第3章静定结构受力分析三铰拱
结构力学-三铰拱
曲梁
拱
拱 (arch)
一、概述
2.拱的受力特点 拱的受力特点 拱
曲梁
P
拱比梁中的弯矩小
拱 (arch)
一、概述
3.拱的分类 拱的分类
超静定拱
静定拱
两铰拱
三铰拱 拉杆 拉杆拱
高差h 高差
超静定拱
无铰拱 斜拱
拱 (arch)
一、概述
4.拱的有关名称 拱的有关名称 顶铰 拱肋 拱趾铰 跨度 拱肋 拱趾铰 矢高
1 l l a1 b1 不再顶部,或 铰C不再顶部 或 不再顶部 FH = [Y A × − P1 ( − a1 )] f 2 2 0 b a2右边的结2 YB0 YA不是平拱 不是平拱,右边的结 l l
M c0 = [Y A0 × − P1 ( − a1 )]
YB=YB YA=YA0 XA=XB =FH
二、三铰拱的数解法 ----支反力计算 支反力计算 P1 三铰拱的竖向反 P2 C 力与其等代梁的 XB 反力相等 水平反 f FH 反力相等;水平反 A B 力与拱轴线形状0 XA Mc YA l/2 l/2 无关.荷载与跨度 无关 荷载与跨度 YB YA l 一定时, 一定时,水平推 YA0 等代梁 P1 P2 A C 力与矢高成反比. 力与矢高成反比 B 请问:有水平荷载 有水平荷载,或 请问 有水平荷载 或
32kN.m C C 32kN.m
8m B 4m 4m 2kN 2kN A 4m 4m
8m B 2kN
A 2kN
32kN.m
16kN.m
16kN.m
16kN.m
水平反力的作用:使相应水平代梁弯矩 水平反力的作用:使相应水平代梁弯矩MC0 降至为零。 降至为零。
第3章 三铰拱
(二) 对称三铰拱的数解法
1. 计算支座反力
图示三铰拱中,共有 四个反力: VA、HA、VB、HB。 根据整体的平衡 条件可建立三个 平衡方程: ∑MA=0 ∑MB=0 ∑X=0 再取中间铰一侧隔离 体, ∑ MC=0, 由这四个方程可 解出四个反力。
由∑MB= 0,得: VAl-P1b1- P2b2-…= 0 VA= (P1b1 + P2b2 + …)/ l V0A 由∑MA= 0,得: VB= (P1a1+ P2a2+…)/ l V0B 把两个竖向反力VA 、VB与相应简支梁支座反力V0A 、 V0B 相比,可知竖向荷载作用下,对称三铰拱的竖向反力与 其相应简支梁的反力完全相同。
两个投影方程可用拱轴在该点的法线n和切线t为 投影轴。
∑n = 0 ,得: QD = VA cosφD -P1 cosφD -P2 cosφD -H sinφD = (V0A-P1-P2) cosφD -H sinφD
= Q0D cosφD -H sinφD
∑t = 0 ,得: ND = VA sinφD - P1 sinφD -P2 sinφD +H cosφD = (V0A-P1-P2) sinφD +H cosφD
由∑X= 0,得: HA= HB = H 中间铰左侧隔离体 ∑MC=0 得:
∑ MC =
VAl1-P1(l1 - a1) - P2(l1 - a2) - P3(l1 - a3)- H f = 0 得: H=[VAl1-P1(l1 - a1)- P2(l1 - a2)- P3(l1 - a3)] / f 因 VA = V0A ,得:H= M0C / f M0C为相应简支梁截面C的弯矩。
最后根据本例的已知条件,进行具体计算。
VA=VB= V0A = q l / 2= 4× 16 / 2 = 32kN H = (q l 2 / 8) / f = (4× 162 / 8) / 4 = 32kN
静定梁、静定平面刚架和三铰拱的计算
举例: 3、举例:
解: 研究整体: 研究整体 :
ql (↑) 2
∑M ∑M
B
=0
VA =
研究 AC 段:
C
=0
ql 2 HA = (→) 8f
任一截面的弯矩(参阅左下隔离体图) 任一截面的弯矩 (参阅左下隔离体图):
M ( x) = ql ql 2 qx 2 ⋅x− ⋅y− 2 8f 2
