山东大学物理化学英文下1

合集下载

山东大学--网络教育--物理化学1-4--答案

山东大学--网络教育--物理化学1-4--答案

物理化学1一、 下列各题均有四个备选答案 ,请从中选择一个最佳的,用“√”标记 1. 1mol 理想气体于恒压下升温1℃,试求过程中体系与环境交换的功W AA. 8.314JB. 4.18JC. 0D. 29.099J 2. 恒温恒压下,在A 与B 组成的均相体系当中,若A 的偏摩尔体积随浓度的改变而增加时,则B 的偏摩尔体积将如何变化? BA. 增加B. 减少C. 不变D. 不一定 3. 一个人精确地计算了他一天当中做功所需付出的能量,包括工作、学习、运动、散步、读报、看电视,甚至做梦等等,共12800kJ 。

他认为每天所需摄取的能量总值就是12800kJ 。

这个结论是否正确? DA. 正确,因为符合能量守恒定律B. 正确,因为不违背热力学第一定律C. 不正确,因为违背热力学第一定律D. 不正确,因为违背热力学第二定律4. 在一个抽空容器中放入足够多的水、CCl 4(l)及I 2(g)。

水和CCl 4共存时完全不互溶,I 2(g)可同时溶于水和CCl 4之中,容器上部的气相中同时含有I 2(g)、H 2O(g)及CCl 4(g)。

此平衡体系的自由度数为 CA. 0B. 1C. 2D. 3 5. 在三组分体系相图中最多能有几相平衡共存 CA. 5B. 2C. 3D. 4 6. 在300K 下,一个抽空的容器中放入过量的A(s),发生下列反应 A(s) B(s)+3D(g)达到平衡时D(g)的压力*Dp =1.02kPa 。

此反应的标准平衡常数θK (300K)应为 DA. 1.02B. 3.06C. 1.04×10-4D. 1.03×10-67. 反应A(g)+2B(g) 2D(g)在温度T 时的θK =1。

若温度恒定为T ,在一真空容器中通入A 、B 、D 三种理想气体,它们的分压恰好皆为101.3kPa 。

在此条件下,反应 CA.从右向左进行B.从左向右进行C.处于平衡状态D.无法判断8. 下列化合物中,哪个的无限稀释摩尔电导率不可以用m Λ对c 作图外推至c →0而求得 BA. NaClB. CH 3COOHC. CH 3COONaD. HCl 9. 当电池反应自发进行时 AA. E > 0, ΔG < 0;B. E > O, ΔG > 0;C. E < 0, ΔG > 0;D. E < O, ΔG < 0 。

山东大学专业最新排行榜

山东大学专业最新排行榜

山东大学专业最新排行榜山东大学最好的专业排名在山东大学专业排名中,信息与计算科学、数据科学与大数据技术、数学与山东大学王牌专业有山东大学王牌专业有:朝鲜语、信息安全、通信工程、软件工程、集成电路设计与集成系统、临床医学、历史学、生物技术等。

国家级特色专业:朝鲜语、信息安全、通信工程、软件工程、集成电路设计与集成系统、临床医学、历史学、生物技术、电气工程及其自动化、药学、光信息科学与技术、英语、机械设计制造及其自动化、材料成型及控制工程、工商管理、金融工程、法学、自动化、护理学、财政学、生态学、口腔医学、土木工程、热能与动力工程、环境工程。

世界一流学科建设学科:数学、化学。

一级学科国家重点学科:材料科学与工程、数学。

二级学科国家重点学科:文艺学、粒子物理与原子核物理、凝聚态物理、物理化学、内科学(心血管病)、妇产科学、产业经济学、科学社会主义与国际共产主义运动、中国古代史、微生物学、机械制造及其自动化、控制理论与控制工程、人体解剖与组织胚胎学、流行病与卫生统计学。

山东大学招生问答分数相同的考生,会优先录取谁?在投档成绩相同的情况下,按相应省份同分比较规则执行;对没有明确同分比较规则的省份,依次优先录取高考实考分高者、有政策加分或降低分数要求投档者、高考语文加数学成绩高者。

山东大学在哪几个批次招生?山东大学普通类专业在各省第一批次本科进行招生;艺术类专业批次请咨询考生所在省份招生办,一般在提前批次或艺术类本科批次;部分省份有国家专项招生在专项计划相应批次招生。

贵校哪些专业对单科成绩有要求?除美术设计类专业,普通专业对单科成绩没有要求。

美术设计专业考生高考文化成绩达到考生所在省份艺术类本科合格线、高考外语成绩不低于70分(150分制)、美术类专业统考成绩不低于240分(300分制)。

山东大学生物化学精品课程 01-1 Carbohydrate

山东大学生物化学精品课程 01-1 Carbohydrate

第一章糖类Carbohydrate Saccharide一、糖类是地球上最多的化合物糖是世界上存在最多的一类有机化合物,也是人类所需要的最基础的物质。

最简单的定义:多羟基的醛类或酮类化合物,以及它们的衍生物或聚合物。

元素组成:CH 2O ,可以写成C n (H 2O)n二、糖的化学本质z由通式看好象糖是由Carbon+Hydrate组成的,所以起初人们认为糖是碳的“水化物”,所以把糖又称为碳水化合物(Carbohydrate),现在一般不应样称呼。

糖的实质是多羟基醛酮。

z有些糖并不附合上面的通式,如有的糖的氢原子个数多了,或氧原子数少了,或者不同醛酮,而是醇或酸。

z扩大的定义:糖是多羟基的醛、酮、醇、酸。

z在生化研究中,糖的衍生物也属于研究范围。

如:氨基糖、磷酸糖等。

(淀粉颗粒)(糖原颗粒)三、糖的生理功能5、某些复合糖类在细胞的通讯与识别中有 重要地位。

参与细胞与细胞的识别(分子识别), 病毒的吸附及抗原抗体的反应。

与膜蛋白和膜脂相连的糖——通信天线四、 糖的分类一般是按照糖的复杂程度进行分类。

1、单糖(monose): 不能被水解变成更简单的糖的糖类(更小分子的糖)。

四、 糖的分类a 、按照所带官能团的性质可以将单糖分为 醛糖(aldose 如:葡萄糖 glucose) 酮糖(Ketose 如:果 糖 fructose)b、按照糖分子的含碳原子的数目来分, 可以将糖分为三、四、五、六、七等糖类,一般 称为丙、丁、戊、已、庚糖。

戊糖中最重要的是核糖(ribose),核酮糖 已糖中最重要的是glucose, fructose.葡萄糖 醛糖果糖 酮糖四、 糖的分类2、寡糖(oligose):oligo来自希腊文,意为少。

可以被水解的,产生少数的几个单糖的聚合物,一般 含有2-6个单糖分子,单糖之间以糖苷键连接。

最常见的是双糖, 如: 麦芽糖(maltose),乳糖(lactose),蔗糖(sucrose)。

山东大学物理化学期末考试试卷

山东大学物理化学期末考试试卷


(C) add SiO2 aerogel (气溶胶) to make gel electrolyte; (D) heat the electrolyte.
(A) >760 nm; (B) < 400 nm; (C) ca. 600 nm; (D) uncertain.
… …
5. Salt bridge of concentrated KCl solution is usually used for measuring the electromotive forces of cells
(A) reactants cannot be converted completely to product; (B) lnc ~t is linear;
… …
drop on a solid surface is measured to be 15 o. When surfactant which is preferably adsorb on l/s surface
k1
A
C
C + B k2
P
k-1
… …
(D) the dielectric constant of water in the ionic atmosphere is different from free water.
… 3. For the following electrodes, the standard electrode potential of which is the highest?

each question, totally 30 points).
(D) activation energy of transition state theory (E0).

山东大学化学与化工学院

山东大学化学与化工学院

山东大学化学与化工学院《物理化学(2)》理论课程教学大纲编写人:张树永审定人:编制时间:2017年4月审定时间:一、课程基本信息:二、课程描述(不超过200字,须提供中、英文对照描述)物理化学是化学专业的主干基础课程。

以数学、物理学和物理化学(1)为基础,为后续化学课程的学习以及学生未来从事化学研究和开发工作奠定基础。

物理化学(2)主要包括化学动力学、电化学、表面化学、胶体化学、催化化学、光化学、溶液化学等内容。

其蕴含的方法论知识主要包括:变化过程的表示、相关参数的表征、科学研究的特殊方法、一般方法和化学学科思维等。

物理化学(2)具有完善的知识框架和系统的学科思维体系,对学生理解、思考和判断化学现象,提出、分析和解决化学相关问题具有重要的意义。

通过学习物理化学(2),学生可以发展思维能力、批判精神和创新意识。

Physical chemistry is one of the most important foundation courses for chemistry major. This course sets its base on the advanced mathematics and college physics, provides solid supports for the subsequent courses for chemical major, and strongly backs up the future development of students in chemistry and other related careers. Physical chemistry course covers many chemistry branches such as kinetics, electrochemistry, surface chemistry, colloidal chemistry, catalysis chemistry, photochemistry and solution chemistry etc. Physical chemistry is an accumulation of the important weltanschauung and methodologies of chemistry discipline, including the way to describe change processes, determination of some important physo-chemical parameters, the special method to solve definite problems and the general way of thinking. It has perfect knowledge network and systematic patterns of thinking. It is helpful for students to understand, reflect on and comment on the chemicalphenomena, to find, analyze and solve chemistry and related problems. Physical chemistry (2) pays much more attention to cultivate the thinking ability, critical spirit and innovation consciousness of the students.三、课程教学目标和教学要求【教学目标】通过学习学生可以形成系统的化学理论框架,掌握化学学科的思维方式和解决问题的思路和方法,增强发现和提出问题,对问题进行综合分析,提出解决问题的方案并对方案的可行性和局限性进行评价的能力,养成批判精神、创新意识,发展应用能力,树立正确的世界观、人生观、价值观,能够从化学哲学的角度观察和思考化学学科的发展。

