人教版七年级数学上册第二章检测试卷(附答案)
人教版七年级上册数学第二章测试题(附答案)
人教版七年级上册数学第二章测试题(附答案)一、单选题(共12题;共24分)1.下列各组中的两个项不属于同类项的是( )A. 3x2y和﹣2x2yB. ﹣xy和2yxC. 23和32D. a2b和ab22.单项式的系数和次数分别是()A. ﹣3,2B. ﹣3,3C. ,2D. ,33.下列运算正确的是()A. 5a2﹣3a2=2B. 2x2+3x2=5x4C. 3a+2b=5abD. 7ab﹣6ba=ab4.已知﹣2x m+1y3与x2y n﹣1是同类项,则m,n的值分别为()A. m=1,n=4B. m=1,n=3C. m=2,n=4D. m=2,n=35.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A. 21B. 24C. 27D. 306.a是不为2的有理数,我们把称为a的“哈利数”.如:3的“哈利数”是=﹣2,﹣2的“哈利数”是,已知a1=3,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,…,依此类推,则a2016=()A. 3B. ﹣2C.D.7.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A. 2B. -2C. 4D. -48.任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2015,则m的值是()A. 46B. 45C. 44D. 439.下列式子:x2+2,+4,,,﹣5x,0中,整式的个数是()A. 6B. 5C. 4D. 310.在矩形ABCD内将两张边长分别为a和b(a>b)的正方形纸片按图K2-4①②两种方式放置(图K2-4①②中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图①中阴影部分的面积为S1,图②中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为( )A. 2aB. 2bC. 2a-2bD. -2b11.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2017的值为()A. ﹣1005B. ﹣1006C. ﹣1007D. ﹣100812.如果y=3x ,z=2(y-1),那么x-y+z等于()A. 4x-1B. 4x-2C. 5x-1D. 5x-2二、填空题(共7题;共30分)13.单项式的系数是________,次数是________次.14.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角、当小球第1次碰到矩形的边时的点为P1,第2次碰到长方形的边时的点为P2……第n次碰到矩形的边时的点为P n.则点P4的坐标是________,点P2019的坐标是________.15.观察下列砌钢管的横截面图:则第n个图的钢管数是 ________(用含n的式子表示).16.观察下列一组图形:它们是按一定规律排列的,依照此规律,第n个图形中共有________个★.17.如图所示的各图表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s,按此规律推断,以s,n为未知数的二元一次方程为s= ________.18.如图是由从1开始的连续自然数组成,则第8行第8 个数是________,第n 行第一个数可表示为________.19.将不大于2019的整数排成一列:2019,2018,2017,…,1,0,-1,-2,-3,…;相邻三个整数的乘积依次排成一列:2019×2018×2017,2018×2017×2016,…,2×1×0,1×0×(-1),0×(-1)×(-2),(-1)×(-2)×(-3),…,记这列数的前n个数的和为S n,使得S n取得最大值n的个数为________.三、计算题(共1题;共10分)20.化简(1)x2y﹣3x2y﹣6xy+7xy-2x2y(2)5(x+y)-4(3x-2y)-3(2x-3y) .四、综合题(共3题;共36分)21.大客车上原有(3a﹣b)人,中途下车一半人,又上车若干人,这时车上共有乘客(8a﹣5b)人.(1)问:上车乘客有多少人?(2)在(1)的条件下,当a=12,b=10时,上车乘客是多少人?22.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?23.观察下列各式:;;;…,…,(1)猜想它的规律,把表示出来(2)用你得到的规律,计算:,并求出当n=24时代数式的值.答案一、单选题1. D2. D3. D4. A5.B6. D7. C8. B9. C 10. B 11. D 12. B二、填空题13. ;2 14. (5,0);(8,3)15. 16. 3n+1 17. s=3n-318. 57;19. 4三、计算题20. (1)解:原式=(x2y﹣3x2y-2x2y)+(﹣6xy+7xy)=﹣4x2y+xy(2)解:原式== =-13x+22y.四、综合题21. (1)根据题意得(8a﹣5b)﹣[(3a﹣b)﹣(3a﹣b)]=8a﹣5b﹣a+ b=(a﹣b)人(2)解:当a=12,b=10时,原式=78﹣45=33(人).22. (1)解:找规律:4=4×1=22-02,12=4×3=42-22,20=4×5=62-42,28=4×7=82-62,…,2012=4×503=5042-5022,所以28和2012都是神秘数(2)解:(2k+2) 2-(2 k) 2=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数(3)解:由(2)知,神秘数可以表示成4(2k+1),因为2 k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为2 n +1和2 n -1,则(2 n +1) 2-(2n-1) 2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.23. (1)解:(2)解:,= + + +…+ ,=1﹣+ ﹣+ ﹣+…+ ﹣,=1﹣,当n=24时,原式=1﹣=。
人教版七年级数学上册第二章单元测试题(含答案)
人教版七年级数学上册第二章单元测试题(含答案)一、单选题1.下列各组单项式中,属于同类项的是( )A .2x y 与22yxB .2ab 与2a b -C .4x -与4y -D .3ab 与3a b2.下列说法正确的是( )A .单项式2xy-的系数是-2 B .单项式23x y -与4x 是同类项 C .单项式2x yz -的次数是4D .多项式3221x x --是三次三项式3.下列各式中,正确的是( )A .325a a a +=B .235a b ab +=C .321ab ab -=D .22223a b a b a b -=-4.多项式245634a a a ---的最高次项为( )A .-4B .4C .44aD .44a -5.一台整式转化器原理如图,开始时输入关于x 的整式M ,当21M x =+时,第一次输出41x +,继续下去,则第3次输出的结果是( )A .161x +B .141x +C .121x +D .81x +6.已知单项式13a b x y -与436x y 是同类项,则代数式a+b 的值为( )A .5B .6C .7D .87.下列说法中正确的个数是( )⑴a 和0都是单项式.⑵多项式2223721a b a b ab -+-+的次数是3. ⑶单项式22π3a b -的系数为23-.⑷222x xy y +-可读作2x 、2xy 、2y -的和. A .1个B .2个C .3个D .4个8.将1,2,3,4,5,6六个数随机分成2组,每组各3个,分别用 1a , 2a , 3a 和 1b , 2b ,3b 表示,且 123a a a << , 123b b b >> ,设 112233m a b a b a b =-+-+- ,则 m 的可能值为( ). A .3B .39或C .9D .59或9.已知代数式x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( )A .-1B .1C .-2D .210.多项式8x 2-3x+5与多项式3x 3+2mx 2-5x+7相加后,不含二次项,则常数m 的值是( )A .2B .-4C .-2D .-8二、填空题11.将多项式2233235x y xy x y -++-按字母y 降幂排列是 . 12.多项式2365a a --中的常数项是 .13.若42m a b -与325n a b +是同类项,则m n -+的值是 . 14.若单项式12m xy -与32n x y -的差是单项式,则m n -的值是 .15.如图,数轴上有三个点A 、B 、C ,表示的数分别是﹣4、﹣2、3,请回答:(1)若使C 、B 两点的距离与A 、B 两点的距离相等,则需将点C 向左移动 个单位(其中点C 不与点A 重合).(2)若在表示﹣1的点处有一只小青蛙,一步跳1个单位长.小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步…按此规律继续跳下去,那么跳第99次时,应跳 步,落脚点表示的数是 .(3)若移动A 、B 、C 三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是 个单位;(4)若数轴上有个动点表示的数是x ,则|x+4|+|x+2|+|x-3|的最小值是 .16.把四张形状大小完全相同的小长方形卡片(如图①),卡片长为x ,宽为y ,不重叠地放在一个底面为长方形(宽为a )的盒子底部(如图②),盒底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是 (用只含b 的代数式表示).三、解答题17.先化简,再求值:4xy -2xy -(-3xy ),其中x =2,y =-1.18.已知 22a b -=- ,求代数式 ()()22324232ab a b ab a b -+--+ 的值.19.先化简,再求值:()42424443a ab a ab a ---+,其中3a =-,2b =.20.已知有理数a 、b 、c 在数轴上对应的点如下图所示,化简:|||2|||b a a c c b --+-+21.设 ()()3254326356107133212ax x x x b x x x x x -+++=+-++- ,求a 与b 的值22.已知A=a 2-2ab+b 2,B=-a 2-3ab-b 2,求:2A-3B 。
人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)
人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)一、单选题1.代数式22a b +的意义是( ).A .a 的平方与b 的和B .a 与b 的平方的和C .a 与b 两数的平方和D .a 与b 的和的平方 2.用a 表示的数一定是( )A .正数B .正数或负数C .正整数D .以上全不对 3.若2x y +=,3z y -=-,则x z +的值等于( )A .5B .1C .-1D .-54.已知3,2a b c d +=-=,则()()a c b d +--+的值是( )A .5B .-5C .1D .-15.若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( )A .8-B .5-C .1-D .166.不改变代数式22a a b c +-+的值,下列添括号错误的是( )A .2(2)a a b c +-+B .2(2)a a b c --+-C .2(2)a a b c --+D .22()a a b c ++-+ 7.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第①个图案中有9个正方形,第①个图案中有13个正方形,第①个图案中有17个正方形,此规律排列下去,则第①个图案中正方形的个数为( )A .32B .34C .37D .418.化简(2a ﹣b )﹣(2a +b )的结果为( )A .2bB .﹣2bC .4aD .4a9.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==10.某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元 B .()2024a +元 C .()17 3.6a +元 D .()20 3.6a +元 11.如图,将图1中的长方形纸片前成①号、①号、①号、①号正方形和①号长方形,并将它们按图2的方式无重叠地放入另一个大长方形中,若需求出没有覆盖的阴影部分的周长,则下列说法中错误的是( )A .只需知道图1中大长方形的周长即可B .只需知道图2中大长方形的周长即可C .只需知道①号正方形的周长即可D .只需知道①号长方形的周长即可12.将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是( )A .98B .100C .102D .10413.化简1(93)2(1)3x x --+的结果是( ) A .21x - B .1x + C .53x + D .3x -14.把图1中周长为16cm 的长方形纸片分割成四张大小不等的正方形纸片A 、B 、C 、D 和一张长方形纸片E ,并将它们按图2的方式放入周长为24cm 的的长方形中.设正方形C 的边长为cm x ,正方形D 的边长为cm y .则下结论中正确的是( )A .正方形C 的边长为1cmB .正方形A 的边长为3cmC .正方形B 的边长为4cmD .阴影部分的周长为20cm15.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%16.多项式2835x x -+与多项式323257x mx x +-+相加后,不含二次项,则常数m 的值是( )A .2B .4-C .2-D .8-17.代数式4x 3–3x 3y +8x 2y +3x 3+3x 3y –8x 2y –7x 3的值A .与x ,y 有关B .与x 有关C .与y 有关D .与x ,y 无关18.有n 个依次排列的整式:第一项是a 2,第二项是a 2+2a +1,用第二项减去第一项,所得之差记为b 1,将b 1加2记为b 2,将第二项与b 2相加作为第三项,将b 2加2记为b 3,将第三项与b 3相加作为第四项,以此类推;某数学兴趣小组对此展开研究,得到4个结论: ①b 3=2a +5;①当a =2时,第3项为16;①若第4项与第5项之和为25,则a =7;①第2022项为(a +2022)2;①当n =k 时,b 1+b 2+…+bk =2ak +k 2;以上结论正确的是( )A .①①①B .①①①C .①①①D .①①①19.将正整数按如图所示的规律排列下去,若有序数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示8,已知1+2+3+…+n=()12n n +,则表示2020的有序数对是( ).A .(64,4)B .(65,4)C .(64,61)D .(65,61) 20.当1x =-时,3238ax bx -+的值为18,则1282b a -+的值为( )A .40B .42C .46D .56二、填空题21.化简()x y x y +--=___________.22.在代数式23xy ,m ,263a a -+,12,22145x yzx xy -,23ab 中,单项式有___________个.23.如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动:第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是_________.24.22213x x ⎛⎫-+ ⎪⎝⎭-_________________=2325x x -+. 25.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知112a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2020a =________.三、解答题26.有这样一道题:“求(2x 3﹣3x 2y ﹣2xy 2)﹣(x 3﹣2xy 2+y 3)+(﹣x 3+3x 2y ﹣y 3)的值,其中x =2020,y =﹣1”.小明同学把“x =2a ab --”错抄成了“x =﹣3m n -”,但他的计算结果竟然正确,请你说明原因,并计算出正确结果.27.如图,用字母表示图中阴影部分的面积.28.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.29.(1)若(a﹣2)2+|b+3|=0,则(a+b)2019=.(2)已知多项式(6x2+2ax﹣y+6)﹣(3bx2+2x+5y﹣1),若它的值与字母x的取值无关,求a、b的值;(3)已知(a+b)2+|b﹣1|=b﹣1,且|a+3b﹣3|=5,求a﹣b的值.30.已知:a是单项式-xy2的系数,b是最小的正整数,c是多项式2m2n-m3n2-m-2的次数.请回答下列问题:(1)请直接写出a、b、c的值.a=,b=,c=.(2)数轴上,a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用含t的关系式表示);①请问:BC-AB的值是否会随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.参考答案1--10CDCAC CCBCD 11--20BBDDB BDACB21.2y22.323.1324.2443x x -+- 25.12- 26.解:原式=2x 3﹣3x 2y ﹣2xy 2﹣x 3+2xy 2﹣y 3﹣x 3+3x 2y ﹣y 3=﹣2y 3,①此题的结果与x 的取值无关,y =﹣1时,原式=﹣2×(﹣1)3=2.27.解:由题意得:==S S S mn pq --阴影大长方形空白长方形,①阴影部分的面积为mn pq -.28.正确,理由如下:设此整数是a ,由题意得()a 20242+⨯--a =a+20-2=18,所以说小张说的对.29.解:(1)①(a ﹣2)2+|b +3|=0,且(a ﹣2)2≥0,|b +3|≥0,①a ﹣2=0,b +3=0,解得a =2,b =﹣3,①(a +b )2019=(2﹣3)2019=﹣1.故答案为:﹣1;(2)原式=6x 2+2ax ﹣y +6﹣3bx 2﹣2x ﹣5y +1,=(6﹣3b )x 2+(2a ﹣2)x ﹣6y +7,由结果与x 取值无关,得到6﹣3b =0,2a ﹣2=0,解得:a =1,b =2;(3)①(a +b )2+|b ﹣1|=b ﹣1,①(a +b )2+|b ﹣1|-(b ﹣1)=0,①|b ﹣1|≥(b ﹣1),①|b ﹣1|-(b ﹣1)≥0,(a +b )2≥0,①a +b =0且|b ﹣1|=b ﹣1,①010a b b +=⎧⎨-≥⎩, 解得,1a b b =-⎧⎨≥⎩, ①|a +3b ﹣3|=5,①a +3b ﹣3=5或a +3b ﹣3=-5,①a +3b =8或a +3b =﹣2,把a =﹣b 代入上式得:b =4或﹣1(舍去),①a ﹣b =﹣4﹣4=﹣8.30.(1)解:由题意得,单项式-xy 2的系数a =-1,最小的正整数b =1,多项式2m 2n -m 3n 2-m -2的次数c =5; 故答案为:-1,1,5(2)①t 秒后点A 对应的数为a -t ,点B 对应的数为b +t ,点C 对应的数为c +3t ,故AC =|c +3t -a +t |=|5+4t +1|=6+4t ; 故答案为:6+4t ①①BC =5+3t -(1+t )=4+2t ,AB =1+t -(-1-t )=2+2t ;①BC -AB =4+2t -2-2t =2, 故BC -AB 的值不会随时间t 的变化而改变.其值为2.。