令上式等于零,可得合理拱轴 : 令上式等于零, 可得合理拱轴:
例题2 例题2: 图示三跨静定梁,全长承受均布荷载q 试确定铰E 图示三跨静定梁,全长承受均布荷载q,试确定铰E、F的位置,使中 的位置, 间一跨支座的负弯矩与跨中正弯矩数据数值相等。 间一跨支座的负弯矩与跨中正弯矩数据数值相等。
解:
1 研究 AE 杆: V E = q (l − x ) 2 1 1 研究 EF 杆: M B = M C = q (l − x ) x + qx 2 2 2 ∵MB + MC = ql 2 (叠加弯矩值) 8
解: (一)求支座反力 一 求支座反力 研究整体: 研究整体:
∑X =0 ∑M = 0 ∑M = 0
A B
HA = HB VB = 80kn(↑) V A = 80kn(↑)
取半刚架研究: 取半刚架研究:
∑M
C
=0
H B = 20kn(←) H A = 20kn(→)
校核: 校核 ∑ Y = 80 + 80 − 20 × 8 = 0 (二)绘内力图 二 绘内力图 (三)内力图校核 略) 内力图校核(略 三 内力图校核
拟简支梁法” 3、用“拟简支梁法”绘弯矩图
结论: 结论: 弯矩图时, 用叠加法绘 弯矩图时,先绘出控制截面 的弯矩竖标,其间若无外荷载作用, 的弯矩竖标,其间若无外荷载作用,可用直线 相连;若有外荷载作用,则以上述直线为基线, 相连;若有外荷载作用,则以上述直线为基线, 再叠加上荷载在相应简支梁上的弯矩图。 再叠加上荷载在相应简支梁上的弯矩图。
结构力学第三章静定结构的受力分析
例2: MA
A
MA
FP L/2 L/2
FP
MB
B 结论
把两头的弯矩标在杆
端,并连以直线,然
后在直线上叠加上由
节间荷载单独作用在
简支梁上时的弯矩图
MB MA
FPL/4
FPL/4
2020年5月29日星期五7时56分M25秒B
§3-1 梁的内力计算的回顾
3)画剪力图
要求杆件上某点的剪力,通常是以弯矩图为
C
B FQBA
由: MA 0 FQBA (81 26) 2 9kN
也可由: Y 0 FQCA 17 8 9kN
剪力图要注意以下问题: ▲ 集中力处剪力有突变; ▲ 没有荷载的节间剪力是常数; ▲ 均布荷载作用的节间剪力是斜线; ▲ 集中力矩作用的节间剪力是常数。
2020年5月29日星期五7时56分25秒
L/2
M/2
FPL/4
L/2
M
M/2
2020年L5/月229日星期五L7/时2 56分25秒
§3-1 梁的内力计算的回顾
2)用叠加法画简支梁在几种简单荷载共同作用下 的弯矩图
例1: MA
q
MB
q
A
B=
qL2/8
MA
MB
+
+
MA
=A
qL2/8
MB
B
2020年5月29日星期五7时56分25秒
§3-1 梁的内力计算的回顾
2020年5月29日星期五7时56分25秒
§3-1 梁的内力计算的回顾
正 MAB
杆端内力
FNAB
A端 FQAB
MBA 正
B端
FNBA
FQBA
第三章 静定结构的受力分析
斜直线
FS=0处
有突变
突变值为P
如变号
无变化
M图
斜直线
抛物线
有尖角
↓
↑
有极值
尖角指向同P
有极值
有突变
M=0
利用上述关系可迅速正确地绘制梁的内力图(简易法)8
Structural mechanics
静定结构的受力分析
简易法绘制内力图的一般步骤:
(1)求支反力。
2)分段:凡外力不连续处均应作为分段点,如集中力
15
Structural mechanics
基本部分:
静定结构的受力分析
不依赖其它部分的存在而能独立地维持其几何不变性的部 分。 如:AB、CD部分。
(a)
基本部分
(b) A
B
层叠图:
基本部分
C
附属部分:
必须依靠基本部分 才能维持其几何不变 D 性的部分。如BC部分 。
为了表示梁各部分之间的支撑关系,把基本部分画在下层, 而把附属部分画在上层, (b)图所示,称为层叠图。
3
Structural mechanics
静定结构的受力分析
§3—1 梁的内力计算的回顾
