八上:等腰直角三角形求坐标解决方法 (VIP群特供)

合集下载

八年级数学轴对称 等腰三角形中作辅助线的八种常用方法

八年级数学轴对称 等腰三角形中作辅助线的八种常用方法
证明:如图,延长 AB, DE交于点F, 则∠1=∠2=∠F, ∴AD=AF.
∵AD=AB+CD,∴DC=BF. ∵∠DEC=∠FEB, ∴△DCE≌△FBE,∴BE=CE.
(2)求证:AE⊥DE. 证明:由(1)知△DCE≌△FBE,AD=AF, ∴DE=EF,∴AE⊥DE.
(3)求证:AE平分∠DAB. 证明:∵DE=EF,AD=AF,∴AE平分∠DAB.
证明:如图,连接AD,∵AB=AC,D为BC的中点, ∴AD⊥BC,∠BAD=∠CAD,∠B=∠C.
∵∠BAC=90°, ∴∠B=∠C=∠BAD= ∠CAD=45°,∴AD=BD.
在△ BED 与△ AFD 中,
BE=AF, ∠B=∠DAF, BD=AD,
∴△BED≌△AFD(SAS),∴ED=DF.
第十三章 轴对称
阶段核心方法 等腰三角形中作辅助线的八种常用
方法
提示:点击 进入习题
1 见习题 2 见习题 3 见习题 4 见习题 5 见习题
答案显示
6 见习题△ABC中,∠A=90°,AB=AC,D为BC的 中点,E,F分别是AB,AC上的点,且BE=AF,求 证:(1)ED=DF;
6.如图,在△ABC中,AD为中线,点E为AB上一点,AD, CE交于点F,且AE=EF.求证:AB=CF. 证明:如图,延长AD至点G,使DG=AD,连接 CG.∵BD=CD,∠ADB=∠GDC, ∴△ABD≌△GCD. ∴AB=CG, ∠G=∠EAF.
∵AE=EF,∴∠EAF=∠EFA. 又∵∠EFA=∠CFG, ∴∠G=∠GFC,∴CG=CF, ∴AB=CF.
(2)过点P作直线BC的垂线,垂足为E.P,Q在移动的过程 中,线段BE,DE,CD中是否存在长度保持不变的线 段?请说明理由.

中考数学复习指导:双等腰直角三角形问题前解法分析

中考数学复习指导:双等腰直角三角形问题前解法分析

中考数学复习指导:双等腰直角三角形问题前解法分析双等腰直角三角形问题前解法分析一个等腰直角三角形绕另一等腰直角三角形旋转,形成以双等腰直角三角形为背景的数学问题,在近年各地中考试卷中大量出现.本文拟通过对不同类型的双等腰直角三角形问题的剖析,找到某些共性,以达到帮助大家提高解题题能力的目的.一、共直角顶点的两个等腰直角三角形例1.如图1,已知ACB ?和ECD ?都是等腰直角三角形,90,ACB ECD D ∠=∠=°为AB 边上一点.(1)求证: ACE BCD ;(2)求证: 2222CD AD DB =+.分析当两等腰直角三角形绕着公共的直角顶点进行旋转时,必会出现全等三角形,此题第(1)问运用“通性”直接证明全等.第(2)问借助第(1)问的结论,利用等腰直角三角形两锐角互余,以及勾股定理,证明等式成立.注意到等腰三角形中的两腰相等,则旋转使两腰重合往往是解题中常用的途径之一.例2.如图2,在四边形ABCD 中,点,E F 分别是,AB CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连结,,,AG BG CG DG ,且AGD BGC ∠=∠.(1)求证: AD BC =;(2)求证: AGD EGF ??:;(3)如图3,若,AD BC 所在直线互相垂直,求AD EF的值.分析初看此题是一组对边相等的四边形问题,可仔细分析条件可以发现,DGC ?和AGB ?均为等腰三角形,当四边形ABCD 中AD BC ⊥时,两等腰三角形即变为等腰直角三角形,题中三个问题层次分明,逐级递进.第(1)问利用垂直平分线性质直接证全等;第(2)问利用顶用相等的两等腰三角形相似得到对应边成比例,再借用夹角相等证相似;第(3)问通过对四边形中相等的一组对边特殊化,形成两等腰直角三角形,把两条线段的比转化为等腰直角三角形中斜边与直角边的比.虽然通过中点,转化的方法较多(相似、中位线、中位倍长构全等),但本质上均需要构造等腰直角三角形.二、共底角顶点的两个等腰直角三角形例3.如图4, ,A B 分别在射线,OM ON 上,且MON ∠为钝角,现以线段,OA OB 为斜边向MON ∠外侧作等腰直角三角形,分别是,OAP OBQ ??,点,,C D E 分别是,,OA OB AB 的中点.(1)求证: PCE EDQ ;(2)延长,PC QD 交于点R .①如图5,若150MON ∠=°,求证:ABR ?为等边三角形;②如图6,若ARB PEQ ??:,求MON ∠的大小和AB PQ的值.分析本题中两等腰直角三角形OAP ?与OBQ ?中的一底角顶点O 重合,通过OAP ?绕点O 旋转来设计相关问题.第(1)问利用三角形中位线定理和直角三角形斜边上的中线结合平行四边形性质证明全等(边角边).第(2)①问从对称的角度,通过添加辅助线(连结OC )过度,利用线段中垂线证线段相等;第(2)②问,需要对(2)①问逆向思考,通过证PE EQ ⊥这一中间环节,得出PEQ ?与ARB ?为等腰直角三角形,利用直角三角形斜边上的中线性质与等腰直角三角形三边关系求出两线段的比值.值得注意的是,此题与例2图形相近,解法相近,考查的核心知识点相近.例4.已知两个共顶点的等腰三角形Rt ABC ?和Rt CEF ?,90ABC CEF ∠=∠=°,连结,AF M 是AF 的中点,连结,MB ME .(1)如图7,当CB 与CE 在同一直线上时,求证: //MB CF ;(2)如图7,若,2CB a CE a ==,求BM ,ME 的长;(3)如图8,当45BCE ∠=°时,求证: BM ME =.分析两个共底角顶点的双等腰直角三角形中,当两腰在一条直线上时,另两腰必平行.第(1)问利用这个性质结合M 点为中点直接证全等;(2)问在(1)问的基础上,证明BEM ?为等腰直角三角形;第(3)问研究在CEF ?绕点C 旋转45°时,BME ?的形状问题.图形形状发生了改变,但结论不变,方法不变,仍可借助中点构造等腰直角三角形,利用中位线性质进行转化证明.三、一直角顶点和一底角顶点重合的两个等腰直角三角形例5.如图9,在Rt ABC ?中,90,BAC AB AD ∠=°=,点D 是AC 的中点,将一块等腰直角三角板如图放置,使三角板斜边的两个端点分别与,A D 重合,连结,BE EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.分析等腰直角ADE ?的底角顶点A 与等腰直角ABD ?的直角顶点A 重合,借助BAE EDC 证明BEC ?为等腰直角三角形.相当于共直角顶点等腰三角形ADE ?与BEC ?旋转问题的逆问题.例6 如图10 , ABC ?和ACD ?是两个等腰直角三角形,90ACB ADC ∠=∠=°,延长DA 至点E ,使AE AD =,连结,,EB EC BD .(1)求证: BDA BEA ;(2)若BC =BE 的长.分析本题中一等腰直角三角形的直角边与另一等腰直角三角形的斜边重合,此种情况下一等腰直角三角形的斜边必与另一等腰直角三角形一直角边垂直.第(1)问即在此基础上通过“三线合一”构造等腰三角形;第(2)问是根据等腰直角三角形的边角特征,借助勾股定理求线段长.四、一直角顶点和一底边中点重合的两个等腰直角三角形例7如图11,在等腰直角ABC ?中,90,ACB CO AB ∠=°⊥于点O ,点,D E 分别在边,AC BC 上,且AD CE =,连结DE 交CO 于点P ,给出以上结论:①DOE ?是等腰直角三角形;②CDE COE ∠=∠;③1AC =,则四边形CEOD 的面积为14; ④22222AD BE OP DP PE +?=?. 其中所有正确结论正确的序号是 .分析本题表面上看,是一个等腰直角三角形通过作出斜边上的高探究相关结论的问题,实质上是等腰直角DOE ?的直角顶点O 在等腰直角ABC ?斜边中点O 处的结论探究问题.对于选项④利用“四点共圆”,并借助“共角共边的母子”相似三角形,能起到事半攻倍的效果,五、一底角顶点和一底边中点重合的两个等腰直角三角形例8 如图12,等腰直角三角形ABC ?和ODE ?,点O 为BC 中点,90,BAC ODE OD ∠=∠=°交BA 于,M OE 交AC 于N ,试求,,BM NM NA 的关系,并说明理由.分析 DOE ?绕等腰直角ABC ?的底边中点O 旋转,在图12~图14三种情况中,对应的线段和差关系分别是,BM MN NA MN BM NA =+=+.此时DOE ?为等腰直角三角形并不是必备条件,本质上45MON ∠=°才是这一模型的必备条件,其基本的解题途径是,构造共直角顶点的两个等腰直角三角形,通过截长补短解决线段的和差问题.等腰直角三角形底边中点具有独特的性质,以双等腰直角三角形为背景的几何图形,常常具有中点(隐含中点)这一条件,并且图形中常常包含全等三角形,发现其中的全等三角形往往是解题的突破口,而基本的辅助线便是借助中点构造新的等腰直角三角形.。

平面直角坐标系中等腰三角形的存在性问题

平面直角坐标系中等腰三角形的存在性问题

平面直角坐标系中等腰三角形的存在性问题等腰三角形的存在性问题多见于各种压轴题中,由于这类题目都与图形运动有关,需要学生具有一定的想象能力、分析能力和运算能力。

等腰三角形分类讨论的解题思路:①用含有字母的代数式分别表示等腰三角形的三条边,后用三条线段依次相等建立方程后求解。

②根据题目要求分别作出等腰三角形条件下的图形,利用等腰三角形的有关性质和题目中的条件进行合理的转化后建立方程求解。

分析:本题的特点是“两个定点+一个半动点”,对于这样的问题,往往可以选择利用①代数式表示三边,②三边依次相等建立方程后求解,此时要关注是否有三点共线的情况,有三点共线的情况要排除。

