八年级数学下册《特殊的平行四边形》教案
八年级数学下册 18.2.3 特殊的平行四边形教案 (新版)新人教版
18.2.3 特殊的平行四边形一、教学目标(1)掌握菱形的概念、性质(2)在对菱形特殊性质的探索过程中,理解特殊与一般的关系.二、课时安排1课时三、教学重点菱形的性质。
四、教学难点探索菱形的性质五、教学过程(一)新课导入上面的图案我们在生活中经常遇到,图中有很多四边形,它们是平行四边形吗?是矩形吗?它们有什么特点?(二)讲授新课【定义】:有一组邻边相等的平行四边形叫做菱形。
日常生活中具有菱形形象的离子:【菱形的性质】1、菱形是特殊的平行四边形,它具有平行四边形的一切性质。
2、菱形的特殊性质。
边:菱形的四条边都相等;对角线:菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角;对称性:菱形是轴对称图形,它的对称轴就是对角线所在的直线。
如图,根据菱形的性质,在菱形ABCD中:(1)AB=BC=CD=DA(2)AC⊥BD,且AO=CO,BO=DO;∠ABO=∠CB0,∠BCO=∠DCO∠CDO=∠ADO,∠DAO=∠BAO想一想:如何证明菱形的性质呢?菱形的性质:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角. 已知:如图,四边形ABCD是菱形.求证: AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ADC和∠ABC.证明:(1)∵四边形ABCD是菱形,∴DA=AB(菱形的定义),OD=OB (平行四边形的对角线互相平分),∴ AC ⊥ DB ,AC平分∠DAB(三线合一).同理: AC平分∠DCB ;DB平分∠ADC和∠ABC.3、菱形的面积例、如图,菱形花坛ABCD的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD.求两条小路的长(结果保留小数点后两位)和花坛的面积(结果保留小数点后一位).解:∵花坛ABCD的形状是菱形。
∴ AC⊥BD,∠ABO=∠ABC=×60°在Rt△OAB中,AO=AB=×20=10BO=∴花坛的两条小路长AC=2AO=20(m) BD=2BO=20≈34.64(m2)∴花坛的面积S菱形ABCD=4×S△OAB=AC·BD=200≈346.4(m2)总结:菱形的面积公式:S菱形ABCD=AC·BD(三)重难点精讲菱形的性质(四)归纳小结菱形的性质:1、具有平行四边形的一切性质;2、菱形的四条边都相等;3、菱形的两条对角线相互垂直平分,并且每一条对角线平分一组对角。
精编新人教版八年级数学下册第十八章平行四边形18.2特殊的平行四边形教案(6课时)
18.2 特殊的平行四边形(6课时)18.2.1 矩形第1课时矩形的性质1.理解并掌握矩形的性质定理及推论;(重点)2.会用矩形的性质定理及推论进行推导证明;(重点)3.会综合运用矩形的性质定理、推论以及特殊三角形的性质进行证明与计算.(难点)一、情境导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状.我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形,如图所示.二、合作探究探究点一:矩形的性质【类型一】 运用矩形的性质求线段或角在矩形ABCD 中,O 是BC 的中点,∠AOD =90°,矩形ABCD的周长为24cm ,则AB 长为( )A .1cmB .2cmC .2.5cmD .4cm解析:在矩形ABCD 中,O 是BC 的中点,∠AOD =90°.根据矩形的性质得到△ABO ≌△OCD ,则OA =OD ,∠DAO =45°,所以∠BOA =∠BAO =45°,即BC =2AB .由矩形ABCD 的周长为24cm ,得2AB +4AB =24cm ,解得AB =4cm.故选D.方法总结:解题时矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.【类型二】 运用矩形的性质解决有关面积问题如图,矩形ABCD 的对角线的交点为O ,EF 过点O 且分别交AB ,CD 于点E ,F ,则图中阴影部分的面积是矩形ABCD 的面积的( ) A.15 B.14 C.13 D.310解析:∵在矩形ABCD 中,AB ∥CD ,OB =OD ,∴∠ABO =∠CDO .在△BOE 和△DOF 中,⎩⎪⎨⎪⎧∠ABO =∠CDO ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA),∴S △BOE=S △DOF ,∴S 阴影=S △AOB =14S 矩形ABCD .故选B. 方法总结:运用矩形的性质,通过证明全等三角形进行转化,将求不规则图形的面积转化为求简单图形面积是解题的关键.【类型三】运用矩形的性质证明线段相等如图,在矩形ABCD 中,以顶点B 为圆心、边BC 长为半径作弧,交AD 边于点E ,连接BE ,过C 点作CF ⊥BE 于F .求证:BF =AE .解析:利用矩形的性质得出AD ∥BC ,∠A =90°,再利用全等三角形的判定得出△BFC ≌△EAB ,进而得出答案.证明:在矩形ABCD 中,AD ∥BC ,∠A =90°,∴∠AEB =∠FBC .∵CF ⊥BE ,∴∠BFC =∠A =90°.由作图可知,BC =BE .在△BFC和△EAB 中,⎩⎪⎨⎪⎧∠A =∠CFB ,∠AEB =∠FBC ,EB =BC ,∴△BFC ≌△EAB (AAS),∴BF =AE .方法总结:涉及与矩形性质有关的线段的证明,可运用题设条件结合三角形全等进行证明,一般是将两条线段转化到一对全等三角形中进行证明.【类型四】 运用矩形的性质证明角相等如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF =ED ,EF ⊥ED .求证:AE 平分∠BAD .解析:要证AE 平分∠BAD ,可转化为△ABE 为等腰直角三角形,得AB =BE .又AB =CD ,再将它们分别转化为两全等三角形的两对应边,根据全等三角形的判定和矩形的性质,即可求证.证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠BAD =90°,AB =CD ,∴∠BEF +∠BFE =90°.∵EF ⊥ED ,∴∠BEF +∠CED =90°.∴∠BFE =∠CED ,∴∠BEF =∠EDC .在△EBF 与△DCE 中,⎩⎪⎨⎪⎧∠BFE =∠CED ,EF =ED ,∠BEF =∠EDC ,∴△EBF ≌△DCE (ASA).∴BE =CD .∴BE =AB ,∴∠BAE =∠BEA =45°,∴∠EAD =45°,∴∠BAE =∠EAD ,∴AE 平分∠BAD .方法总结:矩形的问题可以转化到直角三角形或等腰三角形中去解决.探究点二:直角三角形斜边上的中线的性质如图,在△ABC 中,AD 是高,E 、F 分别是AB 、AC 的中点.(1)若AB =10,AC =8,求四边形AEDF 的周长;(2)求证:EF 垂直平分AD .解析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可得DE =AE =12AB ,DF =AF =12AC ,再根据四边形的周长的公式计算即可得解;(2)根据“到线段两端点距离相等的点在线段的垂直平分线上”证明即可.(1)解:∵AD 是△ABC 的高,E 、F 分别是AB 、AC 的中点,∴DE=AE =12AB =12×10=5,DF =AF =12AC =12×8=4,∴四边形AEDF 的周长=AE +DE +DF +AF =5+5+4+4=18;(2)证明:∵DE =AE ,DF =AF ,∴E 、F 在线段AD 的垂直平分线上,∴EF 垂直平分AD .方法总结:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解.三、板书设计1.矩形的性质矩形的四个角都是直角;矩形的对角线相等.2.直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.通过多媒体演示知识的探究过程,让学生在体验、实践的过程中有更直观地认识,扩大认知结构,发展能力,更好地理解平行四边形与矩形之间的从属关系和内在联系,使课堂教学真正落实到学生的发展上.第2课时矩形的判定1.掌握矩形的判定方法;(重点)2.能够运用矩形的性质和判定解决实际问题.