(课件 检测)第二编 中档题突破专项训练篇(一) 数与式的运算
数与式的运算(学生版)--初升高数学专项训练
数与式的运算--初升高数学专项训练专题综述初中阶段“从分数到分式”,通过观察、分析、类比,找出分式的本质特征,及它们与分数的相同点和不同点,进而归纳得出分式的概念及运算性质,我们已经运用的这些思想方法是高中继续学习的法宝.二次根式是在学习了平方根、立方根等内容的基础上进行的,是对“实数”、“整式”等内容的延伸和补充,对数与式的认识更加完善.二次根式的化简对勾股定理的应用是很好的补充;二次根式的概念、性质、化简与运算是高中学习解三角形、一元二次方程、数列和二次函数的基础.二次根式是初中阶段学习数与式的最后一章,是式的变形的终结章.当两个二次根式的被开方数互为相反数时,可用“夹逼”的方法推出,两个被开方数同时为零.本专题内容蕴涵了许多重要的数学思想方法,如类比的思想(指数幂运算律的推广)、逼近的思想(有理数指数幂逼近无理数指数幂)n的异同.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质,掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.课程要求《初中课程要求》1、认识了实数及相关概念,如有理数、无理数;了解了实数具有顺序性,知道字母表示数的基本代数思想2、初中会比较简单实数的大小,初步接触作差法3、理解了多项式与多项式的乘法,熟悉了平方差、完全平方公式,掌握了不超过三步的数的混合运算4、掌握了平方根、立方根运算;了解了有理式和无理式的概念;了解了整数指数幂的含义《高中课程要求》1、高中必修一中常用数集都用了符号表示,同时为数系的扩充打基础,会运算字母代表数的式子2、掌握用作差法、作商法来比较实数大小,体会变形过程中的技巧3、在高中会常常用到立方和、立方差、三数和的平方的公式,两数和、差的立方公式.高中有很多混合运算都超过三步4、必须掌握分子分母有理化的技巧、二次根式的性质根式的大小比较,会把整数指数幂的运算及其性质推广到分数指数幂知识精讲高中必备知识点1:绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即:,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.高中必备知识点2:乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()a b a b ab +-=-;(2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b aab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式33223()33a b a a b ab b +=+++;(5)两数差立方公式33223()33a b a a b ab b -=-+-.高中必备知识点3:二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b212x ++,22x y +,1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如-与a与,+b +与b -互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b ≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.a ==,0,,0.a a a a ≥⎧⎨-<⎩高中必备知识点4:分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB 具有下列性质:A A MB B M ⨯=⨯;A A MB B M÷=÷.上述性质被称为分式的基本性质.2.繁分式像ab c d+,2m n p m n p+++这样,分子或分母中又含有分式的分式叫做繁分式.典例剖析高中必备知识点1:绝对值【典型例题】阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为21x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2±=x .例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +2|=3的解为;(2)解不等式:|x -2|<6;(3)解不等式:|x -3|+|x +4|≥9;(4)解方程:|x -2|+|x +2|+|x -5|=15.【变式训练】实数、在数轴上所对应的点的位置如图所示:化简2+|−U −|−U .【能力提升】已知方程组+=5+4−=10−6的解、的值的符号相同.(1)求的取值范围;(2)化简:2+2−2−3.高中必备知识点2:乘法公式【典型例题】(1)计算:203212016(2)(2)2-⎛⎫-++-÷- ⎪⎝⎭(2)化简:2(2)(2)(2)a b a b a b +---【变式训练】计算:(1)0221( 3.14)(4)()3π--+--(2)2(3)(2)(2)x x x --+-【能力提升】已知10x =a ,5x =b ,求:(1)50x 的值;(2)2x 的值;(3)20x 的值.(结果用含a 、b 的代数式表示)高中必备知识点3:二次根式【典型例题】计算下面各题.(1)2163)1526(-⨯-;(2+【变式训练】÷时,想起分配律,于是她按分配律完成了下列计算:==+她的解法正确吗?若不正确,请给出正确的解答过程.【能力提升】先化简,再求值:(2a b a b -+-b a b -)÷a 2ba b-+,其中,.高中必备知识点4:分式【典型例题】先化简,再求值22122(121x x x xx x x x +++-÷--+,其中x 满足x 2+x ﹣1=0.【变式训练】化简:22442x xy y x y-+-÷(4x 2-y 2)【能力提升】已知:112a b-=,则ab b a b ab a 7222+---的值等于多少?对点精练1.下列运算正确的是()A .2xy xy y -=-xx yB =C .3x 3﹣5x 3=﹣2D .8x 3÷4x =2x 32.下列计算结果正确的是()A .321222x x x +=---B .235()x x =C .5()xy -÷3()xy -=22x y -D .22352x y xy xy-=-3.若式子1xx +有意义,则下列说法正确的是()A .1x >-且0x ≠B .1x >-C .1x ≠-D .0x ≠4.计算3311a a a ---的结果是()A .3B .0C .1a a -D .11a -5.若||4=a ,||2=b ,且+a b 的绝对值与相反数相等,则-a b 的值是()A .2-B .6-C .2-或6-D .2或66.设有理数a 、b 、c 满足(0)a b c ac >><,且c b a <<,则222a b b c a cxx x ++++++﹣﹣的最小值是()A .2a c-B .22a b c++C .22a b c++D .22a b c+-7.如果a ,b ,c 是非零有理数,那么a b c abca b c abc+++的所有可能的值为().A .4-,2-,0,2,4B .4-,2-,2,4C .0D .4-,0,48.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n≥4)行从左向右数第(n-3)个数是(用含n 的代数式表示)().A B C D9最接近的整数是()A .3B .4C .5D .610.设a 的小数部分,b 的小数部分,则21b a-的值为()A 1B 1+C 1--D 1+11.若113-=a b ,则分式2322a ab b a ab b+-=--______﹒12.若分式222x x x ---的值为零,则x 的值为_______.13.已知整数a 满足13a <£,则分式2214aa a ⎛⎫-⋅⎪-⎝⎭的值为________.14.计算2的结果等于_________.15.计算21)-=__.16.化简:23a b =___________17____.18.若有理数x ,y ,z 满足(|x +1|+|x ﹣2|)(|y ﹣1|+|y ﹣3|)(|z ﹣3|+|z +3|)=36,则x +2y +3z 的最小值是_____.19.已知|2||1|9x x ++-=x y +的最小值为__.20.已知式子|x+1|+|x ﹣2|+|y+3|+|y ﹣4|=10,则x+y 的最小值是_____.21.(1)计算:1031(2)|2|(2)2-⎛⎫-+---- ⎪⎝⎭;(2)先化简,再求值:221224x x x x ⎛⎫+÷ ⎪+--⎝⎭,其中1x =-.22)1.23.已知a ,b ,c 满足2|3|(5)0a c ++-=,请回答下列问题:(1)直接写出a ,b ,c 的值.a =_______,b =_______,c =_______.并在数轴上表示.(2)a ,b ,c 所对应的点分别为A ,B ,C ,若点A 以每秒1个单位长度向右运动,点C 以每秒3个单位长度向左运动;①运动1.5秒后,A ,C 两点相距几个单位长度.②几秒后,A ,C 两点之间的距离为4个单位长度.24.同学们都知道,|4(2)|--表示4与2-的差的绝对值,实际上也可理解为4与2-两数在数轴上所对应的两点之间的距离:问理|3|x -也可理解为x 与3两数在数轴上所对应的两点之问的距离,试探索:(1)|4(2)|--=_______.(2)找出所有符合条件的整数x ,使|4||2|6x x -++=成立,并说明理由(3)由以上探索猜想,对于任何有理数x ,|3||6|x x -+-是否有最小值?如果有,写出最小值;如果没有,说明理由.25.(1)已知250x x -=,求代数式2210x x --的值;(2)化简:226993x x x x x ++---.26.先化简,再求值:222111x x x x x x --⎛⎫-+÷⎪++⎝⎭,其中x =27.如图,甲、乙两张卡片上均有一个系数为整数的多项式,其中乙中二次项系数因为被污染看不清楚.(1)嘉嘉认为污染的数为3-,计算“A B +”的结果;(2)若3a =“A B -”的结果是整数,请你求出满足题意的被污染的这个数.28.(1)计算:1202211|3|tan 30(2021)2-⎛⎫-+--+ ⎪⎝⎭︒π(2)先化简再求值:2344111x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中2x =-.29.已知2210a a +-=,求代数式242a a a a ⎛⎫--÷⎪⎝⎭的值.30.计算:(1)()()()345222a a a ⋅÷-(2)()3242(3)2a a a -⋅+-(3)34()()x y y x -⋅-(4)220191(1)( 3.14)3π-⎛⎫-+-- ⎪⎝⎭。
专题-数与式的运算(解析版)
