北师大版数学八年级上册第三章图形的平移与旋转测试卷
北师大版八数第三章 图形的平移与旋转单元检测题(含答案)
第三章图形的平移与旋转检测题(时间:_____ 满分:100分)(班级:____ 姓名:______ 得分:_____)一、选择题(每小题4分,共32分)1.下面各组图形中,平移左图可以得到右图的一组是( )2.剪纸是中国最古老的民间艺术之一,是中华传统文化中的一块瑰宝.下列四个剪纸图案中是中心对称图形的是()A.B.C.D.3.下列说法正确的是( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连接对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移a个单位长度,则该点的纵坐标加aD.在平移和旋转图形中,对应角相等,对应线段相等且平行4.在平面直角坐标系中,将点P(-2,1)先向右平移3个单位长度,再向上平移4个单位长度,得到点P′,则点P′的坐标是()A.(1,3) B.(1,5) C.(2,4) D.(2,5)5.如图1,在平面直角坐标系中,△ABC绕旋转中心顺时针旋转90°后得到△A′B′C′,则其旋转中心的坐标是( )A.(1.5,1.5) B.(1,0) C.(1,-1) D.(1.5,-0.5)6.图2所示的3个图形中,能通过旋转得到图3所示图形的有()A.仅①②B.仅①③C.仅②③D.①②③图2 图3 图4 图57.如图4,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.62D.638.如图5,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,)C.()D.(-1,1)二、填空题(每小题4分,共24分)9.如图6,将四边形ABCD平移到四边形A'B'C'D'的位置,四边形A'B'C'D'是由四边形ABCD先向右平移格,再向下平移格得到的.图6 图710.正三角形绕中心至少旋转________才能与原三角形重合.11.如图7,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为.图8 图9 图1012.如图8,直线a,b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为.13.(2018年株洲)如图9,O为坐标原点,△OAB是等腰直角三角形,∠OAB=90°,点B的坐标为(0,22),将该三角形沿x轴向右平移得到△O′A′B′,此时点B′的坐标为(22,22),则线段OA在平移过程中扫过部分的图形面积为.14.如图10,正方形ABCD和正方形CEFG的边长分别为a,b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确的是.(填序号)三、解答题(共44分)15.(8分)如图11,在正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A平移到点A1,在网格中画出平移后的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,得到△A1B2C2,在网格中画出△A1B2C2.图1116.(10分)如图12,在Rt△ABC中,∠ACB=90°,AC=4 cm,BC=3 cm,△ABC沿AB方向平移至△DEF,若AE=8 cm,BD=2 cm.求:(1)△ABC沿AB方向平移的距离;(2)四边形AEFC的周长.图1217.(12分)图14所示的3×3正方形网格图都由9个边长为1的小正方形组成,现有一块边长为1的正方形纸板和两块腰长为1的等腰直角三角形纸板(如图13所示),用这三块纸板按下列要求(不重叠无缝隙)拼出一个四边形,要求所拼四边形的顶点落在格点上.(1)拼得的四边形是轴对称图形,但不是中心对称图形;(2)拼得的四边形是中心对称图形,但不是轴对称图形;(3)拼得的四边形既是轴对称图形,又是中心对称图形.(请将3个小题依次作答在图14-①,图14-②,图14-③中)图13 图1418.(14分)如图15,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图15-①),求证:M为AN的中点;(2)将图15-①中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图15-②),求证:△ACN为等腰直角三角形;(3)将图15-①中的△BCE绕点B旋转到图15-③的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.①②③图15参考答案一、1.D 2.A 3.B4.B5.C 6.D7.D8.D提示:因为四边形OABC是正方形,且OA=1,所以B(1,1),连接OB.由勾股定理,得OB=.由旋转的性质,得OB=OB1=OB2=OB3=…=.可求得B1(0,),B2(﹣1,1),B3(﹣,0),…,发现8次一循环,所以2018÷8=252……2.所以B2018(﹣1,1).二、9. 5 2 10.120°11.15°12.6 13.414.①②③三、15.图略.16.解:(1)因为△ABC沿AB方向平移至△DEF,所以AD=BE.因为AE=8 cm,BD=2 cm,所以AD=(8-2)÷2=3(cm).所以△ABC沿AB方向平移的距离是3 cm.(2)由平移的性质得CF=AD=3 cm,EF=BC=3 cm.又AE=8 cm,AC=4 cm,所以四边形AEFC的周长=AE+EF+CF+AC=8+3+3+4=18(cm).17.解:(1)如图1所示;(2)如图2所示;(3)如图3所示.18.(1)证明:因为EN∥AD,所以∠MAD=∠MNE,∠ADM=∠NEM.因为M为DE的中点,所以DM=EM.所以△ADM≌△NEM.所以AM=MN,即M为AN的中点.(2)证明:因为△BAD和△BCE均为等腰直角三角形,所以AB=AD,CB=CE,∠CBE=∠CEB=45°.因为AD∥NE,所以∠DAE+∠NEA=180°.因为∠DAE=90°,所以∠NEA=90°.所以∠NEC=135°.因为A,B,E三点在同一直线上,所以∠ABC=180°﹣∠CBE=135°.所以∠ABC=∠NEC.因为△ADM≌△NEM,所以AD=NE.因为AD=AB,所以AB=NE.所以△ABC≌△NEC.所以AC=NC,∠ACB=∠NCE.所以∠ACN=∠BCE=90°.所以△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图4,延长AB交NE于点F.因为AD∥NE,M为DE的中点,所以易得△ADM≌△NEM.所以AD=NE.因为AD=AB,所以AB=NE.因为AD∥NE,所以AF⊥NE.在四边形BCEF中,因为∠BCE=∠BFE=90°,所以∠FBC+∠FEC=360°﹣180°=180°.因为∠FBC+∠ABC=180°,所以∠ABC=∠NEC.又BC=EC,所以△ABC≌△NEC.所以AC=NC,∠ACB=∠NCE.所以∠ACN=∠BCE=90°.所以△ACN为等腰直角三角形.。
北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案
北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如左图是新疆维吾尔自治区第十四届运动会的会徽.平移此会徽中的图形,可以得到的是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.在平面直角坐标系中,将点A(3,−2)向右平移4个单位长度后的对应点的坐标是()A.(−1,−2)B.(7,−2)C.(3,−6)D.(3,2)4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为14cm,则四边形ABFD的周长为()A.14cm B.17cm C.20cm D.23cm5.在平面直角坐标系中,以原点为中心,若将点Q(4,5)按逆时针方向旋转90°得到点P,则P的坐标是()A.(−5,4)B.(−4,−5)C.(−5,−4)D.(5,−4)6.如图,在△ABD中∠BAD=90°,将△ABD绕点A逆时针旋转后得到△ACE,此时点C恰好落在BD边上.若∠BAC=48°,则∠E的度数为()A.20°B.24°C.28°D.32°7.如图,△ABC的边BC长为5cm.将△ABC向上平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为()A.50cm2B.25cm2C.20cm2D.10cm28.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上.将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(3,0),B(0,4),点B2024的坐标为()A.(12132,0)B.(12144,4)C.(12140,4)D.(12152,0)二、填空题9.在平面直角坐标系中,已知点A(2a−b,−8)与点B(−2,a+3b)关于原点对称,a+b=.10.为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为600m,且桥宽忽略不计,则小桥总长为m.11.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置AB=9,DO=4阴影部分面积为35,则平移距离为.12.在平面直角坐标系中,已知线段AB的两个端点分别是A(1,2),B(2,0),将线段AB平移后得到线段CD,其中,点A的对应点为点C,若C(3,a),D(b,1),则a−b的值为.13.如图,将△ABC沿BA方向平移得到△DEF.若DB=15,AE=2则平移的距离为.14.如图,在Rt△ABC中∠ACB=90°,AC=4,BC=5将△ABC绕点A逆时针旋转α(0°<α<90°)得到△ADE,延长BC交ED于点F.若∠EAB=90°,则线段EF的长为.15.如图,在△ABC,∠C=90°,将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上,连接BB′,若∠BB′C′=35°,则∠BAC=°.16.如图,△ABC的顶点坐标分别为A(2,4),B(0,1),C(0,4),将△ABC绕某一点旋转可得到△A′B′C′,△A′B′C′的三个顶点都在格点上,则旋转中心的坐标是.三、解答题17.如图,在4×4的方格中,有4个小方格被涂黑成“L形”.(1)在图1中再涂黑4格,使新涂黑的图形与原来的“L形“关于对称中心点O成中心对称;(2)在图2和图3中再分别涂黑4格,使新涂黑的图形与原来的“L形”所组成的新图形既是轴对称图形又是中心对称图形(两个图各画一种).18.如图,在△ABC中∠B=40°,∠BAC=80°将△ABC绕点A逆时针旋转一定角度后得到△ADE.(1)求∠E的度数;(2)当AB∥DE时,求∠DAC的度数.19.如图,在12×8的正方形网格中,每个小正方形的边长都是1个单位长度,点A,B,C,O都在格点上.按下列要求画图:(1)画出将△ABC向右平移8个单位长度后的△A1B1C1;(2)画出将△ABC以点O为旋转中心、顺时针旋转90°后的△A2C2B2(3)△A1B1C1与△A2C2B2是否成轴对称?若是,请画出对称轴.20.如图,在△ABC中∠BAC=80°,三个内角的平分线交于点O.(1)∠BOC的度数为________.(2)过点O作OD⊥OB交BC于点D.①探究∠ODC与∠AOC之间的数量关系,并说明理由;②若∠ACB=60°,将△BOD绕点O顺时针旋转α得到△B′OD′(0°<α<90°),当B′D′所在直线与OC平行时,求α的值.21.如图,在平面直角坐标系中,已知A(−1,0),B(3,0),M为第三象限内一点.(1)若点M(2−a,2a−10)到两坐标轴的距离相等.①求点M的坐标;②若MN∥AB且MN=AB,求点N的坐标.(2)若点M为(n,n),连接AM,BM.请用含n的式子表示三角形AMB的面积;(3)在(2)的条件下,将三角形AMB沿x轴方向向右平移得到三角形DEF(点A,M的对应点分别为点D,E),若三角形AMB的周长为m,四边形AMEF的周长为m+4,求点E的坐标(用含n的式子表示).22.如图,在锐角△ABC中∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,K为射线CD上一点CK=BE.①求证:BD=BK;②求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.参考答案1.解:根据平移的性质可知:能由如图经过平移得到的是B.故选:B2.解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形又是中心对称图形,故符合题意;C、是轴对称图形,但不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选B.3.解:将点A(3,−2)向右平移4个单位长度后的对应点的坐标是(3+4,−2),即(7,−2)故选:B.4.解:由平移的性质得:AD=BE=CF=3cm,AC=DF∵△ABC的周长为14cm∵AB+BC+AC=14cm∵四边形ABFD的周长为AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=14+3+3=20cm.故选:C.5.解:如图,过点Q作QM⊥x轴,过点P作PN⊥x轴∴∠PNO=∠QMO=90°∵Q(4,5)∴OM=4由旋转的性质可知OQ=OP,∠POQ=90°∴∠PON+∠QOM=90°∵∠PON+∠OPN=90°∴∠OPN=∠QOM∴△PON≌△OQM(AAS)∴ON=QM=5,PN=OM=4∵点P在第二象限∴点P的坐标是(−5,4)故选:A.6.解:∵△ABD旋转得到△ACE∵AB=AC,∠ABC=∠ACE,∠E=∠D∵∠BAC=48°∴∠ABD=∠ACD=180°−∠BAC=66°2∵∠BAD =90°∵∠D =180°−∠ABC −∠BAD =24°∵∠E =∠D =24°.故选:B .7.解:三角形ABC 的边BC 的长为5cm .将三角形ABC 向上平移2cm 得到三角形A ′B ′C ′,且BB ′⊥BC 则:S △ABC =S △A ′B ′C ′,四边形BCC ′B ′是长方形,BB ′=2∵S 阴影=S △A ′B ′C ′+S 长方形BB ′C ′C −S △ABC =S 长方形BB ′C ′C =BC ×BB ′=5×2=10(cm 2)故选D .8.解:∵点A(3,0),B(0,4)∵OA =3,OB =4∵AB =√32+42= 5∵OA +AB 1+B 1C 2=3+5+4=12观察图象可知B 、B 2、B 4…每偶数之间的B 的横坐标相差12个单位长度,点B 2n 的纵坐标为4∵2024÷2=1012∵点B 2024的横坐标为1012×12=12144,点B 2024的纵坐标为4∵点B 2024的坐标为(12144,4).故选:B .9.解:依题意可得:{2a −b =−(−2)a +3b =−(−8)∴{a =2b =2∴a +b =2+2=4故答案为:4.10.解:由平移的性质得,小桥总长=长方形周长的一半∵600÷2=300m∵小桥总长为300m .故答案为:300.11.解:∵Rt △ABC ,沿着点B 到C 点的方向平移到△DEF 的位置∵△ABC≌△DEF∵AB =DE ,S △ABC =S △DEF∵S阴影=S梯形ABEO=35∵AB=9,DO=4∵OE=DE−OH=9−4=5∵12(5+9)×BE=35解得:BE=5,即为平移的距离;故答案为:5.12.解:由题意得,线段AB向右平移2个单位,向上平移1个单位得到线段CD∴2+2=b,2+1=a∴a=3,b=4∴a−b=3−4=−1故答案为:−1.13.解:平移的性质可得:AD=BE又∵DB=15,AE=2∵AD=BE=DB−AE2=6.5即平移的距离为6.5故答案为:6.5.14.解:连接AF∵∠ACB=90°,AC=4,BC=5∵AB=√42+52=√41由旋转的性质得AE=AC,∠E=∠ACB=90°∵∠E=∠ACF=90°∵AF=AF∵Rt△AFE≌Rt△AFC(HL)∵EF=FC,∠EFA=∠CFA∵∠EAB=90°∵DE∥AB∵∠EFA=∠FAB∵∠BFA=∠FAB∵BF=AB=√41∵EF=FC=BF−BC=√41−5故答案为:√41−5.15.