2022年绪论(2)

2022年绪论(2)


--- 中国大百科全书(唐有祺)----
5 一.绪论 二.数学复习 三.气体
2、物理化学的研究内容
• (1) 化学反应的方向、限度和能量效应

----- 化学体系的平衡性质
• (2) 化学反应的速率和反应机理

----- 化学体系的动态性质
• (3) 化学体系的微观结构和性质
6 一.绪论 二.数学复习 三.气体
上例理论上可行。关键是寻找合适的催化剂和反 应途径(模拟生物固氮)
③结构化学——物质的性质与其微观结构的关系
例如研究与氮分子有关的配合物的结构,以及它 们在不同条件下的变化,就有利于常温常压下寻 找固氮的途径。
14 一.绪论 二.数学复习 三.气体
7. 学习物理化学的目的和意义
目的: ① 扩大知识面,打好专业基础;掌握热力学处理
即:
pV= nRT
24 一.绪论 二.数学复习 三.气体
(3)混合理想气体
1 Dalton分压定律: p(总)=pi 2 Amagal分体积定律:V(总)=Vi
设一体积为V,温度为T的容器中,含有k种理想 气体,其组分为A, B,,而且相互之间不发生化 学反应。 n(总)= nA + nB + = ni
4、物理化学学科的战略地位 (1) 物理化学是化学科学的理论基础
及重要组成学科
(2) 物理化学极大地扩充了化学研究 的领域
(3) 物理化学促进相关学科的发展
(4) 物理化学与国计民生密切相关
(5) 物理化学是培养化学人才的必需
11 一.绪论 二.数学复习 三.气体
5. 物理化学的研究方法
物理化学是化学学科中的一个重要分 支,是化学科学的理论基础。

山东大学物理化学2019-2020学年第二学期期末考试试卷B

山东大学物理化学2019-2020学年第二学期期末考试试卷B

………………………………………………密………………………………封………………………………线……………………………………………山东大学 2019-2020 学年 2 学期 材料物理化学 课程试卷B题号 一 二 三 四 五 六 七 八 九 十 总分 阅卷人得分学院 专业 级 学号 姓名第 1 页 共 4 页一、填空题(共10分,每空1分)1. 一定温度下,同一气体物质的定压摩尔热容C P 与定容摩尔热容C V 之间的关系为: 。

2. 对于标准摩尔生成焓等于零的指定单质,其标准摩尔生成吉布斯函数 ,标准摩尔熵 。

(选填>0;<0或=0)3. 1 mol 理想气体从 p 1=0.5 MPa 节流膨胀到 p 2=0.1 MPa 时的熵变为ΔS =______。

4. 纯组分等温等压下混合成理想液态混合物,混合过程中热效应 ∆mix H ___0,混合过程熵变∆mix S ___0。

5. 热力学温度T 与摄氏温度t 的关系为 ,水的三相点的热力学温度为 。

6. 已知NaHCO 3(s)热分解反应为2NaHCO 3 == Na 2CO 3(s) + CO 2(g) + H 2O(g)今将NaHCO 3(s),Na 2CO 3(s),CO 2和H 2O(g)按任意比例混合,放入一个密闭容器中,当反应建立平衡时, 系统的f= 。

二、 单项选择题(共10分,每题1分) 1. 下列各组量中皆为状态函数的是()。

A. T ,p m C S W B. V ,V m C S U C. T C S Q D. P ,p m C S U2. 某温度时,NH 4Cl(s)分解压力是P ,则分解反应的标准平衡常数为() A. 1 B. 1/2 C. 1/4 D. 1/83. NaCl 水溶液和纯水,经半透膜达到渗透平衡,该体系的自由度数是() A. 1 B. 2 C. 3 D. 44. 盖斯定律包含了两个重要问题,即()A .热力学第一定律和热力学第三定律 B. 热力学第一定律及热的基本性质 C. 热力学第三定律及热的基本性质 D. 热力学第一定律及状态函数的基本特征 5. 300K 时5mol 的理想气体由10dm3等温可逆膨胀到100dm3,则此过程的() A.ΔS<0;ΔU =0 B.ΔS<0;ΔU<0 C.ΔS>0;ΔU>0 D.ΔS>0;ΔU =06. 钢筒内有理想气体反应达到化学平衡A(g)+B(g)==3C(g),向体系中加入惰性气体,平衡()移动A .不移动B .向右C .向左D .不确定7. 某理想气体从0℃、1MPa 的初态,对抗恒定外压0.1MPa 绝热膨胀至16.9L ;若绝热可逆膨胀至0.1MPa ,其终态体积将()A .等于16.9LB .大于16.9LC .小于16.9LD .不能确定8. 已知373K 时液体A 的饱和蒸气压为133.24kPa ,液体B 的饱和蒸气压为66.62kPa 。

简明物理化学山东大学教案

简明物理化学山东大学教案

教案2008 - 2009 学年第 2学期学院系室化学与环境工程系课程名称物理化学计划学时 68 专业年级 07环境工程主讲教师贾庆超安阳工学院绪论教学目的:掌握理想气体状态方程的应用,理想气体的微观模型掌握混合理想气体的分压定律及分体积定律掌握饱和蒸气压的概念,熟悉物质在临界状态的特性教学重点:理想气体状态方程、分压定律及分体积定律教学难点:饱和蒸气压教学方法:多媒体教学课时:21、什麽是物理化学物理化学是从物质的物理现象和化学现象的联系入手,来探求化学变化及相关的物理变化基本规律的一门科学。

---付献彩物理化学——是化学科学中的一个重要分支学科。

它是借助数学、物理等基础科学的理论及其提供的实验手段,研究化学科学中的原理和方法,研究化学体系行为最一般的宏观、微观规律和理论的学科,是化学的理论基础。

2、物理化学的研究内容(1)化学反应的方向、限度和能量效应 -化学体系的平衡性质(2) 化学反应的速率和反应机理 - 化学体系的动态性质(3) 化学体系的微观结构和性质物理化学的分支学科化学热力学统计力学结构化学化学动力学其他分支学科:电化学、表面及胶体化学、催化化学等。

物理化学原理应用于不同的体系,则产生了物理有机化学、生物物理化学、材料物理化学、冶金物理化学等。

3、物理化学的建立与发展第一阶段:1887-1920 s—化学平衡和化学反应速率的唯象规律的建立19世纪中叶—热力学第一定律和热力学第二定律的提出1850—Wilhelmy 第一次定量测定反应速率1879—质量作用定律建立1889—Arrhenius 公式的建立和活化能概念1887—德文“物理化学”杂志创刊1906 1912—Nernst热定理和热力学第三定律的建立第二阶段:1920 s - 1960 s——结构化学和量子化学的蓬勃发展和化学变化规律的微观探索1926——量子力学建立1927——求解氢分子的薛定谔方程1931——价键理论建立1932——分子轨道理论建立1935——共振理论建立1918——提出双分子反应的碰撞理论1935——建立过渡态理论1930——提出链反应的动力学理论第三阶段:1960 s ---由于激光技术和计算机技术的发展,物理化学各领域向更深度和广度发展宏观微观静态动态体相表相平衡态非平衡态物理化学的主要发展趋势与前沿强化了在分子水平上的强化了对特殊集合态的精细物理化学的研究物理化学的研究分子动态分子设计工程; 表面界面非平衡态(分子反应动力学; 物理化学物理化学分子激发态谱学)4、物理化学学科的战略地位(1)物理化学是化学科学的理论基础及重要组成学科(2)物理化学极大地扩充了化学研究的领域(3)物理化学促进相关学科的发展(4)物理化学与国计民生密切相关(5)物理化学是培养化学相关或交叉的其它学科人才的必需5、如何学好物理化学这门课重视运用数学方法和公式、定律严格的阐述相结合处理问题时的抽象化和理想化注重概念深入思考一定数量的习题熟练地运用数学工具提高解题及运算的技巧加深对概念的理解和公式条件的运用讨论总结联系实际第一章热力学第一定律教学目的:掌握热力学的基本概念热力学第一定律叙述及数学表达式掌握恒容热容、恒压热容的定义,并能正确使用这些基础热数据计算。