(难点)一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究探究点一:有一个角是直角的平行四边形是矩形如图,在△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E.求证:四边形ADCE是矩形.解析:首先利用外角性质得出∠B=∠ACB=∠FAE=∠EAC,进而得到AE∥BC,即可得出四边形AEDB是平行四边形,再利用平行四边形的性质得出四边形ADCE是平行四边形,再根据AD是高即可得出四边形ADCE是矩形.证明:∵AB=AC,∴∠B=∠ACB.∵AE是△BAC的外角平分线,∴∠FAE=∠EAC.∵∠B+∠ACB=∠FAE+∠EAC,∴∠B=∠ACB=∠FAE=∠EAC,∴AE∥BC.又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD.又∵AB=AC,AD⊥BC,∴BD=DC,∴AE平行且等于DC,故四边形ADCE是平行四边形.又∵∠ADC=90°,∴平行四边形ADCE是矩形.方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.探究点二:对角线相等的平行四边形是矩形如图,在平行四边形ABCD中,对角线AC、BD相交于点O,延长OA 到N ,ON =OB ,再延长OC 至M ,使CM =AN .求证:四边形NDMB 为矩形.解析:首先由平行四边形ABCD 可得OA =OC ,OB =OD .若ON =OB ,那么ON =OD .而CM =AN ,即ON =OM .由此可证得四边形NDMB 的对角线相等且互相平分,即可得证.证明:∵四边形ABCD 为平行四边形,∴AO =OC ,OD =OB .∵AN =CM ,ON =OB ,∴ON =OM =OD =OB ,∴MN =BD ,∴四边形NDMB 为矩形.方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.探究点三:有三个角是直角的四边形是矩形如图,▱ABCD 各内角的平分线分别相交于点E ,F ,G ,H .求证:四边形EFGH 是矩形.解析:利用“有三个内角是直角的四边形是矩形”证明四边形EFGH 是矩形.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAB +∠ABC=180°.∵AH ,BH 分别平分∠DAB 与∠ABC ,∴∠HAB =12∠DAB ,∠HBA =12∠ABC ,∴∠HAB +∠HBA =12(∠DAB +∠ABC )=12×180°=90°,∴∠H =90°.同理∠HEF =∠F =90°,∴四边形EFGH 是矩形.方法总结:题设中隐含多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.探究点四:矩形的性质和判定的综合运用【类型一】矩形的性质和判定的运用如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.解析:(1)证明四边形EFGH对角线相等且互相平分;(2)根据题设求出矩形的边长CD和BC,然后根据矩形面积公式求得.(1)证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.∵AE=BF =CG=DH,∴AO-AE=OB-BF=CO-CG=DO-DH,即OE=OF=OG=OH,∴四边形EFGH是矩形;(2)解:∵G是OC的中点,∴GO=GC.∵DG⊥AC,∴∠DGO=∠DGC =90°.又∵DG=DG,∴△DGC≌△DGO,∴CD=OD.∵F是BO中点,OF=2cm,∴BO=4cm.∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC =4cm,DB=8cm,∴CB=DB2-DC2=43cm,∴S矩形ABCD=4×43=163(cm2).方法总结:若题设条件与这个四边形的对角线有关,要证明一个四边形是矩形,通常证这个四边形的对角线相等且互相平分.【类型二】 矩形的性质和判定与动点问题如图所示,在梯形ABCD 中,AD ∥BC ,∠B =90°,AD =24cm ,BC =26cm ,动点P 从点A 出发沿AD 方向向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿着CB 方向向点B 以3cm/s 的速度运动.点P 、Q 分别从点A 和点C 同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD 是平行四边形?(2)经过多长时间,四边形PQBA 是矩形?解析:(1)设经过t s 时,四边形PQCD 是平行四边形,根据DP =CQ ,代入后求出即可;(2)设经过t ′s 时,四边形PQBA 是矩形,根据AP =BQ ,代入后求出即可.解:(1)设经过t s ,四边形PQCD 为平行四边形,即PD =CQ ,所以24-t =3t ,解得t =6;(2)设经过t ′s,四边形PQBA 为矩形,即AP =BQ ,所以t ′=26-3t ′,解得t ′=132. 方法总结:①证明一个四边形是平行四边形,若题设条件与这个四边形的边有关,通常证这个四边形的一组对边平行且相等;②题设中出现一个直角时,常采用“有一角是直角的平行四边形是矩形”来判定矩形.三、板书设计1.矩形的判定有一角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.矩形的性质和判定的综合运用在本节课的教学中,不仅要让学生掌握矩形判定的几种方法,更要注重学生在学习的过程中是否真正掌握了探究问题的基本思路和方法.教师在例题练习的教学中,若能适当地引导学生多做一些变式练习,类比、迁移地思考、做题,就能进一步拓展学生的思维,提高课堂教学的效率.18.2.2 菱形(2课时)第1课时菱形的性质1.掌握的定义和性质及菱形面积的求法;(重点)2.灵活运用菱形的性质解决问题.(难点)一、情境导入将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形呢?这就是另一类特殊的平行四边形,即菱形.二、合作探究探究点一:菱形的性质【类型一】利用菱形的性质证明线段相等如图,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F.求证:CE=CF.解析:连接AC.根据菱形的性质可得AC平分∠DAB,再根据角平分线的性质可得CE=FC.证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAB.∵CE⊥AB,CF⊥AD,∴CE=CF.方法总结:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.【类型二】利用菱形的性质进行有关的计算如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm.过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求四边形OBEC的面积.解析:(1)在直角三角形OCD中,利用勾股定理即可求解;(2)利用矩形的定义即可证明四边形OBEC为矩形,再利用矩形的面积公式即可直接求解.解:(1)∵四边形ABCD是菱形,∴AC⊥BD.在直角三角形OCD中,OC=CD2-OD2=52-32=4(cm);(2)∵CE∥DB,BE∥AC,∴四边形OBEC为平行四边形.又∵AC⊥BD,即∠COB=90°,∴平行四边形OBEC为矩形.∵OB=OD,∴S矩形OBEC=OB·OC=4×3=12(cm2).方法总结:菱形的对角线互相垂直,则菱形对角线将菱形分成四个直角三角形,所以可以利用勾股定理解决一些计算问题.【类型三】运用菱形的性质证明角相等如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.解析:根据“菱形的对角线互相平分”可得OD=OB,再根据“直角三角形斜边上的中线等于斜边的一半”可得OH=OB,∠OHB=∠OBH,根据“两直线平行,内错角相等”求出∠OBH=∠ODC,然后根据“等角的余角相等”证明即可.证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°.∵DH⊥AB,∴OH=12BD=OB,∴∠OHB=∠OBH.又∵AB∥CD,∴∠OBH=∠ODC,∴∠OHB=∠ODC.在Rt△COD中,∠ODC+∠DCO=90°.在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.