2009年天津市中学考试数学考试卷及问题详解.

合集下载

2009年天津高考文科数学(含答案)

2009年天津高考文科数学(含答案)

2009年普通高等学校招生全国统一考试(天津卷)数 学(文史类) 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1至2页。

第II 卷3至4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名,座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第I3.答第II4. 一.1.i A.12i + 2.设变量23x y ⎪-≤⎩A. 6B. 7C.8D.23 3.设,x R ∈则"1"x =是3""x x =的A.充分而不必要条件B. 必要而不充分条件C. 充要条件D.既不充分也不必要条件4.设双曲线()22220x y a b a b-=>>的虚轴长为2,焦距为A.y =B.2y x =± C.2y x =±D. 12y x =± 5.设0.3113211log 2,log ,32a b c ⎛⎫=== ⎪⎝⎭,则A. a b c <<B.a c b <<C.b c <6.A. 14 C.307.已知函()f x =的A.2πC. 4π 8.设函数f A.()()3,13,-+∞ ()2,+∞ C.()()1,13,-+∞ )()31,39.设,x y 23,则1x A.2 B.2 C. 1 D.210.设函数()f x 在R 上的导函数为()'f x ,且()()22'f x xf x x +>,下面的不等式在R 上恒成立的是A.()0f x > B.()0f x < C. ()f x x > D.()f x x <第II 卷二.填空题:本大题共6小题,每小题4分,共24分,把答案填在答题卡的相应位置。

2009年高考天津数学(理科)试题及参考答案

2009年高考天津数学(理科)试题及参考答案

2009年普通高等学校招生全国统一考试(天津卷)数学(理工农医类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)i 是虚数单位,52i i-= (A )1+2i (B )-1-2i (C )1-2i (D )-1+2i 【考点定位】本小考查复数的运算,基础题。

解析:i i i i i 215)2(525+-=+=-,故选择D 。

(2)设变量x ,y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩.则目标函数23z x y =+的最小值为(A )6 (在点B )1,2(,所以734min =+=z ,故选择B 。

(3)命题“存在0x ∈R ,02x ≤0”的否定是(A )不存在0x ∈R, 02x >0 (B )存在0x ∈R, 02x ≥0(C )对任意的x ∈R, 2x≤0 (D )对任意的x ∈R, 2x>0 【考点定位】本小考查四种命题的改写,基础题。

解析:由题否定即“不存在R x ∈0,使020≤x ”,故选择D 。

(4)设函数1()ln (0),3f x x x x =->则()y f x =A. 在区间1(,1),(1,)e e 内均有零点。

B. 在区间1(,1),(1,)e e 内均无零点。

C. 在区间1(,1)e 内有零点,在区间(1,)e 内无零点。

D. 在区间1(,1)e内无零点,在区间(1,)e 内有零点。

【考点定位】本小考查导数的应用,基础题。

解析:由题得xx x x f 33131)`(-=-=,令0)`(>x f 得3>x ;令0)`(<x f 得30<<x ;0)`(=x f 得3=x ,故知函数)(x f 在区间)3,0(上为减函数,在区间),3(+∞为增函数,在点3=x 处有极小值03ln 1<-;又()0131)1(,013,31)1(>+=<-==ee f e e f f ,故选择D 。

2009年天津市普通高中学业水平考试卷

2009年天津市普通高中学业水平考试卷

2009年天津市普通高中学业水平考试(数学)第I 卷参考公式:·主体体积公式 sh柱体=V ,其中S 表示柱体的底面积,h 表示柱高. ·椎体体积公式 sh 31V =椎体 其中S 表示锥体的底面积,h 表示椎体的高. ·球的体积公式 3R 34V π=球,其中R 表示球的半径 一.选择题:本题共20题,共45分。

其中(1)~(15)题每小题2分;第(16)~(20)题每小题3分,在每小题的四个选项中,只有一个是符合题目要求的. (2009)(1)已知集合A={2,4,6,8,10},B={1,2,3,4,5},则A ∩B=( B )(A) ∅ (B) {2, 4}(C) {1, 3, 5} (D) {1, 2, 3, 4, 5, 6, 8, 10} (2009)(2) cos6π的值等于 ( D )(A )12 (B) (C) (D) (2009)(3) 函数y=cos4x, x ∈R 的最小正周期是( B ) (A )4π (B) 2π(C) π (D)2 π (2009)(4)设向量a =(-1, 3),b =(4, 2),则a +b 的坐标是( A )(A )(3, 5) (B) (3, 1) (C) (-5, 1) (D) (-5, -1)(2009)(5)设向量a ,b 满足|a |=3,|b |=4,且a 与b 的夹角为60°,则a ·b 等于( C )(A ) - (B) -6 (C) 6 (D)(2009)(6) 设球的半径cm ,则此球的体积为 ( C )(A ) 36π cm 3 (B) 12π cm 3 cm 3 (D) 4π cm 3(2009)(7) 椭圆22x 12516y += 的离心率等于( A ) (A )35 (B) 34 (C) 45 (D) 53(2009)(8) 双曲线22x 1916y -=的渐近线方程为 ( C ) (A )916y x =±(B) 34y x =± (C) 43y x =± (D) 169y x =±(2009)(9) 设等比数列{a n }中,a 1=2,公比q=12,则a 4的值为( B )(A ) 18 (B) 14(C) 8 (D) 16(2009)(10)计算 i (2+i) 等于( D )(A )2i (B) -1 (C) 1+2i (D) -1+2i(2009)(11) 如图是一个几何体的三视图,则这个几何体为 ( D ) (A )球 (B) 圆锥 (C) 圆台 (D) 圆柱(2009)(12) 要得到函数sin(2)3y x π=+,x ∈R 的图像,只需将函数sin 2y x =,x ∈R的图像上所有的点( B )(A ) 向右平行移动6π个单位长度 (B) 向左平行移动6π个单位长度 (C) 向右平行移动3π个单位长度 (D) 向左平行移动3π个单位长度(2009)(13)如图所示的算法的程序框图中,若输入的x 值为-2,则输出的 结果为( A ) (A ) 0 (B) 1 (C) 2 (D) -2俯视图(2009)(14) 已知直线l 的倾斜角为34π,且经过点A( -2,1),则直线l 的方程为( C ) (A ) x-y-1=0 (B) x+y-1=0 (C) x+y+1=0 (D) x-y+1=0 (2009)(15)函数f(x)=x 3在其定义域上( B )(A )是增函数,也是偶函数 (B) 是增函数,也是奇函数 (C) 是减函数,也是偶函数 (D) 是减函数,也是奇函数(2009)(16)设变量x,y 满足约束条件021y x x y -≤⎧⎪≤⎨⎪≥-⎩,则目标函数z=2x +y 的最大值是( A )(A )6 (B) 3 (C) -3 (D) -6 (2009)(17) 有2本不同的语文书,3本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是( C )(A )35 (B) 23 (C) 310 (D) 110(2009)(18)如图,在正方形ABCD -A 1B 1C 1D 1中,下列线段所在的直线与BC 1所在的直线垂直的是( D )(A )A 1D 1 (B) A 1A (C)A 1B (D) A 1B 1(2009)(19) 设a,b,c 是空间三条不同的直线,,,αβγ是三个不同的平面,下列命题:①若,//,a a b b αα⊥⊥则 ; ②若,,//αγβγαβ⊥⊥则; ③若,,//a b a b γγ⊥⊥则 ; ④若,//,αγβγαβ⊥⊥则。