代数法容易理解且不容易漏解,但是有时计算过程有时有些繁琐。

分析:本题的特点是“两个定点+一个半动点”,对于这样的存在性问题,我们可以通过画图确定点的位置,利用对称性以及同圆的半径可以求出点的坐标。

分析:本题的特点是“一个定点+2个半动点”,本题中的P、Q 是两个半动点,B为定点。

若用距离公式解决,则出现“两个个未知数一个方程”的情况,无法解题。

本题的特点是发现特殊角45°,再利用等腰三角形的性质,利用相似求出点P坐标。

分析:本题的特点是“三个半动点”,本题中的P、E、D是三个半动点,若用距离公式解决,则出现“三个未知数一个方程”的情况,无法解题。

本题的特点是发现一组等角,即∠PDE=∠B(都是∠EDB的余角),利用∠B的三角比以及PD=1.5这两个条件作为突破口,从而求得点D的坐标。

在具体问题中,我们需要根据题意找准题型,尽量使用几何法解决问题。

特别是当动点在二次函数图像上时,如果选择使用代数法计算,计算过程就会很繁琐,因此需要构造相似三角形或三角比,将线段的长转化为点的坐标。

由等腰三角形求点坐标

由等腰三角形求点坐标

由等腰三角形求点坐标2.已知抛物线y=-x2+5x+n经过点A(1,0),与y轴交于B点,(1) 求抛物线解析式(2) P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,求P点坐标.11.(26分) 抛物线y=ax ²+bx+c(a ≠0)经过点A (3,0).B (2,-3),且以x=1为对称轴.(1) 求此函数的解析式;(2) 作出二次函数的大致图像;(3) 在对称轴x=1上是否存在一点P ,使△PAB 中PA=PB ?若存在;求出P 点的坐标;若不存在,说明理由.18.二次函数625412+-=x x y 的图象与x 轴从左到右两个交点依次为A 、B ,与y 轴交于点C ,(1)求A 、B 、C 三点的坐标;(2)如果P (x ,y )是抛物线AC 之间的动点,O 为坐标原点,试求△POA 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)是否存在这样的点P ,使得PO =PA ,若存在,求出点P 的坐标;若不存在,说明理由.由平行四边形求点坐标25.已知抛物线216y x bx c =++经过点A(5,0),且满足bc=0,b<c . (1)求该抛物线的解析式;(2)点M 在直线2y x =上,点P 在抛物线216y x bx c =++上,求当以O 、A 、P 、M 为顶点的四边形为平行四边形时的P 点坐标。

综上,符合条件的P 点共有3个,它们分别是P 1(12,14) 、P 2(-3,4)、P 3(20,50).25.在平面直角坐标系中,二次函数322-+=x x y 的图象与x 轴交于A 、 B 两点(点A 在点B 的左侧),交y 轴于点E . 点C 是点A 关于点B 的对称点,点F 是线段BC 的中点,直线l 过点F 且与y 轴平行. 一次函数y =-x +m 的图象过点C ,交y 轴于D 点.(1)求点C 、点F 的坐标;(2)在直线l 上取点M ,在抛物线上取点N ,使以点A ,C ,M ,N 为顶点的四边形是平行四边形,求点N 的坐标.符合条件的N 点坐标有(-5,12),(11,140),(-1,-4),25.在平面直角坐标系xOy 中,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,顶点为D ,过点A 的直线与抛物线交于点E ,与y 轴交于点F ,且点B 的坐标为(3,0),点E 的坐标为(2,3).(1)求抛物线的解析式;(2)设直线AE 与抛物线对称轴的交点为P ,M 为直线AE 上的任意一点,过点M 作MN ∥PD 交抛物线于点N ,以P 、D 、M 、N 为顶点的四边形能否为平行四边形?若能,请求点M 的坐标;若不能,请说明理由.∴点M 的坐标为(0,1)或)或.。

新人教版数学八年级上册 小专题(四) 等腰三角形问题中常见的解题策略

新人教版数学八年级上册  小专题(四) 等腰三角形问题中常见的解题策略

小专题( 四)等腰三角形问题中常见的解题策略在解决等腰三角形的角度( 或边长)问题时,若题目中没有明确顶角和底角( 或腰长和底边),做题时要注意分类讨论,这是解题的关键.有时候在解决问题时,需要通过添加辅助线的方式构造等腰三角形求解,如截长补短法等,这也是一种常见的解题策略,可以将零碎的知识加以整合,进而将复杂问题简单化.类型1分类讨论法——求角度在题目没有给出图形,已知条件也未确定顶角或底角的情况下,要进行分类讨论,一般情况都是锐角三角形与钝角三角形两种形状.1.如果等腰三角形中有一个内角等于70°,那么这个三角形最小的内角等于55°或40°.2.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为21°或69°.3.( 改编)在等腰三角形ABC中,( 1 )若∠A=100°,则∠B=40°;( 2 )若∠A=50°,则∠B=65°或80°或50°.类型2分类讨论法——求边长在题目没有出示图形,也未确定腰长和底边长时,要进行分类讨论,并利用三角形的三边关系加以验证,以确定能否组成三角形,这是最容易错的点.4.已知等腰△ABC的两边长分别为2和5,则等腰△ABC的周长为( B)A.9B.12C.9或12D.不能确定5.已知一个等腰三角形的三边长分别为2x-1,x+1,3x-2,求这个等腰三角形的周长.( 1 )完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x-1=x+1时,解得x=2,此时能构成等腰三角形( 填“能”或“不能”).②当2x-1=3x-2时,解得x=1,此时不能构成等腰三角形( 填“能”或“不能”). ( 2 )请你根据( 1 )中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.解:( 2 )③当x+1=3x-2时,解得x=,此时能构成等腰三角形,周长为7.类型3分类讨论法——分割等腰三角形分割三角形时,根据“等角对等边”定理,重点关注三角形的内角度数,尤其是两个底角相等,进而得到等腰三角形.6.在△ABC中,∠A=70°,∠B=30°.请在平面内画一条直线,将△ABC分割成两个三角形,使其中一个为等腰三角形,请在图中画出至少两种方案.解:提供四种分割方案如图所示.( 答案不唯一)类型4构造等腰三角形——作平行线在解决几何问题时,构造等腰三角形是常见的解题方法.这里提供三种构造方案,供大家参考:①“角平分线+平行线”;②作腰的平行线;③作底边的平行线.7.如图,在△ABC中,AB=AC,点D在AB上,点E在AC的延长线上,DE交BC于点F,且DF=EF.求证:BD=CE.证明:过点D作DG∥AE,交BC于点G.易证△DGF≌△ECF,∴DG=CE.∵AB=AC,∴∠B=∠ACB.∵DG∥AE,∴∠DGB=∠ACB,∴∠B=∠DGB,∴DG=BD,∴BD=CE.8.已知,△ABC为等边三角形,D为AC上的一个动点,E为BC延长线上一点,且BD=DE.( 1 )如图1,若点D在边AC上,猜想线段AD与CE之间的关系,并说明理由;( 2 )如图2,若点D在AC的延长线上,那么( 1 )中的结论是否仍然成立,请说明理由.解:( 1 )AD=CE.理由:过点D作DP∥BC,交AB于点P.∵△ABC是等边三角形,∴△APD也是等边三角形,∴AP=PD=AD,∠APD=∠ABC=∠ACB=∠ADP=60°.∵DB=DE,∴∠DBC=∠DEC.∵DP∥BC,∴∠PDB=∠CBD,∴∠PDB=∠DEC.又∵∠BPD=∠A+∠ADP=120°,∠DCE=∠A+∠ABC=120°,∴∠BPD=∠DCE.在△BPD和△DCE中,∠PDB=∠DEC,∠BPD=∠DCE,DB=DE,∴△BPD≌△DCE,∴PD=CE,∴AD=CE.( 2 )AD=CE仍然成立.理由:过点D作DP∥BC,交AB的延长线于点P.∵△ABC是等边三角形,∴△APD也是等边三角形,∴AP=PD=AD,∠APD=∠ABC=∠ACB=∠PDC=60°.∵DB=DE,∴∠DBC=∠DEC.∵DP∥BC,∴∠PDB=∠CBD,∴∠PDB=∠DEC.在△BPD和△DCE中,∴△BPD≌△DCE( AAS ),∴PD=CE,∴AD=CE.类型5构造等腰三角形——截长补短法解决此类题,都需要添加辅助线,利用将长线段“截短”或短线段“延长”的方法,使之长度相等,再综合全等三角形的知识加以证明.9.如图,在△ABC中,∠BAC=108°,AB=AC,BD平分∠ABC,交AC于点D.求证:BC=CD+AB.解:如图,延长BA至点E,使BE=BC,连接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.易证△EBD≌△CBD,∴DE=DC,∠E=∠C=36°.∵∠EAD=72°,∴∠EDA=∠EAD=72°,∴EA=ED,∴CD=DE=AE,∴BC=BE=AB+AE=AB+CD.类型6构造等腰三角形——倍角关系在解决此类问题时,可利用角平分线的性质,添加辅助线,构造等腰三角形.10.如图,在△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.证明:在AC上截取AE=AB,连接DE.∵AD平分∠BAC,∴∠BAD=∠DAC.在△ABD和△AED中,∴△ABD≌△AED( SAS ),∴∠B=∠AED,BD=DE,又∵∠B=2∠C,∴∠AED=2∠C,而∠AED=∠C+∠EDC=2∠C,∴∠C=∠EDC,∴DE=CE,∴AB+BD=AE+CE=AC.。

31 动点引起的等腰直角三角形存在性问题-【初中数学】120个题型大招!冲刺满分秘籍!

31 动点引起的等腰直角三角形存在性问题-【初中数学】120个题型大招!冲刺满分秘籍!