专题01 数与式的运算知识梳理在初中,我们已经学习了实数,知道字母可以表示数,用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式、分式、根式,它们具体细分又会包含单项式、多项式、绝对值、数幂等不同的小的类型,它们都具有实数的属性,可以进行运算.由于在高中学习中我们会经常遇到由代数式组成的各种混合运算,因此也需要较为复杂的公式结构和几何意义来进行辅助,比如:绝对值的几何意义、立方和差公式、杨辉三角公式、三种常见非负数形式等.知识结构模块一绝对值1、绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩2、绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.3、两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.【例1】解不等式:13x x -+->4.【难度】★★【答案】0<x 或4>x【解析】解法一:由01=-x ,得1=x ;由30x -=,得3x =;①若1<x ,不等式可变为(1)(3)4x x ---->,即24x -+>4,解得x <0,又x <1,∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->,即24x ->4, 解得x >4.又x ≥3,∴x >4.综上所述,原不等式的解为x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间典例剖析的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意义即为|P A |+|PB |>4.由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4.【例2】(1)当x 取何值时,3-x 有最小值?这个最小值是多少?(2)当x 取何值时,25+-x 有最大值?这个最大值是多少?(3)求54-+-x x 的最小值.(4)求987-+-+-x x x 的最小值.【难度】★★【答案】(1)当x=3时,3-x =0为最小值;(2)当x=-2时,25+-x =5为最大值;(3)当54≤≤x 时取最小,则54-+-x x =1为最小值;(4)当x=8时取最小,则987-+-+-x x x =2为最小值.【例3】(1)阅读下面材料:点A 、B 在数轴上分别表示实数b a ,,A 、B 两点这间的距离表示为AB,当A、B两点中一点在原点时,不妨设点A在原点,如图1,babOBAB-===;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边baababOAOBAB-=-=-=-=;②如图3,点A、B都在原点的左边()baababOAOBAB-=---=-=-=;③如图4,点A、B在原点的两边()bababaOBOAAB-=-+=+=+=.综上,数轴上A、B两点之间的距离baAB-=.(2)回答下列问题:①数轴上表示2和5两点之间的距离是,数轴上表示-2和-5的两点之间的距离是,数轴上表示1和-3的两点之间的距离是;②数轴上表示x和-1的两点A和B之间的距离是,如果2=AB,那么x为;③当代数式21-++xx取最小值时,相应的x的取值范围是;④求1997321-+⋅⋅⋅+-+-+-xxxx的最小值.【难度】★★★【答案】①3,3,4;②|x+1|,1或-3;③21≤≤-x;④找到1~1997的中间数999,当x=999时取得最小值,最小值是998+997+....+2+1+0+1+2+. (998)()299899812⨯+⨯=997002.对点精练1.解绝对值方程:3xx.-x-2=1--【难度】★★【答案】4x=【解析】分类讨论:x<1,1≤x<2,x≥2,根据绝对值的意义,可化简绝对值,根据解方程,可得答案.解:当x<1时,原方程等价于1﹣x﹣(2﹣x)=x﹣3.解得x=2(不符合范围,舍);当1≤x<2时,原方程等价于x﹣1﹣(2﹣x)=x﹣3.解得x=0(不符合范围,舍);当x≥2时,原方程等价于x﹣1﹣(x﹣2)=x﹣3.解得x=4,综上所述:x=4.本题考查了含绝对值符号的一元一次方程,分类讨论是解题关键,此外也可以通过数形结合来解题.模块二乘法公式(1)平方差公式22+-=-;()()a b a b a b(2)完全平方公式222±=±+;a b a ab b()2(3)立方和公式2233+-+=+;()()a b a ab b a b(4)立方差公式2233-++=-;a b a ab b a b()()(5)三数和平方公式2222()2()++=+++++;a b c a b c ab bc ac(6)两数和立方公式33223+=+++;a b a a b ab b()33(7)两数差立方公式33223-=-+-.a b a a b ab b()33引申:n次方差公式;()()()()()()322344223322=-+++-=-++-=-+-=-n n b a b ab b a a b a b a b ab a b a b a b a b a b a 根据以上规律,可以归纳出乘法公式:()()n n n n n n b a b ab b a a b a -=++++-----1221 (n 为非零自然数)将等号左右两边倒一下得:()()1221----++++-=-n n n n n n b ab b a a b a b a (n 为非零自然数) 这个公式称为n 次方差公式;由这个公式易得())(n n b a b a --;定理:若n 为正偶数,则())(n n b a b a --与())(n n b a b a -+同时成立;【例4】计算:(1)22(1)(1)(1)(1)x x x x x x +--+++;(2)22222))(2(y xy x y xy x +-++;(3)22)312(+-x x ;(4)()()()()1111842++++a a a a .【难度】★★【答案】(1)解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦ =242(1)(1)x x x -++=61x -. 解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.(2)原式=2222222)])([()()(y xy x y x y xy x y x +-+=+-+63362332)(y y x x y x ++=+=.(3)原式22]31)2([+-+=x x典例剖析222222111()(2)()2(2)22(2)333x x x x x x =+-++-+⨯+⨯⨯-432822122339x x x x =-+-+. (4)1116--=a a 原式.【例5】已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.【难度】★★【答案】2222()2()8a b c a b c ab bc ac ++=++-++=.【例6】分解因式:(1)2222(48)3(48)2x x x x x x ++++++;(2)432673676x x x x +--+.【难度】★★【答案】(1)原式=22[(48)2][(48)]x x x x x x ++++++=22(68)(58)x x x x ++++=2(2)(4)(58)x x x x ++++(2)原式=4226(1)7(1)36x x x x ++--=422226[(21)2]7(1)36x x x x x x -+++--=22226(1)7(1)36x x x x -+--=22[2(1)3][3(1)8]x x x x ---+=22(232)(383)x x x x --+-=(21)(2)(31)(3)x x x x +--+.对点精练1.已知335252-++=x ,求533-+x x 的值.【难度】★★【答案】1-【解析】()()()()()1552525131353333531152,52,52,52332233333333-=-++-=-+++++=-+++++=-+++=-=⇒-=⇒+=-==+=-ab b ab a b a b a ab b a b a b a b a ab ab b a b a 原式即令2.已知96333=-+z y x ,4=xyz ,12222=++-++xz yz xy z y x ,求z y x -+的值.【难度】★★★【答案】9【解析】()()()()[]()()()()9123333310812963222222222233333333=-+∴=-++++-++++-+=-+-++++-+=+---+=+-+=+=+-+z y x xy yz xz z y x xyyz xz z y x z y x z y x xy z y x z y x z y x xyz xy y x z y x xyzz y x xyz z y x 解:3.分解因式:2(1)(2)(2)xy x y x y xy -++-+-.【难度】★★【答案】令a x y =+,b xy =,则原式=2(1)(2)(2)b a a b -+--=221222a b a b ab ++-+-=2(1)a b --=2(1)x y xy +--=2[(1)(1)]x y ---=22(1)(1)x y --1、分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分子的有理化因式,化去分子中的根号的过程.2、二次根式2a 的意义 2a a ==,0,,0.a a a a ≥⎧⎨-<⎩【例7】试比较下列各组数的大小:(1)1211-和1110-; (2)264+和226-. 【难度】★★【答案】见解析【解析】(1)∵1211(1211)(1211)11211112111211--+-===++, 模块三:二次根典例剖析===,>,∴(2)∵===∴6+4>6+22,<【例8】化简:(1(21)<<.x【难度】★★【答案】见解析【解析】(1)原式====.2=2(2)原式1=-,xx∵01<<,x∴11x>>,x所以,原式=1x-.x【例9】化简22)1(111+++n n ,所得的结果为( ) A .1111+++n nB .1111++-n nC .1111+-+n nD .1111+--n n 【难度】★★ 【答案】C【解析】方法一:通过通分,然后整理配平方来解题1111)()1()1(1)(2)1()1()1()1()1(111222222222222222222+-+=+++=+++++=+++++=+++n n n n n n n n n n n n n n n n n n n n 方法二:可利用特值法将A 、B 、D 一一排除。
数与式(共17张ppt-)
解法
配方法、公式法、因式分解法。
应用
解决生活中的实际问题,如面积、 体积等问题。
不等式与不等式组
定义
用不等号连接起来的式子叫做不等式。不等式中的未知数叫做不 等式的未知数。
解法
比较法、常数代换法、放缩法。
应用
解决生活中的实际问题,如最大最小值问题。
05 应用题
代数式在生活中的应用
代数式在生活中的应用广泛,例如在计算购物时找零、计算时间、距离和速度的关 系等方面。
THANKS
整数与分数
总结词
整数和分数是数的两种重要分类,整数包括正整数、零和负整数,分数则表示整数除法 的结果。
详细描述
整数是数学中非常基础的概念,它包括正整数、零和负整数。整数在日常生活和数学计 算中应用广泛,如表示数量、年龄等。分数则表示整数除法的结果,通常用于表示部分
或比例,如1/2表示一半。
有理数与无理数
等方面。
03
方程还可以用于解决一 些复杂的数学问题,例 如在求解高次方程、求
解不等式等方面。
不等式在决策问题中的应用
01
不等式在决策问题中的应用广泛,例如在比较 商品价格、比较服务水平等方面。
02
不等式也可以用于解决一些实际问题,例如在 比较投资回报、比较生产成本等方面。
03
不等式还可以用于解决一些复杂的数学问题, 例如在求解高次方程、求解不等式等方面。
除法
总结词
除法是乘法的逆运算,表示将一个数分成若干相同的等份。
详细描述
除法是将一个数(或代数表达式)除以另一个数,得到一个新 的数。除法可以转换为乘法运算,即a÷b=a×(1/b)。
指数与根
总结词
指数表示一个数的倍数关系,根表示 一个数的因数关系。
专题1 数与式的运算