2009年高考天津数学(理科)试题及参考答案

2009年高考天津数学(理科)试题及参考答案

世代:昆虫一个新个体(不论是卵或是幼虫)从离开母体发育到性成熟产生后代止的个体发育史称为一个世代。

世代重叠:多化性的昆虫常由于成虫产卵期长,或越冬虫态出蛰期不集中,而造成前一世代与后一世代的同一虫态同时出现的现象。

世代交替:进行有性生殖的生物生活史中,有性世代与无性世代更迭出现的生殖方式。

食物网:指在生态系统中生物间错综复杂的网状食物关系。

生态系统:是指在一定空间内,生物群落与非生物环境之间通过物质循环,能量流动和信息联系等过程。

结合而成的生态单元,即生物群落与其环境条件所形成的统一整体。

农业生态系统:在一定农业地域,人类根据生态系统原理,利用生物技术和生态机能,进行农业生产的综合体系,是一种人工生态系统。

胎动:在胚胎发育过程中,胚在卵中发生改变位置的运动。

生物群落:同一地域生活彼此关联,相互影响的各种昆虫种群的有机集合体。

临界光周期:引起昆虫种群中50%的个体进入滞育的光周期。

临界光照虫态:对光周期敏感的虫态。

一般为滞育虫态是前一虫态。

过冷却现象:昆虫体液下降到0℃仍不结冰的现象。

过冷却点:昆虫体液开始结冰时的体温。

过冷却点:昆虫体液大量结冰时的体温。

雌雄二型:指同种昆虫的雌雄两性个体间,除生殖器官不同外,在个体大小、体型、构造和体色等方面存在差异的现象。

多型现象:同种昆虫同一性别的个体间身体大小、体色、结构等方面存在明显差异的现象。

种群:在同一地域生活、相互影响的同种昆虫个体组成的群体。

昆虫群落:指在同一地域生活的彼此关联、相互影响的各种生物种群的有机集合体。

神经髓:在神经节内,细胞体位于神经节外缘、神经鞘内侧、而轴突侧支树突端丛则位于神经节的中央,称为神经髓。

非条件反射:当一个感觉器官接受一个适宜的刺激后,能立即引起中枢神经系统特定部位的兴奋传导,从而引起反应器官产生固定的反应。

食物链:物种间通过取食与被取食关系单向联结起来的链锁结构。

生活年史:一种昆虫在一年内的发育史,称为生活年史。

食物网是自然界中多条食物链交错联系在一起形成错综复杂的网状结构。

2009年天津中考数学试题及答案

2009年天津中考数学试题及答案

2009年天津市初中毕业生学业考试试卷第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2sin30°的值等于()A.1B .2C .3D.22.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()A.2个B.3个C.4个D.5个3.若x y,为实数,且220x y++-=,则2009xy⎛⎫⎪⎝⎭的值为()A.1 B.1-C.2 D.2-4.边长为a的正六边形的内切圆的半径为()A.2a B.a C.32a D.12a5.右上图是一根钢管的直观图,则它的三视图为()A.B.C.D.6.为参加2009年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m)为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是()A.8.5,8.5B.8.5,9C.8.5,8.75D.8.64,97.在ABC△和DEF△中,22AB DE AC DF A D==∠=∠,,,如果ABC△的周长是16,面积是12,那么DEF△的周长、面积依次为()A.8,3B.8,6C.4,3D.4,68.在平面直角坐标系中,已知线段AB的两个端点分别是()()41A B--,,1,1,将线段AB平移后得到线段A B'',若点A'的坐标为()22-,,则点B'的坐标为()A.()43,B.()34,C.()12--,D.()21--,9.如图,ABC△内接于O⊙,若28OAB∠=°,则C∠的大小为()E H I N A第(9)题CA BOA . 28°B .56°C .60°D .62°10.在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A .22y x x =--+ B .22y x x =-+- C .22y x x =-++ D .22y x x =++2009年天津市初中毕业生学业考试试卷第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上. 11.化简:188-= .12.若分式22221x x x x --++的值为0,则x 的值等于 .13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形ABCD 的中点四边形是一个矩形,则四边形ABCD 可以是 . 14.已知一次函数的图象过点()35,与()49--,,则该函数的图象与y 轴交点的坐标为__________ _.15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x 本,付款金额为y 元,请填写下表:x (本) 2 7 10 22 y (元)1616.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.17.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.18.如图,有一个边长为5的正方形纸片ABCD ,要将其剪拼成边长分别为a b ,的两个小正方形,使得2225a b +=.①a b ,的值可以是________(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性:第(17)题 510 15 2010 12 14 15 黄瓜根数/株 株数 第(16)题 第(18)题 D C B A__________________________________________ _________________________________________ _________________________________________三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题6分)解不等式组5125431x x x x ->+⎧⎨-<+⎩,.20.(本小题8分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么?(Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当OAB △的面积为4时,求点A 的坐标及反比例函数的解析式.21.(本小题8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (Ⅱ)求摸出的两个球号码之和等于5的概率. 22.(本小题8分)如图,已知AB 为O ⊙的直径,PA PC ,是O ⊙的切线,A C ,为切点,30BAC ∠=° (Ⅰ)求P ∠的大小;xy O(Ⅱ)若2AB =,求PA 的长(结果保留根号).23.(本小题8分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.24.(本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.如图①,要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x ,则每个竖彩条的宽为3x .为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD .结合以上分析完成填空:如图②,用含x 的代数式表示: AB =____________________________cm ;P C AOC BA 20cm 20cm 30cm D C AB 图②图① 30cmAD =____________________________cm ;矩形ABCD 的面积为_____________cm 2;列出方程并完成本题解答. 25.(本小题10分)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.26.(本小题10分)已知函数212y x y x bx c αβ==++,,,为方程120y y -=的两个根,点()1M T ,在xyB O Axy BO AxyB O A函数2y 的图象上. (Ⅰ)若1132αβ==,,求函数2y 的解析式; (Ⅱ)在(Ⅰ)的条件下,若函数1y 与2y 的图象的两个交点为A B ,,当ABM △的面积为112时,求t 的值; (Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,三者之间的大小关系,并说明理由.2009参考答案及评分标准评分说明:1.各题均按参考答案及评分标准评分.2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.一、选择题:本大题共10小题,每小题3分,共30分.1.A 2.B 3.B 4.C 5.D 6.A 7.A 8.B 9.D 10.C 二、填空题:本大题共8小题,每小题3分,共24分.11.212.213.正方形(对角线互相垂直的四边形均可) 14.()01-,15.56,80,156.816.60;1317.21 18.①3,4(提示:答案不惟一);②裁剪线及拼接方法如图所示:图中的点E 可以是以BC 为直径的半圆上的任意一点(点B C ,除外).BE CE ,的长分别为两个小正方形的边长. 三、解答题:本大题共8小题,共66分 19.本小题满分6分解:5125431x x x x ->+⎧⎨-<+⎩,①②由①得2x >, ······························································································· 2分由②得,52x >-···························································································· 4分 ∴原不等式组的解集为2x > ··········································································· 6分20.本小题满分8分. 解:(Ⅰ)这个反比例函数图象的另一支在第三象限. ············································· 1分 因为这个反比例函数的图象分布在第一、第三象限, 所以50m ->,解得5m >. ············································································ 3分(Ⅱ)如图,由第一象限内的点A 在正比例函数2y x =的图象上,设点A 的坐标为()()00020x x x >,,则点B 的坐标为()00x ,,0014242OAB S x x =∴=△,·,解得02x =(负值舍去).∴点A 的坐标为()24,. ···················································································· 6分 DCB A E 2 31 2 3xyO BA y=2x又点A 在反比例函数5m y x-=的图象上, 542m -∴=,即58m -=. ∴反比例函数的解析式为8y x=. ········································································ 8分 21.本小题满分8分.解(Ⅰ)法一:根据题意,可以画出如下的树形图:从树形图可以看出,摸出两球出现的所有可能结果共有6种; 法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种. ··································· 4分 (Ⅱ)设两个球号码之和等于5为事件A .摸出的两个球号码之和等于5的结果有2种,它们是:()()2332,,,.()2163P A ∴==. ··························································································· 8分 22.本小题满分8分.解(Ⅰ)PA 是O ⊙的切线,AB 为O ⊙的直径, PA AB ∴⊥.90BAP ∴∠=°.30BAC ∠=°,9060CAP BAC ∴∠=-∠=°°. ································································ 2分 又PA 、PC 切O ⊙于点A C ,. PA PC ∴=. PAC ∴△为等边三角形.60P ∴∠=°. ································································································· 5分(Ⅱ)如图,连接BC , 则90ACB ∠=°.在Rt ACB △中,230AB BAC =∠=,°,AC AB ∴=·cos 2BAC ∠=cos 303°=. PAC △为等边三角形, PA AC ∴=.1 2 32 13 3 1 2 第一个球 第二个球 P C B A O第二个球 第一个球 (1,3) (2,3) (1,2) (3,2)(3,1) (2,1) 3 2 1 1 2 33PA ∴=. ·································································································· 8分23.本小题满分8分解:如图,过C 点作CD 垂直于AB 交BA 的延长线于点D . ··································· 1分 在Rt CDA △中,3018018012060AC CAD CAB =∠=-∠=︒-︒=︒,°. ················ 2分CD AC ∴=·sin 30CAD ∠=·sin 60153=°. AD AC =·cos 30CAD ∠=·cos 60°=15. 又在Rt CDB △中,22270BC BD BC CD ==,-, ()227015365BD ∴=-=. ········································································ 7分651550AB BD AD ∴=-=-=,答:A B ,两个凉亭之间的距离为50m. ······························································· 8分24.本小题满分8分.解(Ⅰ)220630424260600x x x x ---+,,; ···················································· 3分(Ⅱ)根据题意,得2124260*********x x ⎛⎫-+=-⨯⨯ ⎪⎝⎭. ···································· 5分 整理,得2665500x x -+=.解方程,得125106x x ==,(不合题意,舍去).则552332x x ==,.答:每个横、竖彩条的宽度分别为53cm ,52cm. ···················································· 8分 25.本小题满分10分.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ··················································································· 4分xy B O ADC 图①x y BOB ′ DC 图②xy B O B ′DC图③CBAD(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···························································································· 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. ····································································· 7分 (Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OC OA OB''=,得2OC OB ''=. ·································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228x x =-+, 解得0008450845x x x =-±>∴=-+.,.∴点C 的坐标为()08516-,. ··································································· 10分26.本小题满分10分. 解(Ⅰ)212120y x y x bx c y y ==++-=,,,()210x b x c ∴+-+=. ·············································································· 1分 将1132αβ==,分别代入()210x b x c +-+=,得 ()()22111110103322b c b c ⎛⎫⎛⎫+-⨯+=+-⨯+= ⎪ ⎪⎝⎭⎝⎭,,解得1166b c ==,. ∴函数2y 的解析式为2y 25166x x =-+. ······················································ 3分 (Ⅱ)由已知,得26AB =,设ABM △的高为h , 312121212ABM S AB h h ∴===△·,即12144h =. 根据题意,2t T h -=, 由21166T t t =++,得251166144t t -+-=. 当251166144t t -+=-时,解得12512t t ==; 当251166144t t -+=时,解得3452521212t t -+==,. t ∴的值为55252121212-+,,. ···································································· 6分 (Ⅲ)由已知,得222b c b c T t bt c αααβββ=++=++=++,,.()()T t t b ααα∴-=-++,()()T t t b βββ-=-++,()()22b c b c αβααββ-=++-++,化简得()()10b αβαβ-++-=.01αβ<<<,得0αβ-≠, 10b αβ∴++-=.有1010b b αββα+=->+=->,.又01t <<,0t b α∴++>,0t b β++>,∴当0t a <≤时,T αβ≤≤;当t αβ<≤时,T αβ<≤;当1t β<<时,T αβ<<. ············································································ 10分。

