thermo_chapter02

合集下载

Thermo X2仪器原理与使用培训

Thermo X2仪器原理与使用培训

Chapter 1Introduction to ICP-MSThis chapter gives a basic overview of ICP-MS as an analytical technique and the XSeries II ICP-MS as an instrument. It includes the following topic:•Introduction to ICP-MS (lecture)Figure 1-1. Figure 1-1. X Series ICP-MS Training Course This lecture gives an introduction to ICP-MS.Lecture: Introductionto ICP-MSICP-MS has many unique features which make it attractive as a technique for quantitative trace element analysis.ICP-MS is capable of accommodating a broad range of sample types. Although in its basic form, ICP-MS analyses materials as a solution, it can be successfully coupled to laser (enabling direct analysis of solids) or gases (for example by hydride generation).More recently, ICP-MS has been coupled with techniques such as HPLC and GC to provide speciation analysis of certain elements.The technique is applicable to nearly all elements in the periodic table, so that all commonly occurring elements can typically be measured in one analysis.ICP-MS is a highly sensitive technique, providing the analyst with determinations down to sub ppt levels, lower than most other analytical techniques. This sensitivity is very well complemented by its very wide dynamic range.As environmental regulations and process control require ever-increasing sensitivity, ICP-MS continues to become the analyticaltechnique of choice in a wide variety of application areas.Figure 1-2. Figure 1-2. Key features of ICP-MSThe technique can be simplified into five main stages.Although ICP-OES and ICP-MS use the same kind of plasma source, the steps towards the analytical outcome are mostly rather different. As with ICP-OES, the first stage is generating an aerosol of the sample for introduction to the plasma. Here, the comparison of the techniques essentially ends.Whereas ICP-OES measures the light emitted from the plasma,ICP-MS measures the quantity of singly charged positive ions in the plasma. The ICP conditions are optimized to achieve this as efficiently as possible, looking to maximize the formation of singly charged ions and trying to minimize the formation of multiply-charged and molecular ions.These positive ions are sampled from the plasma and directed into the mass spectrometer, where they are separated according to mass (strictly mass to charge ratio), before reaching the instrument detector.Figure 1-3. Figure 1-3. What is ICP-MS?Because ICP-MS is based upon the separation and analysis of ions, to help understand the technique, it is useful to think about atomic structure.Atoms of all elements contain 3 types of principal sub-atomic particles.(i) Protons have a mass of 1 amu (atomic mass unit) and have a positive charge. (+1)(ii) Neutrons have a mass of 1 amu and have zero charge. (0)The nucleus nucleus nucleus of the atom contains the protons and neutrons.(iii) Electrons orbit the nucleus. They have negligible mass and have a negative charge. (-1)In an atom, the number of electrons orbiting the nucleus is is equal to equal to the number of protons in the nucleus. The negative charges of the electrons are exactly balanced by the positive charges of the protons, so the overall charge on an atom is zero zero zero.When an atom becomes ionized in the plasma, it loses an electron and becomes a positive ion. Positive ions are the species that we measure in a mass spectrometer.Figure 1-4. Figure 1-4. Elements, atoms & isotopes in ICP-MSThe number of protons in the atoms of an element is unique to that element. For example, only copper atoms contain 29protons. Some (69 %) copper atoms have 34 neutrons and some (31 %) copper atoms have 36 neutrons. The mass of copper is equal to the sum of protons and neutrons. Some atoms will have a mass of 63 and some a mass of 65. These are known as the isotopes isotopes of copper.In nature, the abundance of these 2 isotopes is always the same (although some deviation occurs for radioactive materials). The atomic weight of copper (63.55) therefore reflects the relative abundance of its isotopes.In the mass spectrum, copper will therefore always appear as two peaks reflecting this abundance ratio (The peak at mass 63 is approximately twice the intensity of that at mass 65).In a second example, nickel has 5 different isotopes. All have 28protons, but each isotope has a different number of neutrons.In the mass spectrum of nickel, 5 peaks will therefore be observed, corresponding to these 5 isotopes.The height of each peak will again depend on the abundance of each isotope, resulting in a “fingerprint” for nickel.This slide also shows a range in the mass spectrum showing nickel and copper isotopes. A peak is also seen for cobalt (one isotope at mass 59).Figure 1-5. Figure 1-5. Elements, atoms & isotopes in ICP-MSThe mass spectra of all elements contain a small number of peaks.Even if all all all elements in the Periodic Table were present in the sample there would only be 211 peaks in the mass spectrum (excluding interferences).Every element (with the exception of indium) has at least one isotope that is at a unique mass.The peak position along the mass scale (x axis) identifies the isotope present (i.e. provides qualitative analysis) and the peak intensity (y axis) is proportional to the concentration.Quantitative analysis is obtained by analyzing standards of known concentration for each of the isotopes of interest and comparing the peak intensities of the standards and samples.The mass spectrum for vanadium is far less complex (essentially consisting of one isotope at mass 51 and a small peak at mass 50)than the comparable ICP optical emission spectrum and begins to illustrate why ICP-MS is often less troubled by interferences than ICP-OES and other atomic spectroscopy methods.You will also notice that optical spectra often have quite high continuum backgrounds, whereas the mass spectrum is often characterized by low backgrounds, yielding ppt detection limits for most elements.Figure 1-6. Figure 1-6. ICP-MS: characteristic mass spectrumOf course life isn’t quite that simple. Everything present in the plasma (such as argon and oxygen) also give rise to peaks, and there are also combinations of these.The plasma properties are normally optimized to minimize these interferences and maximize singly charged positive ion signal.Under normal operating conditions, approximately 80 % of elements are greater than 75 % ionized.In ICP-MS, positive, singly charged analyte ions are the species measured by the mass spectrometer. The ICP is a very efficient ionization source for the great majority of elements. A few elements have doubly charged ions too, up to 3 % of their ion population at worst.A small number of elements form oxide molecular ions in the plasma. Again, plasma conditions are optimized to keep this to a minimum. The worst element is Ce, which has an oxide contribution of 2 %, relative to the Ce + signal.Figure 1-7. Figure 1-7. ICP-MS characteristics summaryThis simplified schematic of an ICP-MS will be used to explain the positions and relationship between the key components of the system. The following slides will then deal with each area in turn,following the journey of the sample through the ICP-MS:Sample introduction system (spraychamber and nebulizer)ICP (torch and power supply)Mass spectrometer Interface Lens system (ion optics)Mass analyzer Vacuum system (Mechanical and turbomolecular pumps)Detector Data handling and system controller Figure 1-8. Figure 1-8. Location of ICP-MS componentsThe first area to look at is the sample introduction components.For the purposes of this training course we will consider only solution samples. However, it is possible to directly sample solid samples (for example using laser ablation) and gases (for exampleby hydride generation).Figure 1-9. Figure 1-9. Components of an ICP-MSThe steps involved in sample introduction are;1. Sample delivery A peristaltic pump passes the liquid sample to the nebulizer,where a high velocity argon stream is used to generate a very fine aerosol of the sample. The sample is normally pumped at a rate of ~1 ml/min via a peristaltic pump. This ensures a constant flow of solution.2. Generation of an aerosol from the liquid sample The aerosol is generated by the nebulizer, the most commonly used nebulizer being the glass concentric type. The aerosol is then filtered and homogenized in the spraychamber. The X Series ICP-MS utilizes an impact bead spraychamber. This has a small internal volume, so has fast washout and reduced memory effects.Quartz or inert (polypropylene) types are available.3. Introduction of the aerosol to the plasma The sample is transported from the spraychamber to the torch by the flow of gas through the nebulizer. The nebulizer and spraychamber are attached directly to the ICP torch, minimizing the distance.Figure 1-10.Figure 1-10. Sample introductionGlass concentric nebulizer Probably the most commonly used nebulizer giving good all round performance.Advantage: stable aerosol; easy setup; widely available Disadvantages: will not tolerate high total dissolved solids (TDS)or aggressive acids (e.g.HF) Other nebulizers are available for use in specific applications e.g.Inert nebulizers such as the concentric Burgener and polyimide types Inert nebulizer Advantages: can tolerate aggressive acids and high TDS, low blank levels.Disadvantages: less stable, less sensitive.Inert low flow nebulizers such as the PFA-50 are also available Advantages: HF resistant; useful for small sample volumes;contamination free (ideal for semiconductor applications)Disadvantages: will not tolerate high TDS.Applications using high TDS samples or very fine particulates,emulsified samples and colloidal materials can be successful, using suitable nebulizers such as cross-flow or parallel path designs.Micro-volume samples, organic matrices, radioactive samples are all ideally suited to the range of micro-concentric nebulizers,including corrosion-resistant designs.Figure 1-11.Figure 1-11. Nebulizer typesBurgener Nebulizer – schematic The Burgener nebulizer has a sample path and a nebulizing gas jet in parallel, separate channels. The channels are NO NO NOT T concentric and the sample channel flares out to a greater diameter at the very tip. This reduces nebulizer blockages, compared to conventional concentric designs, so this type of nebulizer can therefore tolerate higher salt loading and particulate levels.Figure 1-12. Figure 1-12. Burgener nebulizer - schematicWe only want the finest (<~10 microns) aerosol droplets to enter the plasma, so the purpose of the spraychamber is to reject any larger droplets, passing only the finest particles to the ICP . In the spraychamber, larger droplets are separated out by various processes including collision with the spraychamber impact bead and walls, falling under gravity and coagulation with other large droplets.From the spraychamber, the fine aerosol passes into the central channel of the plasma, where sample is completely desolvated,atomized and efficiently rger particles remain in the spraychamber, eventually being drained to a waste container. Only a small percentage of the aerosol reaches the ICP .The fine aerosol ensures that the plasma processes of solvent evaporation, sample vaporization, atomization and ionization are as efficient as possible.Figure 1-13. Figure 1-13. Sample introduction - droplet sizeInstrument performance can also be improved by cooling of the spraychamber.In aqueous applications, cooling the spraychamber to 2-3 o C removes more of the solvent, making processes in the plasma even more efficient, enhancing stability and sensitivity for most elements. Eliminating solvent also reduces some solvent-derived interferences and reduces oxide formation, again simplifying spectra even further.In organic applications, the spraychamber can be cooled even further, as low as –15 o C, to remove solvent from the aerosol.In the X Series ICP-MS, the spraychamber is cooled using a Peltier cooled recirculating chiller, which directs coolant through the outer glass jacket of the chamber.Figure 1-14. Figure 1-14. Sample introduction - spraychamber coolingOnce the sample aerosol is generated, it is introduced to the inductively coupled plasma (ICP). The plasma is a very high temperature (up to 7,000 K) environment of atoms, ions and electrons. At these temperatures, many elements make the transition from the atomic to the ionic state. A very useful characteristic of the argon ICP is that the great majority of the elements form mainly singly-charged positive ions. This helps to generate a simple mass spectrum even when lots of elements are present in the sample.The inductively coupled plasma source consists of two primary components.1, RF generator 2. Torch assembly Figure 1-15. Figure 1-15. Components of an ICP-MSThe X Series ICP-MS uses a solid state RF generator operating at 27 MHz. Other RF generators can operate at 40 MHz, but 27MHz has been shown to provide higher sensitivity with ICP-MS applications. The generator is typically run at a power between 0.6and 1.5 KW , requiring the use of a water cooled copper lead coil.Most of the energy produced by the generator reaches the plasma,so coupling efficiency is quite high, around 70-75 %.Figure 1-16.Figure 1-16. RF generatorVariations in sample and solvent loading in the plasma can change the plasma’s impedance. The matching network ensures maximum coupling efficiency (and therefore sensitivity) under changing plasma conditions.For crystal controlled generators, the frequency is locked (e.g. at 27 MHz) and motor-driven variable capacitors are used to compensate for impedance changes.Free-running generators will vary their operating frequency slightly when plasma impedance changes.Figure 1-17.Figure 1-17. Matching networksMost elements achieve their first ionization potential at a temperature of approximately 7,000 K. This temperature is achieved at approximately 12-14 mm from the first turn of the load coil.The torch comprises three concentric quartz tubes, mounted axially (the end of the torch faces the sample cone, separated by 10-20 mm).1. The inner tube (the torch injector) is used to direct the nebulized sample into the plasma.2. The next tube, supplying argon gas (the auxiliary