单跨静定梁应用很广,是组成各种结构的基构件之一,其受 力分析是各种结构受力分析的基础。这里做简略的回顾和必
要的补充。
1. 单跨静定梁的反力
常见的单跨静定梁有:
简支梁
外伸梁
悬臂梁
↷
→↑
↙ ↑
→↙ ↑↑
→↑ ↙
反力只有三个,由静力学平衡方程求出。 4
16
Structural mechanics
(2)受力分析方面:
静定结构的受力分析
结构力学I-第三章 静定结构的受力分析(桁架、组合结构)
Y 0 FNEC sin FNED sin FNEA sin 10 kN 0
联立解出
FNEC FNED 10 5 33.5 思考:能否更快呢? FNEC 22.36 kN, FNED 11.18 kN
00:44
静定平面桁架
• 桁架的内力计算
由力矩平衡方程 ∑ ME = 0,可求CD杆内力。
FA×d - FNCD×h = 0
FNCD = FAd / h = M0E / h
F1 F2 F3 F4 F5
M0E FA
6d
M FB
若M0E > 0,则FNCD >0 (下弦杆受拉 )
M0E是什么?
00:44
I
II
静定平面桁架
I
II
• 桁架的内力计算
简支梁
悬臂梁
伸臂梁
刚架:受弯构件,由若干直杆联结而成的结构,其中全部或部份 结点为刚结点;
A
D
B
C
简支刚架
悬臂刚架
三铰刚架
00:44
回顾
• 结构内力图
M–AB (表0) 示结构上各截面内力值的图形:弯矩图、M剪BA (0)
力图、A端轴力图;
A
B
FNA横B 坐标 -- 截面位置;
内力图 - 弯矩
A
FA
FB
– 截面法
• 例1:试求图示桁架中杆EF、ED,CD,DG的内力。
解: ⑶ 求上弦杆EF内力,力矩法;
取 ED 和 CD 杆 的 交 点 D 为 矩 心 , 先 求 EF 杆 的 水 平 分 力
FxEF,由力矩平衡方程∑MD = 0,
FA×2d - F1×d + FxEF×H = 0
第三章静定结构受力分析三铰拱
(1)求反力:Fy (2)列弯矩方程
(3)令M (x) 0 y
qL A FV B 2
M (x) Fy Ax
1 FH
(Fy Ax
1 2
12qFxHq2x)2q8q8LFfL2fH2
y
(1 2
qLx
1 2
qx2
)
4f L2
(L x)x
结论:均布荷载作用下,合理拱轴线方程为抛物线。
§3-3 三铰拱
a2
b2
F =F YA
YA0
F =F XA
XB
=FH
FYB0
M
0 c
[FYA0
l 2
l P1( 2
a1)]
FH= MC0 / f
§3-3 三铰拱
结论: ①简支梁不存在水平推力,三铰结构水平推力不为零;
②对于平拱、竖向反力与拱高无关; 平拱
③反力与拱轴线形式无关,只与三个铰的位置有关;
④水平推力与拱高成反比。
例2:求集中荷载作用下的合理拱轴线
(1)求反力:Fy A FyB 1.5P
(2)求合理拱轴线
FH
1 (1.5P 2a P a) a
2P
AD段 : M (x)
DC段 : M (x)
1.5Px FH y
1.5Px P(x a)
0
FH
y
y0
3x 4
y
(直线)
1 (0.5Px 2P
Pa)
§3-3 三铰拱
MK
M
0 K
FH y
FQK
FQ
0 K
cos FH
sin
FNK
F Q
0 K
sin FH
cos
第三章静定结构受力分析
内力的概念和表示在平面杆件的任意截面上,将内力一般分为三个分量:轴力F N 、剪力F Q 和弯矩MM A轴力----截面上应力沿杆轴切线方向的合力。
轴力以拉力为正。
剪力----截面上应力沿杆轴法线方向的合力。
剪力以绕微段隔离体顺时针转者为正。
内力的概念和表示弯矩----截面上应力对截面形心的力矩。
在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。
作图时,轴力图和剪力图要注明正负号,弯矩图规定画在杆件受拉的一侧,不用注明正负号。
内力的计算方法梁的内力的计算方法主要采用截面法。
