锐角三角函数奥数班
挑战奥数的三角函数
挑战奥数的三角函数三角函数是数学中的重要概念,广泛应用于各个领域。
它不仅是高中数学的重点内容,也是奥林匹克数学竞赛中的常见考点。
挑战奥数的三角函数,意味着我们需要深入理解三角函数的性质和运用,以更好地应对奥数竞赛中的难题。
三角函数包括正弦函数、余弦函数、正切函数等。
在解决数学问题时,我们通过运用三角函数来描述和分析角的关系。
下面我们将逐一介绍这些函数的基本概念和运算规律。
正弦函数是三角函数中最基本的函数之一。
它的定义域为实数集,值域为[-1, 1]。
我们可以通过单位圆的概念来理解正弦函数的性质。
在单位圆上,角θ对应的点的纵坐标就是正弦函数的值。
正弦函数具有周期性,即sin(θ) = sin(θ + 2kπ),其中k为整数。
利用这一性质,我们可以简化计算过程,并解决一些复杂的三角函数方程。
余弦函数是正弦函数的补函数。
它的定义域和值域与正弦函数相同,也具有周期性。
在单位圆上,角θ对应的点的横坐标就是余弦函数的值。
我们可以利用余弦函数来计算角平分线的性质,求解三角形的边长和角度等问题。
正切函数是正弦函数和余弦函数的商。
它的定义域为所有使余弦函数不为零的实数,值域为实数集。
在单位圆上,角θ的切线斜率就是正切函数的值。
正切函数也具有周期性,并且存在其它函数如反正切函数等与之相关的性质和运算规律。
除了这些常见的三角函数,还有诱导公式、和角公式等其他与三角函数密切相关的概念。
诱导公式指的是根据已知角或函数值,推导其他角或函数值的公式。
和角公式用于描述两个角的和及其函数值之间的关系。
了解这些公式的推导和应用,可以帮助我们更好地理解和运用三角函数。
挑战奥数时,我们需要熟练掌握三角函数的性质和运算规律,并能够灵活运用它们解决各种题目。
此外,我们还需要注意一些常见的技巧和策略。
比如,将复杂的三角函数方程转化为代数方程,利用三角函数的周期性简化计算,利用几何图形辅助分析和推导等等。
综上所述,挑战奥数的三角函数意味着我们需要深入理解三角函数的性质和运用,掌握其相关的公式和技巧,并能够灵活运用它们解决各种复杂的数学问题。
锐角三角函数(含习题及答案)
锐角三角函数——正弦一、教学目标1.通过探究使学生知道当直角三角形的锐角固定时,它的对边与用计算器求锐角三角函数值和根据三角函数值求锐角斜边的比值都固定(即正弦值不变)这一事实.2.能根据正弦概念正确进行计算3.经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.二、教学重点、难点重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.三、教学过程(一)复习引入操场里有一个旗杆,老师让小明去测量旗杆高度.(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34º,并已知目高为1米.然后他很快就算出旗杆的高度了.你想知道小明怎样算出的吗?师:通过前面的学习我们知道,利用相似三角形的方法可以测算出旗杆的大致高度;实际上我们还可以象小明那样通过测量一些角的度数和一些线段的长度,来测算出旗杆的高度.这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法.下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦(二)实践探索为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉.现测得斜坡与水平面所成角的度数是30º,为使出水口的高度为35m,那么需要准备多长的水管?分析:问题转化为,在Rt△ABC中,∠C=90º,∠A=30º,BC=35m,求AB根据“再直角三角形中,30o角所对的边等于斜边的一半”,即==可得AB=2BC=70m,即需要准备70m长的水管结论:在一个直角三角形中,如果一个锐角等于30o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于如图,任意画一个Rt△ABC,使∠C=90º,∠A=45º,计算∠A的对边与斜边的比,能得到什么结论?分析:在Rt△ABC 中,∠C=90º,由于∠A=45º,所以Rt△ABC是等腰直角三角形,由勾股定理得AB2 = AC2+BC2 = 2BC2,AB =BC故===结论:在一个直角三角形中,如果一个锐角等于45º,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A’B’C’,∠C=∠C’=90º,∠A=∠A’=α,那么与有什么关系?分析:由于∠C=∠C’=90º,∠A=∠A’=α,所以Rt△ABC与Rt△A’B’C’相似,=,即=结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值.认识正弦如图,在Rt△ABC中,∠A、∠B、∠C所对的边分别记为a、b、c.师:在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦.记作sinA.板书:sinA== (举例说明:若a = 1,c = 3,则sinA=)注意:1、sinA不是 sin与A的乘积,而是一个整体;2、正弦的三种表示方式:sinA、sin56º、sin∠DEF;3、sinA 是线段之间的一个比值;sinA 没有单位.提问:∠B的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?(三)教学互动例、如图,在RtΔABC中,∠C = 90º,求sinA和sinB的值.分析:可利用勾股定理分别求出两个三角形中未知的那一边长,再根据正弦的定义求解.解答按课本.锐角三角函数——余弦和正切一、教学目标1.使学生知道当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实.2.逐步培养学生观察、比较、分析、概括的思维能力.二、教学重点、难点重点:理解余弦、正切的概念难点:熟练运用锐角三角函数的概念进行有关计算三、教学过程(一)复习引入1.口述正弦的定义2.如图,在Rt△ABC中,∠ACB=90º,CD⊥AB于点D.已知AC=,BC=2,那么sin∠ACD=()A. B. C.D.(二)实践探索一般地,当∠A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A’B’C’,∠C=∠C’=90o,∠A=∠A’=α,那么与有什么关系?分析:由于∠C=∠C’=90o,∠B=∠B’=α,所以Rt△ABC与Rt△A’B’C’相似,=,即=结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的邻边与斜边的比也是一个固定值.如图,在Rt△ABC中,∠C=90o,把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA;即cosA ==类似地,把∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA =锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(三)教学互动例、如图,在RtΔABC中,∠C = 90º,BC=6,sinA =,求cosA和tanB的值.解:∵sinA =,∴AB == 6×= 10又AC === 8∴cosA ==,tanB ==30°、45°、60°角的三角函数值一、教学目标1.能推导并熟记30º、45º、60º角的三角函数值,并能根据这些值说出对应的锐角度数.2.能熟练计算含有30º、45º、60º角的三角函数的运算式二、教学重点、难点重点:熟记30º、45º、60º角的三角函数值,能熟练计算含有30º、45º、60º角的三角函数的运算式难点:30º、45º、60º角的三角函数值的推导过程三、教学过程(一)复习引入还记得我们推导正弦关系的时候所到结论吗?即sin30º =,sin45º=你还能推导出sin60º的值及30º、45º、60º角的其它三角函数值吗?(二)实践探索让学生画30º、45º、60º的直角三角形,分别求sin30º、cos45º、tan60°归纳结果(三)教学互动例1、求下列各式的值:(1) cos260º+cos245º+sin30ºsin45º(2)+解:(1)原式 = ()2+()2+××=++= 1(2)原式 =+=+= −(1+)2−(1−)2=−3−2−3+2= −6说明:本题主要考查特殊角的正弦余弦值,解题关键是熟悉并牢记特殊角的正弦余弦值.易错点因没有记准特殊角的正弦余弦值,造成计算错例2、(1)如图(1), 在RtΔABC中,∠C = 90º,AB =,BC =,求∠A的度数.(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求α.解:(1)在图(1)中,∵sinA ===,∴∠A = −45º,(2)在图(2)中,∵tanα ===,∴α = 60º用计算器求锐角三角函数值和根据三角函数值求锐角一、教学目标1.让学生熟识计算器一些功能键的使用2.会熟练运用计算器求锐角的三角函数值和由三角函数值来求角二、教学重点、难点重点:运用计算器处理三角函数中的值或角的问题难点:知道值求角的处理三、教学过程(一)复习引入通过上课的学习我们知道,当锐角A是等特殊角时,可以求得这些角的正弦、余弦、正切值;如果锐角A不是这些特殊角,怎样得到它的三角函数值呢?我们可以用计算器来求锐角的三角函数值.(二)实践探索1.用计算器求锐角的正弦、余弦、正切值利用求下列三角函数值(这个教师可完全放手学生去完成,教师只需巡回指导)sin37º24′sin37°23′cos21º28′ cos38°12′tan52°tan36°20′ tan75°17′2.熟练掌握用科学计算器由已知三角函数值求出相应的锐角.例如:sinA=0.9816.∠A=;cosA=0.8607,∠A=;tanA=0.1890,∠A=;tanA=56.78,∠A=.