人教版七年级上册数学第二章检测题(附答案)
人教版七年级数学上册第二章检测题(附答案)一、单选题(共12题;共24分)1.下列去括号正确是()A. B.C. D.2.下列计算正确是()A. 3x2-x2=3B. 3x2+2x3=5x5C. 3+x=3xD. (-3)2=93.下列计算正确是()A. 3a+2a=5a2B. 3a-a=3C. 2a3+3a2=5a5D. -a2b+2a2b=a2b4.下列判断中正确是()A. 与不是同类项B. 不是整式C. 单项式的系数是-1 D. 是二次三项式5.若单项式3x m y2与-5x3y n是同类项,则m n的值为()A. 9B. 8C. 6D. 56.根据以下图形变化的规律,图中的省略号里黑色正方形的个数可能是()A. 2016B. 2017C. 2018D. 20197.下列计算正确的是()A. B. C. D.8.已知有理数,我们把称为a的差倒数,如:2的差倒数是,-2的差倒数是.如果,是的差倒数,是的差倒数,是的差倒数,…以此类推,则的值是()A. -55B. 55C. -65D. 659.下列计算正确的是()A. B. C. D.10.下列说法中,正确的是()A. 是单项式,次数为2B. 和是同类项C. 是多项式,次数为6D. 的系数是511.下列选项中,运算正确的是( )A. 5x-3x=2B. 2ab-ab=abC. -2a+3a=-aD. 2a+3b=5ab12.找出以下图形变化的规律,则第(100)个图形中黑色正方形的数量是()A. 150B. 151C. 152D. 153二、填空题(共4题;共18分)13.单项式-2ab2的系数是________,次数是________.14. 2019年9月,科学家将“42”写成了“ ”的形式.至此,100以内的正整数(9ni4)型的数除外)都写成了三个整数的立方和的形式.试将下列整数写成三个非零且互不相等的整数的立方和的形式:________;________.15.单项式的系数是________。
人教版七年级上册数学第二章检测卷(附答案)
人教版七年级上册数学第二章检测卷(附答案)一、单选题(共12题;共24分)1.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为=,现已知x1=,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2020的值为()A. B. ﹣2 C. ﹣ D.2.将一组数、、3、2 、、…、3 按下面的方式进行排列:,,3,2 ,;3 、,2 ,3 、;……若2 的位置记为(1,4),2 的位置记为(2,3),则这组数中最大的无理数的位置记为( )。
A. (5,2)B. (5,3)C. (6,2)D. (6,5)3.已知:,,则()A. B. C. D. 以上答案全不对4.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,39=19683,……它们的个位数字有什么规律,用你发现的规律直接写出92019的个位数字是()A. 3B. 9C. 7D. 15.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点,,,,…那么点A2020的坐标为()A. (1010,0)B. (505,0)C. (1010,1)D. (1011,1)6.如图,直角坐标平面xoy内,动点P按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点P第2018次运动到点( )A. (2018,0)B. (2017,0)C. (2018,1)D. (2017,-2)7.如图,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE, CE,如图:在射线AD上取点F 连接BF, CF,如图,依此规律,第n个图形中全等三角形的对数是()A. NB. 2n-1C.D. 3(n+1)8.观察下列各式及其展开式=+2ab+=+3 b+3a +=+4 b+6 +4a +=+5 b+10 +10 +5a +……请你猜想的展开式中含项的系数是()A. 224B. 180C. 112D. 489.观察图中菱形四个顶点所标的数字规律,可知数2019应标在()A. 第504个菱形的左边B. 第505个菱形的左边C. 第504个菱形的上边D. 第505个菱形的下边10.若A=3x2+5x+2,B=4x2+5x+2,则A与B的大小关系是()A. A>BB. A<BC. A≥BD. A≤B11.已知单项式的次数是,则的值是()A. B. C. D.12.下列式子中是单项式的个数为( )① ,② ,③ ,④ ,⑤ ,⑥ ,⑦ ,⑧ ,⑨ ,⑩A. 5个B. 6个C. 7个D. 8个二、填空题(共5题;共10分)13.若-xy3与2x m-2y n+5是同类项,则mn=________.14.多项式是关于的二次三项式,则________。
人教版七年级上册数学第二章测试题一(附答案)
人教版七年级上册数学第二章测试题一(附答案)一、单选题(共12题;共24分)1.下列选项中,与xy2是同类项的是( )A. -2xy2B. 2x2yC. xyD. x2y22.下列说法正确的是()A. 不是单项式B. 单项式的系数是1C. ﹣7ad的次数是2D. 3x﹣2y不是多项式3.下列运算正确的是()A. 7x-(-3x)=10B. 5a+6b=11abC. ab+2ba=3abD. -(a-b)=a+b4.计算的结果是()A. 6B.C. 2D.5.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A. (﹣1,0)B. (1,﹣2)C. (1,1)D. (﹣1,﹣1)6.2010年广州亚运会吉祥物取名“乐羊羊”.图中各图是按照一定规律排列的羊的组图,图①有1只羊,图②有3只羊,……,则图⑩有()只羊.A. 53B. 54C. 55D. 567.下列运算结果正确的是A. B. C. D.8.按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A. a nB. ﹣a nC. (﹣1)n+1a nD. (﹣1)n a n9.下列说法中,不正确的是()A. ﹣a c的系数是﹣1,次数是4B. ﹣1是整式C. 6﹣3x+1的项是6、﹣3x,1D. 2πR+π是三次二项式10.实数a、b在数轴上的位置如图所示,则化简|a+b|-a的结果为()A. 2a+bB. bC. -2a-bD. -b11.如上图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动至P2017的坐标是()A. (504,1007)B. (505,1009)C. (1008,1007)D. (1009,1009)12.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm,宽为ncm)的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A. 4mcmB. 4ncmC. 2(m+n)cmD. 4(m-n)cm二、填空题(共7题;共30分)13.单项式-3πxyz2的系数是________.14.以直线l外一点P为端点,向直线l上的个点作射线,则以点P为顶点,以这些射线为边的角小于的个数为________ 用含有n的代数式表示15.如图是由边长为1的木条组成的几何图案,观察图形规律,解决下列问题:……….(1)填空:第一个图案由1个正方形组成,共用的木条根数;第二个图案由4个正方形组成,共用的木条根数;第三个图案由9个正方形组成,共用的木条根数________;第四个图案由16个正方形组成,共用的木条根数________;(2)第个图案由个正方形组成,共用木条根数________(用含的代数式表示)16.如图,在平面直角坐标系中,已知点A(-4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(2)个三角形的直角顶点的坐标是________,第(2018)个三角形的直角顶点的坐标是________.17.如图.乐乐班级举行“新春美食会”,同学们如图摆放桌椅,图(1)表示1张餐桌和6把椅子(三角形表示餐桌,每个小圆表示一把椅子),图(2)表示2张餐桌和8把椅子,图(3)表示3张餐桌和10把椅子,……;按照这种方式摆放12张餐桌,需要________把椅子.18.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,如果点A n与原点的距离不小于20,那么n的最小值是________.19.下面各正方形中的四个数之间都有相同的规律,则根据这种规律,第四个正方形中的n=________,最后一个正方形中的m=________.三、计算题(共1题;共10分)20.计算:(1)(a2b)2(2)(2x﹣1)2﹣x(2﹣x)四、综合题(共3题;共36分)21.综合题。
人教版七年级数学上册第二章达标测试卷含答案
人教版七年级数学上册第二章达标测试卷七年级数学 上(R 版) 时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.[2024北京西城区月考]《2024年春节联欢晚会》以匠心独运的歌舞创编、暖心真挚的节目表演、充满科技感和时代感的视觉呈现,为海内外观众奉上了一道心意满满、暖意融融的除夕“文化大餐”.截至2月10日2时, 总台春晚全媒体累计触达142亿人次,其中“竖屏看春晚”直播播放量4.23亿次.将4.23亿科学记数法表示为( ) A .0.423×109B .4.23×108C .4.23×107D .4.23×1092.[2024金华东阳市期末]已知算式6□(-6)的值为0,则“□”内应填入的运算符号为( ) A .+B .-C .×D .÷3.小磊解题时,将式子16+(-7)+56 +(-4)先变成(16+56)+[(-7)+(-4)]再计算结果,小磊运用了( ) A .加法交换律 B .加法交换律和加法结合律 C .加法结合律D .无法判断4.下列各式正确的是( ) A .-8-2×6=(-8-2)×6 B .2÷43×34=2÷(43×34) C .(-1)2 025+(-1)2 024=-1+1D .-(-22)=-45.有理数a ,b 在数轴上的对应点如图,则下列结论正确的是( )A . ab >0B . ba <0 C . a +b <0D . b -a <06.如果4个数的乘积为负数,那么这4个数中正数有( ) A .1个或2个B .1个或3个C .2个或4个D .3个或4个7.小于2 024且大于-2 023的所有整数的和是( ) A .1B .-2 021C .2 022D .2 0238.[2024枣庄滕州市期中]下列说法中,错误的有( ) (1)0是绝对值最小的有理数; (2)-1乘任何数仍得这个数;(3)一个数的平方是正数,则这个数的立方也是正数; (4)数轴上在原点两侧的两个点所表示的数互为相反数. A .0个B .1个C .2个D .3个9.我国古代典籍《庄子·天下篇》中有这样一句话:“一尺之棰,日取其半,万世不竭”.现有一根长为1尺的木杆,第1次截取其长度的一半,第2次截取其第1次剩下长度的一半,第3次截取其第2次剩下长度的一半,…,则第99次截取后,木杆剩下的长度为( ) A .1298尺B .1299尺C .12100尺D .12101尺10.[新视角 新定义题]符号“f ”表示一种运算,它对一些数的运算结果如下: (1)f (1)=2,f (2)=4,f (3)=6,… (2)f (12)=2,f (13)=3,f (14)=4,…利用以上规律计算:f (2 024)-f (12 024)等于( ) A .2 024B .2 022C .12 023D .12 024二、填空题(每题4分,共24分)11.数1.654 3精确到十分位为 .12.[新考向 知识情境化]若数轴经过折叠后,表示-3的点与表示1的点重合,则表示-2 024的点与表示 的点重合.13.[新视角 程序计算题]如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为 .14.已知(x -3)2+|y +5|=0,则xy -y x = .15.[2024扬州江都区期末]“五月天山雪,无花只有寒”反映出地形对气温的影响.一般地,海拔每升高100 m ,气温下降约0.6 ℃.有一座海拔为2 750 m 的山,在这座山上海拔为250 m 的地方测得气温是8 ℃,则此时山顶的气温约为 ℃. 16.定义一种新运算“☉”,观察下列各式:2☉(-1)=2×3-1=5,-3☉4=-3×3+4=-5,5☉2=5×3+2=17,-1☉(-3)=-1×3-3=-6.(1)请你想一想:(-5)☉(-7)= . (2)请你猜一猜:a ☉b = . 三、解答题(共66分)17.(8分)计算(能简算的要简算): (1)0.125×(-7)×8;(2)-32-(-8)×(-1)5÷(-1)4;(3)[212-(79-1112+16)×36]÷5; (4)(-370)×(-14)+0.25×24.5+(-512)×(-14).18.(8分)[2024北京顺义区期末]学习了有理数的运算后,下面是小明同学的第①步运算:-7×[-32÷(−9)−47×(54+72)]=-7×[9÷(−9)−57+2]……① (1)小明同学的第①步运算有几处错误? (2)请你完整地写出本题的正确运算过程.19.(12分) [新视角 开放题]小明有5张写着不同数的卡片,请你按照要求抽取卡片,完成下列问题.-7 -3 1 2 5(1)从中抽取2张卡片,使这2张卡片上的数字的差最大,最大值是 ; (2)从中抽取2张卡片,使这2张卡片上的数字相除得到的商最小,最小值是 . (3)从中抽取4张卡片,用学过的“加、减、乘、除、乘方”运算方法进行计算,使其计算结果为24,该如何抽取?写出运算式子.(每个数只能用一次,写出一种即可)20.(12分)一辆汽车沿着南北方向的公路往返行驶,某天早上从A 地出发,晚上最后到达B 地.若约定向北为正方向(如+7.4 km 表示汽车向北行驶7.4 km ,-6 km 表示汽车向南行驶6 km),当天的行驶记录如下(单位:km):+18.3,-9.5,+7.1,-14,-6.2,+13,-6.8,-8.5.(1)B 地在A 地何方?与A 地相距多少千米?(2)如果汽车行驶每千米耗油0.1 L ,那么这一天共耗油多少升?21.(12分) [新视角 规律探究题]观察下列各式:第1个等式:-1×12=-1+12=-12;第2个等式:-12×13=-12+13=-16; 第3个等式:-13×14=-13+14=-112;…(1)根据上述规律写出第5个等式: ; (2)第n 个等式: ;(用含n 的式子表示)(3)计算:(-1×12)+(-12×13)+(-13×14)+…+(-12 024×12 025).22.