动点引起的等腰直角三角形存在性问题△ABP 为等腰直角三角形,黑色部分为P 点位置.【一题多解·典例剖析】例题1.(2021·湖南衡阳市中考)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如()()1,1,2021,2021……都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标;(2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线2y x 2x 3=-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线2y x 2x 3=-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC △,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)(2,2)、(-2,-2);(2)①0<c<4;②45°;(3)存在,P 点坐标为315,24⎛⎫ ⎪⎝⎭或312⎛⎫⎪⎪⎝⎭或31,2⎛⎫⎪⎝⎭.【解析】解:(1)联立4yxy x⎧=⎪⎨⎪=⎩,解得:22xy=⎧⎨=⎩或22xy=-⎧⎨=-⎩即:函数4yx=上的雁点坐标为(2,2)、(-2,-2).(2)①联立25y xy ax x c=⎧⎨=++⎩得ax2+4x+c=0∵这样的雁点E只有一个,即该一元二次方程有两个相等的实根,∴△=16-4ac=0,即ac=4∵a>1∴a=4c>1,即4c-1>0,4cc->0,解得:0<c<4.②由①知,E点坐标为:x=422a a-=-,即E22,a a⎛⎫--⎪⎝⎭在y=ax2+5x+4a中,当y=0时,得:x=-4a,x=-1a即M点坐标为(-4a,0),N点坐标为(-1a,0)过E点向x轴作垂线,垂足为H点,EH=2a,MH=242()a a a---=∴EH=MH即△EMH为等腰直角三角形,∠EMN=45°.(3)存在,理由如下:①如图所示:过P作直线l垂直于x轴于点k,过C作CH⊥PK于点H方法一设C(m,m),P(x,y)∵△CPB为等腰三角形,∴PC=PB,∠CPB=90°,∴∠KPB+∠HPC=90°,∵∠HPC+∠HCP=90°,∴∠KPB=∠HCP,∵∠H=∠PKB=90°,∴△CHP ≌△PKB ,∴CH =PK ,HP =KB ,即3m x y m y x -=⎧⎨-=-⎩∴3232x y m ⎧=⎪⎪⎨⎪=-⎪⎩即P (32,154).方法二设P (m ,-m 2+2m+3),同理,CH =PK ,HP =KB ,则C (m -m 2+2m+3,-m 2+2m+3+3-m )∵C 为雁点∴m -m 2+2m+3=-m 2+2m+3+3-m ,解得:m=32,即P (32,154).②如图所示,同理可得:△KCP ≌△JPB∴KP =JB ,KC =JP方法一设P (x ,y ),C (m ,m )∴KP =x -m ,KC =y -m ,JB =y ,JP =3-x ,即3x m y y m x-=⎧⎨-=-⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩则P 23(,)22或23(,)22方法二设P (m ,-m 2+2m+3),则C (m -(-m 2+2m+3),-m 2+2m+3-(3-m ))∴m -(-m 2+2m+3)=-m 2+2m+3-(3-m ),解得:③如图所示,此时P 与第②种情况重合综上所述,符合题意P 的坐标为(32,154)或3()22,或23()22,.【一题多解·对标练习】练习1.(2021·湖南省怀化市中考)如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且2OA =,4OB =,8OC =.(1)求抛物线的解析式;(2)点Q 是抛物线上位于x 轴上方的一点,点R 在x 轴上,是否存在以点Q 为直角顶点的等腰Rt CQR △?若存在,求出点Q 的坐标,若不存在,请说明理由.【答案】(1)y=-x2+2x+8;(2)存在,13313322Q⎫++⎪⎪⎝⎭或34141322Q⎛⎫⎪⎪⎝⎭.【解析】解:(1)∵OA=2,OB=4,OC=8,∴A(-2,0),B(4,0),C(0,8),设二次函数的解析式为y=a(x+2)(x-4),将(0,8)代入得:a=-1即抛物线的解析式为:y=-x2+2x+8;(2)存在以点Q为直角顶点的等腰直角△CQR,理由如下:①当点Q在第二象限时,如图所示过点Q作QL⊥x轴于点L,过点C作CK⊥QL,交其延长线于点K,∴∠CKQ=∠QLR=∠COL=90°,∴四边形COLK是矩形,∴CK=OL,∵CQR为等腰直角三角形,∴CQ=QR,∠CQR=90°,∴∠KCQ=∠LQR∴△KCQ ≌△LQR∴RL=QK ,QL=CK ,设R (m ,0),Q (x ,y )则m -x=8-y-x=y即-x=-x 2+2x+8,解得:x=32-或x=32+(舍)则Q (32-,32)②当点Q 在第一象限时,如图所示同理可得:x=-x 2+2x+8,解得:x=12或x=12-(舍),∴Q ⎫⎪⎝⎭.综上所述,满足题意的Q 点坐标为1122⎛⎫ ⎪⎝⎭或3322⎛⎫- ⎪⎝⎭.【多题一解·典例剖析】例题2.(2021·四川省广安市中考)如图,在平面直角坐标系中,抛物线2y x bx c =-++的图象与坐标轴相交于A 、B 、C 三点,其中A 点坐标为()3,0,B 点坐标为()1,0-,连接AC 、BC .动点P 从点A 出发,在线段AC 个单位长度向点C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)求b 、c 的值;(2)在P 、Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少?(3)在线段AC 上方的抛物线上是否存在点M ,使MPQ 是以点P 为直角顶点的等腰直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)b =2,c =3;(2)t =2,最小值为4;(3)【解析】解:(1)∵抛物线y =-x 2+bx +c 经过点A (3,0),B (-1,0),则09301b c b c =-++⎧⎨=--+⎩,解得:23b c =⎧⎨=⎩;(2)由(1)得:抛物线表达式为y =-x 2+2x +3,C (0,3),A (3,0),∴△OAC 是等腰直角三角形,由点P 的运动可知:AP,过点P 作PE ⊥x 轴,垂足为E ,∴AE =PE t ,即E (3-t ,0),又Q (-1+t ,0),∴S 四边形BCPQ =S △ABC -S △APQ =()11433122t t ⨯⨯-⨯--+⎡⎤⎣⎦=21262t t -+∴当t =2时,四边形BCPQ 的面积最小,最小值为4.(3)如图,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F,∵△PMQ 是等腰直角三角形,PM =PQ ,∠MPQ =90°,∴∠MPF +∠QPE =90°,又∠MPF +∠PMF =90°,∴∠PMF =∠QPE ,在△PFM 和△QEP 中,F QEP PMF QPE PM PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFM ≌△QEP ,∴MF =PE =t ,PF =QE =4-2t ,∴EF =4-2t +t =4-t ,又OE =3-t ,∴点M 的坐标为(3-2t ,4-t ),∴4-t =-(3-2t )2+2(3-2t )+3,解得:t,∴M.【多题一解·对标练习】练习2.(2021·山东枣庄中考)如图,在平面直角坐标系中,直线132y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线213y x bx c =++经过坐标原点和点A ,顶点为点M .(1)求抛物线的关系式及点M 的坐标;(2)将直线AB 向下平移,得到过点M 的直线y mx n =+,且与x 轴负半轴交于点C ,取点()2,0D ,连接DM ,求证:45ADM ACM ∠-∠=︒.【答案】(1)y=13x2-2x,M(3,-3);(2)见解析.【解析】解:(1)∵直线AB:y=-12x+3交坐标轴与A、B∴A(6,0),B(0,3)将(6,0),(0,0)代入y=13x2+bx+cx得:1260b cc++=⎧⎨=⎩,解得:2bc=-⎧⎨=⎩,∴抛物线的关系式为y=13x2-2x,顶点M的坐标为(3,-3);(2)由题意得:m=1 2-,将点(3,-3)代入y=12-x+n得:n=32-,则直线CM的解析式为y=12-x32-,如图,过点D作DH⊥CM于H,设直线DM的解析式为y=2x+k,将点(2,0)代入得:4+k=0,解得k=-4,则直线DH的解析式为:y=2x-4,联立132224y x y x ⎧=--⎪⎨⎪=-⎩,解得12x y =⎧⎨=-⎩,即H (1,-2),∴=,=即DH=MH ,又DH ⊥CM ,即三角形DHM 是等腰直角三角形,∠DMH=45°,∴∠ADM=∠ACM+45°即∠ADM -∠ACM=45°.练习3.(2021·湖北黄石中考)抛物线22y ax bx b =-+(0a ≠)与y 轴相交于点()0,3C -,且抛物线的对称轴为3x =,D 为对称轴与x 轴的交点.(1)求抛物线的解析式;(2)在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E 、F 两点,若DEF 是等腰直角三角形,求DEF的面积.【答案】(1)y=-x 2+6x -3;(2)4.【解析】解:(1)由抛物线与y 轴相交于点(0,-3),得b=-3,∵抛物线的对称轴为x=3,即232b a--=,解得:a=-1∴抛物线的解析式为y=-x 2+6x -3.(2)过点E 作EM ⊥AB 于点M ,过点F 作FN ⊥AB 于N ,∵△DEF是等腰直角三角形∴DE=DF,∠FED=∠EFD=45°∵EF∥x轴∴∠EDM=45°∴△EMD为等腰直角三角形∴EM=DM设E(m,-m2+6m-3),则M(m,0),DM=3-m,EM=-m2+6m-3,∴3-m=-m2+6m-3解得:m=1或m=6当m=1时,E(1,2),符合题意,DM=EM=2,MN=4,△DEF的面积为4当m=6时,E(6,-3),舍去,综上所述:△DEF的面积为4.。

