出发,经过2步转移到状态 j的概率等于系统从 i出发经一步转移到状态 k, 然 后再从状态 k 转移到状态 j 的概率。
故有:
p (2) 11
P (2)
p (2) 21
p (2) N1
p (2) 12
p (2) 1N
在将来取什么值只与它现在的取值有关,而与它 过去取什么值的 情况无关,即无后效性。具备 这个性质的离散性随机过程,称为马尔柯夫链。
定义 8.1.1 设随机时间序列 X n ,n 0满足如下条件: 1 每个随机变量 X n 只取非负整数值; 2 对任意的非负整数 0,1,2,…N,当
在经济现象k 中步存转在移一种概“率无矩后效阵性也”具。 有与一步转移概率矩阵类似的性质:
在经济现象中存在一种“无后效性”。
利第本即即第用一期::8““章系系马 节 市统统马尔场在在尔马柯占0jN每每柯尔夫有1一一夫柯链率p时时p预夫i预仅(jki刻刻(j测链)测取k )的的法简模决状状介1型于1态态,上仅仅可期仅仅以市取取根场决决据占于于i现有,前前有率ji一一的及时时市转11刻刻,,场移22的的,占概,状状有率态态,率。,,,NN和而而转与与移其其概过过率去去预的的测企无无业关关未。。来的市场占有率。
p(k) 1N
P(k)
p(k) 21
p(k) 22
p(k) 2N
利用马尔柯夫链预测模型,可p以N(k1根) 据现p有N(k2的) 市场占有率p和N(kN)转移概率预测企业未来的市场占有率。
k 利用为马尔步柯夫转链移预概测模率型矩,阵可以。根据现有的市场占有率和转移概率预测企业未来的市场占有率。
p (2) ij
pik pkj
(k 1,2,N)
(8.1.6)
k 1
即系统从状态 i出发,经过2步转移到状态 j的概率等于系统从 i出发经一步转移到状态 k, 然 后再从状态 k 转移到状态 j 的概率。
故有:
p (2) 11
P (2)
p (2) 21
p (2) N1
p (2) 12
p (2) 1N
在将来取什么值只与它现在的取值有关,而与它 过去取什么值的 情况无关,即无后效性。具备 这个性质的离散性随机过程,称为马尔柯夫链。
定义 8.1.1 设随机时间序列 X n ,n 0满足如下条件: 1 每个随机变量 X n 只取非负整数值; 2 对任意的非负整数 0,1,2,…N,当
2019PPT-马尔科夫预测法
W4 = [1/3, 1/3, -1/3,0, 2/3] 3)若A和B分别为概率矩阵时,则 AB为概率矩阵。
2.稳定性假设
若系统的一步状态转移概率 不随时间变化,即转移矩阵在各 个时刻都相同,称该系统是稳定 的。
这个假设称为稳定性假设。 蛙跳问题属于此类,后面的讨论 均假定满足稳定性条件。
{2004/11/22}
马尔科夫预测法
第一节 基本原理
一、基本概念
1.随机变量 、 随机函数与随机过程 一变量x,能随机地取数据(但不能准 确地预言它取何值),而对于每一个数值 或某一个范围内的值有一定的概率,那么 称x为随机变量。
假定随机变量的可能值xi发生概率为Pi
即P(x = xi) = Pi
对于xi的所有n个可能值,有离散型随
初期工作:
a)行销上海,日本,香港味精,确定状 态1,2,3.
b) 市 场 调 查 , 求 得 目 前 状 况 , 即 初 始 分布
c)调查流动状况;上月转本月情况,求 出一步状态转移概率.
1)初始向量:
设 上海味精状况为1;
日本味精状况为2;
2)确定一步状态转移矩阵
P11 P12 P13
0.4 0.3 0.3
0.5 0.25 0.25
lim S(k) = [0.5 0.25 0.25]
= lim
第三节 期望利润预测
是考虑:一个与经济有关随 机系统在进行状态转移时,利润 要发生相应变化,例如商品连续 畅销到滞销,显然在这些过程变 化时,利润变化的差距是很大的.