(14分)[2024台州温岭市期中]我们都知道:|6-2|表示6与2的差的绝对值,实际上也可理解为6与2两数在数轴上所对应的两点之间的距离;|6+2|表示6与-2的差的绝对值,实际上也可理解为6与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|-2+7|=;|-3-5|=.(2)找出所有符合条件的整数x,使|x+1|+|x-2|=3成立.(3)若数轴上表示数a的点位于表示-3的点与表示5的点之间,求|a+3|+|a-5|的值.(4)当a=时,|a-2|+|a+6|+|a-5|的值最小,最小值是.(5)当a=时,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,最小值是(n为正整数).参考答案一、1. B 2. A 3. B 4. C 5. B 6. B 7. D8. D 点拨:(1)0是绝对值最小的有理数,故(1)正确;(2)-1乘任何数得这个数的相反数,故(2)错误;(3)一个数的平方是正数,则这个数的立方不一定是正数,故(3)错误;(4)数轴上在原点两侧,且到原点距离相等的两个点所表示的数互为相反数,故(4)错误.故选D .9. B 点拨:第1次截取其长度的一半,剩下的长度为12×1=12(尺);第2次截取其第1次剩下长度的一半,剩下的长度为122×1=14(尺);第3次截取其第2次剩下长度的一半,剩下的长度为123×1=18(尺);…;故第99次截取后,木杆剩下的长度为1299×1=1299(尺).故选B .10. A 点拨:可得f (2 024)=2×2 024=4 048,f (12 024)=2 024,所以f (2 024)-f (12 024)=4 048-2 024=2 024.故选A . 二、11.1.7 12.2 02213.-2 点拨:[(-1)×4-2]÷3=-2. 14.110 点拨:因为(x -3)2+|y +5|=0,所以x -3=0,y +5=0, 解得x =3,y =-5.所以xy -y x =3×(-5)-(-5)3=-15+125=110. 15.-7 16.(1)-22 (2)3a +b三、17.解:(1)原式=-(0.125×8)×7=-7. (2)原式=-9-8=-17. (3)原式=[52-(79×36-1112×36+16×36)]×15=(52-28+33-6)×15 =(52-1)×15 =310.(4)原式=(370+24.5+512)×14 =400×14=100.18.解:(1)小明同学的第①步运算有2处错误.(2)-7×[-32÷(−9)−47×(54+72)]=-7×[-9÷(−9)−57-2]=-7×(1-57-2) =-7×(-127) =12.19.解:(1)12 (2)-7(3)抽取分别写有-7,2,1,-3的四张卡片.(-7-2+1)×(-3)=24.(答案不唯一)20.解:(1)+18.3+(-9.5)+7.1+(-14)+(-6.2)+13+(-6.8)+(-8.5)=-6.6(km ),故B 地在A 地南边,与A 地相距6.6 km .(2)(18.3+9.5+7.1+14+6.2+13+6.8+8.5)×0.1=8.34(L ),故这一天共耗油8.34 L .21.解:(1)-15×16=-15+16=-130(2)-1n ×1n+1=-1n +1n+1=-1n (n+1)(3)(-1×12)+(-12×13)+(-13×14)+…+(-12 024×12 025)=(-1+12)+(-12+13)+(-13+14)+…+(-12 024+12 025) =-1+12-12+13-13+14-…-12 024+12 025 =-1+12 025=-2 0242 025.22.解:(1)5;8(2)当-1≤x ≤2时,|x +1|+|x -2|=3成立.因为x 是整数,所以x =-1或x =0或x =1或x =2.(3)因为|a +3|+|a -5|可理解为表示数a 的点到表示-3和5的点的距离之和,表示数a 的点位于表示-3的点与表示5的点之间,所以|a +3|+|a -5|=8. (4)2;11 (5)1;n (2n +3)。
人教版七年级数学上册单元检测题:第二章(附模拟试卷含答案)
第二章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.在式子:-35ab ,2x 2y 5,x +y 2,-a 2bc ,1,x 2-2x +3,3a ,1x +1中,单项式的个数为( C )A .2个B .3个C .4个D .5个 2.若-x 3y a 与x by 是同类项,则a +b 的值为( C ) A .2 B .3 C .4 D .5 3.下列计算正确的是( D )A .x 2+x 2=x 4B .x 2+x 3=x 5C .3x -2x =1D .x 2y -2x 2y =-x 2y4.已知m -n =100,x +y =-1,则代数式(n +x)-(m -y)的值是( D ) A .99 B .101 C .-99 D .-101 5.下列说法中正确的个数有( A ) (1)-a 表示负数;(2)多项式-3a 2b +7a 2b 2-2ab +1的次数是3; (3)单项式-2xy29的系数是-2;(4)若|x|=-x ,则x <0.A .0个B .1个C .2个D .3个6.x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( A ) A .-1 B .1 C .-2 D .27.下列各式由等号左边变到右边变错的有( D ) ①a -(b -c)=a -b -c ;②(x 2+y)-2(x -y 2)=x 2+y -2x +y 2; ③-(a +b)-(-x +y)=-a +b +x -y ; ④-3(x -y)+(a -b)=-3x -3y +a -b. A .1个 B .2个 C .3个 D .4个8.若A 和B 都是五次多项式,则A +B 一定是( C ) A .十次多项式 B .五次多项式C .次数不高于5的整式D .次数不低于5的多项式9.给出下列判断:①单项式5×103x 2的系数是5;②x -2xy +y 是二次三项式;③多项式-3a 2b +7a 2b 2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的个数有( A )A .1个B .2个C .3个 D. 4个10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( B )A .4m cmB .4n cmC .2(m +n) cmD .4(m -n) cm 二、填空题(每小题3分,共24分)11.若mn =m +3,则2mn +3m -5mn +10=__1__. 12.多项式4x 2y -5x 3y 2+7xy 3-67是__五__次__四__项式.13.多项式12x |m|-(m +2)x +7是关于x 的二次三项式,则m =__2__.14.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__3a +2b__.15.有一组多项式:a +b 2,a 2-b 4,a 3+b 6,a 4-b 8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为__a 10-b 20__.16.若a =2,b =20,c =200,则(a +b +c)+(a -b +c)+(b -a +c)=__622__.17.如果单项式-xyb +1与12x a -2y 3是同类项,那么(a -b)2017=__1__. 18.若多项式2x 2+3x +7的值为10,则多项式6x 2+9x -7的值为__2__. 三、解答题(共66分) 19.(8分)化简:(1)3x 2+2xy -4y 2-(3xy -4y 2+3x 2); (2)4(x 2-5x)-5(2x 2+3x).解:-xy 解:-6x 2-35x20.(6分)先化简,再求值:12x -2(x -13y 2)+(-32x +13y 2),其中x =-2,y =23.解:原式=12x -2x +23y 2-32x +13y 2=-3x +y 2,当x =-2,y =23时,原式=64921.(8分)已知多项式(2x 2+ax -y +6)-(2bx 2-3x +5y -1). (1)若多项式的值与字母x 的取值无关,求a ,b 的值;(2)在(1)的条件下,先化简多项式3(a 2-ab +b 2)-(3a 2+ab +b 2),再求它的值.解:(1)原式=2x 2+ax -y +6-2bx 2+3x -5y +1=(2-2b)x 2+(a +3)x -6y +7,由结果与x 的取值无关,得a +3=0,2-2b =0,解得a =-3,b =1 (2)原式=3a 2-3ab +3b 2-3a 2-ab -b 2=-4ab +2b 2,当a =-3,b =1时,原式=-4×(-3)×1+2×12=1422.(8分)已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12还多1岁,求这三名同学的年龄的和.解:m +(2m -4)+[12(2m -4)+1]=4m -5,答:这三名同学的年龄的和是(4m -5)岁23.(10分)已知A -2B =7a 2-7ab ,且B =-4a 2+6ab +7. (1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.解:(1)A =(7a 2-7ab)+2(-4a 2+6ab +7)=-a 2+5ab +14 (2)由题意得a =-1,b =2,所以A =-(-1)2+5×(-1)×2+14=324.(12分)一辆出租车从A 地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x >9且x <26,单位:km):(1)说出这辆出租车每次行驶的方向;(2)求经过连续4次行驶后,这辆出租车所在的位置; (3)这辆出租车一共行驶了多少路程?解:(1)第一次向东,第二次向西,第三次向东,第四次向西 (2)x +(-12x)+(x -5)+2(9-x)=13-12x ,因为x >9且x <26,所以13-12x >0,所以经过连续4次行驶后,这辆出租车位于向东(13-12x)km 处 (3)|x|+|-12x|+|x -5|+|2(9-x)|=92x -23,答:这辆出租车一共行驶了(92x -23)km25.(14分)用火柴棒按下列方式搭建三角形:(1)填表:(2)当三角形的个数为n 时,火柴棒的根数是多少? (3)求当n =100时,有多少根火柴棒?(4)当火柴棒的根数为2017时,三角形的个数是多少? (5)火柴棒的根数能为100吗?请说明理由.解:(2)2n +1 (3)当n =100时,2n +1=2×100+1=201(根) (4)由题意得2n +1=2017, 所以n =1008.即有1008个三角形 (5)不能.理由:当2n +1=100时,所以n =4912.而三角形的个数是正整数,1 2,所以火柴棒的根数不能为100n不可能为492019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图是一个长方体之和表面展开图,纸片厚度忽略不计,按图中数据,这个盒子容积为()A.6B.8C.10D.152.若∠β=25°31',则∠β的余角等于()A.64°29'B.64°69'C.154°29'D.154°69'3.如图所示,将一张长方形纸的一角斜折过去,使顶点A落在点A′处,BC为折痕,如果BD为∠A′BE 的平分线,则∠CBD等于( )A.80°B.90°C.100°D.70°4.如果式子32x-与-7互为相反数,则x的值为()A.5B.-5C.3D.-35.在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有()A.7个B.6个C.5个D.4个6.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,……按照这样的规律排列下去,则第6个图形由( )个圆组成A.39 B.40 C.41 D.427.下列计算正确的是()A.a5+a5=a10B.a6×a4=a24C.(a2)3=a5D.(﹣a)2÷(﹣a2)=﹣18.某项工程由甲队单独做需18天完成,由乙队单独做只需甲队的一半时间完成.设两队合作需x天完成,则可得方程()A.118+19=x B.(118+19)x=1C.118 +136=x D.(118+136)x=1 9.解方程:2-=-,去分母得( )A .2-2 (2x -4)= -(x -7)B .12-2 (2x -4)= -x -7C .2-(2x -4)= -(x -7)D .12-2 (2x -4)= -(x -7)10.近似数﹣0.08010的有效数字个数有( ) A .3个 B .4个 C .5个 D .6个 11.-1+2-3+4-5+6+…-2011+2012的值等于 A .1 B .-1 C .2012 D .1006 12.-2018相反数是( ). A.12018B.2018C.12018-D.-2018二、填空题13.如图,甲从A 点出发向北偏东60°方向走到点C ,乙从点A 出发向南偏西25°方向走到点B ,则∠BAC 的度数是__________.14.如图,C 、D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,10AD cm =,则线段DE =______cm.15.小明在黑板上写有若干个有理数.若他第一次擦去m 个,从第二次起,每次都比前一次多擦去2个,则5次刚好擦完;若他每次都擦去m 个,则10次刚好擦完.则小明在黑板上共写了________个有理数. 16.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为_____元.17.如果 x-y=3,m+n=2,则 ( y + m) -( x - n) 的值是_____. 18.若1314a =-,2111a a =-,3211a a =-,......,则2019a =________19.比较大小:﹣3_____﹣2.(用“>”、“=”或“<”填空)20.填空(选填“>”“<”“=”).(1)-0.02____1; (2)3--4()______[]-+-0.75(). 三、解答题21.作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:(1)画射线 AB ,直线 BC ,线段 AC (2)连接 AD 与 BC 相交于点 E.22.已知:如图,CD 平分∠ACB ,∠1+∠2=180°,∠3=∠A ,∠4=35°,求∠CED 的度数.23.(8分)我市中学组篮球比赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?24.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作? 25.先化简,再求值:4a 2b+ab 2-4(ab 2+a 2b ),其中|a+1|+(b-2)2=0 26.(1)计算:-12019-(23-35)×[4-(-12)2] (2)先化简,再求值:(2x 3-3x 2y-xy 2)-(x 3-2xy 2-y 3)+(-x 3+3x 2y-y 3),其中x=14,y=2. 27.(1)计算:16÷(﹣2)3﹣(﹣12)3×(﹣4)+2.5; (2)计算:(﹣1)2017+|﹣22+4|﹣(12﹣14+18)×(﹣24)28.已知m ,n 互为相反数,p 、q 互为倒数,x 的绝对值为2,求 220192018m npq x +++.【参考答案】*** 一、选择题 1.A 2.A 3.B 4.C 5.B 6.C7.D8.B9.D10.B11.D12.B二、填空题13.145°14.1cm15.4016.18017.-118. SKIPIF 1 < 0解析:4 319.<20.< =三、解答题21.答案见解析22.∠CED=110°23.胜负场数应分别是18和4.24.应先安排2人工作.25.26.(1)-54;(2)1.27.(1)0;(2)8.28.20162019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,下列表示角的方法,错误的是( )A.∠1与∠AOB 表示同一个角B.∠AOC 也可以用∠O 来表示C.∠β表示的是∠BOCD.图中共有三个角:∠AOB ,∠AOC ,∠BOC2.点A ,B ,C 在同一直线上,已知3AB cm =,1BC cm =,则线段AC 的长是( ) A .2cmB .3cmC .4cmD .2cm 或4cm3.如图,点C 是AB 的中点,点D 是BC 的中点,现给出下列等式:①CD=AC-DB ,②CD=14AB ,③CD=AD-BC ,④BD=2AD-AB .其中正确的等式编号是( )A.①②③④B.①②③C.②③④D.②③4.下列方程是一元一次方程的是( ) A.231x y += B.2210y y --=C.1123x x-= D.3223x x -=-5.一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为( ) A .17B .18C .19D .20 6.已知322x y 与32mxy -的和是单项式,则式子4m-24的值是()A.20B.-20C.28D.-27.下列算式中,计算结果为a 3b 3的是( ) A .ab+ab+abB .3abC .ab•ab•abD .a•b 38.如图是用长度相等的火柴棒按一定规律构成的图形,依次规律第10个图形中火柴棒的根数是( )A .45B .55C .66D .789.