截面法可用“截开、代替、平衡”六个字来描述:1.截开----在所求内力的截面处截开,任取一部分作为隔离体;隔离体与其周围的约束要全部截断。
2.代替----用截面内力代替该截面的应力之和;用相应的约束力代替截断约束。
3.平衡----利用隔离体的平衡条件,确定该截面的内力。
内力的计算方法利用截面法可得出以下结论:1.轴力等于截面一边的所有外力沿杆轴切线方向的投影代数和;2.剪力等于截面一边所有外力沿杆轴法线方向的投影代数和;3.弯矩等于截面一边所有外力对截面形心力矩的代数和。
以上结论是解决静定结构内力的关键和规律,应熟练掌握和应用。
分段叠加法画弯矩图1.叠加原理:几个力对杆件的作用效果,等于每一个力单独作用效果的总和。
= +=+2.分段叠加原理:上述叠加法同样可用于绘制结构中任意直杆段的弯矩图。
例例:下图为一简支梁,AB段的弯矩可以用叠加法进行计算。
(1)(2)(3)(4)静定多跨连续梁的实例现实生活中,一些梁是由几根短梁用榫接相连而成,在力学中可以将榫接简化成铰约束,这样由几个单跨梁组成几何不变体系,称作为静定多跨连续梁。
下图为简化的静定多跨连续梁。
静定多跨梁的受力特点结构特点:图中AB依靠自身就能保持其几何不变性的部分称为基本部分,如图中AB;而必须依靠基本部分才能维持其几何不变性的部分称为附属部分,如图中CD。
受力特点:作用在基本部分的力不影响附属部分,作用在附属部分的力反过来影响基本部分。
3静定结构的受力分析-三铰拱结构力学
1 结构力学多媒体课件一、拱式结构的特征 1、拱与曲梁的区别拱式结构:指的是杆轴线是曲线,且在竖向荷载作用下会产生水平反力(推力)的结构。
FABH A =0 FABH A =0 三铰拱F PF P曲梁H≠0H≠0是否产生水平推力,是拱与梁的基本区别。
拱结构的应用:主要用于屋架结构、桥梁结构。
拱结构的应用:主要用于屋架结构、桥梁结构。
拱桥 (无铰拱)超静定拱 世界上最古老的铸铁拱桥(英国科尔布鲁克代尔桥) 万县长江大桥:世界上跨度最大的混凝土拱桥 灞陵桥是一座古典纯木结构伸臂曲拱型廊桥, 号称“渭水长虹”、“渭水第一桥” 主跨:40 米 建成时间:三峡工程对外交通专用公路下牢溪大桥(上承式钢管混凝土拱桥,主跨:160米 ,建成时间:1997)2、拱的类型三铰拱两铰拱无铰拱拉杆拱静 定 拱超 静 定 拱3、拱的优缺点a、在拱结构中,由于水平推力的存在,其各截面的弯矩要比相应简支梁或曲梁小得多,因此它的截面就可做得小一些,能节省材料、减小自重、加大跨度b、在拱结构中,主要内力是轴压力,因此可以用抗拉性能比较差而抗压性能比较好的材料来做。
c、由于拱结构会对下部支撑结构产生水平的推力,因此它需要更坚固的基础或下部结构。
同时它的外形比较复杂,导致施工比较困难,模板费用也比较大4、拱的各部分名称lf 高跨比 BACf拱顶拱轴线拱高 f拱趾 起拱线跨度 l 平拱斜拱二、三铰拱的计算 1、支座反力的计算L 2L 1Lb 2a 2b 3a 3b 1a 1k y kx kCBAfF P1F P2F P3kCBAF P1F P2F P3B M =∑0Pi iYA YAFbF FL ==∑0A M =∑0Pi iYB YBF a F FL==∑取左半跨为隔离体:CM=∑()()01111212YA P P CH F L F L a F L a M F ff⨯----==F HF H1、支座反力的计算L 2L 1Lb 2a 2b 3a 3b 1a 1k y kx kCBA fF P1F P2F P3kCBAF P1F P2F P3在竖向荷载作用下,三铰拱的支座反力有如下特点: 1)支座反力与拱轴线形状无关,而与三个铰的位置有关。
3-6 三铰拱
D左 D右
等代梁
(2)求D、E截面内力 D截面:xD=3m,yD=3m,tgφD=dy/dx=2/3,故sinφD=0.555, cosφD=0.832。
M D M HyD 105 * 3 82.5 * 3 67.5kN m
0 D
计算D截面的剪力时,由于存在集中荷载,故剪力计算应按左右截面分别进行!