解:∵将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上∵AB=AB′,∠BC′B′=90°,∠B′AC′=∠BAC∵∠ABB′=∠AB′B而∠BB′C′=35°∵∠ABB′=90°−35°=55°∵∠B′AC′=∠BAC=180°−55°×2=70°.故答案为:70.16.解:如图所示:连接AA′,BB′,然后作AA′,BB′的垂直平分线,这两条垂直平分线交于一点,记为点P,为旋转中心,此时旋转中心的坐标是(−1,0)故答案为:(−1,0)17.解:(1)所求图形,如图所示.(2)所求图形,如图所示.18.(1)解:由旋转可得:∠E=∠C.∵∠B=40°,∠BAC=80°∵∠C=180°−∠B−∠BAC=60°∵∠E=60°.(2)如图1,当DE在AB下方时.由旋转可得:∠D=∠B=40°.∵AB∥DE∵∠BAD=∠D=40°∵∠DAC=∠BAC−∠BAD=80°−40°=40°.如图2,当DE在AB上方时.∵AB∥DE∵∠BAD+∠D=180°∵∠BAD=180°−∠D=180°−40°=140°∵∠DAC=360°−∠BAC−∠BAD=360°−80°−140°=140°.综上所述,∠DAC的度数为40°或140°.19.(1)解:如图,∴△A1B1C1为所求画的三角形;(2)解:如图∴△A2C2B2为所求画的三角形;(3)解:成轴对称,如图∴直线OD为所求画的对称轴.20.(1)解:∵三个内角的平分线交于点O,(∠ABC+∠ACB)∵∠OBC+∠OCB=12∵∠BAC=80°∵∠ABC+∠ACB=180°−∠BAC=100°∵∠OBC+∠OCB=50°∵∠BOC=180°−(∠OBC+∠OCB)=180°−50°=130°故答案为:130°;(2)解:①∠ODC=∠AOC,理由如下:∵三个内角的平分线交于点O,(∠BAC+∠ACB)∵∠OAC+∠OCA=12∵∠BAC+∠ACB=180°−∠ABC∵∠OAC+∠OCA=12(180°−∠ABC)=90°−12∠ABC∵∠AOC=180°−(∠OAC+∠OCA)=180°−(90∘−12∠ABC)=90°+12∠ABC∵OD⊥OB∵∠BOD=90°∵∠ODC=∠BOD+∠OBD=90°+12∠ABC∵∠ODC=∠AOC;②如图∵OC平分∠ACB,∠ACB=60°∵∠OCD=12∠ACB=30°由(1)知∠BOC=130°∵∠BOD=90°∵∠COD=40°∵∠BDO=∠COD+∠OCD=70°由旋转性质可知:∠BDO=∠B′D′O=70°∵B′D′∥OC∵∠COD′=∠B′D′O=70°∵∠DOD′=∠COD′−∠COD=30°,即此时旋转角度α=30°∵α的值为30°.21.(1)解:①∵M(2−a,2a−10)到两坐标轴的距离相等,且在第三象限∵−(2−a)=−(2a−10)∵a=4∵M(−2,−2);②∵A A(−1,0),B(3,0)∵AB=4∵MN∥AB,MN=AB,M(−2,−2)∵N(−6,−2)或(2,−2);(2)解:∵M(n,n)在第三象限∵n<0∵三角形AMB的面积为12×4×(−n)=−2n;(3)解:∵△AMB沿x轴方向向右平移得到△DEF ∵BM=EF,AD=ME=BF.∵△AMB的周长为m∵AM+MB+AB=m.∵四边形AMEF的周长为m+4∵AM+ME+EF+AF=m+4,即2ME=4∵解得ME=2∵点E的坐标为(n+2,n).22.(1)解:①证明:在△BCE与△CBK中{BE=CK ∠BCK=∠CBE BC=CB∵△BCE≌△CBK(SAS)∵CE=BK∵BD=CE∵BD=BK;②由①知:BD=BK,∵∠BKD=∠BDK∵△BCE≌△CBK(SAS)∵∠BKC=∠CEB∵∠BDK=∠CEB∵∠BDK=∠ADC∴∠ADC=∠CEB∵∠CEB+∠AEF=180°∴∠ADF+∠AEF=180°∴∠A+∠EFD=180°∵∠A=60°∴∠EFD=120°∴∠CFE=180°−∠EFD=180°−120°=60°;(2)解:结论:BF+CF=2CN.理由:如图2中∵AB=AC,∠A=60°∴△ABC是等边三角形∴AB=CB=AC,∠A=∠CBD=∠ACB=60°∵AE=BD∴△ABE≌△BCD(SAS)∴∠BCF=∠ABE∴∠FBC+∠BCF=60°∴∠BFC=120°∵∠BFD=60°由旋转可得:AC=CM∵BC=CM,∠BCM=∠ACB+∠ACM=120°如图2中,延长CN到Q,使得NQ=CN,连接FQ∵NM=NF,∠CNM=∠FNQ,CN=NQ∴△CNM≌△QNF(SAS)∴CM=QF,∠MCN=∠NQF∴CM=BC延长CF到P,使得PF=BF∵PF=BF∵△PBF是等边三角形∵∠BPC=60°∴∠PBC+∠PCB=∠PCB+∠FCM=120°∴∠FCM=∠PBC∵∠PFQ=∠FCQ+∠CQF=∠FCQ+∠MCN=∠FCM∵∠PFQ=∠PBC∵PB=PF∴△PFQ≌△PBC(SAS)∴PQ=PC,∠CPB=∠QPF=60°∴△PCQ是等边三角形∴BF+CF=PC=QC=2CN.。
北师大版数学 第三章 图形的平移与旋转
炉山二中2012——2013年度八年级数学单元测试卷第三章图形的平移与旋转班级:姓名:成绩:(说明:本试题满分150分,考试时间90分钟)一、选择题:(每小题4分,共40分)1、如图,△AOB中,∠B=30度.将△AOB绕点O顺时针旋转52°得到△A′OB′,边A′B′与边OB 交于点C(A′不在OB上),则∠A′CO的度数为()A、22°B、52°C、60°D、82°2、点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,则点B所表示的实数是()A、3B、-1C、5D、-1或33、如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为()A、6B、8C、10D、124、下列A,B,C,D四幅图案中,能通过平移图案得到的是()A、B、C、D、5、如图,P是正△ABC内的一点,若将△PBC绕点B旋转到△P′BA,则∠PBP′的度数是()A、45°B、60°C、90°D、120°6、如图,若正六边形ABCDEF绕着中心O旋转角α得到的图形与原来的图形重合,则α最小值为()A、180°B、120°C、90°D、60°7、如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是()A、先向下平移3格,再向右平移1格B、先向下平移2格,再向右平移1格C、先向下平移2格,再向右平移2格D、先向下平移3格,再向右平移2格8、如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,将△ABC沿直线BC向右平移2.5个单位得到△DEF,连接AD,AE,则下列结论中不成立的是()A、AD∥BE,AD=BEB、∠ABE=∠DEFC、ED⊥ACD、△ADE为等边三角形9、如果一个正多边形绕它的中心旋转60°才和原来的图形重合,那么这个正多边形是()A、正三角形B、正方形C、正五边形D、正六边形10、能由图中的图形旋转得到的图形是()A、 B、 C、 D、二、填空题:(每空3分,共48分)11、如图,四边形ABCD中∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA 重合。
北师大版八数第三章《图形的平移与旋转》单元检测卷(含答案)
第三章《图形的平移与旋转》单元检测卷(全卷满分100分限时90分钟)一.选择题(每小题3分36分)1.下列四组图形中,平移其中一个三角形可以得到另一个三角形的一组图形是()2.(3分)(2015•泉州)如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2B.3C.5D.73.如图,把△ABC绕点C顺时针旋转某个角度后得到△A′B′C′,若∠A=30°,∠1=70°,则旋转角等于()A.30°B.50°C.40°D.100°4.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于A.55°B.70°C.125°D.145°5.下列标志既是轴对称图形又是中心对称图形的是()A B C DA.(2,﹣3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,3)7.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A ′B ′C .若∠A =40°.∠B ′=110°,则∠BCA ′的度数是( ).A.110°B.80°C.40°D.30°8.点P (-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( ) A.(-3,0) B.(-1,6) C.(-3,-6) D.(-1,0)9.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D '的坐标是( ) A.(2,10) B.(-2,0) C.(2,10)或(-2,0) D.(10,2)或(-2,0)10.下列图形:线段、角、圆、平行四边形、矩形、正方形中,既是轴对称图形又是中心对称图形的有( )A.6个B.5个C.4个D.3个11.如图,在Rt △ABC 中,∠ACB =90º,∠A =30º,BC =2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( ). A.30,2 B.60,2 C.60,23D.60,3 12.如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4; ③∠AOB =150°;④四边形AOBO ′的面积为6+33AOC AOB93S S+=其中正确的结论是( )二.填空题(题型注释)13.点P (-2,1)向上平移2个单位后的点的坐标为__________ .14.如图,等腰直角△ABC 中,AC =BC ,∠ACB =90°,点O 分斜边AB 为BO :OA =1:3,将△BOC 绕C 点顺时针方向旋转到△AQC 的位置,则∠AQC = .15.如图,在正方形ABCD 中,边AD 绕点A 顺时针旋转角度m (︒<<︒3600m ),得到线段AP ,连接PB ,PC .当△BPC 是等腰三角形时,m 的值为 .16.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (3,0),B (0,4),则点B 100的坐标为_________.三.解答题(共52分)17.如图,已知△ABC 三个顶点的坐标分别为A (-2,-1),B (-3,-3),C (-1,-3), (1)、画出△ABC 向右平移三个单位的对应图形△111C B A ,并写出1A 的坐标;(2)、画出△ABC 关于原点O 对称的△222C B A ,并写出2A 的坐标;AxyO BAC18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′;(2)求BA边旋转到B A′位置时所扫过图形的面积.19.如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.20.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM ;(4分)(2)当AE =1时,求EF 的长.(4分)21.已知:如图,在△ABC 中,∠BAC =1200,以BC 为边向形外作等边三角形△BCD ,把△ABD 绕着点D 按顺时针方向旋转600后得到△ECD ,若AB =3,AC =2,求∠BAD 的度数与AD 的长.CBAE22.如图,C在线段BD上,△ABC和△CDE都是等边三角形,BE与AD有什么关系?请用.旋转的性质证明.......你的结论。
数学北师版八年级上第三章图形的平移与旋转单元检测(附答案)
数学北师版八年级上第三章图形的平移与旋转单元检测(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分)1.下列各组图形中,经过平移一个图形能得到另一个图形的是().2.如图,由“基本图案”正方形ABCO绕O点顺时针旋转90°后的图形是().基本图案3.如图,△ABC和△ACD都是等边三角形,△ACD是由△ABC().A.绕点A顺时针旋转60°得到的B.绕点A顺时针旋转120°得到的C.绕点C顺时针旋转60°得到的D.绕点C顺时针旋转120°得到的4.如图,在5×5方格纸中将图(1)中的图形N平移后的位置如图(2)中所示,那么正确的平移方法是().A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格5.按图中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是().6.如图,图中右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是().7.图中的两个三角形是经过什么变换得到的().A.旋转B.旋转与平移C.旋转与轴对称D.平移与轴对称8.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到下图的是().二、填空题(每小题5分,共20分)9.如图,正方体的棱长为1 cm,将棱AA1平移到棱CC1的位置上,平移的距离是__________.10.一手扶电梯的传送速度为每分钟12 m,小明以每分钟10 m的速度通过电梯上楼,如果小明用1 min到达楼上,那么这部电梯露在外面的长为__________m.11.如图是某公司的商品标志图案.下列说法:①图案是按照轴对称设计的;②图案是按照旋转设计的;③图案的外层“S”是按旋转设计的;④图案的内层“A”是以轴对称设计的.其中正确的有__________(只填序号即可).12.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于__________.三、解答题(共48分)13.(10分)在如图所示的网格中,按要求画出图形:先将△ABC向下平移5格得到△A1B1C1;再以点O为旋转中心,将△ABC沿顺时针方向旋转90°得到△A2B2C2.14.(12分)如图所示的图案,它可以看成是由哪几个基本图形经过怎样的变换产生的?请用学过的平移、旋转、轴对称变换来分析这个图形的形成过程.15.(12分)(1)图甲在方格纸中如何通过平移或旋转这两种变换由图形A得到图形B,再由图形B得到图形C(平移变换要求回答出平移的方向和平移的距离;旋转变换要求回答出旋转中心、旋转方向和旋转角度);(2)图乙是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点O顺时针依次旋转90°,180°,270°,依次画出旋转后得到的图形,你将会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,你来试试吧!16.(14分)如图,在网格中有一个四边形图案.(1)请你画出此图案绕点O顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为1,旋转后点A的对应点依次为A1,A2,A3,求四边形AA1A2A3的面积;(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.参考答案1.答案:C2.答案:A3.答案:A4.解析:在图(2)中找出图(1)中N的位置,然后对照平移后图形N的位置,确定平移方法.答案:C5.解析:变化规律是:先轴对称,再顺时针旋转90°.答案:B6.解析:以△ABC为基本图形,绕着点B逆时针旋转90°,然后再向上平移1个单位,即得到选项A中的三角形;绕着点B顺时针(或逆时针)旋转180°,即得到选项C中的三角形;绕着点B顺时针旋转90°,然后再向下平移2个单位,即得到选项D中的三角形.可见不能由平移或旋转得到的图形就是选项B的三角形,故应选B.答案:B7.解析:两个三角形有两条边在同一条直线上,先将上面的三角形沿这条直线向右平移至两边重合;然后再以这条直线为对称轴作轴对称变换,即可得到下面的三角形.答案:D8.解析:选项A中的图形可以经过平移得到右边的图形,B中的图形可以经过三次旋转(每次旋转90°)得到右边的图形,D中的图形可以经过一次旋转(旋转180°)得到右边的图形.而C中的图形则不能经过平移、旋转或轴对称变换后得到上图.答案:C9.解析:平移的距离即AC的长,由勾股定理得AC.cm10.解析:将小明视为电梯上运动着的物体.小明通过电梯上楼,到达楼上所走路程,相当于这部电梯露在外面的长度.在电梯上小明的速度是(12+10)m/min,所以电梯露在外面的长度为(12+10)×1=22(m).答案:2211.答案:③④12.解析:由题设可知,点P和点P′、点B和点C是对应点,AP和AP′、AB和AC是对应线段,∠BAP和∠CAP′是对应角,所以AP=AP′,∠BAP=∠CAP′,得到△APP′为等腰直角三角形.答案:13.解:如图.14.解:①将一个十字连续平移即可得到;②由上面两个十字绕中心O旋转3次得到,旋转角分别是90°,180°,270°;或左边和上面的四个十字组成一个基本图案,绕点O旋转180°即可得到;③由上面两个十字两次作轴对称变换得到;或左边和下面的四个十字组成一个基本图案,作轴对称变换得到.15.解:(1)将图A向上平移4个单位长度,得到图B;将图B以点P1为旋转中心顺时针旋转90°,再向右平移4个单位长度得图C或将图B向右平移4个单位长度,最后以P2为旋转中心顺时针旋转90°得到图C;(2)如图所示.16. 解:(1)如图.(2)123AA A A S 四边形=123BB B B S 四边形-34BAA S =(3+5)2-4×12×3×5=34, 所以四边形AA 1A 2A 3的面积是34.(3)结论:AB 2+BC 2=AC 2或勾股定理的文字叙述.。