山东大学物理化学期末考试试卷

山东大学物理化学期末考试试卷

2012-2013 Academic Year, Fall SemesterFinal Exam of Physical Chemistry (2) — Paper APart I Choose the best answers (3 points for each problem, totally 30 points)[1] Which of the following electrolytes obeys the Debye-Hückel limitinglaw in a widest concentration range?(A) MgCl2; (B) MgSO4; (C) NaCl; (D)AlCl3[2] For As2S3sol, if the precipitation value of SnCl2is x mol/L, theprecipitation of MgSO4 is(A) Equal to x mol/L (B) Less than x mol/L;(C) Larger than x mol/L; (D) Uncertain;[3] For an overall reaction A + B →P, its rate law is experimentallydetermined to be r = k[A][B], what conclusion can you reach?(A) This is a simple reaction; (B) This is a bimolecular reaction;(C) The unit of rate constant k is s-1; (D) uncertain.[4] During formation of HBr, Br⋅and H⋅usually exist as activeintermediates. For the following reaction, which is the most possible chainterminating step?(A) Br⋅+ H⋅→ HBr; (B) Br⋅+Br⋅→Br2;(C) H⋅+H⋅→ H2; (D) H⋅ + HBr → H2 + Br⋅.[5] Which of the following factors does not affect surface tension of aliquid?(A) Temperature; (B) External pressure over pressure;(C) Contacting phase; (D) Surface area of the liquid.[6] For a firs-order reaction, the unit of its rate constant is:(A) s-1; (B)dm3 mol-1 s-1; (C) mol dm-3 s-1; (D) dm-6 mol-2 s-1;[7] Activation energy can be of different nature. The activation energy defined by simple collision theory is(A) Potential energy; (B) vibrational energy;(C) Transitional energy; (D) photo energy.[8] The electrode potential of which electrode is the highest?(A) Ag(s)⎪Ag2O(s)⎪OH-(m); (B) Ag(s)⎪Ag+ (m);(C) Ag(s)⎪AgCl(s)⎪Cl-(m); (D) Ag(s)⎪[Ag(NH3)2]+ (m)[9] The quantum efficiency of photochemical formation of HCl is 106 times higher than that of HBr. What cause this great difference?(A) The primary photochemical process of HCl formation takes place much easier;(B) Unreactive decay in HBr formation is rather serious;(C) For HCl formation, the secondary photochemical process is chain reaction, but for HBr formation, it is not;(D) The life of Br⋅ is much longer.[10] Which of the following parameters of a colloidal particle can not be determined by ultramicroscopy?(A) The shape; (B) The molar mass;(C) The size; (D) The electrokinetic potential.Part II Fill in the blanks (totally 22 points)[1] (3 points) At 298 K, the solubility of AgCl in water is 1.27⨯10-5 mol⋅kg-1. Its solubility in 0.010 mol⋅kg-1 KNO3 solution is ______ mol⋅kg-1.[2] (3 points) The cell notation of a reversible cell that can be used to measure the decomposition equilibrium constant of Ag 2O is __________.[3] (2 points) List at least two ways to reduce the polarization of an electrode: _________________; _____________________.[4] (3 points) Sulfur, a gel which is always negatively charged due to adsorption of HS -, can be prepared by purging SO 2 into H 2S solution. Write the diagram of its colloidal structure _____________________________.[5] (3 points) During formation of HCl, the newly formed HCl usually possess higher energy. If a light quantum passes through the reaction system, a laser radiation with wavelength of 760 nm can be emitted. The difference between the activated HCl and the HCl molecule at ground state is ____________kJ ⋅mol -1.[6] (3 points) If 0.100 m NaCl solution is added into the CuSO 4 solution, the electrode potential of Cu(s)⎢CuSO 4(0.010 m) will _______ (increase or decrease).[7] (2 points) Heating can destroy the stability of sol. Give at least two reasons to explain this fact. _____________; _________________.[8] (3 points) Electrochemical reduction is commonly adopted for organic synthesis in aqueous solution. Why Pb or Pb alloy is usually used as the cathode material ______________.Part III Answer the following questions (totally 28 points)[1] (12 points) For some reactions, their temperature-dependence of reaction rate can be expressed as:⎪⎭⎫ ⎝⎛=RT E AT k c m -exp (Eq. 1) where E c is a threshold energy independent of temperature. The empirical equation proposed by vant ’ Hoff in the middle 19 century isC TB dT k d +=2ln (Eq. 2) (1) Please relate the empirical constant in Eq. 2, i.e., B andC , to the physical parameters in Eq. 1;(2) Why can Arrhenius neglect C in his empirical equation?(3) For deduction the relation in (1), we usually assume that A is independent of T . Is this assumption true? Which theory can explain this dependence? At elevated temperature, does A increase or decrease?[2] (16 points) At 298 K, reactionAg (s) + 21Hg 2Cl 2(s) −→ AgCl(s) + Hg(l) ∆r H m = 7950 J ⋅mol -1. The standard entropies of these substances are listed(1) Write the notation of the cell in which this reaction takes place;(2) Write the electrode reactions;(3) Calculate the electromotive force of this reversible cell at 298 K;(4) Determine the temperature coefficient of electromotive force.Part IV calculation (totally 20 points)[1] (10 points) A glass capillary of 250 mm long with different diameters (R 1, R 2) as shown in the right figure is plugged vertically in water. This glass capillary can be completely wettedby water. The surface tension anddensity of water at 298 K is 0.07275N/m and 1.00 g/ml respectively. If watercan rise 200 mm high in the capillary,(1) Determine the largest diameter ofthe thick part (R 1);(2) Determine the diameter of the thinpart (R 2).(3) If we turn the capillary upsidedown, how high will water to rise?[2] (10 points) The bromination of acetone is acid catalyzed:-+++−→−++Br H Br COCH CH Br COCH CH 23H 233The rate of disappearance of bromine was measured at different(1) Determine the rate law for the reaction.(2) Determine the rate constant.(3) The following mechanism has been proposed for this reaction:A BB CC DShow whether or not this mechanism fit the rate law obtained in (1).(4) If E a, 1, E a, -1, E a, 2, E a, 3 stands for the activation energy of corresponding reaction, express the apparent activation energy (E a ) of the overall reaction by activation energy of the separate steps involved.2012-2013 Academic Year, Fall SemesterFinal Exam of Physical Chemistry (2) — Paper AANSWER SHEETPart I Choose the best answers (3 points for each problem, totally 30Part II Fill in the blanks (totally 22 points)[1] ________________ mol⋅kg-1.[2] __________________________________________________.[3] ___________________________; __________________________.[4] _________________________________________________.[5] ________________________kJ⋅mol-1.[6] _________________________________.[7] __________________________; ___________________________.[8] ______________________________________________________.。

物理化学英文课件

物理化学英文课件
• Molecular collisions are elastic, i.e. kinetic energy is conserved.
• Intermolecular forces of attraction and repulsion have negligible on the molecular motion.
gas law, pV = nRT
Ideal Gas Law
pV nRT
• p = pressure • V = volume • n = moles • T = ontant = 0.08206 L-atm/mol-K
Partial Pressure
Definition of Physical Chemistry
Physical chemistry stands in the same relation to the subdivisions of chemistry in which philosophy stands toward all the sciences. Its main object is to unify thought within the science of chemistry; therefore, it might well be named, the “philosophy of chemistry” - S.L. Bigelow, 1912
Compressibility
• The compressibility of a gas is defined by
Z pVm RT
• If the gas behaves ideally, then Z=1 at all pressures and temperatures.

《物理化学》的中英文翻译

《物理化学》的中英文翻译

《物理化学》的中英文翻译第一篇:《物理化学》的中英文翻译复习《物理化学》过程中,顺便整理了专业名词的翻译,大家凑合着,依我看,简单的会考汉译英,复杂的会考英译汉。