gas), serves to keep the plasma away from the torch injector to prevent it from melting.3. The outer tube extends through the load coil and is supplied with enough argon gas (the cool gas) to support the plasma and to prevent the torch from melting.The plasma is initially started without sample introduction, and then optimized for singly charged positive ion fromation and low molecular (oxide) species.Figure 1-18.Figure 1-18. The ICP-MS torchThe ICP is an argon plasma, constrained inside a quartz torch. It is inductively coupled inductively coupled inductively coupled, which means it is sustained by a 2 ½turn induction coil, supplied with a radio frequency (27 MHz)current. This coil induces a powerful oscillating magnetic field inside the torch which continuously ionizes the argon flowing through the torch.There are 3 argon flows in 3 concentric channels. The outer annulus carries most of the supplied argon (coolant gas) and is applied tangentially so that the argon spirals around the inside wall of the torch, cooling the torch and preventing it from melting. The central injector tube carries the argon sample aerosol.The sample aerosol punches a channel through the axis of the plasma and the ionization zone is positioned above the load coil,from where analyte ions can be easily sampled.The annulus in between carries the auxiliary flow which controls the position of the plasma and prevents damage to the injector tube by the high temperature plasma.Figure 1-19.Figure 1-19. The ICPPlasma formation takes place as follows:a) A tangential flow of argon gas is passed between outer and middle tube of the ICP torch.b) RF power is applied to load coil producing intense electromagnetic field.c) A high-voltage spark (T esla coil) produces free electrons. Free electrons are accelerated by RF field.d) Accelerated free electrons produce high energy collision and ionization of Ar gas e) Self-sustaining plasma is formed at open end of quartz torch.Sample is introduced into plasma via ICP torch injector Figure 1-20.Figure 1-20. How is the plasma formed?As the sample passes through the plasma, the following four processes occur rapidly:1. Solvent evaporates from the sample matrix.2. The sample matrix is vaporized.3. Vaporized sample is completely atomized.4. Analyte atoms are ionized.Introducing a very fine sample aerosol to the plasma ensures maximum efficiency in these important plasma processes.The nebulizer gas flow is optimized to enable a relatively long sample residence time in the plasma to allow the aerosol solvent to be evaporated, analytes to vaporize, atomize and finally ionize.Figure 1-21.Figure 1-21. Processes in the plasmaThe ICP source is highly efficient and under normal operating conditions 80 % of elements are more than 75 % ionized. Many of these elements are 100 % ionized. The large majority of elements yield only singly-charged ions because their second ionization potential is too high to allow doubly-charged ions to form. However, some elements, such as the rare earth group, can form doubly-charged ions (typically < 3 % of the singly charged ion level). Even so, the predominance of singly charged ions is a significant factor in both the sensitivity of the method and the simplicity of the mass spectra. Ionization efficiency is element-specific. Every element does not ionize to the same extent. The first ionization potential is the energy required to release the first electron from the outermost orbit of an atomic state. The periodic table of the elements is characterized in blocks and each block e.g. transition element group or the actinide group tend to have broadly similar ionization potentials within their group.Most elements are very efficiently ionized in the plasma. The most challenging are the halogens, phosphorus, sulphur, arsenic,selenium, mercury, which have ionization efficiencies ranging from around 50 %, down to 1 % or even less. In practice, some elements with the lowest ionization efficiency, F , Cl, noble gases,C, N, O are not readily measured by ICP-MS.Figure 1-22.Figure 1-22. Degree of ionizationThe grounding of the induction coil prevents any potential difference existing between the plasma and the interface. Since the plasma is ionized, a potential difference would lead to a discharge between the plasma and the cones, changing some important characteristics of the plasma.This results in a low contribution to the background form the cone material (usually nickel).Ensuring that the ions of any particular element have a narrow range of kinetic energies enhances efficient beam focusing and gives clean separation of different masses by the spectrometer.Energy spread is further improved by the PlasmaScreen configuration.Figure 1-23.Figure 1-23. Ion kinetic energyIn summary, the argon ICP is a very efficient means of generating singly charged positive ions.Other ‘nuisance’ species, such as molecular ions and doubly charged ions do exist in the plasma but they are at very low levels,so their impact is minimal.Since so many elements are so efficiently ionized, complete multi-element analysis in a single determination is usually achieved.Figure 1-24. Figure 1-24. The plasma sourceThe interface is the region where ions generated in the plasma are extracted and introduced to the mass spectrometer as an ‘ion beam’.The interface region, where ions are extracted from the plasma, is also the first stage of the 3-stage vacuum system. A vacuum of around 2 mbar is maintained between the interface cones, using amechanical roughing pump.Figure 1-25. Figure 1-25. Components of an ICP-MSA nickel sampling cone, with a 1 mm orifice, is positioned in the plasma at the point of maximum ionization. Plasma gas and ions pass through the orifice, accelerating into the partial vacuum as a supersonic jet.A second (skimmer) cone has a smaller orifice (0.7 mm) and an even lower vacuum behind it. This skimmer cone samples from the supersonic jet, which contains only gas and ions derived from the plasma.The whole configuration is designed to maximize the number of ions reaching the mass spectrometer, whilst minimizing the gas load admitted with the ions.Beyond the skimmer cone, ions continue as a narrow axial beam towards the electrostatic lenses.With the intense heat of the plasma, it is necessary to water-cool the interface region.Figure 1-26. Figure 1-26. The interface - sampling ionsGood quality sample and skimmer cones are vital for optimum sampling of ions from the plasma.The difference in temperature between the cone and the plasma leads to the presence of a boundary layer, which is a thin, cool region of gas just at the surface of the cone. By choosing the correct shape and diameter for the sample cone orifice the boundary layer can be penetrated band the hot plasma gas sampled.The reduction in pressure as the plasma gas passes through the sample cone gives rise to a rapid expansion of the gas, with the gas molecules reaching supersonic speeds. Molecules in a supersonic jet flow with non-turbulent, laminar motion. If the tip of the skimmer cone is placed in this region, the gas sampled will have a high component of motion in the axis of the instrument and will thus be easier for the lenses to bring into focus.Another advantage of sampling from a supersonic jet is that themolecules travelling at supersonic speeds do not mix with those travelling at sub-supersonic speed. So if the tip of the skimmer cone is placed in the supersonic jet, the gas passing the skimmer cone is representative of that created in the plasma.Figure 1-27.Figure 1-27. The sampling interfaceOnce in the high vacuum region of the mass spectrometer, the sampled ions are accelerated and focused into the mass filter by a set of charged plates or ion lenses.The ion lenses are positioned immediately after the interface,allowing the ion beam extracted from the plasma to be focused and steered towards the quadrupole mass analyzer. The ion lenses are housed in the second stage (intermediate chamber) of the 3-stage vacuum system, with the vacuum maintained by a split-flowturbo-molecular pump.Figure 1-28. Figure 1-28. Components of an ICP-MSIons are charged particles and are therefore affected by electrostatic fields. The positively charged ions of interest in ICP-MS are attracted towards a negative potential (voltage) and deflected away from a positive potential.The ion lenses are supplied with user- and software- adjustable voltages , which exert forces of attraction and repulsion on the transmitted ions, focusing the beam for maximum performance by the mass analyzer (quadrupole). The sampled beam includes positive ions, neutral species and electrons. The positive ions are selected and focused by the lenses, whilst neutral and negative species are rejected.The spectrometer detector is light-sensitive, so photons must also be eliminated from the ion beam. The axis of the quadrupole is off-set from the axis of the ion lenses. When the ion beam exits the ion lenses, a pair of deflector plates move the ion beam axis laterally, separating the ions from any transmitted photons. This further reduces background noise and increases sensitivity.Figure 1-29. Figure 1-29. The lens systemThe Ion Optics in the X Series consists of 3 separate components:1. The Extraction Lens – This is used to focus and accelerate the ions from the region at the back of the skimmer cone through the slide valve aperture and into the intermediate vacuum region of the analyzer.The extraction lens requires a static DC voltage of up to -1000 V .2. The Infinity Lens (pictured ) – This consists of a Hexapole in a semi-contained region which provides efficient focusing of the ions and can be pressurized using an additional gas (CCT) to remove selected interferences before they reach the Quadrupole.Additional lenses before (Lens 1; Lens 2) and after (Lens 3) the hexapole are used to optimize the ion beam focusing.The hexapole requires an RF voltage to be applied to it in order to focus the ions and the additional lenses require a static DC voltage to be applied.3. The DA (differential aperture) assembly – The DA assembly consists of a series of further lens elements (DA, D1, D2) which continue to focus the ion beam and also take the beam ‘off-axis’so that there is no line of sight between the cones and the Quadrupole, thus reducing background counts. The DA is also the barrier between the intermediate vacuum region and analyzerregion.Figure 1-30. Figure 1-30. Ion focusing mechanismThe ion optics in the X Series II have been upgraded to give better performance when the instrument is operated in collision cell mode.T raditionally, ions are extracted through the skimmer cone by the Primary Extraction lens. The X Series II now includes a Protective Ion Extraction lens and that only transmits ions of favorable energy into the hexapole ion lens or into the Collision Cell.The PI lens assembly also acts as a chicane deflector so that the ions are taken off axis both before and after the collision cell,resulting in extremely low backgrounds.Figure 1-31.Figure 1-31. X Series II ion lensHaving created an ion beam and transported it through a vacuum chamber we now have to select ions of a particular isotope. With the X Series ICP-MS, this is achieved by passing the ion beam through a quadrupole mass analyzer which filters out ions of a specific mass to charge ratio, to generate the mass spectrum.The quadrupole mass analyzer is positioned off-axis from and behind the ion lenses. The quadrupole is in the high vacuumregion, evacuated by the second turbo-molecular pump.Figure 1-32. Figure 1-32. Components of an ICP-MSA quadrupole essentially consists of four parallel cylindrical or hyperbolic rods, to which DC and RF voltages are applied.These rods are typically constructed from stainless steel or molybdenum. Sometimes, ceramic rods may be used which are coated in gold to provide electrical conductivity.The rods are precisely fixed with in the analyzer. The operation of the quadrupole is enhanced using a pre- or post-filter.Figure 1-33.Figure 1-33. Quadrupole design criteriaHaving created an ion beam and transported it through a vacuum chamber we now have to select ions of a particular isotope. With the X Series ICP-MS, this is achieved by passing the ion beam through a quadrupole mass analyzer which filters out ions of a specific mass to charge ratio. A quadrupole consists of four rods, placed equal distance from each other. Taking an ion’s view of the quadrupole, there are two rods in the horizontal, x-plane, and two in the vertical, y-plane.The rods in the x-plane are supplied with a voltage +Vo. The rods in the y-plane are supplied with an equal and opposite voltage -Vo. The z-axis is the one along the axis of the rods. Opposite pairs of poles supplied with positive and negative DC voltages and RF voltages 180o out of phase.Figure 1-34. Figure 1-34. Quadrupole mass filterIons move in response to an applied electrical field. The force which moves them is proportional to the applied voltages. The applied voltage changes during the trajectory of the ion through the quadrupole. The oscillation of the ion in the changing conditions leads to ions being repeatedly sent in different directions, such that, for a given set of applied voltages, only an ion of one fixed mass to charge ratio travels along a stable trajectory through the quadrupole and is detected.As the ion is accelerated e.g. to the left hand rod, the voltage changes and it is now pushed away and attracted to the top rod.As the ion moves towards the top rod, the voltage reverses again and the ion moves to the right hand rod and so on, acquiring a spiraling forward trajectory. A given applied voltage will accelerate a light mass ion to high speed, but a heavy mass to a slower speed. If the ion is accelerated to a speed that is too fast or slow for the next voltage change to steer it back onto a stable path, it will hit the rods and be lost.Since this acceleration process is mass dependent, only an ion of one particular mass to charge ratio will maintain a stable path through the quadrupole for a given applied voltage. Thus, by varying the applied voltages, the ions can be separated according to their mass to charge ratio. Figure 1-35. Figure 1-35. Quadrupole mass filter - continued。