方法总结:本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.【类型四】运用菱形的性质解决探究性问题感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.拓展:如图③,在▱ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB =50°,∠AFB=32°,求∠ADE的度数.解析:探究:△ADE 与△DBF 全等,利用菱形的性质首先证明三角形ABD 为等边三角形,再利用全等三角形的判定方法即可证明△ADE ≌△DBF ;拓展:因为点O 在AD 的垂直平分线上,所以OA =OD ,再通过证明△ADE ≌△DBF ,利用全等三角形的性质即可求出∠ADE 的度数.解:探究:△ADE 与△DBF 全等.∵四边形ABCD 是菱形,∴AB =AD .∵AB =BD ,∴AB =AD =BD ,∴△ABD 为等边三角形,∴∠DAB =∠ADB =60°,∴∠EAD =∠FDB =120°.∵AE =DF ,∴△ADE ≌△DBF ;拓展:∵点O 在AD 的垂直平分线上,∴OA =OD .∴∠DAO =∠ADB =50°,∴∠EAD =∠FDB =130°.∵AE =DF ,AD =DB ,∴△ADE ≌△DBF ,∴∠DEA =∠AFB =32°,∴∠EDA =∠OAD -∠DEA =18°.方法总结:本题考查了菱形的性质、等边三角形的判定和性质以及全等三角形的判定和性质的综合运用,解题时一定要熟悉相关的基础知识并进行联想.探究点二:菱形的面积已知菱形ABCD 中,对角线AC 与BD 相交于点O ,∠BAD =120°,AC =4,则该菱形的面积是( )A .16 3B .8 3C .4 3D .8解析:∵四边形ABCD 是菱形,∴AB =BC ,OA =12AC =2,OB =12BD ,AC ⊥BD ,∠BAD +∠ABC =180°.∵∠BAD =120°,∴∠ABC =60°,∴△ABC 是等边三角形,∴AB =AC =4,∴OB =AB 2-OA 2=42-22=23,∴BD =2OB =43,∴S菱形ABCD =12AC ·BD =12×4×43=8 3.故选B.方法总结:菱形的面积有三种计算方法:①将其看成平行四边形,用底与高的积来求;②对角线分得的四个全等三角形面积之和;③两条对角线的乘积的一半.三、板书设计1.菱形的性质菱形的四边条都相等;菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.2.菱形的面积S 菱形=边长×对应高=12ab (a ,b 分别是两条对角线的长)通过剪纸活动让学生主动探索菱形的性质,大多数学生能全部得到结论,少数需要教师加以引导.但是学生得到的结论,有一些是他们的猜想,是否正确还需要证明,因此问题就上升到证明这个环节.在整个新知生成过程中,探究活动起了重要的作用.课堂中学生始终处于观察、比较、概括、总结和积极思维状态,切身感受到自己是学习的主人.为学生今后获取知识、探索发现和创造打下了良好的基础,更增强了敢于实践,勇于探索,不断创新和努力学习数学知识的信心和勇气.第2课时菱形的判定1.掌握菱形的判定方法;(重点)2.探究菱形的判定条件并合理利用它进行论证和计算.(难点)一、情境导入我们已经知道,有一组邻边相等的平行四边形是菱形.这是菱形的定义,我们可以根据定义来判定一个四边形是菱形.除此之外,还能找到其他的判定方法吗?菱形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线互相垂直平分;2.四条边都相等;3.每条对角线平分一组对角.这些性质,对我们寻找判定菱形的方法有什么启示呢?二、合作探究探究点一:菱形的判定【类型一】利用“有一组邻边相等的平行四边形是菱形”判定四边形是菱形如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.求证:四边形BCFE是菱形.解析:由题意易得,EF与BC平行且相等,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.证明:∵BE=2DE,EF=BE,∴EF=2DE.∵D、E分别是AB、AC 的中点,∴BC=2DE且DE∥BC,∴EF=BC.又∵EF∥BC,∴四边形BCFE 是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.方法总结:菱形必须满足两个条件:一是平行四边形;二是一组邻边相等.【类型二】利用“对角线互相垂直的平行四边形是菱形”判定四边形是菱形如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:(1)AC⊥BD;(2)四边形ABCD是菱形.解析:(1)证得△BAC是等腰三角形后利用“三线合一”的性质得到AC⊥BD即可;(2)首先证得四边形ABCD是平行四边形,然后根据“对角线互相垂直”得到平行四边形是菱形.证明:(1)∵AE∥BF,∴∠BCA=∠CAD.∵AC平分∠BAD,∴∠BAC =∠CAD,∴∠BCA=∠BAC,∴△BAC是等腰三角形.∵BD平分∠ABC,∴AC⊥BD;(2)∵△BAC是等腰三角形,∴AB=CB.∵BD平分∠ABC,∴∠CBD =∠ABD.∵AE∥BF,∴∠CBD=∠BDA,∴∠ABD=∠BDA,∴AB=AD,∴DA=CB.∵BC∥DA,∴四边形ABCD是平行四边形.∵AC⊥BD,∴四边形ABCD是菱形.方法总结:用判定方法“对角线互相垂直的平行四边形是菱形”证明四边形是菱形的前提条件是该四边形是平行四边形;对角线互相垂直的四边形不一定是菱形.【类型三】利用“四条边相等的四边形是菱形”判定四边形是菱形如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于12AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.解析:(1)由作图知PQ为线段AC的垂直平分线,从而得到AE=CE,AD=CD.然后根据CF∥AB得到∠EAC=∠FCA,∠CFD=∠AED,利用“AAS”证得两三角形全等即可;(2)根据(1)中全等得到AE=CF.然后根据EF为线段AC的垂直平分线,得到EC=EA,FC=FA.从而得到EC=EA=FC=FA,利用“四边相等的四边形是菱形”判定四边形AECF为菱形.证明:(1)由作图知PQ为线段AC的垂直平分线,∴AE=CE,AD =CD.∵CF∥AB,∴∠EAC=∠FCA,∠CFD=∠AED.在△AED与△CFD中,⎩⎪⎨⎪⎧∠EAC=∠FCA,∠AED=∠CFD,AD=CD,∴△AED≌△CFD(AAS);(2)∵△AED≌△CFD,∴AE=CF.∵EF为线段AC的垂直平分线,∴EC=EA,FC=FA,∴EC=EA=FC=FA,∴四边形AECF为菱形.方法总结:判定一个四边形是菱形把握以下两起点:(1)以四边形为起点进行判定;(2)以平行四边形为起点进行判定.探究点二:菱形的判定的应用【类型一】菱形判定中的开放性问题如图,平行四边形ABCD中,AF、CE分别是∠BAD和∠BCD的平分线,根据现有的图形,请添加一个条件,使四边形AECF为菱形,则添加的一个条件可以是__________(只需写出一个即可,图中不能再添加别的“点”和“线”).解析:∵AD∥BC,∴∠FAD=∠AFB.∵AF是∠BAD的平分线,∴∠BAF=∠FAD,∴∠BAF=∠AFB,∴AB=BF.同理ED=CD.∵AD=BC,AB=CD,∴AE=CF.又∵AE∥CF,∴四边形AECF是平行四边形.∵对角线互相垂直的平行四边形是菱形,则添加的一个条件可以是AC⊥EF.方法总结:菱形的判定方法常用的是三种:(1)定义;(2)四边相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.【类型二】菱形的性质和判定的综合应用如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E 点的位置,使得∠EFD =∠BCD ,并说明理由.解析:(1)首先利用“SSS”证明△ABC ≌△ADC ,可得∠BAC =∠DAC .再证明△ABF ≌△ADF ,可得∠AFD =∠AFB ,进而得到∠AFD =∠CFE ;(2)首先证明∠CAD =∠ACD ,再根据“等角对等边”,可得AD =CD .再由条件AB =AD ,CB =CD ,可得AB =CB =CD =AD ,可得四边形ABCD 是菱形;(3)首先证明△BCF ≌△DCF ,可得∠CBF =∠CDF ,再根据BE ⊥CD 可得∠BEC =∠DEF =90°,进而得到∠EFD =∠BCD .