图形的平移与旋转 单元测试(能力提升)(备作业)-八年级数学下册同步备课系列(北师大版)(解析版)
第三章图形的平移与旋转单元测试(能力提升)一、单选题1.下面的每组图形中,平移左边图形可以得到右边图形的一组是()A.B.C.D.【答案】D【解析】分析:根据平移的性质,可以得到平移前后图形全等,由此可知选项A,B是否正确;由图可知选项C是翻折得到的,根据平移的定义,结合选项D的图形,可以确定答案.详解:A、左图与右图的形状不同,所以A选项错误;B、左图与右图的大小不同,所以B选项错误;C、左图通过翻折得到右图,所以C选项错误;D、左图通过平移可得到右图,所以D选项正确.故选D.点睛:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等.2.在下列四种图形变换中,如图图案包含的变换是()A.平移、旋转和轴对称B.轴对称和平移C.平移和旋转D.旋转和轴对称【答案】D【分析】根据图形的形状沿中间的竖线折叠,两部分可重合,里外各一个顺时针旋转8次,可得答案.【解析】解:图形的形状沿中间的竖线折叠,两部分可重合,得轴对称.里外各一个顺时针旋转8次,得旋转.故选:D.【点睛】本题考查了几何变换的类型,平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是沿某条直线翻折得到新图形.观察时要紧扣图形变换特点,认真判断.3.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A 的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【解析】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.4.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)【答案】A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD 经过点O,∵B 的坐标为(﹣2,﹣2),∴D 的坐标为(2,2),故选A.点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.5.如图,将等边三角形OAB 放在平面直角坐标系中,A 点坐标(1,0),将△OAB 绕点O 逆时针旋转60°,则旋转后点B 的对应点B '的坐标为()A.(12 ,2)B.(-1,12)C.(-322)D.(-2,12)【答案】A【分析】如图,作点B 作BH ⊥OA 于H ,设BB ′交y 轴于J .求出点B 的坐标,证明B ,B ′关于y 轴对称,即可解决问题.【解析】解:如图,故点B 作BH ⊥OA 于H ,设BB ′交y 轴于J .∵A(1,0),∴OA=1,∵△AOB是等边三角形,BH⊥OA,∴OH=AH=12OA=12,BH332∴B(1232,∵∠AOB=∠BOB′=60°,∠JOA=90°,∴∠BOJ=∠JOB′=30°,∵OB=OB′,∴BB′⊥OJ,∴BJ=JB′,∴B,B′关于y轴对称,∴B′(-1232,故选:A.【点睛】本题考查了坐标与图形的性质,旋转变换,轴对称,等边三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.6.我们知道,四边形具有不稳定性,如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D ¢处,则点C 的对应点C '的坐标为()A.)B.()2,1C.(D.(【答案】D【分析】由已知条件得到2AD AD '==,1AO AB 12==,根据勾股定理得到OD '==于是得到结论.【解析】解:2AD AD '== ,1AO AB 12==,OD ∴'=,2C D ''= ,//C D AB '',C ∴',故选:D .【点睛】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.7.如图,点D 是等边△ABC 内一点,AD =3,BD =3,CD =ACE 是由△ABD 绕点A 逆时针旋转得到的,则∠ADC 的度数是()A.40°B.45°C.105°D.55°【答案】C【分析】连接DE ,由旋转的性质可证明ADE ∆是等边三角形,得60ADE ∠=︒,3,3DE AD CE BD ====,再由勾股定理的逆定理可证明DCE ∆是等腰直角三角形得出45CDE ∠=︒,从而可得出结论.【解析】解:连接DE ,如图:∵ABC ∆是等边三角形,∴AB =AC ,60BAC ∠=︒∴60BAD CAD ∠+∠=︒由旋转可得,BAD CAE∆≅∆∴,3,3CAE BAD AD AE CE BD ∠=∠====∴60CAE CAD ∠+∠=︒,即60DAE ∠=︒∴DAE ∆是等边三角形,∴DE =AD =3,60ADE ∠=︒∵DE =3,CE =3,CD =∴2229,9,18DE CE CD ===∴222DE CE CD +=∴CDE △是等腰直角三角形,∴45CDE ∠=︒∴6045105ADC ADE CDE ∠=∠+∠=︒+︒=︒故选:C【点睛】此题是旋转的性质,主要考查了等边三角形的性质和判定,勾股定理逆定理,解本题的关键是判断出△ADE 是等边三角形.8.如图,Rt △ABC 中,AB =AC =3,AO =1,D 点在线段BC 上运动,若将AD 绕A 点逆时针旋转90°得到AE ,连接OE ,则在D 点运动过程中,线段OE ²的最小值为()A.1B.2C.3D.4【答案】B【分析】在AB 上截取AQ =AO =1,利用SAS 证明△AQD ≌△AOE ,推出QD =OE ,当QD ⊥BC 时,QD 的值最小,即线段OE ²有最小值,利用勾股定理即可求解.【解析】解:如图,在AB 上截取AQ =AO =1,连接DQ ,∵将AD 绕A 点逆时针旋转90°得到AE ,∴∠BAC =∠DAE =90°,∴∠BAC-∠DAC =∠DAE-∠DAC ,即∠BAD =∠CAE ,在△AQD 和△AOE 中,AQ AO QAD OAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△AQD ≌△AOE (SAS ),∴QD =OE ,∵D 点在线段BC 上运动,∴当QD ⊥BC 时,QD 的值最小,即线段OE ²有最小值,∵△ABC 是等腰直角三角形,∴∠B =45°,∵QD ⊥BC ,∴△QBD 是等腰直角三角形,∵AB =AC =3,AO =1,∴QB =2,∴由勾股定理得QD =22QB 2,∴线段OE ²有最小值为2,故选:B.【点睛】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键.9.把一副三角板(如图甲)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB cm,DC =DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙),这时AB 与CD 1相交于点O ,与D 1E 1相交于点F ,则线段AD 1的长为()cm D.【答案】D【分析】根据等腰直角三角形的性质求出AO =CO =12AB ,再求出OD 1,然后利用勾股定理AD 1=【解析】解:∵旋转角为15°,∴∠OCB =60°﹣15°=45°,∴∠COB =180°﹣45°﹣45°=90°,∴CD 1⊥AB ,又∵∠D =30°∴AO =CO =12AB =12cm ),∴OD 1=DC ﹣CO (cm ),在Rt△AD 1O 中,由勾股定理得,AD 1(cm );故选:D .【点睛】本题考查了旋转的性质,勾股定理,含30°角的直角三角形的性质,等腰直角三角形的性质,熟练掌握勾股定理是解题的关键.10.把一副三角板(如图甲)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB cm,DC cm,把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙),这时AB 与CD 1相交于点O ,与D 1E 1相交于点F .则线段AD 1的长为()cmC.5cm D.3cm【答案】B 【分析】先求出∠ACD =30°,再根据旋转角求出∠ACD 1=45°,然后判断出△ACO 是等腰直角三角形,再根据等腰直角三角形的性质求出AO 、CO ,AB ⊥CO ,再求出OD 1然后利用勾股定理列式计算即可得解.【解析】解:∵∠ACB =∠DEC =90°,∠D =30°,∴∠DCE =90°-30°=60°,∴∠ACD =90°-60°=30°,∵旋转角为15°,∴∠ACD 1=30°+15°=45°,又∵∠CAB =45°,∴△ACO 是等腰直角三角形,∴∠ACO =∠BCO =45°,∵CA =CB ,∴AO =CO =12AB =∵DC =,∴D 1C =DC =∴D 1O =,在Rt △AOD 1中,AD 1故选:B.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,根据等腰直角三角形的性质判断出AB ⊥CO 是解题的关键,也是本题的难点.二、填空题11.点(2,-1)关于原点O 对称的点的坐标为__________.【答案】(-2,1)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【解析】点(2,-1)关于原点O对称的点的坐标是(-2,1).故答案为(-2,1).【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.12.如图,△A′B′C′是由△ABC沿射线AC方向平移得到的.已知∠A=55°,∠B=60°,则∠C′=________.【答案】65°【分析】先根据三角形内角和定理求出∠ACB的度数,再由图形平移的性质得出△ABC≌△A'B'C',根据全等三角形的性质即可得出结论.【解析】∵△ABC中,∠A=55°,∠B=60°,∴∠ACB=180°﹣60°﹣55°=65°.∵△A'B'C'是由△ABC沿射线AC方向平移得到,∴△ABC≌△A'B'C',∴∠C'=∠ACB=65°.故答案为65°.【点睛】本题考查了平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.13.如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4cm2,∠AOB=120°,则图中阴影部分的面积为__________.【答案】4cm 2【分析】根据旋转的性质和图形的特点解答.【解析】每个叶片的面积为4cm 2,因而图形的面积是12cm 2.∵图案绕点O 旋转120°后可以和自身重合,∠AOB 为120°,∴图形中阴影部分的面积是图形的面积的13,因而图中阴影部分的面积之和为4cm 2.故答案为4cm 2.【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.注:旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.14.如图,将等边ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得ACD △,BC 的中点E 的对应点为F,则EAF ∠的度数是_______.【答案】60︒【分析】根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF 的度数.【解析】∵将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD,BC 的中点E 的对应点为F,∴旋转角为60°,E,F 是对应点,则∠EAF 的度数为:60°.故答案为:60°.【点睛】此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.15.如图,ABC 中,AB AC BC 12cm =,=,点D 在AC 上,DC=4cm ,将线段DC 沿CB 方向平移7cm 得到线段EF ,点E F 、分别落在边AB、BC 上,则△EBF 的周长是cm.【答案】13.【解析】∵CD 沿CB 平移7cm 至EF//,7EF CD CF ∴=5,4,BF BC CF EF CD EFB C∴=-===∠=∠,AB AC B C=\Ð=Ð4EB EF ∴==44513EBF C EB EF BF ∴=++=++= 考点:平移的性质;等腰三角形的性质.16.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=_____.20.【答案】0【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.17.如图,OA⊥OB,Rt△CDE的边CD在OB上,∠ECD=45°,CE=4,若将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则OC的长度为______.【答案】2【解析】解:∵将三角形CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,∴∠ECN =75°.∵∠ECD =45°,∴∠NCO =180°﹣75°﹣45°=60°.∵AO ⊥OB ,∴∠AOB =90°,∴∠ONC =30°.∵CE =4,∴CN =4,∴OC =2.故答案为2.点睛:本题考查了等腰直角三角形性质,勾股定理,含30度角的直角三角形性质,旋转性质,三角形的内角和定理等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,但有一定的难度.18.如图,将Rt△ABC 沿着直角边CA 所在的直线向右平移得到Rt△DEF,已知BC=a,CA =b,FA=13b,则四边形DEBA 的面积等于__________.【答案】23ab 【分析】根据平移的性质得出AD 23=b ,再利用平行四边形的面积公式解答即可.【解析】由题意可得:FD =CA =b ,BC =EF =a ,∴1233AD FD FA b b b =-=-=,∴四边形DEBA 的面积等于AD •EF 23ab =.故答案为23 ab.【点睛】本题考查了平移的性质,关键是根据平移的性质得出AD23=b.19.