专题01数与式的运算本专题在初中、高中扮演的角色初中阶段“从分数到分式”,通过观察、分析、类比,找出分式的本质特征,及它们与分数的相同点和不同点,进而归纳得出分式的概念及运算性质,我们已经运用的这些思想方法是高中继续学习的法宝.二次根式是在学习了平方根、立方根等内容的基础上进行的,是对“实数”、“整式”等内容的延伸和补充,对数与式的认识更加完善.二次根式的化简对勾股定理的应用是很好的补充;二次根式的概念、性质、化简与运算是高中学习解三角形、一元二次方程、数列和二次函数的基础.二次根式是初中阶段学习数与式的最后一章,是式的变形的终结章.当两个二次根式的被开方数互为相反数时,可用“夹逼”的方法推出,两个被开方数同时为零.本专题内容蕴涵了许多重要的数学思想方法,如类比的思想(指数幂运算律的推广)、逼近的思想(有理数指数幂逼近无理数指数幂),掌握运算性质,能够区别n的异同. 通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质,掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.高中必备知识点1:绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即:,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.典型考题【典型例题】阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为21x x -表示在数轴上数1x 与数2x 对应的点之间的距离; 例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2±=x .例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +2|=3的解为 ;(2)解不等式:|x -2|<6;(3)解不等式:|x -3|+|x +4|≥9;(4)解方程: |x -2|+|x +2|+|x -5|=15.(1)1x =或x =-5;(2)-4<x <8;(3)x ≥4或x ≤-5;(4)103x =-或203x = . (1)由已知可得x+2=3或x+2=-3解得1x =或x =-5.(2)在数轴上找出|x -2|=6的解.∵在数轴上到2对应的点的距离等于6的点对应的数为-4或8, ∴方程|x -2|=6的解为x =-4或x =8,∴不等式|x -2|<6的解集为-4<x <8.(3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于15的点对应的x 的值. ∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5,∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5.(4)在数轴上找出|x-2|+|x+2|+|x-5|=15的解.由绝对值的几何意义知,该方程就是求在数轴上到2和-2和5对应的点的距离之和等于9的点对应的x的值.∵在数轴上-2和5对应的点的距离为7,∴满足方程的x对应的点在-2的左边或5的右边.若x对应的点在5的右边,可得203x=;若x对应的点在-2的左边,可得103x=-,∴方程|x-2|+|x+2|+|x-5|=15的解是103x=-或203x=.【变式训练】实数在数轴上所对应的点的位置如图所示:化简.a-2b解:由数轴知:a<0,b>0,|a|>|b|,所以b-a>0,a-b<0原式=|a|-(b-a)-(b-a)=-a-b+a-b+a=a-2b【能力提升】已知方程组的解的值的符号相同.(1)求的取值范围;(2)化简:.(1) −1<a<3;(2).(1)①+②得:5x=15−5a,即x=3−a,代入①得:y=2+2a,根据题意得:xy=(3−a)(2+2a)>0,解得−1<a<3;(2)∵−1<a<3,∴当−1<a<3时,高中必备知识点2:乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()a b a b ab +-=-; (2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b aab b a b +-+=+; (2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式33223()33a b a a b ab b +=+++; (5)两数差立方公式33223()33a b a a b ab b -=-+-.典型考题【典型例题】 (1)计算:203212016(2)(2)2-⎛⎫-++-÷- ⎪⎝⎭(2)化简:2(2)(2)(2)a b a b a b +--- (1)3(2)4ab-8b 2解:(1)原式=4+1+(-8)÷4 =5-2=3(2)原式=a 2-4b 2-(a 2-4ab+4b 2)=a 2-4b 2-a 2+4ab-4b 2=4ab-8b 2【变式训练】计算:(1)0221( 3.14)(4)()3π--+--(2)2(3)(2)(2)x x x --+-(1)8 (2)-6x+13(1)原式=1+16-9=8;(2)原式=x 2-6x+9-(x 2-4)=x 2-6x+9-x 2+4=-6x+13.【能力提升】已知10x =a ,5x =b ,求:(1)50x 的值;(2)2x 的值;(3)20x 的值.(结果用含a 、b 的代数式表示) (1)ab;(2)a b ;(3)2a b. 解:(1)50x =10x ×5x =ab ; (2)2x =xx x 1010a 55b ⎛⎫== ⎪⎝⎭; (3)20x =x x 2x x 1010a 101055b ⎛⎫⨯=⨯= ⎪⎝⎭.高中必备知识点3:二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b 212x ++,22x y ++1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩典型考题【典型例题】计算下面各题.(1)2163)1526(-⨯-;(2(1) 56-;(2)(1)×3﹣6=﹣=﹣(2)x 4﹣4x=2x 4x2x .【变式训练】时,想起分配律,于是她按分配律完成了下列计算:==她的解法正确吗?若不正确,请给出正确的解答过程.不正确,见解析解:不正确,正确解答过程为:【能力提升】先化简,再求值:(2a b a b -+-b a b -)÷a 2b a b-+,其中,.2a a b -. 解:(2a b a b -+-b a b -)÷a 2b a b-+ =()()()()()2a b a b b a b a b a b a b a 2b ---++⋅+--=2222a 3ab b ab b 1a b a 2b-+--⋅-- =()2a a 2b 1a ba 2b -⋅-- =2a a b -, 当+3,-3时,原式22=33.高中必备知识点4:分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式A B具有下列性质: A A M B B M⨯=⨯; A A M B B M÷=÷. 上述性质被称为分式的基本性质.2.繁分式 像a b c d+,2m n p m n p+++这样,分子或分母中又含有分式的分式叫做繁分式.典型考题【典型例题】先化简,再求值22122()121x x x x x x x x +++-÷--+,其中x 满足x 2+x ﹣1=0.21x x -,1. 解:原式=()()()221-211121x x xx x x x x ---=-+210x x +﹣=,21x x ∴=﹣,∴原式=1.【变式训练】化简:22442x xy y x y -+-÷(4x 2-y 2)y x +2122442x xy y x y -+-÷(4x 2-y 2)=2(2)12(2)(2)x y x y x y x y -⨯-+-=y x +21.【能力提升】已知:112a b -=,则ab b a bab a 7222+---的值等于多少?43-.解:∵112a b -=,∴a-b=-2ab ,则2ab 2ab44ab 7ab 3--=--+专题验收测试题1.如图,若实数m =﹣7+1,则数轴上表示m 的点应落在()A .线段AB 上 B .线段BC 上 C .线段CD 上D .线段DE 上B∵实数m+1,23<<∴﹣2<m<﹣1,∴在数轴上,表示m的点应落在线段BC上.故选:B.2.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66 B(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.3.已知1-1xx=,则221xx+等于()A.3 B.2 C.1 D.0 A∵1-1 xx=,∴21-1x x ⎛⎫= ⎪⎝⎭, 即221-2+1x x ⎛⎫= ⎪⎝⎭, ∴221-=3x x.故选A . 4.设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:① a 是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a 是18的算术平方根.其中,所有正确说法的序号是 A .①④ B .②③C .①②④D .①③④C根据勾股定理,边长为3的正方形的对角线长为a = 根据实数与数轴上的一点一一对应的关系,a 可以用数轴上的一个点来表示,故说法②正确.∵216<a 18<25=,∴4<a =,故说法③错误.∵2a 18=,∴根据算术平方根的定义,a 是18的算术平方根,故说法④正确. 综上所述,正确说法的序号是①②④.故选C .5.定义一种关于整数n 的“F ”运算:一、当n 为奇数时,结果为3n +5;二、当n 为偶数时,结果为2k n(其中k 是使2k n为奇数的正整数),并且运算重复进行.例如:取n =58,第一次经F 运算是29,第二次经F 运算是92,第三次经F 运算是23,第四次经F 运算是74……,若n =449,求第2020次运算结果是( ) A .1 B .2C .7D .8A设449经过n 次运算结果为n a ,则11352a =,2169a =,3512a =,41a =,58a =,61a =,⋯,21n a ∴=,218(2n a n +=且n 为整数).∵2020为偶数,20201a ∴=.故选:A6.如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123191111a a a a ++++…的值为( )A .2021B .6184C .589840D .431760C∵第一幅图中“•”有1133a =⨯=个;第二幅图中“•”有2248a =⨯=个; 第三幅图中“•”有33515a =⨯=个;∴第n 幅图中“•”有()2na n n =+(n 为正整数)个∴111122n a n n ⎛⎫=- ⎪+⎝⎭∴当19n =时123191111a a a a ++++ (1111)3815399=++++11111324351921=++++⨯⨯⨯⨯ 1111111111112322423521921⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111111112324351921⎛⎫=⨯-+-+-++- ⎪⎝⎭11111222021⎛⎫=⨯+-- ⎪⎝⎭589840=.故选:C 7.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为()A .0B .1C .2D .与m 有关A根据题意可得()()22**11b b a a b b a a b b a a -=---=--+,又因为a ,b 是方程2104x x m -+=的两根,所以2104a a m -+=,化简得214a a m -=-,同理2104b b m -+=,214b b m -=-,代入上式可得()()222211044b b a a b b a a m m ⎛⎫⎛⎫--+=--+-=--+-= ⎪ ⎪⎝⎭⎝⎭,故选A .8.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019Mx x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是()A .M N <B .MN >C .MN D .M N ≥B根据题意,设122018p x x x =+++,232018q x x x =++,∴1p q x -=,∴()()12201823201920192019()Mx x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•;∴20192019()MN pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>;∴MN >;故选:B.9.下列运算正确的是( )A .1a b a b b a -=--B .m n m na b a b --=- C .11b b a a a+-=D .2221a b a b a b a b+-=--- D根据分式的减法法则,可知:a b a b b a ---=a b a b a b +--=a ba b +-,故A 不正确;由异分母的分式相加减,可知m n a b -==bm an bm anab ab ab --,故B 不正确;由同分母分式的加减,可知11b b a a a+-=-,故C 不正确; 由分式的加减法法则,先因式分解通分,即可知2221a b a b a b a b+-=---,故D 正确.故选:D. 10.已知a ,b 为实数且满足1a ≠-,1b ≠-,设11=+++a b M a b ,1111=+++N a b .①若1ab =时,M N ;②若1ab >时,M N >;③若1ab <时,M N <;④若0a b +=,则0M N ≤.