典型例题1.若把ΔABC中锐角A的两边AB、AC分别缩小为原来的,已知其中∠C = 90º,则锐角A的正弦,则sinA的变化情况为( )A.nsinA B.sinA C. D.保持原值不变答案:D说明:因为当一个锐角大小不变时,其正弦值是固定的,与∠A的两边大小无关,所以正确答案为D.2.已知ΔABC中,∠C = 90º,∠A、∠B、∠C所对的边分别是a、b、c、且c = 3b,则cosA = ( )A. B. C.D.答案:C说明:因为cosA =,而c = 3b,所以cosA =,答案为C.3.a、b、c是ΔABC的三边,a、b、c满足等式(2b)2= 4(c+a)(c−a),且有5a−3c = 0,求sinA+sinB的值.分析:用正弦的定义把正弦换为边的比,再由所给的边与边的关系即可求值.解:由(2b)2 = 4(c+a)(c−a)得b2 = c2−a2,∴c2 = a2+b2,∴ΔABC是直角三角形,且∠C = 90º;由5a−3c = 0,得=,即sinA =设a = 3k,则c = 5k,∴b == 4k,∴sinB ===∴sinA+sinB =+=.4.如图,∠POQ = 90º,边长为2 cm的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC = 30º;分别求点A、D到OP的距离.分析:由正方形的性质可证ΔABE≌ΔBCO≌ΔCDG,再由∠OBC = 30º,即可求出OC、CG、AE的长.解:过点A、D分别作AE⊥OP、DF⊥OP,DG⊥OG,垂足分别为E、F、G.在正方形ABCD中,∠ABC =∠BCD = 90º∵∠OBC = 30º,∴∠ABE =∠BCO = 60º同理可求∠CDG = 60º,又AB = BC = CD = 2 cm,∴RtΔABE≌RtΔBCO≌RtΔCDG∴CG = AE = AB•sin∠ABE = 2•=(cm)OC = BC•sin∠OBC = 2•= 1(cm)∴DF = OG = GC+OC = (+1)(cm)即点A到OP的距离为cm,点D到OP的距离为(+1)cm.习题精选选择题:1.如图,CD是RtΔABC斜边上的高,AC = 4,BC = 3,则cos∠BCD的值是( )A.B.C. D.答案:D说明:因为CD⊥AB,所以∠BCD+∠B = 90º;又∠A+∠B = 90º,所以∠BCD =∠A;由BC = 3,AC = 4,得AB === 5,∴cos ∠BCD = cosA ==,所以答案为D.2.如图,以平面直角坐标系的原点为圆心,以1为半径作圆,若点P是该圆在第一象限内的一点,且OP与x轴正方向组成的角为α,则点P的坐标是( )A.(cosα,1)B.(1,sinα)C.(sinα,cosα)D.(cosα,sinα)答案:D说明:如图,作PA⊥x轴于点A;由锐角三角函数定义知,cosα =,sinα =,所以OA = OPcosα = cosα,PA = OPsinα,所以点P的坐标为(cosα,sinα),所以答案为D.3.如图,将矩形ABCD沿着对角线BD折叠,使点C落在C’处,BC’交AD于E,下列结论不一定成立的是( )A.AD = BC’B.∠EBD =∠EDBC.ΔABE与ΔBCD相似D.sin∠ABE =答案:C说明:因为ΔBC’D≌ΔBCD,所以BC’ = BC;又BC = AD,所以AD = BC’;因为AD//BC,所以∠EDB =∠CBD,而∠CBD =∠EBD,所以∠EDB =∠EBD,所以EB = ED;而sin∠ABE ==,所以A、B、D都是成立的,答案为C.4.如图,RtΔABC中,∠C = 90º,D为BC上一点,∠DAC = 30º,BD = 2,AB = 2,则AC的长是( )A. B.2 C.3D.答案:A说明:在RtΔACD中,因为∠CAD = 30º,设CD = x,因为tan∠DAC =,则AC =x,在RtΔABC中,由勾股定理得AB2= AC2+BC2= AC2+(CD+DB)2,即(2)2= (x)2+(x+2)2,∴x2+x−2 = 0,解得x1 = 1或x2 = −2(舍去),即DC = 1,AC =,答案为A.5.在RtΔABC中,∠C = 90º,如果∠A = 30º,那么sinA+cosB的值等于( )A.1 B. C.D.答案:A说明:因为在RtΔABC中,∠C = 90º,∠A = 30º,所以∠B = 60º,所以sinA = sin30º =,cosB = cos60º =,故sinA+cosB =+= 1,所以答案为A.6.在矩形ABCD中,BC = 2,AE⊥BD于E,∠BAE = 30º,那么ΔECD的面积是( )A.2 B. C.D.答案:C说明:如图,由题意得,ΔABE与ΔBDC相似,∴∠CBD =∠BAE = 30º,∴CD = BC•tan∠CBD = 2•=,AB = CD =,BE = AB•sin30º =×=,EF = BE•sin30º =×=,∴SΔECD = SΔBCD−SΔEBC =BC•CD−BC•EF =×2×−×2×=,答案为C.7.如图,两条宽度都是1的纸条,交叉重叠放在一起,且它们的夹角为α,则它们重叠部分(图中黄色部分)的面积为( )A. B.sinα C. D.cosα答案:C说明:如图,过点A作AN⊥CD于N,过点D作DM⊥BC于M,则AN = DM = 1,∠DCM =α,在RtΔDCM中,CD == ,所以S平行四边形ABCD = CD•AN =,答案为C.解答题:1.如果α是锐角,且cosα =,求sinα及tanα的值.分析:事实上,因为α为锐角,所以可构造一个RtΔABC,使∠C = 90º,∠A = α,则有AC = 4k,AB = 5k,由勾股定理得BC == 3k,从而可求sinα;还可直接用公式sinA =求解.解:构造RtΔABC,使∠A = α,∠C = 90º,如图,∵cosα = cosA =,∴可令AC = 4k,AB = 5k,∴BC == 3k,∴sinA ===,tanA ===,即sinα =,tanα =.2.若tan2x−(+1)tanx+= 0,求锐角x.分析:这是以tanx为未知数的一元二次方程,可先求出tanx,再求x.解:tan2x−(+1)tanx+= 0,(tanx−1)(tanx−) = 0,得tanx = 1或tanx =;当tanx = 1时,x = 45º;当tanx =时,x = 60º;∴x1 = 45º,x2 = 60º.。
《锐角三角函数》课件
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02
锐角三角函数复习课课件
90度角
总结词
正弦值和余弦值不存在,正切值为无穷大
详细描述
在90度角时,正弦函数值和余弦函数值都不存在,因为无法定义与x轴的角度;正切函数值为无穷大 ,因为在直角三角形中,对边长度可以无限小而保持与斜边的比值不变。
03
锐角三角函数的图像与性质
正弦函数图像
总结词
正弦函数图像是一个周期函数,其图像在直角坐标系中呈波 浪形。
用三角函数来处理角度和旋转。
05
常见题型解析与解题技巧
选择题
• 题型特点:选择题通常考察学生对锐角三角函数基础知识的理 解和应用,题目会给出一些具体的数值或图形,要求选择正确 的答案。
选择题
排除法
根据题目给出的选项,逐一排除明显 错误的答案,缩小选择范围。
代入法
对于涉及数值计算的题目,可以将选 项中的数值代入题目中,通过计算验 证答案的正确性。
在研究磁场和电场时,我们经常需要使用锐 角三角函数来描述场的方向和强度。
日常生活中的问题
建筑和设计
在建筑设计、工程规划和土木工程中,锐角 三角函数用于计算角度、高度和距离等参数 ,以确保结构的稳定性和安全性。
游戏和娱乐
在许多游戏和娱乐活动中,锐角三角函数也 起着重要作用。例如,在制作动画、设计游 戏关卡或创建虚拟现实环境时,我们需要使
总结词
正弦值为0,余弦值和正切值不存在
详细描述
在0度角时,正弦函数值为0,表示射线与x轴重合;余弦函数值不存在,因为无 法定义与x轴的角度;正切函数值也不存在,因为没有对边形成直角三角形。
30度角
总结词
正弦值为0.5,余弦值为0.866,正切值为1/3
详细描述
在30度角时,正弦函数值为0.5,表示对边长度为斜边长度的一半;余弦函数值 为0.866,表示邻边长度为斜边长度的一半的平方根;正切函数值为1/3,表示对 边长度与邻边长度的比值。
锐角三角函数及应用经典例题
锐角三角函数及应用经典例题锐角三角函数是指在单位圆上,从原点出发,与 x 轴正半轴之间的夹角小于90° 的角的三角函数。
其中包括正弦函数sinα、余弦函数cosα、正切函数tanα,以及它们的倒数函数cscα、secα、cotα。
锐角三角函数在数学中有广泛的应用,尤其在几何、物理以及工程学中涉及到角度测量、距离计算等方面经常用到。
下面我们来看一些经典的例题,以加深对锐角三角函数的理解:例题1:已知在锐角 ABC 中,边长 BC = 5, AC = 13、求角 A 的正弦值 sinA、余弦值 cosA 和正切值 tanA。
解答:由于边长BC=5,AC=13,我们可以根据勾股定理求得边长AB=√(AC^2-BC^2)=12角 A 的正弦值 sinA = BC / AC = 5 / 13,余弦值 cosA = AB / AC = 12 / 13,正切值 tanA = BC / AB = 5 / 12例题2:已知在锐角 ABC 中,角B = 35°,边长 BC = 8、求角 A 的正弦值 sinA、余弦值 cosA 和正切值 tanA。
解答:由于已知角B = 35°,边长 BC = 8,我们可以根据正弦函数的定义求得角 A 的正弦值为 sinA = BC / AC。
由于 sinA = BC / AC,我们可以得到 AC = BC / sinA = 8 /sin(180° - A - B)。
根据余弦定理,可以计算出边长AC = √(AB^2 + BC^2 - 2 * AB * BC * cosB)。
