一次函数定点定线问题

合集下载

高中数学解题技巧之一次函数求解

高中数学解题技巧之一次函数求解

高中数学解题技巧之一次函数求解一次函数是高中数学中最基础、最常见的函数类型之一。

在解题过程中,掌握一次函数的求解技巧对于学生来说至关重要。

本文将结合具体的题目,详细介绍一次函数求解的方法和技巧,并通过举一反三的方式帮助读者更好地理解和应用这些技巧。

一次函数的一般形式为y = kx + b,其中k和b分别代表斜率和截距。

求解一次函数的关键在于确定斜率和截距的值,从而得到函数的表达式。

首先,我们来看一个典型的一次函数求解题目:【例题】已知一次函数y = 3x + 2,求该函数的零点和与y轴的交点坐标。

解析:1. 求零点:零点即函数与x轴的交点,也就是y = 0时的x值。

将y = 3x + 2中的y替换为0,得到方程0 = 3x + 2。

解这个方程可以得到x的值,即为零点的横坐标。

0 = 3x + 23x = -2x = -2/3所以,该函数的零点为(-2/3, 0)。

2. 求与y轴的交点坐标:与y轴的交点即函数的截距,也就是x = 0时的y值。

将x替换为0,得到方程y = 3(0) + 2,解这个方程可以得到y的值,即为与y轴的交点的纵坐标。

y = 3(0) + 2y = 2所以,该函数与y轴的交点坐标为(0, 2)。

通过以上例题,我们可以看出,求解一次函数的关键是将已知的条件代入函数表达式,并通过解方程的方法得到未知量的值。

在解题过程中,需要注意以下几点:1. 确定方程中的未知量:在求解一次函数时,需要确定要求解的未知量是斜率、截距还是零点等。

2. 灵活运用线性方程的解法:解一次函数的关键在于解线性方程。

根据题目的要求,可以选择使用一元一次方程、二元一次方程等不同的解法。

3. 注意特殊情况:在实际解题过程中,可能会遇到斜率为0或无穷大的情况。

需要根据具体题目的要求,灵活处理这些特殊情况。

除了以上基本的一次函数求解技巧,我们还可以通过举一反三的方式进一步应用这些技巧。

【例题】已知一次函数y = 2x - 3,求该函数与x轴和y轴的交点坐标,并画出函数图像。

一次函数解析式,直线位置关系---第二讲

一次函数解析式,直线位置关系---第二讲

一次函数(2)--解析式、直线位置关系【考点聚焦】1、一次函数表达式的确定确定一次函数表达式:用 求解析式通常分四步:设、代、求、写.(1)对于正比例函数:将一个已知点的横、纵坐标代入 中,解一元一次方程,求出 ,从而确定此表达式;(2)对于一次函数:将两个已知点的横、纵坐标分别代入 中,建立关于,k b 的二元一次方程组,求出 的值,从而确定此表达式. 2、两条直线的位置关系及函数图象的平移 (1)两条直线的位置关系:设直线1l 和2l 的解析式为111b x k y +=和222b x k y +=,则 它们的位置关系可由其系数确定: ※①⎩⎨⎧≠=2121b b k k ⇔1l 与2l 互相 ; ②121-=⋅k k ⇔1l 与2l 互相 .(2)函数图象的平移:左加右减:(针对自变量而言) 上加下减:针对b 而言 (3)特殊角度①当一次函数图象与x 轴成°30:=k ②当一次函数图象与x 轴成°45:=k ③当一次函数图象与x 轴成°60:=k 3、确定两个函数图象的交点坐标确定两个函数图象的交点坐标:就是这两个函数解析式所组成的方程组的解. 4、一次函数中的面积问题【典例剖析】知识点一:一次函数表达式的确定【例1】(1)已知一次函数的图象经过)(2,1-和)(4,3-,求这个一次函数的解析式 。

(2)(嘉祥外国语)如果一次函数b kx y +=中自变量x 的取值范围是31≤≤-x 时,函数值y 的取值范围是62≤≤-y ,求这个一次函数解析式。

【变式1】已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是)4,0(0,2-)、(,则这个函数的解析式为_____________。