(1)证明:在△ABC 和△ADC 中,⎩⎪⎨⎪⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC (SSS),∴∠BAC =∠DAC .在△ABF 和△ADF 中,⎩⎪⎨⎪⎧AB =AD ,∠BAF =∠DAF ,AF =AF ,∴△ABF ≌△ADF (SAS),∴∠AFD =∠AFB .∵∠AFB =∠CFE ,∴∠AFD =∠CFE ;(2)证明:∵AB ∥CD ,∴∠BAC =∠ACD .又∵∠BAC =∠DAC ,∴∠CAD =∠ACD ,∴AD =CD .∵AB =AD ,CB =CD ,∴AB =CB =CD =AD ,∴四边形ABCD 是菱形;(3)解:当EB ⊥CD 于E 时,∠EFD =∠BCD .理由如下:∵四边形ABCD 为菱形,∴BC =CD ,∠BCF =∠DCF .在△BCF 和△DCF 中,⎩⎪⎨⎪⎧BC =CD ,∠BCF =∠DCF ,CF =CF ,∴△BCF ≌△DCF (SAS),∴∠CBF =∠CDF .∵BE ⊥CD ,∴∠BEC =∠DEF =90°,则∠BCD +∠CBF =∠EFD +∠CDF =90°,∴∠EFD =∠BCD .方法总结:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.三、板书设计1.菱形的判定有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形.2.菱形的性质和判定的综合运用在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.通过做不同形式的练习题,让学生能准确掌握菱形的判定并会灵活运用.18.2.3 正方形(2课时)第1课时正方形的性质1.掌握正方形的概念、性质,并会用它们进行有关的论证和计算;(重点)2.理解正方形与平行四边形、矩形、菱形的联系和区别.(难点)一、情境导入做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?二、合作探究探究点一:正方形的性质【类型一】特殊平行四边形的性质的综合菱形,矩形,正方形都具有的性质是( )A.对角线相等且互相平分B.对角线相等且互相垂直平分C.对角线互相平分D.四条边相等,四个角相等解析:选项A不正确,菱形的对角线不相等;选项B不正确,菱形的对角线不相等,矩形的对角线不互相垂直;选项C正确,三者均具有此性质;选项D不正确,矩形的四条边不相等,菱形的四个角不相等.故选C.方法总结:正方形具有四边形、平行四边形、矩形、菱形的所有性质.【类型二】利用正方形的性质解决线段的计算或证明问题如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC于点F.(1)求证:BE=CF;(2)求BE的长.解析:(1)由角平分线的性质可得到BE=EF,再证明△CEF为等腰直角三角形,即可证BE=CF;(2)设BE=x,在△CEF中可表示出CE.由BC=1,可列出方程,即可求得BE.(1)证明:∵四边形ABCD为正方形,∴∠B=90°.∵EF⊥AC,∴∠EFA=90°.∵AE平分∠BAC,∴BE=EF.又∵AC是正方形ABCD的对角线,∴AC平分∠BCD,∴∠ACB=45°,∴∠FEC=∠FCE=45°,∴EF=FC,∴BE=CF;(2)解:设BE=x,则EF=CF=x,CE=1-x.在Rt△CEF中,由勾股定理可得CE =2x .∴2x =1-x ,解得x =2-1,即BE 的长为2-1.方法总结:正方形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰直角三角形,因此正方形的计算问题可以转化到直角三角形和等腰直角三角形中去解决.【类型三】 利用正方形的性质解决角的计算或证明问题在正方形ABCD 中,点F 是边AB 上一点,连接DF ,点E 为DF 的中点.连接BE 、CE 、AE .(1)求证:△AEB ≌△DEC ;(2)当EB =BC 时,求∠AFD 的度数.解析:(1)根据“正方形的四条边都相等”可得AB =CD ,根据“正方形每一个角都是直角”可得∠BAD =∠ADC =90°,再根据“直角三角形斜边上的中线等于斜边的一半”可得AE =EF =DE =12DF ,根据“等边对等角”可得∠EAD =∠EDA ,再得出∠BAE =∠CDE ,然后利用“SAS”证明即可;(2)根据“全等三角形对应边相等”可得EB =EC ,再得出△BCE 是等边三角形.根据等边三角形的性质可得∠EBC =60°,然后求出∠ABE =30°.再根据“等腰三角形两底角相等”求出∠BAE ,然后根据“等边对等角”可得∠AFD =∠BAE .(1)证明:在正方形ABCD 中,AB =CD ,∠BAD =∠ADC =90°.∵点E 为DF 中点,∴AE =EF =DE =12DF ,∴∠EAD =∠EDA .∵∠BAE =∠BAD -∠EAD ,∠CDE =∠ADC -∠EDA ,∴∠BAE =∠CDE .在△AEB 和△DEC 中,⎩⎪⎨⎪⎧AB =CD ,∠BAE =∠CDE ,AE =DE ,∴△AEB ≌△DEC (SAS);(2)解:∵△AEB ≌△DEC ,∴EB =EC .∵EB =BC ,∴EB =BC =EC ,∴△BCE 是等边三角形,∴∠EBC =60°,∴∠ABE =90°-60°=30°.∵EB =BC =AB ,∴∠BAE =12×(180°-30°)=75°.又∵AE =EF ,∴∠AFD =∠BAE =75°.方法总结:正方形是最特殊的平行四边形,在正方形中进行计算时,要注意计算出相关的角的度数,要注意分析图形中有哪些相等的线段等.探究点二:正方形性质的综合应用【类型一】利用正方形的性质解决线段的倍、分、和、差关系如图,AE 是正方形ABCD 中∠BAC 的平分线,AE 分别交BD 、BC 于F 、E ,AC 、BD 相交于O .求证:(1)BE =BF ;(2)OF =12CE .解析:(1)根据正方形的性质可求得∠ABE =∠AOF =90°.由于AE 是正方形ABCD 中∠BAC 的平分线,根据“等角的余角相等”即可求得∠AFO =∠AEB .根据“对顶角相等”即可求得∠BFE =∠AEB ,BE =BF ;(2)连接O 和AE 的中点G .根据三角形的中位线的性质即可证得OG ∥BC ,OG =12CE .根据平行线的性质即可求得∠OGF =∠FEB ,从而证得∠OGF =∠AFO ,OG =OF ,进而证得OF =12CE . 证明:(1)∵四边形ABCD 是正方形,∴AC ⊥BD ,∴∠ABE =∠AOF =90°,∴∠BAE +∠AEB =∠CAE +∠AFO =90°.∵AE 是∠BAC 的平分线,∴∠CAE =∠BAE ,∴∠AFO =∠AEB .又∵∠AFO =∠BFE ,∴∠BFE =∠AEB ,∴BE =BF ;(2)连接O 和AE 的中点G .∵AO =CO ,AG =EG ,∴OG ∥BC ,OG =12CE ,∴∠OGF =∠FEB .∵∠AFO =∠AEB ,∴∠OGF =∠AFO ,∴OG =OF ,∴OF =12CE . 方法总结:在正方形的条件下证明线段的关系,通常的方法是连接对角线构造垂直平分线,利用垂直平分线的性质、中位线定理、角平分线、等腰三角形等知识来证明,有时也利用全等三角形来解决.【类型二】 有关正方形性质的综合应用题如图,正方形AFCE 中,D 是边CE 上一点,B 是CF 延长线上一点,且AB =AD ,若四边形ABCD 的面积是24cm 2.则AC 长是________cm.解析:∵四边形AFCE 是正方形,∴AF =AE ,∠E =∠AFC =∠AFB =90°.在Rt△AED 和Rt△AFB 中,⎩⎪⎨⎪⎧AD =AB ,AE =AF ,∴Rt△AED ≌Rt△AFB (HL),∴S △AED =S △AFB .∵S 四边形ABCD =24cm 2,∴S 正方形AFCE =24cm 2,∴AE =EC =26cm.根据勾股定理得AC =(26)2+(26)2=43(cm).故答案为4 3.方法总结:在解决与面积相关的问题时,可通过证三角形全等实现转化,使不规则图形的面积转变成我们熟悉的图形面积,从而解决问题.三、板书设计1.正方形的定义和性质四条边都相等,四个角都是直角的四边形是正方形.对边平行,四条边都相等;四个角都是直角;对角线互相垂直、平分且相等,并且每一条对角线平分一组对角.2.正方形性质的综合应用通过学生动手操作得出的结论归纳矩形和菱形的性质,继而得到正方形的性质,激起了学生的学习热情和兴趣.创设有意义的数学活动,使枯燥乏味的数学变得生动活泼.让学生觉得学习数学是快乐的,使学生保持一颗健康、好学、进取的心及一份浓厚的学习兴趣.。