八年级上册数学-等腰三角形(一)数学思想与求角

八年级上册数学-等腰三角形(一)数学思想与求角

第14讲 等腰三角形(一)数学思想与求角【板块一】 整体思想求角方法技巧1.和为定值时可用整体思想求解单角的度数;也可已知单角度数求角的和或差的度数. 2.在共顶点的双等腰三角形的图形中,关注隐含的三角形全等,运用全等导角. 3.当整体代换不明朗时,可以引入参数x ,y 进行代数运算,整体求值. 【例1】如图,△ABC 中,AB =AC ,∠A =50°,P 为△ABC 内一点,∠PBC =∠PCA ,求∠BPC 的度数.A【对练1】如图,△ABC 中,D 为AB 上一点,∠FDE 的两边分别交直线AC ,BC 于点F ,E ,若AF =AD ,BD =BE ,∠FDE =30°,求∠ACB 的度数.ABF【例2】如图,△ABC 和△DEC 均为等边三角形,∠ADB =80°. (1)求证:△DAC ≌△EBC ; (2)求∠DBE 的度数.ACD【例3】如图,OA =OB =OC ,∠AOB =20°,∠BOC =2∠BAC ,求∠ACB 的度数.BOAC【例4】如图,∠ACD =∠BED =90°,AC =DC ,BE =DE ,点E 在AC 上,求∠CDE +∠EBA 的度数.BC AD【对练2】如图,∠ACD =∠BED =40°,AC =DC ,BE =DE ,点E 在AC 上,求∠CDE +∠EBA 的度数.A针对练习11.已知∠A =∠D ,AB =AC ,∠DBC +∠DCA =70°,则∠A 的度数.B AD2.如图,O 是四边形ABCD 内一点,OA =OB =OC ,∠D =50°,∠OAD +∠OCD =2∠ABC ,求∠AOC 的度数.C 3.如图,AB=AC,AD=AE,∠BAC=∠DAE=40°,若∠DCA=130°,求∠BDC的度数.ED4.如图,△ABC于△EDC均为等边三角形,且∠EBD=70°,求∠AEB的度数.B【板块二】方程思想求角度方法技巧等腰三角形求角度问题主要有一个等腰三角形或多个等腰三角形接力型或共顶点型及镶嵌接力型等.复杂问题要寻找角度之间的联系,巧设未知数,根据几个角的和或两个角之间的关系列方程(组)求解,关注三角形的外角和内角的关系.【例5】如图,△ABC中,∠A=∠ABC,DE垂直平分BC于点D,交AC于点E.(1)若AB=5,AC=8,求△ABE的周长;(2)若BE=BA,求∠C的度数.BC【例6】如图,AB =AC ,D 为BC 上一点,BD =AB ,E 为AD 延长线上一点,DC =CE ,AE =A C .(1)求∠ABC 的度数; (2)求证:AB =DE +E C .CBA【例7】如图,∠MAN =16°,点A 1在AM 上,在AN 上任取一点A 2,使A 2A 1=AA 1,再在AM 上取一点使A 3A 2=A 2A 1,…,如此一直作下去,则不能再作为止.那么作出的最后一点是( )A 3A 1OMA .A 5B .A 6C .A 7 DA 8 【例8】如图,在Rt △ACB =90°,DE 垂直平分AB 交BC 于点E ,交AB 于点D ,CD =DB ,点F 在CD 上,EF =E C . (1)求证:△AEC ≌△BEF ;(2)若∠DFB =3∠DBF ,求∠DEB 的度数.CBA针对练习21.如图,在△ABC 中,AB =AC ,∠BAD =30°,AD =AE ,求∠EDC 的度数.CBA2.如图,在△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,求∠A 的度数.CB3.如图,在△ABC 中,AB =AC ,点D 在AC 上,点E 在AB 上,BD =BC =BE ,AE =ED ,求∠C 的度数.BC4.如图,一钢架中,∠A =15°,焊上等长的钢条来加固钢架.若AP 1=P 1P 2,P 2P 3=P 1P 2,…,则这样的钢条最多能焊上( ).P 3P 1A .4条B .5条C .6条D .7条4.如图,△ABD 与△ACE 中,AB =AD ,AC =AE ,∠DAB =∠CAE . (1)求证:CD =BE ; (2)若∠ABE =15°,DC 与AB ,BE 分别交于点F ,点O ,DF =DB ,求∠BOD 的度数.DE6.如图,∠BAC =90°,CD 平分∠ACB 交AB 于点D ,CM ⊥CD ,点M 在AB 的垂直平分线上,AM 交BC 于点O ,MG ⊥AC 于点G . (1)求证:∠BCM =∠GCM ; (2)若CG =2,求BC -AG 的长;(3)若点D 在BC 的垂直平分线上,求∠AMB 的度数.GMB【板块三】 分类讨论求角度方法技巧当等腰三角形的底与腰不明,顶角与底角不明,或是三角形的形状不明时,常需要分类讨论. 【例9】(1)等腰三角形两边分别为2,3时,求其周长; (2)等腰三角形两边分别为2,4时,求其周长.【例10】等腰三角形的一腰上的高与另一腰的夹角为45°,求这个三角形的底角的度数.【例11】平面直角坐标系中,已知A (3,3),B (0,5).点C 为坐标轴上一点,且△ABC 为等腰三角形,则满足条件的点C 的个数是( )A .3个B .4个C .5个D .7个 【例12】(2018绍兴)(1)等腰△ABC 中,∠A =80°,求∠B 的度数;(2)解(1)后,小敏发现,∠A 的度数不同,得到∠B 的度数的个数也可能不同,如果在等腰△ABC 中,设∠A =x °,当∠B 有三个不同的度数时,请你探索x 的取值范围.【例13】如图1,△ABC 和△ADE 中,AB =AD ,AC =AE ,∠BAC =∠DAE ,BC 交DE 于点O ,设∠BAD =α. (1)求证:∠BOD =α; (2)求证:OA 平分∠BOE ;(3)如图2,设AC 与DE 交于点F ,若△AOF 是等腰三角形,∠C =30°,直接写出∠α的度数是 .EBAEAB针对练习31.等腰三角形的两边长为5和6,则其周长为.2.等腰三角形的两边长为2和5,则其周长为.3.等腰三角形有一个角为50°.其底角为.4.等腰三角形有一个角为100°.其底角为.5.等腰三角形一腰上的高与另一腰的夹角为30°,则底角的度数为()A.60°B.120°C.60°或120°D.60°或30°6.△ABC中,AB=AC,AB垂直平分线与AC所在的直线所得的锐角为50°,则∠B的度数是.7.△ABC的高AD,BE所在的直线交于点M,若BM=AC,求∠ABC的度数.8.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()CBA ABCA.4B.5C.6D.79.如图,直线a,b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O,A,B为顶点的三角形,这样的B点有()A.1个B.2个C.3个D.4个10.已知E是等边△ABC内一点,∠AEB=100°,∠BEC=α,以EC作等边△CEF,连接AF,当△AEF为等腰三角形时,试求α的度数.FAB C。

八上数学平面直角坐标系与三角形结合的问题

八上数学平面直角坐标系与三角形结合的问题

平面直角坐标系与三角形是初中数学八年级上册的重要内容,学生在学习过程中常常会遇到一些问题。

本文将分为以下几个部分,分别探讨平面直角坐标系和三角形的基本概念、平面直角坐标系与三角形结合的问题及解决方法等。

一、平面直角坐标系的基本概念1.1 直角坐标系的引入在平面直角坐标系中,我们将平面划分为四个象限,并引入x轴和y 轴,用来表示平面上的点的位置。

其中,x轴和y轴的交点为原点O,横坐标轴为x轴,纵坐标轴为y轴。

1.2 点的坐标在平面直角坐标系中,每个点都有唯一确定的坐标,用(x, y)表示,其中x为横坐标,y为纵坐标。

通过坐标,我们可以唯一地确定平面上的一个点。

1.3 距离公式在平面直角坐标系中,两点之间的距离可以通过距离公式来求解,距离公式为:AB的距离=√((x2-x1)²+(y2-y1)²)。

二、三角形的基本概念2.1 三角形的定义在平面几何中,三条线段两两连接成一个封闭图形,这个封闭图形就是三角形。

三角形是几何图形中的基本概念,其性质和定理在数学中具有重要的地位。

2.2 三角形的分类根据三角形的边和角的性质,我们可以将三角形分为等边三角形、等腰三角形、直角三角形、钝角三角形和锐角三角形等不同类型。

2.3 三角形的面积公式三角形的面积公式为:S=1/2*底*高。

其中,S表示三角形的面积,底表示三角形的底边长,高表示三角形的高。

三、平面直角坐标系与三角形结合的问题3.1 平面直角坐标系与三角形的坐标关系当我们在平面直角坐标系中遇到三角形时,通常需要确定三角形的顶点坐标、中点坐标、重心坐标等。

通过坐标关系,我们可以推导出三角形的各种性质,如边长、角度、面积等。

3.2 平面直角坐标系与三角形的距离关系在平面直角坐标系中,我们可以利用距离公式来求解三角形的边长、高度、中位线等。

通过计算三角形的距离关系,可以更深入地理解三角形的性质,并解决相关问题。

3.3 平面直角坐标系与三角形的重心、外心、内心和垂心在平面直角坐标系中,三角形的重心、外心、内心和垂心都有具体的坐标表示。

初中-八年级-等腰直角三角形中的常用模型

初中-八年级-等腰直角三角形中的常用模型

等腰直角三角形中的常用模型【知识精析】1、等腰直角三角形的特征:①边、角方面的特征:两直角边相等,两锐角相等(都是45º)②边之间的关系:已知任意一边长,可得到其它两边长。

2、等腰直角三角形与全等三角形:以等腰直角三角形为背景的几何问题中,常常包含全等三角形,发现并证明其中的全等三角形往往是解题的关键突破口。

熟悉以下基本模型,对解决等腰直角三角形问题很有好处。

模型一:一条直线(不与三角形的边重合)过等腰直角三角形的直角顶点(1)以原等腰直角三角形的两直角边为对应斜边,必定可以构造一对全等的直角三角形:1-1:如图:Rt ΔABC 中,∠BAC =90º,AB =AC ,点D 是BC 上任意一点,过B 作BE ⊥AD 于点E ,过C 作CF ⊥AD 于点F 。

(1)求证:BE-CF=EF ;(2)若D 在BC 的延长线上(如图(2)),(1)中的结论还成立吗?若不成立,请写出新的结论并证明。

变式1:等腰Rt △ABC 中,AB=CB ,∠ABC =90º,点P 在线段BC 上(不与B 、C 重合),以AP 为腰长作等腰直角△P AQ ,QE ⊥AB 于E ,连CQ 交AB 于M 。

(1)求证:M 为BE 的中点(2)若PC=2PB ,求MBPC 的值(3)(1)(2)F E D C B A A B C D E F (1)(2)以原等腰直角三角形的两直角边为对应直角边,必定可以构造一对全等的直角三角形:1-2:如图:Rt ΔABC 中,∠BAC =90º,AB =AC ,点D 是BC 上任意一点,过B 作BE ⊥AD 于点E ,交AC 于点G ,过C 作CF ⊥AC 交AD 的延长线与于点F 。

(1)求证:BG=AF ;(2)若D 在BC 的延长线上(如图(2)),(1)中的结论还成立吗?若不成立,请写出新的结论并证明。

变式1:如图,在R t △ABC 中,∠ACB =45º,∠BAC =90º,AB=AC ,点D 是AB 的中点,AF ⊥CD于H 交BC 于F ,BE ∥AC 交AF 的延长线于E ,求证:BC 垂直且平分DE .变式2:等腰Rt △ABC 中,AC=AB ,∠BAC =90°,点D 是AC 的中点,AF ⊥BD 于点E ,交BC 于点F ,连接DF ,求证:∠1=∠2。