不管怎么样,中文英文背过最好。

如果有错误,赶紧的,说。

1多相系统 heterogeneous system2自由度degree of freedom3相律 phase rule4独立组分数 number of independent component5凝聚系统 condensed system6三相点 triple point7超临界流体 supercritical fluid8超临界流体萃取supercritical fluid extraction9超临界流体色谱supercritical fluid chromatography10泡点 bubbling point11露点dew point12杠杆规则 level rule13连结线 tie line14部分蒸馏(分馏)fractional distillation15缔合分子 associated molecule16最低恒沸点 minimum azeotropic point17最低恒沸混合物low-boiling azeotrope18无水乙醇(绝对乙醇)absolute ethyl alcohol19最高恒沸点maximum azeotropic point20会溶点 consolute point21共轭层 conjugate layer22烟碱 nicotine23蒸汽蒸馏 steam distillation24步冷曲线 cooling curve25热分析法 thermal analysis26低共熔点 eutectic point27低共熔混合物eutectic mixture28异成分熔点 incongruent melting point29转熔温度 peritectic tempreture30固溶体 solid solution31退火 annealing32淬火 quenching33区域熔炼 zone melting34分凝系数 fractional coagulation coefficient35褶点 plait point36等温会溶点 isothermal consolute point37双节点溶解度曲线 binodal solubility cueve38一(二)级相变first(second)order phase transition39超流体 super fluid40顺磁体 paramagnetic substance41铁磁体 ferromagnetic substance第二篇:中英文翻译蓄电池 battery 充电 converter 转换器 charger开关电器Switch electric 按钮开关Button to switch 电源电器Power electric 插头插座 Plug sockets第三篇:中英文翻译Fundamentals This chapter describes the fundamentals of today’s wireless communications.First a detailed description of the radio channel and its modeling are presented, followed by the introduction of the principle of OFDM multi-carrier transmission.In addition, a general overview of the spread spectrum technique, especially DS-CDMA, is given and examples of potential applications for OFDM and DS-CDMA areanalyzed.This introduction is essential for a better understanding of the idea behind the combination of OFDM with the spread spectrum technique, which is briefly introduced in the last part of this chapter.1.1 Radio Channel Characteristics Understanding the characteristics of the communications medium is crucial for the appropriate selection of transmission system architecture, dimensioning of its components, and optimizing system parameters, especially since mobile radio channels are considered to be the most difficult channels, since they suffer from many imperfections like multipath fading, interference, Doppler shift, and shadowing.The choice of system components is totally different if, for instance, multipath propagation with long echoes dominates the radio propagation.Therefore, an accurate channel model describing the behavior of radio wave propagation in different environments such as mobile/fixed and indoor/outdoor is needed.This may allow one, through simulations, to estimate and validate the performance of a given transmission scheme in its several design phases.1.1.1 Understanding Radio Channels In mobile radio channels(see Figure 1-1), the transmitted signal suffers from different effects, which are characterized as follows: Multipath propagation occurs as a consequence of reflections, scattering, and diffraction of the transmitted electromagnetic wave at natural and man-made objects.Thus, at the receiver antenna, a multitude of waves arrives from many different directions with different delays, attenuations, and phases.The superposition of these waves results in amplitude and phase variations of the composite received signal.Doppler spread is caused by moving objects in the mobile radio channel.Changes in the phases and amplitudes of the arriving waves occur which lead to time-variant multipathpropagation.Even small movements on the order of the wavelength may result in a totally different wave superposition.The varying signal strength due to time-variant multipath propagation is referred to as fast fading.Shadowing is caused by obstruction of the transmitted waves by, e.g., hills, buildings, walls, and trees, which results in more or less strong attenuation of the signal pared to fast fading, longer distances have to be covered to significantly change the shadowing constellation.The varying signal strength due to shadowing is called slow fading and can be described by a log-normal distribution [36].Path loss indicates how the mean signal power decays with distance between transmitter and receiver.In free space, the mean signal power decreases with the square of the distance between base station(BS)and terminal station(TS).In a mobile radio channel, where often no line of sight(LOS)path exists, signal power decreases with a power higher than two and is typically in the order of three to five.Variations of the received power due to shadowing and path loss can be efficiently counteracted by power control.In the following, the mobile radio channel is described with respect to its fast fading characteristic.1.1.2 Channel Modeling The mobile radio channel can be characterized by the time-variant channel impulse response h(τ , t)or by the time-variant channel transfer function H(f, t), which is the Fourier transform of h(τ, t).The channel impulse response represents the response of the channel at time t due to an impulse applied at time t −τ.The mobile radio channel is assumed to be a wide-sense stationary random process, i.e., the channel has a fading statistic that remains constant over short periods of time or small spatial distances.In environments with multipath propagation, the channel impulseresponse is composed of a large number of scattered impulses received over Np different paths,Whereand ap, fD,p, ϕp, and τp are the amplitude, the Doppler frequency, the phase, and the propagation delay, respectively, associated with path p, p = 0,..., Np −1.The assigned channel transfer function isThe delays are measured relative to the first detectable path at the receiver.The Doppler Frequencydepends on the velocity v of the terminal station, the speed of light c, the carrier frequency fc, and the angle of incidence αp of a wave assigned to path p.A channel impulse response with corresponding channel transfer function is illustrated in Figure 1-2.The delay power density spectrum ρ(τ)that characterizes the frequency selectivity of the mobile radio channel gives the average power of the channel output as a function of the delay τ.The mean delay τ , the root mean square(RMS)de lay spread τRMS and the maximum delay τmax are characteristic parameters of the delay power density spectrum.The mean delay isWhereFigure 1-2 Time-variant channel impulse response and channel transfer function with frequency-selective fading is the power of path p.The RMS delay spread is defined as Similarly, the Doppler power density spectrum S(fD)can be defined that characterizes the time variance of the mobile radio channel and gives the average power of the channel output as a function of the Doppler frequency fD.The frequency dispersive properties of multipath channels are most commonly quantified by the maximum occurring Doppler frequency fDmax and the Doppler spread fDspread.The Doppler spread is the bandwidth of theDoppler power density spectrum and can take on values up to two times |fDmax|, i.e.,1.1.3Channel Fade Statistics The statistics of the fading process characterize the channel and are of importance for channel model parameter specifications.A simple and often used approach is obtained from the assumption that there is a large number of scatterers in the channel that contribute to the signal at the receiver side.The application of the central limit theorem leads to a complex-valued Gaussian process for the channel impulse response.In the absence of line of sight(LOS)or a dominant component, the process is zero-mean.The magnitude of the corresponding channel transfer functionis a random variable, for brevity denoted by a, with a Rayleigh distribution given byWhereis the average power.The phase is uniformly distributed in the interval [0, 2π].In the case that the multipath channel contains a LOS or dominant component in addition to the randomly moving scatterers, the channel impulse response can no longer be modeled as zero-mean.Under the assumption of a complex-valued Gaussian process for the channel impulse response, the magnitude a of the channel transfer function has a Rice distribution given byThe Rice factor KRice is determined by the ratio of the power of the dominant path to thepower of the scattered paths.I0 is the zero-order modified Bessel function of first kind.The phase is uniformly distributed in the interval [0, 2π].1.1.4Inter-Symbol(ISI)and Inter-Channel Interference(ICI)The delay spread can cause inter-symbol interference(ISI)when adjacent data symbols overlap and interfere with each other due to differentdelays on different propagation paths.The number of interfering symbols in a single-carrier modulated system is given by For high data rate applications with very short symbol duration Td < τmax, the effect of ISI and, with that, the receiver complexity can increase significantly.The effect of ISI can be counteracted by different measures such as time or frequency domain equalization.In spread spectrum systems, rake receivers with several arms are used to reduce the effect of ISI by exploiting the multipath diversity such that individual arms are adapted to different propagation paths.If the duration of the transmitted symbol is significantly larger than the maximum delay Td τmax, the channel produces a negligible amount of ISI.This effect is exploited with multi-carrier transmission where the duration per transmitted symbol increases with the number of sub-carriers Nc and, hence, the amount of ISI decreases.The number of interfering symbols in a multi-carrier modulated system is given byResidual ISI can be eliminated by the use of a guard interval(see Section 1.2).The maximum Doppler spread in mobile radio applications using single-carrier modulation is typically much less than the distance between adjacent channels, such that the effect of interference on adjacent channels due to Doppler spread is not a problem for single-carrier modulated systems.For multi-carrier modulated systems, the sub-channel spacing Fs can become quite small, such that Doppler effects can cause significant ICI.As long as all sub-carriers are affected by a common Doppler shift fD, this Doppler shift can be compensated for in the receiver and ICI can be avoided.However, if Doppler spread in the order of several percent of the sub-carrier spacing occurs, ICI may degrade the system performance significantly.T oavoid performance degradations due to ICI or more complex receivers with ICI equalization, the sub-carrier spacing Fs should be chosen assuch that the effects due to Doppler spread can be neglected(see Chapter 4).This approach corresponds with the philosophy of OFDM described in Section 1.2 and is followed in current OFDM-based wireless standards.Nevertheless, if a multi-carrier system design is chosen such that the Doppler spread is in the order of the sub-carrier spacing or higher, a rake receiver in the frequency domain can be used [22].With the frequency domain rake receiver each branch of the rake resolves a different Doppler frequency.1.1.5Examples of Discrete Multipath Channel Models Various discrete multipath channel models for indoor and outdoor cellular systems with different cell sizes have been specified.These channel models define the statistics of the 5 discrete propagation paths.An overview of widely used discrete multipath channel models is given in the following.COST 207 [8]: The COST 207 channel models specify four outdoor macro cell propagation scenarios by continuous, exponentially decreasing delay power density spectra.Implementations of these power density spectra by discrete taps are given by using up to 12 taps.Examples for settings with 6 taps are listed in Table 1-1.In this table for several propagation environments the corresponding path delay and power profiles are given.Hilly terrain causes the longest echoes.The classical Doppler spectrum with uniformly distributed angles of arrival of the paths can be used for all taps for simplicity.Optionally, different Doppler spectra are defined for the individual taps in [8].The COST 207 channel models are based on channel measurements with a bandwidth of 8–10 MHz in the 900-MHz band used for 2Gsystems such as GSM.COST 231 [9] and COST 259 [10]: These COST actions which are the continuation of COST 207 extend the channel characterization to DCS 1800, DECT, HIPERLAN and UMTS channels, taking into account macro, micro, and pico cell scenarios.Channel models with spatial resolution have been defined in COST 259.The spatial component is introduced by the definition of several clusters with local scatterers, which are located in a circle around the base station.Three types of channel models are defined.The macro cell type has cell sizes from 500 m up to 5000 m and a carrier frequency of 900 MHz or 1.8 GHz.The micro cell type is defined for cell sizes of about 300 m and a carrier frequency of 1.2 GHz or 5 GHz.The pico cell type represents an indoor channel model with cell sizes smaller than 100 m in industrial buildings and in the order of 10 m in an office.The carrier frequency is 2.5 GHz or 24 GHz.COST 273: The COST 273 action additionally takes multi-antenna channel models into account, which are not covered by the previous COST actions.CODIT [7]: These channel models define typical outdoor and indoor propagation scenarios for macro, micro, and pico cells.The fading characteristics of the various propagation environments are specified by the parameters of the Nakagami-m distribution.Every environment is defined in terms of a number of scatterers which can take on values up to 20.Some channel models consider also the angular distribution of the scatterers.They have been developed for the investigation of 3G system proposals.Macro cell channel type models have been developed for carrier frequencies around 900 MHz with 7 MHz bandwidth.The micro and pico cell channel type models have been developed for carrier frequencies between 1.8 GHz and 2 GHz.The bandwidths of the measurements are in the range of 10–100 MHz for macro cells and around 100 MHz for pico cells.JTC [28]: The JTC channel models define indoor and outdoor scenarios by specifying 3 to 10 discrete taps per scenario.The channel models are designed to be applicable for wideband digital mobile radio systems anticipated as candidates for the PCS(Personal Communications Systems)common air interface at carrier frequencies of about 2 GHz.UMTS/UTRA [18][44]: Test propagation scenarios have been defined for UMTS and UTRA system proposals which are developed for frequencies around 2 GHz.The modeling of the multipath propagation corresponds to that used by the COST 207 channel models.HIPERLAN/2 [33]: Five typical indoor propagation scenarios for wireless LANs in the 5 GHz frequency band have been defined.Each scenario is described by 18discrete taps of the delay power density spectrum.The time variance of the channel(Doppler spread)is modeled by a classical Jake’s spectrum with a maximum terminal speed of 3 m/h.Further channel models exist which are, for instance, given in [16].1.1.6Multi-Carrier Channel Modeling Multi-carrier systems can either be simulated in the time domain or, more computationally efficient, in the frequency domain.Preconditions for the frequency domain implementation are the absence of ISI and ICI, the frequency nonselective fading per sub-carrier, and the time-invariance during one OFDM symbol.A proper system design approximately fulfills these preconditions.The discrete channel transfer function adapted to multi-carrier signals results inwhere the continuous channel transfer function H(f, t)is sampled in time at OFDM symbol rate s and in frequency at sub-carrier spacing Fs.The durations is the total OFDM symbol duration including the guardinterval.Finally, a symbol transmitted onsub-channel n of the OFDM symbol i is multiplied by the resulting fading amplitude an,i and rotated by a random phase ϕn,i.The advantage of the frequency domain channel model is that the IFFT and FFT operation for OFDM and inverse OFDM can be avoided and the fading operation results in one complex-valued multiplication per sub-carrier.The discrete multipath channel models introduced in Section 1.1.5 can directly be applied to(1.16).A further simplification of the channel modeling for multi-carrier systems is given by using the so-called uncorrelated fading channel models.1.1.6.1Uncorrelated Fading Channel Models for Multi-Carrier Systems These channel models are based on the assumption that the fading on adjacent data symbols after inverse OFDM and de-interleaving can be considered as uncorrelated [29].This assumption holds when, e.g., a frequency and time interleaver with sufficient interleaving depth is applied.The fading amplitude an,i is chosen from a distribution p(a)according to the considered cell type and the random phase ϕn,I is uniformly distributed in the interval [0,2π].The resulting complex-valued channel fading coefficient is thus generated independently for each sub-carrier and OFDM symbol.For a propagation scenario in a macro cell without LOS, the fading amplitude an,i is generated by a Rayleigh distribution and the channel model is referred to as an uncorrelated Rayleigh fading channel.For smaller cells where often a dominant propagation component occurs, the fading amplitude is chosen from a Rice distribution.The advantages of the uncorrelated fading channel models for multi-carrier systems are their simple implementation in the frequency domain and the simple reproducibility of the simulation results.1.1.7Diversity The coherence bandwidth of amobile radio channel is the bandwidth over which the signal propagation characteristics are correlated and it can be approximated byThe channel is frequency-selective if the signal bandwidth B is larger than the coherence bandwidth.On the other hand, if B is smaller than , the channel is frequency nonselective or flat.The coherence bandwidth of the channel is of importance for evaluating the performance of spreading and frequency interleaving techniques that try to exploit the inherent frequency diversity Df of the mobile radio channel.In the case of multi-carrier transmission, frequency diversity is exploited if the separation of sub-carriers transmitting the same information exceeds the coherence bandwidth.The maximum achievable frequency diversity Df is given by the ratio between the signal bandwidth B and the coherence bandwidth,The coherence time of the channel is the duration over which the channel characteristics can be considered as time-invariant and can be approximated byIf the duration of the transmitted symbol is larger than the coherence time, the channel is time-selective.On the other hand, if the symbol duration is smaller than , the channel is time nonselective during one symbol duration.The coherence time of the channel is of importance for evaluating the performance of coding and interleaving techniques that try to exploit the inherent time diversity DO of the mobile radio channel.Time diversity can be exploited if the separation between time slots carrying the same information exceeds the coherence time.A number of Ns successive time slots create a time frame of duration Tfr.The maximum time diversity Dt achievable in one time frame is given by the ratio between the duration of a timeframe and the coherence time, A system exploiting frequency and time diversity can achieve the overall diversityThe system design should allow one to optimally exploit the available diversity DO.For instance, in systems with multi-carrier transmission the same information should be transmitted on different sub-carriers and in different time slots, achieving uncorrelated faded replicas of the information in both dimensions.Uncoded multi-carrier systems with flat fading per sub-channel and time-invariance during one symbol cannot exploit diversity and have a poor performance in time and frequency selective fading channels.Additional methods have to be applied to exploit diversity.One approach is the use of data spreading where each data symbol is spread by a spreading code of length L.This, in combination with interleaving, can achieve performance results which are given forby the closed-form solution for the BER for diversity reception in Rayleigh fading channels according to [40] Whererepresents the combinatory function,and σ2 is the variance of the noise.As soon as the interleaving is not perfect or the diversity offered by the channel is smaller than the spreading code length L, or MCCDMA with multiple access interference is applied,(1.22)is a lower bound.For L = 1, the performance of an OFDM system without forward error correction(FEC)is obtained, 9which cannot exploit any diversity.The BER according to(1.22)of an OFDM(OFDMA, MC-TDMA)system and a multi-carrier spread spectrum(MC-SS)system with different spreading code lengths L is shown in Figure 1-3.No other diversity techniques are applied.QPSK modulation is used for symbol mapping.The mobile radio channel is modeled as uncorrelatedRayleigh fading channel(see Section 1.1.6).As these curves show, for large values of L, the performance of MC-SS systems approaches that of an AWGN channel.Another form of achieving diversity in OFDM systems is channel coding by FEC, where the information of each data bit is spread over several code bits.Additional to the diversity gain in fading channels, a coding gain can be obtained due to the selection of appropriate coding and decoding algorithms.中文翻译 1基本原理这章描述今日的基本面的无线通信。