0 MC 58 4 4 H 6kN f 4
2、计算各截面内力
2、计算各截面内力
4f (l x1 ) x1 2 l N1 44 M qlsin1 (16 2) 2 1.75m 1 1 2 sin 6 16 1 6 cos1 dy Q1 0 tan1 6kN dx x 2m 1 1 、计算原理仍然是截面法; sin 1 7 2m 4f 44 2 l 2 x1 2、拱轴线方程主要用于确定截面的位置及 16 2 2 0.75 。 l 16 16 cos1 7 其法线方向,从而确定截面上的剪力和轴力 7kN 1 36 52,, sin1 0.6 , cos1 0.8
3.拱的分类
超静定拱
静定拱
两铰拱
三铰拱 拉杆 拉杆拱
高拱
拱 (arch)
一、概述
4.拱的有关名称 顶铰 拱肋 拱趾铰 跨度 拱肋 拱趾铰 矢高
f l
矢跨比——拱的一个重要设计参数!
二、三铰拱的数解法(竖向荷载) ----支反力计算 三铰拱的竖向反 P1 P2 C 力与其等代梁的 反力相等;水平 X f H B A B 反力与拱轴线形 0 XA M c 状无关。荷载与 YA l/2 l/2 YB YA 跨度一定时,水 l 请问:有水平荷载, YA0 等代梁 P1 平推力与矢高成 P2 或铰C不再顶部, A C B 反比。 或a 不是平拱,右 1 l l b 1 1 H [YA P a1 )] 1( f 2 2 边的结论还是正确 0 0 b a 2 YA YB 2 l l 0 0 的吗? M c [YA P a1 )] 1(
第三章静定结构受力分析三铰拱
第三章静定结构受力分析三铰拱三铰拱是指拱脚处设置了三个支座,可以在三个方向(横向、纵向和垂直)上无约束移动。
在受力分析中,三铰拱是一个非常重要的结构。
本文将对三铰拱的受力分析进行详细介绍。
三铰拱的受力分析首先需要了解其受力形式。
三铰拱受力主要包括水平向力和垂直向力。
水平向力主要来自于拱腹对拱脚的水平压力,而垂直向力主要来自于拱腹对拱脚的垂直压力。
在分析中,我们需要计算拱脚处的支座反力和弯矩大小。
首先,我们考虑横向受力平衡。
根据平衡条件,拱脚处的水平向力和法线向力之和为零。
即:∑Fx=0∑Fy=0其中,∑Fx表示水平向力的总和,∑Fy表示垂直向力的总和。
在接下来的分析中,我们假设拱脚处三个支座的反力分别为F1、F2和F3、由于三铰拱的支座可以自由移动,在计算反力时需要考虑拱腹对支座的约束力。
接下来,我们考虑拱腹对支座的约束力。
根据平衡条件,拱腹受到的约束力可以通过对整个拱腹的受力分析来得到。
我们将拱腹切割成多个小段,每个小段的受力可以看做静定问题。
对于每个小段,我们可以分别计算其水平向力和垂直向力。
在计算过程中需要注意,由于拱脚处的支座反力的未知,我们需要通过整个拱腹的受力平衡来解算这些未知。
最后,我们通过将每个小段的受力结果进行积分,得到拱脚处支座反力的大小和作用点位置。
在进行受力分析时,还需要考虑拱腹的几何特征,如拱的形状、拱腹曲线的方程等。