部编数学八年级上册专题17两圆一线法求第三点与已知两点构成等腰三角形(解析版)含答案

部编数学八年级上册专题17两圆一线法求第三点与已知两点构成等腰三角形(解析版)含答案

专题17 两圆一线法求第三点与已知两点构成等腰三角形V是等腰三1.如图,已知点A,B的坐标分别为(2,0)和(0,3),在y轴上找一点C,使ABC角形,则符合条件的C点共有()个A.2B.3C.4D.5【答案】C【解析】【分析】分三种情形,AB=AC,BA=BC,CA=CB,分别画图即可.【详解】解:如图,当AB=AC时,以点A为圆心,AB为半径画圆,与坐标轴有三个交点(B点除外),当BA=BC时,以点B为圆心,AB为半径画圆,与坐标轴有三个交点(A点除外),当CA=CB时,画AB的垂直平分线与坐标轴有2个交点,综上所述:符合条件的点C的个数有4个,故选:C.【点睛】本题主要考查了等腰三角形的性质,圆的定义,线段垂直平分线的性质等知识,运用分类讨论思想是解题的关键.V,2.等边三角形ABC所在平面内有一点P,且点P不与点A,B,C重合,使得PAB△,PBCV都是等腰三角形,这样的点P共有()PCAA.1个B.4个C.7个D.10个【答案】D【解析】【分析】当点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,则点P是三角形的外心,当点P 在三角形的外部时,只要每条边的垂直平分线上的点到三角形的各个顶点连接而成的三角形是等腰三角形即可.【详解】如图所示:当点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,则点P是三角形的外心,分别以三角形各顶点为圆心,边长为半径,与各边的垂直平分线的交点就是满足要求的点,每条垂直平分线上有3个交点,再加上三角形的外心,一共有10个点.故选D.【点睛】本题主要考查等腰三角形的定义,掌握中垂线的性质与等边三角形的性质,是解题的关键.3.已知坐标平面内一点()2,1A ,O 为原点,B 是x 轴上一个动点,如果以点B ,O ,A 为顶点的三角形是等腰三角形,那么符合条件的动点B 的个数为( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】依题意,分三种情况讨论,①当OA OB =时,②当AO AB =时,③当BO BA =时,分别求得符合条件的动点B 的个数即可.【详解】如图,①当OA OB =时,以O 为圆心,OA 的长度为半径作圆,交x 轴于点13,B B ;②当AO AB =时,以A 为圆心,AO 的长度为半径作圆,交x 轴于点4B ;③当BO BA =时,作AO 的垂直平分线,与x 轴交于点2B ,综上所述,V AOB 是等腰三角形,那么符合条件的动点B 的个数为4个.故选C .【点睛】本题考查了等腰三角形的判定,坐标与图形,分类讨论是解题的关键.4.如图,平面直角坐标系xOy 中,点M 的坐标为(2,2),点N 在x 轴上,若△OMN 是等腰三角形,则满足条件的点N 共有( )个A .3B .4C .5D .8【答案】B【解析】【分析】根据等腰三角形的定义,以底边分类讨论分别得出个数,然后合并即可得出结论【详解】解:若OM 为底边,则满足条件的点N 有1个,在点O 的右侧若ON 为底边,则满足条件的点N 有1个,在点O 的右侧若NM 为底边,则满足条件的点N 有2个,在点O 的右侧一个,在点O 的左侧一个由上可知,满足条件的点N 共有4个故选:B【点睛】本题考查等要三角形的定义,熟练掌握定义,分情况讨论是解本题的关键5.在直角坐标系中,已知A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】如果OA为等腰三角形的腰,有两种可能,①以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;②如果OA为等腰三角形的底,只有一种可能,作线段OA的垂直平分线,与y轴有一个交点,所以符合条件的点一共4个.【详解】分二种情况进行讨论:①当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心OA 为半径的圆弧与y轴有一个交点;②当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点,∴符合条件的点一共4个,故选:C.【点睛】本题考查等腰三角形的性质,解题关键是根据两腰相等,分四种情况进行讨论.V,∠OAB=30°,∠AOB=90°,O点与坐标系原点重合,若点P在坐标轴上,6.如图,已知Rt OAB且APB△是等腰三角形,则点P的坐标可能有( )A.5个B.6个C.7个D.8个【答案】B【解析】【分析】分PAB Ð为顶角、PBA Ð为顶角、APB Ð为顶角三种情况,再根据等腰三角形的判定即可得.【详解】Q 在Rt OAB V 中,30,90OAB AOB Ð=°Ð=°,60ABO \Ð=°,由题意,分以下三种情况:(1)如图,当PAB Ð为顶角时,以点A 为圆心、AB 长为半径画圆,交坐标轴于点123,,P P P ,其中1APB △是等边三角形;(2)如图,当PBA Ð为顶角时,以点B 为圆心、BA 长为半径画圆,交坐标轴于点145,,P P P ,经过点1P 的理由:1APB Q V 是等边三角形,1BP BA \=,\点1P 一定在以点B 为圆心、BA 长为半径的圆上;(3)如图,当APB Ð为顶角时,作AB 的垂直平分线,交坐标轴于点16,P P ,经过点1P 的理由:1APB Q V 是等边三角形,\点1P 一定在AB 的垂直平分线上;综上,符合条件的点P 有6个,即点P 的坐标可能有6个,故选:B .【点睛】本题考查了等腰三角形的判定、等边三角形的判定与性质,熟练掌握等腰三角形的判定是解题关键.V 7.在平面直角坐标系内点A、点B的坐标是分别为(0,3)、(4,3),在坐标轴上找一点C,使ABC 是等腰三角形,则符合条件的点C的个数是()A.5个B.6个C.7个D.8个【答案】C【解析】【分析】要使△ABC是等腰三角形,可分三种情况(①若AC=AB,②若BC=BA,③若CA=CB)讨论,通过画图就可解决问题.【详解】解:如图:①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上,∵A(0,3),B(4,3),∴AB∥x轴,∴AB的垂直平分线与坐标轴只有1个交点.综上所述:符合条件的点C的个数有7个.故选:C.【点睛】本题主要考查了等腰三角形的判定、圆的定义、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解决本题的关键.8.在平面直角坐标系xOy 内,已知A (3,﹣3),点P 是y 轴上一点,则使△AOP 为等腰三角形的点P 共有( )A .2个B .3个C .4个D .5个【答案】C【解析】【详解】解:如图示,点P 共有4个点.故选C .9.如图,在平面直角坐标系中,线段AB 经过原点,且3OA =,1OB =,点P 在y 轴上,若以PAB 为顶点的三角形是等腰三角形,那么这样的Р点有几个( )A .4B .5C .6D .7【答案】B【解析】【分析】分别以AB 、为圆心,以AB 长为半径画圆,确定与y 轴交点的个数,此外作AB 的垂直平分线,确定与y 轴交点的个数,即可求解.【详解】解:分别以AB 、为圆心,以4AB =长为半径画圆,如下图:此时与y 轴交点的个数为4,作AB 的垂直平分线,如上图:此时与y 轴交点的个数为1,故选:B【点睛】此题考查了垂直平分线的性质,等腰三角形的定义,解题的关键是掌握垂直平分线的性质以及等腰三角形的定义.10.如图,在Rt ABC V 中,90ACB Ð=°,30CAB Ð=°,以C 为原点,AC 所在直线为y 轴,BC 所在直线为x 轴建立平面直角坐标系,在坐标轴上取一点M ,使MAB △为等腰三角形,符合条件的点M 有__________个.【答案】6【解析】【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形”,分三种情况解答即可:①AB = AM ;②BM = BA ;③MA = MB .【详解】如图,①以A 为圆心,AB 为半径画圆,交x 轴有一点3M ,交y 轴有两点12,M M ,此时AB = AM ,\MAB △为等腰三角形;②以B 为圆心,BA 为半径画圆,交直线x 轴有两点45,M M ,交y 轴有一点6M ,此时BM = BA ,\MAB △为等腰三角形;③作AB 的垂直平分线交y 轴于点7M ,交x 轴于点8M ,此时MA = MB ,\MAB △为等腰三角形,60ABC Ð=°Q ,3M AB V 是等边三角形,故348M M M ,,重合\符合条件的点有6个,故答案为:6.【点睛】本题考查了等腰三角形的判定,构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.11.在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),若点P在坐标轴上,且△PAB是等腰三角形,则满足条件的点P有_____个.【答案】8【解析】【分析】分三种情况①以B为圆心,以AB为半径作圆与两轴的交点,②以A为圆心,以AB为半径作圆与两轴的交点,,③以AB为底,AB的垂直平分线与两轴的交点即可【详解】解:如图所示:①以B为圆心,以AB为半径作圆,交y轴有2点,交x轴有1点(点A除外),此时共3个点;②以A为圆心,以AB为半径作圆,交y轴有1点(点B除外),交x轴有2点,此时共3个点,③以AB为底的三角形有2个,点P在AB的垂直平分线上,分别交x轴、y轴各1个点,此时共2个点;3+3+2=8,因此,满足条件的点P有8个,故答案为:8.【点睛】本题考查了等腰三角形的判定、坐标与图形性质、熟练掌握等腰三角形的判定,分三种情况讨论圆与坐标轴的交点以及线段垂直平分线与坐标轴的交点是解决问题的关键.12.如图,直角坐标系中,点22A -(,)、01B (,),点P 在x 轴上,且PAB V 是等腰三角形,则满足条件的点P 共______个.【答案】4【解析】【分析】分AB =AP 、BA =BP 、PA =PB 三种情况,画出图形即可得答案.【详解】①AB =AP :以A 为圆心,AB 长为半径画弧,与x 轴有2个交点P 1、P 2,∴P 1、P 2,符号条件,②BA =BP :以B 为圆心,BA 长为半径画弧,与x 轴有2个交点P 3、点(2,0),∵点(2,0)与AB 不能构成三角形,∴P 3符合条件,③PA =PB :作线段AB 的垂直平分线,与x 轴有1个交点P 4,∴P 4A =P 4B ,∴P 4符合条件,综上所述,符合条件的点共有4个.故答案为:4.【点睛】本题考查了等腰三角形的判定,运用分类讨论和数形结合的思想,分别画出图形是解题关键.13.如图,在Rt ABC V 中,90ACB Ð=°,36CAB Ð=°,在直线AC 或直线BC 上取点M ,使得MAB △为等腰三角形,符合条件的M 点有_______个.【答案】8【解析】【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【详解】解:如图,①以A 为圆心,AB 为半径画圆,交直线AC 有二点M 1,M 2,交BC 有一点M 3,(此时AB =AM );②以B 为圆心,BA 为半径画圆,交直线BC 有二点M 5,M 4,交AC 有一点M 6(此时BM =BA ).③AB 的垂直平分线交AC 一点M 7(MA =MB ),交直线BC 于点M 8;∴符合条件的点有8个.故答案为:8.【点睛】本题考查了等腰三角形的判定;构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.14.平面直角坐标系中,已知A(8,0),△AOP为等腰三角形,且△AOP的面积为16,则满足条件的P点个数是______.【答案】10【解析】【分析】使△AOP为等腰三角形,只需分两种情况考虑:OA当底边或OA当腰.当OA是底边时,有2个点;当OA是腰时,有8个点,即可得出答案.【详解】∵A(8,0),∴OA=8,设△AOP的边OA上的高是h,则12×8×h=16,解得:h=4,在x轴的两侧作直线a和直线b都和x轴平行,且到x轴的距离都等于4,如图:①以A 为圆心,以8为半径画弧,交直线a 和直线b 分别有两个点,即共4个点符合,②以O 为圆心,以8为半径画弧,交直线a 和直线b 分别有两个点,即共4个点符合,③作AO 的垂直平分线分别交直线a 、b 于一点,即共2个点符合,其中,没有重复的点,∴4+4+1+1=10.故选:B .【点睛】本题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.15.在平面直角坐标系中,O 为坐标原点,()1,1A ,在x 轴上确定一点P ,使AOP V 为等腰三角形,则符合条件的等腰三角形的顶角度数为______.【答案】90°,45°,135°【解析】【分析】此题应该分情况讨论.以OA 为腰或底分别讨论.当A 是顶角顶点时,P 是以A 为圆心,以OA 为半径的圆与x 轴的交点,共有1个,当O 是顶角顶点时,P 是以O 为圆心,以OA 为半径的圆与x 轴的交点,共有2个,若OA 是底边时,P 是OA 的中垂线与x 轴的交点,有1个,进而求出对应等腰三角形的顶角度数,即可.【详解】(1)若AO 作为腰时,有两种情况,①当A 是顶角顶点时,P 是以A 为圆心,以OA 为半径的圆与x 轴的交点,此时,顶角度数为:90°;②当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,此时,顶角度数为:45°或135°;(2)若OA是底边时,P是OA的中垂线与x轴的交点,此时,顶角度数为:90°.综上所述,符合条件的等腰三角形的顶角度数为:90°,45°,135°,故答案是:90°,45°,135°.【点睛】此题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.16.如图,在平面直角坐标系中,点A在第一象限,点P在坐标轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P的个数有__________【答案】8【解析】【分析】分别以点O、A为圆心,以OA的长度为半径画弧,与坐标轴的交点即为所求的点P的位置.【详解】解:如图,以点O、A为圆心,以OA的长度为半径画弧,OA的垂直平分线与坐标轴的交点有2个综上所述,满足条件的点P有8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,坐标与图形性质,利用数形结合的思想求解更简便.17.在坐标系xOy 中,已知点()3,1A 关于x 轴,y 轴的对称点分别为P ,Q ,若坐标轴上的点M 恰使MAP △,MAQ V 均为等腰三角形,则满足条件的点M 有______个.【答案】5【解析】【分析】如图所示,利用两圆一线的方法,判断点M 的个数即可.【详解】解:如图,分别以A ,Q 为圆心,以AQ 长度为半径画出两个较大的圆,此时x 轴上的点满足与A ,Q 组成等腰三角形有5个,y 轴上的点均可满足与A ,Q 组成等腰三角形,然后分别以A ,P 为圆心以AP 的产生古为半径画出两个较小的圆,此时坐标轴上只有x 轴上的点满足与A ,P 组成等腰三角形,因此点M 恰使MAP △,MAQ V 均为等腰三角形共有5个.【点睛】此题主要考查等腰三角形的性质和坐标与图形的性质,解答此题的关键是利用等腰三角形性质判断相关的点.18.如图,在xOy中,∠ABO=25°,在坐标轴上找一点C,使△ABC为等腰三角形,则这样的C 点有_____个.【答案】8【解析】【分析】分类讨论:AB=AC时,AB=BC时,AC=BC时,根据两边相等的三角形是等腰三角形,可得答案.【详解】解:如图,①当AB=AC时,在y轴上有2点满足条件的点C1,C5,在x轴上有1点满足条件的点C2,②当AB=BC时,在y轴上有1点满足条件的点C4,在x轴上有2点满足条件的点C3,C8,③当AC=BC 时,在y 轴有1点满足条件的点C 6,在x 轴有1点满足条件的点C 7,综上所述:符合条件的点C 共有8个.故答案为:8.【点睛】本题考查了等腰三角形的判定和性质,把所有可能的情况都找出来,不遗漏掉任何一种情况是本题的关键.19.如图,平面直角坐标系xOy 中,已知定点(1,0)A 和(0,1)B ,若动点C 在x 轴上运动,则使ABC V 为等腰三角形的点C 有________个.【答案】4【解析】【分析】分为三种情况:①AB =AC ,②AC =BC ,③AB =BC ,画出图形,即可得出答案.【详解】∵A (1,0),B (0,1),∴AO=OB=1,如图:①以A为圆心,以AB为半径作弧,交x轴于C1、C2,此时两点符合;②当C3和O重合时,AC=BC=1,此点符合;③以B为圆心,以AB为半径作弧,交x轴于C4,此时点符合;共2+1+1=4个点符合.故答案为:4.【点睛】本题考查了等腰三角形的判定及分类讨论思想.分类讨论是解答本题的关键.20.O为坐标原点,A(1,1),在x轴上找一点P,使三角形AOP为等腰三角形,符合条件的点P 有___________个.【答案】4【解析】【分析】此题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,有1个;当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;若OA是底边时,P是OA的中垂线与x轴的交点,有1个.共有4个.【详解】解:如图,(1)若AO作为腰时,有两种情况,①当A是顶角顶点时,P是以A为圆心,以OA为半径的圆与x轴的交点,共有1个;②当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有2个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.以上4个交点没有重合的.故符合条件的点有4个.故答案是:4.【点睛】此题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.21.如图,在直角坐标系中,点A的坐标是(2,0),点B的坐标是(0,3),以AB为边作等腰三角形,则在坐标轴上的另一个顶点有_________个.【答案】8【解析】【分析】根据等腰三角形的性质作图即可;【详解】解:如图,以AB为腰的三角形有6个,分别是△ABP1,△ABP2,△ABP3,△ABP4,△ABP5,△ABP6;以AB为底的三角形有两个,分别是△ABP7,△ABP8.因此,以点A、B、P为顶点的等腰三角形共有8个.故答案为:8.【点睛】本题主要考查了等腰三角形的性质,位置与坐标,准确分析判断是解题的关键.22.作图题:在等边V ABC所在平面上找这样一点P,使V PAB、V PBC、V PAC都是等腰三角形,请用尺规画出所有具有这样性质的点P.【答案】作图见解析【解析】【分析】分别以A、B为圆心,以大于AB长的一半为半径画弧,两弧交于M、N,连接MN并延长,同理作出AC,BC的垂直平分线;以A为圆心,AB为半径画弧交BC的垂直平分线于点P1,P9两点,;以B为圆心,以AB的长为半径画弧,交BC的垂直平分线于P4,这样在BC的垂直平分线上就有3个点满足题意,同理在AC,AB的垂直平分线上均有3个点满足题意,一共有9个点;还有一点是三边的垂直平分线的交点,即可求解.【详解】解:分别以A、B为圆心,以大于AB长的一半为半径画弧,两弧交于M、N,连接MN并延长,同理作出AC,BC的垂直平分线;以A为圆心,AB为半径画弧交BC的垂直平分线于点P1,P9两点,;以B为圆心,以AB的长为半径画弧,交BC的垂直平分线于P4,这样在BC的垂直平分线上就有3个点满足题意,同理在AC,AB的垂直平分线上均有3个点满足题意,一共有9个点;还有一点是三边的垂直平分线的交点,∴一共有10个点;【点睛】本题主要考查了等边三角形的性质,线段垂直平分线的性质,解题的关键在于能够熟练掌握相关知识进行求解.。