青岛版八年级数学下册 特殊的平行四边形教案
《特殊的平行四边形》教案一教学目标知识与技能目标1.掌握矩形的概念、性质和判别条件.2.提高对矩形的性质和判别在实际生活中的应用能力.过程与方法目标1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化思想.情感与态度目标1.在操作活动过程中,加深对矩形的认识,并以此激发学生的探索精神.2.通过对矩形的探索学习,体会它的内在美和应用美.教学重点矩形的性质和常用判别方法的理解和掌握.教学难点矩形的性质和常用判别方法的综合应用.教学过程设计一.情境导入:演示平行四边形活动框架,引入课题.二.讲授新课1. 归纳矩形的定义问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答.)结论:有一个内角是直角的平行四边形是矩形.也称为长方形.2.探究矩形的性质(1).问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.) 结论:矩形的四个角都是直角.(2).议一议:(展示问题,引导学生讨论解决.)①.矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.②.直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?(3).探索矩形对角线的性质:让学生进行如下操作后,思考以下问题:(幻灯片展示)在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.①.随着∠α的变化,两条对角线的长度分别是怎样变化的?②.当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?③.当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?(学生操作,思考、交流、归纳.)结论:矩形的两条对角线相等.(4).归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等;矩形的对角线互相平分;矩形是中心对称图形,对角线的交点是它的对称中心;矩形是轴对称图形,过每一组对边中点的直线都是矩形的对称轴.直角三角形斜边上的中线等于斜边长的一半.(5)例题讲解例1:如图,矩形ABCD的两条对角线AC,BD相交于点O,AC=6cm,∠BOC=120°.求AC的长.(1).想一想:(学生讨论、交流、共同学习)对角线相等的平行四边形是怎样的四边形?为什么?结论:对角线相等的平行四边形是矩形.(2).归纳矩形的判别方法:(引导学生归纳)有三个角是直角的四边形是矩形.(有一个内角是直角的平行四边形是矩形.)对角线相等的平行四边形是矩形.三.新课小结:通过本节课的学习,你有什么收获?《特殊的平行四边形》教案二教学目标:菱形的定义、菱形的性质、菱形的判定.教学重点:菱形的性质及判定方法.教学难点:菱形性质和直角三角形的知识的综合应用.教学过程:一.巧设情景问题,引入课题前面我们探讨了平行四边形的性质和判别条件,下面我们来共同回忆一下.大家来看一个衣帽架.这个衣帽架中有你熟悉的图形吗?图中三个四边形都可以看成是平行四边形,那么这几个平行四边形有什么特点呢?让学生注意观察,然后回答.这三个平行四边形都是邻边相等的平行四边形.我们把这样的平行四边形叫做菱形.这节课我们就来探讨一下菱形.二.新课你能给菱形下定义吗?(一组邻边相等的平行四边形叫做菱形.)菱形是一种特殊的平行四边形,特殊之处在于它是有一组邻边相等.所以菱形是具备:“①平行四边形,②一组邻边相等.”这两个条件的四边形.将一个菱形ABCD按图示折叠并展开,(1)说明两条折痕的交点为菱形中心O.(2)菱形是轴对称图形吗?如果是,那么它有几条对称轴?对称轴之间有什么位置关系?我们得到:菱形是中心对称图形,也是轴对称图形,它有两条对称轴,这两条对称轴是菱形的对角线,所以两条对称轴互相垂直.下面大家画一个菱形,然后回答下列问题:如图,在菱形ABCD中,AB=AD,对角线AC、BD相交于点O.(1)图中有哪些线段是相等的?哪些角是相等的?(2)图中有哪些等腰三角形、直角三角形?(3)两条对角线AC、BD有什么特定的位置关系?(同学们讨论分析回答)同学们分析得很好,能否从中归纳出菱形的性质呢?因为菱形是特殊的平行四边形,所以它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质:1.菱形的四条边都相等.2.菱形的两条对角线互相垂直平分,每一条对角线平分一组对角.同学们回答得很好,我们知道了菱形的性质,那想一想如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?大家拿出准备好的白纸,小剪刀来动手做一做.(学生想动手折、剪,教师指导,然后出示两种及学生总结的折纸、剪切的方法)方法一:将一张长方形纸对折,再在折痕上取任意长为底边,剪一个等腰三角形,然后打开即是菱形.方法二:将一张长方形的纸横对折,再竖对折,得到一个长方形,然后沿新长方形的不含原长方形纸片四个角的顶点的对角线剪裁,打开即是菱形纸片.你能说一说按这两种方法做的理由吗?大家讨论一下回答.按方法一得到的菱形的理由是:如图2,△ABC 是以BC 为底的等腰三角形,所以AB =AC ,以BC 为折痕,对折后,得到的三角形BCD 仍是等腰三角形,即:BD =DC ,又因为AB =BD ,DC =AC ,所以AB =CD ,BD =AC ,所以四边形ABDC 是平行四边形,又AB =AC ,因此,平行四边形ABDC 是菱形.方法二主要是利用了菱形的轴对称性.按方法一剪出如图所示的图形.以BC 所在的直线对折时,OA =OD ,以AD 所在的直线对折时,OB =OC ,这时四边形ABDC 是平行四边形,又因为两条折痕是互相垂直的,即:AD ⊥BC ,又OA =OD ,所以BC 是AD 的中垂线.即AB =AC ,因此平行四边形ABCD 是菱形.刚才通过折纸、剪切,得到了菱形,你能因此归纳一下菱形的判别方法吗?分组讨论,然后总结:菱形的判定定理:1.对角线互相垂直的平行四边形是菱形.2.四条边都相等的四边形是菱形.(要注意的是:菱形的判别方法的题设条件是平行四边形还是任意四边形.)正方形定义:有一组邻边相等,并且有一角是直角的平行四边形是正方形.例题讲解:如图,点P 是正方形ABCD 的对角线BD 上的一点PM⊥BC,PN⊥CD,垂足分别为点M ,N.求证:AP=MN.三.应用例2 已知:如图,在□ABCD 中,对角线AC 与BD 相交于点O ,2 1.===,AB OA OB 求证:□ABCD 是菱形.证明:证明:在△AOB 中,222521.===∴=+,,AB OA OB AB AO OB∴在△AOB是直角三角形,∠AOB是直角.∴AC⊥BD.∴□ABCD是菱形(对角线互相垂直的平行四边形是菱形)四.小结本节课我们探讨了菱形的定义、性质和判别方法,我们来共同总结一下:菱形的定义:一组邻边相等的平行四边形是菱形.菱形的性质:边:四条边都相等;对边分别平行.角:对角线相等.对角线:互相垂直、平分;每一条对角线平分一组对角.菱形的判定:1.四条边都相等的四边形是菱形.2.对角线互相垂直的平行四边形是菱形;。
特殊的平行四边形 教案
特殊的平行四边形教案教案标题:特殊的平行四边形教案目标:1. 了解平行四边形的定义和特点;2. 辨别和分类不同类型的平行四边形;3. 掌握计算平行四边形的周长和面积的方法;4. 运用所学知识解决实际问题。
教学资源:1. 平行四边形的图片和实物模型;2. 计算平行四边形周长和面积的公式;3. 实际问题的练习题。
教学步骤:引入活动:1. 展示一些平行四边形的图片和实物模型,引起学生的兴趣和好奇心;2. 提问学生对平行四边形的认识和了解。
知识讲解:1. 介绍平行四边形的定义:具有两对平行边的四边形;2. 解释平行四边形的特点:对边相等,对角线互相平分;3. 展示不同类型的平行四边形,如矩形、正方形、菱形等,并解释它们的特点和性质;4. 讲解计算平行四边形周长和面积的公式,并通过示例演示应用。
练习活动:1. 分发练习题,让学生独立或小组完成,包括辨别不同类型的平行四边形、计算周长和面积以及解决实际问题;2. 监督学生的练习过程,及时解答疑惑。
讲解与总结:1. 收回练习题,逐一讲解答案,让学生核对自己的答案;2. 总结平行四边形的定义、特点和计算方法;3. 强调平行四边形在日常生活和工作中的应用,并鼓励学生多思考和发现。