这些特征对于计算拱脚处的支座反力非常重要。
总的来说,三铰拱的受力分析是一个复杂而重要的过程。
通过考虑拱腹对支座的约束力,我们可以计算得到拱脚处支座反力的大小和作用点位置。
这些结果对于设计和分析三铰拱结构非常有帮助。
结构力学I-第三章 静定结构的受力分析(拱、隔离体法、虚位移法)
特点: 杆件都是二力杆;
分类:简单桁架、联合桁架、复杂桁架;
简单桁架 联合桁架 复杂桁架
Page
9
14:33
LOGO
回顾
桁架
内力计算:结点法、截面法、联合法;
结点法:结点为隔离体,2个平衡方程,适用于简单桁架; 截面法:隔离体包含两个以上几点,非交汇力系,3个平衡方程; 联合法:结点法和截面法的结合应用;
三铰拱受力分析
内力计算: K点
⑴ 弯矩 MK = MK 0 - FH y 拱的弯矩等于等代梁相应截面 的弯矩再减去推力引起的弯矩 ⑵ 截面力分量 Fx = - FH - Fy = FVA - F1 - F2 = FQK0 ⑶ 剪力和轴力 FQ = FQK0 cosθ - FH sinθ FN = - FQK0 sinθ - FH cosθ
FHA FHB FH 1 FH f l l l F F a F a yA 1 1 2 2 2 2 2
Page 20
FV0 A
a1 a2 a3
FVB
0
等代梁
14:33
LOGO
三铰拱
y F F K A x l/ 2 FVA x l/ 2 FVB C f B FHB F
A
三铰拱
F1 F2 K C F3 B
同跨度、同荷载的简支梁。 其反力、内力记为
0 0 0 0 M F FV F 、 、 、 VB A S
FV0 A
a1 a2 a3
FVB
0
等代梁
Page 19
14:33
LOGO
三铰拱
y F F K A F HA x l/ 2 FVA x l/ 2 FVB C f B FHB F
静定结构的内力—三铰拱(建筑力学)
愈大)。
三铰拱
(2)截面内力的计算
① 截面内力的正负规定
轴力以压力为正;剪力以有使截面产生顺时针转动的趋势者为正;弯矩
以拱内侧纤维受拉者为正。
② 任意截面的内力计算
设K截面形心的坐标分别为xK、yK,K截面的法线与x轴
的夹角为φK,且左半拱的φK为正值,右半拱的φK为负值。
取三铰拱的K截面以左
部分为隔离体,得
FNE FQ0E sin E Fx cosE 134kN
三铰拱
4 三铰拱的合理拱轴线
若拱的所有截面上的弯矩都为零,这样的拱轴线为合理拱轴线。
三铰拱在竖向荷载作用下任意截面上的弯矩为
MK
M
0 K
Fx yK
由 M M 0 Fx y 0 得
M0
合理拱轴线方程为: y
Fx
M 0——代梁在该竖向荷载作用下的弯矩方程
三铰拱
C B
C
C
A
B
A
B
l
有拉杆的三铰拱
两铰拱
(c)
(a)
梁式结构在竖向荷载作用下是不会产生推力的。
C
A B
B
A
B
曲梁
三铰拱
2 三铰拱的组成
拱顶
拱轴线
f 矢高
拱趾
拱趾
l 跨度
拱顶:拱的最高点
拱趾:支座处