代入已知的B = 55° 和 BC = 8,我们可以求得AC = √(AB^2 +8^2 - 2 * AB * 8 * cos35°)。
我们可以进一步根据余弦函数的定义计算 AB 的值,即 cosA = AB / AC,所以 AB = AC * cosA。
锐角三角函数专题训练
锐角三角函数与特殊角专题训练【基础知识精讲】一、 正弦与余弦:1、 在ABC ∆中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos .斜边的邻边斜边的对边A A A A ∠=⋅∠=cos sin .若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c ,则ca A =sin ,c bA =cos 。
2、当A ∠为锐角时, 1sin 0<<A ,1cos 0<<A (A ∠为锐角)。
二、 特殊角的正弦值与余弦值:2130sin =, 2245sin =, 2360sin =. 2330cos = , 2245cos =, 2160cos =. 三、 增减性:当00900<<α时,sin α随角度α的增大而增大;cos α随角度α的增大而减小。
四、正切概念:(1) 在ABC Rt ∆中,A ∠的对边与邻边的比叫做A ∠的正切,记作A tan 。
即 的邻边的对边A A A ∠∠=tan (或ba A =tan )五、特殊角的正弦值与余弦值:3330tan =; 145tan = ; 360tan =六、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.)90sin(cos ),90cos(sin A A A A -︒=-︒=.七、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。
即 ()A A -=90cot tan , ()A A -=90tan cot .八、同角三角函数之间的关系:⑴、平方关系:1cos sin 22=+A A ⑵商的关系AAA cos sin tan =A AA sin cos cot =⑶倒数关系tana ·cota=1b【典型例题】【1】 已知a 为锐角①若sina=3/5,求cosa 、tana 的值。
初中奥数系列:.锐角三角函数C级.第01讲.学生版
内容 基本要求略高要求较高要求模块一 三角函数基础一、锐角三角函数的定义如图所示,在Rt ABC △中,a 、b 、c 分别为A ∠、B ∠、C ∠的对边.(1)正弦:Rt ABC ∆中,锐角A 的对边与斜边的比叫做A ∠的正弦,记作sin A ,即sin aA c=. (2)余弦:Rt ABC ∆中,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即cos bA c=.(3)正切:Rt ABC ∆中,锐角A 的对边与邻边的比叫做A ∠的正切,记作tan A ,即tan a A b=. 注意:①正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ②sin A 、cos A 、tan A 分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin 与A 、a A例题精讲中考要求锐角三角函数cos 与A 、tan 与A 的乘积.③在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值.二、特殊角三角函数这些特殊角的三角函数值一定要牢牢记住! 三、锐角三角函数的取值范围在Rt ABC ∆中,90C ∠=︒,000a b c a c b c >>><<,,,,,又sin a A c =,cos b A c =,tan aA b=,所以0sin 10cos 1tan 0A A A <<<<>,,. 四、三角函数关系 1.同角三角函数关系: 22sin cos 1A A +=,sin tan cos AA A=2.互余角三角函数关系:(1)任意锐角的正弦值等于它的余角的余弦值:()sin cos 90A A =︒-;(2)任意锐角的余弦值等于它的余角的正弦值:()cos sin 90A A =︒-; (3) 任意锐角的正切值等于它的余角的余切值:()tan cot 90A A =︒-. 3.锐角三角函数值的变化规律:(1)A 、B 是锐角,若A >B ,则sin A >sin B ;若A <B ,则sin A <sin B(2) A 、B 是锐角,若A >B ,则cos A <cos B ;若A <B ,则cos A >cos B (3) A 、B 是锐角,若A >B ,则tan tan A B >;若A <B ,则tan tan A B <【例1】 已知在ABC △中,A B ∠∠、是锐角,且5sin tan 22913A B AB cm ===,,,则ABC S =△.。
数学九年级培优第25讲 《锐角三角函数》
第二十八章锐角三角函数第25讲锐角三角函数知识导航1.正弦、余弦、正切的概念及表示方法.2.特殊角的三角函数值.【板块一】求锐角三角函数值方法技巧1.结合图形,理解并牢记三角函数的定义.2.数形结合法熟记特殊角的三角函数值.3.求一个角的三角函数值,一般利用已有的或构造的直角三角形,也可以利用等角转化等,结合三角函数定义求解.题型一紧扣定义求三角函数值【例1】已知锐角α满足tanα=12,求sinα的值.【解析】在Rt△ABC中,∠C=90°,∠A=α,∵tanα=12BCAC=,∴设BC=x,AC=2x,∴AB,∴sinBCABα===【点评】由于三角函数的定义是基于直角三角形,所以要画出符合题意的直角三角形,结合勾股定理和三角函教的定义求解.【例2】如图,在正方形ABCD中,点M为AD的中点,点E为AB上一点,且BE=3AE,求cos∠ECM 的值.【解析】首先确定△EMC为直角三角形,设AE=x,则BE=3x,AM=MD=2x,CD=4x.∴AE MDAM CD=,又∠A=∠D=90°,∴△AEM∽△DMC,可得∠EMC=90°,由勾股定理可求CM=x,CE=5x,在Rt△CEM中,cos∠ECM=CMCE=.题型二等角转换求三角函数值【例3】如图,半径为3的⊙A经过原点O和点C(0,2),点B是y轴左侧⊙A优弧上一点,求tan∠OBC 的值.αA BCCBEA M D【解析】作直径CD,在Rt△OCD中.CD=6.OC=2.∴ODtan∠CDO=OCOD=,由圆周角定理得∠OBC=∠CDO,则tan∠OBC【点评】在圆中经常利用同弧或等弧所对的圆周角相等进行角的转换,用直径所对的圆周角去构造直角三角形.题型三构造直角求三角函数值【例4】如图,在Rt△BAD中,tan∠B=53,延长斜边BD到点C,使DC=12BD,连接AC,求tan∠CAD 的值.【解析】要求tan∠CAD,必须将∠CAD放在直角三角形中,考虑∠BAD=90°,故过点D作DE∥AB交AC于点E.则∠ADE=90°,且有△CDE∽△CBA可利用,由tan∠B=53ADAB=,设AD=5x,AB=3x,而13DE CDAB BC==,∴DE=x,∴tan∠CAD=155DE xAD x==.【点评】求一个角的三角函数值,必须将所求的角放在直角三角形中.题型四等比转化求三角函数值【例5】如图,等腰直角△ABC中,∠ACB=90°,过BC的中点D作DE⊥AB,垂足为点E,连接CE,求tan∠ACE的值.CDBACDEBAA BDEC【解析】过点E 作EH ⊥AC 于点H ,易证AH =HE ,∴tan ∠ACE =HE AH AECH CH EB==,设BE =x ,则BD =CD,∴BC =x ,AB =4x ,∴AE =AB -BE =3x ,∴tan ∠ACE =AEEB=3.【例6】如图,AB 是⊙O 的直径,且AB =10,CD 是⊙O 的弦,AD 与BC 相交于点P ,若弦CD =6,试求cos ∠APC 的值.【解析】连接AC ,∵AB 是⊙O 的直径,∴∠ACP =90°,∴cos ∠APC =PCPA,又易证△PCD ∽△P AB ,∴63105PC CD PA AB ===,∴cos ∠APC =35. 【点评】在直角三角形中,锐角的三角函数值等于两边的比值,当这个比值无法直接求解时,可利用相似三角形对应线段成比例进行转化.题型五 利用特殊角求三角函数值【例7】利用45°角的正切,求tan 22.5°的值,方法如下:解:构造Rt △ABC ,其中∠C =90°,∠B =45°,如图,延长CB 到点D ,使BD =AB ,连接AD ,则∠D =12∠ABC =22.5°,设AC =a ,AB =BDa a ,∴CD =(1)a ,∴tan 22.5°=tan ∠D=AC CD =-1.A BE DHCAACA请你依照此法求tan 15°的值.【解析】构造如图所示的∠A =15°的直角三角形,∠C =90°,并过点B 作∠ABD =15°交AC 于点D ,则∠BDC =30°,设BC =x ,则BD =AD =2x ,CD,∴AC =(2x ,∴tan 15°=BC AC=2针对练习11.如图,△ABC 的顶点是正方形网格的格点,则sin A =.2.在Rt △ABC 中,∠C =90°,sin A =513,则tan B = 125 .3.如图,将边长为2的正方形ABCD 沿 EF 和ED 折叠,使得点B ,C 两点折叠后重合于点G ,则tan ∠FEG =12.4.如图,直线MN 与⊙O 相切于点M ,ME =EF ,EF ∥MN ,则cos ∠E =12. A D CBABCDG F DCBA E5.如图,在△ABC 中,∠C =90°,BC =1,AC =tan 2A的值.解:AB=7.延长CA 到点D ,使AD =AB =7,则CD =7+tan2A=tan ∠D=7- 6.如图,AC 为⊙O 的直径,△ABD 内接于⊙O ,BD 交AC 于点F ,过点B 的切线BE ∥AD 交AC 的延长线于点E ,若CF =2,AF =8,求sin ∠E 的值.解:连接OB ,CD ,∵CF =2,AF =8,∴AC =10.∴OB =5.