中考数学复习:专题4-16 双等腰直角三角形问题前解法分析

中考数学复习:专题4-16 双等腰直角三角形问题前解法分析

专题16 双等腰直角三角形问题前解法分析【专题综述】一个等腰直角三角形绕另一等腰直角三角形旋转,形成以双等腰直角三角形为背景的数学问题,在近年各地中考试卷中大量出现.本文拟通过对不同类型的双等腰直角三角形问题的剖析,找到某些共性,以达到帮助大家提高解题题能力的目的.【方法解读】一、共直角顶点的两个等腰直角三角形例1 (2016内蒙古呼和浩特市)已知,如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB 边上一点.(1)求证:△ACE ≌△BCD ; (2)求证:2222=CD AD DB .【举一反三】如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD=∠BGC . (1)求证:AD=BC ; (2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求AD:EF 的值.【来源】湖北武汉市硚口区六十中学2017年九年级数学中考模拟试卷二、共底角顶点的两个等腰直角三角形例2 如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.如图2,若∠MON=150°,求证:△ABR为等边三角形;(3)如图3,若△ARB∽△PEQ,求∠MON大小.【举一反三】已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【来源】2013年初中毕业升学考试(湖南常德卷)数学(带解析)三、一直角顶点和一底角顶点重合的两个等腰直角三角形例3 如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量..及位置..关系,并证明你的猜想.【举一反三】如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE 与BC分别与AD、AE相交于点F、G,CB=5.回答下列问题:(1)求证:△GAF∽△GBA;(2)求证:AF2=FG•FC;(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)(4)探究BF2、FG2、GC2之间的关系,证明你的结论.【来源】2016届江苏省南京市汇文中学九年级上学期期中数学试卷(带解析)四、一直角顶点和一底边中点重合的两个等腰直角三角形例4 (2016四川省资阳市)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE 是等腰直角三角形;②∠CDE=∠COE ;③若AC=1,则四边形CEOD 的面积为14;④22222AD BE OP DP PE +-=⋅,其中所有正确结论的序号是 .【举一反三】已知:△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,(1)如图,E ,F 分别是AB ,AC 上的点,且BE =AF ,求证:△DEF 为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,那么,△DEF 是否仍为等腰直角三角形?证明你的结论.【来源】2012-2013年福建仙游承璜第二学校八年级上期末考试数学试题(带解析)【强化训练】1.如图,已知,△ABC 与△DCE 为一小一大的两个等腰直角三角形,顶点C 互相重合。

