步步高高二数学暑假作业:【文】作业12 空间几何体的体积、表面积、三视图
高二数学立体几何的体积和表面积(经典含答案)
12.如图,棱长为1的正方体 中,点 为线段 上的动点,点 分别为线段 的中点,则下列说法错误的是()
A. B.三棱锥 的体积为定值
C. D. 的最小值为
二、填空题
13.已知圆锥展开图的侧面积为 ,且为半圆,则底面半径为_______________.
14.如图,已知正方体 ,截去三个角 , , 后形成的几何体的体积与原正方体的体积之比为______.
15.如图,在棱长为4的正方体 中, , 分别为棱 , 的中点,过 , , 三点作正方体的截面,则以 点为顶点,以该截面为底面的棱锥的体积为______.
三、解答题
16.如图,多面体 中, , , , , 平面 , , 分别为 , 的中点.
(1)证明: 平面 ;
(2)证明: 平面 ;
(3)求平面 将多面体 分成上、下两部分的体积比.
【分析】
将三棱锥放入一个长方体中,求出长方体的体对角线,则得到长方体外接球的直径,利用球的表面积公式求解即可.
【详解】
解:因为三棱锥P﹣ABC中,PA⊥平面ABC,AB⊥BC,
不妨将三棱锥放入一个长方体中,则长方体的外接球即为三棱锥的外接球,
因为长方体的体对角线即为其外接球的直径,因为PA=AB=2, ,
所以 ,且 平面 ,所以 平面 .
又 平面 ,平面 ,
所以 ,又 平面 ,
所以 平面 .
(2)解:依题意, ,所以 ,
因为 , ,
体积和表面积
一、单选题
1.下列说法中正确的是()
A.棱锥的侧面不一定是三角形
B.棱锥的各侧棱长一定相等
C.棱台的各侧棱的延长线交于一点
D.用一平面去截棱锥,得到两个几何体,一个是棱锥,一个是棱台
高二数学空间几何体的表面积与体积试题答案及解析
高二数学空间几何体的表面积与体积试题答案及解析1.正四棱锥的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为()A.B.C.D.【答案】B【解析】设球的半径为,正方形的ABCD的对角线的交点 M,则球心在直线PM上.,由勾股定理得,再由射影定理得即∴此球的表面积为.【考点】球的表面积.2.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是()平方米.A.B.C.D.【答案】D.【解析】所求几何体的体积为阴影部分的面积与高的乘积,在中,,则,,体积.【考点】组合体的体积.3.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是_________.【答案】【解析】由正视图可知四棱锥的底面边长为2,高为2,可求出斜高为,因此四棱锥的侧面积,答案为.【考点】1.几何体的三视图;2.锥体的侧面积计算4.已知球的直径SC=4,A.,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为_________【答案】【解析】设AB的中点为D,球心为O,连结SD,CD,OD,由SC=4为球的直径知,∠SBC=∠SAC=90o,因为∠ASC=∠BSC=45°,所以SA=BC=SB=AC=,所以SD⊥AB,DC⊥AB,所以AB⊥面SDC,因为AB=2,所以SD=DC==,所以DO= =,所以= ===.考点:球的性质,线面垂直判定,三棱锥的体积公式,转化思想5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞,且知,若仍用这个容器盛水,则最多可盛水的体积是原来的 .【答案】【解析】过作截面平行于平面,可得截面下体积为原体积的,若过点F,作截面平行于平面,可得截面上的体积为原体积的,若C为最低点,以平面为水平上面,则体积为原体积的,此时体积最大.【考点】体积相似计算.6.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是.【答案】【解析】如图甲,考虑小球挤在一个角时的情况,记小球半径为,作平面//平面,与小球相切于点,则小球球心为正四面体的中心,,垂足为的中心.因,故,从而.记此时小球与面的切点为,连接,则.考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如图乙.记正四面体的棱长为,过作于.因,有,故小三角形的边长.小球与面不能接触到的部分的面积为(如答图2中阴影部分).又,,所以.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.【考点】(1)三棱锥的体积公式;(2)分情况讨论及割补思想的应用。
高中数学:空间几何体的表面积与体积 (12)
答案:1,100π 2,C 3, 3 3 12 R
-10-
课堂小结
• 1.球的表面积和体积公式。 • 2.与球有关的接、切问题是近几年高考的热
点之一,常以选择题或填空题的形式出现, 属于低档题。
-11-
布置作业
• 课本练习 1、2、3。
-12-
则该球的表面积为S=27π。
2
-7-
一个长方体的各顶点均在同一球的球面上, 且一个顶点上的三条棱的长分别为1,2,3, 则此球的表面积为___________。 答案:14π
-8-
已知三棱锥S—ABC的各顶点都在一个半径为r的球面
上,球心O在AB上,SO⊥底面ABC,AC= 2r ,则球
的体积与三棱锥体积之比是( )
解:
V球
4
3
R3 ,V柱
R2
2R
2
R3
2 V球 3V柱
S球 4 R2 , S 圆柱侧 =2 R 2R 4 R2
S球 S 圆柱侧
-6-
若棱长为3的正方体的顶点都在同一球面上, 则该球的表面积为___________ ?
解:画出球的轴截面可得,球的直径是
正方体的对角线,所以球的半R= 3 3 ,
A.π B.2π
C.3π
D.4π
答案:D
-9-
作业精选 巩固提高
• 1.若与球心距离为4的平面截球所得的截面圆的面 积是9π,则球的表面积是____________.
• 2.三个球的半径之比为1∶2∶3,那么最大球的表 面积是其余两个球的表面积之和的( )
• A.1倍
B.2倍
C.倍
ቤተ መጻሕፍቲ ባይዱ
高中数学必修二学习笔记步步高
高中数学必修二学习笔记步步高
第一章空间几何体
1.1柱、锥、台、球的结构特征
1.2空间几何体的三视图和直观图
1.三视图:
正视图:从前往后;侧视图:从左往右;俯视图:从上往下。
2.画三视图的原则:长对齐、高对齐、宽相等
3.直观图:斜二测画法
4.斜二测画法的步骤:
(1)平行于坐标轴的线依然平行于坐标轴;
(2)平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3)画法要写好。
5.用斜二测画法画出长方体的步骤:
(1)画轴(2)画底面(3)画侧棱(4)成图
1.3空间几何体的表面积与体积
(一)空间几何体的表面积
(二)空间几何体的体积。
专题05 空间几何体的三视图、表面积和体积(解析版)
专题05 空间几何体的三视图、表面积和体积【要点提炼】1.空间几何体的两组常用公式(1)柱体、锥体、台体、球的表面积公式:①圆柱的表面积S=2πr(r+l);②圆锥的表面积S=πr(r+l);③圆台的表面积S=π(r′2+r2+r′l+rl);④球的表面积S=4πR2.(2)柱体、锥体和球的体积公式:①V柱体=Sh(S为底面面积,h为高);②V锥体=13Sh(S为底面面积,h为高);③V球=43πR3.2.球的简单组合体中几何体度量之间的关系,如棱长为a的正方体的外接球、内切球、棱切球的半径分别为32a,a2,22a.考点考向一空间几何体的表面积【典例1】(1)如图所示的几何体是从棱长为2的正方体中截去以正方体的某个顶点为球心,2为半径的18球体后的剩余部分,则该几何体的表面积为()A.24-3πB.24-πC.24+πD.24+5π(2)(多选题)等腰直角三角形的直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可以为()A.2πB.(1+2)πC.22πD.(2+2)π解析(1)由题意知该几何体的表面积S=6×22-3×14×π×22+18×4×π×22=24-π.故选B.(2)如果是绕直角边旋转,则形成圆锥,圆锥底面半径为1,高为1,母线就是直角三角形的斜边,长为2,所以所形成的几何体的表面积S=π×1×2+π×12=(2+1)π.如果绕斜边旋转,则形成的是上、下两个圆锥,圆锥的半径是直角三角形斜边上的高22,两个圆锥的母线都是直角三角形的直角边,母线长是1,所以形成的几何体的表面积S′=2×π×22×1=2π.综上可知,形成几何体的表面积是(2+1)π或2π.故选AB.答案(1)B(2)AB探究提高 1.求空间几何体的表面积,首先要掌握几何体的表面积公式,其次把不规则几何体分割成几个规则的几何体.2.(1)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(2)旋转体的表面积问题注意其侧面展开图的应用.【拓展练习1】(1)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为() A.122π B.12πC.82πD.10π(2)(2020·衡水金卷)一个圆锥的轴截面是边长为4的等边三角形,在该圆锥中有一个内接圆柱(下底面在圆锥底面上,上底面的圆周在圆锥侧面上),则当该圆柱侧面积取最大值时,该圆柱的高为()A.1B.2C.3D. 3解析(1)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为2 2.所以S表面积=2×π×(2)2+2π×2×22=12π.(2)如图,设圆柱底面半径为r (0<r <2),高为h ,则h4sin 60°=2-r 2,即h =3(2-r ),其侧面积为S =23πr (2-r )=23π(-r 2+2r ),根据二次函数性质,当r =1时,侧面积取得最大值,此时h = 3. 答案 (1)B (2)D考向二 空间几何体的体积【典例2】 (1)(2020·济南模拟)已知三棱锥S -ABC 中,∠SAB =∠ABC =π2,SB =4,SC =213,AB =2,BC =6,则三棱锥S -ABC 的体积是( ) A.4B.6C.4 3D.6 3(2)(2020·长沙模拟)如图,在四面体PBCD 中,点A 是CD 的中点,P A =AD ,△ABC 为等边三角形,边长为6,PB =8,PC =10,则△PBD 的面积为________,四面体P ABC 的体积为________.解析 (1)∵∠ABC =π2,AB =2,BC =6,∴AC =AB 2+BC 2=22+62=210.∵∠SAB =π2,AB =2,SB =4,∴AS =SB 2-AB 2=42-22=2 3.由SC =213,得AC 2+AS 2=SC 2,∴AC ⊥AS .又∵SA ⊥AB ,AC ∩AB =A ,∴AS ⊥平面ABC ,∴AS 为三棱锥S -ABC 的高,∴V 三棱锥S -ABC=13×12×2×6×23=4 3.故选C.(2)因为△ABC 为等边三角形,边长为6,点A 为CD 的中点,所以AD =AB =6,所以△ADB 为等腰三角形.又∠DAB =180°-∠CAB =120°, 所以∠ADB =12(180°-120°)=30°,所以∠ADB +∠DCB =90°,所以∠DBC =90°,所以CB ⊥DB ,所以DB =CD 2-BC 2=144-36=6 3.因为PB =8,PC =10,BC =6,所以PC 2=PB 2+BC 2,所以CB ⊥PB .又DB ∩PB =B ,DB ⊂平面PBD ,PB ⊂平面PBD ,所以CB ⊥平面PBD .因为DA =AC =AP =6,所以△PDC 为直角三角形,且∠DPC =90°,所以PD =CD 2-PC 2=144-100=211.又DB =63,PB =8,所以DB 2=PD 2+PB 2,即△PBD 为直角三角形,所以S △PBD =12×8×211=811.因为点A 为DC 的中点,所以V P -ABC =12V P -CBD =12V C -PBD =12×13×S △PBD ×CB =12×13×811×6=811,即四面体P ABC 的体积为811. 答案 (1)C (2)811 811探究提高 1.求三棱锥的体积:等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积:常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.【拓展练习2】 (1)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.πB.3π4C.π2D.