易证CD ⊥AD ,OB ⊥AD ,∴OB ∥CD ,∴△BOF ∽△DCF .∴32OB OF CD CF ==.CD =103.sin ∠E =sin ∠CAD =CD AC =13. 7.将一副三角尺(Rt △ABC 与Rt △BDC )按如图所示摆放在一起,连接AD ,试求∠ADB 的正切值.解:过点A 作AM ⊥DB 交DB 的延长线于点M ,易证∠MBA =45°,∴设AM =BM =x,则AB x .∴BC,BD .∴tan ∠ADB =AMDM8.如图,在△ABC 中,BC =4,AC =6,AB =5,求tan12∠BAC ·tan 12∠CBA 的值.ABCDEAAEDCBABCDM解:过点C作CH⊥AB于点H,延长BA到点D,使AD=AC,延长AB到点E,使BE=BC,设AH=x,则BH=5-x,∴42-(5-x)2=62-x2,∴x=92.∴BH=12,CH∴tan12∠BAC=tan∠D=CHDH=2962+.tan12∠CBA=tan∠E=CHHE=2142+,∴tan12∠BAC·tan12∠CBA=13.方法技巧:深刻理解三角函数的定义,画出符合题意的示意图,充分运用数形结合的思想解题.▶题型一利用已知三角函数,求其他角的三角函数值【例1】同学们,在我们进入高中以后,将会学到三角函数公式:sin2α=2sinα·cosα,则当锐角a的正切值为12时,sin2a=.【解析】如图,在Rt△ABC中.∠C=90°,∠A=α,由tanα=BCAC=12,设BC=1,AC=2,则AB.sinα=BCAB,cosα=ACAB,由公式sin2α=2sinα·cosα=2=45.【点评】紧扣定义,运用公式解题.▶题型二利用已知三角函数,求线段长【例2】如图,点D是△ABC的边AC上一点,BD=8,sin∠CBD=34,AE⊥BC于点E,若CD=2AD,求AE的长.BACEDCBA HC BADBAO OFAB CDE【解析】过点D作DF⊥BC于点F,则DF=BD·sin∠CBD=8×2=6,由AE⊥B C.DF⊥BC,∴DF∥AE.∴△CDF∽△CAE.∴CDAC=DFAE=23.∴AE=32DF=9.【点评】因三角函数的本质是线段比,故与三角函数相关的计算常与相似三角形联系在一起.▶题型三利用已知三角函数,求线段比【例3】如图,在Rt△ABC中,CD,CE分别为斜边AB上的高和中线,BC=a,AC=b(b>a),若tan∠DCE=12,求ab的值.【解析】易证△BCD∽△BAC,∴BC2=BD·BA,又BA,∴BD2,同理CD=DE=BE-BD222,又∵谈∠DCE=DECD=222b aab-=12,∴a2+ab-b2=0,∴ab▶题型四利用已知三角函数,求面积【例4】如图,在四边形ABCD中,∠BAC=90°,tan∠CAD=12,cos∠ACD,AC与BD交于点E,CDBE=2ED,求四边形ABCD的面积.【解析】过点D作DF⊥ACC于点F,则AB∥DF.∴△ABE∽△FDE.∴ABDF=AEEF=BEED=2,设EF=2a,AE=4a.∴AF=6a,在Rt△AFD中.tan∠F AD=FDAF=12,∴DF=3a,在Rt△CFD中,cos∠ACD =CFCD.∴CF=1,DF=3a=3,∴a=1,AC=7,AB=2DF=6,∴S四边形ABCD=S△ABC+S△AC=12AB·AC+12AC·DF=12×6×7+12×7×3=632.针对练习21.在△ABC中,∠A为锐角,BC=12.tan A=34.∠B=30°,则AB2.如图,点E是正方形ABCD的边CB的延长线上的一点,且tan∠DEC=34,则tan∠AED的值为EDCBAABCDEFE DCBA913.3.已知△ABC中,AB=10,AC=B=30°,则△ABC4.如图,在四边形ABCD中,BD是对角线,∠ABC=90”,tan∠ABD=34,AB=20,BC=10,AD=13,求CD的长.解:分别过点A,C作AH⊥BD于点H,CG⊥BD于点G,∵tan∠ABD=AHBH=34,∴设AH=3x,BH=4x,(3x)2+(4x)2=202,∴x=4.∴AH=12,BH=16.∴HD=5,BD=21,易证∠BCG=∠ABD,..tan∠BCG=GBGC=34,又BC=10,∴BG=6,CG=8,∴DG=BD-BG=15,∴CD==17.5.如图,在△ABC中,AB=BC=5,tan∠ABC=34.边BC的重直平分线与AB的交点为点D.求ADDB的值.解:过点D作DF⊥BC于点F,连接CD,则BD=CD,BF=CF=52,tan∠DBF=DFBF=34.∴DF =158,在Rt△BFD中,BD=258,∴AD=5-258=158,∴ADDB=35.6.如图,已知四边形ABCD的一组对边AD,BC的延长线相交于点E,∠ABC=120°,cos∠ADC=35,CD=5,AB=12,ACDE的面积为6,求四边形ABCD的面积.EDCBAAB CDGHDCBAAB CDF CBA解:过点C作CF⊥AD于点F,过点A作AG⊥EB于点G,在Rt△ACDF中,cos∠ADC=DF CD=3 5.又CD=5,DF=3,CF=4,∵S△CDE=12ED·CF=6,∴ED=3,∴EF=6,在Rt△BAG中,∠BAG=30°,AB=12,∴AG=EFC∽△EAG,得EFEG=CFAG,可求EG=BE=EG-BG=9 6.∴S四边形ABCD=S△ABE-S△CED=126)×6=75-E DCBA ABCDE FG。
锐角三角函数培优讲义33113
讲义编号:组长签字:签字日期:(2)正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。
2、坡角与坡度坡面与水平面的夹角称为坡角,坡面的铅直高度与水平宽度的比为坡度(或坡比),即坡度等于坡角的正切。
3、锐角三角函数关系:(1)平方关系: sin 2A + cos 2A = 1; 4、互为余角的两个三角函数关系若∠A+∠B=∠90,则sinA=cosB,cosA=sinB. 5、特殊角的三角函数:00 300450 600sin α2122 23 cos α 1 23 22 21 tan α33 1 (1)锐角的正弦值随角度的增加(或减小)而增加(或减小); (2)锐角的余弦值随角度的增加(或减小)而减小(或增加); (3)锐角的正切值随角度的增加(或减小)而增加(或减小)。
三、典型例题考点一:锐角三角函数的定义 1、在Rt △ABC 中,∠C=90°,cosB=54,则AC :BC :AB=( )A 、3:4:5B 、5:3:4C 、4:3:5D 、3:5:42、已知锐角α,cos α=35,sin α=_______,tan α=_______。
3、在△ABC 中,∠C=90°,若4a=3c ,则cosB=______.tanA = ______。
4、在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于_______。
5、在△ABC 中,∠C=90°,若把AB 、BC 都扩大n 倍,则cosB 的值为( )A 、ncosBB 、1ncosB C 、cos nBD 、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形1、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。
(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。
高中奥数举一反三 三角函数问题
高中奥数举一反三三角函数问题高中奥数举一反三:三角函数问题介绍三角函数是数学中重要的概念,广泛应用于各个领域。
在高中奥数竞赛中,三角函数问题常常出现,考察学生对三角函数的理解和运用能力。
本文将重点讨论高中奥数中的三角函数问题,以便帮助学生更好地准备竞赛。
正文1. 三角函数的基本概念三角函数包括正弦、余弦和正切等基本函数。
其中,正弦函数(sin)表示一个角的正弦值,余弦函数(cos)表示一个角的余弦值,正切函数(tan)表示一个角的正切值。
这些函数与角的边长比例相关。
2. 三角函数的性质- 正弦函数和余弦函数是周期函数,周期为360度或2π弧度。
- 正弦函数在0度和180度时取最大值1,在90度时取最小值-1。
- 余弦函数在0度和360度时取最大值1,在180度时取最小值-1。
- 正切函数在0度和180度时无定义,其他角度的正切值可能是正数、负数或无穷大。
3. 常见的三角函数问题类型在高中奥数竞赛中,三角函数问题的形式多种多样,但常见的类型包括:- 求角度:已知三角函数值,求对应角度。
- 求三角函数值:已知角度,求对应的三角函数值。
- 利用三角函数的性质解题:根据已知条件,运用三角函数的性质求解。
4. 解决三角函数问题的方法解决三角函数问题的关键是要熟悉三角函数的定义和性质,并掌握解决不同类型问题的方法。
以下是一些解题策略:- 使用特殊角度的三角函数值,如30度、45度和60度等。
- 利用三角函数的定义和性质进行变形、代入和联立方程等运算。
- 利用三角恒等式简化复杂的三角函数表达式。
- 结合图形进行推理和解题。
5. 案例分析以下是一个三角函数问题的案例:已知正弦函数sin(x)在90度时取最小值-1,求角度x的值。
解答:根据问题中给出的信息,我们知道sin(90度) = -1。
由此可知,角度x为90度。
结论通过研究和讨论高中奥数中的三角函数问题,我们深入了解了三角函数的基本概念和性质,掌握了解决不同类型问题的方法。
锐角三角函数复习课件公开课
欢迎来到锐角三角函数复习课件公开课! 在本课程中,我们将回顾锐角三角 函数的基本概念,常见公式,性质和图像,解三角方程,以及一些实际应用。
锐角三角函数的基本概念
锐角三角函数是用于描述锐角三角形中角度和边长之间关系的函数。包括正弦、余弦和正切等函 数。
1 正弦函数
描述角的对边与斜边之间的关系。
总结和回顾
在本课程中,我们回顾了锐角三角函数的基本概念、常见公式、性质和图像。学习了如何利用锐角三角 函数求解三角方程,并了解了一些实际应用。希望你已经对锐角三角函数有了更深入的理解!