则上述四个结论正确的有( ) A .1 B .2C .3D .4D对于①,可知(1)(1)2(1)(1)(1)(1)a b b a a b ab M a b a b +++++==++++,2(1)(1)a b N a b ++=++,若1ab =时,M N ,正确;对于②,也可分析得到;对于③④同样如此.11.若11122299919991a +=+,22233399919991b +=+,则a 与b 的大小关系为( ) A .a b > B .a b =C .a b <D .无法确定A∵11122299919991a +=+,22233399919991b +=+, ∴1112222223339991999199919991a b ++-=-++ =()()()()()211133322222222299919991999199919991++-+++=()()111333222222333999999999999199291++-⨯+=()()()1112222222223339999999999991999211⨯+-++⨯>()()111222222222333999999999999199291+⨯-⨯+>0,∴a b >.故选A .12.已知实数x ,y ,z 满足1x y ++1y z ++1z x +=76,且z x y x y y z z x+++++=11,则x +y +z 的值为( )A .12B .14C .727D .9A11z x y x y y z z x ++=+++, 11114z x y x y y z z x∴+++++=+++, 即14x y z x y z x y zx y y z z x ++++++++=+++,11114x y y z z x x y z∴++=+++++, 而11176x y y z z x ++=+++, 1476x y z ∴=++,12x y z ∴++=.故选:A .13.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B .C .2D .±2A∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab , ∵a >b >0,∴a+b=a-b=∴a ba b +-= A.14有意义,那么直角坐标系中点A(a,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限A根据二次根式的概念,可知a≥0,ab>0,解得a>0,b>0,因此可知A(a,b)在第一象限.故选A15.已知a的最小值为()A.0 B.3 C.D.9B根据题意,由,可知当(a﹣3)2=0,即a=3时,代数的值最小,为故选B.16.已知m、n m,n)为()A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是Cm、n是正整数,∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C.17.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187…….则3+32+33+34+…+32019的末位数字是____.9.∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187……,∴尾数四个一循环,∴每四个的尾数和是0.∵2019÷4=504…3,∴3+32+33+34+…+32019的末位数字是9.故答案为:9.C,最小正方形的周长是18.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是12C,则12C C =_____.432如图,设,AB x BC y ==,最大正方形标记为0号,被分割成的11个正方形标记为1-11号,其中最小正方形标记为11号,各个正方形的边长求解过程如下: 0号:1号+2号得x y +5号:1号-2号得y x -3号:2号-5号得()2x y x x y --=-4号:0号-2号-3号得(2)22x y x x y y x +---=- 7号:3号-4号得2(22)43x y y x x y ---=- 6号:4号-7号得22(43)56y x x y y x ---=- 10号:0号-1号得x9号:0号-4号-6号-10号得(22)(56)86x y y x y x x x y +-----=- 8号:10号-9号得(86)67x x y y x --=- 11号:6号-7号得56(43)810y x x y y x ---=- 或9号-6号得86(56)1411x y y x x y ---=- 因此x 和y 满足等式:8101411y x x y -=- 整理得:1924x y =所以最大正方形(0号)的周长1434()6C x y y =+=最小正方形(11号)的周长214(1411)3C x y y =-=则12432C C =.19.对于整数a ,b ,c ,d ,定义a d b c =ac ﹣bd ,已知1<1d 4b<3,则b+d 的值为_______.±3根据题意,得1<4–bd <3,化简,得1<bd <3, a ,b ,c ,d 均为整数,∴db =2, ∴当d =1时b =2或当d =–1时b =–2, ∴b +d =3或b +d =–3.20. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______.±3把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩①②,①×2-②得:5m =15, 解得:m =3,把m =3代入①得:n =2,则m +3n =3+6=9,9的平方根是±3, 故答案为:±3 21.若m 满足关系式35223x y m x y m +--+-199199x y x y =---+m =________.201由题意可得,199-x-y ≥0,x-199+y ≥0, ∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520230x y x y m x y m +=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m , 将y=4-m 代入③,解得x=2m-6,将x=2m-6,y=4-m 代入①得,2m-6+4-m=199,解得m=201. 故答案为:201.22.若214x x x++=,则2211x x ++= ________________.8∵214x x x ++=可化为13x x +=,2211x x ++化为211x x ⎛⎫+- ⎪⎝⎭∴原式=211x x ⎛⎫+- ⎪⎝⎭=32-1=823.已知22143134m n m n =--+,则11m n+的值等于______. 1322143134m n m n =--+221(2)(6)04m n -++=,则20m -=,60n +=, 所以2m =,6n =-, 所以11111263m n +=-=. 故答案是:13. 24.已知函数1x f xx,那么1f _____.2+因为函数1x f xx,所以当1x =时, 211()2221f x .25.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =..原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 26.观察下列等式:1)131====-====回答下列问题:(1(2;(3+….(1(2;(3)1 (12575752227575 527755=(222121212121n n n n n 2222212121n n n n 22212121n n n n 22221n n2121n n(3)由(22121121n n n n3153757573 =153757573 31537573717573175 531270=(1)求实数,a b 的值;(2的整数部分为x ,小数部分为y①求2x y +的值;②已知10kx m =+,其中k 是一个整数,且01m <<,求k m -的值.(1)7a =;21b =;(2)①4(10=,2490a -=且70a +≠,∴30a b -=,2490a -=且70a +≠, 即7,21a b ;(2)∵162125,∴45<<,即的整数部分为4,小数部分为4,①244)4x y +=+=;②∵12<<,∴8109<<,又∵104kx m k m =+=+,k 是一个整数,且01m <<,∴2,10242k m ==-⨯=∴2(2k m -=--=28.已知下面一列等式: 111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立;(3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. (1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+. (1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…,知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++ 1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x =+. 29.对有理数a 、b 、c ,在乘法运算中,满足:①交换律:ab ba =;②对加法的分配律:()ca b ca cb +=+.现对a b ⊕这种运算作如下定义,规定:a b a b a b ⊕=⋅++.(1)这种运算是否满足交换律?(2)举例说明:这种运算是否满足对加法的分配律?(1)运算满足交换律;(2)加法的分配律不满足.(1)∵a b a b a b ⊕=⨯++,b a b a b a ⊕=⨯++,∴a b b a ⊕=⊕,∴该运算满足交换律;(2)根据规定,()()()a b c a b c a b c +⊕=+⨯+++a c b c a b c =⨯+⨯+++,∵a c a c a c ⊕=⨯++,b c b c b c ⊕=⨯++, ∴a c b c a c a c b c b c⊕+⊕=⨯+++⨯++2a c b c a b c =⨯+⨯+++, ∵2a c b c a b c a c b c a b c ⨯+⨯+++≠⨯+⨯+++,∴()a b c a c b c +⊕≠⊕+⊕,∴对加法的分配律不满足.30.李狗蛋同学在学习整式乘法公式这一节时,发现运用乘法公式在进行一些计算时特别简便,这激发了李狗蛋同学的学习兴趣,他想再探究一些有关整式乘法的公式,便主动查找资料进行学习,以下是他找来的资料题,请你一同跟李狗蛋同学探究一下:(1)探究:()()a b a b -+=____;()()22a b a ab b -++=___;()()3223a b a a b ab b -+++=_____;(2)猜想:()()1221...n n n n a b a a b ab b -----++++=______(n 为正整数,且2n ≥); (3)利用上述猜想的结论计算:98732222...2221-+-+-+-的值.(1)22a b -,33a b -,44a b -;(2)n n a b -;(3)341 (1)()()22a b a b a b -+=-,()()22322223a b a ab b a a b ab a b ab b -++=++---33=-a b ,()()32234322332234a b a a b ab b a a b a b ab a b a b ab b -+++=+++----44a b =-,故答案为:22a b -,33a b -,44a b -;(2)根据(1)的结果可知:()()1221...n n n n a b a a b ab b -----++++=n n a b -, 故答案为:nn a b -; (3)原式987236278922(1)2(1)...2(1)2(1)2(1)(1)=+⨯-+⨯-++⨯-+⨯-+⨯-+- 98723627891[2(1)][22(1)2(1)...2(1)2(1)2(1)(1)]3=⨯--⨯+⨯-+⨯-++⨯-+⨯-+⨯-+-10101[2(1)]3=⨯-- 10213-= 102413-= 341=.。
专题01 数与式(61题)(原卷版)
35.(2023·上海徐汇·统考二模)计算: =____.