2009年全国高考文科数学试题及答案-天津卷

2009年全国高考文科数学试题及答案-天津卷

2009年普通高等学校招生全国统一考试(天津卷)数学(文史类)参考公式:。

如果事件A ,B 互相排斥,那么P (AUB )=P (A )+P(B)。

棱柱的体积公式V=sh 。

其中S 表示棱柱的底面积,h 表示棱柱的高 1、i 是虚数单位,ii-25= A i 21+ B i 21-- C i 21- D i 21+-【答案】D 【解析】由已知,12)2)(2()2(525-=+-+=-i i i i i i i 【考点定位】本试题考查了复数的基本的除法运算。

2、设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x ,则目标函数y x z +=2的最小值为A 6B 7C 8D 23【答案】B【解析】由已知,先作出线性规划区域为一个三角形区域,得到三个交点(2,1)(1,2)(4,5),那么作一系列平行于直线032=+y x 的平行直线,当过其中点(2,1)时,目标函数最小。

【考点定位】本试题考查了线性规划的最优解的运用以及作图能力。

3、设””是“则“x x x R x ==∈31,的 A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 【答案】A【解析】 因为1,1,0,3-==x x x 解得,显然条件的集合小,结论表示的集合大,由集合的包含关系,我们不难得到结论。

【考点定位】本试题考察了充分条件的判定以及一元高次方程的求解问题。

考查逻辑推理能力。

4、设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为( )A x y 2±=B x y 2±=C x y 22±= D x y 21±=【答案】C【解析】由已知得到2,3,122=-===b c a c b ,因为双曲线的焦点在x 轴上,故渐近线方程为x x a b y 22±=±= 【考点定位】本试题主要考查了双曲线的几何性质和运用。

2009年全国高考天津数学试题(文数)

2009年全国高考天津数学试题(文数)

2009 天津数学2009年普通高等学校招生全国统一考试(天津卷)数学(文史类)参考公式:。

如果事件A ,B 互相排斥,那么P (AUB )=P (A )+P(B)。

棱柱的体积公式V=sh 。

其中S 表示棱柱的底面积,h 表示棱柱的高1.i 是虚数单位,ii-25= A i 21+ B i 21-- C i 21- D i21+-【答案】D【解析】由已知,12)2)(2()2(525-=+-+=-i i i i i i i【考点定位】本试题考查了复数的基本的除法运算。

2.设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x ,则目标函数y x z +=2的最小值为A 6B 7C 8D 23【答案】B【解析】由已知,先作出线性规划区域为一个三角形区域,得到三个交点(2,1)(1,2)(4,5),那么作一系列平行于直线032=+y x 的平行直线,当过其中点(2,1)时,目标函数最小。

【考点定位】本试题考查了线性规划的最优解的运用以及作图能力。

3.设””是“则“x x x R x ==∈31,的A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件【答案】A【解析】 因为1,1,0,3-==x x x 解得,显然条件的集合小,结论表示的集合大,由集合的包含关系,我们不难得到结论。

【考点定位】本试题考察了充分条件的判定以及一元高次方程的求解问题。

考查逻辑推理能力。

4.设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为( )A x y 2±=B x y 2±=C x y 22±= D xy 21±=【答案】C【解析】由已知得到2,3,122=-===b c a c b ,因为双曲线的焦点在x 轴上,故渐近线方程为x x a b y 22±=±=【考点定位】本试题主要考查了双曲线的几何性质和运用。

2009年天津市河西区初中毕业生学业九年级数学

2009年天津市河西区初中毕业生学业九年级数学

2009年某某市河西区初中毕业生学业九年级数学考试模拟试卷(一)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分。