Thermo Scientific ThermoChill系列循环冷却器性能指南说明书

Thermo Scientific ThermoChill系列循环冷却器性能指南说明书

Thermo Scientific ThermoChill Series Recirculating ChillersPerformance, value, simplicityThe Ideal FitT emperature control products for a variey of applications As an innovative leader in temperature control, wehave the expertise to help enable you to optimizeyour liquid cooling and heating applications whileincreasing productivity and reducing operatingcosts. With over 50 years of service and countlesssuccessful installations around the world, we collaboratewith you to provide product and applications expertiseto meet the most demanding temperature controlrequirements. From bio-tech and pharmaceutical toprinting and semiconductor industries, companies aroundthe world continue to make Thermo Scientific temperaturecontrol products their ideal choice.Typical Applications:•Analytical •Automotive •Biotech •Laboratory•Laser•Packaging•Printing•Small Industrial•UniversitySelect the product that is right for your applicationfrom a comprehensive portfolio of temperature controlsolutions that deliver scalable product offerings rangingfrom bench top research to large process manufacturing.Our new and innovative products – developed fromcustomer feedback – represent a breakthrough inperformance, configurability and technology that providethe following advantages:A Flexible Choice: We have options to help you configurea flexible, cost-effective temperature control system thatsuits your specific requirements.Innovation: Our research and development team isfocused on designing innovative products based on yourfeedback.Global Service and Support: With our extensive globalfootprint, as well as, service and support capabilities, wecan support you anywhere in the world.Thermo Scientific ThermoChill recirculating chiller seriesPerformance: with your choice of cooling and pumping capacities, and a wide temperature range, select the performance level your application requires.Value: when you need reliable cooling support for your application, this powerful recirculating chiller offers ahigh quality, cost effective solution.Simplicity: innovative and intuitive controller that is easy to use, and a plug-and-play design that allows you to be up and running in minutes.Performance, value and simplicityCooling Lightilluminates when this chilleris cooling Setpointilluminates when setpoint isbeing adjusted Low Temp Alarm illuminates during adjustment or alarm High Temp Alarm illuminates during adjustment or alarmCommunications illuminates when serial communication is enabled(optional)Pressure Gauge for easy viewing of application pressureDigital Display indicates setpoint and displays additional operating values with menu selectionTouchpad Data Entry adjusts controller valuesEnter Button accesses menus and confirms settingsPower ButtonLocking casters for easy maneuveringAccessible fill port for easy fillingIntuitive digital controller with controllerindicator lights (see diagram below)RS232 digital communications optional(located on the back of the chiller)Pressure gauge located on control panelfor easy viewing of application pressurePerformance curvesCooling Capacity for ThermoChill I, II, & IIIPumping Capacity for Positive Displacement Pumps (PD-1 and PD-2)Pumping Capacity for Magnetically Driven Centrifugal Pump (MDC1)Cooling capacity based on chillers with PD-1 pumps with no backpressure. Other pumps will affect cooling capacity performance. Pressure values are differential pressures between the inlet and the outlet of the chiller. Specifications subject to change. C ooling capacity obtained using water between 8 °C to 30 °C and 50/50 Ethylene Glycol/water below 8 °C. Glycol water mixtures are required below 8 °C in order to prevent freezing of the cooling coils. Failure to follow these directions will result in a loss of cooling capacity and potential damage to the chiller.ACBTemperature ºC ºF4050607080-101030203050 HzA = ThermoChill IIIB = ThermoChill IIC = ThermoChill I20o C o l i n g C a p a c i t y800060004000200000BTU/Hr Watts 2500200015001000500AB A = PD-1B = PD-27.010*******60504030201006.05.04.03.02.01.0000123455101520P r e s s u r eBARPSIDFlow Rate LPM GPM50 HzAB CTemperatureo C o l i n g C a p a c i t y800060004000200000BTU/HrWatts 2500200015001000500ºC ºF4050607080-10100302060 Hz3020A = ThermoChill IIIB = ThermoChill IIC = ThermoChill IAB7.010090807060504030201006.05.04.03.02.01.00LPM GPM00123455101520P r e s s u r eBARPSIDFlow RateA = PD-1B = PD-260 Hz241.5050 Hz & 60 HzBARPSID LPM0 2.55.07.510.012.515.017.520.0GPM012345Flow RateP r e s s u r e1.251.000.750.500.252016128400Innovative designThe ThermoChill series of chillers is a compact line of refrigerated recirculators offering cooling capacities up to 2000 watts. Innovative design features such as minimized plumbing connections and an integrated full-flow fluid strainer maximize product reliability.Three Pump OptionsPositive Displacement Pumps (PD-1/PD-2) deliver a consistent flow over a wide pressure range making them appropriate for use with high back-pressure applications. Adding the external pressure reducer (EPR) accessory allows safe use with pressure sensitive applications.Magnetically Driven Centrifugal Pump (MDC1) deliver high flow rates at low pressure making them ideal for use with laboratory glassware and other low back-pressure applications.SpecificationsSpecifications obtained at sea level using water as the recirculating fluid, at a 20 °C process setpoint, 20 °C ambient condition, at nominal operating voltage. O ther fluids, process temperatures, ambient temperatures, altitude or operating voltages will affect performance.1 UL listing applies to 60 Hz ThermoChill models only.External Pressure Reducer (EPR) AccessoryThis accessory attaches to the chiller to limit the maximum outlet pressure of the chiller. Choose this accessory when circulating to applications that are sensitive to higher pressures or when circulating through glass.ThermoChill Plumbing KitThe plumbing includes (2) ½-in x ½-in MPT fittings, 25 feet of 5/8-in ID Polybraid hose, (2) hose clamps & hose insulation. The plumbing kit can be used across all ThermoChill models.Need More Capacity?The Thermo Scientific™ Polar, Thermo Scientific™ ThermoFlex™ , and Thermo Scientific™ Merlin™recirculating chillers have additional temperature ranges, cooling capacities, and pumping capacities available to meet your specific application requirements.Visit /tempcontrolselector for more information.Please see contact information below, if you need assistance selecting a chiller and to discuss your application.Ordering InformationFind out more at /tc© 2016 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. BRTCTHERMOCHILL 1116Australia +61 39757 4300China +800 810 5118France +33 (0) 1 60 92 48 00Germany +49 (0) 721 4 09 44 44India +91 22 6716 2200Italy +39 02 95059 552Japan +81-3-6832-9270Netherlands +31 76 579 55 55New Zealand +64 9 980 6700Nordic/Baltic/CIS countries +358 10 329 2200Spain/Portugal +34 93 223 09 18UK/Ireland +44 870 609 9254USA/Canada toll free +1 (800) 258-0830USA +1 (603) 436-9444Countries not listed +49 6184 90 6000North America ***************************Europe ****************************China *************************India ******************************Japan ****************************。