36.(2023·上海嘉定·统考二模)1纳米=0.000000001米,则2.5纳米用科学记数法表示为________
37.(2023·上海徐汇·统考二模)已知f(x)= ,则 =_____.
38.(2023·上海嘉定·统考二模)方程 -x=1的根是_________.
39.(2023·上海闵行·统考二模)计算: ______.
40.(2023·上海黄浦·统考二模)冬季某日中午12时的气温是3 ,经过10小时后气温下降8 ,那么该时刻的气温是________ .
41.(2023·上海杨浦·二模)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,那么2兆=________.(用科学记数法表示)
59.(2023·上海崇明·统考二模)计算:
60.(2023·上海徐汇·统考二模)先化简: ,然后从 、 、0、2、3中选一个数代入求值.
29.(2023·上海静安·统考二模)计算: ______.
30.(2023·上海宝山·统考二模)分解因式: __________.
31.(2023·上海金山·统考二模)因式分解:a3-a=______.
32.(2023·上海闵行·统考二模)因式分解: __________.
33.(2023·上海崇明·统考二模) 的立方根是__________.
4.(2023·上海金山·统考二模) 的相反数为()
A. B.6C. D.
5.(2023·上海金山·统考二模)单项式 的系数是()
A. B.2C.3D.8
专题01 数与式的运算
专题1:数与式的运算高中必备知识点1:绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即:,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.典型考题【典型例题】阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为21x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2±=x . 例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3. 参考阅读材料,解答下列问题: (1)方程|x +2|=3的解为 ; (2)解不等式:|x -2|<6; (3)解不等式:|x -3|+|x +4|≥9; (4)解方程: |x -2|+|x +2|+|x -5|=15.【答案】(1)1x =或x =-5;(2)-4<x <8;(3)x ≥4或x ≤-5;(4)103x =-或203x =. 【解析】(1)由已知可得x+2=3或x+2=-3 解得1x =或x =-5.(2)在数轴上找出|x -2|=6的解.∵在数轴上到2对应的点的距离等于6的点对应的数为-4或8, ∴方程|x -2|=6的解为x =-4或x =8,∴不等式|x -2|<6的解集为-4<x <8. (3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于15的点对应的x 的值. ∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边. 若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5, ∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. (4)在数轴上找出|x -2|+|x +2|+|x -5|=15的解.由绝对值的几何意义知,该方程就是求在数轴上到2和-2和5对应的点的距离之和等于9的点对应的x 的值.∵在数轴上-2和5对应的点的距离为7,∴满足方程的x 对应的点在-2的左边或5的右边.若x 对应的点在5的右边,可得203x =;若x 对应的点在-2的左边,可得103x =-, ∴方程|x -2|+|x +2|+|x -5|=15的解是103x =-或203x =. 【变式训练】实数在数轴上所对应的点的位置如图所示:化简 .【答案】a-2b 【解析】解:由数轴知:a <0,b>0,|a|>|b|, 所以b-a>0,a-b <0 原式=|a|-(b-a )-(b-a) =-a-b+a-b+a =a-2b【能力提升】已知方程组的解的值的符号相同.(1)求的取值范围; (2)化简:.【答案】(1) −1<a <3;(2). 【解析】 (1)①+②得:5x =15−5a ,即x =3−a , 代入①得:y =2+2a ,根据题意得:xy =(3−a )(2+2a )>0, 解得−1<a <3; (2)∵−1<a <3, ∴当−1<a <3时,高中必备知识点2:乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式22()()a b a b a b +-=-; (2)完全平方公式222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式: (1)立方和公式2233()()a b a ab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式33223()33a b a a b ab b +=+++; (5)两数差立方公式33223()33a b a a b ab b -=-+-.典型考题【典型例题】(1)计算:203212016(2)(2)2-⎛⎫-++-÷- ⎪⎝⎭(2)化简:2(2)(2)(2)a b a b a b +---【答案】(1)3 (2)4ab-8b 2 【解析】解:(1)原式=4+1+(-8)÷4 =5-2 =3(2)原式=a 2-4b 2-(a 2-4ab+4b 2) =a 2-4b 2-a 2+4ab-4b 2 =4ab-8b 2【变式训练】计算:(1)0221( 3.14)(4)()3π--+-- (2)2(3)(2)(2)x x x --+- 【答案】(1)8 (2)-6x+13 【解析】(1)原式=1+16-9=8; (2)原式=x 2-6x+9-(x 2-4) =x 2-6x+9-x 2+4 =-6x+13.【能力提升】已知10x =a ,5x =b ,求: (1)50x 的值; (2)2x 的值;(3)20x 的值.(结果用含a 、b 的代数式表示)【答案】(1)ab;(2)a b ;(3)2a b . 【解析】解:(1)50x =10x ×5x =ab ; (2)2x=xx x 1010a 55b ⎛⎫== ⎪⎝⎭;(3)20x=xx 2x x 1010a 101055b ⎛⎫⨯=⨯= ⎪⎝⎭.高中必备知识点3:二次根式一般地,形如0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b 212x ++,22x y ++,1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与与b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩典型考题【典型例题】计算下面各题.(1)2163)1526(-⨯-;(2【答案】(1) 56-;(2) 【解析】(1))×3﹣==﹣(2)x 4﹣4x=2x 4x2x .【变式训练】时,想起分配律,于是她按分配律完成了下列计算:==她的解法正确吗?若不正确,请给出正确的解答过程. 【答案】不正确,见解析 【解析】解:不正确,正确解答过程为:.【能力提升】先化简,再求值:(2a b a b -+-b a b -)÷a 2ba b-+,其中,.【答案】2a a b -.【解析】 解:(2a b a b -+-b a b -)÷a 2ba b-+=()()()()()2a b a b b a b a ba b a b a 2b ---++⋅+--=2222a 3ab b ab b 1a b a 2b-+--⋅-- =()2a a 2b 1a b a 2b-⋅--=2a a b-, 当3,-3时,原式22.高中必备知识点4:分式1.分式的意义 形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质: A A MB B M ⨯=⨯; A A MB B M÷=÷. 上述性质被称为分式的基本性质.2.繁分式像ab c d+,2m n pm n p+++这样,分子或分母中又含有分式的分式叫做繁分式.典型考题【典型例题】先化简,再求值22122()121x x x xx x x x +++-÷--+,其中x 满足x 2+x ﹣1=0. 【答案】21x x-,1. 【解析】解:原式=()()()221-211121x x xx x x x x---=-+210x x +﹣=, 21x x ∴=﹣, ∴原式=1.【变式训练】化简:22442x xy y x y-+-÷(4x 2-y 2)【答案】yx +21【解析】22442x xy y x y -+-÷(4x 2-y 2)=2(2)12(2)(2)x y x y x y x y -⨯-+-=yx +21. 【能力提升】已知:112a b-=,则ab b a b ab a 7222+---的值等于多少?【答案】43-.【解析】解:∵112 a b-=,∴a-b=-2ab,则2ab2ab44ab7ab3--=--+专题验收测试题1.下列计算结果为a2的是()A.a8÷a4(a≠0)B.a2•aC.﹣3a2+(﹣2a)2D.a4﹣a2【答案】C【解析】A、a8÷a4=a4,故此选项错误;B、a2•a=a3,故此选项错误;C、﹣3a2+(﹣2a)2=a2,故此选项正确;D、a4与a2不是同类项,不能合并,故此选项错误,故选C.2.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab【答案】B【解析】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.3.下列计算正确的是()A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x3【答案】B【解析】A、不是同类项,无法计算,故此选项错误;B、正确;C、故此选项错误;D、故此选项错误;故选:B.4.