八年级上册数学等腰三角形知识点和典型习题分类汇总附答案

八年级上册数学等腰三角形知识点和典型习题分类汇总附答案

第7讲等腰三角形❖基本知识(熟记,会画图,要提问.)(1)(等边对等角).【证明之】(2)等腰三角形的性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(三线合一).【证明之】(3)等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).【证明之】❖等腰三角形的性质【方程思想计算角度】1、【易】如图,求下列等腰三角形的所有角的度数。

(1)顶角30° (2)底角30°2、【易】计算:(1)等腰三角形的一个角是110°,求其余内角。

(2)等腰三角形的一个角是80°,求其余内角。

(3)已知一个等腰三角形的两角分别为(2x-2)°,(3x-5)°,求这个等腰三角形各角的度数。

3、【易】如图所示,在△ABC中,AB=AD=DC,△BAD=26°,求△B和△C的度数.4、【易】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△A、△ADB和△C的度数.5、【中】如图所示,五角星的五个角都是顶角为36°的等腰三角形,则△AMB的度数为______.6、【中】如图,AB=AC,△A=40°,AB的垂直平分线MN交AC于点D,求△DBC的度数.7、【中】如图,等腰△ABC中,AB=AC,△DBC=15°,AB的垂直平分线MN交AC于点D,则△A的度数是_______.【基础证明题】8、【易】如图,AD△BC,点E在AB的延长线上,CB=CE,试猜想△A与△E的大小关系,并说明理由.9、【中】已知:CD平分AB,且CD=AD=BD,求证:△ABC是直角三角形.【如果一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。

这句话倒过来也是对的,学到矩形时会证明。

】10、【中】如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.【全等法或三线合一法】11、【中】【仿上题】如图,点D 、E 在△ABC 的边BC 上,AB=AC .若BD=CE ,F 为DE 的中点,求证:AF△BC .12、【中】如图,在△ABC 中,AB=AC ,D 为BC 边上一点,△B=30°,△DAB=45°.(1)求△DAC 的度数;(2)求证:DC=AB .13、【难】如图,在△ABC 中,AB=AC ,△ABC 、△ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:△△BCD△△CBE ;△△BAD△△BCD ;△△BDA△△CEA ;△△BOE△△COD ;△△ACE△△BCE ;上述结论一定正确的是________.14、【中】已知:如图,在△ABC 中,AB=AC ,D 是BC 的中点,DE△AB ,DF△AC ,E ,F 分别是垂足,求证:AE=AF .15、【中】如图,已知:AB=AC ,△CAE 是△ABC 的外角,△1=△2.求证:AD △ BC .参考答案1、(1)底角75°;(2)底角30°,顶角120°.2、(1)35°,35°;(2)50°,50°;或80°,20°。

中考数学复习指导:等腰三角形顶点位置的确定.doc

中考数学复习指导:等腰三角形顶点位置的确定.doc

等腰三角形顶点位置的确定一、基本模型及其解析基本模型如图1,已知平面内的两点A、B及直线/,在直线/上取一点P使得AABP是等腰三角形.解析笔者在教学中发现,学生在解决这个问题的吋候,通常是以边作为分类依据:在厶ABP中,如果AB是底边,那么P点会在什么位置;如果AB是腰,那么P点又可能在什么位置,这样的分类,具有一定的可行性,但是容易出现遗漏,特别是在AB为腰的情况下,思维很容易出现交叉与混乱.笔者认为,这个问题如果以等腰三角形顶角顶点作为分类依据的话,就很容易准确而有条理的确定P点的位置.具体如下(如图2):①当P点为等腰三角形顶角顶点时,那么线段AB为等腰三角形的底边,P点在底边AB 的屮垂线上.于是可以这样确定P点位置:作线段AB的屮垂线与直线L的交点,即为所求的P点.②当A点为等腰三角形顶角顶点时,那么线段AB与线段PA皆为等腰三角形的腰,即PA = AB.换言之,P点到A点的距离应当等于线段AB长,那么P点一定在以点A为圆心,AB长为半径的圆周上.根据这一点,此时P点可以如下确定:以点A为圆心,AB 长为半径作圆,与直线L的交点即为所求P点.显然,由线段AB的长度以及A点到直线L的距离决定了这样的P点可能有两个、一个或者没有,③当B点为等腰三角形顶角顶点时,P点的探求方法与情形②类似.综上所述,已知等腰三角形两个顶点,在另外一条直线上寻求一点P,使得AABP是等腰三角形,这样的P点最多可能有5个.二、应用实例例1已知直线『=—2x+4与x轴、y轴分别交于A、D两点,抛物线y= — ^x'+bx+c经过点A, D,点B是抛物线与x轴的另一个交点(1)求这条抛物线的解析式及点B的坐标;(2)设点M是直线AD上一点,且SAAOM:S AOMD=1: 3,求点M的坐标;(3)如果点C(2, y)在这条抛物线上,在y轴的正半轴上是否存在点P,使ABCP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.1解(l)y=~-x +x+4, B(4, 0);3(2)Mi(——, 1), M2 (—3, —2);2 ~(3)易得直线BC的解析式为y= — 2x + 8.过C点向x轴作垂线段,垂足为H,则H 点坐标为(2, 0),可求得BC = 2.如图3所示,分别以B、C为圆心以BC长为半径作0B> OC;作线段BC的中垂线,则有5种情形需要研究.①若C点为等腰三角形顶角的顶点,即PC = BC, P点应当在OC±.如图4(1),设直线BC 与y轴交点为M,可以求得M坐标为(0, 8).设H是OB中点,可知CH〃y轴, 则C是BM的中点,即MC = BC,由此可见M点即图中的P]点,则图中的Pi因为与BC 在同一直线上而不符合题意,⑵图4②连结0C,则OC= — BP|=BC,则图中(DC与y轴的另一个交点恰好为坐标原点0, 不在y 轴正半轴,不符合题意.由①②可知,PC = BC两种情形皆不符合题意,③若B为等腰三角形顶角顶点,即BC=BP, P点应当在OB ±,如图4(2).易求线段BC的长度为2,而OB=4<2A/5 ,所以OB与y轴有两个交点,且分别位于正半轴与与负半轴上.设P2是图中OB与y轴正半轴的一个交点,连结BP?,则BP2 = 2y/5 , RtABOP2 中,根据勾股定理,求得OP2=2,则P2(0, 2)为所求P点.④设OB与y轴另一交点为Ps由③中所述知,P4不符合题意.由③④可知,BC = BP两种情形中有一个符合题意.⑤如图4(3),若P为等腰三角形顶角顶点,则P在线段BC的中垂线上.设线段BC 的中点为N, BC的屮垂线NE与y轴交于P3点,与x轴交于E点,则N点坐标为(3, 2).易证△BCHs^BEN,则空単,即迺=3,BE BC BE 2^5解得BE=5,而OB=4,所以E点坐标为(一1, 0).由N(3, 2)、E (-1, 0)可以求得直线NE的解析式为y =£x+丄.2该直线与y轴交点坐标为(0,丄),即P3(0,丄)亦为所求P点,2 2综上所述,在y轴正半轴上能与B、C两点构成等腰三角形的点P有两个,分别是(0, 2),(0,—).2评析本题的解答过程中,我们首先按照一般方法考虑所有可能存在的情形,在此基础上,解答过程屮要注意题目的具体要求,比如,本题要求“在y轴的正半轴上”,那么,一•般情形中就可能存在-•种或者几种不符合要求.除此以外,还要考虑这些点是否处在特殊位置.比如,本题中的P】点,虽然满足PC = BC这个条件,但是它恰好与B、C两点在同一条直线上,例2如图5,直线y=3x+3变x轴于A点, 交x交y轴于B点,过A、B两点的拗物线轴于另一点C(3, 0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q,使AABCJ是等腰三角形?若存在,求出符合条件的Q点的坐标;若不存在,请说明理由.解(l)y=-x2+2x+3.(2)抛物线的对称轴为x=l.以A为圆心AB长为半径作OA与对称轴交点为Qi、Q2;以B为圆心AB长为半径作圆B与对称轴交点为Q3、Q4;作线段AB的屮垂线,与对称轴交点为Qs.当A点为顶角顶点时,AQ = AB,如图6(1), Q点为©A与x=l的交点,设Q点坐标为(1, m),则又AB= V10 , AB = AQ,即J4 + m2 = V10 ,解得m=± V6 ,所以Q点樂标为Qi (1, V6 )或Q2(1, - A/6).当B点为顶角顶点时,AB = BQ,如图6(2), Q点为OB与x=l的交点.由JlO = Jl + (3-血)解得m]=6, m2=0.所以Q点坐标为QKl,6)、Q4(l, 0).当Q点为顶角顶点时,AQ=BQ,如图6(3), Q点应当是AB的中垂线与x= 1的交点.可以列方程:\/4 + m2 = J1 + (3_加『解得m=l.所以Q点坐标为Q5(l, 1).到此我们求出Qi(l, 76). Q2 (1,—乔)、Q3(l, 6)、Q4(b 0)、Q5(l, 1).逐个研究发现,其中Q3(l, 6)与A、B两点在同一直线上,不符题意.综上所述,符合条件的Q点共有4个:(1 乔,)、(1,—届、(1, 0)、(1, 1).评析在例2的解答过程中,侧重于用“数”的方法来求点Q的坐标.而在例1的解答过程中,则侧重于从“形”上入手.另外,除了上述两个例题中出现的三点在一条直线上的情形外,还可能出现其中两个点或者三个点重合的情形,关于这一点,我们从图2中容易发现,当直线/与线段AB的距离及夹角发生变化的时候,满足条件的P点可能出现4个、3个、2个、1个、0个.也就是说,我们要认识到“基本模型”提供的是最完备的情形,在具体问题中,受到已知点与线的相对位置、两点间的距离等题设条件的限制和影响,顶点个数会有所不同.。