Thermo Scientific Speci-Mix 试管标本混合器 用户手册说明书

Thermo Scientific Speci-Mix 试管标本混合器 用户手册说明书

9/3/10Table of ContentsSafety information (3)Important Information (3)Alert Signals (3)Introduction (4)General Usage (4)Principles of Operation (4)Installation (4)General Specifications (5)Environmental Conditions (5)Declaration of Conformity (5)Operation (6)Precautions and Limitations (6)Maintenance and Servicing (7)General Cleaning Instructions (7)Exploded View (8)Replacement Parts Listing (9)Ordering Procedures (10)One Year Limited Warranty (11)23Your Thermo Scientific Speci-Mix Test Tube Specimen Mixer has been designed with function,reliability,and safety in mind.It is your responsibility to install it in con-formance with local electrical codes.For safe operation,please pay attention to the alert signals throughout the manual.Important InformationThis manual contains important operating and safety information.You must carefully read and understand the contents of this manual prior to the use of this equip-ment.SafetyInformationWarningWarnings alert you to a possibility of per-sonal injury.CautionCautions alert you to a possibility of damage to the equipment.NoteNotes alert you to pertinent facts and conditions.Alert Signals4The Speci-Mix Test Tube Specimen Mixer provides gentle but thorough mixing of in vitro diagnostic specimens.The specimens are placed in the grooves of the white silicone pad,which is mounted on the platform.The platform rocks at a constant speed to provide gentle and thorough mixing of test tube contents.General UsageDo not use this product for anything other than its intended usage.Principles of Operation A synchronous gear motor drives a cam and linkage as-sembly that is attached to the rocker plate,which rocks in a cyclic 48°maximum motion at 18rpm.InstallationRemove the Speci-Mix from the carton.Check electrical specifications and plug into a properly grounded recepta-cle.IntroductionNoteWith a 240V/60Hz power supply the speed is 20rpm,with a 240V/50Hz,16.5rpm.Thermo Fisher ScientificRobert-Bosch-Strasse 1,D-63505 Langenselbold,Germany6Place tubes in the grooves of the white silicone pad.Center tubes for balanced mixing.On the side without ridges,the reversible pad will accept tubes over 125mm in length.The side with ridges will accept tubes less than 125mm in length.Turn the switch to the “on”position to start the mixing.Precautions and Limitations1.Do not overload by weight.Loads over 1-1/4pounds may cause jerky rocking action.2.Wash white silicone pad with soap and water and rinse when needed to assure the friction-grip quality of the pad.OperationWarningTo avoid personal injury,do not use in the presence of flammable or combus-tible chemicals —fire or explosion may result.This device contains compo-nents that may ignite such materials.NoteIf the equipment is used in a manner not specified by the manufacturer,the protection provided by the equip-ment may beimpared.71.The drive motor and linkage assembly do not require lubrication.The drive motor is imped-ance protected.2.Jerky rocking action without a load indicates motor replacement is necessary.3.Failure of the unit when plugged in and with the toggle switch in the “on”position indicates de-fective toggle switch,malfunctioning drivemotor or disengaged linkage.Remove right end cap to observe.General Cleaning InstructionsWipe exterior surfaces with lightly dampened cloth con-taining mild soap solution.Maintenance andServicingWarningTo avoid electrical shock,always dis-connect from power supply before maintenance and servicing.Refer ser-vicing to qualified personnel.8ExplodedViewNoteWhen ordering replacement parts,be sure to order by part number —not by key number.M26120-33,M26120,M26125,series 11069Model Type:M26100,Series 1107Model Type:M71000,Series 1106Model Type:M26100,Series 1107Model Type:M71000,Series 1106Product Name:Speci Mix Aliquot Mixer Product Name:1/2Size Speci Mix Aliquot Mixer Key Part #(Qty)DescriptionPart #(Qty)Description*PT261X1Silicone top tube holder PT532X2Silicone top tube holder 2PT1106X4End plate assembly PT1106X4End plate assembly 3CV710X1A End coverCV710X1A End cover4PT1106X3End plate assembly PT1106X3End plate assembly 5MTX34Motor (M26125)MTX34Motor (M71015)MTX35Motor (M26120)MTX35Motor (M71010and -33)6CR1105X1Cord set (M26125)CR1105X1Cord set (M71015)CR1105X2Cord set (M26120-33)CR1105X2Cord set (M71010-33)CRM1855X1Cord set (M71010-33CN)7SWX135Switch (M26125)SWX135Switch (M71015)SWX136Switch (M26120-33)SWX136Switch (M71010-33)8PT261X3B Top rocker plate assembly PT532X1A Top rocker plate assembly 9CUX4Coupling CUX4Coupling 10LN261X1LinkLN261X1LinkReplacementPartsWarningTo avoid electrical shock,always discon-nect from power supply before mainte-nance and servicing.Refer servicing to qualified personnel.*Not shown on exploded view.800-943-2006 or 800-926-0505North America: USA/Canada +1 866 984 3766 (866-9-THERMO) Europe: Austria +43 1 801 40 0, Belgium +32 2 482 30 30, France +33 2 2803 2180, Germany national toll free 08001-536 376,Germany international +49 6184 90 6940, Italy +39 02 02 95059 434-254-375, Netherlands +31 76 571 4440, Nordic/Baltic countries +358 9 329 100,Russia/CIS +7 (812) 703 42 15, Spain/Portugal +34 93 223 09 18, Switzerland +41 44 454 12 12, UK/ Ireland +44 870 609 9203Asia: China +86 21 6865 4588 or +86 10 8419 3588, India toll free 1800 22 8374, India +91 22 6716 2200, Japan +81 45 453 9220,Other Asian countries +852 2885 4613 Countries not listed: +49 6184 90 6940 or +33 2 2803 2180。

Thermo Fisher 细胞刺激试剂 产品说明书

Thermo Fisher 细胞刺激试剂 产品说明书

流式细胞术整体解决方案Attune流式细胞仪|16,000+种流式抗体|60+种荧光染料|明星样品制备试剂|细胞功能试验|PrimeFlow 流式RNA分析2流式细胞术能够从单细胞水平同时分析细胞样本中的基因表达和蛋白表达,还可以检测细胞活性、细胞周期、细胞凋亡、细胞增殖和细胞氧化等细胞功能。

该技术不仅能获得在单个细胞水平上具有统计学意义的海量数据,还可以更加深入地了解异质性细胞群的详细信息。

无论进行细胞亚群鉴定还是细胞功能研究,流式细胞术都发挥着重要作用,大大推动了科学研究的发展。

前言图1. 流式细胞术实验流程。

合理进行实验设计是保证流式实验成功的关键。

• 免疫学• 炎症• 肿瘤免疫• 实体肿瘤• 神经炎症• 基因编辑• 微生物学了解更多多色流式实验相关信息,请访问 thermofi/flowcytometry完成流式实验通常需要将多种抗体搭配成多色流式实验方案。

这本流式细胞术整体解决方案手册不仅介绍了Invitrogen ™ eBioscience ™ 流式抗体和Invitrogen ™ 流式细胞功能检测试剂,还展示了Invitrogen ™ Attune ™ 流式细胞仪在以下不同研究领域中的应用:流式细胞术整体解决方案实验流程样品制备确定免疫分型抗体选择缓冲液细胞功能检测活细胞死细胞实验对照上机检测3免疫细胞通常需要刺激活化后才能快速增殖或分化为成熟细胞(图2)。

处于活化状态的细胞经常高表达转录因子、细胞因子、趋化因子以及其他调节因子,这些指标均可通过流式细胞术进行检测。

选择合适的激活剂/刺激剂需要根据细胞类型、目的蛋白的表达水平和表达动力学以及具体实验条件而定。

样品制备:免疫细胞刺激试剂图2. 各种免疫细胞刺激试剂。

(A) 功能级抗体(如CD3抗体和CD28抗体)可用于T 细胞的活化和扩增。

(B) eBioscience 细胞刺激剂(Cell stimulation cocktail ),包括PMA 和离子霉素(ionomycin ),可刺激T 细胞产生γ-干扰素(IFN-γ)、肿瘤坏死因子α(TNF-α)、白介素-2(IL -2)和白介素-4(IL -4)。