跨度:两支座之间的水平距离,用l表示
矢高:拱顶到两拱趾间联线的竖向距离,用f 表示 高跨比 f/l 是拱的一个重要的几何参数 工程实际中,高跨比在1/10 ~ 1之间,变化的范围很大
Fx
M
0 C
f
ql 2 f
8 ql 2 8f
合理拱轴的方程为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FN FQ0 sin FH cos
FQ FQ0 cos FH sin
(2)
M M 0 FH y
概念:
上式即为用相应简支梁的内力 表示的拱的内力式。当将上式 用作拱的内力计算公式时,可 以叫做公式法。
3.拱的内力图特征和制作
分析
由式2可知,在竖向荷载作用 下静定拱内力与相应简支梁
例1 图(a)所示三铰拱的拱轴 为半圆形。计算截面K1、K2的 内力。
FP=10kN
R=4m
(a)
解 1)求支座反力
竖 MA 0
向 FBy
1 [q R 2R
R 2
FP (R
R cos )] 11.33kN()
反 MB 0
力 FAy
1 [q R 2R
力与前规定相同;弯矩以使 拱的下侧受拉为正;
以图示三铰刚架为例说明拱的内 力计算的一般方法。
FH F Ay
FH
F By FN0
解:
截开指定截面K,取左侧为隔 离体,见下页图(c)(d),截 面上的内力均按规定的正方 向示出 。
M FN
FH
FQ
FAy
(c)
M0 0
FQ0
(d)
在轴力和剪力的两个正交方 向上建立投影方程,并建立 关于截面形心的力矩方程, 即得:
内力及拱水平反力有关。其
中拱水平反力对应确定的荷
载是一常数。此外,拱轴力
和剪力还与所计算截面外法
线与x轴的夹角a有关。
结论
拱轴上内力有以下3个特点:
1
不管是在均布荷载下还是在集 中荷载下,拱的三个内力图都 是曲线图形。
2 在有竖向集中力作用点两侧截 面,轴力图和剪力图都有突变, 突变值等于相应简支梁的剪力 分别在拱的轴力和剪力方向上 的投影。
M K1
1.33x1 5.33 y1 q
y12 2
3.80kN m
式中:
y1 R cos x1 R(1 sin )
3) 求K2截面内力
因截面K2上作用有竖向集中 力FP,所以在该截面两侧的 轴力和剪力都将有突变。K2 截面的内力要区分截面左、 右两个截面分别考虑。
K2截面以右——取K2R以右部分: (隔离体上无集中力所用)
FNK 2R 11.33 cos 2.67 sin 11.15kN
FQK2R 11.33 sin 2.67 cos 3.35kN
M K 2R 11.33x2 2.67 y2 0.73kN m
FN (FAy FP1 ) sin FH cos
FQ (FAy FP1 ) cos FH sin (a)
M FAy x FP1 (x a1 ) FH y
可以看出,拱的内力计算的 基本方法与前述相同。拱的 内力计算的特点是,随着截 面位置的变化,截面的法向 不断的有相应的变换。
一、概述
3.8 三铰拱
什么叫拱?