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x 个零件,则所列方程为( ) A .()13x 12x 1060=++ B .()12x 1013x 60+=+ C .x x 60101312+-=D .x 60x101213+-= 10.下列各数中互为相反数的是( )A .+(—5)与—5B .—(+5)与—5C .—(—5)与+(—5)D .—(+5)与—|—5| 11.实数 a ,b 在数轴上的位置如图所示,则下列结论正确的是( )A .a+b >0B .a ﹣b >0C .a•b>0D .ab>0 12.1﹣2+3﹣4+5﹣6+…+2017﹣2018的结果不可能是( ) A.奇数 B.偶数C.负数 D.整数 二、填空题13.已知线段AB ,在AB 的延长线上取一点C ,使AC=3BC ,在AB 的反向延长线上取一点D ,使DA=13AB ,那么线段AC 是线段DB 的_____倍.14.如图,B 是线段AD 上一点,C 是线段BD 的中点. (1)若AD =8,BC =3,求线段CD ,AB 的长; (2)试说明:AD +AB =2AC.15.已知x ﹣2y+3=8,则整式x ﹣2y 的值为_____.16.小王用一笔钱购买了某款一年期年利率为2%的理财产品,到期支取时得本利和为5100元,则当时小王花________元钱购买理财产品. 17.化简:2(x ﹣3)﹣(﹣x+4)=____.18.如图,把一个面积为1的正方形分成两个面积为12的长方形,再把其中一个面积为12的长方形分成两个面积为14的正方形,再把其中一个面积为14的正方形分成两个面积为18的长方形,如此进行下去……,试用图形揭示的规律计算:111111248163264+++++11128256++=__________.19.-4的倒数是________,相反数是_______.绝对值是_________.20.计算:(-2)2÷12×(-2)-12=__________. 三、解答题 21.作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:(1)画射线 AB ,直线 BC ,线段 AC(2)连接 AD 与 BC 相交于点 E.22.图1所示的三棱柱,高为7cm ,底面是一个边长为5cm 的等边三角形.(1)这个三棱柱有 条棱,有 个面;(2)图2方框中的图形是该三棱柱的表面展开图的一部分,请将它补全;(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,需剪开 条棱,需剪开棱的棱长的和的最大值为 cm .23.解方程:(1)10x ﹣12=5x+15;(2)1121[(1)]()3232x x x --=- 24.如图,点A 、点C 是数轴上的两点,O 是原点,6OA =,53AO CO =.(1)写出数轴上点A 、点C 表示的数.(2)点P 、Q 分别从A 、C 同时出发,点P 以每秒1个单位长度的速度沿数轴向右匀速运动,点Q 以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后P 、Q 两点之间的距离是4个单位?25.(1)计算:()22019301412(5)3π-⎛⎫-+⨯---+- ⎪⎝⎭ (2)先化简,再求值()222154233a a a a a --+--⎡⎤⎣⎦,其中2a =-. 26.小明在计算一个多项式与22432x y +-的差时,错把减法看成了加法,结果得到22246x y -+.请你根据上面的信息求出原题的结果.27.100÷(﹣2)2﹣(﹣2)÷(﹣2)28.计算:(﹣13+56﹣38)×(﹣24).【参考答案】***一、选择题1.B2.D3.B4.D5.C6.B7.C8.C9.B10.C11.B12.B二、填空题13. SKIPIF 1 < 0解析:9814.(1)2;(2)详见解析.15.16.500017.3x ﹣1018. SKIPIF 1 < 0解析:811219.- SKIPIF 1 < 0 , 4, 4;解析:-14, 4, 4; 20. SKIPIF 1 < 0 解析:1162- 三、解答题21.答案见解析22.(1)9,5;(2)见解析;(3)5,31.23.(1)x=5.4;(2)x=1.24.(1)6A =-,10C =;(2)运动4s 或20s 3,P 、Q 两点间距离4个单位. 25.(1)-2 (2)21a 2-3a;9026.2261010x y --+27.2128.-3。
【数学】新人教版数学七年级(上)第二章单元质量检测试卷、答案.doc
人教版七年级上册第二章整式的加减单元测试一、选择题(每题3分,共21分)1. 下列说法正确的是( )A.213x π的系数为13B.212xy 的系数为12x C. ()23x -的系数为3D. ()23x π-的系数为3π-2. 下列各组式子中,是同类项的是( )A. 2233x y xy -与B. 222x x 与C. 32xy yx -与D. 55xy yz 与3. 下面计算正确的是( )A. 2233x x -=B. 235325a a a +=C. 33x x +=D. 10.2504ab ba -+=4. 如果12a b -=,那么()3b a --的值是( ) A. 35-B. 23C.32D.165. 将()()()24x y x y x y +++-+合并同类项得( )A. x y +B. x y -+C. x y --D. x y -6. 若8a =,3b =,且a b <,则a b -的值为( )A. 11-B. 5-C. 5-或5D. 11-或5-7. 观察图中正方形四个顶点所标的数字规律,可知数2013应标在( )A. 第503个正方形的左上角B. 第503个正方形的右下角C. 第504个正方形的左上角D. 第504个正方形的右下角二、填空题(每题3分,共21分)8. 已知单项式23m a b 与4123n a b --人教版初中数学七年级上册第2章《整式加减》单元测试题一、选择题:1.式子222a b +表示的意义是( )A. a 与2b 平方的和B. a 与2b 和的平方C. a 的平方与2个b 平方的和D. 2b 与a 的平方和 2. 下列运算正确的是( )A .xy y x 532=+B .2325a a a += C.()a a b b --= D .422x x x =+3. 如果213n m xy -与35m x y -的和是单项式,则m 和n 的值分别是( )A .3和-2B .-3和2C .3和2D .-3和-2 4.下列判断中正确的是 ( )A.23a bc 与2bca 不是同类项B. 单项式32x y -的系数是-1C. 52n m 不是整式 D.2235x y xy -+是二次三项式5.若M 和N 都是四次多项式,则M N +一定是( )A.四次多项式B.八次多项式C.次数不高于四次的整式D.次数一定是低于四次的整式 6.化简()2x x y x y x ⎡⎤-----⎣⎦等于( )A. 0B.2xC.x y -D.3x7. 若代数式2231x x -+的值是8,则代数式2463x x --的值是( )A.10B.11C.12D.138. 某人靠墙围成一块梯形园地,三面用篱笆围成.设一腰为a ,另一腰为b ,与墙面相对的一边比两腰的和还大b ,则此篱笆的总长是( ) A.2a b + B.23a b + C.22a b + D.3a b + 9.已知一个多项式与279x x +的和等于2741x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +10. 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 二、填空题:11. 今年的香蕉价格比去年贵了许多,已知现在香蕉的价格是去年的2倍还多0.5元,如果今年香蕉的价格为a 元,那么去年香蕉的价格可表示为 .12. 一个多项式减去212x -得到223x x +-,那么这个多项式是 .13. 对于有理数a 、b ,定义b a b a 32-=*,则)()(x y y x -*-的结果是 . 14. 若35,a b a c -=+=,则(2)()a b c a b c ++---= .15. 观察下列单项式:0,23x -,38x -,415x -,524x -,……,按此规律写出第n 个单项式是_____. 16. 若()23214x x b x bx -+---化简后不含x 的一次项,则b = . 17. 如图所示是用棋子摆成的“巨”字,那么第4个“巨”字续摆下去,第n 个“巨”字所需要的棋子_________________.18. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n -是质数,那么12(21)n n --是一个完全数,请你根据这个结论写出6之后的下一个完全数是 .三、解答题:19. 已知5=+y x ,3-=xy ,求代数式)4()232(xy y x xy y x +----的值.20. 某县城的房价近两年有了大幅的上涨,前年上升了50%,去年又上升了40%.人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( ) A .-2x 2y 与xy 2B .x 2y 与x 2z C .3mn 与4nmD .-0.5ab 与abc2.已知苹果的单价为a 元/千克,香蕉的单价为b 元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________.12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1.(1)求3A+6B;(2)若3A+6B的值与x的取值无关,求y的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12.原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A=5x2-5x+3,B=x2-x-1,所以2A-B=2(5x2-5x+3)-(x2-x-1)=10x2-10x+6-x2+x+1=9x2-9x+7.18.解:(1)8x+6y+5(20―x―y)=(3x+y+100)吨.答:这20辆汽人教版数学七年级上册第二章整式的加减单元测试及答案一、单选题1.下列各式中不是整式的是()A. 3xB.C.D. x-3y2.下列各组单项式中,为同类项的是( )A. a3与a2B. a2与2a2C. 2xy与2xD. -3与a3.a+b=﹣3,c+d=2,则(c﹣b)﹣(a﹣d)的值为()A. 5B. -5C. 1D. -14.已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是()A. ﹣x2+2x+2B. ﹣x2+x+2C. x2﹣x+2D. ﹣x2+x﹣25.下列说法正确的是()A. 0不是单项式B. x没有系数C. ﹣xy5是单项式D. 是多项式6.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c 就是完全对称式.下列三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A. ①②B. ①③C. ②③D. ①②③7.代数式的4x﹣4﹣(4x﹣5)+2y﹣1+3(y﹣2)值()A. 与x,y都无关B. 只与x有关C. 只与y有关D. 与x,y 都有关8.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为()A. (2n+1)2B. (2n-1)2C. (n+2)2D. n29.长方形的一边长等于3x+2y ,另一边长比它长x-y ,这个长方形的周长是()A. 4x+yB. 12x+2yC. 8x+2yD. 14x+6y10.如图,按大拇指,食指,中指,无名指,小指,再无名指,中指……的顺序数数,当数到2018时,对应的手指是()A. 食指B. 中指C. 无名指D. 小指二、填空题11.单项式- x2y的系数是________.12.﹣的系数是a,次数是b,则a+b=________.13.如果(a-5)mn b+2是关于m、n的一个五次单项式,那么a=________,b=________.14.有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.15.若|x﹣1|+(y+2)2=0,则(x+y)2017=________.16.计算(9a2b+6ab2)÷3ab=________.17.在计算机程序中,二叉树是一种表示数据结构的方法.如图,﹣层二叉树的结点总数为1;二层二叉树的结点的总数为3;三层二叉树的结点总数为7;四层二叉树的结点总数为15…,照此规律,七层二叉树的结点总数为________.三、计算题18.计算:(1)(2)19.多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式,求a2+ +a的值.四、解答题20.先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)21.七年级某同学做一道题:“已知两个多项式A,B,,计算”,他误将写成了,结果得到答案,请你帮助他求出正确的答案.22.先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣,b=1.五、综合题23.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)并按此规律计算:(a)2+4+6+…+100的值;(b)52+54+56+…+200的值.参考答案一、单选题1. B2. B3. A4. D5. C6. A7.C8.A9.D10. A二、填空题11. -12.13.≠5;214.2;615.-116.3a+2b17. 127三、计算题18.解:(1)==(2)===19.解:∵多项式a2x3+ax2-4x3+2x2+x+1是关于x的二次三项式∴(a2-4)=0 ∴a=±2又∵a+2≠0∴a≠-2∴a=2∴a2+ +a=22+ +2=4+ +2=四、解答题20.解:3(2x 2﹣y 2)﹣2(3y 2﹣2x 2) =6x 2﹣3y 2﹣6y 2+4x 2=(6x 2+4x 2)+(﹣3y 2﹣6y 2) =10x 2﹣9y 2 .21.解:∵2A+B=x 2+5x ﹣6,A=x 2+2x ﹣1,∴B=(x 2+5x ﹣6)﹣2(x 2+2x ﹣1)=x 2+5x ﹣6﹣2x 2﹣4x+2=﹣x 2+x ﹣4,∴A+2B=x 2+2x ﹣1+2(﹣x 2+x ﹣4)=x 2+2x ﹣1﹣2x 2+2x ﹣8=﹣x 2+4x ﹣922.解:原式=a 2﹣2ab+2a 2﹣2b 2﹣a 2+2ab ﹣b 2=2a 2﹣3b 2 , 当a=﹣ ,b=1时,原式=﹣2.5 五、综合题23.(1)解:S=n (n+1) (2)解:(a )2+4+6+…+100 =50×51 =2550;(b )52+54+56+…+200=(2+4+6+8+…+200)﹣(2+4+6++…+50) =100×101﹣25×26 =10100﹣650 =9450.人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每题3分,共30分) 1、用代数式表示比b 的18小7的数( ) A.18b +7 B.18b -7 C.18(b -7) D.78b - 2、下列代数式中,不是单项式的是( )A.5B.2x C.2x D.23a3、①; ②; ③; ④分别是同类项的是( )(A )①② ; (B )①③; (C )②③ ; (D )②④ 4、-( a-1)-(-a-2)+3的值是( ) (A )4; (B )6;(C )0; (D )与的值有关。
【数学】新人教版数学七年级(上)第二章单元质量检测试卷、答案.doc