Thermo pH计使用操作说明书

Thermo pH计使用操作说明书

Orion Star 和Star Plus 系列pH/离子浓度/溶解氧/RDO荧光溶氧/电导率测量仪目录第一章简介 (1)仪表特性 (1)第二章显示 (3)简介 (3)第三章键盘 (5)简介 (5)按键定义 (6)第四章准备测量 (7)安装电源适配器 (7)安装电池 (7)连接电极 (8)开机 (9)仪表的维护 (9)第五章仪表的设置 (10)设置菜单 (10)设置菜单列表 (10)通用菜单设置 (13)时间和日期设置 (14)读数模式设置 (14)选择测量参数 (15)方法设置 (16)第六章 pH测量 (17)pH 菜单的设定 (17)pH 校正 (17)pH 测量 (18)pH 温度显示和校正 (18)第七章 mV,相对mV和ORP测量 (20)相对mV和ORP校正 (20)mV,相对mV和ORP测量 (20)第八章溶解氧测量 (22)溶解氧菜单的设定 (22)溶解氧校正 (22)溶解氧测量 (23)溶解氧温度显示和校正 (24)第九章 RDO荧光溶氧测量 (26)RDO 电极帽 (26)荧光溶氧菜单的设定 (26)荧光溶氧电极设置菜单 (27)RDO荧光溶氧校正 (28)RDO荧光溶氧测量 (29)RDO荧光溶氧温度显示和校正 (30)第十章电导率测量 (31)电导率菜单的设定 (31)电导率校正 (31)电导率测量 (32)电导率温度显示和校正 (33)第十一章离子浓度测量 (34)离子浓度菜单的设定 (34)离子浓度校正 (34)离子浓度测量 (35)离子浓度温度显示和校正 (36)第十二章数据储存和查看 (37)测量数据和校正数据的储存 (37)自动数据储存设置 (37)数据删除设置 (37)查看和打印测量数据和校正数据 (38)第十三章故障排除 (40)仪表自检 (40)仪表错误代码 (40)一般故障排除 (42)第十四章技术参数 (45)仪表技术参数 (45)订货信息 (49)附录 A 测量仪设置菜单 (51)pH 设置菜单 (51)溶解氧设置菜单 (51)电导率设置菜单 (52)离子浓度设置菜单 (53)第一章简介先进的 Thermo Scientific Orion Star 和 Star Plus 系列测量仪同时适用实验室和野外的电化学测量。

THERMO二氧化碳培养箱中文说明书

THERMO二氧化碳培养箱中文说明书

THERMC L氧化碳培养箱中文说明书THERMOFORMA370/371&380/381高温灭菌,气套CO2 培养箱操作手册目录. 参数设置-------- *■ •参数校准” ■------- •- •系统信息四. 报警信息五. 咼温消毒参数设置设置温度Thermo Forma 370系列的co2培养箱工作温度范围为10°C 吒0 C,此温度受环境温度的影响。

出厂时,厂家将温度设定为 10C ,在此设置下,所有的加热器都将关闭。

按以下步骤设置温度:1. 按“ MODE 到“ SET'位置。

2. 按“―”直到显示“ TEMP XX.X ”信息3. 按“TJ”设置所需要的温度值。

4. 按“ ENTER 保存设定值。

5. 按“ MODE 到“ RUN 位置或按“―”选择其他的参数设置过温温度370 系列的 co2 培养箱具有了第二级温度监控系统来监测箱体内的温度。

这是机器的一个自我保护功能。

一旦温度不能控制, 机器将关闭所有的加热器。

箱体内的报警温度是过温温度的±1C 。

厂家设定 过温温度 是 40C , 但是过温温度最高可设定为55 C 。

若设置温度高于过温温度,机器将给过温温度自动增加1C 。

一般过温温度应高于设置温度1C 。

按以下步骤设置过温温度 :1. 按“ MODE 到“ SET'位置。

2. 按“―”直到显示“ O TEMP XX.X ”信息。

3. 按“TJ”设置所需要的过温温度值。

4. 按“ ENTER 保存设定值。

5. 按“ MODE 到“ RUN 位置或按“―”选择其他的参数设置CO2浓度带有T/CCO2传感器的培养箱,出厂时厂家已校准,校准时 的环境是温度:37C ,高湿度,CO2 10%在腔体为37,高湿度, 10%勺CO2浓度下被校准过。

因此如果设置温度为37,湿度盘 内放满了水,需要的 CO2浓度不超过10% CO2的浓度可以立 即设定。

THERMO_二氧化碳培养箱中文说明书

THERMO_二氧化碳培养箱中文说明书

THERMO FORMA370/371&380/381高温灭菌,气套CO2培养箱操作手册目录一.参数设置二.参数校准三.系统信息四.报警信息五.高温消毒一、参数设置a 设置温度Thermo Forma 370系列的co2培养箱工作温度范围为10℃–50 ℃,此温度受环境温度的影响。

出厂时,厂家将温度设定为10℃,在此设置下,所有的加热器都将关闭。

按以下步骤设置温度:1.按“MODE”到“SET”位置。

2.按“←→”直到显示“TEMP XX.X”信息3.按“↑↓”设置所需要的温度值。

4.按“ENTER”保存设定值。

5.按“MODE”到“RUN”位置或按“←→”选择其他的参数。

b.设置过温温度370系列的co2培养箱具有了第二级温度监控系统来监测箱体内的温度。

这是机器的一个自我保护功能。

一旦温度不能控制,机器将关闭所有的加热器。

箱体内的报警温度是过温温度的±1℃。

厂家设定过温温度是40℃,但是过温温度最高可设定为55℃。

若设置温度高于过温温度,机器将给过温温度自动增加1℃。

一般过温温度应高于设置温度1℃。

按以下步骤设置过温温度:1.按“MODE”到“SET”位置。

2.按“←→”直到显示“O TEMP XX.X”信息。

3.按“↑↓”设置所需要的过温温度值。

4.按“ENTER”保存设定值。

5.按“MODE”到“RUN”位置或按“←→”选择其他的参数。

c.设置CO2浓度带有T/CCO2传感器的培养箱,出厂时厂家已校准,校准时的环境是温度:37℃,高湿度,CO2:10%在腔体为37,高湿度,10%的CO2浓度下被校准过。

因此如果设置温度为37,湿度盘内放满了水,需要的CO2浓度不超过10%,CO2的浓度可以立即设定。

否则,培养箱就的稳定12小时后才可设定CO2浓度值。

所有培养箱的CO2浓度范围是0.0%-20%。

出厂时厂家设定的CO2浓度为0.0%。

在此浓度下,CO2控制和报警系统都将关闭。

THERMO二氧化碳培养箱中文说明书(2)

THERMO二氧化碳培养箱中文说明书(2)

THERMO FORMA370/371&380/381高温灭菌,气套CO2培养箱操作手册目录一.参数设立二.参数校准三.系统信息四.报警信息五.高温消毒一、参数设立a 设立温度Thermo Forma 370系列旳co2培养箱工作温度范畴为10℃–50 ℃,此温度受环境温度旳影响。

出厂时,厂家将温度设定为10℃,在此设立下,所有旳加热器都将关闭。

按如下环节设立温度:1.按“MODE”到“SET”位置。

2.按“←→”直到显示“TEMP XX.X”信息3.按“↑↓”设立所需要旳温度值。

4.按“ENTER”保存设定值。

5.按“MODE”到“RUN”位置或按“←→”选择其她旳参数。

b.设立过温温度370系列旳co2培养箱具有了第二级温度监控系统来监测箱体内旳温度。

这是机器旳一种自我保护功能。

一旦温度不能控制,机器将关闭所有旳加热器。

箱体内旳报警温度是过温温度旳±1℃。

厂家设定过温温度是40℃,但是过温温度最高可设定为55℃。

若设立温度高于过温温度,机器将给过温温度自动增长1℃。

一般过温温度应高于设立温度1℃。

按如下环节设立过温温度:1.按“MODE”到“SET”位置。

2.按“←→”直到显示“O TEMP XX.X”信息。

3.按“↑↓”设立所需要旳过温温度值。

4.按“ENTER”保存设定值。

5.按“MODE”到“RUN”位置或按“←→”选择其她旳参数。

c.设立CO2浓度带有T/CCO2传感器旳培养箱,出厂时厂家已校准,校准时旳环境是温度:37℃,高湿度,CO2:10%在腔体为37,高湿度,10%旳CO2浓度下被校准过。