英文版第一章 山东大学

英文版第一章 山东大学

Ⅱ. causes and conditions of disease cause(etiology): condition: inducing factor(precipitating factor):
for example
pneumococcal pneumonia cause(etiology): pneumococcus condition: cold, tired pulmonary tuberculosis cause: tubercular bacillus condition: worry, malnutrition Ⅲ. pathogenesis of disease It studies how the etiology can cause the disease in the body.
正常大鼠主动脉内皮细胞铺片ET阴性× ET阴性 图1 正常大鼠主动脉内皮细胞铺片ET阴性×400 高脂血症大鼠主动脉内皮细胞铺片ET阳性× ET阳性 图2 高脂血症大鼠主动脉内皮细胞铺片ET阳性×400
例:高糖大鼠外周血白细胞iNOS-mRNA表达的变化 高糖大鼠外周血白细胞 表达的变化
N: 正常大鼠外周血白细胞原位杂交片 (×1000); × A: 高糖饮水 个月外周血白细胞原位杂交片 (×1000); 高糖饮水2个月外周血白细胞原位杂交片 × B: 高糖饮水 个月外周血白细胞原位杂交片 (×1000); 高糖饮水4个月外周血白细胞原位杂交片 × C: 高糖饮水6个月外周血白细胞原位杂交片 (×1000); 高糖饮水 个月外周血白细胞原位杂交片 × (胞浆内深蓝着色为 胞浆内深蓝着色为iNOS-mRNA阳性杂交信号,核固红复染。) 阳性杂交信号, 胞浆内深蓝着色为 阳性杂交信号 核固红复染。