拓展活动:1. 鼓励学生寻找身边更多的平行四边形实例,并记录下来;2. 邀请学生分享自己发现的特殊平行四边形,并解释其特点和性质;3. 提供更多复杂的平行四边形问题,让学生挑战和解决。
评价与反馈:1. 对学生的练习进行评价,给予积极的反馈和建议;2. 鼓励学生积极参与课堂讨论和活动,提高他们的学习兴趣和能力;3. 收集学生的反馈意见,了解他们对教学内容和方法的理解和感受,以便调整教学策略。
教学延伸:1. 将平行四边形的概念与其他几何形状进行比较,探讨它们之间的联系和区别;2. 引导学生研究平行四边形的性质和定理,如平行四边形的对角线互相平分、对角线长的关系等。
这个教案旨在通过引入活动、知识讲解、练习活动、讲解与总结、拓展活动、评价与反馈等环节,帮助学生全面理解和掌握平行四边形的概念、特点和计算方法。
人教八年级下册数学 第十八章 18.2《特殊的平行四边形》教案
《特殊的平行四边形》教学设计【教学目标】1、知识与技能:(1)掌握特殊的平行四边形相关的性质和判定方法。
(2)培养概括归纳能力,逻辑推理能力和应用能力。
2、过程与方法:经历知识完整的系统性,灵活应用知识解决实际问题,发展综合能力。
3、情感、态度与价值观:在学习活动中发展主动探索和独立思考的习惯,并在学习中获的成功的体验。
【教学重点】能用特殊的平行四边形相关的性质和判定解决实际问题。
【教学难点】培养学生数学思想的形成和解题方法的提炼。
【教学用具】多媒体课件(PPT课件)【教学方法】五学【课时安排】一课时【教学程序设计】(2)矩形、菱形、正方形性质及判定。
(导与练第492、如图,在Rt△ABC中,∠ACB=90°,过点C的直线ABCD中,P是对角线AC上PE=PB.配套复习题1、“五学”教学模式,面向全体,教师调控,"能"者为师。
即一般性问题,由中下程度生回答;思考性较强的问题,由优秀生回答;难度较大的问题,采取讨论的形式,可以是全班式,也可以是小组式,或邻座式,老师组织学生广泛思考、发言,争辩,让他们各抒已见,畅所欲言,充分发挥其主导作用,然后引导学生解决问题,寻找到真正的答案;学生一时难于想到的问题,教师可以采取点拨法,分解法。
2、从学生的数学认知结构的一次次更新和一步步完善来看,由于它有更多的规律可循,所以它是一门科学。
要培养学生的“数学情感”或“数学地思考”,教师不但需要寻求学生群体的共性,而且需要有极大的耐心去发现学生个体的情感特征。
3、“五学”教学法是开放的和充满活力的,要在课堂上实施这种方法,教师必须深入到学生的内心世界,站在学生的角度进行新的数学体验,根据具体内容选择适合本班学生的素材,使数学课变得既有趣,又能散发出很浓的数学味。
从而真正提高课堂教学的质量,提高学生学习的质量。
人教八年级下册数学第十八章18.2《特殊的平行四边形》教案
1.理论介绍:首先,我们要了解矩形、菱形、正方形的基本概念。矩形是四边都相等且对边平行的四边形,它在建筑和设计中有广泛的应用。菱形是四边相等的平行四边形,其独特的对角线性质在珠宝设计中尤为重要。正方形是四边相等且四角为直角的特殊矩形,它在生活中无处不在,如地砖、桌子等。
最后,通过今天的课程,我也反思到自己在教学过程中需要更好地把握时间分配,确保每个环节都有充足的时间进行深入的讨论和学习。同时,我也计划在下一节课的总结环节,让学生们自己来总结今天所学的知识点,这样不仅能够检查他们的理解程度,还能提高他们的表达能力和自信心。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“特殊平行四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“如何确定一个正方形的边长?”
首先,我发现通过引入日常生活中的实例来导入新课,确实能够激发学生的兴趣,使他们更愿意参与到课堂讨论中来。例如,当讨论到矩形的性质时,我让学生们观察教室里的门和窗,这帮助他们更好地理解矩形的对边平行且相等的性质。
在讲授过程中,我尝试用直观的图形和实际案例来解释特殊平行四边形的判定方法,但我也意识到,对于一些学生来说,这些概念仍然难以理解。我考虑在下一节课中增加一些互动环节,比如让学生自己动手画图,亲自验证这些性质,这样可能会更有助于他们理解和记忆。
三、教学难点与重点
1.教学重点
-矩形、菱形、正方形的定义及其性质:这是本节课的核心内容,教师应重点讲解这三种特殊平行四边形的定义,并通过具体图形和实例,强调它们的性质,如矩形的对边平行且相等,菱形的四边相等,正方形的四边相等且四角为直角。
八年级数学下册《特殊的平行四边形的性质与判定的应用》教案、教学设计
3.解题思路分享:请部分学生分享解题思路和经验,促进学生之间的相互学习。
(五)总结归纳
1.学生总结:请学生回顾本节课所学的特殊平行四边形性质,尝试用自己的话进行总结。
2.教师点评:针对学生的总结,教师进行点评,强调重点,纠正误区。
4.通过特殊的平行四边形的性质和判定方法的学习,让学生认识到数学在生活中的广泛应用,增强他们学习数学的信心和动力。
在教学过程中,教师要关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重培养学生的团队合作意识,让学生在合作交流中共同成长。通过本章节的学习,使学生不仅能掌握特殊的平行四边形的性质与判定的应用,还能提高数学素养,为今后的学习打下坚实基础。
-设计开放式的评价任务,如让学生制作小报或微视频,展示对特殊平行四边形性质的理解。
-定期进行形成性评价,及时了解学生的学习情况,调整教学策略。
四、教学内容与过程
(一)导入新课
1.引入:通过展示生活中常见的矩形、菱形和正方形物品,如书本、红绿灯、魔方等,引发学生对特殊平行四边形的关注。
2.提问:请学生回顾之前学习的平行四边形性质,并思考这些性质是否适用于今天的特殊平行四边形。
-作业完成后,学生应认真检查,确保解答的准确性和书写的清晰性。
作业批改与反馈:
-教师应及时批改作业,给予学生个性化的评价和反馈。
-对于作业中出现的共性问题,教师应在课堂上进行讲解,帮助学生纠正错误。
-对表现优秀的学生,给予表扬和鼓励,激发他们的学习积极性。
三、教学重难点和教学设想
(一)教学重难点
1.重点:特殊的平行四边形的性质及判定方法。
2.难点:运用性质和判定方法解决实际问题,特别是涉及多步骤的逻辑推理和综合应用。
(完整版)特殊的平行四边形教案
第6章特殊平行四边形与梯形目录6.1 矩形(2) (2)6.1 矩形(3) (5)6.2 菱形(1) (7)6.2 菱形(2) (9)6.3 正方形 (12)6.4 梯形(1) (15)6.4 梯形(2) (18)6.1 矩形(2)【设计理念】根据新课程标准要求学生学习数学的重要方式是动手实践、自主探索与合作交流。
学生是学习活动的主体,教师是学生学习的组织者、引导者与合作者。
结合八年级学生的实际情况,本节课教学过程的教学设计分以下几面:1、充分考虑了为学生提供动手实践、研究探讨的时间与空间,让学生经历知识发生、发展的全过程,并能学以致用。
2、根据本节课的特点,适当、适量设置例题、习题。
使整个课堂教学设计体现了活动性、开放性、探究性、合作性、生成性。
3、教师始终起到启发、点拨、纠偏、示范的作用。
4、学生积极参与到课堂教学中来,动手动口动脑相结合,使他们“听”有所思,“学”有所获.【教材分析】1.在教材中的地位与作用生活中随处可见矩形,矩形的应用非常广泛。
矩形第二课时的一节也是后续几何知识学习的基础。
学生探索得出矩形判定的方法,为以后进一步研究其他图形奠定基础,与矩形相关的问题也是考查的热点。
2.对教材的处理本节课主要是探索矩形判定的条件,应用矩形的判定定理解决相关问题。
利用这节课来培养学生自主学习、合作学习、主动获取知识的能力。
转变学生的学习方式,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法及数学观念,培养学生能力,促进学生发展。
在选题时, 遵循学生的认识规律, 照顾学生的接受能力, 配置由浅入深, 由易到难的练习题。
教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。
3.教学目标知识与技能:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。
通过开放式命题,尝试从不同角度寻求解决问题的方法。
过程与方法:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。
人教版 八年级下册数学第十八章 四边形 18.2特殊的平行四边形教案
举一反三:
【变式 1】已知□ABCD 的对角线 AC,BD 相交于 O, △ABO 是等边三角形,AB=
4 cm,求这个平行四边形的面积.