因此如果设立温度为37,湿度盘内放满了水,需要旳CO2浓度不超过10%,CO2旳浓度可以立即设定。

否则,培养箱就旳稳定12小时后才可设定CO2浓度值。

所有培养箱旳CO2浓度范畴是0.0%-20%。

出厂时厂家设定旳CO2浓度为0.0%。

在此浓度下,CO2控制和报警系统都将关闭。

THERMO_二氧化碳培养箱中文说明书

THERMO_二氧化碳培养箱中文说明书

THERMO FORMA 之答禄夫天创作370/371&380/381高温灭菌,气套CO2培养箱把持手册目录一.参数设置二.参数校准三.系统信息四.报警信息五.高温消毒一、参数设置a 设置温度Thermo Forma 370系列的co2培养箱工作温度范围为10℃–50℃,此温度受环境温度的影响.出厂时,厂家将温度设定为10℃,在此设置下,所有的加热器都将关闭.按以下步伐设置温度:1.按“MODE”到“SET”位置.2.按“←→”直到显示“”信息3.按“↑↓”设置所需要的温度值.4.按“ENTER”保管设定值.5.按“MODE”到“RUN”位置或按“←→”选择其他的参数.370系列的co2培养箱具有了第二级温度监控系统来监测箱体内的温度.这是机器的一个自我呵护功能.一旦温度不能控制,机器将关闭所有的加热器.箱体内的报警温度是过温温度的±1℃.厂家设定过温温度是40℃,可是过温温度最高可设定为55℃.若设置温度高于过温温度,机器将给过温温度自动增加1℃.一般过温温度应高于设置温度1℃.按以下步伐设置过温温度:1.按“MODE”到“SET”位置.2.按“←→”直到显示“”信息.3.按“↑↓”设置所需要的过温温度值.4.按“ENTER”保管设定值.5.按“MODE”到“RUN”位置或按“←→”选择其他的参数.带有T/CCO2传感器的培养箱,出厂时厂家已校准,校准时的环境是温度:37℃,高湿度,CO2:10%在腔体为37,高湿度,10%的CO2浓度下被校准过.因此如果设置温度为37,湿度盘内放满了水,需要的CO2浓度不超越10%,CO2的浓度可以立即设定.否则,培养箱就的稳定12小时后才可设定CO2浓度值.所有培养箱的CO2浓度范围是0.0%-20%.出厂时厂家设定的CO2浓度为0.0%.在此浓度下,CO2控制和报警系统都将关闭.按以下步伐设置CO2浓度值;1.按“MODE”到“SET”位置.2.按“←→”直到显示“”信息.3.按“↑↓”设置所需要CO2浓度值.4.按“ENTER”保管设定值.5.按“MODE”到“RUN”位置或按“←→”选择其他的参数.详细设定步伐见CHART 1-1.二、参数校准校准模式培养箱稳定后,几个分歧的系统可以被校准.在校准模式下温度、CO2浓度和湿度都可以被校准.按“MODE”键进入“CAL”模式.按“←→”选择需要校准的参数.详细的把持步伐见CHART2-1.校准的频率有使用情况、环境和要求精度来决定.在较好的实验环境和把持下,设备一年校准一次.刚装置的机器,在机器稳定后所有的参数都应该被检测.在校准之前,用户需要了解下述系统功能.当机器进入校准模式时,所有的系统控制功能都停止,系统处于稳定状态.校准后的参数值将显示在面板上.在校准模式下,如果在5分钟内没有任何把持,设备将自动回到RUN模式下,且所有的控制功能在次被激活.校准时,设备必需处于稳定状态.丈量温度计应放置在箱体的中间部位,不要靠近左右两侧壁.温度校准的方法及过程如下:刚装置的机器:稳定12小时以上.使用中的机器:显示温度达到设定温度后,机器必需再稳定2小时以上.按以下步伐校准温度:1.按“MODE”到“CAL”位置.2.按“←→”直到显示“”信息3.按“↑↓”输入实测温度值.4.按“ENTER”键保管校准后的温度.5.按“MODE”到“RUN”位置或按“←→”选择其他的参数.370和371型号的CO2培养箱使用的热导式的CO2传感器.箱体内气体的热导值不单受CO2浓度的影响,还受温度和湿度的影响.为了准确地丈量CO2浓度值,箱体内的温度和湿度必需坚持恒定.在这种状态下,co2浓度是招致箱体内气体的热导值变动的唯一因素.设备的设置温度和湿度改变时,热导式CO2传感器必需进行校准.T/C CO2传感器的校准方法及过程一些CO2传感器必需经过一个稳按期,特别是刚装置的新设备.开始时CO2浓度值应该每周检测一次,需要时调整一下.进行校准把持后,检测的频率可以小一些.刚装置的设备:设备出厂时,CO2传感器已在37 ℃,高湿度环境下校准过.箱体内的温度、湿度和CO2浓度稳定至少12小时.使用中的设备:确保箱体的门关上.温度和CO2浓度达到设定值后,允许设备再稳定2小时以上.按以下步伐校准 CO2浓度:1.确保上述条件成立.2.用CO2浓度丈量从取样口抽取一定量的CO2气体进行丈量.重复此过程3次,以确保丈量值的精度.3.按“MODE”到“CAL”位置.4.按按“←→”直到显示“”信息.5.按“按“↑↓”输入实测CO2浓度值.6.按“ENTER”键保管7.按“MODE”到“RUN”位置或按“←→”选择其他的参数.c.红外CO2传感器的校准.380和381型号的培养箱使用的是红外CO2传感器.红外CO2传感器不受箱体内温度和湿度的影响.可是如果温度变动较年夜,传感器的探测元件也会受到影响.因此改变设置温度后,建议校准一下co2浓度值.在校准CO2浓度之前,一定要箱体内的温度稳定,特别是刚装置的机器.IR CO2传感器的校准方法及步伐.刚装置的设备:温度和CO2浓度稳定至少12小时.使用中的设备:温度和co2浓度达到设定值后,温度和CO2浓度需再稳定2小时以上.按下列步伐校准co2浓度值:1.从取样口取出一定量的CO2气体,用FYRITE或其他的丈量仪丈量实际CO2浓度值.为确保丈量准确性,此丈量过程至少重复3次 .2.按“MODE”到“CAL”位置.3.按“←→”直到显示“”信息.4.按“↑↓”输入实际的CO2浓度值.5.按“ENTER”键确认.6.按“MODE”到“RUN”位置或按“←→”选择其他的参数.370/380系列的CO2培养箱具有湿度传感器(可选).它仅可以显示出箱体内的湿度值,不起控制作用.湿度值的校准方法及过程刚装置的设备:温度和湿度稳定至少12小时.使用中的设备:温度达到设置值后,设备必需再稳定2小时以上.1.将湿度丈量仪放在箱体的中间位置.稳定30分钟.2.按“MODE”到“CAL”位置.3.按“←→”直到显示“RH CAL XX”信息.4.按“↑↓”输入实际湿度值.5.按“ENTER”键确认.6.按“MODE”到“RUN”模式.如果没有湿度丈量仪,您好可以用以下方法来校准:1.确保校准湿度所需具备的条件.2.水盘注满水,温度稳定,这时箱体内湿度值应为95%.3.依照上述的3-5的步伐,将湿度值调整为95%.注:这种调整方法精度在±5%之内.三、系统信息配置模式在配置模式下有几个功能可以自界说.下面内容列出了这几个功能,并对他们进行了说明.这些功能不是必需使用,使用者可根据自身需要,有选择的使用.按“MODE”进入“CONFIG”模式,按“←→”选择所所需的参数.具体把持见附图3-1a.报警声音ON/OFF报警声音可翻开也可关闭.出厂设置为ON1.按“MODE”到“CONFIG”位置2.按“↑↓”滚动显示“AUDIBEL ON”或“AUDIBLE OFF”3.按“ENTER ”键保管设置.4.按“MODE”到“RUN”位置或按“←→”选择其他的参数.b.当HEPA 过滤器需要更换时,机器会显示“WordStr HEPA”报警信息.更换新的HEPA过滤器后,按以下步伐消除报警信息:“MODE”到“CONFIG”位置.“←→”直到显示“NEW HEPA ”(此时数值应为零).“ENTER”键重设显示时间,消除报警.“MODE”到“RUN”模式.c.设置更换HEPA过滤器的提示时间.更换HEPA过滤器的提示时间可设定为1-12月(时间为倒计时),此时间是培养箱实际工作时间,一旦培养箱关闭,计时器将停止工作.厂家设定为6个月,当培养箱工作的时间达到设按时间时,WordStr HEPA信息将呈现在显示面板上,并发生报警信号.按以下步伐设置提示时间:“MODE”到“CONFIG”位置.“←→”直到显示“WordStr HEPA XX”.“↑↓”设定所需要的时间.“ENTER”保管此设置.“MODE”到“RUN”位置或按“←→”选择其他的参数.注意:设置提示时间完毕后,用下列步伐检查指按时间的剩余值.按“MODE”键到“CONFIG”,按“→”直到显示“NEW HEPA XX”.此数值是更换HEPA过滤器提示时间剩余的天数.例如:设置“WordStr HEPA 12”,则“NEW HEPA XXX”将显示为“NEW HEPA 365”.d. 密码设置为防止非专业人员更改设置,校准和系统配置等模式下的参数,用户可设置3位数值的密码.出厂时密码为000.按如下方式设置密码:“MODE”键到“CONFIG”位置.“←→”直到显示“ACC CODE XXX”信息.“↑↓”设置密码.“ENTER”键保管.“MODE”到“RUN”位置或按“←→”选择其他参数.e.设置高温报警极限(跟踪报警)℃℃.出厂时,高温报警极限被设定为1℃.按以下方法设置高温报警极限;“MODE”键到“CONFIG”位置.“←→”直到显示“”信息.“↑↓”设置高温报警极限值.“ENTER”键保管.“MODE”到“RUN”位置或按“←→”选择其他参数.机器具有远程报警的功能.“ON”暗示远程报警关闭,“OFF”暗示远程报警开启.出厂时,设定为“ON”(时间间隔为15分钟)“MODE”键到“CONFIG”位置.“←→”直到显示“TEMP RLY XX”信息.“↑↓”滚动显示“ON”或“ OFF”.4.按“ENTER”键保管.5.按“MODE”到“RUN”位置或按“←→”选择其他的参数.g.设置CO2浓度低报警极限(跟踪报警)CO2浓度低报警极限指co2浓度低于co2浓度设定值几多时,机器将会发生CO2浓度低报警.此参数的范围为0.5%-5.0%.出厂时,此值被设定为 1.0%.参数中的负号暗示低于设置浓度.按以下方式设置低CO2浓度报警极限:1.按MODE键到CONFIG位置.“←→”直到显示“CO2 LO –”信息.“↑↓”设定报警极限值.“ENTER”键保管.“MODE”到“RUN”位置或按“←→”选择其他参数.h.设置高CO2浓度报警极限(跟踪报警)高CO2浓度报警极限是指浓度高于设置浓度几多时,机器将会发生高CO2浓度报警.此极限值的设定范围为0.5%-5.0%.出厂时,此报警极限值为1.0%.按以下方式设置高CO2浓度报警极限:1.按MODE键到CONFIG位置.“←→”直到显示“”信息.“↑↓”设定报警极限值.“ENTER”键保管.“MODE”到“RUN”位置或按“←→”选择其他参数.i.CO2浓度远程报警.CO2浓渡过高或过低的远程报警功能,用户可自行设定.“ON”暗示报警功能关闭,“OFF”暗示报警功能开启.出厂时,此参数设定为“ON”.按以下方式改变设置:“MODE”键到“CONFIG”位置.“←→”直到显示“CO2 RLY XXX”.“↑↓”滚动显示“ON”或“ OFF”.“ENTER”键保管设置.“MODE”到“RUN”位置或按“←→”选择其他参数.j.设置新的T/C CO2传感器的零点值.装置新的T/C CO2传感器时,标注在传感器上的两个数值(ZERO和SPAN)必需输入到系统.注意:为了技术人员的方便,标有两个数字的标签被贴在传感器的电路板上.按以下方式把持:“MODE”键到“CONFIG”位置.2.按“←→”直到显示“T/C Z#XXXX”.3.按“↑↓”输入新的ZERO值.4.按“ENTER”键保管.5.按“←→”键到“T/C S#XXXX”.6.按“↑↓”输入新的SPAN值.7.按“ENTER”键保管.8.按“MODE”到“RUN”位置或按“←→”选择其他参数.具有湿度显示功能的CO2 培养箱还可设置湿度低报警极限.湿度报警低极限是设备呈现湿渡过低报警时的湿度值,工作范围为0%-90%.出厂时,此参数被设置为0%,因为此数值(即0%)不会引起任何报警.按以下步伐设置低湿度报警极限置:1.按“MODE”到“CONFIG”位置.2.按“←→”直到显示“RH LO XX”3.按“↑↓”设置低湿度报警极限值.4.按“ENTER”保管.5.按“MODE”到“RUN”位置或按“←→”选择其他的参数.l.湿度远程报警.低湿度报警信号可以设定关闭或翻开远程输出.“ON”暗示远程报警功能关闭,“OFF”则暗示翻开.按以下步伐改变此设置:1.按“MODE”到“CONFIG”位置.2.按“←→”直到显示“RH RLY XXX”.3.按“↑↓”滚动显示“ON”或“ OFF”.4.按“ENTER”保管此设置.5.按“MODE”到“RUN”位置或按“←→”选择其他的参数.带有湿度功能的培养箱上部的七段数码显示器可以被设置为显示温度,湿度或温度和湿度滚动显示.若培养箱无湿度功能,显示器将仅显示温度值.如果TEMP显示设置成“ON”,RH显示设置成“OFF”,机器将连续显示温度值.如TEMP显示设置成“OFF”,RH显示设置成“ON”,机器将连续显示湿度值.如果TEMP显示和RH显示都设置成ON,机器将交替显示温度值和湿度值.如果培养箱带有湿度功能,出厂时,此参数通常被设定为温度和湿度交替显示.按以下步伐改变此设置:1.按“MODE”到“CONFIG”位置.2.按“←→”直到显示“DISP TMP XXX ”或“DISPRH XXX”.3.按“↑↓”选择要显示的参数.4.按“ENTER”保管.5.按“MODE”到“RUN”位置或按“←→”选择其他参数.四、报警信息4.1 下图给出了370/380系列的CO2培养箱所有的报警信息.当发生报警时,报警信息会显示在面板上.按SILENCE键可以消除报警声音15分钟,但此把持不成以消除报警.培养箱的报警是瞬间报警,不具有记忆功能.当设备发生故障时,设备显示报警,故障排除后,设备将自动消除报警.注:当多种报警一起发生时,机器一次只能显示一种报警信息,5秒后自动更新.按“SILENCE”消除报警声.当设置温度为10℃时,“TEMP IS LOW”报警是无效的.当CO2浓度设置为0.0%时,CO2的所有报警都是无效的.4.2温度控制器毛病 TMP CNTR ERR370系列培养箱除上述的呵护功能以外,FORMA还设计一个自动控温装置来控制箱体内的温度.万一温度器不能控制温度,当温度达到160(±5%)左右时,此自动控温装置会立即关闭所有加热器.这是培养箱一个附加自我呵护功能,但它不能呵护传感器和箱体内的设备.当设备发生上述故障时,请与THERMO FORMA SERVICE DEPARTMENT或本地的分销商联系.4.3传感器毛病报警370系列的培养箱内的微处置器连续扫描检测所有的传感器,确定它们是否工作正常.一旦发现毛病,它将立即显示毛病信息.当设备发生上述故THERMO FORMA SERVICE DEPARTMENT(1-888-213-1790)或本地的分销商联系.五、高温消毒1.倒出水盘内的水,并将水盘倒放在培养箱内.取出放置在培养箱内部所有的样品,设备等物品.2.按下培养箱右上角的绿色按键约3秒种,直到绿灯亮.3.如果已设置密码,请输入密码.密码用来防止误把持.4.带有T/C CO2传感器培养箱的灭菌准备工作:设备会间隔显示“REMOVE HEPA”,“REMOVE WATER”A和“PRESS ENTER”.如果在一分钟内没有按“ENTER”键,设备会自动转为显示“SYSTEM OK”.5.带有IR CO2传感器培养箱的灭菌准备工作:设备会交替显示“POWER OFF”,“REMOVE IR”.如果电源在1分钟内没有关闭,设备将自动转为显示“SYSTEM OK ”.取下IR传感器,将它轻轻的放下.拆下传感器上信号线,将传感器放在一边.参照第九步对CO2传感器进行消毒.将信号线插空的传感器上,并将此传感器放在原来的位置上.去失落IR 传感器后,翻开电源,面板会交替显示“REMOVE HEPA”,“REMOVE WATER”和“PRESS ENTER”如果在一分钟内没有按下“ENTER”键,机器就会交替显示“POWER OFF”和“REPLANCE IR”.如果再次装上IR 传感器后,机器会显示“SYSTEM OK”.“ENTER”键后,机器开始加热.绿灯闪烁,机器交替显示“STERILIZING”和“HEAT PHASE”.在此过程中绿灯亮,温度升到灭菌温度140℃.℃时,灭菌过程开始,机器显示“STERILIZING”.8.年夜约2个小时后,机器报警5秒种,暗示灭菌过程已完成.降温阶段开始,机器交替显示“STERILIZING”和“COOL PHASE”9.高温灭菌循环完成(T/C CO2传感器)当箱体内的温度降到原设置温度或30 或则更高时,机器会交替显示“CYC COMPLETE”,“REPLANCE HEPAS”和“PRESS ENTER”.但绿灯亮不再闪烁.10. 高温灭菌循环完成(IR CO2传感器)当箱体内的温度降到原设置温度或30 或则更高时,机器会交替显示“CYC COMPLETE”,“POWER OFF”和“WordStr IR”..绿灯亮但不再闪烁.用乙丙醇或卫生洗涤剂对CO2传感器进行消毒.当用乙丙醇对CO2传感器进行消毒时,只需将乙丙醇喷洒到传感器上(不是浸透),并将其晾干.将传感器放置2分钟,用干净柔软的抹布察试干净.不能用清洗剂浸透或浸泡传感器.关闭电源,翻开箱体,拆下IR PLATE,取下信号线,并将其放在PLATE的夹子上.将信号线插在CO2传感器上,此信号线只能以一种方式拔出.装上IR CO2传感器后,翻开电源机器将交替显示“CYC COMPLETE ”,“REPLACNCE HEPA”和“PRESS ENTER”11.翻开箱体,装上HEPA过滤器,SAMPLE 过滤器和ACCESS PORT 过滤器.按“ENTER”确认 .“ENTER”键后,绿灯熄灭.机器回到“SYSTEM OK”状态.HEPA过滤器的限时时间复位.13.在水盘中加水年夜约3升.时间:二O二一年七月二十九日14.翻开电源,在所需的温度和CO2浓度下,让机器稳定至少12小时.15.建议在使用培养箱前最好校准一下CO2浓度和温度.时间:二O二一年七月二十九日。