π4(2)(2020·东北三校一联)如图,四边形ABCD 是边长为2的正方形,ED ⊥平面ABCD ,FC ⊥平面ABCD ,ED =2FC =2,则四面体ABEF 的体积为( )A.13B.23C.1D.43解析 如图画出圆柱的轴截面ABCD ,O 为球心.球半径R =OA =1,球心到底面圆的距离为OM =12.∴底面圆半径r =AM =OA 2-OM 2=32,故圆柱体积V =π·r 2·h =π·⎝ ⎛⎭⎪⎫322×1=3π4.(2)∵ED ⊥平面ABCD 且AD ⊂平面ABCD , ∴ED ⊥AD .∵在正方形ABCD 中,AD ⊥DC ,而DC ∩ED =D , ∴AD ⊥平面CDEF .易知FC =ED2=1,V A -BEF =V ABCDEF -V F -ABCD -V A -DEF .∵V E -ABCD =ED ×S 正方形ABCD ×13=2×2×2×13=83,V B -EFC =BC ×S △EFC ×13 =2×2×1×12×13=23,∴V ABCDEF =83+23=103.又V F -ABCD =FC ×S 正方形ABCD ×13=1×2×2×13=43, V A -DEF =AD ×S △DEF ×13=2×2×2×12×13=43,V A -BEF =103-43-43=23.故选B. 答案 (1)B (2)B考向三 多面体与球的切、接问题【典例3】 (1)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A.4πB.9π2C.6πD.32π3(2)在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P -ABCD 为阳马,侧棱P A ⊥底面ABCD ,且P A =3,BC =AB =4,设该阳马的外接球半径为R ,内切球半径为r ,则R =________;内切球的体积V =________.解析 (1)由AB ⊥BC ,AB =6,BC =8,得AC =10.要使球的体积V 最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC 的内切圆的半径为r . 则12×6×8=12×(6+8+10)·r ,所以r =2. ∴2r =4>3不合题意.球与三棱柱的上、下底面相切时,球的半径R 最大. 由2R =3,即R =32.故球的最大体积V =43πR 3=92π.(2)在四棱锥P -ABCD 中,侧棱P A ⊥底面ABCD ,且底面为矩形,将该“阳马”补成长方体,则(2R )2=AB 2+AD 2+AP 2=16+16+9=41, 因此R =412.依题意Rt △P AB ≌Rt △P AD ,则内切球O 在侧面P AD 内的正视图是△P AD 的内切圆,故内切球的半径r =12(3+4-5)=1,则V =43πr 3=43π. 答案 (1)B (2)412 43π探究提高 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 且P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【拓展练习3】 (1)(2020·太原模拟)如图所示,在直三棱柱ABC -A 1B 1C 1中,底面ABC 是等腰直角三角形,AB =BC =1,点D 为侧棱BB 1上的动点.若△ADC 1周长的最小值为3+5,则三棱锥C 1-ABC 的外接球的体积为( )A.2πB.32π C.5π2 D.3π(2)(2020·烟台诊断)已知点A,B,C在半径为2的球面上,满足AB=AC=1,BC =3,若S是球面上任意一点,则三棱锥S-ABC体积的最大值为________. 解析(1)将侧面ABB1A1和侧面BCC1B1展开在同一平面内,示意图如图所示,易知当D为侧棱BB1的中点时,△ADC1的周长最小,此时设BD=x(x>0),则21+x2+2+4x2=3+5,解得x=12,所以CC1=1,AC1= 3.又三棱锥C1-ABC的外接球的球心为AC1的中点,所以外接球的半径R=32,于是三棱锥C1-ABC的外接球的体积为V=43πR3=43π×⎝⎛⎭⎪⎫323=32π.(2)设球心为O,△ABC的外心为D,则OD⊥平面ABC.在△ABC中,由余弦定理,得cos A=12+12-(3)22×1×1=-12,则sin A=32.所以S△ABC=12AB·AC sin A=12×1×1×32=34,且△ABC的外接圆半径DA=BC2sin A=32×32=1.因此在Rt△OAD中,OD=OA2-DA2=22-12= 3.当三棱锥S-ABC的高最大时,三棱锥S-ABC的体积取最大值,而三棱锥S-ABC的高的最大值为3+2,所以三棱锥S-ABC的体积的最大值为13×34×(3+2)=3+2312.答案(1)B(2)3+2312【专题拓展练习】1.已知四面体ABCD 中,二面角A BC D --的大小为60,且2AB =,4CD =,120CBD ∠=,则四面体ABCD 体积的最大值是( )A B C .83D .43【答案】D 【详解】在BCD △中,由余弦定理可得2222cos120CD BC BD BC BD =+-⋅22BC BD BC BD =++⋅因为222BC BD BC BD +≥,所以23CD BC BD ≥⋅, 所以163BC BD ⋅≤,当且仅当BC BD =时等号成立,1116sin120223BCDSBC BD =⋅≤⨯= 因为二面角A BC D --的大小为60,所以点A 到平面BCD 的最大距离为2sin 603h ==所以114333A BCD BCDV S h -=⋅≤=, 所以四面体ABCD 体积的最大值是43,2.如图是某个四面体的三视图,则下列结论正确的是( )A .该四面体外接球的体积为48πB .该四面体内切球的体积为23π C .该四面体外接球的表面积为323π D .该四面体内切球的表面积为2π 【答案】D 【详解】由三视图得几何体为下图中的三棱锥A BCD -,AB ⊥平面BCD ,42AB =2CE DE ==,2BE =,由题得2CBD π∠=.设外接球的球心为,O 外接球的半径为R ,则OE ⊥平面BCD , 连接,OB OA ,取AB 中点F ,连接OF .由题得1222OE BF AB ===,所以222(22)2,3R R =+∴=所以外接球的体积为34(23)3233ππ⨯=,所以选项A 错误;所以外接球的表面积为24(23)48ππ⨯=,所以选项C 错误; 由题得22(42)(22)210AC AD ==+= 所以△ACD △24026-=, 设内切球的半径为r ,则1111111(422242222446)24423222232r ⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯⨯⨯⨯ 所以22r, 所以内切球的体积为3422)323ππ⨯=(,所以选项B 错误; 所以内切球的表面积为224()22ππ⨯=,所以选项D 正确. 故选:D3.已知三棱锥P ABC -的底面是正三角形,PA a =,点A 在侧面PBC 内的射影H 是PBC 的垂心,当三棱锥P ABC -体积最大值时,三棱锥P ABC -的外接球的表面积为( ) A .33a B .23a πC 33aD .212a【答案】B 【详解】如下图所示,延长PH 交BC 于点D ,连接AD ,H 为PBC 的垂心,则BC PD ⊥,AH ⊥平面PBC ,BC ⊂平面PBC ,BC AH ∴⊥, AHPD H =,BC ∴⊥平面PAD ,AD ⊂平面PAD ,BC AD ∴⊥,连接BH 并延长交PC 于点E ,连接AE ,AH ⊥平面PBC ,PC ⊂平面PBC ,AH PC ∴⊥,BE PC ⊥,AHBE H =,PC ∴⊥平面ABE ,AB ⊂平面ABE ,AB PC ∴⊥,设点P 在平面ABC 内的射影为点O ,延长CO 交AB 于点F ,连接PF ,PO ⊥平面ABC ,AB 平面ABC ,PO AB ∴⊥, PO PC P =,AB ∴⊥平面PCF ,PF 、CF ⊂平面PCF ,则PF AB ⊥,CF AB ⊥, AD CF O =,O ∴为正ABC 的中心,且F 为AB的中点,PO ⊥平面ABC ,OA 、OB 、OC ⊂平面ABC , PO OA ⊥,PO OB ⊥,PO OC ⊥,且OA OB OC ==,所以,POA POB POC ≅≅,PA PB PC a ∴===, 当PB PC ⊥时,PBC 的面积取最大值,当PA ⊥平面PBC 时,三棱锥P ABC -的体积取得最大值, 将三棱锥A PBC -补成正方体AEMN PBDC -,所以,三棱锥A PBC -的外接球的直径即为正方体AEMN PBDC -的体对角线长, 设三棱锥A PBC -的外接球直径为2R ,则22223R PA PB PC a =++=,因此,三棱锥P ABC -的外接球的表面积为()222423R R a πππ=⨯=. 4.已知某几何体的三视图如图所示,则该几何体的体积是( )A .24B .28C .32D .36【答案】B 【详解】根据三视图可知,该几何体是由长宽高分别为4,3,2的长方体和一个高为1的正四棱锥组合而成的组合体,如图:其体积为1432431283⨯⨯+⨯⨯⨯=.5.某几何体的三视图如图所示,则该几何体的体积为()A.13B.16C.1 D.23【答案】A【详解】由三视图知原几何体是三棱锥A BCD-,AB与底面垂直,底面BDC是等腰直角三角形,棱锥的体积为111112323V⎛⎫=⨯⨯⨯⨯=⎪⎝⎭,故选:A.6.用到球心的距离为1的平面去截球,以所得截面为底面,球心为顶点的圆锥体积为83π,则球的表面积为( ) A .16π B .32πC .36πD .48π【答案】C 【详解】设球的半径为R ,圆锥的底面半径为r ,因为球心到截面的距离为1, 所以有:221r R =-, 则题中圆锥体积()2181133V R ππ=⨯⨯-=,解得3R =,故球的表面积为2436R ππ=. 故选:C7.在三棱锥P ABC -中,PA ⊥平面ABC ,2AP =,AB =4AC =,45BAC ∠=︒,则三棱锥P ABC -外接球的表面积是( ) A .14π B .16πC .18πD .20π【答案】D 【详解】在BAC 中,45BAC ∠=︒,AB =4AC =,由余弦定理可得2222cos 8162442BC AB AC AB AC π=+-⋅=+-⨯⨯=,则222BC AB AC +=,所以BC AB ⊥, 由PA ⊥平面ABC ,则PA BC ⊥,PA AB A =,所以BC ⊥平面PAB , 所以BC PB ⊥,所以PBC 为直角三角形, 又PAC △为直角三角形,所以PC 是外接球直径,O 是PC 的中点,即为球心, 又22,2AB BC PA ===,所以()()2222222225PC =++=5所以球O 的体积245)20V ππ=⨯=.8.已知正方体的外接球与内切球上各有一个动点,M N ,若线段MN 31,则下列结论不正确的是( ) A .正方体的外接球的表面积为12π B .正方体的内切球的体积为43π C .正方体的棱长为2 D .线段MN 的最大值为23【答案】D 【详解】设正方体的棱长为a 3, 内切球半径为棱长的一半,即2a . ∵M N ,分别为外接球和内切球上动点,∴min 33131222a a a MN --===-, 解得:2a =.即正方体棱长为2,C 正确;∴正方体外接球表面积为24(3)12ππ⨯=,A 正确; 内切球体积为43π,B 正确; 线段MN 的最大值为33122aa +=+,D 错误. 9.《九章算术》是我国古代内容极为丰富的数学名著,书中有一个数学问题:“现有刍甍,下宽3丈,长4丈;上长2丈,无宽,高1丈.问:有体积多少?”本题中刍甍是如图所示的几何体EF ABCD -,底面ABCD 是矩形,//AB EF , 4AB =, 3AD =, 2EF =,直线EF 到底面ABCD 的距离1h =,则该几何体EF ABCD -的体积是( )A .5B .10C .15D .52【答案】A 【详解】沿上棱两端向底面作垂面,且使垂面与上棱垂直, 则将几何体分成两个四棱锥和1个直三棱柱, 则三棱柱的体积1131232V =⨯⨯⨯=,两个四棱锥的体积2111131313()2333V DM CN DM CN =⨯⨯⨯+⨯⨯⨯=⨯⨯⨯+=,所以该几何体EF ABCD -的体积是3+2=5.10.已知长方体的两个底面是边长为1的正方形,长方体的一条体对角线与底面成45角,则此长方体的外接球表面积为( ) A .4π B .6πC .12πD .24π【答案】A 【详解】记该长方体为1111ABCD A B C D -,1BD 为该长方体的一条体对角线,其与底面所成角为45,因为在长方体1111ABCD A B C D -中,侧棱1DD ⊥底面ABCD ,则1D BD ∠为1BD 与底面所成角,即145D BD ∠=, 因为长方体的两个底面是边长为1的正方形,所以222BD AD AB =+=,则12DD BD ==,所以1222BD =+=, 又长方体的外接球直径等于其体对角线的长, 即该长方体外接球的直径为12222R BD ==+=, 所以此长方体的外接球表面积为244S R ππ==.11.