思路点拨:(1)先判定□ABCD 为矩形.(2)求出 Rt△ABC 的直角边 BC 的长度.(3)
计算矩形 ABCD 的面积为 AB·BC 解析:
4 / 12
☆【变式 3】已知如图,菱形 ABCD 中,E 是 BC 上一点,AE、BD 交于 M,若 AB=AE, ∠EAD=2∠BAE,求证:AM=BE.
A
答案:
B
M
D
EC
类型三:正方形
例 3.已知:如图,点 是正方形 交 的延长线于点 .求证:
A
E
的边 上任意一点,过点 作
.
D 1
3 2
B
C
F
思路点拨:证明两条线段相等的方法有很多种,而本题中 DE, DF 分别在△DAE 与△ DCF 中,结合正方形的性质,我们可以证明△DAE 与△DCF 全等,利用全等三角形的 对应边相等来说明. 解析:
互相平分且相等
互相垂直平分,且每条对 互相垂直平分且相等,每
角线平分一组对角
条对角线平分一组对角
·有三个角是直角; ·是平行四边形且有 一个角是直角; ·是平行四边形且两 条对角线相等.
·四边相等的四边形; ·是平行四边形且有一组 邻边相等; ·是平行四边形且两条对 角线互相垂直.
·是矩形,且有一组邻边 相等; ·是菱形,且有一个角是 直角.
所在的直线是它的
两条对称轴.
知识点六:菱形的判定办法
要点诠释: (1)用菱形的定义:有一组邻边
的平行四边形是菱形;
(2)四条边都
八年级数学下册人教版18.2特殊的平行四边形优秀教学案例
1.培养学生对数学学科的兴趣,树立自信心,形成积极的数学学习态度;
2.培养学生勇于探索、坚持真理的精神,锻炼学生的意志品质;
3.培养学生团队协作、互相帮助的良好品质,提高学生的人际沟通能力;
4.通过对特殊平行四边形的探究,使学生认识到数学在实际生活中的重要性,培养学生的社会责任感。
5.教学内容的逻辑性和连贯性:教师从导入新课到讲授新知,再到学生小组讨论、总结归纳和作业小结,教学内容的安排具有逻辑性和连贯性,使学生能够系统地学习和掌握特殊平行四边形的性质及其应用。
在教学过程中,我以“以人为本”的教育理念为指导,充分考虑学生的认知规律和学习兴趣,采用多元化的教学方法和评价方式,激发学生的学习积极性,提高学生的数学素养。
二、教学目标
(一)知识与技能
1.理解矩形、菱形、正方形的定义及其性质;
2.学会运用特殊平行四边形的性质解决实际问题;
3.掌握平行四边形到特殊平行四边形的判定方法;
3.及时反馈学生的学习情况,指导学生调整学习策略,提高学习效果。
在教学过程中,我将注重学生的反思与评价,帮助学生发现自己的优点和不足,指导学生调整学习方法,提高学生的综合能力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际生活中的矩形、菱形、正方形实例,如建筑、设计、工程等,引导学生关注特殊平行四边形在现实中的应用;
在教学过程中,我将关注学生的情感态度与价值观的培养,以爱心、耐心和责任心对待每一个学生,营造和谐、民主的课堂氛围,使学生在愉悦的情感状态下学习,提高学生的情感态度与价值观。
三、教学策略
(一)情景创设
1.生活情境:以实际生活中的建筑、设计、工程等为例,引入特殊平行四边形的概念,让学生感受到数学与生活的紧密联系;
数学八年级下册18.2特殊的平行四边形教案
教师姓名单位名称填写时间学科初中数学年级/册八年级下册教材版本人教版课题名称第十八章18.2:特殊的平行四边形难点名称中点四边形类问题的解法难点分析从知识角度分析为什么难中点四边形知识点本身内容复杂,不但要应用中位线推理论证,还涉及到矩形,菱形,正方形的性质和判定的综合分析,逻辑推理上,分析思路上容易混淆。
从学生角度分析为什么难学生刚刚学完到矩形,菱形,正方形的性质和判定后,知识之间逻辑关系还理解不到位,学生抽象逻辑,推理能力有待加强,学生理解特殊四边形的性质和判定还需要消化,综合分析,判断,推理能力还在提高中。
难点教学方法一题多变,以点带面,探索规律教学环节教学过程导入一、知识回顾。
师:请同学们说出一些与中点有关的结论生:三角形的中位线定理这个定理提供了证明线段平行以及线段成倍分关系的根据.师:那么,这节课我们就来研究与中点有关的问题。
请看:顺次连接任意四边形各边中点所成的四边形是什么图形?请同学们画一画、猜一猜并证一证.知识讲解(难点突破)二、概念解析:如图,四边形ABCD的各边的中点,所构成的四边形EFGH叫做四边形ABCD的中点四边形。
三、推理论证:任意四边形的中点四边形的形状。
已知:如图,点E、F、G、H分别是四边形ABCD各边中点求证:四边形EFGH为平行四边形。
六 、 规律总结:结论:中点四边形类问题的解法是—只要分析原四边形的对角线之间的数量关系和位置关系即可。
课堂练习 (难点巩固)七 、 达标检测:判定下列条件中,中点四边形的形状?BCD A HGFE培养学生“从一般到特殊再到一般”的研究问题的方法和概括能力。
小结课堂小结:决定中点四边形EFGH 的形状的主要因素是:四边形ABCD 的对角线的长度和位置。
八年级数学下册《平行四边形和特殊的平行四边形》教案、教学设计
(1)教师应及时了解学生的学习情况,根据学生的反馈调整教学策略,提高教学效果。
(2)鼓励学生提问,解答学生的疑惑,帮助学生克服学习中的困难。
(3)注重课后辅导,针对学生的薄弱环节进行有针对性的指导。
四、教学内容与过程
(一)导入新课
1.复习导入:通过提问方式复习四边形的基本概念,引导学生回顾四边形的性质,为新课的学习做好铺垫。
3.提高拓展题:
-探究矩形、菱形、正方形之间的性质联系和区别,总结它们的特点。
-尝试解决课后练习中的第4、5题,这两题涉及平行四边形和特殊平行四边形的综合应用。
4.小组合作题:
-以小组为单位,讨论并完成一道较复杂的几何证明题,要求运用平行四边形的性质。
-每个小组将讨论过程和解答结果以书面形式提交,以供教师批改和反馈。
1.基础巩固题:
-请同学们从课本中选择5道有关平行四边形性质和判定的习题进行练习,强化基础知识。
-完成课后练习中的第1、2、3题,要求准确无误地应用所学性质和判定方法。
2.实践应用题:
-结合生活实际,找出身边的平行四边形和特殊的平行四边形实例,并描述其性质和判定方法。
-设计一道与平行四边形相关的实际问题,运用所学的知识进行求解。
(6)总结:对本节课所学内容进行总结,强调重点,梳理难点。
3.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、讨论积极性和解题思路,及时给予鼓励和指导。
(2)终结性评价:通过课后作业、单元测试等方式,评价学生对平行四边形和特殊的平行四边形知识的掌握程度。
(3)增值性评价:关注学生的进步,鼓励学生在原有基础上不断提高,培养学生的自信心。
2.小组分享:每组选派一名代表分享讨论成果,其他组成员补充。
人教版八年级数学(下)册《特殊的平行四边形》优质说课稿(33)
人教版八年级数学(下)册《特殊的平行四边形》优质说课稿(33)18.2特殊的平行四边形说课稿一、教材分析1、教材的地位和作用:本节课是在学习了第一章三角形和上节平行四边形后进一步研究的特殊平行四边形——矩形,它的研究过程既是对三角形有关定理内容的巩固练习,又为下一节菱形,正方形一些定理的得出做铺垫。