thermo脱色摇床的工作原理

thermo脱色摇床的工作原理

thermo脱色摇床的工作原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!理解Thermo脱色摇床的工作原理Thermo脱色摇床,作为一种在实验室广泛应用的设备,主要用于生物、化学和医学实验中的样品处理,尤其是在蛋白质、核酸等生物大分子的提取、纯化和分析过程中。

THERMO_二氧化碳培养箱中文说明介绍模板之欧阳语创编

THERMO_二氧化碳培养箱中文说明介绍模板之欧阳语创编

THERMO FORMA370/371&380/381高温灭菌,气套CO2培养箱操作手册目录一.参数设置二.参数校准三.系统信息四.报警信息五.高温消毒一、参数设置a 设置温度Thermo Forma 370系列的co2培养箱工作温度范围为10℃–50℃,此温度受环境温度的影响。

出厂时,厂家将温度设定为10℃,在此设置下,所有的加热器都将关闭。

按以下步骤设置温度:1.按“MODE”到“SET”位置。

2.按“←→”直到显示“TEMP XX.X”信息3.按“↑↓”设置所需要的温度值。

4.按“ENTER”保存设定值。

5.按“MODE”到“RUN”位置或按“←→”选择其他的参数。

b.设置过温温度370系列的co2培养箱具有了第二级温度监控系统来监测箱体内的温度。

这是机器的一个自我保护功能。

一旦温度不能控制,机器将关闭所有的加热器。

箱体内的报警温度是过温温度的±1℃。

厂家设定过温温度是40℃,但是过温温度最高可设定为55℃。

若设置温度高于过温温度,机器将给过温温度自动增加1℃。

一般过温温度应高于设置温度1℃。

按以下步骤设置过温温度:1.按“MODE”到“SET”位置。

2.按“←→”直到显示“O TEMP XX.X”信息。

3.按“↑↓”设置所需要的过温温度值。

4.按“ENTER”保存设定值。

5.按“MODE”到“RUN”位置或按“←→”选择其他的参数。

c.设置CO2浓度带有T/CCO2传感器的培养箱,出厂时厂家已校准,校准时的环境是温度:37℃,高湿度,CO2:10%在腔体为37,高湿度,10%的CO2浓度下被校准过。