物理化学(下)(中国石油大学(华东))智慧树知到答案章节测试2023年

物理化学(下)(中国石油大学(华东))智慧树知到答案章节测试2023年

第一章测试1.当一定的直流电通过一含有金属离子的电解质溶液时,在阴极上析出金属的量正比于A:电解质溶液的浓度B:阴极的表面积C:通过的电量D:电解质溶液的温度答案:C2.下列哪个方法不能用来测量离子的迁移数A:电导法B:希托夫法C:测量有液接电位的电池电动势法D:界面移动法答案:A3.对相同温度下无限稀释的硫酸、盐酸和硝酸中的氢离子而言,下列说法不正确的是A:迁移数均相同B:迁移数不同C:离子迁移率均相同D:摩尔电导率均相同答案:A4.在用对消法测量电池的电动势的实验中,必须用到A:标准氢电极B:甘汞电极C:韦斯登电池D:丹尼尔电池答案:C5.因正、负离子迁移数不同引起的两溶液界面处的电势差称为A:电极电势B:液接电势C:表面电势D:接触电势答案:B6.pH计是利用哪种电学性质测定水溶液中氢离子的活度?A:电阻B:摩尔电导C:电导率D:电动势答案:D7.“若要比较各种电解质的导电能力的大小,用电解质的电导率值大小进行比较是合理的方法。

” 这种说法对吗?A:错B:对答案:A8.“在实验中测定溶液的电导实际上是测量溶液的电流强度。

”这种说法对吗?A:错B:对答案:A9.“在饱和 AgCl 溶液中加入 NaNO3,AgCl 的饱和浓度变大。

”这种说法对吗?A:错B:对答案:B10.“无限稀电解质溶液的摩尔电导率可以看成是正、负离子无限稀摩尔电导率之和,这一规律适用于强电解质,也用于弱电解质” ,这种说法对吗?A:错B:对答案:B第二章测试1.下列各系统中属于独立粒子系统的是A:纯实际气体B:绝对零度的晶体C:理想气体混合物D:理想液体混合物答案:C2.系统的微观性质和宏观性质是通过_______联系起来的A:化学动力学B:热力学C:量子力学D:统计力学答案:D3.对于一个粒子数N、体积V和内能U确定的系统,其微观状态数最大的那套分布就是最概然分布,得出这一结论的依据是________A:等概率假定B:Boltmann分布律C:分子运动论D:统计学原理答案:A4.对三原子分子H2O(g)和CO2(g),下面关于它们各种运动形式自由度的描述正确的是________A:转动和振动自由度相同,平动自由度不同B:平动和转动自由度相同,振动自由度不同C:平动自由度、转动自由度和振动自由度均相同D:平动自由度相同,转动和振动自由度不同答案:D5.三个可别粒子分布于同一能级的两个不同量子态上时,下列说法中正确的是____A:每种分布方式的微观状态数均不同B:分布方式有3种C:分布方式有4种D:最概然分布的微观状态数为4答案:C6.对热力学性质(U、V、N)确定的系统,下面描述中不对的是__________A:体系中粒子在各能级上的分布数一定B:体系的吉布斯自由能一定C:体系的微观状态数一定D:体系中各能级的能量和简并度一定答案:A7.下面的说法中,错误的是___________A:最概然分布随系统中粒子数的增多而出现的几率增大B:最概然分布可代表巨大数目粒子体系的平衡分布C:最概然分布本身是系统出现几率最大的分布D:最概然分布微观状态数的对数可代替总微观状态数的对数答案:A8.某双原子分子AB取振动基态能量为零,在温度T时的振动配分函数为2.0,则粒子分布在基态上的分布分数N0/N应为_______A:4.0B:3.0C:1.5D:0.5答案:D9.从统计热力学的观点看,对理想气体封闭系统在非体积功为零、体积不变的情况下吸热时体系中粒子________A:能级升高,且各能级上的粒子分布数发生变化B: 能级升高,但各能级上的粒子分布数不变C:能级不变,且各能级上的粒子分布数不变D:能级不变,但各能级上的粒子分布数发生变化答案:D10.经典粒子的零点能规定不同时,必定影响________A:配分函数B:各量子态上的粒子分布数C:粒子分布规律D:系统的微观状态数答案:A第三章测试1.关于反应速率,表达不正确的是A:与体系的大小无关而与浓度大小有关B:可为正值也可为负值C:与各物质浓度标度选择有关D:随反应时间的变化而变化答案:B2.某反应进行时,反应物浓度与时间成线性关系,则此反应的半衰期与反应物初始浓度A:平方成反比B:成反比C:成正比D:无关答案:C3.某反应的半衰期与其初始浓度成正比,则该反应是A:二级反应B:三级反应C:零级反应D:一级反应答案:C4.化学反应速率系数的Arrhenius关系式能成立的范围是A:某些反应在一定温度范围内B:某些反应在任何温度范围内C:任何反应在任何温度范围内D:任何反应在一定温度范围内答案:A5.下面不属于平行反应特点的是A:速率方程与同级数的简单反应相同B:开始无产物时,产物的数量之比等于速率常数之比C:总反应速率等于各步反应速率的和D:各产物的百分数与时间有关答案:D6.稳态近似法常用于处理下列哪种动力学问题A:对行反应B:一级反应C:基元反应D:连串反应答案:D7.反应级数可以是正整数、分数或负数。

山大物理化学英文下6

山大物理化学英文下6

The way to collide:
Definition: mean collision diameter: dAB
Definition:collision cross-section
S d
2 AB
motionless
A
NB V
Z AB d
2 AB

NB A V
When the concentration of A is NA/V (molecm-3):
r Z AB q
where ZAB is the collision frequency of A with B per unit cubic meter per second, q is the portion of effective collision.
6.2 Calculation of ZAB
If the energy exchange between colliding molecules is much rapid than reaction, the energy distribution of molecules may still obey the Maxwell-Boltzmann distribution equation. The fraction of the collision with the energy equal to or greater than Ec is:
r k[A][B]
Ea k A exp RT
Type of reaction
Unimolecular reaction
Bimolecular reaction
Termolecular reaction

专业英语物理化学

专业英语物理化学

物化词汇部分:Chemical thermodynamics 化学热力学Chemical kinetics 化学动力学物理化学的分支:quantum chemistry 量子化学;structure chemistry 结构化学;catalysis 催化;electrochemistry 电化学;colloid chemistry 胶体化学。