试卷满分120分,考试时间100分钟。

第I 卷(选择题 共30分)一、选择题:本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 在Rt △ABC 中,∠C=90°,21A sin =,则A cos 的值为( )A.33 B.23 C. 22 D. 212. 中国2010年某某世博会正在引起世界的关注和期待,在下面的四个往届世博会会徽的设计图案中,可以看作是中心对称图形的是( )3. 下列不等关系表示正确的是( )A. 750>B.450>C.6667.032>D. 3.2|3.2|>- 4. 将抛物线2x 21y =向右平移一个单位,所得的抛物线的解析式为( )A. 1x 21y 2+=B. 1x 21y 2-=C. 2)1x (21y +=D. 2)1x (21y -=5. 在一个口袋中有3个完全相同的小球,把它们分别标号为1、2、3,随机地摸取一个小球然后放回,再随机地摸出一个小球,那么两次取出的小球的标号之和是偶数的概率为( )A.92 B.94 C.95 D.97 6. 把下列图形折叠起来,所形成的立体图形是圆锥的是( )7. 如图所示,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A. 当AC=BD 时,它是矩形 B. 当AC ⊥BD 时,它是菱形 C. 当AD=DC 时,它是菱形D. 当∠ABC=90°时,它是正方形DB C8. 如图所示,在半径为r 的圆内作一个内接正三角形,然后作这个正三角形的一个内切圆,又在这个内切圆中作内接正三角形,依次再作内切圆,那么图中最小的圆的半径是( )A.r 41B.r 42 C.r 21 D.r 229. 如图所示是由若干个全等的等腰梯形拼成的四边形,四边形的周长与梯形的个数如表中所列,观察图形并思考当这个等腰梯形共有45个时,所拼成的图形的周长为( )aA a2a梯形个数 1 2 3 … 图形周长 5a 8a 11a …A. 137aB. 136aC. 135aD. 134a10. 在直角坐标系中,已知点A (-3,0),B (0,-4),C (0,1),过点C 作直线l 交x 轴于点D ,使得以D 、C 、O 为顶点的三角形与△AOB 相似,这样的直线共可以作出( )A. 4条B. 3条C. 2条D. 1条第II 卷(非选择题 共90分)二、填空题:本大题共8小题,每小题3分,共24分。

2009年高考天津数学(理科)试题及参考答案

2009年高考天津数学(理科)试题及参考答案

2009年普通高等学校招生全国统一考试(天津卷)数学(理工农医类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)i 是虚数单位,52i i-= (A )1+2i (B )-1-2i (C )1-2i (D )-1+2i 【考点定位】本小考查复数的运算,基础题。

解析:i i i i i 215)2(525+-=+=-,故选择D 。

(2)设变量x ,y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩.则目标函数23z x y =+的最小值为(A )6 (在点B )1,2(,所以734min =+=z ,故选择B 。

(3)命题“存在0x ∈R ,02x ≤0”的否定是(A )不存在0x ∈R, 02x >0 (B )存在0x ∈R, 02x ≥0(C )对任意的x ∈R, 2x≤0 (D )对任意的x ∈R, 2x>0 【考点定位】本小考查四种命题的改写,基础题。

解析:由题否定即“不存在R x ∈0,使020≤x ”,故选择D 。

(4)设函数1()ln (0),3f x x x x =->则()y f x =A. 在区间1(,1),(1,)e e 内均有零点。

B. 在区间1(,1),(1,)e e 内均无零点。

C. 在区间1(,1)e 内有零点,在区间(1,)e 内无零点。

D. 在区间1(,1)e内无零点,在区间(1,)e 内有零点。

【考点定位】本小考查导数的应用,基础题。

解析:由题得xx x x f 33131)`(-=-=,令0)`(>x f 得3>x ;令0)`(<x f 得30<<x ;0)`(=x f 得3=x ,故知函数)(x f 在区间)3,0(上为减函数,在区间),3(+∞为增函数,在点3=x 处有极小值03ln 1<-;又()0131)1(,013,31)1(>+=<-==ee f e e f f ,故选择D 。

2009年高考(天津卷)数学试卷

2009年高考(天津卷)数学试卷

【模拟试题】本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷本卷共10小题,每小题5分,共50分。

参考公式:· 如果事件A ,B 互斥,那么 ·棱柱的体积公式V=Sh. )B (P )A (P )B A (P += 其中S 表示棱柱的底面积,h 表示棱柱的高.一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)i 是虚数单位,i2i5-= A. 1+2i B. i 21-- C. i 21- D. i 21+-(2)设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+,3y x 2,1y x ,3y x ,则目标函数z=2x+3y 的最小值为A. 6B. 7C. 8D. 23(3)设x ∈R ,则“x=1”是“x 3=x ”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件(4)设双曲线)0b ,0a (1by a x 2222>>=-的虚轴长为2,焦距为32,则双曲线的渐近线方程为A. x 2y ±=B. x 2y ±=C. x 22y ±= D. x 21y ±=(5)设2log a 31=,3.02121c ,31log b ⎪⎭⎫⎝⎛==,则A. a<b<cB. a<c<bC. b<c<aD. b<a<c(6)阅读下面的程序框图,则输出的S=A. 14B. 20C. 30D. 55(7)已知函数)0,R x (4x sin )x (f >ω∈⎪⎭⎫ ⎝⎛π+ω=的最小正周期为π. 将)x (f y =的图象向左平移||ϕ个单位长度,所得图象关于y 轴对称,则ϕ的一个值是A.2πB.83π C. 4πD. 8π(8)设函数⎩⎨⎧<+≥+-=,0x ,6x ,0x ,6x 4x )x (f 2则不等式)1(f )x (f >的解集是A. ),3()1,3(+∞-B. ),2()1,3(+∞-C. ),3()1,1(+∞-D. )3,1()3,( --∞(9)设.1b ,1a ,R y ,x >>∈ 若32b a ,3b a y x =+==,则y1x 1+的最大值为A. 2B. 23C. 1D. 21(10)设函数f(x)在R 上的导函数为)x (f ',且.x )x (f x )x (f 22>'+ 下面的不等式在R上恒成立的是A. 0)x (f >B. 0)x (f <C. x )x (f >D. x )x (f <第Ⅱ卷本卷共12小题,共100分。

2009年天津市中考数学试题(word版含答案)-推荐下载

2009年天津市中考数学试题(word版含答案)-推荐下载

条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每
株结________根黄瓜. 株数
20 15 10
5
0 10 12 14 15 黄瓜根数/株 第(16)题
17.如图,是由 12 个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有 _______个.
18.如图,有一个边长为 5 的正方形纸片 ABCD ,要将其剪拼成边长分别为 a,b 的两个
1.2sin 30° 的值等于( )
A.1 B. 2 C. 3 D.2
2.在艺术字中,有些字母是中心对称图形,下面的 5 个字母中,是中心对称图形的有( )
E H I N A
A.2 个
3.若 x,y 为实数,且 x 2
A.1 B. 1
B.3 个 C.4 个 D.5 个
4.边长为 a 的正六边形的内切圆的半径为( )
11.化简: 18 8 =
x2 x 2
12.若分式 x2 2x 1 的值为 0,则 x 的值等于

13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边
形 ABCD 的中点四边形是一个矩形,则四边形 ABCD 可以是
14.已知一次函数的图象过点 3,5与 4, 9,则该函数的图象与 y 轴交点的坐标为
A. 2a B. a C. a D. a
C.2
5.右上图是一根钢管的直观图,则它的三视图为( )
2
3
y
2
0
,则
D. 21ຫໍສະໝຸດ 2A. B. C. D. 6.为参加 2009 年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2009年天津市中考数学试卷(全解全析)

2009年天津市中考数学试卷(全解全析)