所以有如下的定义:
若马尔科夫链在发生状态转 移时,伴随利润变化,称这个马尔
定理二:设X为任意概率向量, 则XT = U
即任意概率向量与稳态概率矩阵 之点积为固定概率向量。
2.稳定性假设
若系统的一步状态转移概率 不随时间变化,即转移矩阵在各 个时刻都相同,称该系统是稳定 的。
这个假设称为稳定性假设。 蛙跳问题属于此类,后面的讨论 均假定满足稳定性条件。
{2004/11/22}
马尔科夫预测法
第一节 基本原理
一、基本概念
1.随机变量 、 随机函数与随机过程 一变量x,能随机地取数据(但不能准 确地预言它取何值),而对于每一个数值 或某一个范围内的值有一定的概率,那么 称x为随机变量。
假定随机变量的可能值xi发生概率为Pi
即P(x = xi) = Pi
对于xi的所有n个可能值,有离散型随
初期工作:
a)行销上海,日本,香港味精,确定状 态1,2,3.
b) 市 场 调 查 , 求 得 目 前 状 况 , 即 初 始 分布
c)调查流动状况;上月转本月情况,求 出一步状态转移概率.
1)初始向量:
设 上海味精状况为1;
日本味精状况为2;
2)确定一步状态转移矩阵
P11 P12 P13
0.4 0.3 0.3
0.5 0.25 0.25
lim S(k) = [0.5 0.25 0.25]
= lim
第三节 期望利润预测
是考虑:一个与经济有关随 机系统在进行状态转移时,利润 要发生相应变化,例如商品连续 畅销到滞销,显然在这些过程变 化时,利润变化的差距是很大的.
所以有如下的定义:
若马尔科夫链在发生状态转 移时,伴随利润变化,称这个马尔
定理二:设X为任意概率向量, 则XT = U
即任意概率向量与稳态概率矩阵 之点积为固定概率向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马尔可夫预测方法
二、马尔可夫过程的概率分布
研究时间和状态都是离散的随机序列
{ X n X ( n )n , 0 ,1 ,2 , },
状态 I 空 (a 1 ,a 2 , 间 }a ,i R 为 .
1. 用分布律描述马尔可夫性
对任意 n ,r和 的 0t1 正 t2 整 trm 数 ; ti,m ,n m T i, 有
马尔可夫预测方法
•
箭头表示跳跃的方向,数
字表示跳跃的概率,白环表示
青蛙保持不动。
此图表明:在一定时间内, 当青蛙开始时刻在第1片荷叶上时,它保持不动的概率为
0.3,它跳跃到第2片荷叶上的概率为0.6,跳跃到第3片荷叶 上的概率为0.1;
当青蛙开始时刻在第2片荷叶上时,它保持不动的概率为 0.4,它跳跃到第1片荷叶上的概率为0.2,跳跃到第3片荷叶 上的概率为0.4;
P {x(t1)jx(0)i0,x(1)i1,...,x(t)i}
P {x(t1)jx(t)i}
我们称满足上式的随机过程{x(t)}(t>0)为马尔可夫过程或马尔可 夫链,而把上式的随机过程{x(t)}称为马尔可夫性,它反映了前 一状态x(t-1) 、现状态x(t)和后一状态x(t+1)之间的链接. 因此,用马尔可夫链描述随机性状态变量的变化时,只需求在 某一点上两个相邻随机变量的条件分布就可以了.
马尔可夫预测方法
第一节 马尔可夫过程及其概率分布
一、马尔可夫过程的概念 二、马尔可夫过程的概率分布 三、应用举例
马尔可夫预测方法
一、马尔可夫过程的概念
1. 马尔可夫性(无后效性)
马尔可夫资料
过程 (系 或统 )在时 t0所 刻处的状态为 条件 ,过 下程在 t时 t0所刻 处状态的条件 与过程t0在 之时 前刻 所处的特 状性 态称 无 马尔可夫性或无后效性.