热力学体系:closed system 封闭体系:a system that does not allow transfer of substance but energyisolated system 孤立体系:a system that does not allow transfer of substance and energyopen system 开放体系:a system that allow transfer of substance and energyInternal energy 内能:motions 分子运动;interaction 相互作用;bonding of its constituent molecules 分子成键(ionic bond离子键, covalent bond共价键, coordinationbond配位键, hydrogen bond氢键, metallic bond.金属键)external energy 外能:(velocity速度;location of its center of mass位置)= kinetic 动力+potential energy 势能Thermal energy (internal energy + heat)Mechanical energy (external energy + mechanical /electrical work)Heat: energy transfer as a results of only temperature differenceWork: energy transfer by any mechanism that involves mechanical motion across thesystem boundaries. Microscopic properties:molecule kinetic energy 分子动能(translational energy跃迁能, rotational energy转动能, vibrational energy振动能)Intermolecular forces 分子间力(electrostatic forces静电力, induction forces感应能, forces of attraction (or dispersion forces)分散能and repulsion 排斥能, specific (chemical) forces like hydrogen bonds)Intermolecular potentials 分子势(Lennard-Jones potential)Macroscopic properties:pressure, volume, temperatureextensive variables广度性质(volume, mass)intensive variables 强度性质(T, P, molar volume, molar mass)Thermodynamic Equilibriums热力学平衡:thermal equilibrium,热平衡force equilibrium,力平衡phase equilibrium,相平衡chemical equilibrium化学平衡PVT relationscompressibility factor 压缩因子expansion coefficient 体积膨胀系数compressibility coefficient 等温压缩系数热力学定律The first law of thermodynamics*Energyis neithercreatednordestroyed,but may change in formsenthalpy焓heat capacity热容isochoric等容isobaric等压reversible可逆, irreversible 不可逆isothermal等温, adiabatic绝热(diabatic),cyclic循环, free expansion自由膨胀throttling 节流(isenthalpy等焓, Joule-Thomson coefficient)The second law of thermodynamicsClausius statement: It is not possible to construct adevice that operates in a cycle and whose sole effect is to transfer heat from a colder body to a hotter body.The efficiency of the Carnot heat engine is defined to be:η=(QH-QC)/QH=W/QH=1-TC/THendothermic吸热exothermic放热entropy熵, isentropic process 等熵过程spontaneous system自发系统, entropy balance熵平衡热化学:Heat of reaction反应热, isothermal、isobaric、only volumetric work,the reaction’heat changeheat of combustion燃烧热, 25℃,100kPa the heat change of 1 mol pure substance fully combustionheat of formation生成热fixed temperature and pressure,the heat change of 1 mol pure substance produced by the most stable elementGibbs free energy: G=H-TSHelmholtz free energy: F=U-TS相平衡:vapor pressure蒸汽压the?pressure?exerted by a?vapor?in?thermodynamic equilibriumwith its?condensed?phases?(solid or liquid) at a given temperature in a?closed system.boiling point沸点?the temperature at which the?vapor pressure?of the?liquid?equals thepressure?surrounding the liquid?and the liquid changes into a vapor.melting point熔点the temperature at which it changes?state?from?solid?to?liquid?at atmospheric pressure solidifying point凝固点the temperature at which it changes?state?from?liquid?to soild at atmospheric pressure Partial molar quantity偏摩尔量A?partial molar property?is a?thermodynamic?quantity which indicates how an?extensive property?of a?solution?or?mixture?varies with changes in the?molarcomposition of the mixture at constant?temperature?and?pressure.Chemical potential化学势, is a form of?potential energy?that can be absorbed or released during a chemical reaction or?phase transition.?activity活度?activity?(symbol?a) is a measure of the “effective concentration” of a?species?in a mixture, in the sense that the species'chemical potential?depends on the activity of a real solution in the same way that it would depend on concentration for an?ideal solution.fugacity逸度, the?fugacity?of a?real gas?is an effective partial?pressure?which replaces the mechanical partial pressure in an accurate computation of the chemical equilibrium constant.?activity coefficient活度系数, fugacity coefficient逸度系数the degree of freedom自由度f=C-Π+2the number of?degrees of freedom?is the number of values in the final calculation of a?statistic?that are free to varyPhase diagram相图:single-phase/binary/ternary x-y diagram, p-x-y diagram, t-x-y diagramfully /partly miscible solution可混溶的溶液,immiscible solution不可混容的溶液minimum/maximum azeotrope共沸(正偏差,最低共沸点;负偏差,最高共沸点),dew point露点the temperature at which airborne water vapor will?condense?to form liquid?dew.,bubble point泡点,the?temperature?(at a given?pressure) where the first bubble of?vapor?is formed when heating a?liquid?consisting of two or more components.eutectic point共熔点?the point at which the?liquid?phase L borders directly on the solid phase α + β (a homogeneous composed of both A and B), representing the minimum melting temperature of any possible alloy of A and B.multi-component system多组成体系化学平衡:Chemical equilibrium in a single-phase system:free energy of formation 组成自由能equilibrium constant 平衡常数endothermic reaction 放热反应exothermic reaction 吸热反应ionization constant 电离常数dissociation constant 解离常数association constant 结合常数化学动力学chemical reaction kinetics:rate of reaction反应速率, order of reaction反应要求activation energy活化能, activated molecules活化分子activation活化collision碰撞, active centers活性中心activation enthalpy活化焓parallel reaction平行反应:substance reacts or decomposes in more than one wayseries reaction串联反应, two or more reaction in same environment without new operationchain reaction链式反应:A?chain reaction?is a sequence of reactions where a reactive product or by-product causes additional reactions to take placelight-chemical reaction,reaction mechanism 反应机理adsorption and catalysis (catalyst)其他Surface表面/interface界面colloid chemistrysurface tension表面张力, interfacial tension界面张力,surface excess表面超额, surface film,表面膜surface coverage表面覆盖, adsorption on the surface,表面吸附surfactant/surface active agent表面活性剂,colloid (particles 5~ 5,000 angstroms)Electrochemistry, electrochemical engineering and electrolyte solution theory, electroreactionTypes of reactors反应器类型In terms of the operation modes:Stirred reactors 搅拌反应器BSTR (batch stirred tank reactor)间歇搅拌罐式反应器;CSTR (continuous stirred tank reactor)连续搅拌罐式反应器Pipe reactors管式反应器fixed-bed reactor,固定床fluidized-bed reactor流化床In terms of the phase states:Homogenous reaction reactors均相Heterogeneous reaction reactors- using catalysts 多相In terms of the fluid flow modes:Ideal reactors (ideal flow):Fully mixed flow reactors全混流反应器Plug flow reactors-PFRs活塞流反应器Non-ideal reactors (models are required) The tank-in-series model 串联罐式模型The dispersion model分散模型。

山东大学物理化学

山东大学物理化学

物理化学一、 选择题1. α、β两相中均含有A 和B 两种物质,达到相平衡时下列各式正确的是( B )(A)βαμμB A = (B)βαμμB B = (C)ααμμB A = (D)βαμμA B =2. 电化学实验装置中,对构成盐桥的溶液的要求是( B )(A) 盐桥溶液浓度尽量低 (B) 构成该盐的正、负离子的迁移数相差越小越好(C) 构成该盐的正、负离子的迁移数相差越大越好 (D) 构成的盐桥可以增大液体接界电势3. 关于水的相图,下列描述哪个是正确的?( C )(A )有三个单相面,两个两相平衡线,一个三相点;(B )有两个单相面,四个两相平衡线,两个三相点;(C )有三个单相面,三个两相平衡线,一个三相点;(D )有两个单相面,三个两相平衡线,两个三相点。

4.若 298 K 时,反应2224NO g N O g ()()=的K θ=8.834,则当p (NO 2)=1 kPa, p (N 2O 4)=10 kPa 时,反应将 ( B )(A) 向生成N 2O 4方向进行 (B) 向生成NO 2方向进行 (C) 反应恰好达到平衡 (D) 不能判断其进行的方向5. 298K 时,KNO 3水溶液的浓度由1mol ·dm -3增大到2mol ·dm -3,其摩尔电导Λm 将 ( A )(A) 增大;(B) 减小;(C) 不变;(D) 不确6. 公式dG=-SdT+VdP 可适用于下列哪一过程 ( B )(A) 298K ,1P θ的水蒸发过程 (B) 理想气体向真空膨胀 (C) 电解水制取氢 (D) N 2(g)+3H 2(g)=2NH 3(g)未达平衡7.温度一定的条件下,将固体CaCO 3放入抽空的密闭容器中分解达到平衡,系统的组分数和自由度数分别为:( B )(A) 2、0 (B) 2、1 (C) 1、0 (D) 3、18.石墨(C)和金刚石(C)在 25℃, 101325 Pa 下的标准燃烧焓分别为 -393.4 kJ·mol -1和 -395.3 kJ·mol -1,则金刚石的标准生成焓Δf H m θ(金刚石, 298 K)为 ( D )(A) -393.4 k J·mol -1 (B) -395.3 kJ·mol -1 (C) -1.9 kJ·mol -1 (D) 1.9 kJ·mol -19. 在完全互溶的二组分溶液的蒸气压–组成图中,在极大点或极小点上平衡蒸气相的组成和溶液相的组成是否相同?( B )(A) 相同 (B)不相同 (C) 不确定 (D)平衡蒸气相的浓度比溶液相的浓度高10. 在基元反应中( A )(A) 反应级数与反应分子数一定一致 (B) 反应级数一定大于反应分子数(C) 反应级数一定小于反应分子数 (D) 反应级数与反应分子数不一定总是一致11.完全互溶的双液系统的蒸气压-组成图中的最高点与对应的沸点-组成图中的最低点,其溶液相的组成是否相同?( C )(A) 相同 (B )不相同 (C )不一定相同 (D )平衡蒸气相的浓度比溶液相的浓度高12.多组分系统多相平衡的条件为:除系统中各相的T 和P 必须相同外,各物质在各相中的 也必须相等。

物理化学(下)_湖南大学中国大学mooc课后章节答案期末考试题库2023年

物理化学(下)_湖南大学中国大学mooc课后章节答案期末考试题库2023年

物理化学(下)_湖南大学中国大学mooc课后章节答案期末考试题库2023年1.已知25℃时Eɵ(Zn2+êZn) = -0.7620 V,H2在Zn和光亮Pt上的超电压分别约为0.7 V和0.3 V,若分别以Zn和光亮Pt为阴极电解1mol·kg-1 ZnSO4溶液(设为中性),在阴极上首先析出的物质将分别为答案:Zn和H22.随着电流密度由小到大增加,电解池的实际分解电压V(分) 与原电池的端电压V(端) 将答案:V(分)递增,V(端)递减3.已知反应H2(g) + ½O2(g)=H2O(l) 的Δr G mɵ= -237.19 kJ·mol-1,且所用的是可逆电极,溶液搅拌充分,则在25℃时极稀硫酸的分解电压(V)为答案:1.2294.恒温恒压下,电池在以下三种情况下放电:(1)电流趋近于零,(2)一定大小的工作电流,③短路。

下列各式正确的是答案:5.下列反应 AgCl(s) + I-= AgI(s) + Cl-其可逆电池表达式为答案:Ag(s)|AgI(s)|I-||Cl-| AgCl(s)|Ag(s)6.答案:0.0657.在298 K将两个 Zn(s)极分别浸入 Zn2+活度为0.02和0.2的溶液中, 这样组成的浓差电池的电动势为答案:0.0295 V8.在 Hittorff 法测迁移数的实验中,用 Ag 电极电解 AgNO3溶液,测出在阳极部AgNO3的浓度增加了x mol,而串联在电路中的 Ag库仑计上有y mol 的Ag 析出, 则Ag+离子迁移数为答案:(y–x)/y9.答案:10.某电池反应可写成(1)H2(p1)+Cl2(p2)=2HCl 或(2)1/2H2(p1)+1/2Cl2(p2)=HCl,这两种不同的表示式算出的E、E$、Δr G m和K$ 的关系是答案:E1=E2,E1$=E2$,Δr G m,1=2Δr G m,2,K1$=(K2$)211.电解质溶液中离子迁移数(t i)与离子电迁移率(U i)成正比,当温度与溶液浓度一定时,离子电迁移率是一定的,则25℃时,0.1mol dm-3NaOH中Na+的迁移数(t1)与0.1mol dm-3NaCl溶液中Na+的迁移数(t2),两者之间的关系为答案:t1 < t212.当电流通过原电池或电解池时,电极电势将偏离平衡电极电势而发生极化。