下列计算正确的是()A.a3+a4=a7B.a4•a5=a9C.4m•5m=9m D.a3+a3=2a6【答案】B【解析】解:A、a3+a4,无法计算,故此选项错误;B、a4•a5=a9,正确;C、4m•5m=20m,故此选项错误;D、a3+a3=2a3,故此选项错误.故选:B.5.下列几道题目是小明同学在黑板上完成的作业,他做错的题目有()①a3÷a﹣1=a2②(2a3)2=4a5③(12ab2)3=16a3b6④2﹣5=132⑤(a+b)2=a2+b2A.2道B.3道C.4道D.5道【答案】C【解析】①a3÷a﹣1=a4,故此选项错误;②(2a3)2=4a6,故此选项错误;③(12ab2)3=18a3b6,故此选项错误;④2﹣5=132,正确;⑤(a+b )2=a 2+2ab+b 2,故此选项错误; 则错误的一共有4道. 故选:C .6.如图是一个圆,一只电子跳蚤在标有数字的五个点上跳跃.若它停在奇数点上时,则一次沿顺时针方向跳两个点;若停在偶数点上时,则下一次沿逆时针方向跳一个点.若这只跳蚤从1这点开始跳,则经过2019次跳后它所停在的点对应的数为( )A .1B .2C .4D .5【答案】B 【解析】设第n 次跳到的点为a n (n 为自然数),观察,发现规律:a 0=1,a 1=3,a 2=5,a 3=2,a 4=1,a 5=3,a 6=5,a 7=2,…, ∴a 4n =1,a 4n+1=3,a 4+2=5,a 4n+3=2. ∵2019=504×4+3, ∴经2019次跳后它停的点所对应的数为2. 故答案为:2.7.下列计算中,正确的是 A .24±= B .a a ≥C .236·a a a =D .211-=【答案】B 【解析】 解:A.42=,故A 错误;B. a a ≥,正确;C. 235a a a =,故C 错误;D. 211-=-,故D 错误; 故选:B .8.下列从左到右的恒等变形中,变形依据与其它三项不同的是( ) A .11111818183636⎛⎫⨯-=⨯-⨯⎪⎝⎭B .2(x ﹣y )=2x ﹣2yC .0.11010.33x x --= D .a (b ﹣1)=ab ﹣a 【答案】C 【解析】 解:A 、11111818183636⎛⎫⨯-=⨯-⨯⎪⎝⎭,单项式乘多项式;B 、2(x ﹣y )=2x ﹣2y ,单项式乘多项式;C 、0.11010.33x x --=,根据分式的性质; D 、a (b ﹣1)=ab ﹣a ,单项式乘多项式; 则变形依据与其它三项不同的是C , 故选:C .9.下列运算正确的是( ) A .a 5﹣a 3=a 2 B .6x 3y 2÷(﹣3x )2=2xy 2 C .2212a2a-=D .(﹣2a )3=﹣8a 3【答案】D 【解析】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确. 故选D .10.下列运算:其中结果正确的个数为( ) ①a 2•a 3=a 6 ②(a 3)2=a 6 ③(ab )3=a 3b 3 ④a 5÷a 5=aA .1B .2C .3D .4【答案】B 【解析】解:①a 2•a 3=a 5,错误; ②(a 3)2=a 6,正确; ③(ab )3=a 3b 3,正确; ④a 5÷a 5=1,错误. 故选:B .11.当a ,b 互为相反数,则代数式a 2+ab ﹣2的值为_____. 【答案】﹣2. 【解析】∵a 与b 互为相反数, ∴a+b=0,∴a 2+ab-2=a(a+b)-2=0-2=-2. 故答案为:-2.12.已知a 2+2a=-2,则22(21)(4)a a a +++的值为________. 【答案】6 【解析】解:2222242816510165(2)162(21)(4)a a a a a a a a a a a =++++=++=+++++,∵a 2+2a=-2,∴原式=25(2)165(2)166a a ++=⨯-+=,故答案为:6.13.计算:(﹣2)2019×0.52018=_______. 【答案】-2 【解析】解:(﹣2)2019×0.52018=(﹣2×0.5)2018×(﹣2)=﹣2 故答案为:﹣214.已知23xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=⎩的解,则a2﹣b2=_____.【答案】1 【解析】解:∵23xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=⎩的解,∴232 233a bb a-=⎧⎨-=⎩①②,解得,①﹣②,得a﹣b=15 -,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(15-)=1,故答案为:1.15.已知关于x、y的方程组31223x y ax y a+=-⎧⎨-=-⎩,则代数式32x•9y=___.【答案】1 9 .【解析】解:将两方程相加可得2x+2y=﹣2,则32x•9y=32x•32y=32x+2y=3﹣2=19,故答案为:19.16.计算:(x﹣y)2•(y﹣x)3+(y﹣x)4•(x﹣y)=_____.【答案】0【解析】原式=﹣(x ﹣y )5+(x ﹣y )5=0, 故答案为:017.张老师在黑板上布置了一道题:化简:2(x +1)2-(4x -5),并分别求出当x =和x =-时代数式的值. 小亮和小新展开了下面的讨论,你认为他们两人谁说得对?并说明理由.【答案】小亮说的对,理由见解析 【解析】2(x+1)2﹣(4x ﹣5) =2x 2+4x+2﹣4x+5, =2x 2+7,当x=时,原式=+7=7; 当x=﹣时,原式=+7=7. 故小亮说的对.18.先化简,再求值:(x +2)(x ﹣2)+(2x ﹣1)2﹣4x (x ﹣1),其中x =3 【答案】x 2﹣3,9. 【解析】(x +2)(x ﹣2)+(2x ﹣1)2﹣4x (x ﹣1), =x 2﹣4+4x 2﹣4x +1﹣4x 2+4x , =x 2﹣3,当23x =(2331239=-=-=.19.已知a+1a=3(a >1),求242241111()()()()a a a a a a a a -⨯+⨯+⨯-的值.【答案】5【解析】 解: ∵13a a+=(a >1), ∴21a a ⎛⎫+ ⎪⎝⎭=9,化简得221a a+=7, 两边平方,可得441a a+=49﹣2=47,∵21a a ⎛⎫- ⎪⎝⎭=221a a +﹣2=7﹣2=5,且a >1,∴1a a-=, ∴242241111()()()()a a a a aa a a-⨯+⨯+⨯-7×47×5=20.请你将下式化简,再求值:(x +2)(x ﹣2)+(x ﹣2)2+(x ﹣4)(x ﹣1),其中x 2﹣3x =1. 【答案】3x 2﹣9x +4,7 【解析】(x +2)(x ﹣2)+(x ﹣2)2+(x ﹣4)(x ﹣1), =x 2﹣4+x 2﹣4x +x 2﹣5x +4, =3x 2﹣9x +4, 当x 2﹣3x =1时, 原式=3x 2﹣9x +4, =3(x 2﹣3x )+4, =3×1+4, =7.21.已知一组有规律的等式,它的前三项依次为:22334422,33,4112233⨯=+⨯=+⨯=+4,…, (1)写出第5个等式;(2)写出第n个等式,并证明该等式成立.【答案】(1)第5个等式为:6666 55⨯=+;(2)第n个等式为:11(1)(1) n nn nn n++⨯+=++.【解析】解:(1)∵第1个等式为:222=11⨯+2,第2个等式为:333=22⨯+3,第3个等式为:444=33⨯+4,∴第4个等式为:54×5=54+5,第5个等式为:65×6=65+6;(2)第n个等式为:n+1n×(n+1)=n+1n+(n+1).证明如下:∵n+1n×(n+1)=2n+n+n+1n=2n+nn+n+1n=n+1n+(n+1),∴n+1n×(n+1)=n+1n+(n+1).化类,通过观察得出第n个等式为:n+1n×(n+1)=n+1n+(n+1)是解题的关键.22.老师在黑板上写出三个算式:32-1=8×1,92-52=8×7,132-72=8×15。
初高衔接知识第一讲:数与式的运算(含练习+参考答案)
第一讲:数与式的运算班级:______姓名:__________问题一、绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.例1 (1)化简:|x -5|-|2x -13|(x >5).(2)利用绝对值的几何意义求13x x -+-的最小值.问题二、乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式: (2)立方差公式(3)三数和平方公式 (4)两数和立方公式(5)两数差立方公式例1 (1)计算:22(1)(1)(1)(1)x x x x x x +--+++.(2)已知1x y +=,求333x y xy ++的值.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.问题三、二次根式0)a ≥a ==,0,,0.a a a a ≥⎧⎨-<⎩例 1 化简:(1; (21)x <<.例2 试比较下列各组数的大小:(1(2问题四、分解因式例1 分解因式:(1)x 2-3x +2;(2)x 2+x -(a 2-a );(3)321x x -+参考答案问题1例1 当1352x <<时,原式5213318x x x =-+-=- 当132x ≥时,原式52138x x x =--+=-例2当1x ≤时,原式1324x x x =-+-+=-+,当1x =时,有最小值2当13x <<时,原式=132x x --+=,恒为2当3x ≤时,原式1324x x x =-+-=-,当3x =时,有最小值2综上所述,最小值为2问题2例1原式()()336111x x x =+-=-例2()33223+331x y x x y y x y =+++=()3331x y xy x y ∴+++=代入1x y +=得3331x y xy ++=问题3例11.原式2= 2.原式11x x x x =-=- 例31.==1010=2.==> 问题四例11.原式()()12x x =--2.原式 ()()221x a x a x a x a =-++=+-+3.原式()()()2111x x x x x x ⎛=-++=-+ ⎝⎭⎝⎭高一数学衔接知识讲义一练习班级:________姓名:_________1.下列叙述正确的是 ( )(A )若a b =,则a b = (B )若a b >,则a b >(C )若a b <,则a b < (D )若a b =,则a b =±2.