如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点A,B分别落在x、y 轴的正半轴上,∠OAB=60°,点A的坐标为(1,0),将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.1712π【解析】【分析】在Rt△AOB中,由A点坐标得OA=1,根据锐角三角形函数可得旋转过程中,三角板的角度和边的长度不变,所以点B运动的路径与坐标轴围成的图形面积:S=2290160211123602360ππ⨯⨯⨯⨯⨯+⨯+,计算即可得出答案.【解析】在Rt△AOB中,∵A(1,0),∴OA=1,又∵∠OAB=60°,∴cos60°=OAAB,∵在旋转过程中,三角板的角度和边的长度不变,∴点B运动的路径与坐标轴围成的图形面积:S=2290160211123602360ππ⨯⨯⨯⨯⨯+⨯+1712+π,1712π.【点睛】本题考查了扇形面积的计算,锐角三角函数的定义,旋转的性质等,根据题意正确画出图形是解题的关键.20.在平面直角坐标系xOy 中,直线23y x =-+分别交x 轴、y 轴于C 、A 两点.将射线AM 绕着点A 顺时针旋转45︒,得到射线AN .点D 为AM 上的动点,点B 为AN 上的动点,点C 在MAN ∠的内部.(1)BCD △周长的最小值是____________________;(2)当BCD △的周长取得最小值,且BD =BCD △的面积为__________.【答案】43【分析】(1)可作点C 关于射线AM 的对称点C 1,点C 关于射线AN 的对称点C 2.连接C 1C 2.利用两点之间线段最短,可得到当B 、D 两点与C 1、C 2在同一条直线上时,△BCD 的周长最小,最小值为线段C 1C 2的长.(2)根据(1)的作图可知四边形AC 1CC 2的对角互补,结合轴对称可得∠BCD =90°.利用勾股定理得到CB 2+CD 2=BD 2=(3)2,因为CB +CD ﹣3,可推出CB •CD 的值,进而求出三角形的面积.【解析】(1)∵直线y =23x -+与x 轴、y 轴分别交于C 、A 两点,把y =0代入,解得x把x =0代入,解得y =2,∴点C ,点A 的坐标为(0,2).∴AC =4.作点C 关于射线AM 的对称点C 1,点C 关于射线AN 的对称点C 2.由轴对称的性质,可知CD =C 1D ,CB =C 2B .∴CB +BD +CD =C 2B +BD +C 1D =C 1C 2连接AC 1、AC 2,可得∠C 1AD =∠CAD ,∠C 2AB =∠CAB ,AC 1=AC 2=AC =4.∵∠DAB =45°,∴∠C 1AC 2=90°.连接C 1C 2.12C C =,∵两点之间线段最短,∴当B 、D 两点与C 1、C 2在同一条直线上时,△BCD 的周长最小,最小值为线段C 1C 2的长.∴△BCD 的周长的最小值为(2)根据(1)的作图可知四边形AECF 的对角互补,其中∠DAB =45°,因此,∠C 2CC 1=135°.即∠BCC 2+∠DCC 1+∠BCD =135°,∴2∠BCC 2+2∠DCC 1+2∠BCD =270°①,∵∠BC 2C =∠BCC 2,∠DCC 1=∠DC 1C ,∠BC 2C +∠DC 1C +∠BCC 2+∠DCC 1+∠BCD =180°,∴2∠BCC 2+2∠DCC 1+∠BCD =180°②,①-②得,∠BCD =90°.∴CB 2+CD 2=BD 22=509,∵CB +CD 33=,(CB +CD )2=CB 2+CD 2+2CB •CD ,∴2CB •CD =(CB +CD )2-(CB 2+CD 2)=2725016()393-=∴1423S CB CD =⋅⋅=.故答案为:43【点睛】本题考查了最短路径和勾股定理及一次函数的性质,解题关键利用轴对称确定最短路径,结合勾股定理来解决问题.三、解答题21.在1010⨯的正方形网格中,小正方形的边长均为1个单位长度.(1)画出ABC 绕点O 逆时针旋转90°的111A B C △;(2)再画出ABC 关于点O 的中心对称图形222A B C △.【答案】(1)见解析(2)见解析【分析】(1)根据旋转的性质即可作图;(2)根据中心对称的性质即可作图.(1)如图所示;(2)如图所示△A 2B 2C 2即为所求.【点睛】本题主要考查了作图-旋转变换,熟练掌握旋转的性质是解题的关键.22.如图,平面直角坐标系中,已知点(3,3)-A ,(5,1)B -,(2,0)C -,(,)P a b 是ABC ∆的边AC 上任意一点,ABC ∆经过平移后得到△111A B C ,点P 的对应点为1(6,2)P a b +-.(1)直接写出点1A ,1B ,1C 的坐标.(2)在图中画出△111A B C .(3)连接1AA ,AO ,1AO ,求1ΔAOA的面积.(4)连接1BA ,若点Q 在y 轴上,且三角形1QBA 的面积为8,请直接写出点Q 的坐标.【答案】(1)1(3,1)A ,1(1,1)B -,1(4,2)C -(2)见解析(3)1ΔAOA 的面积=6(4)(0,1)-或(0,3)【分析】(1)利用P 点和P 1的坐标特征得到平移的方向与距离,然后利用此平移规律写出点A 1,B 1,C 1的坐标;(2)利用点A 1,B 1,C 1的坐标描点即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△AOA 1的面积;(4)设Q (0,t ),利用三角形面积公式得到12×8×|t −1|=8,然后解方程求出t 得到Q 点的坐标.(1)解:1(3,1)A ,1(1,1)B -,1(4,2)C -;(2)解:如图,△111A B C 为所作;(3)解:1ΔAOA 的面积11163333162222=⨯-⨯⨯-⨯⨯-⨯⨯9318622=---,1812=-,6=;(4)解:设(0,)Q t ,()5,1B - ,1(3,1)A ,()1358BA ∴=--=,三角形1QBA 的面积为8,∴18182t ⨯⨯-=,解得1t =-或3t =,Q∴点的坐标为(0,1)-或(0,3).【点睛】本题考查了作图−平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.如图,在6×6的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,A,B两点均在格点上.请按要求在图①,图②,图③中画图:(1)在图①中,画等腰△ABC,使AB为腰,点C在格点上.(2)在图②中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,C,D两点均在格点上.(3)在图③中,画△ABC,使∠ACB=90°,面积为5,点C在格点上.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);(2)作边长为2,高为4的平行四边形即可;(3)根据(1)的结论,作BG边的中线,即可得解.【解析】解:(1)如图①中,△ABC即为所求作(答案不唯一);(2)如图②中,平行四边形ABCD 即为所求作;(3)如图③中,△ABC 即为所求作(答案不唯一);∵AB =AG ,BC =CG ,∴AC ⊥BG ,∵△ABG 的面积为154102⨯⨯=,∴△ABC 的面积为5,且∠ACB =90°.【点睛】本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.24.如图,已知△ABC是等边三角形,在△ABC外有一点D,连接AD,BD,CD,将△ACD绕点A按顺时针方向60 旋转得到△ABE,AD与BE交于点F,∠BFD=97°.(1)求∠ADC的大小;(2)若∠BDC=7°,BD=2,BE=4,求AD的长.【答案】(1)23°;(2)【分析】(1)由旋转的性质可得AB=AC,∠ADC=∠E,∠CAB=∠DAE=60°,由三角形的内角和定理可求解;(2)连接DE,可证△AED是等边三角形,可得∠ADE=60°,AD=DE,由旋转的性质可得△ACD≌△ABE,可得CD=BE=4,由勾股定理可求解.【解析】解:(1)∵将△ACD绕点A按顺时针方向旋转得到△ABE,∴AB=AC,∠ADC=∠E,∠CAB=∠DAE=60°,∵∠BFD=97°=∠AFE,∴∠E=180°−97°−60°=23°,∴∠ADC=∠E=23°;(2)如图,连接DE,∵AD=AE,∠DAE=60°,∴△AED是等边三角形,∴∠ADE=60°,AD=DE,∵将△ACD绕点A按顺时针方向旋转得到△ABE,∴△ACD≌△ABE,∴CD=BE=4,∵∠BDC=7°,∠ADC=23°,∠ADE=60°,∴∠BDE=90°,∴DE2242-23BE BD-22∴AD=DE=23【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.的顶点25.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,ABC都在格点上,请解答下列问题:(1)作出ABC 向左平移4个单位长度后得到的111A B C △,并写出点1C 的坐标;(2)作出ABC 关于原点O 对称的222A B C △,并写出点2C 的坐标;222A B C △可看作111A B C △以点(________,________)为旋转中心,旋转________°得到的.(3)已知ABC 关于直线l 对称的333A B C △的顶点3A 的坐标为()4,2--,请直接写出直线l 的函数解析式________.【答案】(1)图见详解,C 1(-1,2);(2)图见详解,C 2(-3,-2),(-2,0),180;(3)y =-x【分析】(1)根据平移的性质即可画出ABC 向左平移4个单位后的111A B C △;(2)根据中心对称的性质即可作出ABC 关于原点O 对称的222A B C △,再根据旋转的性质即可得出结论;(3)根据轴对称的性质,可以知道直线必过点(-1,1),即可求出解析式.【解析】解:(1)如图所示,点C 1的坐标(-1,2);(2)如图所示,点C 2的坐标(-3,-2),222A B C △可看作111A B C △以点(-2,0)为旋转中心,旋转180°得到的;(3)因为A 的坐标为(2,4),A 3的坐标为(-4,-2),所以直线必过点(-1,1),所以直线的解析式为y =-x .【点睛】本题主要考查了平移,轴对称,中心对称的作图,熟练其概念准确的画出图形是解决本题的关键.26.新定义:如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠、BOC ∠、AOB ∠.若这三个角中有一个角是另外一个角的2倍,则称射线OC 为AOB ∠的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)【阅读理解】(1)角的平分线______这个角的“幸运线”;(填“是”或“不是”)【初步应用】(2)如图①,48AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,则AOC ∠的度数为______;(直接写出答案)【解决问题】(3)如图②,已知50AOB ∠=︒,射线OM 从OA 出发,以每秒10°的速度绕O 点顺时针旋转,同时,射线ON 从OB 出发,以每秒15°的速度绕O 点顺时针旋转,设运动的时间为t 秒()05t <<.若OM 、ON 、OB 三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求运动的时间t 的值.【实际运用】(4)周末,小丽帮妈妈到附近的“中通快递”网点取包裹,出家门时小丽看了看时钟,恰好是下午3点整,取好包裹回到家时,小丽再看了看时钟,还没有到下午3点半,但此时分针与时针恰好重合.问小丽帮妈妈取包裹用了多少分钟?【答案】(1)是;(2)16°或24°或32°;(3)2或207或54;(4)18011.【分析】(1)根据幸运线定义即可求解;(2)分3种情况,根据幸运线定义得到方程求解即可;(3)根据幸运线定义得到方程求解即可;(4)利用时针1分钟走0.5︒,分针1分钟走6︒,可解答问题.【解析】解:(1)一个角的平分线是这个角的“幸运线”;故答案为:是;(2)①设∠AOC =x ,则∠BOC =2x ,由题意得,x +2x =48°,解得x =16°,②设∠AOC =x ,则∠BOC =x ,由题意得,x +x =48°,解得x =24°,③设∠AOC =x ,则∠BOC =12x ,由题意得,x +12x =48°,解得x =32°,故答案为:16°或24°或32°;(3)OB 是射线OM 与ON 的幸运线,则∠BOM =12∠MON ,即50-10t =12(50-10t +15t ),解得t =2;∠BOM =13∠MON ,即50-10t =13(50-10t +15t ),解得t =207;∠BOM =23∠MON ,即50-10t =23(50-10t +15t ),解得t =54;故t 的值是2或207或54;(4)时针1分钟走300.560︒=︒,分针1分钟走360660︒=︒,设小丽帮妈妈取包裹用了x 分钟,则有0.5x +3×30=6x ,解得:x =18011.【点睛】本题考查了旋转的性质,幸运线定义,学生的阅读理解能力及知识的迁移能力.理解“幸运线”的定义是解题的关键.27.如图,已知在ABC 中,AB AC =,D 、E 是BC 边上的点,将ABD △绕点A 旋转,得到ACD '△,连接D E '.(1)当120BAC ∠=︒时,60DAE ∠=︒时,求证:DE D E '=;(2)当DE D E '=时,DAE ∠与BAC ∠有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当90BAC ∠=︒,BD 与DE 满足怎样的数量关系时,D EC '△是等腰直角三角形?(直接写出结论,不必证明)【答案】(1)见解析;(2)∠DAE=12∠BAC,见解析;(3)DE2BD,见解析【分析】(1)根据旋转的性质可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,从而得到∠DAE=∠D′AE,再利用“边角边”证明△ADE和△AD′E全等,根据全等三角形对应边相等证明即可;(2)根据旋转的性质可得AD=AD′,再利用“边边边”证明△ADE和△AD′E全等,然后根据全等三角形对应角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,从而得解;(3)求出∠D′CE2倍可得D′E=2CD′,再根据旋转的性质解答即可.【解析】(1)证明:∵△ABD绕点A旋转得到△ACD′,∴AD=AD′,∠CAD′=∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D′AE=∠CAD′+∠CAE=∠BAD+∠CAE=∠BAC−∠DAE=120°−60°=60°,∴∠DAE=∠D′AE,在△ADE和△AD′E中,AD AD DAE D AE AE AE '⎧⎪∠∠'⎨⎪⎩===,∴△ADE ≌△AD ′E (SAS ),∴DE =D ′E ;(2)解:∠DAE =12∠BAC .理由如下:在△ADE 和△AD ′E 中,AD AD AE AE DE D E '⎧⎪⎨⎪'⎩===,∴△ADE ≌△AD ′E (SSS ),∴∠DAE =∠D ′AE ,∴∠BAD +∠CAE =∠CAD ′+∠CAE =∠D ′AE =∠DAE ,∴∠DAE =12∠BAC ;(3)解:∵∠BAC =90°,AB =AC ,∴∠B =∠ACB =∠ACD ′=45°,∴∠D ′CE =45°+45°=90°,∵△D ′EC 是等腰直角三角形,∴D ′ECD ′,由(2)DE =D ′E ,∵△ABD 绕点A 旋转得到△ACD ′,∴BD =C ′D ,∴DEBD .【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.。
北师大版数学八年级上册第三章图形的平移与旋转测试卷