在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为43,则正方体外接球的体积为( ) A .43π B .6πC .323πD .86π【答案】B 【详解】解:设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======, 由于三棱锥11A B CD -的表面积为43, 所以()12133442242AB CS Sa==⨯⨯=所以2a =()()()2222226++=, 所以正方体的外接球的体积为346632ππ⎛⎫= ⎪ ⎪⎝⎭12.某几何体的三视图均为如图所示的五个边长为单位1的小正方形构成,则该几何体与其外接球的表面积分别为( )A .18,3πB .20,3πC .30,11πD .32,11π【答案】C 【详解】解:由三视图的几何体如图所示,可知几何体的表面积为115630S =⨯⨯⨯=,设该几何体外接球的半径为R ,则222211311R ++=所以该几何体外接球的表面积为2114112S ππ⎛'=⨯= ⎝⎭. 13.已知三棱锥P ABC -,3BAC π∠=,3BC =PA ⊥平面ABC 且23PA =此三棱锥的外接球的体积为( ) A .163πB .3πC .16πD .323π【答案】D 【详解】如图,设球心为O ,三角形ABC 外接圆心为1O ,PA⊥平面ABC,∴1132OO PA==,设球半径为R,圆1O的半径为r,则在三角形ABC中,由正弦定理可得322sin32BCrBAC===∠,即1r=,在直角三角形1AOO中,22211OO AO OA+=,即()2223r R+=,解得2R=,则外接球的体积为343233Rππ=.故选:D.14.已知正三棱柱111ABC A B C-的各棱长均为2,底面ABC与底面111A B C的中心分别为O、1O,P是1OO上一动点,记三棱锥P ABC-与三棱锥111P A B C-的体积分别为1V、2V,则12V V⋅的最大值为()A.13B3C.23D23【答案】A【详解】∵正三棱柱111ABC A B C-的各棱长均为2,∴111122sin 6032ABC A B C S S ∆∆==⨯⨯⨯=,且12OO =, ∴11112111111123()33333ABC A B C ABC ABC V V S OP S O P S OP O P S OO ∆∆∆∆+=⋅+⋅=⋅+=⋅=, 由12122323V V V V ⋅≤+=得:1213V V ⋅≤,当且仅当点P 为1OO 的中点时等号成立, ∴12V V ⋅的最大值为13,故选:A. 15.如图,正四棱锥P ABCD -的底面边长和高均为2,M 是侧棱PC 的中点,若过AM 作该正四棱锥的截面,分别交棱PB 、PD 于点E 、F (可与端点重合),则四棱锥P AEMF -的体积的取值范围是( )A .1,12⎡⎤⎢⎥⎣⎦B .14,23⎡⎤⎢⎥⎣⎦C .41,3⎡⎤⎢⎥⎣⎦D .8,19⎡⎤⎢⎥⎣⎦ 【答案】D【详解】设,PE PF x y PB PD==,则,PE xPB PF yPD == 所以412,323P AEF P ABD P MEF P BCD V xy V xy V xyV xy ----=⋅===, 1212,2323P AFM P ACD P AEM P ABC V y V y V x V x ----=⋅==⋅=, ()223P AEMF P AEF P EMF P AFM P AEM V V V V V xy x y -----=+=+==+, 所以3x y xy +=,则331y x y =-, 令31y t -=,因为1,12y ⎡⎤∈⎢⎥⎣⎦, 所以1,22t ⎡⎤∈⎢⎥⎣⎦,所以()221311412, 319992tyty t t+⎛⎫⎡⎤==++∈⎪⎢⎥-⎝⎭⎣⎦,所以2238,13319P AEMFyVy-⎡⎤=⋅∈⎢⎥-⎣⎦,故选:D。
高二数学空间几何体的表面积与体积试题答案及解析
高二数学空间几何体的表面积与体积试题答案及解析1. 如图,正方体,则下列四个命题: ①在直线上运动时,三棱锥的体积不变; ②在直线上运动时,直线与平面所成角的大小不变; ③在直线上运动时,二面角的大小不变; ④是平面上到点D 和距离相等的点,则点的轨迹是过点的直线其中真命题的个数是A .1B .2C .3D .4【答案】C 【解析】①∵∥平面,∴∥上任意一点到平面的距离相等,所以体积不变,正确.②在直线上运动时,直线与平面所成角和直线与平面所成角不相等,所以不正确.③当在直线上运动时,的轨迹是平面,即二面角的大小不受影响,所以正确.④∵是平面上到点和距离相等的点,∴点的轨迹是一条与直线平行的直线,而,所以正确,故答案为:C.【考点】异面直线及其所成的角;棱柱、棱锥、棱台的体积;与二面角有关的立体几何综合题.2. 一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是 _________ .【答案】【解析】由正视图可知四棱锥的底面边长为2,高为2,可求出斜高为,因此四棱锥的侧面积,答案为.【考点】1.几何体的三视图;2.锥体的侧面积计算3. 已知四边形ABCD 是矩形,AB=,BC=,将△ABC 沿着对角线AC 折起来得到△AB 1C ,且顶点B 1在平面AB=CD 上射影O 恰落在边AD 上,如图所示. (1)求证:AB 1⊥平面B 1CD ;(2)求三棱锥B 1﹣ABC 的体积V B1﹣ABC .【答案】(1)见解析;(2)【解析】(1)平面ABCD,平面ABCD,所以,又CD AD,AD =O,所以平面,又平面,所以,又,且平面(2)由于平面,平面ABCD,所以在中,,又由得,所以试题解析:(1)平面ABCD,平面ABCD,,又CD AD,AD=O平面,又平面,又,且平面(2)由于平面,平面ABCD,所以在中,,又由得,所以【考点】1.空间线面垂直;2.锥体的体积4.如图1,直角梯形中,,分别为边和上的点,且,.将四边形沿折起成如图2的位置,使.(1)求证:平面;(2)求四棱锥的体积.【答案】(1)见解析;(2)【解析】(1)此题是个折叠图形题,平面和立体的互化,分析可知面面;(2)求体积,抓住地面和底面上的高,显然平面面,这个证明很重要,可以确定底面和底面上的高.试题解析:(1)证:面面又面所以平面(2)取的中点,连接平面又平面面所以四棱锥的体积【考点】线面平行的判定,线面垂直的判定.5.将函数的图象绕轴旋转一周所形成的几何体的体积为__________.【答案】【解析】首先函数的图象为以原点为圆心,为半径的圆在轴上方的半圆,它绕轴旋转一周所形成的几何体是以原点为球心,为半径的球,故体积为.【考点】球及球的体积计算.6.如图水平放置的三棱柱的侧棱长为1,且侧棱平面,主视图是边长为1的正方形,俯视图为一个等边三角形,则该三棱柱的左视图面积为________.【答案】.【解析】由题意得:该三棱柱是正三棱柱,底面是边长为1的正三角形,侧棱长为1;该三棱柱的左视图是一个矩形,边长分别为与,所以该三棱柱的左视图面积为.【考点】空间几何体的三视图.7.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是.【答案】【解析】如图甲,考虑小球挤在一个角时的情况,记小球半径为,作平面//平面,与小球相切于点,则小球球心为正四面体的中心,,垂足为的中心.因,故,从而.记此时小球与面的切点为,连接,则.考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如图乙.记正四面体的棱长为,过作于.因,有,故小三角形的边长.小球与面不能接触到的部分的面积为(如答图2中阴影部分).又,,所以.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.【考点】(1)三棱锥的体积公式;(2)分情况讨论及割补思想的应用。
高二数学空间几何体的三视图与直观图试题答案及解析
高二数学空间几何体的三视图与直观图试题答案及解析1.如图示,在四棱锥A-BHCD中,AH⊥面BHCD,此棱锥的三视图如下:(1)求二面角B-AC-D的余弦弦值;(2)在线段AC上是否存在一点E,使ED与面BCD成45°角?若存在,确定E的位置;若不存在,说明理由。
【答案】(1)(2)不存在【解析】(1)观察三视图,得到边长以及线面关系,取AC的中点M,过M作MN∥CD交AD于N,则是所求二面角的平面角,(2)假设存在,把“ED与面BCD成45°角”作为条件,进行计算.试题解析:(1)由AH⊥面BHCD及三视图知:AH=BH=HC=1,,取AC的中点M,过M作MN∥CD交AD于N,则是所求二面角的平面角,,,;(2)假设在线段AC上存在点E合题意,令E在HC上的射影为F,设(),则,矛盾。
所以,不存在(注:本题也可用向量法)【考点】二面角,线面角.2.某几何体是由直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为A.B.C.D.【答案】C【解析】设正视图正方形的边长为m,根据正视图与俯视图的长相等,得到俯视图中椭圆的短轴长2b=m,俯视图的宽就是圆锥底面圆的直径,得到俯视图中椭圆的长轴长2a=,则椭圆的焦距,根据离心率公式得,;故选:C.【考点】1.三视图;2.椭圆的性质.3.如图,某四棱锥的三视图如图所示,则最长的一条侧棱长度为()A.B.C.D.【答案】C【解析】由三视图知:四棱锥的一条侧棱与底面垂直,且高为1,如图:SA⊥平面ABCD,AD=CD=SA=1,AB=2,∴最长的侧棱为SB=;故选:C.【考点】三视图4.如图是一个空间几何体的三视图,则该几何体的外接球的体积是()A.B.C.D.【答案】C【解析】由三视图可知,该几何体为直三棱锥,底面为等腰直角三角形,把三棱锥补成长方体,三棱锥和长方体具有相同的外接球,,因此,.【考点】球的体积.5.如图是多面体和它的三视图.(1)若点是线段上的一点,且,求证:;(2)求二面角的余弦值.【答案】(1)证明见解析;(2)【解析】(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明线面垂直,需证线线垂直,只需要证明直线的方向向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:解:(1)由题意知AA1,AB,AC两两垂直,建立如图所示的空间直角坐标系,则A(0,0,0),A1(0,0,2),B(-2,0,0),C(0,-2,0),C1(-1,-1,2),则=(-1,1,2),=(-1,-1,0),=(0,-2,-2).(1分)设E(x,y,z),则=(x,y+2,z),=(-1-x,-1-y,2-z).(3分)=2,得E(=设平面C1A1C的法向量为m=(x,y,z),则由,得,取x=1,则y=-1,z=1.故m=(1,-1,1),=,BE⊥平面A1CC1.(6分)(2)由(1)知,平面C1A1C的法向量为m=(1,-1,1)而平面A1CA的一个法向量为n=(1,0,0),则cos〈m,n〉===,故二面角的余弦值.(12分)【考点】利用空间向量证明垂直和夹角问题.6.一个几何体的三视图如图所示,则该几何体的体积为A.2B.1C.D.【答案】C【解析】由三视图可知该几何体是一个四棱锥,其底面是一个对角线为2的正方形,高为1,故其底面面积S=×2×=2,则V=•Sh=,故选C.【考点】由三视图求面积、体积.7.右图是某几何体的三视图,其中正视图是正方形,侧视图是矩形,俯视图是半径为2的半圆,则该几何体的表面积等于()A.B.24πC.D.12π【答案】A【解析】由题意可得,直观图为底面直径为4,高为4的圆柱的一半,所以该几何体的表面积是正方形面积+圆柱侧面积的一半+圆的面积,即,故选A.【考点】由三视图求表面积.8.某几何体的三视图如图所示,其中正视图为正三角形,则该几何体的体积为 .【答案】【解析】由空间几何体的三视图可知,该几何体为平放的三棱柱,上下底面为边长是2的正三角形,高为3,所以.【考点】空间几何体的三视图、表面积和体积的计算.9.下图是一几何体的直观图、主视图、俯视图、左视图.(1)若F为PD的中点,求证:AF⊥面PCD;(2)证明:BD∥面PEC;(3)求该几何体的体积.【答案】(1)详见解析;(2)详见解析;(3)【解析】由三视图可知底面是边长为4的正方形,,,∥,且。
高二数学空间几何体的表面积与体积试题答案及解析