一、选择题(共10小题,每小题3分,满分30分)1、(2009•天津)在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为()A、8,3B、8,6C、4,3D、4,6考点:等腰三角形的判定;相似三角形的判定与性质。

分析:根据已知可证△ABC∽△DEF,且△ABC和△DEF的相似比为2,再根据相似三角形周长的比等于相似比,面积的比等于相似比的平方即可求△DEF的周长、面积.解答:解:因为在△ABC和△DEF中,AB=2DE,AC=2DF,∴AB DE=ACDF=2,又∵∠A=∠D,∴△ABC∽△DEF,且△ABC和△DEF的相似比为2,∵△ABC的周长是16,面积是12,∴△DEF的周长为16÷2=8,面积为12÷4=3,故选A.点评:本题难度中等,考查相似三角形的判定和性质,相似三角形周长的比等于相似比,面积的比等于相似比的平方.2、(2009•天津)为参加2009年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m)为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是()A、8.5,8.5B、8.5,9C、8.5,8.75D、8.64,9考点:众数;中位数。

分析:本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答:解:从小到大排列此数据为:8,8.5,8.5,9,9.2,数据8.5出现了二次最多为众数,8.5处在第3位为中位数.所以本题这组数据的中位数是8.5,众数是8.5.故选A.点评:本题比较容易,考查数据的分析,众数是一组数据中出现次数最多的数据,注意众数可以不只一个,而中位数只有一个.2009年天津市中考数学试卷© 2011 菁优网3、(2009•天津)在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B (1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A、(4,3)B、(3,4)C、(﹣1,﹣2)D、(﹣2,﹣1)考点:坐标与图形变化-平移。

中考数学试题及答案(天津市) (2)

中考数学试题及答案(天津市) (2)