北师大版数学八年级上册第三章图形的平移与旋转测试卷一、选择题(每题3分,共30分)1、下列现象是数学中的平移的是()A.冰化成水B.电梯由一楼升到二楼C.导弹击中目标后爆炸D.卫星绕地球运动2、.将图形平移,下列结论错误的是()A.对应线段相等B.对应角相等C.对应点所连的线段互相平分D.对应点所连的线段相等3、国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称 B.平移C.旋转 D.平移和旋转4、将长度为5cm 的线段向上平移10cm所得线段长度是()A、10cmB、5cmC、0cmD、无法确定5、下列运动是属于旋转的是( )A.滾动过程中篮球的滚动B.钟表的钟摆的摆动C.气球升空的运动D.一个图形沿某直线对折过程6、.下列图形中,是由(1)仅通过平移得到的是()7、下列说法正确的是( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D.由平移得到的图形也一定可由旋转得到8、如右图,ΔABC和ΔADE均为正三角形,则图中可看作是旋转关系的三角形是( )A. ΔABC和ΔADEB. ΔABC和ΔABDC. ΔABD和ΔΔACE和ΔADE9、将图形按顺时针方向旋转900( )A C D10、如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转900得到△DCF,连结EF,若∠BEC=600,则∠EFD的度数为()A、100B、150C、200D、250二、填空题(每题3分,共30分)1、图形的平移、旋转、轴对称中,其相同的性质是_________.2、经过平移,对应点所连的线段______________.3、经过旋转,对应点到旋转中心的距离___________.4、.图形的旋转只改变图形的_______,而不改变图形的_______.5、9点30分,时钟的时针和分针的夹角是______.6、等边三角形绕着它的三边中线的交点旋转至少______度,能够与本身重合.7、边长为4 cm 的正方形ABCD 绕它的顶点A 旋转180°,顶点B 所经过的路线长为______cm . 8、甲图向上平移2个单位得到乙图,乙图向左平移2个单位得到丙图,丙图向下平移2个单位得到丁图,那么丁图向______平移______个单位可以得到甲图.9、如图,当半径为30cm 的转动轮转过120 角时,传送带上的物体A 平移的距离为 cm 。
第三章图形的平移与旋转练习题及答案全套北师大版八年级上册数学
第三章图形的平移与旋转练习题及答案全套北师大版八年级上册数学情景再现:你对以上图片熟悉吗?请你回答以下几个问题:(1)汽车中的乘客在乘车过程中,身高、体重改变了吗?乘客所处的地理位置改变了吗?(2)传送带上的物品,比如带有图标的长方体纸箱,向前移动了20米,它上面的图标移动了多少米?(3)以上都是我们常见的平移问题,认真想一想,你还能举一些平移的例子吗? 1.如图1,面积为5平方厘米的梯形A′B′C′D′是梯形ABCD经过平移得到的且∠ABC=90°.那么梯形ABCD的面积为________,∠A′B′C=________. 图1 2.在下面的六幅图中,(2)(3)(4)(5)(6)中的图案_________可以通过平移图案(1)得到的. 图2 3.请将图3中的“小鱼”向左平移5格. 图3 4.请欣赏下面的图形4,它是由若干个体积相等的正方体拼成的.你能用平移分析这个图形是如何形成的吗?填空:1、如下左图,△ABC经过平移到△A′B′C′的位置,则平移的方向是______,平移的距离是______,约厘米______. 2、如下中图,线段AB是线段CD经过平移得到的,则线段AC与BC的关系为() A.相交 B.平行 C.相等 D.平行且相等 3、如下右图,△ABC经过平移得到△DEF,请写出图中相等的线段______,互相平行的线段______,相等的角______.(在两个三角形的内角中找) 4、如下左图,四边形ABCD平移后得到四边形EFGH,则:①画出平移方向,平移距离是_______;(精确到0.1cm)②HE=_________,∠A=_______,∠A=_______. ③DH=_________=_______A=_______. 5、如下右图,△ABC平移后得到了△DEF,(1)若∠A=28o,∠E=72o,BC=2,则∠1=____o,∠F=____o,EF=____o;(2)在图中A、B、C、D、E、F六点中,选取点_______和点_______,使连结两点的线段与AE平行. 6、如图,请画出△ABC向左平移4格后的△A1B1C1,然后再画出△A1B1C1向上平移3格后的△A2B2C2,若把△A2B2C2看成是△ABC经过一次平移而得到的,那么平移的方向是______,距离是____的长度. 二、选择题: 7、如下左图,△ABC经过平移到△DEF的位置,则下列说法:①AB‖DE,AD=CF=BE;②∠ACB=∠DEF;③平移的方向是点C到点E的方向;④平移距离为线段BE的长. 其中说法正确的有() A.个 B.2个 C.3个 D.4个 8、如下右图,在等边△ABC中,D、E、F分别是边BC、AC、AB的中点,则△AFE经过平移可以得到()A.△DEF B.△FBD C.△EDC D.△FBD和△EDC 三、探究升级: 1、如图,△ABC上的点A平移到点A1,请画出平移后的图形△A1B1C1. △ABC经过平移后得到△DEF,这时,我们可以说△ABC与△DEF是两个全等三角形,请你说出全等三角形的一些特征,并与同伴交流. 4、如下图中,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,则草坪的面积是______. 5、利用如图的图形,通过平移设计图案,并用一句诙谐、幽默的词语概括你所画的图形. 一、填空、选择题: 1、图形的旋转是由____和____决定的,在旋转过程中位置保持不动的点叫做____,任意一对对应点与旋转中心连线所成的角叫做_____. 2、如下图,如果线段MO绕点O旋转90°得到线段NO,在这个旋转过程中,旋转中心是_______,旋转角是_______,它时______°. 3、如图,在下列四张图中不能看成由一个平面图形旋转而产生的是() 4、请你先观察图,然后确定第四张图为( ) 如下左图,△ABC绕着点O旋转后得到△DEF,那么点A的对应点是_______,线段AB的对应线段是_____,_____的对应角是∠F.6、如下中图,△ABC与△BDE都是等腰三角形,若△ABC经旋转后能与△BDE重合,则旋转中心是________,旋转了______°.7、如下右图,C是AB上一点,△ACD和△BCE都是等边三角形,如果△ACE经过旋转后能与△DCB重合,那么旋转中心是_______,旋转了______°,点A的对应点是_______. 二、解答题:8、,△ABC绕顶点C旋转某一个角度后得到△A′B′C,问:(1)旋转中心是哪一点?(2)旋转角是什么?(3)如果点M是BC的中点,那么经过上述旋转后,点M转到了什么位置?9、观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?三、探究升级 10、如图,△ACE、△ABF都是等腰三角形,∠BAF=∠CAE=90°,那么△AFC是哪一点为旋转中心,旋转多少度之后能与另一个三角形重合?点F的对应点是什么?一、选择题 1.平面图形的旋转一般情况下改变图形的() A.位置 B.大小 C.形状 D.性质 2.9点钟时,钟表的时针和分针之间的夹角是()A.30°B.45° C.60° D.90° 3.将平行四边形ABCD旋转到平行四边形A′B′C′D′的位置,下列结论错误的是()A.AB=A′B′ B.AB‖A′B′ C.∠A=∠A′D.△ABC≌△A′B′C′二、填空题 4.钟表上的指针随时间的变化而移动,这可以看作是数学上的_______. 5.菱形ABCD绕点O沿逆时针方向旋转到四边形,则四边形是________. 6.△ABC绕一点旋转到△A′B′C′,则△ABC和△A′B′C′的关系是_______. 7.钟表的时针经过20分钟,旋转了_______度. 8.图形的旋转只改变图形的_______,而不改变图形的_______. 三、解答题 9.下图中的两个正方形的边长相等,请你指出可以通过绕点O旋转而相互得到的图形并说明旋转的角度. 10.在图中,将大写字母H绕它右上侧的顶点按逆时针方向旋转90°,请作出旋转后的图案. 11.如图,菱形A′B′C′D′是菱形ABCD绕点O顺时针旋转90°后得到的,你能作出旋转前的图形吗? 12.Rt△ABC,绕它的锐角顶点A分别逆时针旋转90°、180°和顺时针旋转90°,(1)试作出Rt△ABC旋转后的三角形;(2)将所得的所有三角形看成一个图形,你将得到怎样的图形? 13.如图,将右面的扇形绕点O按顺时针方向旋转,分别作出旋转下列角度后的图形:(1)90°;(2)180°;(3)270°. 你能发现将扇形旋转多少度后能与原图形重合吗? 14.如图,分析图中的旋转现象,并仿照此图案设计一个图案. 看一看:下列三幅图案分别是由什么“基本图形”经过平移或旋转而得到的? 1. 2. 3. 试一试:怎样将下图中的甲图变成乙图?做一做: 1、如图①,在正方形ABCD中,E是AD 的中点,F是BA延长线上的一点,AF=AB,(1)△ABE≌△ADF.吗?说明理由。
北师大版八年级数学上册第三章_图形的旋转与平移测试题
北师大版八年级数学上册第三章_图形的旋转与平移测试题第三章图形的旋转与平移一、选择题1. 以下现象:①荡秋千;②呼啦圈;③跳绳;④ 转陀螺.其中是旋转的有().(A )①② (B )②③ (C )③④ (D )①④2. 下列图形中只能用其中一部分平移可以得到的是().(A )(B )(C )(D )3. 下列标志既是轴对称图形又是中心对称图形的是().(A )(B )(C )(D )4. 如图1,四边形EFGH 是由四边形ABCD 平移得到的,已知,AD=5,∠B=70°,则下列说法中正确的是 ( ).(A )FG=5, ∠G=70° (B)EH=5, ∠F=70° (C )EF=5,∠F=70° (D) EF=5,∠E=70°5. 如图3,△OAB 绕点O 逆时针旋转90°到△OCD 的位置,已知∠AOB=45°,则∠AOD 的度数为().(A )55° (B )45° (C )40° (D )35°6. 同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是看到的万花筒的一个图案,如图3中所有小三角形均是全等的等边三角形,其中的菱形AEFG 可以看成是把菱形ABCD 以A 为中心().(A )顺时针旋转60°得到(B )逆时针旋转60°得到(C )顺时针旋转120°得到(D )逆时针旋转120°得到7. 如图,甲图案变成乙图案,既能用平移,又能用旋转的是().8. 下列图形中,绕某个点旋转180°能与自身重合的图形有().1)正方形;2)等边三角形;3)长方形;4)角;5)平行四边形;6)圆. (A )2个(B )3个(C )4个(D )5个9. 如图,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF,则下列结论中,错误的是().(A )BE=EC (B )BC=EF (C )AC=DF (D )△ABC ≌△DEF10. 下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是().(A )?30 (B )?45 (C )?60 (D )?90二、填空题11. 在旋转的过程中,要确定一个图形的旋转后的位置,除了知道原来图形的位置和旋转方向外,还需要知道和 . 12. 如图5所示,右边的图形是左边的图形向右平移格得到的.13. 如图6,在Rt OAB ?中,90OAB ∠=?,6OA AB ==,将OAB ?绕点O 沿逆时针方向旋转90?得到11OA B ?,则线段1OA 的长是;1AOB ∠的度数是 .14.经过平移,对应点所连的线段______________;经过旋转,对应点到旋转中心的距离___________;图形的旋转只改变图形的_______,而不改变图形的_______.15.边长为4 cm 的正方形ABCD 绕它的顶点A 旋转180°,顶点B 所经过的路线长为______cm .16. 如图7,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD BC ,于E F ,,则阴影部分的面积是.17. 如图所示,在平面内将Rt △ABC 绕直角顶点C 逆时针旋转90°得到Rt △EFC.若AB=5,BC=1,则线段BE 的长为.18. 如图9,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转一定的角度后能与△CB /P 重合.若PB=3,则P /P = .19.将长度为8cm 的线段向下平移3cm ,平移后的线段长度为三、简答题20如图,△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP绕点A 逆时针旋转后与△ACP / 重合,如果AP=3,那么线段P P /的长是多少?21、如图所示,在边长为1的网格中作出△ABC 绕点A 按逆时针方向旋转90o,再向下平移2格后的图形△A 1B 1C 122.如图,D 为正三角形ABC 内部一点,将BDC ?绕点C 旋转成AEC ?,则CDE ?是什么样的三角形,请说明理由;23.在锐角△ABC 中,AB =4,BC =5,∠ACB =45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;图7 A E D CF OB。
第三章 图形的平移与旋转(基础卷)(解析版)
《阳光测评》2020-2021学年下学期八年级数学单元提升卷【北师大版】第三章图形的平移与旋转(基础卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.在平面直角坐标系中,把点A(﹣2,2)平移到点A'(﹣5,2),其平移方法是()A.向上平移3个单位B.向下平移3个单位C.向左平移3个单位D.向右平移3个单位【答案】C【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【解答】解:把点A(﹣2,2)平移到点A'(﹣5,2),其平移方法是向左平移3个单位,故选:C.【知识点】坐标与图形变化-平移2.下列运动属于平移的是()A.急刹车时汽车在地面上的滑动B.投篮时的篮球运动C.冷水加热过程中小气泡上升成为大气泡D.随风飘动的树叶在空中的运动【答案】A【分析】根据平移的定义对各选项分析判断即可得解.【解答】解:A、急刹车时汽车在地面上的滑动,是平移,故本选项正确;B、投篮时的篮球不沿直线运动,不是平移,故本选项错误;C、冷水加热过程中小气泡上升成为大气泡,有大小变化,不符合平移定义,故本选项错误;D、随风飘动的树叶在空中不沿直线运动,不是平移,故本选项错误.故选:A.【知识点】生活中的平移现象3.在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是()A.45°B.60°C.75°D.90°【答案】D【分析】根据旋转角的概念找到∠BOB′是旋转角,从图形中可求出其度数.【解答】解:根据旋转角的概念:对应点与旋转中心连线的夹角,可知∠BOB′是旋转角,且∠BOB′=90°,故选:D.【知识点】旋转的性质4.如图,△DEF是由△ABC绕点O旋转180°而得到的,则下列结论不成立的是()A.点A与点D是对应点B.BO=EOC.∠ACB=∠FDE D.AB∥DE【答案】C【分析】旋转180°后,对应点与旋转中心共线,对应线段平行且相等,对应点到旋转中心的距离相等,对应角相等,其中∠ACB与∠FDE不是对应角,不能判断相等.【解答】解:根据旋转的性质可知,点A与点D是对应点,BO=EO,AB∥DE,∠ACB=∠DFE≠∠FDE.故选:C.【知识点】旋转的性质5.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形和中心对称图形逐一判断即可得.【解答】解:A.此图案不是轴对称图形,是中心对称图形,不符合题意;B.此图案是轴对称图形,也是中心对称图形,符合题意;C.此图案是轴对称图形,不是中心对称图形,不符合题意;D.此图案是轴对称图形,不是中心对称图形,不符合题意;故选:B.【知识点】中心对称图形、轴对称图形6.已知A点坐标为(2,3),则点A关于原点对称的点的坐标为()A.(﹣3,﹣2)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)【答案】C【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:点A的坐标为(2,3),则点A关于原点对称的点B的坐标为(﹣2,﹣3),故选:C.