人教版初中数学七年级上册第2章《整式加减》单元测试卷(答案)一、选择题(每小题3分,共30分)1、用式子表示“比y 的相反数少3的数”是( ) A 3y - B 3y + C 3y -+ D 3y --2、下列式子中是单项式的是( ) A 8x + B 43s t + C13mx D 1n- 3、多项式3233524x x y y -++的次数是( ) A 2 B 3 C 4 D 5 4、多项式5225x y -+的项为( ) A525x -,2y B 2x -,2y C x ,25,2y D x ,25-,2y 5、代数式2346x x -+的值为9,则2463x x -+的值为( )A 7B 18C 12D 96、下列合并同类项的结果中,正确的是( )A 550xy xy --=B 22330a b ba -=C 235235m m m +=D 2232a a -= 7、计算22(321)(235)a a a a -+-+-的结果是( )A 256a a -+B 254a a --C 24a a +-D 26a a ++ 8、若2214m x y -与2n x y --是同类项,则()n m --的值为( ) A 8 B 16 C 32 D 649、下列计算中,错误的是( )(1)3232549(5)(49)x x x x x x --+=---+;(2)32325499(54)x x x x x x --+=-++;(3)()a b c d a b c d --+=-++;(4)2()2a b c a b c --+=+-A 1个B 2个C 3个D 4个10、若22M a b =,27N ab =,24P a b =-,则下列等式正确的是( )A 29M N a b +=人教版七年级数学上册第二章整式加减单元测试(含答案)一、单选题1.单项式-23x y的系数、次数分别是( )A.-1,3B.1,3C.13,3 D.-13,3 2.下列式子中代数式的个数为( ) ①-2ab ,②π,③s =12(a +b )h ,④x +3≥y ,⑤a (b +c )=ab =ac ,⑥1+2 A .2B .3C .4D .53.下列说法中,正确的是( ) A .5mn 不是整式 B .abc 的系数是0C .3是单项式D .多项式22x y xy-的次数是54.如果m ,n 都是正整数,那么多项式 的次数是( ) A.B.mC.D.m ,n 中的较大数5.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元D. 万元6.已知两个完全相同的大长方形,长为 ,宽为 ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么 与 之间的关系是( )A. B.C.D.7.若单项式212a b a b x y +-与333x y -是同类项,则b a 的值是( ) A .2B .1C .3D .48.[]()a b c --+去括号后应为( ) A .-a-b+cB .-a+b-cC .-a-b-cD .-a+b+c9.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( )A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 210.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .2211. 等于( ) A.B.C.D.12.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8二、填空题13.已知212a a -+=人教版初中数学七年级上册第2章《整式加减》单元测试卷(含答案)一、选择题(每小题3分,共24分)1.单项式32yx -的系数是( )A.0B.-1C.31 D.31- 2.小明说2a 2b 与5-2ab 是同类项;小颖说2a 2b 与ab 2c 是同类项;小华说2a 2b 与-ba 2是同类项,他们三人说法正确的是( )A 小明 B.小颖 C.小华 D.三人都正确 3.多项式-x 2-3x-2的各项分别是( )A.-x 2,3x ,2B.-x 2,-3x ,-2C.x 2,3x ,2D.x 2,-3x ,-24.若单项式5x a-2y 3与-32x 4y b的和仍是单项式,则a ,b 的值分别为( ) A.4,3 B.4,-3 C.6,3 D.6,-35.下面四道去括号的题目是从小马虎的作业本上摘录下来的,其中正确的是( )A.2(x-y )=2x-yB.-(m-n )=-m+nC.2(a+61)=2a+121D.-(3x 2+2y )=-3x 2+2y 6.化简(x-3y )-(-3x-2y )的结果是( ) A.4x-5y B.4x-y C.-2x-5y D.-2x-y 7.化简x-[y-2x-(x-y )]等于( ) A.-2x B.2x C.4x-2y D.2x-2y8.如果m-n=51,那么-3(n-m )的结果是( ) A.53 B.35 C.53 D.151二、填空题(每小题3分,共24分)9.代数式2x 2y-3x+xy-1-x 3y 2是_______次________项式,次数最高的项是_______. 10.单项式-3m 与3m 的和是________,差是________.11.今年来,国家加大房价调控力度.受此影响,某地房价第二、第三季度不断下跌,第二季度下降a 元/m 2,第三季度又下降了第二季度所降房价的2倍,则该地两季度房价共下降________元/m 2.12.把(a-b )当作一个整体,多项式5(a-b )+7(a-b )-3(a-b )合并同类项的结果是________.13.若x-y=3,则5-x+y=________.14.如果单项式-21x 2y 3与0.35x m y n 是同类项,则(m-n )2019=_______. 15.一个多项式与3x 2-2+x 的和是x 2-2x ,则这个多项式是_______.16.长方形的一边长为a-3b ,一邻边比这边长2a+b ,则这个长方形的周长为________. 三、解答题(共52分) 17.(8分)已知多项式-73x m+1y 3+x 3y 2+xy 2-5x 5-9是六次五项式,单项式32a 2nb 3-mc 的次数与多项式的次数相同,求n 的值.18.(12分)先化简,再求值:(1)2+(-6x+1)-2(3-4x ),其中x=-21; (2)(2a 3-3a 2b-2ab 2)-(a 3-2ab 2+b 3-a )+(3a 2b-a 3-b 3-b ),其中a=2019,b=-2.19.(10分)贝贝和晶晶两人共同化简:2(m 2n+mn )-3(m 2n-mn )-4m 2n ,他们的化简过程分别如下:贝贝:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n-3mn-4m 2n=-5m 2n-mn. 晶晶:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+mn-3m 2n-mn-4m 2n=-5m 2n. 如果你和他们是同一个学习小组,你会支持谁?为什么?若你认为他们的计算都不正确,请把你认为正确的化简写下来.20.(10分)有一道题:“先化简,再求值:15a 2-(6a 2+5a )-(4a 2+a-3)+(-5a 2+6a+2019)-3,其中a=2020.”乐乐做题时,把“a=2020”错写成“a=-2020”.但他的计算结果却是正确的,你知道这是为什么吗?21.(12分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x 份(x 为正整数) (1)根据题意,填写下表创新提高(满分50分,时间30分钟) 一、选择题(每小题4分,共12分)1.若m 2+mn=2,nm+n 2=-1,则m 2+2mn+n 2的值为( ) A.0 B.-1 C.1 D.无法确定2.若A=2x 2+xy+3y 2,B=x 2-xy+2y 2,则当x=2,y=1时,A-B 的值为( ) A.0 B.1 C.6 D.93.若(ax 2-2xy+y 2)-(-ax 2+bxy+2y 2)=6x 2-9xy+cy 2成立,则a 、b 、c 的值分别是( ) A.a=3,b=-7,c=-1 B.a=-3,b=7,c=-1 C.a=3,b=7,c=-1 D.a=-3,b=-7,c=1 二、填空题(每小题5分,共15分)4.若多项式3x 3-2x 2+3x-1与多项式x 2-2mx 3+2x+3的和是关于x 的二次三项式,则m=________.5.请你写出一个以32为系数,包含z y x 、、的五次单项式_________. 6.若多项式2x 2+3x+1的值为0,则多项式4x 2+6x+2021的值为_________. 三、解答题(共23分)7.(11分)由于看错了运算符号,“小马虎”把一个整式减去多项式2ab-3bc+4,误认为加上这个多项式,结果得出答案是2bc-1-2ab ,问原题的正确答案是多少?8.(12分)已知m 是绝对值最小的有理数,且-2a m+2b y 与3a x b 2是同类项,试求2x 3-3xy+6y 2-3mx 3+mxy-9my 2的值.参考答案 基础训练一、1.D 2.C 3.B 4.C 5.B 6.B 7.C 8.C 二、9.五,五,-x 3y 2 10.0,-6m 11.3a 12.9(a-b ) 13.2 14.-1 15.-2x 2-3x+2 16.8a-10b 三、17.解:由多项式是六次五项式可知m+1+3=6,所以m=2.又单项式与单项式的次数相同,所以2n+3-m+1=6,即2n+3-2+1=6,所以n=2. 18.解:(1)原式=2-6x+1-6+8x=2x-3.当x=-21时,原式=2×(-21)-3=-4. (2)原式=2a 3-3a 2b-2ab 2-a 3+2ab 2+b 3+a+3a 2b-a 3-b 3-b=a-b. 当a=2019,b=-2时,原式=2019-(-2)=2021. 19.贝贝、晶晶的计算都不正确.正确答案如下:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n+3mn-4m 2n=-5m 2n+5mn. 20.解:原式=15a 2-6a 2-5a-4a 2-a+3)-5a 2+6a+2019-3=2019.由于计算后的结果中不含字母a ,可知此代数式的值与字母a 的取值无关.所以乐乐将a=2020错写成a=-2020,计算的结果不变. 21. 解:(1)甲每份材料收1元印刷费,另收150元的制版费; 故答案为160,170,150+x ; 乙每份材料收2.5元印刷费, 故答案为25,50,2.5x ;(2)对甲来说,印刷大于800份时人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题一、选择题(每小题3分,共18分) 1. 在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个 D .8个 2.计算3a 3+a 3,结果正确的是( ) A .3a 6B .3a 3C .4a 6D .4a 33.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6 B . -6 C . 12 D . -124.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( ) A .-2 B .25. 若x =1时,ax 3+bx +7式子的值为2033,则当x =﹣1时,式子ax 3+bx +7的值为( ) A .2018 B .2019 C .﹣2019 D .﹣20186. 据市统计局发布:2018年我市有效发明专利数比2017年增长12.5%.假定2019年的年增长率保持不变,2017年和2019年我市有效发明专利分别为a 万件和b 万件,则( ) A .b =(1+12.5%×2)a B .b =(1+12.5%)2a C .b =(1+12.5%)×2 a D .b =12.5%×2 a二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________.10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2019的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1. 16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值. 19.已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值;(2)若A -2B 的值与y 的取值无关,求x 的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a 元,学生每人b 元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a 、b 的式子表示)?并计算当a =300,b =200时的旅游费用. 五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,当a=1,b=2时,求A ﹣2B+3C 的值(先化简再求值).22.阅读材料:“如果代数式5a +3b 的值为-4,那么代数式2(a +b )+4(2a +b )的值是多少?”我们可以这样来解:原式=2a +2b +8a +4b =10a +6b .把式子5a +3b =-4两边同乘以2,得10a +6b =-8.仿照上面的解题方法,完成下面的问题: (1)已知a 2+a =0,求a 2+a +2019的值;(2)已知a -b =-3,求3(a -b )-a +b +5的值;(3)已知a 2+2ab =-2,ab -b 2=-4,求2a 2+5ab -b 2的值. 六、(本大题共12分) 23.探究题.用棋子摆成的“T”字形图,如图所示:(1)(2)写出第(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T ”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参 考 答 案:一、选择题 1.B 2.D 3.D 4.A 5.C 6.B二、填空题7.﹣2 3 8.111a +80 9.-8 10.111.2c -a -b 解析:由图可知a <c <0<b ,∴a -c <0,b -c >0,∴原式=c -a -(b -c )=c -a -b +c =2c -a -b .故答案为2c -a -b .12.-4 解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,∴数据从左到右依次为-4、6、b 、-4、6、b 、-4、6、-2.由题意易得第9个数与第6个数相同,即b =-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4. 三、解答题 13.解:解:(1)原式=4a ;(3分)(2)原式=3a ﹣2﹣3a+15=13;(6分) 14.解:2(x -3y )-(2y -x )=2x -6y -2y +x =3x -8y .(6分) 15.解:原式=-9y +6x 2+3y -2x 2=4x 2-6y .(3分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2019=0+2019=2019.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(人教版七年级数学第二章整式的加减单元练习(含答案)一、单选题1.单项式 的系数和次数分别是( ) A.2,2B.2,3C.3,2D.2,42.下列说法正确的是( ) A .ab +c 是二次三项式 B .多项式2x 2+3y 2的次数是4 C .0是单项式 D .34ba是整式 3.下列各式中,代数式有( )个 (1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .54.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )25.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy6.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5 B .系数是1,次数是6 C .系数是-1,次数是5D .系数是-1,次数是67.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +8.有理数a ,b 在数轴上对应点的位置如图所示,则a a b b a -+--化简后的结果是( )A .aB .bC .2a +bD .2b −a9.……依次观察左边三个图形,并判断照此规律从左到右第2019个图形是 ( ) A .B .C .D .10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米11.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 112.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑥个图形面积为( )A.20B.30C.42D.56二、填空题13.计算()()3242x y x y --+-的结果是__________. 14.多项式2239x xy π++中,次数最高的项的系数是_______.15.请将 4 y 2-25xy 3- 5 y 按字母 y 的降幂排列____________ 16.已知212a a -+=,那么21a a -+的值是______________.三、解答题17.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy - 人教版数学七上第二章单元质量检测试卷及答案一、选择题(共10小题;共30分)1. 已知 ,则 的值为A. B. C. 或 D. 或2. 下列说法正确的是A. 单项式 的系数是 ,次数是B. 单项式 的系数是 ,次数是C. 是二次三项式D. 单项式 的次数是 ,系数为3. 下面的计算正确的是A. B.C. D.4. 下列式子,符合代数式书写格式的是A. B. C. D.5. 下列说法中,正确的是A. 一定是负数B. 一定是正数C. 一定是正数D. 一定是正数6. 化简结果为A. B. C. D.7. 单项式与单项式是同类项,则的值是A. B. C. D.8. 已知的值为,则代数式的值为A. B.。
人教版七年级数学上册第二章测试卷(附答案)
A.第504个正方形的左下角 B.第504个正方形的右下角
C.第505个正方形的右上角 D.第505个正方形的左上角
12.按图中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是( )
A. B. C. D.
四、解答题(共3题;共28分)
23.计算:
(1)(﹣x)•x2•(﹣x)6(2)(y4)2+(y2)3•y2.