锐角三角函数在直角三角形的图像中不断变化,并呈现出一些特殊的性质。
单位圆
单位圆是用于可视化锐角三角 函数图像和特殊性质的工具。
正弦函数
正弦函数是一条波浪形曲线, 用于描述周期性变化。
余弦函数
余弦函数是一条类似正弦函数 的波浪形曲线,但相位差90度。
利用锐角三角函数求解三角方程
锐角三角函数可以用于解决涉及三角函数的方程,从而求得角度的值。
2 余弦函数
描述角的邻边与斜边之间的关系。
3 正切函数
描述角的对边与邻边之间的关系。
常见的锐角三角函数公式
锐角三角函数有一些常见的公式用于计算和简化角度的计算。
倍角和半角公式
• 正弦和余弦的倍角和半角公式。 • 正切的双角和半角公式。
和差公式
• 正弦和余弦的和差公式。 • 正切的和差公式。
锐角三角函数的性质和图像
1
方程转化
将方程转化为以三角函数为未知数的
方程求解
2
方程。
利用三角函数的运算特性和解方程的
方法求解得出角度的值。
3
验证解
初三奥数锐角三角形知识
初三奥数锐角三角形知识为大家整理的初三奥数锐角三角形知识的文章,供大家学习参考!更多最新信息请点击初中奥数网性质:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c余弦(cos)等于邻边比斜边;cosA=b/c正切(tan)等于对边比邻边;tanA=a/b余切(cot)等于邻边比对边;cotA=b/a正割(sec)等于斜边比邻边;secA=c/b余割(csc)等于斜边比对边。
cscA=c/a初中研究的锐角的三角函数为:正弦(sin),余弦(cos),正切(tan)。
取值范围:θ是锐角:tanθ>0cotθ>0变化情况:1.锐角三角函数值都是正值2.当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小) ,余弦值随着角度的增大(或减小)而减小(或增大) ;正切值随着角度的增大(或减小)而增大(或减小) ,余切值随着角度的增大(或减小)而减小(或增大);正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。
3.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 1≥cosA≥0;当角度在0°0。
关系式:1)同角三角函数基本关系式tanα·cotα=1sin α+cos α=1cos α+sin α=1sinα/cosα=tanα=secα/cscαc osα/sinα=cotα=cscα/secα(sinα) +(cosα) =11+tanα=secα1+cotα=cscα2)诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα。
初三奥数锐角三角形知识总结
初三奥数锐角三角形知识总结性质:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c余弦(cos)等于邻边比斜边;cosA=b/c正切(tan)等于对边比邻边;tanA=a/b余切(cot)等于邻边比对边;cotA=b/a正割(sec)等于斜边比邻边;secA=c/b余割(csc)等于斜边比对边。
cscA=c/a初中研究的锐角的三角函数为:正弦(sin),余弦(cos),正切(tan)。
取值范围:θ是锐角:tanθ>0cotθ>0变化情况:1.锐角三角函数值都是正值2.当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小) ,余弦值随着角度的增大(或减小)而减小(或增大) ;正切值随着角度的增大(或减小)而增大(或减小) ,余切值随着角度的增大(或减小)而减小(或增大);正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。
3.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 1≥cosA≥0;当角度在0°0。
关系式:1)同角三角函数基本关系式tanα·cotα=1sin^2α+cos^2α=1cos^2α+sin^2α=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα(sinα)^2+(cosα)^2=11+tanα=secα1+cotα=cscα2)诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα。
专题训练(六)求锐角三角函数的四种方法
专题训练(六) 求锐角三角函数的四种方法► 方法一 运用定义求锐角三角函数值1.如图6-ZT -1,在Rt △ABC 中,∠C =90°,BC =3,AC =4,那么sin A 的值为( ) A .34 B .43 C .35 D .45图6-ZT -1 图6-ZT -22.如图6-ZT -2,在Rt △ABC 中,CD 是斜边AB 上的中线.若CD =5,AC =6,则tan B 的值是( )A .45B .35C .34D .433.a ,b ,c 是△ABC 中∠A ,∠B ,∠C 的对边,且a ∶b ∶c =1∶2∶3,则cos B 的值为( )A .63 B .33 C .22 D .244.如图6-ZT -3,△ABC 的顶点都在小正方形组成的网格的格点上,则cos C 的值为( )图6-ZT -3A .12B .32C .55D .2 555.如图6-ZT -4,在△ABC 中, ∠C =90°,BC =3,AB =5,求sin A ,cos A ,tan A 的值.图6-ZT -46.如图6-ZT -5,在正方形ABCD 中,M 是AD 的中点,BE =3AE ,试求sin ∠ECM 的值.图6-ZT -5► 方法二 利用互余两角三角函数的关系求锐角三角函数值 7.在△ABC 中,cos A =513,则sin (90°-∠A)的值为( )A .513B .1213C .813D .5128.小明在某次作业中得到如下结果: sin 27°+sin 283°≈0.122+0.992=0.9945, sin 222°+sin 268°≈0.372+0.932=1.0018, sin 229°+sin 261°≈0.482+0.872=0.9873,sin 237°+sin 253°≈0.602+0.802=1.0000, sin 245°+sin 245°=(22)2+(22)2=1. 据此,小明猜想:对于任意锐角α,均有sin 2α+sin 2(90°-α)=1. (1)当α=30°时,说明sin 2α+sin 2(90°-α)=1是否成立;(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.► 方法三 利用等角求锐角三角函数值9.如图6-ZT -6,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC 的三个顶点分别在这三条平行直线上,则sin α的值是( )A .13B .617C .55D .1010图6-ZT -6 图6-ZT -710.如图6-ZT -7,在△ABC 中,AB =AC =5,BC =8.∠ABC 和∠ACD 的平分线交于点P ,则tan P =________.11.如图6-ZT-8,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A 作AE⊥CD,AE与CD,CB分别相交于点H,E,且AH=2CH.(1)求sin B的值;(2)如果CD=5,求BE的长.图6-ZT-812.如图6-ZT-9,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D.(1)求AD的长;(2)求cos∠DBC的值.图6-ZT-9 ►方法四利用同角三角函数的关系求锐角三角函数值13.若∠A为锐角,且sin A=32,则cos A的值为()A .1B .32 C .22 D .1214.在△ABC 中,∠C =90°,如果sin A =35,那么tan A 的值为( )A .34B .54C .35D .4315.已知tan α=25,α是锐角,求tan (90°-α),sin α,cos α的值.16.计算:sin 215°+cos 215°-cos 30°tan 60°.教师详解详析1.[解析] C 在Rt △ABC 中,由勾股定理,得AB =32+42=5,所以sin A =BC AB =35.故选C.2.C3.[解析] B 设a =k ,则b =2k ,c =3k ,则a 2+b 2=k 2+(2k )2=3k 2,c 2=(3k )2=3k 2,∴a 2+b 2=c 2,∴△ABC 是直角三角形,且∠C =90°,∴cos B =a c =k 3k =33.故选B.4.[解析] D 设每个小正方形的边长均为1.如图,过点A 作AD ⊥BC ,交CB 的延长线于点D ,则AD =2,CD =4,∴AC =AD 2+CD 2=22+42=2 5,故cos C =CD AC =42 5=2 55.5.解:∵在Rt △ABC 中,∠C =90°,BC =3,AB =5, ∴AC =52-32=4,∴sin A =BC AB =35,cos A =AC AB =45,tan A =BC AC =34.6.解:设AE =x ,则BE =3x ,BC =4x ,AM =DM =2x ,CD =4x , ∴CE =(3x )2+(4x )2=5x ,EM =x 2+(2x )2=5x ,CM =(2x )2+(4x )2=2 5x , ∴EM 2+CM 2=CE 2,∴△CEM 是直角三角形,且∠CME =90°,∴sin ∠ECM =EM CE =55.7.A8.[解析] (1)将α=30°代入,根据三角函数值计算可得; (2)α和90°-α互余,由此可在直角三角形中根据勾股定理验证.解:(1)当α=30°时,sin 2α+sin 2(90°-α)=sin 230°+sin 260°=(12)2+(32)2=1.(2)小明的猜想成立,证明如下:如图,在△ABC 中,∠C =90°,设∠A =α,则∠B =90°-α.∴sin 2α+sin 2(90°-α)=(BC AB )2+(AC AB )2=BC 2+AC 2AB 2=AB 2AB2=1.9.[解析] D 如图所示,过点A 作AD ⊥l 1于点D ,交l 2于点F ,则AF ⊥l 2,过点B 作BE ⊥l 1于点E ,设l 1和l 2之间的距离为1,则l 2和l 3之间的距离也为1.∵∠CAD +∠ACD =90°,∠BCE +∠ACD =90°,∴∠CAD =∠BCE .在等腰直角三角形ABC 中,AC =CB .在△ACD 和△CBE 中,∵⎩⎨⎧∠CAD =∠BCE ,∠ADC =∠CEB =90°,AC =CB ,∴△ACD ≌△CBE , ∴CD =BE =1.在Rt △ACD 中,AC =AD 2+CD 2=5,在等腰直角三角形ABC 中, AB =AC 2+CB 2=10,∴sin α=sin ∠ABF =AF AB =110=1010.10.[答案] 43[解析] ∵∠ACD =∠BAC +∠ABC ,CP 平分∠ACD , BP 平分∠ABC ,∠PCD =∠PBC +∠P , ∴2(∠PBC +∠P )=∠BAC +∠ABC , ∴∠P =12∠BAC .