等腰三角形中做辅助线的七种常用方法典中典数学

等腰三角形中做辅助线的七种常用方法典中典数学

等腰三角形中做辅助线的七种常用方法典中典数学等腰三角形中做辅助线的七种常用方法在数学中,等腰三角形是一种非常常见的三角形,其两边长度相等,而另外一边则为底边。

由于等腰三角形的对称性,中心轴线即底边中线,将等腰三角形分为两个对称的部分。

在解决等腰三角形问题时,我们可以运用七种常用的辅助线方法来简化解题过程。

下面将一步一步回答这个主题。

一、作中线中线是连接等腰三角形底边中点和对立角顶点的直线线段。

相比于直接解题,中线的作用是将等腰三角形分解成一个矩形和两个全等直角三角形。

我们可以利用三角形的性质和数学定理,来推导出等腰三角形的各种性质和解题方法。

例如,在求等腰三角形的面积时,利用中线将其分成两个全等直角三角形,再利用直角三角形面积公式求解。

二、作高线高线是从三角形一个顶点,垂直于另一条边所作的线段。

在等腰三角形中,高线不仅垂直于底边,而且还平分底边。

利用高线我们可以求出三角形的高和底边中分线段的长度。

例如,当已知等腰三角形的底边和顶角时,我们可以利用高线分割出一个全等直角三角形。

再根据勾股定理,直接求出等腰三角形的两边长度和面积。

三、作角平分线角平分线是从一个角的顶点,把角分成两个角度相等的线段。

在等腰三角形中,角平分线从顶点出发,与底边平行,平分底边长度,并将等腰三角形分成两个全等三角形。

例如,在已知等腰三角形两边长度和底边角度的情况下,我们可以画出角平分线并运用正弦定理求解。

四、作中垂线中垂线是连接等腰三角形底边中点和对立角的角平分线的垂线。

利用中垂线,我们可以将等腰三角形分解成一个底边中垂线分割的两个全等直角三角形。

例如,当已知等腰三角形的两边长度和底边长度时,可以利用中垂线将三角形分成两个全等直角三角形。

再根据直角三角形勾股定理求出等腰三角形的两边长度和面积。

五、作垂线垂线是从一个点到一条线段垂直的线段。

在等腰三角形中,垂线从顶点出发,垂直于底边,平分底边,并将等腰三角形分解成两个全等直角三角形。

《实验校》八上第九讲—等腰直角三角形辅助线方法

《实验校》八上第九讲—等腰直角三角形辅助线方法

第九讲辅助线方法一辅助线方法(一)已知等腰直角三角形:(1)若有一条直线过直角顶点,过两个锐角顶点向这条直线作垂线,形成三垂直证全等;(2)构造共直角顶点的等腰直角三角形证全等.一、基本图形研究1.直线l经过等腰直角三角形ABC的直角顶点,你能在图中构造全等吗?并据此提出数学问题.2.直线l经过等腰直角三角形ABC的锐角顶点B,过A或C作直线l的垂线,你能在图中构造全等吗?你能对这个题提出相关的数学问题吗?二、变式训练1.如图1,OA=2,OB=4,以A为顶点,AB为腰在第三象限作等腰直角三角形ABC.(1)C点的坐标;(2)如图2,P为y轴负半轴上一动点,当P点沿y轴负半轴向下运动时,以P为顶点,P A为腰作等腰直角三角形APD,过D作DE⊥x轴于E点,求OP-DE的值.2.如图,已知坐标系中,A (4,0),B (O ,4),P 为第四象限的一动点,且∠APO =135°,求证:AP ⊥BP .3.如图,点B 在x 轴正半轴,以OB 为斜边在x 轴上方作等腰直角三角形AOB .若C 为BO 上一点,以AC 为直角边作等腰直角三角形ACD ,∠ACD =90°,连OD ,求∠AOD 的度数.4.如图,A (O ,2),B (-2,0),C 为点B 左侧一动点,以AC 为一腰作等腰直角三角形ACD ,∠ACD =90°,DB 的延长线交y 轴于E 点,在C 点移动的过程中,点E 的位置是否发生变化?证明你的结论.5.已知△ABC 中,AC =BC ,∠ACB =90°,D 为线段BC 上一动点,AE =AD ,AE ⊥AD ,连接BE 与AC 交于P 点,其中BCBD =n . (1)如图1,若n =1时,则PE BP = ,PC AP = . (2)如图2,若n =21时,则PE BP = ,PCAP = ,并证明你的结论,6.已知,如图,在△ABC 中,AB <BC ,过点A 作线段AD ∥BC ,AD +BD =BC ,作BD ⊥BC 于B ,线段BC 上有一动点M ,连接DM ,并作线段DN 上DM 且DN =DM ,作NP ⊥BC 于点P ,若AD =1,BD =2,求线段CP 的长度.7.如图,在平面直角坐标系xOy 中,A (-4,0),点B 为y 轴正半轴上一动点,以AB 为直角边作等腰直角三角形ABC ,点C 落在y 轴的右侧,过B 点作BD 垂直于y 轴,且BD =OB ,点D 落在y 轴的左侧,连接CD 交y 轴于E ,问当B 点运动时,线段BE 的长度是否发生变化?若不变,请求出其值;若变化,请说明理由.8.已知△ABC 中,AC =AB ,∠BAC =90°,AC 与x 轴交于E 点,BC 与y 轴交于D 点,如图1,连接ED ,E 为AC 的中点,求并证明(1)线段BE ,AD ,DE 之间的关系;(2)∠AEB 与∠DEC 之间的关系;(3)如图2,过C 作CF ⊥x 轴于F 点,求AOCF BF 的值.9.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E是直线AC上的两动点,且AD =CE,AM⊥BD 于点M,延长AM交BC于点N,直线BD交直线NE于点F.(1)若DE运动到如图1所示位置,求证:①FE=DF;②BF=AN+ NF.(2)当DE运动到如图2所示位置,上述结论还成立吗?10.在平面直角坐标系中,A(O,3),B(4,1),以AB为斜边作等腰直角三角形ABC,求C点坐标.11.如图,点C为线段AB上的一点,E为直线AB上方的一点,且满足AC =CE,连接AE,以AE为腰,A 为直角顶点作等腰直角三角形ADE,连接CD,求当CD最大时,∠DEC的值,。

坐标系中等腰三角形的确定课件.完美版PPT

坐标系中等腰三角形的确定课件.完美版PPT
–7 –6 –5 –4 –3 –2 –1 O 1 2 3 x
–1
精讲拓展 交流互动

问题2 (请你出题)维源自你能对问题1进行类似的改编吗?
拓 展
.
9y
8 7 6 5 4C 3 2 1 A
–7 –6 –5 –4 –3 –2 –1 O 1 2 3 x
–1
精讲拓展 交流互动
思 问题3

抛物线 y1x2 x4与x轴交于点A(-2,0)
精讲拓展 交流互动
思 问题5

抛物线 y1x2 x4 与x轴交于点A(-2,0) 2

和B(4,0),与y轴交于点C,
拓 展
(1)探究坐标轴上是否存在点P,使得以点B、P、C为顶
点的三角形为等腰直角三角形?若存在,直接求出点P坐
标,若不存在,请说明理由;
精讲拓展 交流互动
思 问题5

抛物线 y1x2 x4 与x轴交于点A(-2,0) 2
和B(4,0),与y轴交于点C,在抛物线的对称
——
——坐标系中平行四边形的确定
如图,在平面直角坐标系xOy中,一次函数 的图象与反比例函数 的图象的一个交点为A(-1,n).
点的三角形为等腰直角三角形?若存在,直接求出点P坐
抛物线
与x轴交于点A(-2,0)
精讲拓展 交流互动
课堂小结
在这短短的课堂时间里,你 有哪些收获?
及时反馈
1、在知识上… 2、在技能上… 3、在思想上…
精讲拓展 交流互动
课堂检测
如图,在平面直角坐标系xOy中,一次函数 的图象 与反比例函数 的图象的一个交点为A(-1,n).
(1)求反比例函数 的解析式.;
(2)若P是坐标轴上一点,且满足PA=OA,直接写出点 的坐标. (2021·北京中考·17题)

八年级数学上册第三章位置与坐标握秘籍在手求坐标不愁同步辅导素材

八年级数学上册第三章位置与坐标握秘籍在手求坐标不愁同步辅导素材

握秘籍在手求坐标不愁秘籍一:根据坐标轴上点的特征求解例1在平面直角坐标系中,若点P(m-3,m+1)在y轴上,则点P的坐标为____.分析:根据y轴上点的横坐标为0求解.解:因为点P(m-3,m+1)在y轴上,所以m-3=0,解得m=3,所以m+1=4.所以点P的坐标为(0,4).故填(0,4).秘籍二:根据点到坐标轴的距离求解例2 已知点P(x,y)在第二象限,且点P到x轴,y轴的距离分别为3,7,则点P坐标为()A.(-3,7)B.(-7,3)C.(3,-7)D.(7,-3)分析:先得到点P的横、纵坐标的绝对值,再根据点在第二象限的符号特点可得具体坐标.解:因为点P到x轴,y轴的距离分别为3,7,所以点P的横坐标的绝对值为7,纵坐标的绝对值为3.因为点P(x,y)在第二象限,所以点P的坐标为(-7,3).故选B.秘籍三:根据非负数的性质求解例3 如果点A(x,y)的横纵坐标满足(x-1)2+(y+2)2=0,那么点A的坐标为()A.(2,-1)B.(-1,-2)C.(-2,1)D.(1,-2)分析:由非负数的性质求出x和y的值,即可求出点A的坐标.解:因为(x-1)2+(y+2)2=0,所以x-1=0,y+2=0,解得x=1,y=-2.所以点A的坐标为(1,-2),故选D.秘籍四:根据横、纵坐标的关系求解例4 已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P的坐标 .分析:根据第二象限内点的坐标特点结合已知条件解答,答案不唯一.解:因为点P在第二象限,所以横坐标小于0,纵坐标大于0. 如当横坐标是-1时,纵坐标是1-(-1)=2,即点P的坐标可以是(-1,2).1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档