【知识点】关于原点对称的点的坐标7.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是()A.B.C.D.【答案】C【分析】根据轴对称及旋转对称的定义,结合各选项进行判断即可.【解答】解:A、即运用了轴对称也利用了旋转对称,故本选项错误;B、即运用了轴对称也利用了旋转对称,故本选项错误;C、没有运用旋转,也没有运用轴对称,故本选项正确;D、利用了轴对称,故本选项错误;故选:C.【知识点】利用旋转设计图案、利用轴对称设计图案8.如图,在Rt△ABC中,∠ACB=90°,∠ABC=25°.将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A'B'C使得点A′恰好落在AB边上,则α等于()A.55°B.50°C.65°D.60°【答案】B【分析】根据三角形内角和定理求出∠A,再利用等腰三角形的性质求出∠ACA′即可解决问题.【解答】解:∵∠ACB=90°,∠ABC=25°,∴∠A=90°﹣∠B=65°,由旋转的性质得:CA=CA′,∴∠A=∠CA′A=65°,∴α=∠ACA′=180°﹣2×65°=50°,故选:B.【知识点】直角三角形的性质、旋转的性质9.已知A(1,﹣3),B(2,﹣2),现将线段AB平移至A1B1,如果A1(a,1),B1(5,b),那么a b的值是()A.32B.16C.5D.4【答案】B【分析】利用平移的规律求出a,b即可解决问题.【解答】解:由题意:a=4,b=2,∴a b=42=16,故选:B.【知识点】坐标与图形变化-平移10.数学兴趣小组在“中学生学习报”中了解到“直角三角形斜边上的中线等于斜边的一半”,用含30°角的直角三角板做实验,如图,∠ACB=90°,BC=6cm,M,N分别是AB,BC的中点,标记点N的位置后,将三角板绕点C逆时针旋转,点M旋转到点M′,在旋转过程中,线段NM′的最大值是()A.7cm B.8 cm C.9cm D.10cm【答案】C【分析】根据直角三角形的性质得到AB=2BC=12,CM=6,CN=3,在旋转过程中,点M′始终在以C 为圆心,CM为半径的圆上,当M′旋转当与B,C在一条直线上时,即到D的位置时,线段NM′的值最大,于是得到结论.【解答】解:∵∠ACB=90°,BC=6cm,∠A=30°,∴AB=2BC=12,∵M,N分别是AB,BC的中点,∴CM=6,CN=3,∵将三角板绕点C逆时针旋转,点M旋转到点M′,在旋转过程中,点M′始终在以C为圆心,CM为半径的圆上,∴当M′旋转当与B,C在一条直线上时,即到D的位置时,线段NM′的值最大,即NM′的最大值=DN=6+3=9,故选:C.【知识点】三角形中位线定理、旋转的性质、含30度角的直角三角形、直角三角形斜边上的中线二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.如图,将△ABC沿射线AC平移得到△DEF,若AF=17,DC=7,则AD=.【答案】5【分析】根据平移的性质得出AD=CF,再利用AF=17,DC=7,即可求出AD的长.【解答】解:∵将△ABC沿射线AC平移得到△DEF,AF=17,DC=7,∴AD=CF,∴AF﹣CD=AD+CF,∴17﹣7=2AD,∴AD=5,故答案为:5.【知识点】平移的性质12.在平面直角坐标系中,点M的坐标是(﹣2,3),作点M关于y轴的对称点,得到点M′,再将点M′向下平移4个单位,得到M″,则M″点的坐标是﹣.【答案】(2,-1)【分析】先根据关于y轴对称的点的坐标特征得到M′的坐标为(2,3),然后根据点平移的坐标变换特征写出M″点的坐标.【解答】解:点M(﹣2,3)关于y轴的对称点M′的坐标为(2,3),把点M′向下平移4个单位得到M″的坐标为(2,﹣1).故答案为(2,﹣1).【知识点】坐标与图形变化-平移、关于x轴、y轴对称的点的坐标13.如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A、C、B′三点共线,那么旋转角度的大小为度.【答案】135【分析】旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.【解答】解:根据旋转的性质可知,∠ACB=∠A′CB′=45°,那么旋转角度的大小为∠ACA′=180°﹣45°=135°.【知识点】旋转的性质14.如图,△ADE是由△ABC绕A点旋转180度后得到的.那么,△ABC与△ADE关于A点对称,A点叫做.【答案】【第1空】中心【第2空】对称中心【分析】把一个图形绕一点旋转180度,能够与另一个图形重合,则这个点就叫做对称点,这两个图形就是中心对称,依据定义即可解决.【解答】解:△ABC与△ADE关于A点中心对称,A点叫做对称中心.【知识点】中心对称15.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是.【答案】②【分析】通过观察发现,当涂黑②时,所形成的图形为中心对称图形.【解答】解:如图,把标有序号②的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故答案为:②.【知识点】利用旋转设计图案16.在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,…,依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度;当n被3除,余数为1时,则向右走1个单位长度;当n被3除,余数为2时,则向右走2个单位长度,当走完第8步时,棋子所处位置的坐标是;当走完第2018步时,棋子所处位置的坐标是.【答案】【第1空】(9,2)【第2空】(2019,672)【分析】设走完第n步,棋子的坐标用A n来表示.列出部分A点坐标,发现规律“A3n(3n,n),A3n+1(3n+1,n),A3n+2(3n+3,n)”,根据该规律即可解决问题.【解答】解:设走完第n步,棋子的坐标用A n来表示.观察,发现规律:A0(0,0),A1(1,0),A2(3,0),A3(3,1),A4(4,1),A5(6,1),A6(6,2),…,∴A3n(3n,n),A3n+1(3n+1,n),A3n+2(3n+3,n).∵8=2×3+2,∴A8(9,2).∵2018=672×3+2,∴A2018(2019,672).故答案为:(9,2),(2019,672).【知识点】坐标与图形变化-平移三、解答题(本大题共9小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.如图,在边长为1的小正方形组成的网格中,△OAB的顶点都在格点上.(1)请作出△OAB关于直线CD对称的△O1A1B1;(2)请将△OAB绕点B顺时针旋转90°,画出旋转后的△BO2A2.【分析】(1)△OAB关于直线CD对称的△O1A1B1在CD的右侧,对应点到CD的距离相等;(2)将△OAB的三个顶点分别绕点B顺时针旋转90°,再顺次连接所得的三个顶点可得旋转后的△BO2A2.【解答】解:(1)如图所示,△O1A1B1即为所求;(2)如图所示,△BO2A2即为所求.【知识点】作图-轴对称变换、作图-旋转变换18.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,求平移后三个顶点的坐标.【分析】直接利用平移中点的变化规律:①向右平移a个单位,坐标P(x,y)⇒P(x+a,y);②向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y);③向上平移b个单位,坐标P(x,y)⇒P(x,y+b);④向下平移b个单位,坐标P(x,y)⇒P(x,y﹣b);求解即可.【解答】解:由题意可知此题平移规律是:(x+2,y+3),照此规律计算可知原三个顶点(﹣1,4),(﹣4,﹣1),(1,1)平移后三个顶点的坐标是(1,7),(﹣2,2),(3,4).【知识点】坐标与图形变化-平移19.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED.(1)求证:AE∥BC;(2)若BC=5,BD=4,求△ADE的周长.【分析】(1)先根据等边三角形的性质得BA=BC,∠ABC=∠C=∠BAC=60°,再根据旋转的性质得到∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,所以∠BAE=∠ABC=60°,则根据平行线的判定方法即可得到AE∥BC;(2)由△BDE是等边三角形得到DE=BD=4,再利用△BCD绕点B逆时针旋转60°,得到△BAE,则AE=CD,所以△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD.【解答】解:(1)∵△ABC为等边三角形,∴BA=BC,∠ABC=∠C=∠BAC=60°,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,∴∠BAE=∠ABC,∴AE∥BC;(2)∵△BDE是等边三角形,∴DE=BD=4,而△BCD绕点B逆时针旋转60°,得到△BAE,∴AE=CD,∴△AED的周长=AE+AD+DE=CD+AD+DE=AC+4=5+4=9.【知识点】旋转的性质、等边三角形的性质、平行线的判定20.如图,已知四边形ABCD是中心对称图形,E、F是对角线BD上的两点,且DE=BF,求证:(1)△ADE≌△CBF;(2)AE∥CF.【分析】(1)根据中心对称的性质可得AD=BC,∠ADE=∠CBF,然后利用“边角边”证明△ADE和△CBF全等即可;(2)根据全等三角形对应角相等可得∠AED=∠CFB,再根据等角的补角相等求出∠AEF=∠CFE,然后根据内错角相等,两直线平行证明.【解答】证明:(1)∵四边形ABCD是中心对称图形,∴AD=BC,∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)∵△ADE≌△CBF,∴∠AED=∠CFB,∴180°﹣∠AED=180°﹣∠CFB,即∠AEF=∠CFE,∴AE∥CF.【知识点】全等三角形的判定与性质、中心对称21.如图,将△ABC沿射线BC方向平移得到△DCE,连结BD交AC于点F.(1)求证:△AFB≌△CFD;(2)若AB=9,BC=7,求BF的取值范围.【分析】(1)根据∠A=∠FCD,∠AFC=∠CFD,AB=CD即可证明;(2)在△BCD中,利用三边关系求出BD的取值范围即可解决问题;【解答】(1)证明:∵AB∥CD,∴∠A=∠FCD,在△AFB和△CFD中,,∴△AFB≌△CFD.(2)解:∵△AFB≌△CFD,∴BF=FD,在△BCD中,BC=7,CD=9,∴2<BD<16,∴2<2BF<16,∴1<BF<8.【知识点】全等三角形的判定与性质、平移的性质22.平面直角坐标系中,点A(2,n)在第一象限,把点A向右移p个单位长度得点B.(1)写出点B的坐标;(2)把点A向下平移4个单位长度得到点C,点C距x轴1个单位长度,若AB=AC.①求点B的坐标;②求三角形ABC的面积.【分析】(1)根据横坐标,右移加,左移减可得B(2+p,n);(2)①首先根据上移加,下移减确定C(2,n﹣4),再根据点C距x轴1个单位长度可得C点坐标,进而可得A点坐标,然后再由条件AB=AC可得p=4,进而可确定B点坐标;②根据三角形的面积公式可得三角形ABC的面积.【解答】解:(1)∵点A(2,n)在第一象限,把点A向右移p个单位长度得点B,∴B(2+p,n);(2)①点A向下平移4个单位长度得到点C(2,n﹣4),∵点C距x轴1个单位长度,∴|n﹣4|=1,n=5或3,当n=5时,C(2,1),则A(2,5),当n=3时,C(2,﹣1),则A(2,3),∵AB=AC,∴p=4,∴B(6,5)或(6,3);②三角形ABC的面积:4×4×=8.【知识点】坐标与图形变化-平移23.如图,△ABC的顶点坐标分别为:A(0,1),B(5,4),C(2,4).(1)作△ABC关于点O的中心对称图形△A1B1C1,并写出点C1的坐标;(2)作△ABC关于x轴的轴对称图形△A2B2C2,并写出点C2的坐标.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可.【解答】解:(1)如图,△A1B1C1即为所求,点C1的坐标(﹣2,﹣4).(2)如图,△A2B2C2即为所求,点C2的坐标(2,﹣4).【知识点】作图-旋转变换、作图-轴对称变换24.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)判断△A2B2C2是否可由△AB1C1绕某点M旋转得到;若是,请画出旋转中心M,并直接写出旋转中心M的坐标.【分析】(1)分别作出点B、C绕点A顺时针旋转90°得到的对应点,再与点A首尾顺次连接即可;(2)分别作出三个顶点关于原点的对称点,再首尾顺次连接即可;(3)作线段B1B2的中垂线,与线段AA2中垂线(y轴)的交点即为旋转中心,从而得出答案.【解答】解:(1)如图所示,△AB1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)如图所示,△A2B2C2可由△AB1C1绕点M,顺时针旋转90°得到,其中点M坐标为(0,﹣1).【知识点】作图-旋转变换25.如图所示,在平面直角坐标系中,△ABC的三个顶点分别是A(﹣2,﹣2)、B(﹣4,﹣1)、C(﹣4,﹣4).(1)画出△ABC关于原点O成中心对称的△A1B1C1;再画出把△ABC绕点O逆时针旋转90度的△A2B2C2;(2)作出点A关于x轴的对称点A′,若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边).①在图中画出点A′,并写出点A′坐标.②写出a的取值范围为.(3)在x轴上找到一点P,使P A+PB的和最小值,求出P点坐标及最小值.【答案】【第1空】(-2,2)【第2空】4<a<6【分析】(1)根据要求作出图形即可.(2)①利用轴对称的性质解决问题即可.②利用平移变换的性质,解决问题即可.(3)连接BA′交x轴于点P,点P即为所求作.【解答】解:(1)如图,△A1B1C1,△A2B2C2即为所求作.(2)如图,①点A′即为所求作,A′(﹣2,2).②写出a的取值范围为4<a<6.故答案为(﹣2,2),4<a<6.(3)如图,点P即为所求作.P A+PB的最小值=BA′==.【知识点】作图-轴对称变换、轴对称-最短路线问题、作图-旋转变换、作图-平移变换。
第三章 图形的平移与旋转(过关测试)课件 (北师大版八年级上册)
第三章 |过关测试
知识归纳
1.确定位置 在平面内,确定物体的位置一般需要 2 个数据. 2.平面直角坐标系 在平面内画两条互相 垂直 且有公共原点 的数轴,就组 成了平面直角坐标系. 3.点的坐标的特征 设直角坐标系内一点P(x,y). 若P(x,y)在第一象限内,则x> 0,y 0. > 若P(x,y)在第二象限内,则x< 0,y> 0. 若P(x,y)在第三象限内,则x< ____0,y < 0. 若P(x,y)在第四象限内,则x> 0,y < 0. 任意实数 . 若P(x,y)在x轴上,则y= ____0,x是 = 若P(x,y)在y轴上,则x ____0,y是任意实数 .
数学·
第三章 |过关测试 针对第2题训练 1.点(-3,5)到x轴和y轴的距离分别是( B ) A.3,5 B.5,3 C.3,3 D.5,5 2.若点P在x轴的下方, y轴的左方,且到每条坐标轴的 距离都是3,则点P的坐标为( C ) A.(3,3) B.(-3,3) C.(-3,-3) D.(3,-3) 3.到x轴的距离等于4,到y轴的距离等于5的点的坐标是 (5,4)或(. -5,4)或(-5,-4)或(5,-4) ________
数学·
第三章 |过关测试
4.关于x轴、y轴以及原点对称的对称点坐标 设点P(x,y),关于x轴的对称点是 P1( x , -y ),关于y P2 (-x , y ),关于原点的对称点是 轴的对称点是 P3 (-x ,-y ). 5.和坐标轴平行的直线上点的坐标的特征 平行于x轴的直线上的各点的 纵坐标 相同. 平行于y轴的直线上的各点的 横坐标 相同.