如图,过点A 作AE ⊥BC 于点E .∵AB =AC =5,∴BE =12BC =12×8=4,∠BAE =12∠BAC .∵∠P =12∠BAC ,∴∠P =∠BAE .在Rt △BAE 中,由勾股定理,得AE =AB 2-BE 2=52-42=3, ∴tan P =tan ∠BAE =BE AE =43.11.解:(1)∵在Rt △ABC 中,CD 是斜边AB 上的中线, ∴CD =AD =BD ,∴∠DCB =∠B . ∵AE ⊥CD ,∴∠AHC =90°, ∴∠ACD +∠CAH =90°.∵∠ACD +∠DCB =90°,∴∠DCB =∠CAH ,∴∠B =∠CAH . 在Rt △ACH 中,AH =2CH ,∴AC =5CH .∴sin B =sin ∠CAH =CH AC =CH 5CH =55.(2)由(1)知sin B =55. ∵CD =5,∴AB =2CD =2 5, ∴AC =2,∴BC =AB 2-AC 2=4. ∵∠B =∠CAH ,∴sin ∠CAH =CE AE =55,∴AE =5CE ,由CE 2+AC 2=(5CE )2, 解得CE =1, ∴BE =BC -CE =3.12.解:(1)设AD =x ,则CD =1-x . ∵∠A =36°,AB =AC , ∴∠ABC =∠C =72°. 又∵BD 平分∠ABC ,∴∠ABD =∠CBD =∠A =36°, ∴∠BDC =∠C =72°,BD =AD , ∴BC =BD =AD =x ,△ABC ∽△BCD , ∴AB BC =BCCD,∴BC 2=AB ·CD , 即x 2=1-x ,解得x =5-12(负值已舍去). 即AD =5-12. (2)过点D 作DE ⊥AB 于点E .∵BD =AD ,∴AE =BE =12.在Rt △ADE 中,cos ∠DBC =cos A =AEAD =5+14.13.D14.[解析] A ∵sin A =35,∴cos A =1-sin 2A =1-⎝⎛⎭⎫352=45,∴tan A =sin A cos A =3545=34.故选A.15.解:如图所示,tan B =tan α=25.设AC =2x ,则BC =5x ,则AB =29x , ∴tan(90°-α)=tan A =5x 2x =52,sin α=AC AB =2x 29x =22929,cos α=BC AB =5x 29x =52929.16.解:原式=1-32×3=-12.。
初中奥林匹克数学竞赛知识点总结及训练题目-锐角三角函数
初中数学竞赛辅导讲义---锐角三角函数古希腊数学家和古代中国数学家为了测量的需要,他们发现并经常利用下列几何结论:在两个大小不同的直角三角形中,只要有一个锐角相等,那么这两个三角形的对应边的比值一定相等.正是古人对天文观察和测量的需要才引起人们对三角函数的研究,1748年经过瑞士的著名数学家欧拉的应用,才逐渐形成现在的sin 、cos 、tg 、ctg 的通用形式. 三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质:1.单调性;2.互余三角函数间的关系; 3.同角三角函数间的关系. 平方关系:sin 2α+cos 2α=1; 商数关系:tg α=ααcos sin ,ctg α=ααsin cos ; 倒数关系:tg αctg α=1.【例题求解】【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA =135,tanB=2,AB=29cm , 则S △ABC = .思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA=135=AC CD ,tanB=2=BDCD,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值.注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不难证明:与锐角三角函数相关的几个重要结论: (1) S △ABC =C ab B ac A bc sin 21sin 21sin 21==; (2)R CcB b A a 2sin sin sin ===. 【例2】 如图,在△ABC 中.∠ACB =90°,∠ABC =15°,BC=1,则AC=( ) A .32+ B .32- C .0.3D .23-思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化.注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形.(2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换.【例3】 如图,已知△ABC 是等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE ⊥AB 于E ,连结CE ,求sin ∠ACE 的值.思路点拨 作垂线把∠ACE 变成直角三角形的一个锐角,将问题转化成求线段的比.【例4】 如图,在△ABC 中,AD 是BC 边上的高,tanB=cos ∠DAC , (1)求证:AC =BD ; (2)若sinC=1312,BC=12,求AD 的长. 思路点拨 (1)把三角函数转化为线段的比,利用比例线段证明; (2) sinC=ACAD=1312,引入参数可设AD=12k ,AC =13k .【例5】 已知:在Rt △ABC 中,∠C=90°,sinA 、sinB 是方程02=++q px x 的两个根. (1)求实数p 、q 应满足的条件;(2)若p 、q 满足(1)的条件,方程02=++q px x 的两个根是否等于Rt △ABC 中两锐角A 、B 的正弦?思路点拨 由韦达定理、三角函数关系建立p 、q 等式,注意判别式、三角函数值的有界性,建立严密约束条件的不等式,才能准确求出实数p 、q 应满足的条件.学历训练1.已知α为锐角,下列结论①sin α+cos α=l ;②如果α>45°,那么sin α>cos α;③如果cos α>21,那么α<60°; ④αsin 11)-(sin 2-=α.正确的有 .2.如图,在菱形ABCD 中,AE ⊥BC 于E ,BC=1,cosB135,则这个菱形的面积为 . 3.如图,∠C=90°,∠DBC=30°,AB =BD ,利用此图可求得tan75°= .4.化简(1)263tan 27tan 22-+οο= .(2)sin 2l °+sin 22°+…+sin 288°+sin 289°= .5.身高相等的三名同学甲、乙、丙参加风筝比赛.三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的),则三人所放的风筝中( )A .甲的最高B .丙的最高C .乙的最低D .丙的最低6.已知 sin αcos α=81,且0°<α<45°则co α-sin α的值为( )A .23 B .23- C .43 D .43-7.如图,在△ABC 中,∠C =90°,∠ABC =30°,D 是AC 的中点,则ctg ∠DBC 的值是( )A .3B .32C .23 D .43 8.如图,在等腰Rt △ABC 中.∠C =90°,AC =6,D 是AC 上一点,若tan ∠DBA=51,则AD 的长为( )A .2B .2C . 1D .229.已知关于x 的方程0)1(242=++-m x m x 的两根恰是某直角三角形两锐角的正弦,求m 的值.10.如图,D 是△ABC 的边AC 上的一点,CD=2AD ,AE ⊥BC 于E ,若BD =8,sin ∠CBD=43,求AE 的长. 11.若0°<α<45°,且sin αcon α=1673,则sin α= .12.已知关于x 的方程0)cos 1(2sin 423=-+⋅-ααx x 有两个不相等的实数根,α为锐角,那么α的取值范围是 .13.已知是△ABC 的三边,a 、b 、c 满足等式))((4)2(2a c a c b -+=,且有035=-c a ,则sinA+sinB+sinC 的值为 .14.设α为锐角,且满足sin α=3cos α,则sin αcos α等于( ) A .61 B .51 C .92 D .103 15.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是( ) A .2 B .23C .1D .2116.如图,在△ABC 中,∠A =30°,tanB=23,AC=32,则AB 的长是( ) A .33+ B .322+ C .5 D .29 17.己在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且c=35,若关于x 的方程0)35(2)35(2=-+++b ax x b 有两个相等的实根,又方程0sin 5)sin 10(22=+-A x A x 的两实根的平方和为6,求△ABC 的面积.18.如图,已知AB=CD=1,∠ABC =90°,∠CBD °=30°,求AC 的长.19.设 a 、b 、c 是直角三角形的三边,c 为斜边,n 为正整数,试判断n n b a +与n c 的关系,并证明你的结论.20.如图,已知边长为2的正三角形ABC 沿直线l 滚动.(1)当△ABC 滚动一周到△A l B 1C 1的位置,此时A 点所运动的路程为 ,约为 (精确到0.1,π=3.14)(2)设△ABC 滚动240°,C 点的位置为C ˊ,△ABC 滚动480°时,A 点的位置在A ˊ,请你利用三角函数中正切的两角和公式tan(α+β)=(tanα+tanβ)÷(1-tanα·tanβ),求出∠CACˊ+∠CAAˊ的度数.参考答案。
奥数初中奥数系列锐角三角函数A级第02讲学生版