高二数学空间几何体的表面积与体积试题答案及解析1.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.【答案】.【解析】设圆锥的底面半径和高为,则其母线长;所以圆锥的侧面积,底面面积,则它的侧面积与底面积的比为.【考点】圆锥的侧面积公式.2.一个与球心距离为1的平面截球所得的圆面面积为,则球的表面积为 .【答案】【解析】球的截面圆的半径为:π=πr2,r=1,球的半径为:R= ,所以球的表面积:4πR2=4π×( )2=8π.【考点】球的表面积.3.三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。
(1)证明:平面PAB⊥平面PBC;(2)若,,PB与底面ABC成60°角,分别是与的中点,是线段上任意一动点(可与端点重合),求多面体的体积.【答案】(1)证明见解析;(2).【解析】(1)证明两个平面垂直,首先考虑直线与平面垂直,也可以简单记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是解决这类题的关键;(2)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化;(3)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算.试题解析:(1)证明:,,且,而中,(2)解:(2)与底面成角即,在中,,又,在中,分别是的中点,面.【考点】(1)平面与平面垂直的判断;(2)求几何体的体积.4.如图,菱形ABCD的边长为4,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M是棱BC的中点,DM=2.(1)求证:OM∥平面ABD;(2)求证:平面DOM⊥平面ABC;(3)求三棱锥B﹣DOM的体积.【答案】(1)∵O为AC的中点,M为BC的中点,∴OM∥AB.又∵OM⊄平面ABD,AB⊂平面ABD,∴OM∥平面ABD.(2)∵在菱形ABCD中,OD⊥AC,∴在三棱锥B-ACD中,OD⊥AC.在菱形ABCD中,AB=AD=4,∠BAD=60°,可得BD=4.∵O为BD的中点,∴,BD=2.∵O为AC的中点,M为BC的中点,∴,AB=2.因此,,可得OD⊥OM.∵AC、OM是平面ABC内的相交直线,∴OD⊥平面ABC.∵OD⊂平面DOM,∴平面DOM⊥平面ABC.(3).【解析】(1)利用三角形中位线定理,证出OM∥AB,结合线面平行判定定理,即可证出OM∥平面ABD.(2)根据题中数据,算出,BD=2,,AB=2,从而得到,可得OD⊥OM.结合OD⊥AC利用线面垂直的判定定理,证出OD⊥平面ABC,从而证出平面DOM⊥平面ABC.(3)由(2)得到OD为三棱锥D-BOM的高.算出△BOM的面积,利用锥体体积公式算出三棱锥D-BOM的体积,即可得到三棱锥B-DOM的体积.试题解析:(1)∵O为AC的中点,M为BC的中点,∴OM∥AB.又∵OM⊄平面ABD,AB⊂平面ABD,∴OM∥平面ABD.(2)∵在菱形ABCD中,OD⊥AC,∴在三棱锥B-ACD中,OD⊥AC.在菱形ABCD中,AB=AD=4,∠BAD=60°,可得BD=4.∵O为BD的中点,∴DO=,BD=2.∵O为AC的中点,M为BC的中点,∴OM=,AB=2.因此,,可得OD⊥OM.∵AC、OM是平面ABC内的相交直线,∴OD⊥平面ABC.∵OD⊂平面DOM,∴平面DOM⊥平面ABC.(3)由(2)得,OD⊥平面BOM,所以OD是三棱锥D-BOM的高.由OD=2,,所以.【考点】线面平行问题;面面垂直问题;三棱锥的体积.5.四面体ABCD中,已知AB=CD=,AC=BD=,AD=BC=,则四面体ABCD的外接球的表面()A.25p B.45p C.50p D.100p【答案】C【解析】作长方体,AB=CD=,AC=BD=,AD=BC=,该长方体和四面体有共同的外接球,长方体的对角线长为直径长,,表面积【考点】四面体的外接球的体积.6.如图,三棱柱中,侧棱垂直底面,,,是棱的中点。
空间几何体的结构、三视图和直观图及表面积和体积(带答案)
空间几何体的结构、三视图和直观图及表面积体积一.《考纲》要求1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.会画出某些建筑物的三视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).5.了解球、柱体、锥体、台体的表面积计算公式,会通过观察空间几何体的三视图求空间几何体的表面积与体积.二.知识解析(一)空间几何的结构特征1.空间几何体如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.多面体(1)概念:我们把由若干个平面多边形围成的几何体叫做多面体.棱柱:侧棱都平行且相等,上下底面是全等的多边形,并且互相平行.棱锥:底面是任意多边形,侧面是有公共点的三角形.棱台:由平行于底面的平面截棱锥得到的底面与截面之间的部分,上下底面是相似多边形.(2)分类:按侧棱与底面的关系可分为斜棱柱、直棱柱;按底面多边形边数可分为三棱柱、四棱柱、五棱柱等;底面是正多边形的直棱柱又称为正棱柱.基础练习:(1)下列有关棱柱的命题中正确的是(C )(A)有两个面平行,其余各面都是四边形的几何体叫棱柱(B)有两个面平行,其余各面都是平行四边形的几何体叫棱柱(C)一个棱柱至少有五个面、六个顶点、九条棱(D)棱柱的侧棱长有的相等,有的不相等(2)下列结论正确的是( D )(A)各个面都是三角形的几何体是三棱锥(B)以三角形的一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥(C)棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥(D)圆锥的顶点与底面圆周上的任意一点的连线都是母线(3)下列命题中,正确的是( D )(A)有两个侧面是矩形的棱柱是直棱柱(B)侧面都是等腰三角形的棱锥是正棱锥(C)侧面都是矩形的四棱柱是长方体(D)底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱3.旋转体概念:一般地,我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体.圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体.圆台:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分.球:以一个半圆直径所在的直线为旋转轴,旋转一周所形成的曲面叫做球面,球面所围成的几何体叫做球体.大圆、小圆:球面被不经过球心的平面截得的圆叫做球的小圆,被经过球心的平面截得的圆叫做球的大圆.基础练习:(1)以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确的命题的个数为(B)(A)0(B)1(C)2(D)34.简单组合体简单组合体的构成有两种基本形式:一种是由简单集合题拼接而成;一种是由简单几何体截去或挖去一部分而成,有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.(二)空间几何体的三视图和直观图1.平行投影与中心投影平行投影的投影线是平行的,而中心投影的投影线交于一点.2.空间几何体的三视图(1)三视图的名称几何体的三视图有:正视图、侧视图、俯视图.(2)三视图的画法(Ⅰ)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.(Ⅱ)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察结合体画出的轮廓线.一般地,一个几何体侧视图和正视图高度一样,俯视图与正视图长度一样,侧视图与俯视图宽度一样.侧视图在正视图的右边,俯视图在正视图的下边.基础练习:(1)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( D)(2)如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正视图、俯视图如图:②存在四棱柱,其正视图、俯视图如图;③存在圆柱,其正视图、俯视图如图.其中真命题的个数是( A)(A)3 (B)2 (C)1 (D)0(3)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为(D )(4)已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图的是(D )正视图俯视图(A)(B)(C)(D)正视图正视图侧视图正视图侧视图正视图侧视图正视图侧视图(C)(D)(B)(A)(A ) (B ) (C ) (D )3.空间几何体的直观图利用斜二测画法画直观图的步骤:(1)在已知图形中取互相垂直的x 轴和y 轴,两轴相较于点O .画直观图时,把它们画成对应的x '轴与y '轴,两轴交于点O ',且使45x O y'''∠=?(或135?),它们确定的平面表示水平面;(2)已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x '轴或y '轴的线段; (3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,长度为原来的一半. 基础练习:(1)关于斜二测画法所得直观图的说法正确的是( D ) (A )直角三角形的直观图仍是直角三角形 (B )梯形的直观图是平行四边形(C )正方形的直观图是菱形(D )平行四边形的直观图仍是平行四边形(2)一个水平放置的平面图形的斜二测直观图是一个底角为45?、腰和上底长均为1的等腰梯形,则这个平面图形的面积是( D )(A)12+(B)1+(C)1 (D)2(3)等腰梯形ABCD ,上底1CD =,腰AD CB =3AB =,以下底所在直线为x 轴,则由斜二侧画法画出的直观图A B C D ''''的面积为. (三)空间几何体的表面积与体积 1.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面积展开图分别是矩形、扇形、扇环形.它们的表面积等于侧面积与底面面积之和. 基础练习(1)侧面都是直角三角形的正三棱锥,底面边长为a 时,该三棱锥的全面积是( A )(A2(B )234a(C2(D2(2)已知一圆锥的侧面展开图为半圆,且面积为S ,则圆锥的底面面积是( B )(A )S (B )2S (C )4S (D2.柱、锥、台和球的侧面积和体积基础练习(1)长方体三个面的面积分别为2,6和9,则长方体的体积是( A )(A )(B )(C )11(D )12(2)如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( B )(A ) (B ) (C )(D )三.例题分析考点一:空间几何体的结构特征温馨推荐您可前往百度文库小程序享受更优阅读体验不去了立即体验例1 如图,在透明塑料制成的长方体1111ABCD A B C D -容器内灌进一些水,将容器底面一边BC 固定于地面上,在将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变;③棱11A D 始终与水面EFGH 平行;④当1E AA ∈时,AE BF +是定值.其中正确说法是( D )(A )①②③(B )①③(C )①②③④(D )①③④考点二:空间几何体的三视图与直观图例2 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的正视图与侧视图的面积的比值为.1例3 一个四面体的顶点在空间直角坐标系中的坐标分别是(101),,,(110),,,(011),,,(000),,画该四面体三视图中的正视图时,以平面zOx 为投影面,则得到正视图可以为 A(A )(B )(C )(D )例4 用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图象是( A )例5 若某几何体的三视图如图所示,则这个几何体的直观图可以是( D )1'(A ) ABDC D 1C 1B 1A1P考点四:求空间几何体的表面积和体积例6 一个空间几何体的三视图,如图所示,则这个空间几何体的表面积是.4(1)π+例7 一个空间几何体的三视图及其相关数据如图所示,则这个空间几何体的表面积是( D )(A )112π(B )1162π+ (C )11π(D)112π+例8 如图所示,半径为R 的半圆内的阴影部分以直径AB 所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中30BAC ∠=).2R例9 四边形ABCD 中,(00)A ,,(10)B ,,(21)C ,,(03)D ,,绕y 轴旋转一周,则所得旋转体的体积为.83π例10 如图,已知某几何体的三视图如下(单位:㎝).