数学·
考查 意图
1,2,3,4,5,6,7,8,11,12,13,17,18 9,10,14,15,19,20,21,22,23,24 16
最新北师大版第三章图形的平移与旋转试卷
[请单击此处编辑年级、科类、科目] 第1页,共4页[请单击此处编辑年级、科类、科目] 第2页,共4页尹集中学2013-2014学年度第二学期八年级数学试卷第三章 图形的平移与旋转【时间:90分钟 满分:100分】一.选择题(本题共10小题,满分40分)B2.将点A (3,2)沿x 轴向左平移4个单位长度得到点A ′,点A′关于y 轴对称的点的坐标是( )D4.如图,将直线l 1沿着AB 的方向平移得到直线l 2,若∠1=50°,则∠2的度数是( )5.如图,点A 、B 、C 、D 都在方格纸的格点上,若△AOB 绕点O 按逆时针方向旋转到△COD 的位置,则旋转的角度为( )6.在如图所示的单位正方形网格中,△ABC 经过平移后得到△A 1B 1C 1,已知在AC 上一点P (2.4,2)平移后的对应点为P 1,点P 1绕点O 逆时针旋转180°,得到对应点P 2,则P 2点的坐标为( ).8.下列图形中,中心对称图形有( )9.在平面直角坐标系中,已知点P 的坐标是(﹣1,﹣2),则点P 关于原点对称的点的坐标是( )二.填空题(本题共5小题,满分20分)11.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为 _________ m .第11题图 第12题图 第13题图 第15题图12.如图:矩形ABCD 的对角线AC=10,BC=8,则图中五个小矩形的周长之和为 _________ . 13.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB= _________ °.14.请写出一个是中心对称图形的几何图形的名称: _________ .15.如图,在等边△ABC 中,AB=6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为 _________ .三.解答题(本题共5小题,满分40分)八年级数学试卷第3页,共4页八年级数学试卷第4页,共4页16.如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连接BD,交AC于F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.17.如图,△ABO与△CDO关于O点中心对称,点E、F在线段AC上,且AF=CE.求证:FD=BE.18.在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为_________,点B关于x轴的对称点B′的坐标为_________,点C关于y轴的对称点C的坐标为_________.(2)求(1)中的△A′B′C′的面积.19.如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C所在的直线作轴对称图形得到△A2B2C2.20.请你借助平移,旋转或轴对称等知识设计一个图案.(要求:画出图案,并简要说明图案的含义).。
《图形的平移与旋转》——北师大版数学八年级上册单元测试题
A C ′B ′ BC B'C'ABC 第三单元《图形的平移与旋转》一、填空题(每空4分,共28分)1.如图,△ABC 平移后得到△A ′B ′C ′,线段AB 与线段A ′B ′的位置关系是 . A ′2.如图,△ABC 旋转60°后得到△AB ′C ′,与∠BAB ′相等的角是 . 3.将一图形沿着正北方向平移5cm 后,再沿着正西方向平移5cm ,这时图形在原来位置的 ____方向上.4.如图,△ABC 以点A 为旋转中心,按逆时针方向旋转600,得△AB C ⅱ,则△ABB '是__________三角形.5.如图把正方形绕着点O 旋转,至少要旋转 度后与原来的图形重合.6.如图,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若 ∠A 'DC=900,则∠A 的度数是__________. 7.△ABC 到△DEF 的位置变换叫 .二、选择题(每小题4分,共40分)1.下列运动属于平移的是( )A.空中蝴蝶的飞翔B.飞机在跑道上滑行到停止的运动 C.篮球运动员投出并进入篮筐的过程D.乒乓球比赛中发球后,乒乓球的运动方式2.下列图形属于平移位置变换的是( ) .3.下列图案中,含有旋转变换的有( ) .4.下列图形中,绕某个点旋转180°能与自身重合的有( ) ①正方形 ②长方形 ③等边三角形 ④线段 ⑤角 ⑥平行四边形 A. 5个 B. 2个 C. 3个 D. 4个 5.关于轴对称位置变换,说法正确的有( ) ①对应线段平行且相等;②对应点的连线被对称轴垂直平分; ③对应角相等;④轴对称得到的图形与原图形全等.A .1个 B.2个 C .3个 D .4个6..对图案的形成过程叙述正确的是( ).A.它可以看作是一只小狗绕图案的中心位置旋转90°、180°、270°形成的B.它可以看作是相邻两只小狗绕图案的中心位置旋转180°形成的C.它可以看作是相邻两只小狗绕图案的恰当的对称轴翻折而成的D.它可以看作是左侧、上面的小狗分别向右侧、下方平移得到的A .B .C .D .(4题图) O A B ′ C ′ BC ′(2题图) (1题图) (5题图) ABCB'A'D(6题图)(7题图)A B CD FEDCBAA .4个B .3个C .2个D .1个(选6图)7.如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( )8.下列图形中,是由(1)仅通过平移得到的是( )9. 如图,两个边长相等的两个正方形ABCD 和OEFG ,若将正方形OEFG 绕点O 按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN 的面积( ) A .不变 B .先增大再减小C .先减小再增大D .不断增大 10.如图,面积为12cm 2的△ABC 沿BC 方向平移至△DEF的位置,平移的距离是边BC 长的两倍,则图中的四边形 ACED 的面积为( )A .24cm 2B .36cm 2C .48cm 2D .无法确定 三、解答题(每小题8 分,共32分)1.四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF =4,AB =7,求(1)指出旋转中心和旋转角度(2)求DE 的长度(3)BE 与DF 的位置关系如何?2.将图中的图形,向右平移5格,再向下平移2格.3.画出下图中的图形绕点A 顺时针旋转60°后的图形.4.请画一个圆,画出圆的直径AB ,分析直径AB 两侧的两个半圆可以怎样相互得到?MADB C O EFGNA(1) A B C DACDBFE。
北师大版八年级上 第三章 图形的平移与旋转单元检测题及答案.doc
第三章 图形的平移与旋转单元目标检测题一、选择题( 本大题共6小题, 每小题4分,共24分)1.下列图案中,可以由一个”基本图案”连续旋转︒45得到的是 ( )(A ) (B ) (C ) (D )2.下列图形中,绕某个点旋转︒180能与自身重合的有 ( ) ①正方形 ②长方形 ③等边三角形 ④线段 ⑤角 ⑥平行四边形 A. 5个 B. 2个 C. 3个 D.4个3.如图,四边形EFGH 是由四边形ABCD 平移得到的,已知 AD=5,∠B=700,则 ( ) A. FG=5, ∠G=700B. EH=5, ∠F=700C. EF=5, ∠F=700D. EF=5. ∠E=7004. 下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是 ( )(A ) ︒30 (B )︒45 (C )︒60 (D )︒90 5. 下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D.由平移得到的图形也一定可由旋转得到6. 如图,过圆心O 和圆上一点A 连一条曲线,将曲线OA 绕O 点按同一方向连续旋转三次,每次旋转900,把圆分成四部分,则 ( ) A. 这四部分不一定相等 B. 这四部分相等 C. 前一部分小于后一部分 D. 不能确定DH二、填空题(本大题共6小题,每小题4分,共24分)7.ΔABC 经过平移得到ΔDEF,并且A 与D,B 与E,C 与F 是对应点, AD=3cm ,则BE= cm ,AD 与BE 的位置关系是 , AB 与DE 的位置关系是 ;8. 如图,正方形ABCD 经过旋转后到达正方形AEFG 的位置,旋转中心是点________,旋转角度是__________,点C 的对应点是点__________;9. 如图,平行四边形ABCD 中O 为对角线交点,那么关于O 点对称的三角形有_________对,它们是____________________。
北师大版初中八年级数学上册第三章同步练习题(含答案解析)
第三章测试卷一、选择题(每题3分,共30分)1.(安徽安庆期末)下列表述中,能确定准确位置的是( )A.教室第三排B.湖心南路C.南偏东40°D.东经112°,北纬51°2.在平面直角坐标系中,点A (-3,0)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上3.若点A (m ,n )在第二象限,则点B (-m ,|n |)在( )A .第一象限B .第二象限C .第三象限D .第四象限4.平面直角坐标系内的点A (-1,2)与点B (-1,-2)关于( )A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称5.已知点A (1,0),B (0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标为( )A .(-4,0)B .(6,0)C .(-4,0)或(6,0)D .无法确定6.在以下四点中,哪一点与点(-3,4)所连的线段与x 轴和y 轴都不相交( )A .(-5,1)B .(3,-3)C .(2,2)D .(-2,-1)7.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A 可用(2,3)表示,如果小惠不想因点到地雷而结束游戏的话,下列选项中,她应该点( )A .(7,2)B .(2,6)C .(7,6)D .(4,5)8.从车站向东走400m ,再向北走500m 到小红家;从车站向北走500m ,再向西走200m 到小强家,若以车站为原点,以正东、正北方向为正方向建立平面直角坐标系,则小红家、小强家的坐标分别为( )A .(400,500),(500,200)B .(400,500),(200,500)C .(400,500),(-200,500)D .(500,400),(500,-200)9.如图,直线BC 经过原点O ,点A 在x 轴上,AD ⊥BC 于D ,若B (m ,2),C (n ,-3),A (2,0),则AD ·BC 的值为( )A .不能确定B .5C .10D .7(第9题) (第10题)10.(河南)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2017秒时点P 的坐标是( )A .(2016,0)B .(2017,1)C .(2017,-1)D .(2018,0)二、填空题(每题3分,共24分)11.已知点A 在x 轴上,且OA =3,则点A 的坐标为__________.12.已知小岛A 在灯塔B 的北偏东30°的方向上,则灯塔B 在小岛A 的_____的方向上.13.对任意实数,点P (x ,x -2)一定不在第____象限.14.在平面直角坐标系中,一青蛙从点A (-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A ′处,则点A ′的坐标为_______.15.如图,在△ABC 中,点A 的坐标为(0,1),点B 的坐标为(0,4),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是________.(第15题)(第16题)(第17题)(第18题)16.将正整数按如图的规律排列下去,若用有序数对(m,n)表示m排从左到右第n个数.如(4,3)表示9,则(15,4)表示________.17.如图,A,B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP的面积为6,则点P的坐标为________.18.(长沙期中)如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2.顶点A2坐标是.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.在直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1)(2,6),(4,6),(4,8),(2,8);(2)(3,0),(3,3),(3,6);(3)(3,5),(1,6);(4)(3,5),(5,6);(5)(3,3),(2,0);(6)(3,3),(4,0).20.小林放学后,先向东走了300 m再向北走200 m,到书店A买了一本书,然后向西走了500 m再向南走了100 m,到快餐店B买了零食,又向南走了400 m,再向东走了800 m到了家C.请建立适当的平面直角坐标系,并在坐标系中画出点A,B,C的位置.21.(1)在坐标平面内画出点P(2,3);(2)分别作出点P关于x轴、y轴的对称点P1,P2,并写出P1,P2的坐标.22.长阳公园有四棵古树A,B,C,D,示意图如图所示.(1)请写出A,B,C,D四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH用围栏圈起来划为保护区,请你计算保护区的面积(单位:m).23.如图,平面直角坐标系中,过点A(0,2)的直线a垂直于y轴,M(9,2)为直线a上一点.若点P从点M出发,以2cm/s的速度沿直线a向左移动;点Q从原点同时出发,以1cm/s的速度沿x轴向右移动,多久后线段PQ平行于y轴?24.如图,已知点P(2m-1,6m-5)在第一象限的角平分线OC上,AP⊥BP,点A在x轴上,点B在y轴上.(1)求点P的坐标.(2)当∠APB绕点P旋转时,OA+OB的值是否发生变化?若变化,求出其变化范围;若不变,求出这个定值.25.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫作整点.已知点A(0,4),点B 是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.(1)当m=3时,求点B的坐标的所有可能值;(2)当点B的横坐标为4n(n为正整数)时,用含n的代数式表示m.参考答案第三章测试卷一、选择题(每题3分,共30分)1.(安徽安庆期末)下列表述中,能确定准确位置的是(D)A.教室第三排B.湖心南路C.南偏东40°D.东经112°,北纬51°2.在平面直角坐标系中,点A(-3,0)在(B)A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上3.若点A(m,n)在第二象限,则点B(-m,|n|)在(A)A.第一象限 B.第二象限 C.第三象限 D.第四象限4.平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于(B)A.y轴对称B.x轴对称C.原点对称D.直线y=x对称5.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为(C)A.(-4,0)B.(6,0)C.(-4,0)或(6,0)D.无法确定6.在以下四点中,哪一点与点(-3,4)所连的线段与x轴和y轴都不相交(A)A.(-5,1)B.(3,-3)C.(2,2)D.(-2,-1)7.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A可用(2,3)表示,如果小惠不想因点到地雷而结束游戏的话,下列选项中,她应该点(D)A.(7,2)B.(2,6)C.(7,6)D.(4,5)8.从车站向东走400m,再向北走500m到小红家;从车站向北走500m,再向西走200m到小强家,若以车站为原点,以正东、正北方向为正方向建立平面直角坐标系,则小红家、小强家的坐标分别为(C)A.(400,500),(500,200) B.(400,500),(200,500)C.(400,500),(-200,500) D.(500,400),(500,-200)9.如图,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,2),C(n,-3),A(2,0),则AD·BC的值为(C)A.不能确定 B.5 C.10 D.7(第9题)(第10题)【解析】据三角形面积公式得到S △ABC =12AD ·BC ,而S △ABC =S △ABO +S △ACO =12×2×2+12×2×3=5,因此得到12AD ·BC =5,∴AD ·BC =10. 10.(河南)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2017秒时点P 的坐标是( B )A .(2016,0)B .(2017,1)C .(2017,-1)D .(2018,0)【解析】当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),运动时间为2秒时,点P 的坐标为(2,0),运动时间为3秒时,点P 的坐标为(3,-1),运动时间为4秒时,点P 的坐标为(4,0).根据图象可得第n 秒时,点P 的横坐标为n ,纵坐标每4秒一个循环.∵2017÷4=504……1,∴第2017秒时,点P 的坐标是(2017,1).二、填空题(每题3分,共24分)11.已知点A 在x 轴上,且OA =3,则点A 的坐标为____(3,0)或(-3,0)______.12.已知小岛A 在灯塔B 的北偏东30°的方向上,则灯塔B 在小岛A 的__南偏西30°___的方向上.13.对任意实数,点P (x ,x -2)一定不在第__二__象限.14.在平面直角坐标系中,一青蛙从点A (-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A ′处,则点A ′的坐标为____(1,2)___.15.如图,在△ABC 中,点A 的坐标为(0,1),点B 的坐标为(0,4),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是____(4,2)或(-4,2)或(-4,3)____.(第15题)(第16题) (第17题) (第18题)16.将正整数按如图的规律排列下去,若用有序数对(m ,n )表示m 排从左到右第n 个数.如(4,3)表示9,则(15,4)表示____109____.17.如图,A ,B 两点的坐标分别为(2,4),(6,0),点P 是x 轴上一点,且△ABP 的面积为6,则点P 的坐标为____(3,0)或(9,0)____.【解析】设点P 的坐标为(x ,0),根据题意得12×4×|6-x |=6,解得x =3或9,所以点P 的坐标为(3,0)或(9,0).18.