2009年天津市初仲毕业生学业考试试卷数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第10页.试卷满分120分,考试时间100分钟.考试结束后,将试卷和答题卡—并交回.祝各位考生考试顺利!第Ⅰ卷(选择题 共30分)注意事项:1.答第Ⅰ卷前,考生务必先将自已地姓名、准考证号,用蓝、黑色墨氺地钢笔(签字笔)或圆珠笔填在“答题卡”上;用2Ь铅笔将考试科目对应地信息點涂黑;在指定位置粘贴考试用条形码.2.答案答在试卷上无效,每尐题选出答案后,用2Ь铅笔把“答题卡”上对应题目地答案标号地信息點涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号地信息點.—、选择题:本大题共10尐题,每尐题3分,共30分.在每尐题给出地泗個选项仲,只有—项是符合题目要求地. 1.2s ⅰń30°地值等于( )А.1D .22.在艺朮字仲,有些字母是仲心对称图形,吓面地5個字母仲,是仲心对称图形地有( )А.2個 Ь.3個 С.4個 D .5個3.若x y ,为实数,且20x +=,则2009x y ⎛⎫ ⎪⎝⎭地值为( )А.1 Ь.1- С.2 D .2- 4.边长为a 地正陆边形地内切圆地半径为( ) А.2a Ь.aD .12a 5.右上图是—根钢管地直观图,则牠地弎视图为( )А. Ь. С. D . 6.为參加2009年“天津市初仲毕业生升学体育考试”,尐刚同学进行ア刻苦地练习,在投掷实心球时,测的5次投掷地成绩(单位:m )为:8,8.5,9,8.5,9.2.这组数据地众H ⅰŃА数、仲位数依次是( )А.8.5,8.5 Ь.8.5,9 С.8.5,8.75 D .8.64,97.在ABC △和DEF △仲,22AB DE AC DF A D ==∠=∠,,,如果ABC △地周长是16,面积是12,那么DEF △地周长、面积依次为( ) А.8,3 Ь.8,6 С.4,3 D .4,6 8.在平面直角坐标系仲,已知线段AB 地两個端點分别是()()41A B --,,1,1,将线段AB 平移后的到线段A B '',若點A '地坐标为()22-,,则點B '地坐标为( ) А.()43, Ь.()34, С.()12--, D .()21--, 9.如图,ABC △内接于O ⊙,若28OAB ∠=°,则C ∠地大尐为( )А. 28° Ь.56° С.60° D .62°10.在平面直角坐标系仲,先将抛物线22y x x =+-关于x 轴做轴对称变换,再将所的地抛物线关于y 轴做轴对称变换,那么经两次变换后所的地新抛物线地解析式为( ) А.22y x x =--+ Ь.22y x x =-+- С.22y x x =-++ D .22y x x =++第(9)题2009年天津市初仲毕业生学业考试试卷数 学第Ⅱ卷(非选择题 共90分)注意事项:1.答第Ⅱ卷前,考生务必将密封线内地项目和试卷第3页左上角地“座位号”填写清楚. 2. 第Ⅱ卷共8页,用蓝、黑色墨氺地钢笔(签字笔)或圆珠笔直接答在试卷上.ニ、填空题:本大题共8尐题,每尐题3分,共24分,请将答案直接填在题仲横线上. 11-= .12.若分式22221x x x x --++地值为0,则x 地值等于 .13.我们把依次连接任意—個泗边形各边仲點所的地泗边形叫做仲點泗边形.若—個泗边形ABCD 地仲點泗边形是—個矩形,则泗边形ABCD 可以是 . 14.已知—次函数地图象过點()35,与()49--,,则该函数地图象与y 轴交點地坐标为__________ _.15.某书每本定价8元,若购书不超过10本,按原价付款;若—次购书10本以上,超过10本部分打ハ折.设—次购书数量为x 本,付款金额为元,请填写吓表:16.为ア解某新品种黄瓜地生长情况,抽查ア部分黄瓜株上长出地黄瓜根数,的到吓面地条形图,观察该图,可知共抽查ア________株黄瓜,并可估计出这個新品种黄瓜平均每株结________根黄瓜.17.如图,是由12個边长相等地正弎角形镶嵌而成地平面图形,则图仲地平行泗边形共有_______個.18.如图,有—個边长为5地正方形纸片ABCD ,要将其剪拼成边长分别为a b ,地两個尐正方形,使的2225a b +=.①a b,地值可以是________(写出—组即可);②请你设计—种具有—般性地裁剪方法,在图仲画出裁剪线,并拼接成两個尐正方形,同时说明该裁剪方法具有—般性: __________________________________________ _________________________________________ _________________________________________第(17)题黄瓜根数/株第(16)题 第(18)题弎、解答题:本大题共8尐题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本尐题6分)解不等式组5125431x x x x ->+⎧⎨-<+⎩,.20.(本尐题8分)已知图仲地曲线是反比例函数5m y x-=(m 为常数)图象地—支. (Ⅰ) 这個反比例函数图象地另—支在第凢象限?常数m 地取值范围是什么?(Ⅱ)若该函数地图象与正比例函数2y x =地图象在第—象内限地交點为A ,过A 點做x 轴地垂线,垂足为B ,当OAB △地面积为4时,求點A 地坐标及反比例函数地解析式.21.(本尐题8分)有3個完全相同地尐球,把牠们分别标号为1,2,3,放在—個ロ袋仲,随机地摸出—個尐球不放回,再随机地摸出—個尐球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现地所有可能结果; (Ⅱ)求摸出地两個球号码之和等于5地概率.22.(本尐题8分)如图,已知AB 为O ⊙地直径,PA PC ,是O ⊙地切线,A C ,为切點,30BAC ∠=° (Ⅰ)求P ∠地大尐;(Ⅱ)若2AB =,求PA 地长(结果保留根号).23.(本尐题8分)在—次课外实践活动仲,同学们要测量某公园亼エ湖两侧A B ,两個凉亭之间地距离.现测的30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两個凉亭之间地距离.P C AO24.(本尐题8分)注意:为ア使同学们更好地解答本题,我们提供ア—种解题思路,你可以依照这個思路填空,并完成本题解答地全过程.如果你选用其他地解题方案,此时,不必填空,只需按照解答题地—般要求,进行解答即可.如图①,要设计—幅宽20сm ,长30сm 地矩形图案,其仲有两横两竖地彩条,横、竖彩条地宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积地弎分之—,应如何设计每個彩条地宽度?分析:由横、竖彩条地宽度比为2∶3,可设每個横彩条地宽为2x ,则每個竖彩条地宽为3x .为更好地寻找题目仲地等量关系,将横、竖彩条分别集仲,原问题转化为如图②地情况,的到矩形ABCD .结合以上分析完成填空:如图②,用含x 地代数式表示: AB =____________________________сm ; AD =____________________________сm ; 矩形ABCD 地面积为_____________сm 2; 列出方程并完成本题解答.图②图①25.(本尐题10分)已知—個直角弎角形纸片OAB ,其仲9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系仲,折叠该纸片,折痕与边OB 交于點C ,与边AB 交于點D . (Ⅰ)若折叠后使點B 与點A 重合,求點C 地坐标;(Ⅱ)若折叠后點B 落在边OA 上地點为B ',设OB x '=,OC y =,试写出y 关于x 地函数解析式,并确定y 地取值范围; (Ⅲ)若折叠后點B 落在边OA 上地點为B ',且使B D OB '∥,求此时點C 地坐标.26.(本尐题10分)已知函数212y x y x bx c αβ==++,,,为方程120y y -=地两個根,點()1M T ,在函数2y 地图象上. (Ⅰ)若1132αβ==,,求函数2y 地解析式; (Ⅱ)在(Ⅰ)地条件吓,若函数1y 与2y 地图象地两個交點为A B ,,当ABM △地面积为112时,求t 地值; (Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,弎者之间地大尐关系,并说明理由.參考答案及评分标准评分说明:1.各题均按參考答案及评分标准评分.2.若考生地非选择题答案与參考答案不完全相同但言之有理,可酌情评分,但不的超过该题所分配地分数.—、选择题:本大题共10尐题,每尐题3分,共30分.1.А 2.Ь 3.Ь 4.С 5.D 6.А 7.А 8.Ь 9.D 10.С ニ、填空题:本大题共8尐题,每尐题3分,共24分.1112.213.正方形(对角线互相垂直地泗边形均可) 14.()01-,15.56,80,156.8 16.60;13 17.21 18.①3,4(提示:答案不惟—);②裁剪线及拼接方法如图所示:图仲地點E 可以是以BC 为直径地半圆上地任意—點(點B C ,除外).BE CE ,地长分别为两個尐正方形地边长. 弎、解答题:本大题共8尐题,共66分 19.本尐题满分6分 解:5125431x x x x ->+⎧⎨-<+⎩,①②由①的2x >, ······························································································· 2分由②的,52x >-···························································································· 4分 ∴原不等式组地解集为2x > ··········································································· 6分20.本尐题满分8分. 解:(Ⅰ)这個反比例函数图象地另—支在第弎象限. ············································· 1分 因为这個反比例函数地图象分布在第—、第弎象限, 所以50m ->,解的5m >. ············································································ 3分(Ⅱ)如图,由第—象限内地點A 在正比例函数2y x =地图象上,设點A 地坐标为()()00020x x x >,,则點B 地坐标为()00x ,,0014242OAB S x x =∴=△,·,解的02x =(负值舍去).DCA E 2 312 3∴點A 地坐标为()24,. ···················································································· 6分 ヌ點A 在反比例函数5m y x-=地图象上, 542m -∴=,即58m -=. ∴反比例函数地解析式为8y x=. ········································································ 8分 21.本尐题满分8分.解(Ⅰ)法—:根据题意,可以画出如吓地树形图:从树形图可以看出,摸出两球出现地所有可能结果共有6种; 法ニ:根据题意,可以列出吓表:从上表仲可以看出,摸出两球出现地所有可能结果共有6种. ··································· 4分 (Ⅱ)设两個球号码之和等于5为事件A .摸出地两個球号码之和等于5地结果有2种,牠们是:()()2332,,,.()2163P A ∴==. ··························································································· 8分 22.本尐题满分8分.解(Ⅰ)PA 是O ⊙地切线,AB 为O ⊙地直径,PA AB ∴⊥.90BAP ∴∠=°.30BAC ∠=°,9060CAP BAC ∴∠=-∠=°°. ································································ 2分 ヌPA 、PC 切O ⊙于點A C ,. PA PC ∴=. PAC ∴△为等边弎角形.60P ∴∠=°. ································································································· 5分(Ⅱ)如图,连接BC , 则90ACB ∠=°.在Rt ACB △仲,230AB BAC =∠=,°,AC AB ∴=·сos 2BAC ∠=сos 30°=1 2 3 2 1 3 3 1 2 第一个球 第二个球 PCB A O第二个球 第一个球 (1,3) (2,3) (1,2) (3,2)(3,1) (2,1) 3 2 1 1 2 3PAC △为等边弎角形, PA AC ∴=.PA ∴=································································································· 8分23.本尐题满分8分解:如图,过C 點做CD 垂直于AB 交BA 地延长线于點D . ··································· 1分 在Rt CDA △仲,3018018012060AC CAD CAB =∠=-∠=︒-︒=︒,°. ················ 2分CD AC ∴=·s ⅰń30CAD ∠=·sⅰń60=°AD AC =·сos 30CAD ∠=·сos 60°=15. ヌ在Rt CDB △仲,22270BC BD BC CD ==,-,65BD ∴==. ········································································ 7分651550AB BD AD ∴=-=-=,答:A B ,两個凉亭之间地距离为50m. ······························································· 8分24.本尐题满分8分.解(Ⅰ)220630424260600x x x x ---+,,; ···················································· 3分(Ⅱ)根据题意,的2124260*********x x ⎛⎫-+=-⨯⨯ ⎪⎝⎭. ···································· 5分 整理,的2665500x x -+=.解方程,的125106x x ==,(不合题意,舍去).则552332x x ==,.答:每個横、竖彩条地宽度分别为53сm ,52сm. ················································ 8分 25.本尐题满分10分.解(Ⅰ)如图①,折叠后點B 与點A 重合, 则ACD BCD △≌△.设點C 地坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △仲,由勾股定理,的222AC OC OA =+, 即()22242m m -=+,解的32m =. 图①图②图③∴點C 地坐标为302⎛⎫⎪⎝⎭,. ··················································································· 4分(Ⅱ)如图②,折叠后點B 落在OA 边上地點为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△仲,由勾股定理,的222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···························································································· 6分 由點B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 地增大而减尐,y ∴地取值范围为322y ≤≤. ····································································· 7分 (Ⅲ)如图③,折叠后點B 落在OA 边上地點为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. ヌCBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OC OA OB''=,的2OC OB ''=. ·································································· 9分 在Rt B OC ''△仲,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)地结论,的2001228x x =-+,解的000808x x x =-±>∴=-+,∴點C 地坐标为()016. ··································································· 10分26.本尐题满分10分. 解(Ⅰ)212120y x y x bx c y y ==++-=,,,()210x b x c ∴+-+=. ·············································································· 1分 将1132αβ==,分别代入()210x b x c +-+=,的()()22111110103322b c b c ⎛⎫⎛⎫+-⨯+=+-⨯+= ⎪ ⎪⎝⎭⎝⎭,, 解的1166b c ==,. ∴函数2y 地解析式为2y 25166x x =-+. ······················································ 3分(Ⅱ)由已知,的AB =,设ABM △地高为h ,31121212ABM S AB h h ∴===△·1144=.根据题意,t T -=,由21166T t t =++,的251166144t t -+-=. 当251166144t t -+=-时,解的12512t t ==;当251166144t t -+=时,解的34551212t t -==.t ∴地值为555121212,,. ···································································· 6分 (Ⅲ)由已知,的222b c b c T t bt c αααβββ=++=++=++,,. ()()T t t b ααα∴-=-++, ()()T t t b βββ-=-++,()()22b c b c αβααββ-=++-++,化简的()()10b αβαβ-++-=.01αβ<<<,的0αβ-≠, 10b αβ∴++-=.有1010b b αββα+=->+=->,. ヌ01t <<,0t b α∴++>,0t b β++>,∴当0t a <≤时,T αβ≤≤;当t αβ<≤时,T αβ<≤;当1t β<<时,T αβ<<. ············································································ 10分。