(Ⅰ)画出这个几何体的直观图(不要求写画法);(Ⅱ)求这个几何体的表面积及体积.【解析】(Ⅰ)(Ⅱ)222S =+,310cm V =.考点三:几何体的展开与折叠例11 右图是一个正方体的展开图,将其折叠起来,变成正方体后的图形可能是( B )(A )(B )(C )(D )P A1A 1C 1DA 11Q PA1例6图俯视图侧视图例7图例12 将边长为a 的正方形ABCD 沿对角线AC 折起,使BD a =,则三棱锥D ABC -的体积为( D )(A )36a(B )312a(C3 (D3例13 如图,在直棱柱ABC A B C '''-中,底面是边长为3的等边三角形,4AA '=,M 为AA '的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC '到MCC '的交点为N ,求:(Ⅰ)该三棱柱的侧面展开图的对角线长;(Ⅱ)PC 与NC 的长;(Ⅲ)三棱锥C MNP -的体积.答案:(Ⅱ)425PC NC ==,;考点四:与球体结合的问题例14 一个正方体的体积是8,则这个正方体的内切球的表面积是( C )(A )8π(B )6π(C )4π(D )π例15 已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( A )(A(B(C(D例16 矩形ABCD 中,43AB BC ==,,沿AC 将矩形ABCD 折起,使面BAC ⊥面DAC ,则四面体A BCD -的外接球的体积为( C )(A )12512π(B )1259π(C )1256π(D )1253π例17 已知半径为2的球面上有A B C D 、、、四点,若AB CD =2=,则四面体ABCD 的体积的最大值为( B )(A (B(C)(D例18 如图,半径为R 的球O 中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是.22R πBCAC'B'A'PMN。
21版: 空间几何体及其表面积、体积(步步高)
§7.1空间几何体及其表面积、体积1.多面体的结构特征名称棱柱棱锥棱台图形含义①有两个面互相平行且全等,其余各面都是平行四边形.②每相邻两个四边形的公共边都互相平行有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分侧棱平行且相等相交于一点但不一定相等延长线交于一点侧面形状平行四边形三角形梯形2.旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等,相交于一点延长线交于一点垂直于底面轴截面 全等的矩形 全等的等腰三角形全等的等腰梯形圆 侧面展开图 矩形扇形扇环3.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l4.柱、锥、台、球的表面积和体积名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3概念方法微思考1.如何求旋转体的表面积?提示 求旋转体的侧面积时需要将曲面展开为平面图形计算,而表面积是侧面积与底面积之和.2.如何求不规则几何体的体积?提示 求不规则几何体的体积要注意分割与补形,将不规则的几何体通过分割或补形转化为规则的几何体求解.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × ) (3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.( √ )(4)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( × ) 题组二 教材改编2.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cm B .2 cm C .3 cm D.32 cm答案 B解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2.3.在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案 ③⑤ 题组三 易错自纠4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B.323π C .8π D .4π答案 A解析 由题意可知正方体的棱长为2,其体对角线为23即为球的直径,所以球的表面积为4πR 2=(2R )2π=12π,故选A.5.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.答案 1∶47解析 设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ×12b ×12c=148abc ,剩下的几何体的体积V 2=abc -148abc =4748abc ,所以V 1∶V 2=1∶47.6.Rt △ABC 的三个顶点都在球O 的球面上,AB =AC =2,若球心O 到平面ABC 的距离为1,则球O的半径为________,球O的表面积为________.答案312π解析Rt△ABC中,斜边BC=22,∴△ABC所在截面圆半径r=2,又O到平面ABC的距离为1,可得球O的半径R=r2+1=3,故球O的表面积为12π.空间几何体的结构特征1.(多选)以下命题,不正确的有()A.以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥B.以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.一个平面截圆锥,得到一个圆锥和一个圆台答案ABD解析由圆锥、圆台、圆柱的定义可知A,B错误,C正确.对于命题D,只有用平行于圆锥底面的平面去截圆锥,才能得到一个圆锥和一个圆台,D不正确.2.给出下列四个命题:①有两个侧面是矩形的立体图形是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱.其中不正确的命题为________.(填序号)答案①②③解析对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰不是侧棱时不一定成立(如图),故②错;对于③,若底面不是矩形,则③错;对于④,可知侧棱垂直于底面,故④正确.综上,命题①②③不正确.思维升华空间几何体概念辨析题的常用方法(1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定.(2)反例法:通过反例对结构特征进行辨析.空间几何体的表面积与体积命题点1 空间几何体的表面积例1 (2018·全国Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的轴截面的边长为x , 则由x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×22=12π.故选B. 命题点2 求简单几何体的体积例2 (1)如图,正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为( )A .3 B.32 C .1 D.32答案 C 解析 如题图,因为△ABC 是正三角形, 且D 为BC 中点,则AD ⊥BC .又因为BB 1⊥平面ABC ,AD ⊂平面ABC ,故BB 1⊥AD ,且BB 1∩BC =B ,BB 1,BC ⊂平面BCC 1B 1, 所以AD ⊥平面BCC 1B 1,所以AD 是三棱锥A -B 1DC 1的高. 所以11A B DC V 三棱锥-=1311B DC S ·AD =13×3×3=1.(2)母线长为1的圆锥,其侧面展开图的面积为π2,则该圆锥的体积为________.答案324π解析 设圆锥底面圆的半径为r ,高为h ,圆锥的侧面积S =πrl =π2,解得r =12,从圆锥的轴截面图中可得h =32,所以圆锥的体积 V =13πr 2h =13π×14×32=324π. 思维升华 空间几何体表面积、体积的求法 (1)旋转体的表面积问题注意其侧面展开图的应用.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)体积可用公式法、转换法、分割法、补形法等求解.跟踪训练1 如图,直三棱柱ABC -A 1B 1C 1的各条棱长均为2,D 为棱B 1C 1上任意一点,则三棱锥D -A 1BC 的体积是______.答案233解析 111D A BC B A BC V V --= =11A B BC V -=13×1B BCS ×3=233.与球有关的切、接问题例3 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3172 B .210 C.132 D .310答案 C解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M . 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132. 本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少?解 依题意,得该正四棱锥底面对角线的长为32×2=6,高为(32)2-⎝⎛⎭⎫12×62=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少?解 正四面体棱长为a ,则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π.思维升华 “切”“接”问题的处理规律 (1)“切”的处理首先要找准切点,通过作过球心的截面来解决. (2)“接”的处理抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.跟踪训练2 (2018·全国Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( ) A .12 3 B .18 3 C .24 3 D .54 3 答案 B解析 由等边△ABC 的面积为93,可得34AB 2=93, 所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3. 设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.。
22版:空间几何体及其表面积、体积(步步高)
§7.1空间几何体及其表面积、体积考试要求 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能用斜二测画法画出简单空间图形的直观图.3.了解球、棱柱、棱锥、台的表面积和体积的计算公式.1.多面体的结构特征名称棱柱棱锥棱台图形含义①有两个面互相平行且全等,其余各面都是平行四边形.②每相邻两个四边形的公共边都互相平行有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分侧棱平行且相等相交于一点但不一定相等延长线交于一点侧面形状平行四边形三角形梯形2.旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等,垂直于底面相交于一点延长线交于一点轴截面 全等的矩形全等的等腰三角形全等的等腰梯形圆面 侧面展开图 矩形扇形扇环3.直观图斜二测画法:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中x ′轴、y ′轴的夹角为45°或135°,z ′轴与x ′轴和y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段在直观图中仍平行于坐标轴,平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段在直观图中长度为原来的一半. 4.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.5.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l6.柱、锥、台、球的表面积和体积名称 几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3微思考1.如何求旋转体的表面积?提示 求旋转体的侧面积时需要将曲面展开为平面图形计算,而表面积是侧面积与底面积之和.2.柱体、锥体、台体体积之间有什么关系?提示题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)用一个平行于底面的平面截圆锥,得到一个圆锥和一个圆台.