一般指杆的轴线为曲线形状, 并且在竖向荷载作用下会产生 水平支座反力的结构。
静定拱分类: 1 三铰拱
2 带拉杆三铰拱
f(拱高)
静定拱的各部名称见图
拱轴 (底铰)
(a)三铰拱 (b)带拉杆三铰拱
二、三铰拱的内力计算
1.三铰拱的支座反力
当三铰拱的两个底铰在一条水平 线上,且只有竖向荷载作用时, 三铰拱的竖向支座反力与相应简 支梁的竖向支座反力相等;拱自 身的两个水平支座反力互等。
FH =20kN (FBx)
FBy =30kN x(源自)2)求合理拱轴方程:即利用式 : y M 0
FH
分AD、DC、CB三段写出各段的 拱轴方程
AD段(0,2):
y1
30x 20
3 2
x
DC段(2,4):
y2
30x 20(x 2) 20
1 2
x2
CB段(4,8):
y3
30 x
(a)
2m 2m
解
1)求支座反力
析 因拱的两个底铰不在一条 直线上,须先建立关于同 一个铰的两个约束力的平 衡方程,联立求解,即:
先考虑支座B的约束力。以A 点为矩心,建立拱整体的力 矩平衡方程:
M A 0 8FBy 2FH 2FP q 4 6 0
再取铰C以右部分为隔离体, 写C端弯矩为零的方程:
3 有集中力偶作用点两侧截面, 弯矩图有突变,突变值仍等 于所作用的集中力偶。
拱的内力图制作分3步:
1 沿拱的跨度方向将拱轴分为若 干等分;
2 计算各等分点截面上的内力值 及截面内力有突变的内力值;
3 将已得各截面内力值用曲线 光滑连接,即得拱的内力图。
公式法 计算拱的内力用于 内力图制作时较有利。
20 ( x
2) 10(x 20
4) 2
/2
1 4
x2
5 2
x
2
由各段的拱轴方程,可绘 出该拱的合理拱轴。
三、拱的合理轴线
概念
拱的所有截面上都处于无弯矩状 态时的拱轴线叫合理拱轴。换句 话说,即,具有合理拱轴的拱的 所有截面上都只有轴向压力。
竖向荷载作用下合理拱轴的确定
只有竖向荷载作用时,其合 理拱轴可由数解方法确定。
由式(2)第三式
M M 0 FH y
令其等于 y M 0
(3)
零,得:
FBx FBy
2)求K1截面内力 取截面K1左侧,见图(c)。
Mk1 FNK1
FQK1
4m
5.33kN 1.33kN
(c)
建立截面上轴力、剪力方向 上的投影方程及截面形心为 矩心的力矩方程
FNK1 1.33 sin (5.33 q y1 ) cos 0.72kN
FQK1 1.33 cos (5.33 q y1 ) sin 1.95kN
求解图示三铰刚架支座反力
FH F Ay
FH
F By FN0
分析
FAY FA
FBY FB
FH
1 f
[FAy
L1
FP1
(x
a1
)]
M C0 f
式中: M C0 —相应简支梁在对应于 拱顶铰位置处的弯矩值
支座反力图
0 FB
(b)
2.拱的内力计算
1)基本方法—截面法 注: 拱的内力正负号的规定:剪
K2截面以左——取K2L以右部分: (隔离体上有集中力所用)
FNK 2L FNK 2R FP cos 2.49kN
FQK 2L FQK 2R FP sin 1.65kN
M K2L M K2R
式中
x2 R(1 cos )
y2 R sin
小 结
带拉杆三铰拱在竖向荷载作用 下水平反力为零。其拱结构由 支座提供的在拱铰处的水平力,
R 2
FP (R
R cos )]
1.33kN()
MCL 0
水
1
R
平 FAx
R
(FAy
R
q
R
) 2
5.33kN()
支 MCR 0
座 反 FBx
1 R
(FBy
R
q
R cos )
2.67kN()
力
支座反力图
R=4m
FAx FAy
(b)
FP=10kN
M C 0 4FBy 2FH q 4 2 0
联立以上两式, 解得:
FBy 30kN()
FH 20kN()
(a) (b)
由拱整体的平衡方程: FY 0
得
FAy 30kN() (c)
A支座竖向反力
支座反力结果图:
y
FH (FA )x FAy =30kN
被结构内部的拉杆的拉力替代。
因曲杆的受力与前述三铰拱完
全相同,因此称其为带拉杆的
三铰拱。
拱的内力求解另一 种方法 :公式法
现在考虑相应简支梁的K截面上 的内力,见图(b)。 FCy
FCx
FAx=0
(b)
a FAy
f FNAB
由(b)容易得出:
FQ0 FA FP1 FAy FP1
M 0 FA x FP1 (x a1 ) FAy FP1 (x a1 )
FH
小结
合理拱轴的纵坐标与相应简支梁 的弯矩纵坐标成正比。也可以说, 合理拱轴的形状应与相应简支梁 的弯矩图形状相似。由此推出, 拱在均布荷载作用下的合理拱轴 是抛物线形状;在集中荷载作用 下的合理拱轴是折线图形。
例1试设计一个三铰拱的轴线。 其拱上作用荷载与拱的三个铰 相对位置已定,如图(a)示。