2、教学目标:知识与技能:能够用综合法证明矩形的性质定理和判定定理以及其他相关结论;过程与方法:经历探索、猜想证明的过程,进一步发展据理论证能力;情感态度价值观:进一步体会证明的必要性以及计算与证明在解决问题中的作用,体会证明过程中所运用的归纳,概括以及转化等数学思想方法;3、教学重点:矩形定理以及证明方法;教学难点:矩形定理在证明题中的应用;二、教法与学法1、说教法:针对九年级学生的心理特点和现有的知识水平,本节课我准备采用激发诱导、探索交流、讲练结合三位一体的教学方式,充分体现老师的主导作用和学生的主体地位。
通过“设疑——讨论、探索——解惑”的过程,最大限度地调动学生的积极性和主动性。
2、说学法:根据学生的认知规律,在学法上通过学生动口、动手、动脑、采用自主合作探究的学习方法提高学生解决问题的能力。
三、说教学过程教学过程分为6个环节1、复习旧知,以旧探新同学们,还记得平行四边行都有哪些性质?你还了解哪些特殊的平行四边形?它们与平行四边形有何关系?说明:通过对平行四边形性质的复习,为引入矩形的性质作铺垫,做到自然过渡,从而引出课题。
2、尝试发现,探索新知学生经过讨论后便能得出:矩形,菱形、正方形既然都是平行四边形,就具有平行四边形的性质,同时又具有各自的特点,我们先来研究矩形的性质。
定理:矩形的四个角都是直角;让学生来证明该定理,引导学生根据命题画出图形,并写出已知,求证,证明。
对于定理2:矩形的对角线相等的证明也同上一样让学生自己完成,并让个别学生板演,老师给以适当的指导。
说明:学生对矩形的性质已有所了解,这里的重点是要严格证明它们。
八年级数学下册《特殊的平行四边形》教案、教学设计
2.提高题:完成课本第76页第7-10题,旨在培养学生运用特殊平行四边形知识解决实际问题的能力。
3.拓展题:选择一道与特殊平行四边形相关的拓展题,要求学生在课后查阅资料、思考讨论,提高学生的自主学习能力。
4.小组作业:以小组为单位,共同完成一道特殊平行四边形的综合应用题,培养学生团队合作精神和解决问题的能力。
6.加强学习评价,关注学生的个体差异,提高教学质量。
-过程性评价:关注学生在课堂上的表现,如发言、讨论、作业等,给予及时的反馈和指导。
-总结性评价:通过测试、竞赛等形式,检验学生对特殊平行四边形知识的掌握程度,为后续教学提供依据。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
-利用多媒体展示生活中常见的特殊平行四边形实物,如窗户、桌面、魔方等,引发学生对特殊平行四边形的关注。
-讲解矩形、菱形、正方形的性质,如对边平行、对角相等、邻边垂直等。
-结合实例,讲解特殊平行四边形的判定方法。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,每组选择一种特殊平行四边形,探讨其性质和判定方法。
-小组内部分工合作,共同完成探讨任务。
2.教学目的:
-培养学生的合作意识和团队精神。
4.掌握特殊的平行四边形在实际生活中的应用,如建过观察、猜想、验证等环节,让学生自主探究特殊的平行四边形的性质,培养他们的观察力和动手操作能力。
2.利用小组合作、讨论交流等形式,引导学生发现并解决问题,提高合作意识和团队精神。
3.运用实际问题,激发学生的学习兴趣,让他们在解决问题的过程中,掌握数学思维方法,提高分析问题和解决问题的能力。
特殊的平行四边形教案
特殊的平行四边形教案特殊的平行四边形教案一、教学目标:1.了解特殊的平行四边形是指矩形、正方形和菱形。
2.能够根据给定条件判断特殊的平行四边形。
3.能够应用特殊的平行四边形的性质解决实际问题。
二、教学重点与难点:1.学生能够正确判断特殊的平行四边形,特别是判断正方形与菱形。
2.学生能够灵活运用特殊的平行四边形的性质解决实际问题。
三、教学准备:1.教师准备一些特殊的平行四边形的图片,如矩形、正方形和菱形的图片。
2.教师准备一些特殊的平行四边形的相关题目。
四、教学过程:Step 1 引入新知识1.教师拿出一些特殊的平行四边形的图片,让学生观察并思考,看看他们能不能猜出这些形状是什么。
2.教师根据学生的回答提示学生,引导他们逐渐了解到这些形状是特殊的平行四边形,即矩形、正方形和菱形。
Step 2 学习特殊的平行四边形的性质1.教师向学生介绍矩形、正方形和菱形的定义,并让学生通过对比发现它们的共同点。
2.教师向学生讲解矩形、正方形和菱形的性质,如:矩形的对边相等且平行,正方形的四条边相等且平行,菱形的对角线相等且垂直。
3.教师可以通过一些具体的例子来帮助学生更好地理解特殊的平行四边形的性质。
Step 3 训练学生判断特殊的平行四边形1.教师给学生出一些判断题,让学生判断给定的形状是不是特殊的平行四边形,并简要说明理由。
2.教师提供一些关键点或提示,帮助学生进行判断。
Step 4 解决实际问题1.教师给学生出一些实际问题,要求学生灵活运用特殊的平行四边形的性质解决问题。
2.教师引导学生分析问题,把问题转化为特殊的平行四边形的性质,然后解决问题。
五、教学总结1.教师对本节课的内容进行总结,强调特殊的平行四边形的定义和性质。
2.教师可以提问学生,让他们回答特殊的平行四边形的定义和性质,加深他们对所学知识的理解。
六、作业布置1.布置一些练习题,巩固学生对特殊的平行四边形的理解和判断能力。
2.要求学生写出解题思路和步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(封面)
八年级数学下册《特殊的平行四边形》教
案
授课学科:
授课年级:
授课教师:
授课时间:
XX学校
教学目标:
1、进一步熟练运用平行四边形、矩形、菱形、正方形的性质和判定方法解决有关问题,清楚平行四边形、特殊平行四边形的特征以及彼此之间的关系。
2、能利用它们的性质和判定进行推理和计算。
3、使学生明确知识体系,提高空间想象能力,掌握基本的推理能力。
教学重点、难点:
重点:掌握特殊平行四边形性质与判定。
难点:能用特殊平行四边形的判定定理和性质定理进行几何证明和计算。
教学过程:
一、梳理知识:
1.特殊平行四边形的性质.
1)如图所示:在矩形ABCD中,对角线AC、BD相交于O点,已知AB=3cm,AC=5cm
则BC=_____cm,△BOC的周长=_____cm
2)如图所示:在菱形ABCD中,对角线AC、BD相交于O点,已知AB=5cm,AC=6cm,
则你能求出哪些线段的长度?
3)如图所示:在正方形ABCD中,对角线AC、BD相交于O点,已知OA=3cm,
则AB=_____cm, △BOC的周长=_______cm.
小结:特殊平行四边形的性质(PPT呈现)
2.特殊平行四边形的判定.
要使平行四边形ABCD成为矩形,需要增加的条件________.
要使平行四边形ABCD成为菱形,需要增加的条件________.
要使矩形ABCD成为正方形,需要增加的条件________.
要使菱形ABCD成为正方形,需要增加的条件________.
小结:特殊平行四边形的判定(PPT呈现)
二、深化提高:
1.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,
四边形ADCE是一个正方形?并给出证明.
2.如图,矩形ABCD的对角线AC、BD交于点O,
过点D作DP∥OC,过C点作CP ∥DO ,交DP于点P ,
试判断四边形CODP的形状.
变式1:如果题目中的矩形变为菱形,(图一) 结论应变为什么?
变式2:如果题目中的矩形变为正方形,(图二) 结论又应变为什么?
3.如图,在中,是边的中点,分别是及其延长线上的点,.
(1)求证:.。