( √ ) (3)棱柱的侧棱都相等,侧面都是全等的平行四边形.( × )(4)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线.( × ) 题组二 教材改编2.如图,长方体ABCD -A ′B ′C ′D ′被截去一部分,其中EH ∥A ′D ′,剩下的几何体是( )A .棱台B .四棱柱C .五棱柱D .六棱柱 答案 C3.母线长为5的圆锥的侧面展开图的圆心角等于85π,则该圆锥的体积为________.答案 16π解析 由题意知,侧面展开图的弧长为5×85π=8π,设圆锥底面圆的半径为r , 则8π=2πr ,∴r =4,∴圆锥高h =52-42=3, ∴体积为13×π×42×3=16π.4.一个长方体的顶点都在球面上,且长方体的棱长分别为1,2,3,则球的表面积为_____. 答案 14π解析 设球的半径为R ,则2R =12+22+32=14,则R =142. ∴S =4πR 2=4π×144=14π.题组三 易错自纠5.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )答案 A解析 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.6.下面图形都是由六个全等的小正方形组成,其中可以折成正方体的是( )答案 C题型一 空间几何体命题点1 直观图例1 已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________. 答案22解析 如图所示,作出等腰梯形ABCD 的直观图.因为OE =(2)2-1=1,所以O ′E ′=12,E ′F =24,则直观图A ′B ′C ′D ′的面积S ′=1+32×24=22.命题点2 展开图例2 (2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, ∴r ·l =2.又圆锥侧面展开图为半圆, ∴12πl 2=2π, ∴l =2,∴r =1.思维升华 画几何体的直观图,掌握线段方向、长度两要素即可;几何体的展开图和原几何体的关系(形状和数量关系)是解题重点.跟踪训练1 (1)如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A .2+ 2 B.1+22 C.2+22 D .1+ 2答案 A解析 恢复后的原图形为一直角梯形,其上底为1,下底为1+2,高为2,所以S =12(1+2+1)×2=2+ 2.(2)(2020·安庆模拟)如图,正三棱柱ABC -A 1B 1C 1的侧棱长为a ,底面边长为b ,一只蚂蚁从点A 出发沿每个侧面爬到A 1,路线为A →M →N →A 1,则蚂蚁爬行的最短路程是( )A.a 2+9b 2B.9a 2+b 2C.4a 2+9b 2D.a 2+b 2答案 A解析 正三棱柱的侧面展开图是如图所示的矩形,矩形的长为3b ,宽为a ,则其对角线AA 1的长为最短路程.因此蚂蚁爬行的最短路程为a 2+9b 2.题型二 表面积与体积命题点1 表面积例3 (2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23,OO 1=a =2 3. 在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π. 命题点2 体积例4 (2020·新高考全国Ⅱ)棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱BB 1,AB 的中点,则三棱锥A 1-D 1MN 的体积为________. 答案 1解析 如图,由正方体棱长为2,得1A MN S △=2×2-2×12×2×1-12×1×1=32,又易知D 1A 1为三棱锥D 1-A 1MN 的高,且D 1A 1=2,∴111111113--= A D MN D A MN A MN V V S D A △··=13×32×2=1.思维升华 (1)空间几何体表面积的求法①旋转体的表面积问题注意其侧面展开图的应用.②多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (2)空间几何体体积问题的常见类型及解题策略 ①直接利用公式进行求解.②用转换法、分割法、补形法等方法进行求解.跟踪训练2 (1)(2018·全国Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的轴截面的边长为x , 则由x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×22=12π.(2)如图,在多面体ABCDEF 中,已知四边形ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为________.答案23解析 如图,过BC 作与EF 垂直的截面BCG ,作平面ADM ∥平面BCG ,取BC 的中点O ,连接GO ,FO ,由题意可得FO =32,FG =12,所以GO =FO 2-FG 2=22, 所以S △BCG =12×1×22=24,V 1=V BCG -ADM =S △BCG ·AB =24,V 2=2V F -BCG =2×13S △BCG ·GF=2×13×24×12=212,所以V =V 1+V 2=23.题型三 与球有关的切、接问题命题点1 简单几何体的外接球例5 (八省联考)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为________. 答案 61π解析 截面图如图所示,下底面半径为5,圆周直径为10.则圆台的下底面位于圆周的直径上,OC =OB =5,O ′C =4,∠OO ′C =π2,则圆台的高为3,V =13h (S 1+S 1S 2+S 2)=25π+16π+20π=61π.思维升华 (1)求解多面体的外接球时,经常用到截面图.如图所示,设球O 的半径为R ,截面圆O ′的半径为r ,M 为截面圆上任意一点,球心O 到截面圆O ′的距离为d ,则在Rt △OO ′M 中,OM 2=OO ′2+O ′M 2,即R 2=d 2+r 2.(2)求解球的内接正方体、长方体等问题的关键是把握球的直径即是几何体的体对角线. 命题点2 简单几何体的内切球例6 (2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OEDB ,即22-r 3=r 1, 解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.思维升华 “切”的问题处理规律(1)找准切点,通过作过球心的截面来解决. (2)体积分割是求内切球半径的通用方法.跟踪训练3 (1)已知三棱锥S -ABC 的三条侧棱两两垂直,且SA =1,SB =SC =2,若点P 为三棱锥S -ABC 的外接球的球心,则这个外接球的半径是________. 答案 32解析 如图所示,将三棱锥补形为长方体,则该三棱锥的外接球直径为长方体的体对角线,设外接球半径为R , 则(2R )2=12+22+22=9, ∴4R 2=9,R =32.即这个外接球的半径是32.(2)如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A.6π6 B.π3 C.π6 D.3π3答案 C解析 平面ACD 1,截球O 的截面为△ACD 1的内切圆,∵正方体棱长为1, ∴AC =CD 1=AD 1= 2. ∴内切圆半径r =tan 30°·AE =33×22=66. ∴S =πr 2=π×16=π6.空间几何体外接球问题的处理关键是确定球心及半径,常见的求解方法有如下几种: (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,根据4R 2=a 2+b 2+c 2求解. (3)利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 一、解方程确定球心的位置例1 已知正三棱锥S -ABC 的侧棱长为43,底面边长为6,则该正三棱锥外接球的表面积是________. 答案 64π解析 如图,过点S 作SE ⊥平面ABC 于点E ,记球心为O .∵在正三棱锥S -ABC 中,底面边长为6, 侧棱长为43,∴BE =23×32×6=23,∴SE =SB 2-BE 2=6.∵球心O 到四个顶点的距离相等,均等于该正三棱锥外接球的半径R , ∴OB =R ,OE =6-R .在Rt △BOE 中,OB 2=BE 2+OE 2,即R 2=12+(6-R )2, 解得R =4,∴外接球的表面积为S =4πR 2=64π.二、借助三角形的外心确定球心的位置例2 (2021·南昌市八一中学模拟)如图所示,在三棱锥S -ABC 中,△ABC 与△SBC 都是边长为1的正三角形,二面角A -BC -S 的大小为2π3,若S ,A ,B ,C 四点都在球O 的表面上,则球O 的表面积为( )A.7π3B.13π3C.4π3D .3π 答案 A解析 如图,取线段BC 的中点D ,连接AD ,SD ,由题意得AD ⊥BC ,SD ⊥BC ,∴∠ADS 是二面角A -BC -S 的平面角, ∴∠ADS =2π3, 由题意得BC ⊥平面ADS ,分别取AD ,SD 的三等分点E ,F ,在平面ADS 内,过点E ,F 分别作直线垂直于AD ,SD ,两条直线的交点即球心O ,连接OA ,则球O 半径R =OA ,由题意知BD =12,AD =32,DE =13AD =36,AE =23AD =33, 连接OD ,在Rt △ODE 中,∠ODE =π3,OE =3DE =12, ∴OA 2=OE 2+AE 2=712, ∴球O 的表面积为S =4πR 2=7π3. 三、有公共直角边四面体的外接球问题例3 (2021·新疆维吾尔自治区模拟)在四面体ABCD 中,AB =2,DA =DB =CA =CB =1,则四面体ABCD 的外接球的表面积为( )A .πB .2πC .3πD .4π答案 B解析取AB的中点O,由AB=2,DA=DB=CA=CB=1,所以CA2+CB2=AB2,AD2+BD2=AB2,可得∠ACB=∠ADB=90°,所以OA=OB=OC=OD=2 2,即O为外接球的球心,球的半径R=2 2,所以四面体ABCD的外接球的表面积为S=4πR2=4π×12=2π.四、对棱相等的四面体外接球问题例4 在四面体ABCD中,若AB=CD=3,AC=BD=2,AD=BC=5,则四面体ABCD 的外接球的表面积为()A.2πB.4πC.6πD.8π答案 C解析由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以3,2,5为三边的三角形作为底面,且分别以x,y,z长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,并且x2+y2=3,x2+z2=5,y2+z2=4,则有(2R)2=x2+y2+z2=6(R为球的半径),得2R2=3,所以球的表面积为S =4πR2=6π.。
高二数学必修2空间几何体的表面积和体积
S圆 整理课锥 = 件 S 侧 扇 = n 3l6 20 11 2 9 l扇 lrl
2r
l
圆锥的侧面展开图是扇形
rO
S r2 r l r(r l)
思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形?展开的图形与原图 有什么关系?
r1
l
r2
扇环
S 圆= 台 S 扇 侧 = 环 ( r1 r2)l
O C1
B1
D A
D A11
C B
O C1
B1
整理课件
49
分析:正方体内接于球,则由球和正方体都是中心对称图形可
知,它们中心重合,则正方体对角线与球的直径相等。
D A
D A11
C B
O C1
B1
D A
D A11
C B
O C1
B1
略解:
RtB1D1D中: B1D 2R,B1D 2a
(2R)2 a2 ( 2a)2,得 :R 3 a 2
堆螺帽大约有多少个( 取3.14)?
解:六角螺帽的体积是六棱柱 的体积与圆柱体积之差,即:
V 3122 61 03.1 4(1)0 210
4
2
295(6mm3)
2.95(6cm3) 所以螺帽的个数为 5 .8 10 (7 0 .8 0 2 .9) 5 2 6 (5 个2 ) 答:这堆螺帽大约有252个.
6/24/2021整8:理14课:08件PM 云在漫步
24
解:由圆台的表面积公式得 花盆的表面积:
20cm
15cm
S15 21 51 52 015 1.52 15cm
2 2 2 2
999(cm2)
答:花盆的表面积约是999 cm 2 .