计算 ( )(A (B (C ) (D )3= ( )(A )a b < (B )a b > (C )0a b << (D )0b a <<4=________;5.比较大小:2-4(填“>”,或“<”).6.不等式13x ->的解为_________________;||x x >的解为___________________;7.利用绝对值的几何意义写出|1||3|x x ---的最大值为___________;最小值为______________;8.化简:20042005⋅=_______________________;9.因式分解324x x --=___________________________;10.若1,1x y xy +==-,则33x y -=__________________. 11.若2220x xy y +-=,求22223x xy y x y +++的值12.解方程22112()3()10x x x x+-+-=.参考答案1-3 D C D4-10 1;>;4x >或2x <-,0x <;2,-22(2)(22)x x x -++;± 11 解:222(2)(-)0x xy y x y x y ++=+=;x y =或2x y =-;当x y =时,原式=22223522x x x x ++=; 当2x y =-时,原式=2222246145y y y y y -+=-+; 综上所述:15-或5212 解:22211()2x x x x+=+-; 令1t x x =+;则22350t t -+=; (25)(1)0t t -+=;152t =,21t =-; 当152x x +=时; 25102x x -+=; 259()416x -=; 12x =,212x =; 当11x x +=-时; 210x x ++=,30∆=-<,无解;综上所述:12x =,212x =。
中档题型训练(一) 数与式的运算与求值
第二编 中档题型突破专项训练篇中档题型训练(一) 数与式的运算与求值本专题主要考查实数的运算、整式与分式的化简与求值,纵观贵阳5年中考往往以计算题、化简求值题的形式出现,属基础题.复习时要熟练掌握实数的各种运算,并注意混合运算中的符号与运算顺序;在整式化简时要灵活运用乘法公式及运算律;在分式的化简时要灵活运用因式分解知识,分式的化简求值,还应注意整体思想和各种解题技巧.实数的运算解:原式=(-4)×49-21×(-8)=-5.2.(2016泸州中考)计算:(-1)0-×sin 60°+(-2)2.解:原式=2.3.(2016岳阳中考)计算:31-+2tan 60°-(2-)0.解:原式=2.4.(2016自贡中考)计算:21+(sin 60°-1)0-2cos 30°+|-1|.解:原式=2.5.(2016荆门中考)计算:|1-|+3tan 30°-(-5)0-(-31)-1.解:原式=2+1.整式的运算与求法6.(2016宁波中考)先化简,再求值:(x +1)(x -1)+x(3-x),其中x =2. 解:原式=5.7.(2015北京中考)已知x 2-4x -1=0,求代数式(2x -3)2-(x +y)(x -y)-y 2的值.解:原式=4x 2-12x +9-x 2+y 2-y 2=3x 2-12x +9=3(x 2-4x +3),∵x 2-4x -1=0,即x 2-4x =1,∴原式=12.8.(2016襄阳中考)先化简,再求值:(2x +1)(2x -1)-(x +1)(3x -2),其中x =-1.解:原式=5-3.9.(2015娄底中考)先化简,再求值:(x +y)(x -y)-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =33.解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2,当x =-1,y =33时,原式=-1+1=0.分式的化简求值【例】(2015菏泽中考)已知x 2-4x +1=0,求x -42(x -1)-x x +6的值.【解析】先化简所求式子,再看其结果与已知条件之间的联系,能否整体代入.【学生解答】解:原式=-23.10.(2016益阳中考)先化简,再求值:(x +11-1-x 1)÷1-x2x2,其中x =-21.解:原式=4.11.(2016娄底中考)先化简,再求值:(1-x -12)·x2-6x +9x2-x ,其中x 是从1,2,3中选取的一个合适的数.解:原式=x -3x ,当x =2时,原式=-2.x#k#b#112.(2016广东中考)先化简,再求值:a a +3·a2+6a +96+a2-92a -6,其中a =-1.x.k.b.1解:原式=+1.13.(2016乐山中考)先化简,再求值:(x -x +13x )÷x2+2x +1x -2,其中x 满足x 2+x -2=0.解:原式=x +1x (x +1)-3x ÷x2+2x +1x -2=x +1x2-2x ×x -2x2+2x +1=x +1x (x -2)×x -2(x +1)2=x(x +1)=x 2+x ,∵x 2+x -2=0,∴x 2+x =2,即原式=2.14.(2016凉山中考)先化简,再求值:x2-xy 2÷2x x +2,其中实数x ,y 满足y =-+1.解:原式=x -y 2,其中4-2x ≥0,x -2≥0,∴y =1.x =2,∴原式=2.15.(2016巴中中考)先化简:x2-2x +1x2+x ÷(x -12-x 1),然后再从-2<x ≤2的范围内选取一个合适的x 的整数值代入求值.解:原式=(x -1)2x (x +1)÷x (x -1)2x -(x -1)=(x -1)2x (x +1)×x +1x (x -1)=x -1x2.其中x +1≠0,x (x -1)≠0,,即x ≠-1、0、1.又∵-2<x ≤2且x 为整数,∴x =2.将x =2代入x -1x2中,得原式=2-122=4.。
专题02 数与式的相关计算(解析版)
专题02数与式的相关计算目录热点题型归纳..................................................................................................................................................错误!未定义书签。
题型01实数的运算. (1)题型02代数式求值 (3)题型03整式的混合运算 (5)题型04分式的混合运算 (7)题型05二次根式的混合运算 (9)题型06化简求值 (11)题型07非负数 (13) (15)中考练场【典例分析】例1.(2023·北京)计算:4sin 60∘+(13)−1+|−2|−12.【答案】解:原式=4+3+2−23=23+3+2−23=5.【解析】本题考查的是实数的运算,熟记特殊角的三角函数值、负整数指数幂的运算法则、绝对值的性质、二次根式的性质是解题的关键.根据特殊角的三角函数值、负整数指数幂的运算法则、绝对值的性质、二次根式的性质计算.例2.(2023·湖南)计算:8−2s 30°−|1−2|+(12)−2−(−2020)0.【答案】解:原式=22−2×12−(2−1)+4−1=22−1−2+1+4−1=2+3.【解析】本题主要考查实数的运算,解题的关键是掌握二次根式和绝对值的性质、熟记特殊锐角三角函数值、负整数指数幂与零指数幂的规定.先化简二次根式、代入三角函数值、去绝对值符号、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得.实数的运算加法同号两数相加,取原来的符号。
并把它们的绝对值相加。
异号两数相加,取绝对储较大的加数的符号,并用较大数的绝对值减失较小数的绝对值。
减法减去一个效等于加上这个数的相反数乘法两数相乘,同号得正,异号得负,并把它们的绝对值相乘几个非零实数相乘。
积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负n 个数相乘,有一个因数为0,积为0.除法两数相除,同号得正,异号得负,并把它们的绝对值相除0除以任何一个不等于0的数都得0乘方几个相同因数的积的运算,叫做乘方,记作a n (a ≠0,n 为正整数)开方与乘方互为逆运算运算顺序分级:加减是一级运算。
数与式复习总结课件
代数式的化简
代数式的恒等性
对于某些特定的字母取值,代数式可 以等于一个特定的值,称为代数式的 恒等性。
通过合并同类项、约分、因式分解等 运算,可以将代数式化简为最简形式。
代数式的运算
代数式的加法
通过将同类项的系数相 加,得到新的代数式。
代数式的减法
通过将同类项的系数相 减,得到新的代数式。
代数式的乘法
减法
总结词
减法是加法的逆运算,用于从一个数 中减去另一个数得到它们的差。
详细描述
减法是通过从被减数中减去减数得到 差值的运算。在数的减法中,整数、 小数和分数都可以进行减法运算。减 法同样满足交换律和结合律。
乘法
总结词
乘法是数学中用于将一个数与另一个数相乘得到它们的积的运算。
详细描述
乘法是将一个数(或代数式)与另一个数相乘得到它们的积的运算。在数的乘法中,整数、小数和分数都可以进 行乘法运算。乘法满足交换律、结合律和分配律,即a×b=b×a,(a×b)×c=a×(b×c),a×(b+c)=a×b+a×c。
方程在实际问题中的应用
方程是解决实际问题的重要工具,如 工程问题、行程问题、比例问题等。
方程在实际问题中的应用需要我们具 备一定的数学基础和逻辑思维能力。
通过建立方程,我们可以找到问题的 解决方案,如计算未知数、求解未知 量等。
函数在实际问题中的应用
函数是描述变量之间关系的数 学工具,如正比例关系、反比 例关系、一次函数、二次函数 等。
运算规则
小数的加减法需要定位, 乘法时小数点位置不变, 除法时可以转换为乘法。
02
数的运算
加法
总结词
加法是数学中最基本的运算之一,用于将两个数相加得到它 们的和。
中考数学考点专项突破 专题一 数与式的综合运算 复习课件
02
考点梳理
数与式的综合运算涉及实数的加、减、乘、除、乘方、开方运算以 及整式、分式、二次根式的相关运算;根据数的排列特点或图形的排 列规律,运用数学思想或方法,探究数或式的变化规律,因此,在解决此 类问题时,要注意以下几点:
1.对于实数的运算,要熟练掌握如下运算及相应的运算法则:0次 幂、负整数指数幂、-1的奇数次幂、乘方及常见的开方、立方根、去 绝对值符号等.在解答此类运算题时,应先计算每一小项的值,再进行实 数的四则混合运算.