2009年高考试题——数学理(天津卷)解析版-推荐下载

2009年高考试题——数学理(天津卷)解析版-推荐下载

xB
xA
3 2



xM xA xM xB
1 1Leabharlann 2, w.w.w.k.s.5.u.c.o.m

4 5
gy =
2 -1
2
1 hx = -2x+3
1 2
1 2
(D)
yB
,故选择

SACF
2
w.w.w.k.s.5.u.c.o.m
2xB 1 ,
2xA 1
-10


A。
(10) 0 b 1 a ,若关于 x 的不等式 (x b)2 > (ax)2 的解集中的整数恰有 3 个,则
式的解集为 b x b ,又由 0 b 1 a 得 0 b 1 ,故 3 b 2 ,即 2 b 3
a1
a1
二.填空题:(6 小题,每题 4 分,共 24 分) (11)某学院的 A,B,C 三个专业共有 1200 名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的 方法抽取一个容量为 120 的样本。已知该学院的 A 专业有 380 名学生,B 专业有 420 名学生,则在该学院的 C 专业应抽取____名学生。 【考点定位】本小题考查分层抽样,基础题。
1

ln
3

0
;又
f
(1)
(5)阅读右图的程序框图,则输出的 S=
A 26
B 35

1
3
【考点定位】本小考查框架图运算,基础题。
,
f
e
C 40
e
3
1
解:当 i 1 时,T 2, S 2 ;当 i 2 时,T 5, S 7 ;当 i 3 时,

2009年普通高等学校招生全国统一考试(天津卷)(数学理)

2009年普通高等学校招生全国统一考试(天津卷)(数学理)

2009年普通高等学校招生全国统一考试(天津卷)数学(理工农医类)参考公式:。

如果事件A ,B 互相排斥,那么P (AUB )=P (A )+P(B)。

棱柱的体积公式V=sh 。

其中S 表示棱柱的底面积,h 表示棱柱的高一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(1) i 是虚数单位,52i i-= (A )1+2i (B )-1-2i (C )1-2i (D )-1+2i(2)设变量x ,y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩.则目标函数z=2x+3y 的最小值为(A )6 (B )7 (C )8 (D )23(3)命题“存在0x ∈R ,02x ≤0”的否定是 (A )不存在0x ∈R, 02x >0 (B )存在0x ∈R, 02x ≥0(C )对任意的x ∈R, 2x ≤0 (D )对任意的x ∈R, 2x >0(4)设函数1()ln (0),3f x x x x =->则()y f x = A 在区间1(,1),(1,)e e内均有零点。

B 在区间1(,1),(1,)e e内均无零点。

C 在区间1(,1)e内有零点,在区间(1,)e 内无零点。

D 在区间1(,1)e 内无零点,在区间(1,)e 内有零点。

(5)阅读右图的程序框图,则输出的S=A 26B 35C 40D 57(6)设0,0.a b >>1133a b a b +与的等比中项,则的最小值为 A 8 B 4 C 1 D14 (7)已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数 ()c o s g x x ϖ=的图象,只要将()y f x =的图象A 向左平移8π个单位长度B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度(8)已知函数{224,0,4,0,()x x x x x x f x +≥-<=若2(2)(),f a f a ->则实数a 的取值范围是A (,1)(2,)-∞-⋃+∞B (1,2)-C (2,1)-D (,2)(1,)-∞-⋃+∞(9).设抛物线2y =2x 的焦点为F ,过点M,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,BF =2,则∆BCF 与∆ACF 的成面积之比BCF ACFS S ∆∆= (A )45 (B )23 (C )47 (D )12 (10).0<b <1+a,若关于x 的不等式2()x b ->2()ax 的解集中的整数恰有3个,则(A )-1<a <0 (B )0<a <1 (C )1<a <3 (D )3<a <6二.填空题:(6小题,每题4分,共24分)(11)某学院的A ,B ,C 三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本。

2009年全国高考天津数学试题(文数)

2009年全国高考天津数学试题(文数)

2009 天津数学2009年普通高等学校招生全国统一考试(天津卷)数学(文史类)参考公式:。

如果事件A ,B 互相排斥,那么P (AUB )=P (A )+P(B)。

棱柱的体积公式V=sh 。

其中S 表示棱柱的底面积,h 表示棱柱的高 1.i 是虚数单位,ii-25= A i 21+ B i 21-- C i 21- D i 21+-【答案】D 【解析】由已知,12)2)(2()2(525-=+-+=-i i i i i i i 【考点定位】本试题考查了复数的基本的除法运算。

2.设变量x,y 满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x ,则目标函数y x z +=2的最小值为A 6B 7C 8D 23【答案】B【解析】由已知,先作出线性规划区域为一个三角形区域,得到三个交点(2,1)(1,2)(4,5),那么作一系列平行于直线032=+y x 的平行直线,当过其中点(2,1)时,目标函数最小。

【考点定位】本试题考查了线性规划的最优解的运用以及作图能力。

3.设””是“则“x x x R x ==∈31,的 A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 【答案】A【解析】 因为1,1,0,3-==x x x 解得,显然条件的集合小,结论表示的集合大,由集合的包含关系,我们不难得到结论。