24.毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:
名称及图形
几何点数
层数
三角形数
正方形数
五边形数
六边形数
第一层几何点数
1
1
1
1
第二层几何点数
2
3
4
5
第三层几何点数
3
5
7
9
…
…
…
…
…
(1)求搭建第4个几何体需要的小立方体个数;
(2)为了美观,若将每个几何体的所有露出部分(不包含底面)都喷涂油漆,已知喷涂1cm2需要油漆0.2g.
①求喷涂第4个几何体需要油漆多少g?
②求喷涂第n个几何体需要油漆多少g?(用含n的代数式表示)
答案
一、单选题
1. C 2. D 3. A 4. B 5. C 6. B 7. B 8. A 9. B 10.B 11. D 12. B
=9x3y+9x2y﹣9x2y2﹣9xy2﹣9x2y+3xy2+6y3+6x2y2+6xy2﹣6xy3﹣6y3
=9x3y﹣3x2y2﹣6xy3,
当 ,y=2时,原式=9×(﹣ )3×2﹣3×(﹣ )2×22﹣6×(﹣ )×23
人教版七年级数学上册第二章检测卷及答案
人教版七年级数学上册第二章检测卷及答案人教版七年级数学上册第二章检测卷及答案(时间:120分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分) 1.用代数式表示“a 的3倍与b 的和”,正确的是( B ) A .3a -b B .3a +bC .a -3bD .a +3b2.下列各项中,不是同类项的是( C ) A .a 2b 2和7a 2b 2B .3a 5和-a 52 C.12x 2y 和12xy 2D .7和823.下列各式:-12mn ,m ,8,1a ,x 2+2x +6,2x -y 5,x 2+4y π,1y中,整式有( C )A .3个B .4个C .6个D .7个4.下列计算正确的是( B ) A .8a +2b +(5a -b)=13a +3b B .(5a -3b)-3(a -2b)=2a +3b C .(2x -3y)+(5x +4y)=7x -y D .(3m -2n)-(4m -5n)=m +3n5.一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( B )A .x 2-4xy -2y 2B .-x 2+4xy +2y 2C .3x 2-2xy -2y 2D .3x 2-2xy6.三角形的第一条边长是a+b,第二条边比第一条边短5-a,第三条边比第二条边长a+2b,则三角形的周长是(A )A.6a+5b -10 B.5a+6b-10C.6a-5b+5 D.5a-6b-57.如图,一块砖的外侧面积为x,那么图中残留部分墙面的面积为(B)A.4xB.12xC.8xD.16x8.若使(ax2-2xy+y2)-(-x2+bxy+2y2)=5x2-9xy+cy2恒成立,则a,b,c的值分别为( C )A.4,-7,-1 B.-4,-7,-1C.4,7,-1 D.4,7,19.已知a,b两数在数轴上的位置如图所示,则化简代数式|a+b|-|a-1|+|b+2|的结果是(B)A.1 B.2b+3C.2a-3 D.-110.(自贡中考)填在下面各正方形中的四个数之间都有相同的规律,根据这种规律m 的值为( C )A .180B .182C .184D .186二、填空题(本大题共8小题,每小题3分,共24分) 11.单项式-52x 2y 28的系数是-258 ,次数是 4 . 12.一个只含字母x 的二次三项式,它的二次项系数比一次项系数小1,一次项系数比常数项又小1,常数项为-2 3,则这个多项式为-83x 2-53x -23 .13.若单项式-2a m b 4与3a 2b n +2的和是单项式,则m +n =__4__. 14.已知x +y =3,xy =1,则代数式(5x +2)-(3xy -5y )的值为__14__.15.在计算A -(5x 2-3x -6)时,小明同学将括号前面的“-”号抄成了“+”号,得到的运算结果是-2x 2+3x -4,则多项式 A 是-7x 2+6x +2 .16.为了鼓励节约用电,某地对居民用电收费标准作了如下规定:一个月中如果每户用电不超过50度,那么每度电按a 元收费;如果超过50度,那么超过部分按每度(a +0.5)元收费.某居民用户在一个月内用电98度,他这个月应缴纳电费 (98a +24) 元.17.如果关于x 的多项式3x 2+2x -1与ax 2+x +a 的和没有x 2项,则这个和是__3x -4__.18.观察下面一组图形,寻找其变化规律填空.第10个图形中三角形的个数为 37 个;第n 个图形中,三角形的个数为 (4n -3) 个.三、解答题(本大题共7小题,共66分) 19.(8分)合并下列同类项: (1)4a 2-3b 2+2ab -4a 2-3b 2+5ba ;解:原式=-6b 2+7ab.(2)5xy +3y 2-3x 2-xy +4xy +2x 2-x 2+3y 2. 解:原式=8xy +6y 2-2x 2.20.(8分)化简下列各式:(1)2x -? ????3x -x -12+?5x -32(x -2);解:原式=2x -3x +x -12+5x -32x +3=-x +x 2-12+5x -32x +3=3x +212.(2)5(a2b-3ab2)-2(a2b-7ab2)-(a2b+2ab2).解:原式=5a2b-15ab2-2a2b+14ab2-a2b-2ab2=2a2b-3ab2.21.(8分)化简求值:3x2y-[2x2y-(2xyz-x2z)-4x2z]-xyz,其中x=2,y=-3,z=1.解:原式=3x2y-2x2y+2xyz-x2z+4x2z-xyz=x2y+xyz+3x2z.当x=2,y=-3,z=1时,原式=22×(-3)+2×(-3)×1+3×22×1=-6.22.(10分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让王红同学顺便给出了一组a,b的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误.”亲爱的同学们你相信吗?你能说出其中的道理吗?解:(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)=7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+3=(7a3+3a3-10a3)+(-6a3b+6a3b)+(3a2b-3a2b)+3=3.则不管a,b取何值,整式的值都为3.23.(10分)已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值; (2)若A -2B 的值与y 的值无关,求x 的值.解:(1)因为A =2x 2+xy +3y -1,B =x 2-xy ,所以A -2B =2x 2+xy +3y -1-2(x 2-xy) =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1. 因为(x +2)2+|y -3|=0,∴x =-2,y =3. 所以A -2B =-18+9-1=-10.(2)因为A -2B =y(3x +3)-1,A -2B 的值与y 值无关,所以3x +3=0,解得x =-1.24.(10分)一辆出租车从A 地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>9且x<26,单位:km ).(1)求经过连续4次行驶后,出租车所在的位置; (2)这辆出租车一共行驶了多少路程?解:(1)x +? ????-12x +(x -5)+2(9-x )=13-12x ,因为x >9且x <26,所以13-12x >0,故经过连续4次行驶后这辆出租车所在的位置是向东? ?13-12x km.(2)|x |+-12x +|x -5|+|2(9-x )|=92x -23.故这辆出租车一共行驶了? ??92x -23km 的路程.25.(12分)有一个长方形娱乐场所,其设计方案如图所示,其中半圆形休息区和长方形游泳池以外的地方都是绿地.试解答下列问题:(1)游泳池和休息区的面积各是多少? (2)绿地的面积是多少?(3)如果这个娱乐场所的长是宽的1.5倍,要求绿地面积占整个面积的一半以上.小亮同学根据要求,设计的游泳池的长和宽分别是长方形娱乐场所的长和宽的一半,他的设计符合要求吗?为什么?解:(1)游泳池的面积为mn ;休息区的面积为12×π×? ??n 22=18π n 2.(2)绿地的面积为ab -mn -18πn 2.(3)符合要求,理由如下:由已知得a =1.5b ,m =0.5a ;n =0.5b. 所以? ????ab -mn -18πn 2-12ab =38b 2-π32b 2>0.所以ab -mn -18πn 2>12ab.所以小亮设计的游泳池符合要求.。
人教版七年级数学上册第二章测试卷及答案解析【含详细知识点】
人教版七年级数学上册第二章测试卷及答案解析【含详细知识点】第二章测试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.下列式子中,是单项式的是( ) A.x +y 2 B .-12x 3yz 2C.5xD .x -y 2.下列各式计算正确的是( )A .3x +x =3x 2B .-2a +5b =3abC .4m 2n +2mn 2=6mnD .3ab 2-5b 2a =-2ab 23.按某种标准,多项式x 3-3x 与ab 2+4属于同一类,则下列符合此类标准的多项式应是( )A .x 3+y 2B .ab 2+3c -2C .a 2+6xD .x 2y4.如图,用式子表示三角尺的面积为( )A .ab -r 2 B.12ab -r 2 C.12ab -πr 2 D .ab5.已知P =-2a -1,Q =a +1且2P -Q =0,则a 的值为( )A .2B .1C .-0.6D .-16.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形……依此规律,第十个图形中三角形的个数是( )A .50个B .52个C .54个D .56个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式-2x 2y5的系数是________,次数是________.8.化简:(4a -2)-3(-1+5a )=________.9.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.10.已知多项式(3-b )x 5+x a +x -b 是关于x 的二次三项式,则a +b 2的值为________. 11.有一组多项式:a +b 2,a 2-b 4,a 3+b 6,a 4-b 8,…,请观察它们的构成规律,用你发现的规律写出第8个多项式是____________,第n 个多项式是____________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)-3m +2m -5m ;(2)(2a 2-1+2a )-(a -1+a 2).14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.有理数a ,b ,c 在数轴上的位置如图所示,化简:|b -a |-|c -b |+|a +b |.19.已知A =2x 2+xy +3y -1,B =x 2-xy .(1)若(x +2)2+|y -3|=0,求A -2B 的值;(2)若A -2B 的值与y 的取值无关,求x 的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a 元,学生每人b 元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a 、b 的式子表示)?并计算当a =300,b =200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)(2)(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案与解析1.B 2.D 3.A 4.C 5.C 6.D 7.-25 38.-11a +1 9.111a +80 10.1111.a 8-b 16 a n +(-1)n +1b 2n12.-4 解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,∴数据从左到右依次为-4、6、b 、-4、6、b 、-4、6、-2.由题意易得第9个数与第6个数相同,即b =-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.13.解:(1)原式=-6m .(3分)(2)原式=2a 2-1+2a -a +1-a 2=a 2+a .(6分)14.解:2(x -3y )-(2y -x )=2x -6y -2y +x =3x -8y .(6分)15.解:原式=-9y +6x 2+3y -2x 2=4x 2-6y .(3分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由数轴可知,c <b <0<a ,|a |>|b |,∴b -a <0,c -b <0,a +b >0,(3分)∴原式=-(b -a )+(c -b )+(a +b )=-b +a +c -b +a +b =2a -b +c .(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分)21.解:(1)l =2πr +2a .(3分) (2)S =πr 2+2ar .(6分)(3)当a =8m ,r =5m 时,l =2π×5+2×8=10π+16≈47.4(m),S =π×52+2×8×5=25π+80≈158.5(m 2).(9分)22.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分) (2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(-4)=-8.(9分)23.解:(1)11 14 32(3分)(2)第n 个“T”字形图案共有棋子(3n +2)个.(6分)(3)当n =20时,3n +2=3×20+2=62(个).即第20个“T”字形图案共有棋子62个.(9分)(4)这20个数据是有规律的,第1个与第20个数据的和、第2个与第19个数据的和、第3个与第18个数据的和……都是67,共有10个67.所以前20个“T”字形图案中,棋子的总个数为67×10=670(个).(12分)第二章 整式的加减知识点详细梳理一.用字母表示数(代数初步知识)1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式;用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc 。