x=-2,y= 2,从而 1 xy 1 (2) 2 2 . 22
【感悟】掌握 a ≥0 以及 a≥0 ( a>0 )的性质,才能正确解答此题.
真题剖析
考点4:代数式的化简与求值
【例 4】(2019• 广西桂 林)先化 简,再求值: ( 1 1 ) x2 2xy y2 1 ,其中
yx
2xy
yx
x 2 2 ,y=2.
【点拨与解答】本题主要考查分式的化简求值以及二次根式的有关运算,解题的关键是 熟练掌握因式分解、二次根式的化简、分式混合运算的顺序和运算法则等.
【例 1】(2018•广西北部湾经济区)化简: 4 tan 60 12 ( 1) 1 =
.
2
【点拨与解答】第一项利用去绝对值符号的性质,去绝对值符号的原则是:当绝对值里 面的数大于等于【0,感则悟】直在接进去行绝实对数值的符运号算时;,当掌握绝运对算值的里先面后的顺数序小是解于题0的,关则键去. 绝对值符号后在 数的前面加负号,第二项利用特殊角的三角函数值计算,第三项是根式的化简,最后一项是
负指数幂的运算.原式=4+ 3 - 2 3 -2=2- 3 .
【感悟】在进行实数的运算时,掌握运算的先后顺序是解题的关键.
精品课件:人教版八年级下册数学期末专题训练:专题一《数与式的计算》
2.单项式乘多项式: (1)单项式分别_乘___以__多项式的每一项; (2)将所得的积__相__加____.
注:单项式乘多项式,积为多项式,项数与原实多质项是式转的化项数
__相__同____.
为单项式乘单
3.多项式乘多项式:
项式的运算
先用一个多项式的每一项分别乘另一个多项式的_每___一__项,
母的公因式约去,叫做分式的约分. 约分的基本步骤 (1)若分子﹑分母都是单项式,则约去系数的最大公 约数,并约去相同字母的最低次幂; (2)若分子﹑分母含有多项式,则先将多项式分解因 式,然后约去分子﹑分母所有的公因式.
16
4.分式的通分: 根据分式的基本性质,使分子、分母同乘适当
的整式(即最简公分母),把分母不相同的分式变 成分母相同的分式,这种变形叫分式的通分.
解方程,得 x=1
检验: 把x=1代入最简公分母 3x(x+5)=18≠0
∴原方程的解为x=1
25
20
典例精析:
例1、化简:
x x
2 2
1 1
x
x 1
解:原式= x2+1 (x+1)(x-1)
-
x x+1
=(x+1x)2(+x1-1)
-
x(x-1) (x+1)(x-1)
=(x(2x++11))-(xx(-x1-)1)
=
x2+1-x2+x (x+1)(x-1)
=
x+1 (x+1)(x-1)
②两项二次根式: 利用平方差公式来确定
如:a b 与 a b
a + b与 a - b
1-数与式(共17张ppt-)共18页文档
a
a
即a22a12 10,
a2
1 a2
8
a2
2
1 a2
6
(a 1 )2 6 a
所以
a
1 a
6。
引导学生读懂数学书课题研究成果配套课件 课件制作:谢达生
20.观察下列各式:
(x 1)(x 1) x2 1; (x 1)(x2 x 1) x3 1; (x 1)(x3 x2 x 1) x4 1;
2
解:原式 2 3 3 1 2 3 3 2 11 2 3 2 32
(2) 8( 2 1 )
2
解:原式 82811 642 2
引导学生读懂数学书课题研究成果配套课件 课件制作:谢达生
三、解答题
17.计算与化简:
(3) 1 x2 1 (1 ) xx
15.若多项式 4x2kx25是个完全平方式
,
20或 -20
引导学生读懂数学书课题研究成果配套课件 课件制作:谢达生
16.观察下面的图形,它们是按一定规律 排列的,依照此规律,第____1_5___个图形 共有120个.
引导学生读懂数学书课题研究成果配套课件 课件制作:谢达生
三、解答题 17.计算与化简: (1) 113ta3n0(1 2)012
2a2 6a2 6a6 a2 6a
当a 21时,原式 ( 21)2 6( 21)
4 23
引导学生读懂数学书课题研究成果配套课件 课件制作:谢达生
19.已知 a 1 10 ,求 a 1 的值.
a
a
解: 因为 a 1 10 ,所以 (a 1)2 10;
解:原式 ( x 1 ) x
初高衔接第一章数与式的运算
初高衔接第一章数与式的运算在初中,我们已学习了实数,知道字母可以表示数,用代数式也可以表示数,我们把实数和代数式简称为数与式。
代数式中有整式(包括多项式与单项式)、分式、根式。
它们具有实数的属性,可以进行运算。
在多项式的乘法运算中,我们学习了乘法公式(平方差公式与完全平方公式),并且知道乘法公式可以使多项式的运算简便.由于在高中学习中还会遇到更复杂的多项式乘法运算,因此本章中我们将拓展乘法公式的内容,补充立方和、立方差等公式,在根式的运算中,我们已学过被开方数是实数的根式运算,而在高中数学学习中,经常会接触到被开方数是字母的情形,但在初中却没有涉及,因此本章中将补充这方面内容以及二次根式的化简方法,基于同样的原因,还要补充“繁分式”等有关内容. 一.乘法公式的加强我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 (a+b)(a-b)=a 2-b 2; (2)完全平方公式 (a ±b)2=a 2±2ab+b 2. 我们还可以通过证明得到下列乘法公式:(1)立方和公式(a+b)(a 2-ab+b 2)=a 3+b 3; (2)立方差公式(a-b)(a 2+ab+b 2)=a 3-b 3; (3)三数和平方公式(a+b+c)2=a 2+b 2+c 2+2(ab+bc+ac);(4)两数和立方公式(a+b)3=a 3+3a 2b+3ab 2+b 3; (5)两数差立方公式(a-b)3=a 3-3a 2b+3ab 2-b 3. 对上面列出的五个公式,有兴趣的同学可以自己去证明.在实际应用中,还会用到公式的变形:a 2+b 2=(a ±b)2+̅2ab; ab=14[(a+b)2-(a-b)2]; a 3+b 3=(a+b)3-3ab(a+b). 例1计算(x 2-√2x+13)2. 例2(1)已知a=2020,b=2021,c=2022,求a 2+b 2+c 2-ab-bc-ac 的值. (2)已知x 2-3x+1=0,求x 3+1x3的值例3计算:(1)(4+m)(16-4m+m 2) (2)(15m-12n)(125m 2+110mm+14n 2) (3)(a+2)(a-2)(a 4+4a 2+16) (4)(x 2+2xy+y 2)(x 2-xy+y 2)2[随堂练习1]1.填空(1)19a 2-14b 2=(12b+13a)( ); (2)(4m+ )2= 16m 2+4m+( );(3)(a+2b-c)2=a 2+4b 2+c 2+( ); (4)1125m 3-18n 3=(15m-12n)( ).2.设x=(t+1t)3,y=t 3+1t3+6,则对于任意的t>0,x 与y 的大小关系为( ) A. x>y B. x<y C. x ≥y D. x ≤y3.已知a+b+c=0,求a(1b +1c)+b(1c +1a)+c(1a +1b)的值.二.二次根式:一般地,形如√a (a ≥0)的代数式叫做二次根式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所ห้องสมุดไป่ตู้-
2017年中考数学命题研究(河北专版)
版权所有-
2017年中考数学命题研究(河北专版)
版权所有-