山东大学物理化学课堂测试题

山东大学物理化学课堂测试题

课堂测试一1. 放射性Pb201的半衰期为8小时,1g放射性Pb201经24小时衰变后还剩( )(A) 1/3 g (B) 1/4 g (C) 1/8 g (D) 0 g2. 某基元反应,在等容的条件下反应,当反应进度为1mol时,吸热50kJ,则该反应的实验活化能Ea值的大小范围是()(A) Ea≥50 kJ/mol (B) Ea<50 kJ/mol (C) Ea=-50 kJ/mol (D) 无法确定3. 某化学反应,温度升高1K,反应的速率系数增加1%,则该反应的活化能的数值约为()(A) 100RT2(B) 10RT2(C) RT2(D) 0.01RT24.某一反应在一定条件下的平衡转化率为25.3%,保持反应的其他条件不变,加入某个高效催化剂使反应速率明显加快,则平衡转化率的数值将()(A) 大于25.3% (B) 小于25.3% (C) 等于25.3% (D) 不确定5. 1g氢气完全燃烧生成水蒸气时放出热量121kJ,且O2中1mol O=O键完全断裂时吸收热量496 kJ, 水蒸气中1mol H-O键形成时放出热量463kJ,则H2中1mol H-H键断裂时吸收热量为()(A) 920 kJ (B) 557 kJ (C) 436 kJ (D) 188 kJ课堂测试二1.随着移动床气化反应区气化温度的升高,粗煤气中成分CO2和CH4( ), CO和H2 ( )(A) 升高,降低(B) 升高,升高(C) 降低,升高(D) 降低,降低2. 原煤M ar=20%, 制成分析煤样时,测得M ad=10.0%, A ad=27.0%, 求燃烧5t 原煤要产生多少灰渣?( )(A) 1.35 t (B) 1.2 t (C) 0.65 t (D) 无法确定3. 对于天然气水蒸汽转化反应下列说法正确的为: ()(A)天然气水蒸气转化反应是吸热的可逆反应;(B)低温对转化反应平衡有利;(C) 高压有利于转化反应平衡;(D) 低水碳比有利于转化反应;4. 天然气与二氧化碳在一定条件下反应制备合成气(CO+H2)的原理是CH4(g)+CO2(g) =2CO(g)+2H2(g) △H>0.该反应达到平衡之后,为了提高CH4的转化率,下列措施正确的是()(A) 增大压强(B) 升高温度(C) 增大CH4浓度(D) 更换高效催化剂5. 关于煤的液化,下列说法错误的是()?(A)煤的液化反应必须有足够的氢源和溶剂(B)煤的液化分为直接液化和间接液化(C)煤的碳、氢含量比越小,越容易液化(D) 煤的直接液化法一般是在常温常压下进行6. 天然气制液体燃料(GTL)技术路线所涉及到的系列主反应可概括为()(A)①+③+⑤+⑦(B) ①+②+④+⑥(C) ①+②+⑤+⑥(D) ①+③+④+⑦7. 煤气化技术中气流床采用的原料煤是(),气流床采用的加料方式是()(A) 粉煤、逆流(B) 粉煤、并流(C) 块煤、逆流(D) 块煤、并流8. 费托合成涉及到的基本化学问题是()(A) C-O断裂和C-C形成(B) C-O选择加氢(C) C-C增长规律(D) 碳链终止9.天然气醇胺法脱硫过程同时也脱除部分CO2,下列反应中在70△以下不易发生的是()(A) H2S + RNH2 = RNH3HS(B) RNH3HS = RNH2 + H2S(C) H2S + R3N = R3NHHS(D) CO2 + 2RNH2 = RNHCOONH3R10. (多选题) 属于煤炭直接加氢液化阶段的是()(A)煤的热解(B) 活性基团与氢反应(C) 煤的干燥(D) 沥青烯及液化油分子继续加氢裂化生成更小分子11. (多选题) 关于煤的气化和液化,下列说法正确的是()(A)煤的气化是将煤在高温下转化为CO和H2的过程(B)煤的气化和液化可制得清洁燃料,减少硫及粉尘等大气污染(C)煤的气化和液化都主要是化学变化(D) 煤的气化和液化是高效利用煤炭的重要途径课堂测试三1.浓度为0.01mol/kg的KCl溶液中,离子迁移数(t K++ t Cl-) = 1,若再加入0.01mol/kg的HCl,此时(t K++ t Cl-) 应()(A) >1 (B) =1 (C) <1 (D) (t K++ t Cl-) /22.电解池中有5mol/L的KOH电解质溶液,已知阴离子的迁移速度是阳离子的2倍,则当有2mol阴离子向阳极区迁移时,则在阳极上通过的电量是: ()(A)1F (B) 2F (C) 3F (D) 5F3.298K,将H2SO4溶液的浓度从0.01 mol·kg-1增加到0.1 mol·kg-1,则其电导率κ和摩尔电导率Λm将( )(A)κ增大,Λm增大(B) κ增大,Λm减小(C) κ减小,Λm增大(D) κ减小,Λm减小4.由下列数据(25△)求NH4OH的无限稀释摩尔电导Λm∞(S ·m2 ·mol-1)(A) 0.277*10-2 (B) 2.721*10-2(C) 2.253*10-2(D) 5.251*10-25.有四种浓度均为0.01 mol·kg-1的电解质溶液,其中平均活度因子最大的是( )(A) KCl (B) CaCl2(C) Na2SO4(D) AlCl36.电池在恒温、恒压及可逆情况下放电,则其与环境之间的热交换为( )(A) Δr H (B) 0 (C) TΔr S (D) Δr G7.298K时,电池反应H2(g) + 1/2O2(g) = H2O(l) 的标准电势为E1θ,反应2H2O(l) = 2H2(g) + O2(g) 的标准电势为E2θ,则E1θ与E2θ的关系为()(A) E2θ= -2 E1θ (B) E2θ= 2 E1θ(C) E2θ= -E1θ(D) E2θ= E1θ8.当发生极化现象时,两电极的电极电势将发生如下变化( )(A)E平,阳>E阳;E平,阴>E阴(B) E平,阳<E阳;E平,阴>E阴(C) E平,阳<E阳;E平,阴<E阴(D) E平,阳>E阳;E平,阴<E阴9.镍镉(Ni-Cd)可充电电池在现代生活中有宽泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Elementary reaction: the reaction that completes in one act Intermediate: the species formed in one step and consumed in a subsequent step and never seen as a product
Reaction mechanism/pathway: the detailed way by which the reactants are converted into products, or the series of steps by which a reaction takes place. The sum of the elementary reactions and their series.
+
Overall reaction
complex reaction
Ethylene butadiene cyclohexene
Find differences between mechanisms described in physical chemistry and those in organic chemistry.
Hydrolysis of nitrile
Levine p. 528-529
17.1 reaction kinetics
rate of reaction, rate laws, reaction mechanism 17.2 measurement of reaction rates 17.3 integration of rate law first-order reactions; second-order reactions; third-order reactions zero-order reaction; n-th-order reaction
1) elementary reactions
According to the number of molecules involved in the reaction, elementary reactions can be divided into three kinds: unimolecular reaction: (decomposition, isomerization) I2 = 2I bimolecular reaction: (combination) Br + H2 = HBr + H termolecular reaction: 2I + H2 = 2HI
§ 9.1 Introduction of chemical kinetics
----- concepts and terms
Scientific language: Each science has its own language: Word: concepts, terms;
Grammar: nomenclature, rule, law
2) overall reactions
According to the number of elementary reactions involved, the overall reaction can be classified into: simple reaction Diels-Alder addition:
rate; catalyst; rate constant; mechanism; selectivity.
Chemical kinetics:
A branch of chemistry that concerns reaction rate and mechanism.
Brief history of chemical kinetics
Detail study on a chemical reaction
1) Stoichiometric: balance of the equation

reactants; products; ratio.
2) Thermodynamic: Spontaneity and equilibrium
direction; equilibrium; yields. 3) Kinetic: Rate and mechanism
Main concerns of chemical kinetics:
1) Reaction rate: factors that determines the rate of reaction, rate law. 2) Reaction mechanism: the series of steps by which a reaction takes place. 3) structure-dependence of reactivity: the correlation between molecular structure and reaction potential.
(1) 1850s-1910s: Empirical kinetics (2) 1910s-1950s: Elementary reactions; (3) 1950s-present: Microscopic kinetics: molecular dynamics, state-to-state dynamics
Reaction mechanism / reaction pathway
multistep reaction
H2 + I2 = 2 HI
1) I2 = 2I 2) 2I + H2 = 2HI
H2 + Br2 = 2 HBr
1) 2) 3) 4) 5) Br2 = 2 Br Br + H2 = HBr + H H + Br2 = HBr + Br H + HBr = H2 + Br 2 Br = Br2
相关文档
最新文档