2019秋季人教版七年级数学(上)第2章《整式的加减》单元检测题(含答案)
七年级数学(上)第2章《整式的加减》单元检测题一、选择题(每小题3分,共30分 ) 1.下列各式中不是单项式的是( )A .3a B . 1-mC .0D .37 2.甲数比乙数的3倍大2,若乙数为x ,则甲数为( )A .3x +2B .2x +3C .123-xD . 123+x3.如果312+n m x y 与-3x 12y n 是同类项,那么m ,n 的值分别是( )A .m =-2,n =3B .m =2,n =3C . m =-3,n =2D . m =3,n =4 4.代数式-32xy 4的系数与次数分别是( )A .-2,4B .+9,5C .-9,5D .-8,4 5.(2018烟台)已知a -b =2,则2a -2b -3的值是( ) A .1 B .-1 C .-5 D .-3 6.从2a +5b 减去6a -6b 的一半,应当得到( ) A . 4a -b B . b -aC . -a +8D . 5a +2b 7.减去3m 等于5m 2-3m -5的式子是( )A .5(m 2-1) B .5m 2-6m -5 C .5(m 2+1) D .-(5m 2+6m -5) 8.在排成每行七日的日历表中取下一个3×3方块,若所有日期数之和为207.则n 的值为( ) A .21 B .23 C .15 D .19 9.已知a -b =5,c +d =2.则(b +c )-(a -d )的值是( )A .-3B .3C .-5D .7第8题图 第10题图10,填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .74B .92C .158D .176二、填空题(每小题3分,共18分)11.当x =5,y =4时,式子2x 2-y 的值是 .12.把(x -y )看作一个整体,合并同类项:7(x -y )+2(x -y )-4(x -y )= .13.一根铁丝的长为7a +8b ,剪下一部分围成一个长为a 宽为b 的长方形,则这根铁丝还剩下 . 14.已知单项式3a m b 4与312--n a b 的和是单项式,则m = ,n = .15.已知A =3x 2-5x +3,B =2x 2+2x -1,则3B -A 的结果是 .16.已知:数a ,b ,c 在数轴上的对应点如图所示,化简|a +b |-|-3c |-|c -a |的值是 .三、解答题(共8题,共72分)17,(8分)化简(1)5x 2+2xy -3y 2-(3xy -4y 2+3x 2); (2)5(x 2-5x )-3(2x 2+3x ) 04282622464484c18.(8分)已知A=3x2-3xy+2y2,B=3x2+xy-4y2,求:(1)A+B;(2)A-(B-2A).19.(8分)已知|x+2|+(y-12)2=0,求5xy-[(x2+4xy-y2)-(x2+3xy)]的值20.(8分)有这样一道题:“当a=2017,b=-2018时,求多项式8a3-5a3b+3a2b+4a3+5a3b-3a2b-12a3+2016值.”小明说:本题中a=2017,b=-2018是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由21.(8分)(2018中山)如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米(1)分别用代数式表示草地和空地的面积(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积?(计算结果保留到整数)22.(10分)已知:A=x3+2x+3,B=2x3-mx+2.(1)若m=5,求A-(3A-2B)的值(2)若2A-B的值与x无关,求2m2-[3m2-(4m-7)+2m]的值23.(10分)幻方的历史很悠久,传统幻方最早出现在夏禹时代的“洛书”。
人教版七年级上册数学第二章检测试题(含答案)
人教版七年级上册数学第二章检测试题(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题4分,共48分)1.下列代数式书写正确的是( )(A)-1a (B)1abc(C)a(x+y) (D)x÷y2.代数式,3xy,-x2-18,,-8中,不是整式的有( )(A)1个(B)2个(C)3个(D)4个3.下列式子计算正确的是( )(A)3x2+2x3=5x5(B)3a2-a2=3(C)x+2=2x (D)0.25a2-a2=04.下列说法错误的是( )(A)-xy的系数是-1 (B)πr2h是系数为π的三次单项式(C)2×108ab2c的次数是4 (D)多项式中二次项的系数是-35.-[a-(b-c)]去括号应得( )(A)-a+b-c (B)-a-b+c(C)-a-b-c (D)-a+b+c6.下列各组中的两个单项式能合并的是( )(A)4和4x (B)3x2y3和-y2x3(C)2ab2和100ab2c (D)m和7.如图,边长为m+3的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )(A)m+3 (B)m+6(C)2m+3 (D)2m+68.当x=-3时,多项式ax5+bx3+cx-5的值是7,那么当x=3时,它的值是( )(A)-3 (B)-7 (C)7 (D)-179.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…,按照上述规律,第2 018个单项式是( )(A)2 018x2 018(B)4 036x2 017(C)4 035x2 018(D)4 035x2 01710.出租车收费标准为:起步价6元(不超过3千米收费6元),3千米后每千米1.4元(不足1千米按1千米算).小明坐车x(x>3)千米,应付车费( )(A)6元(B)6x元(C)(1.4x+1.8)元(D)1.4x元11.关于x的多项式3x3+2mx2-5x+7与多项式8x2-3x+5相加后不含二次项,则常数m的值为( )(A)2 (B)-4 (C)-2 (D)-812.已知有理数a,b在数轴上的位置如图所示,则化简|a-b|+a的结果是( )(A)a (B)b (C)2a (D)2a+b二、填空题(本大题共4小题,每小题4分,共16分)13.写出一个含有字母x,y的二次三项式,使它的二次项系数为-3,则这个二次三项式为.14.若整式2x2+5x+3的值为8,那么整式6x2+15x-10的值是.15.如图所示,阴影部分的面积是.(用含有x,y的式子表示)16.如图所示,在由火柴棒拼出的一系列的图形中,第n个图形由n个正方形组成.则第n个图形中,火柴棒的根数是.三、解答题(本大题共8小题,共86分,请写出必要的解答步骤或证明过程)17.(8分)化简:(1)3(x2-y2)+(y2-z2)-4(z2-y2);(2)-2(ab-3a2)-[2b2-(5ab-5a2)+2ab].18.(8分)若规定=ad-bc,且=3,求2x-6y-5的值.19.(10分)化简求值:(1)已知A=x3-2x2+4x+3,B=x2+2x-6,C=x3+2x-3,求A-(B+C)的值,其中x=-2.(2)已知A=4x2-4xy-3y2,B=x2-xy-5y2,求(3A-2B)-(2A+B)的值.20.(10分)一艘轮船顺水航行3小时,逆水航行2小时.(1)已知轮船在静水中前进的速度是m千米/ 时,水流的速度是a千米/ 时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是80千米/ 时,水流的速度是3千米/ 时,则轮船共航行多少千米?21.(12分)已知代数式(x2+ax-2y+7)-(bx2-2x+9y-1)的值与字母x的取值无关,求(a+b)2 019的值.22.(12分)小明计算5x2-4x+8加上某多项式时,误将加号写成减号,得到的结果是-7x2+9x+18.请帮他求出正确结果.23.(12分)某公司在A,B两地分别有相同型号的机器17台和15台,现要运往甲地18台,乙地14台,从A,B两地运往甲、乙两地的费用如表:甲地(元/台) 乙地(元/台) A地600 500B地400 800(1)如果从A地运往甲地x台,那么从A地运往乙地多少台?从B地运往甲地多少台?从B地运往乙地多少台?(2)试求出完成以上调运所需总费用;(3)求当x=16时,调运所需的总费用.24.(14分)仔细观察下面的日历,回答下列问题:(1)在日历中,用方框圈出九个日期(如图),求出这九个数的和;(2)若将正方形框上下左右移动,方框中的九个数之和能等于99吗?如果能,请从小到大写出这九个数;如果不能,请说明理由.(3)任意用正方形圈出九个日期,你能发现方框中九个数的和满足什么结论吗?第二章检测试题1.C2.A3.D4.D5.A6.D7.C8.D9.C 10.C11.B 12.B13.-3xy+x+1(答案不唯一) 14.5 15.xy 16.3n+117.解:(1)原式=3x2-3y2+y2-z2-4z2+4y2=3x2+2y2-5z2.(2)原式=-2ab+6a2-(2b2-5ab+5a2+2ab)=-2ab+6a2-2b2+5ab-5a2-2ab=ab+a2-2b2.18.解:由题意可知5(x-y)-2(2x-y)=3,即x-3y=3.2x-6y-5=2(x-3y)-5=2×3-5=1.19.解:(1)A-(B+C)=(x3-2x2+4x+3)-[(x2+2x-6)+(x3+2x-3)]=-3x2+12,当x=-2时,原式=-3×(-2)2+12=0.(2)(3A-2B)-(2A+B)=A-3B=(4x2-4xy-3y2)-3(x2-xy-5y2)=x2-xy+12y2.20.解:(1)轮船共航行路程为(m+a)×3+(m-a)×2=(5m+a)千米.(2)把m=80,a=3代入(1)得到的式子,得5×80+3=403(千米).答:轮船共航行403千米.21.解:原式=(1-b)x2+(a+2)x-11y+8,由于化简后的值与字母x的取值无关, 所以1-b=0,a+2=0,故a=-2,b=1.(a+b)2 019=(-2+1)2 019=-1.22.解:(5x2-4x+8)-(-7x2+9x+18)=5x2-4x+8+7x2-9x-18=12x2-13x-10.正确计算:(5x2-4x+8)+(12x2-13x-10)=5x2-4x+8+12x2-13x-10=17x2-17x-2.23.解:(1)从A地运往乙地(17-x)台,从B地运往甲地(18-x)台,从B地运往乙地(x-3)台.(2)所需总费用为600x+500(17-x)+400(18-x)+800(x-3)=600x+8 500-500x+7 200-400x+800x-2400=(500x+13 300)元.(3)当x=16时,500x+13 300=21 300(元).即调运所需的总费用为21 300元.24.解:(1)6+7+8+13+14+15+20+21+22=126.(2)能等于99.设正中间的数为x,则方框中的九个数如图所示.x-8 x-7 x-6x-1 x x+1x+6 x+7 x+8 令(x-8)+(x-7)+(x-6)+(x-1)+x+(x+1)+(x+6)+(x+7)+(x+8)=99, 9x=99,x=11,所以,这九个数是3,4,5,10,11,12,17,18,19.(3)方框中九个数的和是正中间数的9倍.。
人教版数学七年级上册第二单元测试试卷(含答案)
人教版数学7年级上册第2单元·时间:120分钟 满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)下列代数式中,不是单项式的是( )A .a 2B .2aC .a 2D .a +22.(3分)在下列单项式23xy 2,13πrh ,5x ,1中,次数是0的是( )A .23xy 2B .13πrh C .5x D .13.(3分)多项式12x 6y 2―2x 3y 4+3的次数和项数分别为( )A .7,2B .8,3C .8,2D .7,34.(3分)多项式x 2﹣2x 2y +3y 2各项系数和是( )A .1B .2C .5D .65.(3分)下列计算正确的是( )A .2ab ﹣ab =abB .2ab +ab =2a 2b 2C .4a 3b 2﹣2a =2a 2bD .﹣2ab 2﹣a 2b =﹣3a 2b 26.(3分)对于式子a bc +b ca+c ab 的描述,正确的是( )A .该代数式的值必大于0B .该代数式的值必小于0C .该代数式的值可能为0D .该代数式的值不能为07.(3分)若3x ﹣2y ﹣7=0,则6x ﹣4y ﹣6的值为( )A .20B .8C .﹣8D .﹣208.(3分)设(x ﹣1)3=ax 3+bx 2+cx +d ,则a ﹣b +c ﹣d 的值为( )A .2B .8C .﹣2D .﹣89.(3分)下列添括号正确的是( )A .﹣b ﹣c =﹣(b ﹣c )B .﹣2x +6y =﹣2(x ﹣6y )C .a ﹣b =+(a ﹣b )D .x ﹣y ﹣1=x ﹣(y ﹣1)10.(3分)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A.8x元B.10(100﹣x)元C.8(100﹣x)元D.(100﹣8x)元二、填空题(共5小题,满分15分,每小题3分)11.(3分)单项式―34πx2y的系数是 .12.(3分)若13x2y a+3与0.4x1﹣b y4是同类项,则a= ,b= .13.(3分)在春季绿化活动中,榕榕栽种了一棵小树,栽种后测得树高约2.1米,预估今后每年长0.3米,则n年后的树高为 米.14.(3分)已知两个单项式2x3y m与﹣2x n y2的和为0,则m+n的值是 .15.(3分)已知有理数x、y满足|x﹣3|+(2y+4)2=0,则代数式x+y的值为 .三、解答题(共8小题,满分75分)16.(9分)先化简,再求值:(6a2﹣2ab)﹣2(3a2+4ab),其中a=1,b=﹣2.17.(9分)已知x=12,求(2x2―12+3x)―4(x―x2+12)的值.18.(9分)已知a2﹣2a+1=0,求代数式a(a﹣4)+(a+1)(a﹣1)+1的值.19.(9分)下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.例:先去括号,再合并同类项:m(A)﹣6(m+1).解:m(A)﹣6(m+1)=m2+6m﹣6m﹣6= .20.(9分)某演习场中有南北两个演习区,南演习区有一个长方形方队,方队每排有(3a﹣b)名队员,共有(3a+b)排;北演习区有一个正方形方队,方队每排有(a+b)名队员,共有(a+b)排,其中a>b>0.(1)南演习区队员比北演习区多几名?