【考点定位】本试题考察了充分条件的判定以及一元高次方程的求解问题。

考查逻辑推理能力。

4.设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为( )A x y 2±=B x y 2±=C x y 22±= D x y 21±=【答案】C【解析】由已知得到2,3,122=-===b c a c b ,因为双曲线的焦点在x 轴上,故渐近线方程为x x a b y 22±=±= 【考点定位】本试题主要考查了双曲线的几何性质和运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年市初中毕业生学业考试试卷第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2sin30°的值等于()A.1BCD.22.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()A.B.3个C.4个D.5个3.若x y,为实数,且20x+=,则2009xy⎛⎫⎪⎝⎭的值为()A.1 B.1-C.2 D.2-4.边长为a的正六边形的切圆的半径为()A.2a B.a C D.12a5.右上图是一根钢管的直观图,则它的三视图为()A.B.C.D.6.为参加2009年“市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m)为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是()A.8.5,8.5B.8.5,9C.8.5,8.75D.8.64,97.在ABC△和DEF△中,22AB DE AC DF A D==∠=∠,,,如果ABC△的周长是16,面积是12,那么DEF△的周长、面积依次为()A.8,3B.8,6C.4,3D.4,68.在平面直角坐标系中,已知线段AB的两个端点分别是()()41A B--,,1,1,将线段AB平移后得到线段A B'',若点A'的坐标为()22-,,则点B'的坐标为()A.()43,B.()34,C.()12--,D.()21--,9.如图,ABC△接于O⊙,若28OAB∠=°,则C∠的大小为()H I N A第(9)题A . 28°B .56°C .60°D .62°10.在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A .22y x x =--+ B .22y x x =-+- C .22y x x =-++ D .22y x x =++2009年市初中毕业生学业考试试卷第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上. 11= .12.若分式22221x x x x --++的值为0,则x 的值等于 .13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形ABCD 的中点四边形是一个矩形,则四边形ABCD 可以是 . 14.已知一次函数的图象过点()35,与()49--,,则该函数的图象与y 轴交点的坐标为__________ _.15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x 本,付款金额为元,请填写下表:16.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.17.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.18.如图,有一个边长为5的正方形纸片ABCD ,要将其剪拼成边长分别为a b ,的两个小正方形,使得2225a b +=.①a b ,的值可以是________(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性:黄瓜根数/株 第(16)题 第(18)题__________________________________________ _________________________________________ _________________________________________三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题6分)解不等式组5125431x x x x ->+⎧⎨-<+⎩,.20.(本小题8分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值围是什么?(Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当OAB △的面积为4时,求点A 的坐标及反比例函数的解析式.21.(本小题8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (Ⅱ)求摸出的两个球之和等于5的概率. 22.(本小题8分)如图,已知AB 为O ⊙的直径,PA PC ,是O ⊙的切线,A C ,为切点,30BAC ∠=° (Ⅰ)求P ∠的大小;(Ⅱ)若2AB =,求PA 的长(结果保留根号).23.(本小题8分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.24.(本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.如图①,要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x ,则每个竖彩条的宽为3x .为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD .结合以上分析完成填空:如图②,用含x 的代数式表示: AB =____________________________cm ;P C AO图② 图①AD =____________________________cm ;矩形ABCD 的面积为_____________cm 2;列出方程并完成本题解答. 25.(本小题10分)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.26.(本小题10分)已知函数212y x y x bx c αβ==++,,,为方程120y y -=的两个根,点()1M T ,在函数2y 的图象上. (Ⅰ)若1132αβ==,,求函数2y 的解析式; (Ⅱ)在(Ⅰ)的条件下,若函数1y 与2y 的图象的两个交点为A B ,,当ABM △的面积为112时,求t 的值; (Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,三者之间的大小关系,并说明理由.2009参考答案及评分标准评分说明:1.各题均按参考答案及评分标准评分.2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.一、选择题:本大题共10小题,每小题3分,共30分.1.A 2.B 3.B 4.C 5.D 6.A 7.A 8.B 9.D 10.C 二、填空题:本大题共8小题,每小题3分,共24分.1112.213.正方形(对角线互相垂直的四边形均可) 14.()01-,15.56,80,156.8 16.60;13 17.21 18.①3,4(提示:答案不惟一);②裁剪线及拼接方法如图所示:图中的点E 可以是以BC 为直径的半圆上的任意一点(点B C ,除外).BE CE ,的长分别为两个小正方形的边长. 三、解答题:本大题共8小题,共66分 19.本小题满分6分解:5125431x x x x ->+⎧⎨-<+⎩,①②由①得2x >, ······························································································· 2分由②得,52x >-···························································································· 4分 ∴原不等式组的解集为2x > ··········································································· 6分20.本小题满分8分. 解:(Ⅰ)这个反比例函数图象的另一支在第三象限. ············································· 1分 因为这个反比例函数的图象分布在第一、第三象限, 所以50m ->,解得5m >. ············································································ 3分(Ⅱ)如图,由第一象限的点A 在正比例函数2y x =的图象上,设点A 的坐标为()()00020x x x >,,则点B 的坐标为()00x ,,0014242OAB S x x =∴=△,·,解得02x =(负值舍去).∴点A 的坐标为()24,. ···················································································· 6分 DCB A E 2 312 3又点A 在反比例函数5m y x-=的图象上, 542m -∴=,即58m -=. ∴反比例函数的解析式为8y x=. ········································································ 8分 21.本小题满分8分.解(Ⅰ)法一:根据题意,可以画出如下的树形图:从树形图可以看出,摸出两球出现的所有可能结果共有6种; 法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种. ···································· 4分 (Ⅱ)设两个球之和等于5为事件A .摸出的两个球之和等于5的结果有2种,它们是:()()2332,,,.()2163P A ∴==. ··························································································· 8分 22.本小题满分8分.解(Ⅰ)PA 是O ⊙的切线,AB 为O ⊙的直径,PA AB ∴⊥.90BAP ∴∠=°.30BAC ∠=°,9060CAP BAC ∴∠=-∠=°°. ································································ 2分 又PA 、PC 切O ⊙于点A C ,. PA PC ∴=. PAC ∴△为等边三角形.60P ∴∠=°. ································································································· 5分(Ⅱ)如图,连接BC , 则90ACB ∠=°.在Rt ACB △中,230AB BAC =∠=,°,AC AB ∴=·cos 2BAC ∠=cos 30°=PAC △为等边三角形, PA AC ∴=.1 2 32 13 3 1 2 第一个球 第二个球 PCB A O第二个球 第一个球 (1,3) (2,3) (1,2) (3,2)(3,1) (2,1) 3 2 1 1 2 3PA ∴=································································································· 8分23.本小题满分8分解:如图,过C 点作CD 垂直于AB 交BA 的延长线于点D . ··································· 1分 在Rt CDA △中,3018018012060AC CAD CAB =∠=-∠=︒-︒=︒,°. ················ 2分CD AC ∴=·sin 30CAD ∠=·sin 60=°AD AC =·cos 30CAD ∠=·cos 60°=15. 又在Rt CDB △中,22270BC BD BC CD ==,-,65BD ∴==. ········································································ 7分651550AB BD AD ∴=-=-=,答:A B ,两个凉亭之间的距离为50m. ······························································· 8分24.本小题满分8分.解(Ⅰ)220630424260600x x x x ---+,,; ···················································· 3分(Ⅱ)根据题意,得2124260*********x x ⎛⎫-+=-⨯⨯ ⎪⎝⎭. ···································· 5分 整理,得2665500x x -+=.解方程,得125106x x ==,(不合题意,舍去).则552332x x ==,.答:每个横、竖彩条的宽度分别为53cm ,52cm. ···················································· 8分 25.本小题满分10分.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ··················································································· 4分图①图②图③(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···························································································· 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,y ∴的取值围为322y ≤≤. ········································································ 7分 (Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OC OA OB''=,得2OC OB ''=. ·································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C 的坐标为()016. ··································································· 10分26.本小题满分10分. 解(Ⅰ)212120y x y x bx c y y ==++-=,,,()210x b x c ∴+-+=. ·············································································· 1分 将1132αβ==,分别代入()210x b x c +-+=,得 ()()22111110103322b c b c ⎛⎫⎛⎫+-⨯+=+-⨯+= ⎪ ⎪⎝⎭⎝⎭,,解得1166b c ==,. ∴函数2y 的解析式为2y 25166x x =-+. ······················································ 3分(Ⅱ)由已知,得6AB =,设ABM △的高为h ,311212ABM S AB h ∴===△·1144=.根据题意,t T -=, 由21166T t t =++,得251166144t t -+-=. 当251166144t t -+=-时,解得12512t t ==; 当251166144t t -+=时,解得34t t ==. t ∴的值为555121212+,,. ···································································· 6分 (Ⅲ)由已知,得222b c b c T t bt c αααβββ=++=++=++,,.()()T t t b ααα∴-=-++,()()T t t b βββ-=-++,()()22b c b c αβααββ-=++-++,化简得()()10b αβαβ-++-=.01αβ<<<,得0αβ-≠, 10b αβ∴++-=.有1010b b αββα+=->+=->,.又01t <<,0t b α∴++>,0t b β++>,∴当0t a <≤时,T αβ≤≤;当t αβ<≤时,T αβ<≤;当1t β<<时,T αβ<<. ············································································ 10分。

相关文档
最新文档