因此如果设置温度为37,湿度盘内放满了水,需要的CO2浓度不超过10%,CO2的浓度可以立即设定。

否则,培养箱就的稳定12小时后才可设定CO2浓度值。

所有培养箱的CO2浓度范围是0.0%-20%。

出厂时厂家设定的CO2浓度为0.0%。

在此浓度下,CO2控制和报警系统都将关闭。

thermo液质联用仪使用手册

thermo液质联用仪使用手册
用户可以在正负两种离子扫描模式下使用 ESI 源。离子的扫描模式取决于溶液中预形成离子的极 性:酸性分子在高 pH 值溶液中形成负离子,碱性分子在低 pH 值溶液中形成正离子。正电压的 ESI 探针用来产生正离子,负电压的 ESI 探针用来产生负离子。
LC 流动相流入质谱仪的流速可以从 1 µL/min (使用纳升喷雾离子源)到 1000 µL/min (使用标准 ESI 源)。请参考表 1-1。(在 ESI 中,缓冲溶液类型和缓冲溶液强度对灵敏度都有非常显著的影响。因此, 正确地选择缓冲溶液非常重要)。
用户可以使用注射器将样品引入质谱六通转化阀上的定量环中。然后使用转换阀将样品引入流动相中, 一起流入质谱仪。这种技术在 ESI 和 APCI 模式下将纯分析物集中快速引入质谱仪中。以注射器将样品引 入转化阀上的定量环中,这种进样方法在纯品数量非常少量的情况下是非常有用的。
用户也可使用自动进样器向 LC 流动相中引入样品。该方法也用于在 ESI 或 APCI 模式下将纯的被测物溶 液快速集中地引入质谱仪中。
3
第一章 简 介
TSQ Quantum 是一种高性能三级四极杆质谱仪,包括一台注射泵、一个六通阀、一个大气压电离 (API)源和 Xcalibur®数据系统。在一个典型的分析实验中,可以采取下面任意一种进样方法: • 使用注射泵,不经过六通阀或者LC系统(直接进样)。注射泵可以直接连接至离子源,为样品溶
A-2
使用化学干粉制备聚酪氨酸–1, 3, 6 调谐校准溶液...................................................... A-3
A.2 利血平溶液 ............................................................................................................................... A-4 利血平储备溶液 ............................................................................................................. A-4 利血平试样溶液 ............................................................................................................. A-4

Thermo大气站空气分析仪日常操作步骤

Thermo大气站空气分析仪日常操作步骤

空气站空气分析仪校准操作步骤注意:在分析仪器开机正常工作24小时之后才能对分析仪器进行校准。

校准前注意打开标气气阀。

图片显示数值不一定与实际相符,请按照工程师设定好的数值操作!校准操作步骤:一,43i (SO2) 零校准1,146i图1-12,确认146i面板上的OPER键位置,按OPER键进入如下界面。

图1-23,在146i面板利用和键移动光标到第一项OFF,利用和选择SO2显示于界面上如下图所示,利用和键移动光标到第二项OFF,利用和键选择ZERO。

按键确认保存设定值,进行零校准。

4,保存完毕后图1-3界面上的两个?会消失,在146i面板按运行键进入零校准界面,如下图所示。

图1-45,观察43i (SO2)分析仪运行界面如下图所示。

图中X.XX表示SO2的浓度值,在零校准时应该正常显示在图1-56,如果43i(SO2)分析仪在零校准时显示SO2的浓度值偏差比较大,那么按下面操作进行调零操作。

1)确认43i (SO2)分析仪面板上的菜单键位置,按菜单键进入如下界面。

图1-62)按43i(SO2)分析仪面板上的和键移动光标到CALIBRATIONFACTORS选项,并按键进入如下界面。

图1-73)按43i (SO2)分析仪面板上的和键移动光标到SO2BKG选项并按键进入如下界面。

DIAGS图1-84)按43i (SO2)分析仪面板上的和键增加或减少SET BKG TO的值(上图所示的1.52)使得SO2的浓度的值显示为0.00 PPB左右。

并按键确认保存设定值。

按按运行键进入43i (SO2)分析仪运行界面。

如图1-5所示,但X.XX显示的值是0.00左右。

5)在146i面板按OPER键进入下图界面。

利用和键移动光标到第二项ZERO,利用和键选择OFF,利用和键移动光标到第一项SO2,利用和选择OFF显示于界面上如图1-2所示。

按键确认保存设定值,退出SO2零校准模式。

按运行键放回146i运行界面。

Thermo酶标仪软件操作步骤

Thermo酶标仪软件操作步骤

酶标仪软件操作步骤一. 软件运行前的连接酶标仪插上电源,和电脑连接好后,打开电脑和酶标仪开关,酶标仪至少稳定15min后开始读数,效果比较好。

注意,当酶标仪处于power on 的状态时,不要手动打开酶标板室和比色皿室的门,以免紫外辐射的伤害或者仪器的损伤。

二.软件的运行1.打开桌面快捷方式SkanIt RE for MSS2.4.2运行软件,出现Log on To SkanIt software的界面。

e name默认为“admin”, password为空3.点OK进入SkanIt software 2.4.2界面,New session-新建任务程序,Open session-打开已有程序。

4.在界面上方的setting中选择Instrument,出现Instrumentsetting的界面,在Instrument中选中Multiskan spectrum on COM Ⅰ,Themo Electron。

点击右侧的setup,在serial number中输入1500-850,然后点击OK。

再点击Default instrument右边的connect,即可设定好连接。

然后点击close关闭窗口。

三.New session操作1.新建任务程序:→点击new session进入protocol options界面,在session name中输入新的程序名称→点击next进入plate layout options界面,在select platetemplate中选择所需模板类型(一般96孔板选择use default,比色皿选择cuvette,其他的可以选择相应的类型)→输入plate layout name(系统默认的与session name相同)→点击next进入Definition done界面,在select location中选择任务程序所要保存的目的文件夹(该界面可进行新建,重命名及删除文件夹操作)→点击finish完成新建,进入SkanIt software 2.4.2程序操作主界面(主要有三大块: platelayout用于模板区域选择,protocol 用于程序编辑,results用于数据处理)。

THERMO_二氧化碳培养箱中文说明书

THERMO_二氧化碳培养箱中文说明书

THERMO FORMA 之老阳三干创作370/371&380/381高温灭菌,气套CO2培养箱操纵手册目录一.参数设置二.参数校准三.系统信息四.报警信息五.高温消毒一、参数设置a 设置温度Thermo Forma 370系列的co2培养箱工作温度范围为10℃–50℃,此温度受环境温度的影响。

出厂时,厂家将温度设定为10℃,在此设置下,所有的加热器都将关闭。

按以下步调设置温度:1.按“MODE”到“SET”位置。

2.按“←→”直到显示“”信息3.按“↑↓”设置所需要的温度值。

4.按“ENTER”保管设定值。

5.按“MODE”到“RUN”位置或按“←→”选择其他的参数。

370系列的co2培养箱具有了第二级温度监控系统来监测箱体内的温度。

这是机器的一个自我呵护功能。

一旦温度不克不及控制,机器将关闭所有的加热器。

箱体内的报警温度是过温温度的±1℃。

厂家设定过温温度是40℃,但是过温温度最高可设定为55℃。

若设置温度高于过温温度,机器将给过温温度自动增加1℃。

一般过温温度应高于设置温度1℃。

按以下步调设置过温温度:1.按“MODE”到“SET”位置。

2.按“←→”直到显示“”信息。

3.按“↑↓”设置所需要的过温温度值。

4.按“ENTER”保管设定值。

5.按“MODE”到“RUN”位置或按“←→”选择其他的参数。

带有T/CCO2传感器的培养箱,出厂时厂家已校准,校准时的环境是温度:37℃,高湿度,CO2:10%在腔体为37,高湿度,10%的CO2浓度下被校准过。

因此如果设置温度为37,湿度盘内放满了水,需要的CO2浓度不超出10%,CO2的浓度可以立即设定。

否则,培养箱就的稳定12小时后才可设定CO2浓度值。

所有培养箱的CO2浓度范围是0.0%-20%。

出厂时厂家设定的CO2浓度为0.0%。

在此浓度下,CO2控制和报警系统都将关闭。

按以下步调设置CO2浓度值;1.按“MODE”到“SET”位置。

Thermo King 电子控制器指南说明书

Thermo King 电子控制器指南说明书
Sobrecalentamiento del módulo de control. Si el problema persiste cuando se reinicia la unidad, póngase en contacto con su concesionario de servicio.
Fallo de software. Póngase en contacto con su concesionario de servicio.
Error de lectura de la temperatura del aire de retorno del compartimento de carga remoto (circuito abierto o con un cortocircuito). Póngase en contacto con su concesionario de servicio.
3. También puede solicitar una copia impresa de todos estos documentos al representante de su concesionario de Thermo King.
Controlador en cabina de las unidades de transmisión directa
Borrado de las alarmas
En primer lugar, debe corregirse la condición de alarma en la unidad. Tras borrar la condición de alarma, pulse y suelte la tecla SELECCIÓN para eliminar los códigos de ALARMA existentes. Aparecerá la pantalla estándar una vez que se hayan borrado los códigos de ALARMA.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档