(长沙期中)如图,△ABC 在平面直角坐标系中第二象限内,顶点A 的坐标是(-2,3),先把△ABC 向右平移4个单位得到△A 1B 1C 1,再作△A1B1C1关于x 轴对称图形△A 2B 2C 2.顶点A 2坐标是2,-3.【解析】解答本题的关键是根据网格结构作出对应点的位置,然后写出坐标.分别将点A 、B 、C 向右平移4个单位,作出△A 1B 1C 1,然后作出△A 1B 1C 1关于x 轴对称图形△A 2B 2C 2,如图所示,A 2坐标为(2,-3).三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.在直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1)(2,6),(4,6),(4,8),(2,8);(2)(3,0),(3,3),(3,6);(3)(3,5),(1,6);(4)(3,5),(5,6);(5)(3,3),(2,0);(6)(3,3),(4,0).解:画出的图形如图所示.20.小林放学后,先向东走了300 m再向北走200 m,到书店A买了一本书,然后向西走了500 m再向南走了100 m,到快餐店B买了零食,又向南走了400 m,再向东走了800 m到了家C.请建立适当的平面直角坐标系,并在坐标系中画出点A,B,C的位置.解:(答案不唯一)以学校门口为坐标原点、向东为x轴的正方向建立平面直角坐标系,各点的位置如图:21.(1)在坐标平面内画出点P(2,3);(2)分别作出点P关于x轴、y轴的对称点P1,P2,并写出P1,P2的坐标.解:(1)点P(2,3)如图所示;(4分)(2)点P1,P2如图所示,(6分)P1(2,-3),P2(-2,3).(8分)22.长阳公园有四棵古树A,B,C,D,示意图如图所示.(1)请写出A,B,C,D四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH用围栏圈起来划为保护区,请你计算保护区的面积(单位:m).解:(1)A(10,10),B(20,30),C(40,40),D(50,20).(2)四边形EFGH各顶点坐标分别为E(0,10),F(0,30),G(50,50),H(60,0),另外M(0,50),N(60,50),则保护区的面积S=S长方形MNHO -S△GMF-S△GNH-S△EHO=60×50-12×20×50-12×10×50-12×10×60=3 000-500-250-300=1 950(m2).23.如图,平面直角坐标系中,过点A(0,2)的直线a垂直于y轴,M (9,2)为直线a上一点.若点P从点M出发,以2cm/s的速度沿直线a向左移动;点Q从原点同时出发,以1cm/s的速度沿x轴向右移动,多久后线段PQ平行于y轴?解:设经过t s后PQ∥y轴,则AP=9-2t,OQ=t.∵PQ∥y轴,∴点P与点Q的横坐标相等,即AP=OQ,∴9-2t=t,解得t=3.故3s后线段PQ平行于y轴.24.如图,已知点P(2m-1,6m-5)在第一象限的角平分线OC上,AP⊥BP,点A在x轴上,点B 在y轴上.(1)求点P的坐标.(2)当∠APB绕点P旋转时,OA+OB的值是否发生变化?若变化,求出其变化范围;若不变,求出这个定值.解:(1)由题意,得2m-1=6m-5.解得m=1.所以点P的坐标为(1,1).(2)当PA不垂直于x轴时,作PD⊥x轴于点D,PE⊥y轴于点E,则△PAD≌△PBE,所以AD=BE.所以AD=BE.所以OA+OB=OD+AD+OB=OD+BE+OB=OD+OE=2,为定值.当PA⊥x轴时,显然PB⊥y轴,此时OA+OB=2,为定值.故OA+OB的值不发生变化,其值为2.25.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫作整点.已知点A(0,4),点B 是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.(1)当m=3时,求点B的坐标的所有可能值;(2)当点B的横坐标为4n(n为正整数)时,用含n的代数式表示m.解:(1)如图①,当点B的横坐标分别为3或4时,m=3,即当m=3时,点B的坐标的所有可能值是(3,0),(4,0);(2)如图②,当点B的横坐标为4n=4时,n=1,此时m=0+1+2=3;当点B的横坐标为4n=8时,n=2,m=1+3+5=9;当点B的横坐标为4n=12时,n=3,m=2+5+8=15;…,当点B的横坐标为4n时,m=(n-1)+(2n-1)+(3n-1)=6n-3.。
北师大版八年级数学《图形的平移与旋转》测试题
八年级(7)班数学《平移与旋转》测试题班级 姓名 得分 一、选择题(每小题4分,共20分)1、观察图1中的图形,是中心对称图形的图1有( )(A)2个 (B)1个(C)4个 (D)3个2、如图2,△ABC平移之后成为△DCE,下列说法中正确的是( )(A)点B的对应点是点E (B)点C的对应点是点C图2(C)点C的对应点是点E (D)点C没有移动位置3、下列图形中,是轴对称图形,但不是中心对称图形的是( )(A) 等边三角形 (B)正方形 (C) 长方形 (D)线段4、如图3所示,△ABC平移后得到△DEF,已知∠B=35°,∠A=85°,则∠DFK=( )(A)60°(B)35°(C)120°(D)85°ADBEACFK图35、要使正十二边形旋转后能与自身重合,至少应将它绕中心逆时针方向旋转( )(A)30° (B)45° (C)60° (D)75°1, 填空题(每空2分,共40分)6、如图4,方格纸中的三角形要由位置(1)平移到位置(2),应该先向_____平移_____格,再向______平移______格;7、如图5,△ABC经过向右平移4cm之后得到了△DEF,其中AE=3cm,BC=12cm,DF=10cm,那么AC=_____cm,DE=______cm,BE=_____cm,FC=_____cm,FC与DA的关系是 ;AEBDGFC图6图5图7图48、如图6,正方形ABCD中,∠BAD=∠ABC=∠C=∠D=90°,AB=BC=CD=DA,边DC上有一点E,将△ADE旋转后得到了△ABG;旋转中心是________,顺时针旋转了_______度。
9、如图7,△ABC按逆时针方向绕点O旋转了60°后成为△DEF,那么OA=_____,OB=______,∠COF=_____度,∠AOD=_____度, ∠A=______,∠C=______,AB=_____, BC=______。
八年级数学北师大版八年级第三章《图形的平移与旋转》单元评估卷卷
八年级数学(上)素质评估卷第三单元评估卷评估内容:(第三章)图形的平移与旋转一、仔细选一选(每小题4分,共20分)1.下列数中仅由一个数字平移所得的数是()A、 B、1999 C、8888D、14142.下面A、B、C、D四个图形中的哪个图案可以通过旋转图案①得到()3.下列每组大写字母中,旋转180°和原来形状一样的是()A、H I O EB、H I O NC、H I O UD、H I O B4.利用一幅三角板,画平行线时,形成的同位角只可能是()A、30° 60°B、30° 45° 60°C、30° 45° 60° 90°D、可以是任意的角°5.下面的图形中必须由“基本图形”既平移又旋转而形成的图形是()二、细心填一填(每小题4分,共20分)3.如图1所示,若△A`B`C`是由△ABC平移形成,若∠BCA=55°,∠BAC=70°,则∠C`B`A`= ,∠B`A`C`= 。
4.如图2所示,若△ABC和△CDE是等边三角形,则△ACD和△BCE可以绕点旋转度得到。
5.电风扇在旋转过程中,旋转一周的周长为95cm,若电风扇旋转了1980°则,旋转的总长度为 m。
6.如图3所示,怎样将图案B变成图案A?10.如图4所示,如果四边形CDEF旋转后能与正方形ABCD重合,那么图形所在的平面上可以作为旋转中心的点有。
三、精心画一画(每小题5分,共10分)11.图5阴影部分表示城门的轮廓,请你作出向右平移6个格后的图。
12.如图6所示,请你将数字“5”按箭头指的方向平移3cm,作出平多后的图形。
四、用心做一做(每小题10分)13.如图7所示,怎样将①的图案变成②的图案呢?14.如图8所示,左边这个打开着的信封,是右边五个信封中的第几个信封?五、发挥你的想象,做一做!(每小题10分)15.如图9,两个正方形ABCD,OEFG的边长都是a,其中O是正方形ABCD的中心。
北师大版八年级数学上册第三章测试题及答案图形的平移与旋转C
北八上第三章《图形的平移与旋转》水平测试(C )一、 认真选一选1、如果一个正多边形绕它的中心旋转60°才和原来的图形重合,那么这个多边形是( ) A 、正三角形 B 、正方形 C 、正五边形 D 、正六边形2、下列说法正确的是( ) A 、平移和旋转不改变图形的形状和大小B 、平行四边形既是中心对称图形,又是轴对称图形C 、任意多边形都可以进行密铺D 、 角线互相垂直平分的四边形是正方形3、下列图形中,绕某个点旋转 180能与自身重合的有( ) ①正方形 ②长方形 ③等边三角形 ④线段 ⑤角 ⑥平行四边形 A 、 5个 B 、 2个 C 、 3个 D 、4个4、下列四个图形中,不能通过基本图形平移得到的是( )5、如图1按 方向旋转 A 、顺时针,90B 90C 、逆时针,180D 、顺时针,1806、如图3,是通过哪一种方法使△ABE 变到△ADF 的位置? A 、平移 B 、轴对称 C 、旋转 D 、先平移,后旋转7、如图4,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB =60o ,AB =4㎝,则△AOB 的形状是 三角形,AC 长是 ㎝. A 、 锐角三角形,6㎝ B 、直角三角形,8㎝ C 、等腰三角形,6㎝D 、等边三角形,8㎝二、 仔细填一填1、经过旋转后的图形与原图形的关系是___________,它们的对应线段_______,对应角__________,对应点到旋转中心的距离___________.2、钟表的时针匀速旋转一周需12小时,(1)指出时针的旋转中心是 .(2)经过1小时,时针旋转了( )度?3、将一条2㎝的斜线段向右平移3㎝后,连接对应点 得到的图形的周长是 ㎝.4、如图4,直角△ABC 中,AB=1㎝,AC =2㎝, 将△ABC 绕点A 按逆时针方向旋转26°, 得到△ADE ,则DE =__㎝,∠EAC =__°.5、从8:55到9:15,钟表的分针转动的角度是 ,时针转动的角度是6、图5绕着中心最小旋转 能与自身重合.7、△ABC 和△DCE 是等边三角形,则在图6中,△ACE 绕着 点 旋转 度可得到△ .三、 精心想一想:1、你一定能用平移、旋转或轴对称的观点分析,该图形可以看作由其中一个三角形经过怎样的变化A C DEB 图1图2 图3 图5图6而得到的?(至少用两种方法解释)2、如图8,怎样将左边的图案变成右边的图案.四、动手做一做:1、如图,△ABC 经过平移后,B 点 (2)如图,△ABC 绕点旋转后,C 点移到了C 处,作出平移后的三角形. 转到了D 处,作出旋转后的三角形. 、请你作出四边形ABCD 绕点O 顺时针旋转60度后的图形.3、将△ABC 平移后,A 点移到A 1点,请作出平移后的图形,并将此图形绕点C 1逆时针旋转 60,再作出所得图形.参考答案:一、认真选一选:1、D ;2、A ;3、D ;4、D ;5、A ;6、C ;7、D . 二、仔细填一填:1、全等,相等,相等,相等;2、圆心,30度;3、10厘米;4、5,26度;5、120度,24度;6、90度;7、C ,逆时针,60度,△ BCD . 三、精心想一想:略 、动手做一做:略ABCAB CD · ·OABCDAB CA 1·图7图8图9图10图11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章图形的平移与旋转
1、下列现象是数学中的平移的是()
A.冰化成水
B.电梯由一楼升到二楼
C.导弹击中目标后爆炸
D.卫星绕地球运动
2、.将图形平移,下列结论错误的是()
A.对应线段相等
B.对应角相等
C.对应点所连的线段互相平分
D.对应点所连的线段相等
3、国旗上的四个小五角星,通过怎样的移动可以相互得到()
A.轴对称 B.平移 C.旋转 D.平移和旋转
4、将长度为5cm 的线段向上平移10cm所得线段长度是()
A、10cm
B、5cm
C、0cm
D、无法确定
5、下列运动是属于旋转的是( )
A.滾动过程中篮球的滚动
B.钟表的钟摆的摆动
C.气球升空的运动
D.一个图形沿某直线对折过程
7、下列说法正确的是( )
A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小
B.平移和旋转的共同点是改变图形的位置
C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离
D.由平移得到的图形也一定可由旋转得到
8、如右图,ΔABC和ΔADE均为正三角形,则图中
可看作是旋转关系的三角形是( )
A. ΔABC和ΔADE
B. ΔABC和ΔABD
C. ΔABD和Δ
ΔACE和ΔADE
9、将图形按顺时针方向旋转900( )
A C D
10、如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C
顺时针方向旋转900得到△DCF,连结EF,若∠BEC=600,则∠EFD的度数为()
A、100
B、150
C、200
D、250
1、图形的平移、旋转、轴对称中,其相同的性质是_________.
2、经过平移,对应点所连的线段______________.
3.钟表的分针匀速旋转一周需要60分,它的旋转中心是___________,经过25分,分针旋转___________度。
4.如图, 90,5,
ABC BAC AB AC cm ABC
∆∠=︒==∆
的按逆时针方向转动一个角度后成为ACD
∆,则图中___________是旋转是心,旋转________度,点B与点____是对应点,点C与点_________是对应点,∠ACD=_____________,AD=_________.
5.如图,E为正方形ABCD内一点,∠AEB=135º,BE=3cm,AEB
∆按顺时针方向旋转一个角度后成为CFB
∆,图中________是旋转中心,旋转_______度,点A与点______是对应点, 点E与点______是对应点,BEF
∆是___________三角形,∠CBF=∠______,∠BFC=___________度,
∠EFC=__________度,BF=_________cm.
6.如图,△ABC、△ADE均为是顶角为42º的等腰三角形,BC和DE分别是底边,图中
△_________与△___________,可以通过以点________为旋转中心,旋转角度为_____. 其中∠BAD=∠_________,CE=__________.
4题图5题图6题图
3、经过旋转,对应点到旋转中心的距离___________.
2. 平移不改变图形的和,只改变图形的。
3.钟表的分针匀速旋转一周需要60分,它的旋转中心是_________,经过20分,分针旋转_____度。
4.如图四边形ABCD是旋转对称图形,点__________是旋转中心,旋转了_________度后能与自身重合,则
AD=__________,AO=__________,BO=_____________。
6.△ABC和△DCE是等边三角形,则在此图中,△ACE绕着c点旋转度可得到△BCD.
7. 如图,四边形AOBC,它绕着O点旋转到四边形DOEF位置,在这个旋转过程中:旋转中心是_____,旋转角
是________经过旋转点A转到_______,点C转到_______,点B转到__________线段OA与线段_____,线段
OB与线段____,线段BC与线段______是对应线段。
四边形OACB与四边形ODFE的形状、大小________。
5、9点30分,时钟的时针和分针的夹角是______.
7、边长为4 cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线长为______cm.
8、甲图向上平移2个单位得到乙图,乙图向左平移2个单位得到丙图,丙图向下平移2个单位得到丁图,
那么丁图向______平移______个单位可以得到甲图.
9、如图,当半径为30cm的转动轮转过120 角时,传送带上的物体A平移的距离为 cm。
(第9题图)(第10题图)
O
B
D
C
A
A
D
A1
B1 C1
A
C
B
A
C
D
E
B
E
D
C
B
A
F
E
D
C
B
A
D
C
B
A
10、△ABC 和△DCE 是等边三角形,则在此图中,△ACE 绕着 点 旋转 度可得到△ 。
3、请你指出△BDA 通过怎样的移动得到△CAE .
②将Rt ΔABC 沿斜边AB 向右平移5cm,得到Rt ΔDEF.已知AB=10cm,BC=8cm,求图中阴影部分三角形的周长
5、在四边形ABCD 中,∠ADC=∠B=900
,DE ⊥AB,垂足为E,且DE=EB=5,请用
旋转图形的方法求四边形ABCD 的面积.
3.小红的爸爸打算在院子里种上蔬菜,已知院落为东西长32m ,南北宽为20m 的长方形,为了行走方便,要修筑三条道路,东西方向两条,南北方向一条,南北方向道路垂直于东西方向道路(如图a ),余下的部分要种上西红柿,设道路的宽为x m ,爸爸打算让小红算一下,用于种菜的面积是多少?小红经过分析后,考虑可以直接求出用于种菜部分的面积,若从平移的角度看,只需把道路均平移到边上去(如图b )不难发现图b 中的空白的面积。
⑴请你帮小红求出空白部分的面积(用含x 的代数式表示); ⑵当x=2m 是,求种菜的面积。
┌
┌ D
C A E B
图b 图a
A D
E
F
四、(14分)四边形ABCD 是正方形,△ADF 旋转一四定角度后得到△ABE ,如图所示,如果AF=4,AB=7,求(1)指出旋转中心和旋转角度(2)求DE 的长度(3)BE 与DF 的位置关系如何?
五、(14分)如图所示,在边长为1的正方形ABCD 中,E 、F 分别是AB 、AD 上的点,且
AE+EF+FA=2,求∠ECF 的度数。
六、(14分)阅读下列材料:如图②,把△ABC 沿直线平移线段BC 的长度,可以变到△ECD 的位置;如图③,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置;如图④,以点A 为中心,把△ABC 旋转180°,可以变到△AED 的位置,像这样其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.
图① 图② 图③ 图④
请回答下列问题:
(1)在图①中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE 变到△ADF 的位置? (2)指出图①中线段BE 与DF 之间的关系.
13.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG。
(1)观察猜想BE与DG之间的大小关系,并证明;
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程,若不存在,请说明理由。
120,以BC为边向外作等边∆BCD,把∆ABD绕着点D按顺时针方向14.如图,∆ABC中,∠BAC=︒
60得到∆ECD的位置。
若AB=3,AC=2,求∠BAD的度数和线段AD的长度。
(A、C、E在向旋转︒
同一直线上)
15.如图,梯形ABCD的周长为30cm,AD∥BC ,现将DC平移到AE处,AD=5cm ,求∆ABE有周长。