(2)当a=6,b=2时,演习场上共有多少名队员?21.(10分)已知A=x3﹣x2y﹣y2(x﹣y).(1)当x=y时,求A的值.(2)当x>0,y>0,且x≠y时,试说明A的值是正数.22.(10分)近日,教育部正式印发《义务教育课程方案》,将劳动从原来的综合实践活动课程中完全独立出来,并在今年9月份开学开始正式施行.某学校率先行动,在校园开辟了劳动教育基地,培养学生劳动品质.已知该劳动教育基地有一块长方形和一块正方形实验田,长方形实验田每排种植(3a﹣b)株豌豆幼苗,种植了(3a+b)排,正方形实验田每排种植(a+b)株豌豆幼苗,种植了(a+b)排,其中a>b>0.(1)该劳动教育基地这两块实验田一共种植了多少株豌豆幼苗?(用含a、b的代数式表示并化简)(2)当a=5,b=2时,求该劳动教育基地这两块实验田一共种植了多少株豌豆幼苗?23.(10分)已知:整式A=(2x﹣3)+(3x+5).(1)化简整式A;(2)若2A+B=5x+6,①求整式B;②在“A□B”的“□”内,填入“+,﹣,×,÷”中的一个运算符号,经过计算发现,结果是不含一次项的整式,请你写出一个符合要求的算式,并计算出结果.参考答案一、选择题(共10小题,满分30分,每小题3分)1.D;2.D;3.B;4.B;5.A;6.D;7.B;8.B;9.C;10.C;二、填空题(共5小题,满分15分,每小题3分)11.―3 4π12.1;﹣113.0.3n+2.114.515.1;三、解答题(共8小题,满分75分)16.解:(6a2﹣2ab)﹣2(3a2+4ab)=6a2﹣2ab﹣6a2﹣8ab=﹣10ab.当a=1,b=﹣2时,原式=﹣10×1×(﹣2)=20.17.解:原式=2x2―12+3x―4x+4x2―2=6x2―x―5 2;∵x=1 2;∴6x2―x―52=6×14―12―52=―32.18.解:a(a﹣4)+(a+1)(a﹣1)+1=a2﹣4a+a2﹣1+1=2a2﹣4a=2(a2﹣2a),∵a2﹣2a+1=0,∴a2﹣2a=﹣1,∴原式=2×(﹣1)=﹣2.19.解:由题知,m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6,∵m2+6m=m(m+6),∴A为:m+6,故答案为:m2﹣6.20.解:(1)根据题意得:(3a﹣b)(3a+b)﹣(a+b)2=9a2﹣b2﹣a2﹣2ab﹣b2=8a2﹣2ab﹣2b2,答:南演习区队员比北演习区多(8a2﹣2ab﹣2b2)名;(2)(3a﹣b)(3a+b)+(a+b)2=9a2﹣b2+a2+2ab+b2=10a2+2ab,当a=6,b=2时,10a2+2ab=10×62+2×6×2=10×36+24=360+24=384,答:演习场上共有384名队员.21.解:(1)将x=y代入A=x3﹣x2y﹣y2(x﹣y)中得:A=x3﹣x2•x﹣x2(x﹣x)=0,则A的值为0;(2)A=x3﹣x2y﹣y2(x﹣y)=x2(x﹣y)﹣y2(x﹣y)=(x﹣y)(x2﹣y2)=(x﹣y)(x﹣y)(x+y)=(x﹣y)2(x+y);∵x>0,y>0,且x≠y,∴x+y>0,(x﹣y)2≠0,∴A的值是正数.22.解:(1)由题意得,(3a﹣b)(3a+b)+(a+b)2=9a2﹣b2+a2+2ab+b2=10a2+2ab.(2)当a=5,b=2时,原式=10×52+2×5×2=270.答:该劳动教育基地这两块实验田一共种植了270株豌豆幼苗.23.解:(1)A=(2x﹣3)+(3x+5)=2x﹣3+3x+5=5x+2;(2)①∵2A+B=5x+6,∴B=5x+6﹣2A=(5x+6)﹣2×(5x+2)=5x+6﹣10x﹣4=﹣5x+2;②∵A+B=(5x+2)+(﹣5x+2)=4,是不含一次项的整式,A﹣B=(5x+2)﹣(﹣5x+2)=10x,是含有一次项的整式,A×B=(5x+2)(﹣5x+2)=4﹣25x2,是不含一次项的整式,A÷B=(5x+2)÷(﹣5x+2)=―5x25x2是分式,不是整式,所以A和B相加或相乘时不含一次项,结果分别是:4和4﹣25x2.。
人教版2024年《数学》七年级上册第2章检测试卷与参考答案[4卷]
人教版2024年《数学》七年级上册第2章检测试卷与参考答案[4卷]一、选择题本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的。
1.单项式的系数和次数依次是( )A .-2,2B .-,4C .-,2D .-,5【答案】D 【解析】单项式的系数为,次数为2+1+2=5,故答案为:D.2.下列代数式中:,,,,,0,整式有( )个A .3个B .4个C .5个D .6个【答案】B【解析】是整式,共4个.故选B.3.多项式3x 3﹣2x 2y 2+x+3是( )A .三次四项式B .四次四项式C .三次三项式D .四次三项式222x yz -121212222x yz -12-1x 2x y +213a b x y π-54yx 212,,,03πx yx y a b -+【答案】B【解析】根据多项式的定义,多项式3x 3−2x 2y 2+x+3有4项,最高项的指数是4,因此是四次四项式.故答案选B.4.计算3a -2a 的结果正确的是()A .1B .aC .-aD .-5a【答案】B【解析】将同类项的系数相加减作为结果的系数,字母和字母的指数不变.原式=3a -2a=(3-2)a=a.5.下列每组单项式中是同类项的是( )A .2xy 与﹣yx B .3x 2y 与﹣2xy 2C .与﹣2xy D .xy 与yz【答案】A 【解析】A 选项:2xy 与﹣yx 含字母相同,并且相同字母的指数也相同,所以是同类项,故是正确的;B 选项:3x 2y 与-2xy 2所含字母相同,但相同字母的指数不同,所以不是同类项,故是错误的;C 选项:-与﹣2xy 所含字母不同,所以不是同类项,故是错误的;D 选项:xy 与yz 所含字母不同,所以不是同类项,故是错误的;故选A .1312x 1312x6.已知,那么的结果为( )A .B .C .D .【答案】A【解析】原式=-3+x -y ,因为x -y =,所以原式=-3+=-,故选A.7.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样【答案】C【解析】设商品原价为x ,甲超市的售价为:x (1﹣20%)(1﹣10%)=0.72x ;乙超市售价为:x (1﹣15%)2=0.7225x ;丙超市售价为:x (1﹣30%)=70%x=0.7x ;故到丙超市合算.故选C .8.某两位数,十位上的数字为a,个位上的数字为b,则这个两位数可表示为 ()A .abB .a+bC .10a+bD .10b+a【答案】C【解析】根据题意,这个两位数可表示为10a+b ,故选C .1x y 2-=()3x y --+52-529292-1212529.某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元【答案】B【解析】据3月份的产值是万元,用把4月份的产值表示出来(1-10%),从而得出5月份产值列出式子1-10%)(1+15%).故选B .10.若一个整式减去a 2-2b 2等于a 2+2b 2,则这个整式是()A .2b 2B .-2b 2C .2a 2D .-2a 2【答案】C【解析】根据题意则有这个整式为:(a 2-2b 2)+(a 2+2b 2)= a 2-2b 2+a 2+2b 2=2 a 2,故选B.11.观察如图所示图形,则第n 个图形中三角形的个数是( )A .2n +2B .4n +4C .4nD .4n -4【答案】C 【解析】根据给出的3个图形可以知道:第1个图形中三角形的个数是4,a a a a第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n 个图形中三角形的个数是4n .故选C .12.如图,两个三角形的面积分别是 7 和 3,对应阴影部分的面积分别是 m 、n , 则 m ﹣n 等于( )A .4B .3C .2D .不能确定【答案】A 【解析】设重叠部分的面积为x .由题意得,m=7﹣x ,n=3﹣x ,所以m ﹣n=(7﹣x )﹣(3﹣x )=4,故选A .13.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:,空格的地方被墨水弄脏了,请问空格中的一项是( )A .+2abB .+3abC .+4abD .-ab()()2222223355a ab b a ab b a +---++=26b -【答案】A【解析】依题意,空格中的一项是:(2a 2+3ab-b 2)-(-3a 2+ab+5b 2)-(5a 2-6b 2) =2a 2+3ab-b 2+3a 2-ab-5b 2-5a 2+6b 2=2ab . 故选A.14.关于x 的多项式3x 3+2mx 2﹣5x+7与多项式8x 2﹣3x+5相加后不含二次项,则常数m 的值为( )A .2B .﹣4C .﹣2D .﹣8【答案】B【解析】因为关于x 的多项式3x 3+2mx 2-5x+7与多项式8x 2-3x+5相加后不含二次项,所以2m+8=0,解得m=-4.故选B.二、填空题本题共4个小题;每个小题3分,共12分,把正确答案填在横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册第二章检测试卷(附
答案)
第二章检测卷
时间:120分钟
满分:120分
题号一二三总分
得分
一、选择题
下列式子中,是单项式的是
A.x+y2
B.-12x3yz2c.5xD.x-
在下列单项式中,与2xy是同类项的是
A.2x2y2
B.3yc.xyD.4x
下面计算正确的是
A.6a-5a=1
B.a+2a2=3a2
c.-=-a+bD.2=2a+b
下列关于多项式5ab2-2a2bc-1的说法中,正确的是
A.它是三次三项式
B.它是四次两项式
c.它的最高次项是-2a2bcD.它的常数项是1
如图所示,三角尺的面积为
A.ab-r2
B.12ab-r2c.12ab-πr2D.ab
已知一个三角形的周长是3-n,其中两边长的和为+n
-4,则这个三角形的第三边的长为
A.2-4
B.2-2n-4
c.2-2n+4D.4-2n+4
若=4x2-5x-11,N=-x2+5x-2,则2-N的结果是
A.9x2-15x-20
B.9x2-15x-9
c.7x2-15x-20D.7x2-10x-20
甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算
A.甲
B.乙c.丙D.一样
当1<a<2时,代数式|a-2|+|1-a|的值是
A.-1
B.1c.3D.-3
0.找出下列图形变化的规律,则第101个图形中黑色正方形的数量是
A.149个
B.150个c.151个D.152个
二、填空题
1.代数式-5n28的系数是
次数为
W.
如果手机通话每分钟收费元,那么通话n分钟收费
元.
3.若二次多项式的一次项系数是-5,二次项系数是8,常数项是-2,且只含一个字母x,请写出这个二次多项式减去-2等于2+3+2的多项式是
W.
如果3x2y3与x+1yn-1的和仍是单项式,那么XX的值为
若代数式22-4-3的值为5,则2-2+1的值为
W.
已知A=5x2-x+n,B=-3y2+2x-1,其中,n为常数.若A+B中不含有一次项和常数项,则代数式2-2n+n2的值为
如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第XX个格子中的整数是
W.
-4abc6b-2…
三、解答题
化简:
a2+5b-2a2-2a+3a-8b;-2;
-+[a2-2].
0.先化简,再求值:
-,其中x=-12;
-2,其中a=-1,b=13.
1.已知A=2x2+xy+3y-1,B=x2-xy.
若2+|y-3|=0,求A-2B的值;
若A-2B的值与y的值无关,求x的值.
2.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,则共需交旅游费多少元?并计算当a=300,b=200时的旅游费用.
3.一个两位数,它的十位数字为a,个位数字为b,其中b≥1.若把它的十位数字和个位数字对调,得到一个新的两位数.
计算新数与原数的和,这个和能被11整除吗?为什么?
计算新数与原数的差,这个差有什么性质?
如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为a,计算:
窗户的面积;
窗框的总长;
若a=1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元.
为了庆祝元旦,某商场在门前的空地上用花盆排列出了
如图所示的图案,第1图案中10个花盆,第2个图案中有19个花盆……按此规律排列下去.
第3个图案中有
个花盆,第4个图案中有
个花盆;
根据上述规律,求出第n个图案中花盆的个数;
是否存在恰好由XX个花盆排列出的具有上述规律的图案?若存在,说明它是第几个图案;若不存在,请说明理由.参考答案与解析
.B 2.c 3.c 4.c 5.c 6.c7.A8.c9.B 10.D
1.-58 3 12.n 13.8x2-5x-2 14.2++2
.1 16.5 17.1 18.-2
.解:原式=3a2-2a2-2a+3a+5b-8b=a2+a-3b.
原式=8x-7y-8x+10y=3y.
原式=-3a2+4ab+a2-4a2-4ab=-6a2.
0.解:原式=2x2-4x-4-2x-1=2x2-6x-5.当x =-12时,原式=2×-122-6×-12-5=12+3-5=-32.
原式=12-2a2b-2ab2+2a2b=12-2ab2.当a=-1,b =13时,原式=12-2××19=12+29=1318.
1.解:∵A=2x2+xy+3y-1,B=x2-xy,∴A-2B=
2x2+xy+3y-1-2x2+2xy=3xy+3y-1.∵2+|y-3|=
0,∴x=-2,y=3,则A-2B=-18+9-1=-10.
∵A-2B=y-1,A-2B的值与y值无关,∴3x+3=0,解得x=-1.
2.解:共需交旅游费为0.8a×2+0.65b×8=.当a=300,b=200时,旅游费用为1.6×300+5.2×200=1520.3.解:根据题意得,原两位数为10a+b,调换后的新数为10b+a.能,理由如下:新数与原数的和为+=11,所以能被11整除.
新数与原数的差为-=9,能被9整除.
.解:窗户的面积为4+π2a22.
窗框的总长为a.
+π2a2×25+a×20=100+252π×12+×1=400+652π≈502.
答:制作这种窗户需要的费用约是502元.
.解:28 37
第n个图案中有10n-=个花盆.
不存在.理由如下:假设存在恰好由XX个花盆排列出的具有上述规律的图案,则有9n+1=XX,解得n=XX9.因为XX9不是整数,所以不存在由XX个花盆排列出的具有上述规律的图案.。