奥数初中奥数系列锐角三角函数A级第02讲学生版奥数精品解直角三角形中考要求内容基本要求略高要求会解直角三角形;能根据问题的需要添加辅助线构造直角三角形;会解由两个特殊直角三角形构成的组合图形的问题较高要求能综合运用直角三角形的性质解决有关问题解直角三角形知道解直角三角形的含义课前预习三角学问题的提出三角学理论的基础,是对三角形各元素之间相依关系的认识.一般认为,这一认识最早是由希腊天文学家获得的.当时,希腊天文学家为了正确地测量天体的位置,研究天体的运行轨道,力求把天文学发展成为一门以精确的观测和正确的计算为基础之具有定量分析的科学,他们给自己提出的第一个任务是解直角三角形.因为进行天文观测时,人与星球以及大地的位置关系,通常是以直角三角形边角之间的关系反映出来的.在很早以前,希腊天文学家从天文观测的经验中获得了这样一个认识:星球距地面的高度是可以通过人观测星球时所采用的角度来反映的.角度越大,星球距地面就越高.然而,星球的高度与人观测的角度之间在数量上究竟怎么样呢?能不能把各种不同的角度所反映的星球的高度都一一算出来呢这就是天文学向数学提出的第一个课题——制造弦表.所谓弦表,就是在保持AB不变的情况下可以供查阅的表,AC的长度与ABC的大小之间的对应关系.例题精讲奥数精品模块一解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形.二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳:Ac(1)三边之间的关系:a2b2c2(勾股定理)(2)锐角之间的关系:AB90aba(3)边角之间的关系:inAcoB,coAinB,tanAccbbCaB三、解直角三角形的四种基本类型iA(1)已知斜边和一直角边(如斜边c,直角边a),由na求出A,则B90A,bc2a2;c(2)已知斜边和一锐角(如斜边c,锐角A),求出B90A,acinA,bccoA;(3)已知一直角边和一锐角(如a和锐角A),求出B90A,batanB,c(4)已知两直角边(如a和b),求出ca2b2,由tanA 具体解题时要善于选用公式及其变式,如inA四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据.五、解直角三角形的技巧及注意点在RtABC中,AB90,故inAco(90A)coB,coAinB.利用这些关系式,可在解题时进行等量代换,以方便解题.六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.a;inAa,得B90A.baa可写成acinA,c等.cinA奥数精品A30,AB10,则AC的长度为()【例1】在三角形ABC中,C90,A.103B.53C.102D.52【巩固】根据下列条件解直角三角形:已知RtABC中,C90,A60,b4.【巩固】根据下列条件不能解直角三角形的是()①已知一直角边及其所对锐角;②已知两锐角;③已知两直角边;④已知斜边和一锐角;⑤已知一直角边和一斜边.A.②B.①③C.①④D.②⑤【例2】根据下列条件解直角三角形:已知RtABC中,C90,A60,ab6.【巩固】根据下列条件解直角三角形:已知RtABC中,C90,A45,S12.1BC1,如果tanBCD,求CD的长度【例3】如图,在RtABC中,已知CDAB,3ABDC。
锐角三角函数复习课.ppt
(2)一个锐角的余弦值随着角度的增大而减小 。
5、解直角三角形必须要已知 两 个条件,且其中一个条件必
是边。
6、解直角三角形的应用:
(1)在测量时,视线与水平线所成的角中,规定:视线在水平线 上方的角叫做 仰 角,视线在水平线下方的角叫做 俯 角。
(2)坡面的铅重高度(h)与水平长度(L)的比叫做 坡度 ,用字
母
i
表示,即i=
h L
。坡面与水平面的夹角叫做 坡 角,坡
角越大,坡度就越大,坡面就越 陡 。
达标检测
1、在Rt△ABC中,∠C=90°,sinA= 12,则∠B= 60°
3
4
2、在Rt△ABC中,∠C=90°,tanA=
3 4
,则sinA=
5 ,cosA= 5 。
3、已知α为锐角,且cosα=0.8,则锐角α的大致范围是( A ) A、45°<α<60° B、α>30° C、30°<α<45° D、α>45°
(1)互为余角的三角函数关系: ①sin(90°-A)= cosA ②cos(90°-A)= sinA
(2)同角的锐角三角函数关系:
① sin2 A cos2 A 1
③ tanAtanB= 1
② tan A sin A
cos A
4、三角函数的增减性:
(1)一个锐角的正弦、正切值随着角度的增大而增大 。
答:A、B两点的距离是100( 3 +1)米。
学习目标
1、理解锐角三角函数的定义,掌握特殊锐 角的三角函数值,并进行计算;
2、掌握直角三角形三边之间的关系,会解 直角三角形;
3、运用解直角三角形的知识解决简单的实 际问题。
九年级奥数:锐角三角函数
九年级奥数:锐角三角函数解读课标锐角三角函数是直角三角形固有的性质.在直角三角形中,锐角一定时,它的对边与邻边的比值、对边与斜边的比值、邻边与斜边的比值是固定的,我们把这几个固定值定义成相应锐角的三角函数.三角函数揭示了直角三角形中边与锐角之间的关系,解相关问题常用到以下丰富的性质: (1)熟悉30°、45°、60°角的三角函数值; (2)了解同角三角函数、互余三角函数间的关系;平方关系:商数关系:,倒数关系:.互余三角函数间关系:若,则,.(3)把握三角函数的有界性与单调性. 有界性:,.单调性:正弦(正切)随着锐角度数的增大而增大,余弦(余切)随着锐角度数的增大而减小.问题解决例1 如图,等腰Rt △ABC 中,∠C =90°,D 为BC 中点,将△ABC 折叠,使A 点与D 点重合,若EF 为折痕,则sin ∠BED 的值为____________.例2 如图,设∠ABC =90°.∠ACB =45°,D 在BC 延长线上,且CD =AC ,则=( ).ABCD例3 将一副三角尺如图摆放在一起,连结AD ,试求∠ADB 的余切值.22sin cos 1αα+=sin tan cos ααα=tan cot 1αα⋅=90αβ+=sin cos αβ=tan cot αβ=0sin 1α<≤0cos 1α<≤cot 2230'1+1例4 如图,在梯形ABCD 中,AB ∥CD ,∠BCD =90°,且AB =1,BC =2,tan ∠ADC =2. (1)求证:DC =BC ;(2)E 是梯形内一点,F 是梯形外一点,且∠EDC =∠FBC ,DE =BF ,试判断△ECF 的形状,并证明你的结论;(3)在(2)的条件下,当BE :CE =1:2,∠BEC =135°时,求sin ∠BFE 的值.例5 已知⊙O 过点D (4,3),点H 与点D 关于y 轴对称,过H 作⊙O 的切线交y 轴于点A (如图1).(1)求⊙O 的半径; (2)求sin ∠HAO 的值;(3)如图2,设⊙O 与y 轴正半轴交点为P ,点E 、F 是线段OP 上的动点(与点P 不重合),连接并延长DE 、DF 交⊙O 于B 、C ,直线BC 交y 轴于点G ,若△DEF 是以EF 为底的等腰三角形,试探索sin ∠CGO 的大小怎样变化?请说明理由.数学冲浪 知识技能广场1. 计算:=_____________.2. 已知:为锐角,下列结论:①;②若,则;③若,则.正确的有___________.3. 如图,∠C =90°,∠DBC =30°,AB =DB ,利用此图可求得tan 75°=____________.22sin 48sin 42tan 44tan 46+-⋅αsin cos 1αα+>45α>sin cos αα>1cos 2α>60α<1sin α=-4. 如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别在x 轴、y 轴上,连结OB ,将纸片OABC 沿OB 折叠,使点A 落在点A ′的位置,若OB,,则点A ′的坐标为_____________.5. 在△ABC 中,∠A 、∠B均为锐角,且有,则△ABC 是( ).A .等腰三角形 B.直角三角形 C .等边三角形 D .等腰直角三角形6. 如图,若AB 是⊙O 的直径,弦AC 、BD 相交于E ,则=( ).A .tan ∠AEDB .cot ∠AEDC .sin ∠AED D .cos ∠AED7. 如图,在△ABC 中,∠C =90°,AC =8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC =,则BC 的长是( ).A .4cmB .6cmC .8cmD .10cm8.如图,CD 是平面镜,光线从A 点出发经CD 上点E 反射后照射到B 点.若入射角为(入射角等于反射角),AC ⊥CD 于C ,BD ⊥CD 于D ,且AC =3,BD =6,CD =11,则tan 的值为( ).A .B .C .D .9.如图,在△ABC 中,已知AD 是边BC 上的高,E 为边AC 的中点,BC =14,AD =12,sinB =.求:(1)线段CD 的长;(2)tan ∠EDC 的值.10.如图,在△ABC 中,已知∠CAB =120°,AB =4,AC =2,AD ⊥BC 于D ,求AD 的长. 11.我们知道,“直角三角形斜边上的高线将三角形分成两个与原三角形相似的直角三角1tan 2BOC ∠=(2tan 2sin 0B A -+-=CDAB35αα11331191111945形”,用这一方法,将矩形ABCD 分割成大小不同的七个相似直角三角形,按从大到小的顺序编号为①至⑦(如图),从而制成一副“三角七巧板”.已知线段AB =1,∠BAC =.(1)请用的三角函数表示线段BE 的长__________; (2)图中与线段BE 相等的线段是__________;(3)仔细观察图形,求出⑦中最短的直角边DH 的长(用的三角函数表示).思想方法天地12.已知a 、b 、c 是△ABC 的三边,a 、b 、c 满足等式,且有,则的值为_______________. 13.若,且,则=_______________. 14.如图,在△ABC 中,∠B =30°,∠C =45°,,则BC 的长为_____.15.若m 为实数,且、是关于x 的方程3x 2-mx +1=0的两根,则+的值为( ).A .B .C .D .116.如图,锐角△ABC 中,BE 、CF 分别是AC 、AB 上的高,则S △AEF :S △ABC =( ). A .sin 2A B .cos 2A C .tan 2A D .cot 2A17.已知,且,则的值为( ). AB . C. D . 18.如图,等腰梯形ABCD 中,AD ∥BC ,∠DBC =45°,翻折梯形ABCD ,使点B 重合于D 点,折痕分别交边AB 、BC 于点F ,E ,若AD =2,BC =8.求(1)BE 的长;(2)∠θθθ()()()224b c a c a =+⋅-530a c -=sin sin sin A B C ++045α<<sin cos αα=sin α2AB AC -=sin αcos α4sin α4cos α2913791sin cos 8αα⋅=4590α<<cos sin αα-34CDE 的正切值. 19.如图,在Rt △ABC 中,CD 、CE 分别为斜边AB 上的高和中线,BC =a ,AC =b (b >a ),若,求的值.应用探究乐园20.如图,在直角坐标系中,已知两点O 1(3,0),B (-2,0),⊙O 1与x 轴交于原点O 和点A ,E 是y 轴上的一个动点,设点E 的坐标为(0,m ).(1)当点O 1到直线BE 的距离等于3时,求直线BE 的解析式;(2)当点E 在y 轴上移动时,直线BE 与⊙O 1有哪几种位置关系?直接写出每种位置关系时的m 的取值范围;(3)若在第(1)题中,设,求的值.1tan 2DCE ∠=ab EBA α∠=sin22sin cos ααα-。
奥数新讲义-三角函数-正余弦定理4学