马尔可夫预测方法
§3.6 马尔可夫预测方法
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
马尔可夫预测方法
点击此处输入 相关文本内容
点击此处输入 相关文本内容
• 几个基本概念
• 状态 • 状态转移过程 • 马尔科夫过程 • 状态转移概率 • 状态转移概率矩阵
• 马尔可夫预测法
为马m 氏 处链 于 a i条 在 状 ,在 件 时 态 m 时 下 n 刻 刻 转移到a状 j的态 转移. 概率
说明: 转移概率具有特点
Pij(m ,m 此 矩n阵) 的1,每i 一1行,2,元 素. 之和等于1.
j1
由转移概率组成的矩阵 P ( m ,m n ) ( P i( j m ,m n ))
• 状态转移概率 • 状态转移概率矩阵
马尔可夫预测方法
马尔可夫预测方法
马尔可夫预测(Markov Forecast ) 方法,就是一种预测事件发生的概率的方 法。它是基于马尔可夫链(Markov Chain ),根据事件的目前状况预测其将 来各个时刻(或时期)变动状况的一种预 测方法。马尔可夫预测法是对地理事件进 行预测的基本方法,它是地理预测中常用 的重要方法之一。
P { X m n a j | X t 1 a i 1 , X t 2 a i 2 , , X t a i , X m a i }
P { X m n a j|X m a i} ,其中 aiI.
2. 转移概率
马尔可夫预测方法
称条件概率 P i( m j,m n ) P { X m n a j|X m a i}
当青蛙开始时刻在第3片荷叶上时,它保持不动的概率为 0.5,它跳跃到第1片荷叶上的概率为0.2,跳跃到第2片荷叶 上的概率为0跳跃t次后所处的位置,x(t)的取值叫做状态, S={1,2,3}叫状态空间.我们称{x(t)}(t>0)为一个随机过程. 当从x(0) 到x(t)已知时,青蛙在t+1时处在x(t+1)状态上的概率仅与t时刻状 态有关,即满足以下关系式
或写成
马尔可夫预测方法
F t n | t 1 t n 1 ( x n , t n |x 1 , x 2 , , x n 1 ; t 1 , t 2 , , t n 1 )
F tn |tn 1 (x n ,tn |x n 1 ,tn 1 ),
这时称{X过 (t),t程 T}具马尔可夫性 性. 或
即: 过程“将来”的情况与“过去”的情况是无 关的.
• 为了形象说明“状态”和 “状态的转移”的概念,假设 在一个水池中有三片荷叶,一 只青蛙在三片荷叶之间跳跃玩 耍,见图.
马尔可夫预测方法
观察青蛙的活动会发现青蛙的动作是随意的.为讨论方便, 我们给荷叶编号,我们关心的是在一定时间内,它从一片荷叶 跳到其他两片荷叶的转移结构.当青蛙在第1片荷叶上时,它下 一步动作跳跃到第2、3片荷叶上或原地不动,只与现在的位置 1有关,而与它以前跳过的路径无关.我们给出这只青蛙从各片 荷叶上向另一片荷叶一定移动的转移图,见图.
并称此过程为马尔可夫过程.
3. 马尔可夫链的定义
时间和状态都是离散的马尔可夫过程称为马尔 可夫链, 简记为 { X n X ( n )n , 0 ,1 ,2 , }.
马尔可夫预测方法
马尔可夫链的基本方程
p{ x(mn ) jx(m ) i,x(m t) it, ,x(m 1) i1} p{ x(mn ) jx(m ) i}.
2. 马尔可夫过程的定义
马尔可夫预测方法
具有马尔可夫性的随机过程称为马尔可夫过程.
用分布函数表述马尔可夫过程 设 I:随机 {X (过 t)t, T 程 }的状,态空
如果对 t的时 任 n个 间 意 数 , 值 t X 1 (tn t 2 )在 t 条 n ,X n ( t件 i3 ), t i x i下 T ,的 恰有条件分布函 P { X ( t n X ) ( tn x )n 在 | X ( t 1 条 ) X (x t1 n 件 , 1 X )( t 2 ) x n1 x 下 2 , , X 的 ( t n 1 ) 条 x n 件 1 } P { X ( t n ) x n | X ( t n 1 ) x n 1 } x n , R