高二数学空间几何体的表面积与体积试题答案及解析
高二数学空间几何体的表面积与体积试题答案及解析1.正四面体的所有棱长都为2,则它的体积为________.【答案】.【解析】试题分析:过作,则是的中心,连接,则,,在中,,所以.【考点】多面体的体积.2.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.【答案】.【解析】设圆锥的底面半径和高为,则其母线长;所以圆锥的侧面积,底面面积,则它的侧面积与底面积的比为.【考点】圆锥的侧面积公式.3.如图,为圆的直径,为圆周上异于、的一点,垂直于圆所在的平面,于点,于点.(1)求证:平面;(2)若,,求四面体的体积.【答案】(1)证明见解析;(2).【解析】(1)利用线面垂直的判断定理证明线面垂直,条件齐全,证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高,中线和顶角的角平分线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形等等;(2)利用棱锥的体积公式求体积.(3)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.(4)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算.试题解析:(1)证明:∵BC为圆O的直径∴CD⊥BD∵AB⊥圆O所在的平面∴AB⊥CD 且AB BD=B∴CD⊥平面ABD又∵BF平面ABD ∴CD⊥BF又∵BF⊥AD 且AD CD="D"∴BF⊥平面ACD 6分(2)法一:∵AB=BC=,∠CBD="45°" ∴BD=CD=∵BE⊥AC ∴E为AC中点又∵CD⊥平面ABD∴E到平面BDF的距离为在Rt△ABD中,由于BF⊥AD 得∴∴ 13分法二:∵AB=BC=,∠CBD="45°" ∴BD=CD=∵BE⊥AC ∴E为AC中点∴E到边AD的距离为在Rt△ABD中,由于BF⊥AD,得,由(1)知BF⊥平面DEF∴ 13分【考点】(1)直线与平面垂直的判定;(2)求四面体的体积.4.如图,一个球形广告气球被一束入射角为的平行光线照射,其投影是一个最长的弦长为米的椭圆,则制作这个广告气球至少需要的面料是___________.【答案】【解析】由椭圆的最长的弦长为米,知椭圆的,设气球的半径为,入射角为的平行光线与底面所成角就为,则有,即,从而气球的表面积为.【考点】球及球的表面积计算.5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞,且知,若仍用这个容器盛水,则最多可盛水的体积是原来的 .【答案】【解析】过作截面平行于平面,可得截面下体积为原体积的,若过点F,作截面平行于平面,可得截面上的体积为原体积的,若C为最低点,以平面为水平上面,则体积为原体积的,此时体积最大.【考点】体积相似计算.6.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为的圆,且这个几何体是实心球体的一部分,则这个几何体的体积为.【答案】.【解析】由三视图可知,原几何体是球体沿其直径切去四分之一部分,所以其体积是四分之三球体积,即,其中【考点】由已知三视图还原为原几何体,球的体积公式.7.如图,在直角梯形中,°,,平面,,,设的中点为,.(1) 求证:平面;(2) 求四棱锥的体积.【答案】(1)证明见解析;(2).【解析】(1)通过勾股定理通过计算可证明,然后结合条件可证明得到结果;(2)首先根据条件和(1)的结论可证明平面,得到,再利用勾股定理可求得的值,进而求求得四棱锥的体积.(1)证明:,.又,.(2),.又平面,∴.∵,∴平面.∵平面,∴.∵..∴.【考点】1、空间直线与平面的垂直关系;2、棱锥的体积计算.8.如图所示,在四棱锥中,底面是直角梯形,,,侧棱底面,且,则点到平面的距离为()A.B.C.D.【答案】D【解析】由侧棱底面可知,,连接BD,,则.连接AC,直角梯形中,可得,。
步步高高三复习题库 第2讲 空间几何体的表面积与体积 精品
第2讲 空间几何体的表面积与体积一、选择题1.(2015·全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A.14斛 B.22斛 C.36斛D.66斛解析 设米堆的底面半径为r 尺,则π2r =8,所以r =16π.所以米堆的体积为V =14×13π·r 2·5=π12·⎝ ⎛⎭⎪⎫16π2·5≈3209(立方尺). 故堆放的米约有3209÷1.62≈22(斛). 答案 B2.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A.2B.92C.32D.3解析 由三视图知,该几何体是四棱锥,底面是直角梯形,且S 底=12(1+2)×2=3.∴V =13x ·3=3,解得x =3. 答案 D3.(2017·宁波十校联考)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.2+ 3C.1+2 2D.2 2解析四面体的直观图如图所示.侧面SAC⊥底面ABC,且△SAC与△ABC均为腰长是2的等腰直角三角形,SA=SC=AB=BC=2,AC=2.设AC的中点为O,连接SO,BO,则SO⊥AC,又SO⊂平面SAC,平面SAC∩平面ABC=AC,∴SO⊥平面ABC,又BO⊂平面ABC,∴SO⊥BO.又OS=OB=1,∴SB=2,故△SAB与△SBC均是边长为2的正三角形,故该四面体的表面积为2×12×2×2+2×34×(2)2=2+ 3.答案 B4.(2015·全国Ⅱ卷)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π解析因为△AOB的面积为定值,所以当OC垂直于平面AOB时,三棱锥O-ABC的体积取得最大值.由13×12R2×R=36,得R=6.从而球O的表面积S=4πR2=144π.答案 C5.(2017·青岛模拟)如图,四棱锥P-ABCD的底面ABCD为平行四边形,NB=2PN,则三棱锥N-P AC与三棱锥D-P AC的体积比为()A.1∶2B.1∶8C.1∶6D.1∶3解析设点P,N在平面ABCD内的投影分别为点P′,N′,则PP′⊥平面ABCD,NN′⊥平面ABCD,所以PP′∥NN′,则在△BPP′中,由BN=2PN得NN′PP′=23.V 三棱锥N -P AC =V 三棱锥P -ABC -V 三棱锥N -ABC =13S △ABC ·PP ′- 13S △ABC ·NN ′=13S △ABC ·(PP ′-NN ′)=13S △ABC ·13PP ′=19S △ABC ·PP ′,V 三棱锥D -P AC =V 三棱锥P -ACD =13S △ACD ·PP ′,又∵四边形ABCD 是平行四边形,∴S △ABC =S △ACD ,∴V 三棱锥N -P AC V 三棱锥D -P AC =13.故选D.答案 D 二、填空题6.(2016·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm 2,体积是________cm 3.解析 由三视图可知该几何体由一个正方体和一个长方体组合而成,上面正方体的边长为2 cm ,下面长方体是底面边长为4 cm ,高为2 cm ,其直观图如右图:其表面积S =6×22+2×42+4×2×4-2×22=80(cm 2).体积V =2×2×2+4×4×2=40(cm 3). 答案 80 407.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为________.解析 依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径为R ,则2R =12+12+(2)2=2, 解得R =1,所以V =4π3R 3=4π3. 答案 43π8.(2017·湖州质检)某几何体的三视图如图所示,则该几何体的体积为________;表面积为________.解析 由三视图可知,该几何体是一个底面半径为1,高为2的圆柱和底面半径为1,高为1的半圆锥拼成的组合体.∴体积V =π×12×2+12×13π×12×1=136π;半圆锥母线l =2,S 表=π×12+2π×1×2+12π×12+12π×1×2+12×2×1=11+22π+1. 答案 136π11+22π+1 三、解答题9.已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)如果点P ,Q 在正视图中所示位置,P 为所在线段中点,Q 为顶点,求在几何体表面上,从P 点到Q 点的最短路径的长.解 (1)由三视图知该几何体是由一个圆锥与一个圆柱组成的组合体,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和. S 圆锥侧=12(2πa )·(2a )=2πa 2, S 圆柱侧=(2πa )·(2a )=4πa 2, S 圆柱底=πa 2,所以S 表=2πa 2+4πa 2+πa 2=(2+5)πa 2. (2)沿P 点与Q 点所在母线剪开圆柱侧面,如图.则PQ =AP 2+AQ 2=a 2+(πa )2=a 1+π2, 所以从P 点到Q 点在侧面上的最短路径的长为a 1+π2.10.(2015·全国Ⅱ卷)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值. 解 (1)交线围成的正方形EHGF 如图所示.(2)如图,作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,AH =10,HB =6. 故S 四边形A 1EHA =12×(4+10)×8=56, S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱, 所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确.11.若某一几何体的正视图与侧视图均为边长是1的正方形,且其体积为12,则该几何体的俯视图可以是( )解析 若俯视图为A ,则该几何体为正方体,其体积为1,不满足条件.若俯视图为B ,则该几何体为圆柱,其体积为π⎝ ⎛⎭⎪⎫122×1=π4,不满足条件.若俯视图为C ,则该几何体为三棱柱,其体积为12×1×1×1=12,满足条件.若俯视图为D ,则该几何体为圆柱的14,体积为14π×1=π4,不满足条件. 答案 C12.(2017·丽水调研)在三棱锥P -ABC 中,P A ⊥平面ABC ,AC ⊥BC ,D 为侧棱PC 上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )A.AD ⊥平面PBC 且三棱锥D -ABC 的体积为83B.BD ⊥平面P AC 且三棱锥D -ABC 的体积为83 C.AD ⊥平面PBC 且三棱锥D -ABC 的体积为163 D.BD ⊥平面P AC 且三棱锥D -ABC 的体积为163解析 因为P A ⊥平面ABC ,所以P A ⊥BC ,又AC ⊥BC ,P A ∩AC =A ,所以BC ⊥平面P AC ,所以BC ⊥AD ,又由三视图可得,在△P AC 中,P A =AC =4,D 为PC 的中点,所以AD ⊥PC ,又PC ∩BC =C ,故AD ⊥平面PBC . 又由三视图可知BC =4,∠ADC =90°,BC ⊥平面P AC , 故V D -ABC =V B -ADC =13×12×22×22×4=163. 答案 C13.(2017·嘉兴调研)一个空间几何体的三视图(单位:cm)如图所示,则侧视图的面积为________cm 2,该几何体的体积为________cm 3.解析 根据几何体的三视图,得:该几何体的左边是半圆锥,右边是直三棱锥的组合体,如图所示;且该几何体侧视图是底边长为2,高为1的等腰三角形,面积为12×2×1=1 cm 2,该几何体的体积为V 半圆锥+V 三棱锥=13×12×π×12×1+13×12×2×1×1=⎝ ⎛⎭⎪⎫π6+13 cm 3. 答案 1 π6+1314.四面体ABCD 及其三视图如图所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H .(1)求四面体ABCD 的体积; (2)证明:四边形EFGH 是矩形. (1)解 由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1, 又BD ∩DC =D , ∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明 ∵BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG , 平面EFGH ∩平面ABC =EH , ∴BC ∥FG ,BC ∥EH , ∴FG ∥EH .同理,EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,BC ⊂平面BDC ,∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形.15.如图所示,A 1A 是圆柱的母线,AB 是圆柱底面圆的直径,C 是底面圆周上异于A ,B 的任意一点,AA 1=AB =2. (1)求证:BC ⊥平面A 1AC ;(2)求三棱锥A 1-ABC 的体积的最大值.(1)证明 因为C 是底面圆周上异于A ,B 的一点,且AB 为底面圆的直径,所以BC ⊥AC .因为AA 1⊥平面ABC ,BC ⊂平面ABC , 所以AA 1⊥BC .因为AA 1∩AC =A ,AA 1⊂平面A 1AC ,AC ⊂平面A 1AC ,所以BC ⊥平面A 1AC . (2)解 法一 设AC =x ,在Rt △ABC 中,BC =AB 2-AC 2=4-x 2(0<x <2), 故V =13S △ABC ×AA 1=13×12×AC ×BC ×AA 1=13x 4-x 2(0<x <2),即VA 1-ABC =13x 4-x 2=13x 2(4-x 2)=13-(x 2-2)2+4. 因为0<x <2,所以0<x 2<4.所以当x 2=2,即x =2时,三棱锥A 1-ABC 的体积取得最大值为23. 法二 在Rt △ABC 中,AC 2+BC 2=AB 2=4,V A 1-ABC =13S △ABC ×AA 1=13×12×AC ×BC ×AA 1=13×AC ×BC ≤13×AC 2+BC 22=13×AB 22=23.当且仅当AC =BC 时等成立,此时AC =BC = 2. 所以三棱锥A 1-ABC 的体积的最大值为23.。
19版:§8.2 空间几何体的表面积与体积(步步高)