锐角三角函数4:正、余弦定理1.三角形的面积公式:在ABC ∆中,BC ,AC ,AB 对应的边分别是a ,b ,c ,则111sin sin sin 222ABC S ab C bc A ca B ∆===2. ABC ∆中,BC ,AC ,AB 对应的边分别是a ,b ,c ,外接圆半径为R ,则有正弦定理:2sin sin sin a b cR A B C===余弦定理:2222cos a b c bc A =+-, 2222cos b c a ca B =+-, 2222cos c a b ab C =+-. 设A ∠为最大角,则根据余弦定理可知: 当ABC ∆为直角三角形时,有222a b c =+;当ABC ∆为锐角三角形时,有222222cos a b c bc A b c =+-<+;那么很自然,当ABC ∆为钝角三角形时,必有222222cos a b c bc A b c =+->+;于是可得,cos 0A <(A ∠为钝角),此时可引入互为补角的两个三角函数之间的关系: sin sin(180)αα=︒-,cos cos(180)αα=-︒-,tan tan(180)αα=-︒-,cot cot(180)αα=-︒-(α为锐角)一、正、余弦定理与解三角形【例 1】 若钝角三角形的三边分别为3,2,x ,试求x 的取值范围.【例 2】 在ABC ∆中,已知222c a b ab =++,153ABC S ∆=,14c =.求作一个一元二次方程,使它的两根分别为a ,b .【例 3】 已知关于x 的方程()2242160x k x k +-+=,四边形ABCD 中,45CAD ∠=︒,60ADC ∠=︒,532ABC S ∆=,且1cos B k=(如图)⑴当方程有两个相等实数根时,求B ∠及此方程的根; ⑵若此实数根等于AC 、BC 之和,求CD 之长.DCBA【例 4】 在ABC ∆中,sin :sin 2:1A B =,且222c b bc =+,求ABC ∠的度数.【例 5】 在ABC ∆中,证明射影定理cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+.【例 6】 在ABC ∆中,求证:11112ab bc ca Rr++=(R ,r 分别为ABC ∆外接圆,内切圆半径)二、几何问题中正余弦定理的运用.【例 7】 如图,点A 在半径为R 的O 上,以A 为圆心,r 为半径作A ,设O 的弦PQ 与A 相切,求证:PA QA ⋅为定值.OQPA【例 8】 如图,,AB CD 为O 直径,P 为劣弧AD 上任意一点,PM AB ⊥于M ,PN CD ⊥于N ,AH CD ⊥于H .求证:MN AH =.N MHOPDCBA习题 1. 锐角ABC ∆的三边分别是a ,b ,c ,外心到三边的距离分别为m ,n ,p ,则::m n p = ( ) A.111::a b cB.::a b cC.cos :cos :cos A B CD.sin :sin :sin A B C习题 2. 已知∆ABC 中,1223b c -=+,21a =,260A =,求c .习题 3. ABC ∆中,60A ∠=︒,求c ba b a c+++之值.习题 4. 已知钝角三角形中,90B ∠>︒,25a x =-,1b x =+,4c =,求x 的取值范围.习题 5. 在ABC ∆中,若cos cos cos a A b B c C +=,试判断此三角形的形状.习题 6. 在ABC ∆中,已知()()3a b c a b c ab +++-=,3sin sin 4A B =,判断此三角形的形状.习题 7. 三角形ABC 中,角A 的正弦为23,6BC =, 4.5AB =,那么C ∠=_______.习题 8. 三角形ABC 中,60A ︒∠=,4AB =,6AC =,那么BC 的长度为____.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数奥数班
智力大比拼
1、在Rt △ABC 中,∠C=90°,cosB=54,则AC :BC :AB=_______。
2、已知锐角α,cosα=
3
5
,sinα=_______,tanα=_______。
3、在△ABC 中,∠C=90°,若4a=3c ,则cosB=______.tanA = ______。
4、在△ABC 中,∠C=90°,AB=15,sinA=
1
3
,则BC 等于_______。
5、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。
(1)求证:ABE △DFA ≌△;
(2)如果10AD AB =,=6,求sin EDF ∠的值。
6、如图,在△ABC 中,∠A=60°,∠B=45°,AB=8,求△ABC 面积(结果可保留根号)。
7、如图,在Rt △ABC 中,∠C=90°,sinB=
3
5
,点D 在BC 边上,且∠ADC=45°,DC=6,求∠BAD 的正切值。
8、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。
9、若tanA 的值是方程03)31(2=++-x x 的一个根,则锐角A=( )
A 、30°或45°
B 、30°或60°
C 、45°或60°
D 、60°或90°
10、在△ABC 中,锐角A ,B 满足(sinA-
32)2+│cosB -3
2
│=0,则△ABC 是( )
A 、等腰三角形
B 、等边三角形
C 、等腰直角三角形
D 、直角三角形
11、当锐角∠A >45°时,sin A 的值为( )
A 、大于
2
2
B 、小于
22
C 、小于
32
D 、大于
32
12、、当锐角A 的cos A >
2
2
时,∠A 的值为( ) A 、小于45° B 、小于30° C 、大于45°
D 、大于30°
13、已知sin cos =α36°,则锐角α=________。
14、cos (60°-β)=sin (________)。
(0°<β<90°)
15、、如图,在平面直角坐标系中,点A 在第一象限内,点B 的坐标为(3,0),OA=2,∠AOB=60°。
(1)求点A 坐标;
(2)若直线AB 交y 轴于点C ,求△AOC 的面积。
16、如图,在梯形ABCD 中,AB ∥DC ,∠BCD=90°,AB=1,BC=2,tan ∠ADC=2。
(1)求证:DC=BC
(2)E 是梯形ABCD 内一点,F 是梯形ABCD 外一点,且∠EDC=∠FBC ,DE=BF ,是判断△ECF 的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin ∠BFE 的值。
直角三角形的构造
1、已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5.
求:sin ∠ACB 的值.
2、已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,3
1
tan =
∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .
3、已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B .
4、已知:如图,△ABC 中,AC =12cm ,AB =16cm ,⋅=3
1sin A
(1)求AB 边上的高CD ;(2)求△ABC 的面积S ;(3)求tan B .
A
B C E
D
5、已知:如图,Rt △ABC 中,∠C =90°,∠BAC =30°,延长CA 至D 点,使AD =AB .求: (1)∠D 及∠DBC ; (2)tan D 及tan ∠DBC ;
(3)请用类似的方法,求tan22.5°.
6、在△ABC 中,∠A =1200
,AB =12,AC =6.求sinB +sinC 的值.
7、如图,已知△ABC 是等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE ⊥AB 于E ,连结CE ,求sin ∠ACE 的值.
8、已知:在Rt △ABC 中,∠C=90°,sinA 、sinB 是方程02=++q px x 的两个根. (1)求实数p 、q 应满足的条件;
(2)若p 、q 满足(1)的条件,方程02=++q px x 的两个根是否等于Rt △ABC 中两锐角A 、B 的正弦?
名校入学考试题精选
1.已知α为锐角,下列结论①sinα+cosα=l ;②如果α>45°,那么sinα>cosα;③如果cosα>2
1
,那么α<60°; ④αsin 11)-(sin 2-=α.正确的有 . 2.如图,在菱形ABCD 中,AE ⊥BC 于E ,BC=1,cosB
13
5
,则这个菱形的面积为 . 3.如图,∠C=90°,∠DBC=30°,AB =BD ,利用此图可求得tan75°= .
4.化简:
(1)263tan 27tan 22-+ = .
(2)sin 2l°+sin 22°+…+sin 288°+sin 289°= .
5.身高相等的三名同学甲、乙、丙参加风筝比赛.三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的),则三人所放的风筝中( )
A .甲的最高
B .丙的最高
C .乙的最低
D .丙的最低 6.已知 sinαcosα=8
1
,且0°<α<45°则coα-sinα的值为( )
A .
23 B .2
3
- C .43 D .43-
7.在△ABC 中,∠C =90°,∠ABC =30°,D 是AC 的中点,则tan ∠DBC 的值是( )
A .3
B .32
C .
23 D .4
3
8.在等腰Rt △ABC 中.∠C =90°,AC =6,D 是AC 上一点,若tan ∠DBA=5
1
,则AD 的长为( )
A .2
B .2
C . 1
D .22
9.已知关于x 的方程0)1(242=++-m x m x 的两根恰是某直角三角形两锐角的正弦,求m 的值.
10.D 是△ABC 的边AC 上的一点,CD=2AD ,AE ⊥BC 于E ,若BD =8,sin ∠CBD=
4
3
,求AE 的长.
11.若0°<α<45°,且sinαconα=
16
7
3,则sinα= . 12.已知关于x 的方程0)cos 1(2sin 432=-+⋅-ααx x 有两个不相等的实数根,α为锐角,那么α的取值范围是 .
13.已知是△ABC 的三边,a 、b 、c 满足等式))((4)2(2a c a c b -+=,且有035=-c a ,则sinA+sinB+sinC 的值为 .
14.设α为锐角,且满足sinα=3cosα,则sinαcosα等于( ) A .
61 B .5
1
C .92
D .103
15.如图,若两条宽度为1的带子相交成
30°的角,则重叠部分(图中阴影部分)的面积是( ) A .2 B .2
3
C .1
D .21
16.如图,在△ABC 中,∠A =30°,tanB=
2
3
,AC=32,则AB 的长是( ) A .33+ B .322+ C .5 D .
2
9 17.己在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且c=35,若关于x 的方程0)35(2)35(2=-+++b ax x b 有两个相等的实根,又方程0sin 5)sin 10(22=+-A x A x 的两实根的平方和为6,求△ABC 的面积.
18.如图,已知AB=CD=1,∠ABC =90°,∠CBD°=30°,求AC 的长.
19.设 a 、b 、c 是直角三角形的三边,c 为斜边,n 为正整数,试判断n n b a +与n c 的关系,并证明你的结论.
20.如图,已知边长为2的正三角形ABC 沿直线l 滚动.
(1)当△ABC 滚动一周到△A l B 1C 1的位置,此时A 点所运动的路程为 ,约为 (精确到0.1,π=3.14) (2)设△ABC 滚动240°,C 点的位置为C ˊ,△ABC 滚动480°时,A 点的位置在A ˊ,请你利用三角函数中正切的两角和公式tan(α+β)=(tanα+tanβ)÷(1-tanα·tanβ),求出∠CAC ˊ+∠CAA ˊ的度数.。