§8.2 空间几何体的表面积与体积最新考纲考情考向分析了解球、棱柱、棱锥、棱台的表面积和体积的计算公式.本部分是高考考查的重点内容,主要涉及空间几何体的表面积与体积的计算.命题形式以选择题与填空题为主,考查空间几何体的表面积与体积的计算,涉及空间几何体的结构特征、三视图等内容,要求考生要有较强的空间想象能力和计算能力,广泛应用转化与化归思想.1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式 S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l3.柱、锥、台、球的表面积和体积名称几何体 表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 31.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差. (2)底面面积及高都相等的两个同类几何体的体积相等. 2.几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)锥体的体积等于底面积与高之积.( × ) (3)球的体积之比等于半径比的平方.( × )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )(6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( × ) 题组二 教材改编2.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cm B .2 cm C .3 cm D.32 cm答案 B解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2.3.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.解析 设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ×12b ×12c=148abc ,剩下的几何体的体积V 2=abc -148abc =4748abc ,所以V 1∶V 2=1∶47. 题组三 易错自纠4.(2017·陕西西安一中月考)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4答案 D解析 由几何体的三视图可知,该几何体为半圆柱,直观图如图所示.表面积为2×2+2×12×π×12+π×1×2=4+3π.5.(2016·全国Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B.323π C .8π D .4π答案 A解析 由题意可知正方体的棱长为2,其体对角线23即为球的直径,所以球的表面积为4πR 2=(2R )2π=12π,故选A.6.(2018·大连调研)如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为________.答案 1∶1解析 由三视图可知半球的半径为2,圆锥底面圆的半径为2,高为2,所以V 圆锥=13×π×23=83π,V 半球=12×43π×23=163π,所以V 剩余=V 半球-V 圆锥=83π,故剩余部分与挖去部分的体积之比为1∶1.题型一 求空间几何体的表面积1.(2016·全国Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π 答案 A解析 由题意知,该几何体的直观图如图所示,它是一个球(被过球心O 且互相垂直的三个平面)切掉左上角的18后得到的组合体,其表面积是球面面积的78和三个14圆面积之和.由43πR 3-18×43πR 3=28π3,得球的半径R =2. 则得S =78×4π×22+3×14π×22=17π,故选A.2.(2017·黑龙江哈师大附中一模)已知某几何体的三视图如图所示,则该几何体的表面积为( )A.73B.172 C .13 D.17+3102答案 C解析 由三视图可知几何体为三棱台,作出直观图如图所示.则CC ′⊥平面ABC ,上、下底均为等腰直角三角形,AC ⊥BC ,AC =BC =1,A ′C ′=B ′C ′=C ′C =2,∴AB =2,A ′B ′=2 2.∴棱台的上底面面积为12×1×1=12,下底面面积为12×2×2=2,梯形ACC ′A ′的面积为12×(1+2)×2=3,梯形BCC ′B ′的面积为12×(1+2)×2=3,过A 作AD ⊥A ′C ′于点D ,过D 作DE ⊥A ′B ′,则AD =CC ′=2, DE 为△A ′B ′C ′斜边高的12,∴DE =22,∴AE =AD 2+DE 2=32, ∴梯形ABB ′A ′的面积为12×(2+22)×32=92,∴几何体的表面积S =12+2+3+3+92=13,故选C.思维升华 空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.题型二 求空间几何体的体积命题点1 以三视图为背景的几何体的体积典例 (2017·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3 C.3π2+1 D.3π2+3 答案 A解析 由几何体的三视图可知,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长是2的等腰直角三角形,高为3的三棱锥的组合体, ∴该几何体体积为V =13×12π×12×3+13×12×2×2×3=π2+1.故选A.命题点2 求简单几何体的体积典例 (2018·广州调研)已知E ,F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱AA 1,CC 1的中点,则四棱锥C 1—B 1EDF 的体积为________. 答案 16a 3解析 方法一 如图所示,连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,EF ,过点O 1作O 1H ⊥B 1D 于点H .因为EF ∥A 1C 1,且A 1C 1⊄平面B 1EDF ,EF ⊂平面B 1EDF , 所以A 1C 1∥平面B 1EDF .所以C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离.易知平面B 1D 1D ⊥平面B 1EDF , 又平面B 1D 1D ∩平面B 1EDF =B 1D , 所以O 1H ⊥平面B 1EDF ,所以O 1H 等于四棱锥C 1—B 1EDF 的高. 因为△B 1O 1H ∽△B 1DD 1, 所以O 1H =B 1O 1·DD 1B 1D =66a .所以VC 1-B 1EDF =131B EDF S 四边形·O 1H =13×12·EF ·B 1D ·O 1H =13×12·2a ·3a ·66a =16a 3.方法二 连接EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,11111C B EDF B C EFD C EF V V V ---=+四棱锥三棱锥三棱锥=13·1C EF S ∆·(h 1+h 2)=16a 3. 思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解. 跟踪训练 (1)(2017·新乡二模)已知一个几何体的三视图如图所示,则该几何体的体积为( )A.323B.163C.83D.43答案 C解析 该几何体由一个三棱锥和一个三棱柱组合而成,直观图如图所示,V =V 柱+V 锥=12×(1+1)×1×2+13×12×(1+1)×1×2=83,故选C.(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( ) A.23 B.33 C.43 D.32答案 A解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32, 取AD 的中点O ,连接GO ,易得GO =22, ∴S △AGD =S △BHC =12×22×1=24,∴多面体的体积V =V 三棱锥E -ADG +V 三棱锥F -BCH +V 三棱柱AGD -BHC =2V 三棱锥E -ADG +V 三棱柱AGD -BHC =13×24×12×2+24×1=23.故选A. 题型三 与球有关的切、接问题典例 (2016·全国Ⅲ)在封闭的直三棱柱ABC —A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4πB.9π2C .6π D.32π3答案 B解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2.引申探究1.若将本例中的条件变为“直三棱柱ABC —A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积. 解 将直三棱柱补形为长方体ABEC —A 1B 1E 1C 1, 则球O 是长方体ABEC —A 1B 1E 1C 1的外接球. ∴体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13. 故S 球=4πR 2=169π.2.若将本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.解 如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4-r )2+(2)2=r 2, 解得r =94,则球O 的体积V 球=43πr 3=43π×⎝⎛⎭⎫943=243π16.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解. (2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解. 跟踪训练 (2018·深圳调研)如图所示,在平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为( )A.3π2 B .3π C.2π3D .2π答案 A解析 如图,取BD 的中点为E ,BC 的中点为O ,连接AE ,OD ,EO ,AO .因为AB =AD ,所以AE ⊥BD .由于平面ABD ⊥平面BCD , 所以AE ⊥平面BCD .因为AB =AD =CD =1,BD =2, 所以AE =22,EO =12.所以OA =32. 在Rt △BDC 中,OB =OC =OD =12BC =32,所以四面体ABCD 的外接球的球心为O ,半径为32. 所以该球的体积V =43π×⎝⎛⎭⎫323=3π2.三视图(基本的、和球联系的)考点分析 三视图是高考重点考查的一个知识点,主要考查由几何体的三视图还原几何体的形状,进而求解表面积、体积等知识,所涉及的几何体既包括柱、锥、台、球等简单几何体,也包括一些组合体,处理此类题目的关键是通过三视图准确还原几何体. 典例 (1)已知某几何体的三视图如图所示,则该几何体的体积等于( )A.1603 B .160 C .64+32 2 D .60(2)某组合体的三视图如图所示,则该组合体的体积为________.解析 (1)由题意知该几何体是由一个直三棱柱和一个四棱锥组成的组合体,如图所示,其中直三棱柱的高为8-4=4,故V 直三棱柱=8×4=32,四棱锥的底面为边长为4的正方形,高为4,故V 四棱锥=13×16×4=643,故该几何体的体积V =V 直三棱柱+V 四棱锥=32+643=1603,故选A.(2)如图所示,该组合体由一个四棱锥和四分之一个球组成,球的半径为1,四棱锥的高为球的半径,四棱锥的底面为等腰梯形,上底为2,下底为1,高为32,所以该组合体的体积V =13×12×(2+1)×32×1+14×43π×13=34+π3.答案 (1)A (2)34+π3。
高中数学步步高必修2习题部分Word版文档1.3 第2课时
第2课时 柱体、锥体、台体、球的体积与球的表面积一、选择题1. 已知高为3的棱柱ABC —A 1B 1C 1的底面是边长为1的正三角形(如图),则三棱锥B 1—ABC 的体积为( )A.14B.12C.36D.342.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 23.有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 4.正方体的内切球和外接球的体积之比为( )A .1∶3B .1∶3C .1∶33D .1∶95.若三个球的表面积之比为1∶2∶3,则它们的体积之比为( )A .1∶2∶3B .1∶2∶ 3C .1∶22∶33D .1∶4∶76.一个圆锥与一个球的体积相等,圆锥的底面半径是球半径的3倍,圆锥的高与球半径之比为( )A .4∶9B .9∶4C .4∶27D .27∶4二、填空题7.下图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为2的等腰梯形,则该几何体的体积是________.8.将一钢球放入底面半径为3 cm的圆柱形玻璃容器中,水面升高4 cm,则钢球的半径是________ cm.9.(1)表面积相等的正方体和球中,体积较大的几何体是________;(2)体积相等的正方体和球中,表面积较小的几何体是________.三、解答题10.在球面上有四个点P、A、B、C,如果P A、PB、PC两两垂直且P A=PB=PC=a,求这个球的体积.11. 如图所示,一个圆锥形的空杯子上放着一个直径为8 cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?12.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.四、探究与拓展13.有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.答案1.D 2.B 3.A 4.C 5.C 6.A 7.73π 8.3 9.(1)球 (2)球 10.32πa 3 11.解 要使冰淇淋融化后不会溢出杯子,则必须V 圆锥≥V 半球,V 半球=12×43πr 3=12×43π×43,V 圆锥=13Sh =13πr 2h =13π×42×h .依题意:13π×42×h ≥12×43π×43,解得h ≥8.即当圆锥形杯子杯口直径为8 cm ,高大于或等于8 cm 时,冰淇淋融化后不会溢出杯子. 又因为S 圆锥侧=πrl =πrh 2+r 2,当圆锥高取最小值8时,S 圆锥侧最小,所以高为8 cm 时,制造的杯子最省材料. 12.解 由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V 球=13π·(3r )2·3r -43πr 3=53πr 3,而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3, 由V =V ′,得h =315r .即容器中水的深度为315r . 13.解 设正方体的棱长为a .如图所示.①正方体的内切球球心是正方体的中心,切点是正方体六个面的中心,经过四个切点及球心作截面,所以有2r 1=a ,r 1=a 2,所以S 1=4πr 21=πa 2.②球与正方体的各棱的切点在每条棱的中点,过球心作正方体的对角面得截面,2r 2=2a ,r2=22a,所以S2=4πr22=2πa2.③正方体的各个顶点在球面上,过球心作正方体的对角面得截面,所以有2r3=3a,r3=32a,所以S3=4πr23=3πa2.综上可得S1∶S2∶S3=1∶2∶3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10. 若正方体外接球的表面积是 ,则正方体的棱长等于________.
11. 如图,在正方体
中,点P是上底面
内一动点,则三棱锥
的正视图与侧视图的面积的比值为________.
12. 如图,已知正方体ABCD–A1B1C1D1的棱长为1,则四棱锥A1–BB1D1D的体积为__________.
步步高高二数学暑假作业:【文】作业12 空间几何体的体积、表面积、三视图
三、解答题
13. 已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为 、高为 的等腰三角形,侧视图是一个底边长为 、高为 的等腰三角 形.
(1)求该几何体的体积V; (2)求该几何体的侧面积S.
14. 一个高为 的圆锥内接于一个体积为 (1)圆锥的侧面积; (2)圆锥的内切球的体积.
的球,在圆锥内又有一个内切球,求:
步步高高二数学暑假作业:【文】作业12 空间几何体的体积、表面积、三视图
一、单选题
1. 一个正方体内接于一个球,过球心作一截面,如图所示,则截面的可能图形是( )
A.①②
B.②④
C.①②③
D.②③④
2. 一平面截球O得到半径为
的圆面,球心到这个平面的距离是 ,则球的半径是( )
A.
B.
C.
D.
3. 某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点 在正视图上的对应点为 ,圆柱表面上的点 在左视图上的对应点 为 ,则在此圆柱侧面上,从 到 的路径中,最短路径的长度为( )
Байду номын сангаас
A.
B.
C.
D.2
4. 某三棱锥的三视图如图所示,则该三棱锥的体积是( )
步步高高二数学暑假作业:【文】作业12 空间几何体的体积、表面积、三视图
A.
B.
C.
D.
5. 体积为 的圆台,一个底面积是另一个底面积的 倍,那么截得这个圆台的圆锥的体积是( )
A.
B.
C.
D.
6. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构 件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
A.
B.
C.
D.
7. 已知直三棱柱
()
A.
B.
C.
D.
步步高高二数学暑假作业:【文】作业12 空间几何体的体积、表面积、三视图
8. 某几何体的三视图如图所示(单位: ),则该几何体的体积(单位: )是( )
A.
B.
C.
D.
二、填空题
9. 若一个圆锥的轴截面是等边三角形,其面积为 ,则这个圆锥的母线长为________.