【变式2】已知一次函数b kx y +=,当13-≤≤x 时,对应y 的值为91≤≤y ,则这个函数的解析式为_____________。

【例2】如图,直线834+-=x y 与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将ABM ∆沿AM 折叠,点B 恰好落在x 轴上的'B 处,则直线AM 的解析式为 .【变式1】已知一次函数)1)(1(2)1(≠-+-=a a x a y 的图象如图所示,已知OB OA 23=,求一次函数的解析式.【变式2】如图,一次函数232+-=x y 的图象分别与x 轴、y 轴交于点A 、B ,以线段AB 为边在第一象限内作等腰ABC Rt ∆,︒=∠90BAC .求过B 、C 两点直线的解析式.知识点二:两条直线的位置关系【例3】已知一次函数b kx y +=的图象经过点()31,A 且和32-=x y 平行,则函数解析式为 .【变式1】(嘉祥外国语)若直线b kx y +=与直线x y 2-=平行,且过点()31,,则=k ________,=b _________.【例4】(湖南湘潭中考)已知两直线,,,222:b x k y l +=111:b x k y l +=,若21l l ⊥,则1·21-=k k .①应用:已知12+=x y 与1-=kx y 垂直,求k ;②直线经过()3,2A ,且与3+=x y 垂直,求该直线解析式.【例5】(武汉中考)(1)点()1,0向下平移2个单位后的坐标是_________,直线12+=x y 向下平移2个单位后的解析式是___________;直线12+=x y 向右平移2个单位后的解析式是_____________;【变式】将一次函数13-=x y 的图象沿y 轴向上平移3个单位,再沿x 轴向左平移4个单位后,得到的图象对应的函数关系式为【例6】已知直线b kx y l +=:过点()32,, (1)当l 与x 轴的夹角为30°时,求直线解析式; (2)当l 与x 轴的夹角为45°时,求直线解析式; (3)当l 与x 轴的夹角为60°时,求直线解析式.【变式】如图,已知A 点坐标为()05,,直线)>0(b b x y +=与y 轴交于点B ,连接AB ,︒=∠75α,则b 的值为( ) 、A 3 B 、335 C 、4 D 、435知识点三:确定两个函数图象的交点坐标【例7】在同一平面直角坐标系中,若一次函数2-=x y 与12+-=x y 的图象交于点M ,则点M 的坐标为 .【变式1】无论m 为何值,直线m x y +=2和5+-=x y 图象的交点不可能在第 象限.【变式2】如图,在平面直角坐标系中,直线32+=x y 与y 轴交于点A ,直线1-=kx y 与y 轴交于点B ,与直线32+=x y 交于点()n C ,1-.(1)求k n 、的值; (2)求ABC ∆的面积.**挑战题1.(2017双流)已知在平面直角坐标系中,直线l 分别与x 轴,y 轴交于A ,B 两点,其中,点A 在x 轴的负半轴上,点B 在y 轴的正半轴上.(1)如图1,若点A 的坐标是(2m -1,0),点B 的坐标是(0,3-m ),OA =34OB , AD平分∠BAO 交y 轴于D ;①求直线l 的函数表达式以及点D 的坐标;②点C 是第二象限内一点,且∠BCA =∠BAC ,当AC ⊥AD 时,求点C 的坐标; (2)如图2,点E 在x 轴的正半轴上,OA =OB =OE ,P 为线段AB 上一动点(不与端点重合),OQ ⊥OP 交BE 于Q ,OR ⊥AQ 交AB 于R .当P 点运动时,PRQE的值是否发生变化?如果不变,求出其值;如果发生变化,请说明理由.(图1)(图2)随堂练习: 一、选择题1、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点(,)a b ,且26a b +=,则直线AB 的解析式是( ).A 26y x =-+ .B 26y x =--.C 23y x =-+.D 23y x =--二、填空题 2、如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC PD +值最小时点P 的坐标为 .3、如图, 在平面直角坐标系中, 平行四边形OABC 的顶点A 在x 轴上, 顶点B 的坐标为(6,4). 若直线l 经过点(1,0),且将平行四边形OABC 分割成面积相等的两部分, 则直线l 的函数解析式是 .4、已知一次函数y kx b =+过点()4,0和()2,2两点,则该函数的解析式为 .5、一次函数y kx b =+,当41≤≤x 时,63≤≤y ,则bk的值是 .6、在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、⋯、正方形1n n n n A B C C -,使得点1A 、2A 、3A ⋯在直线l 上,点1C 、2C 、3C ⋯在y 轴正半轴上,则点n B 的坐标是 .7、已知一次函数的图象经过点(0,2)P -,且与两条坐标轴截得的直角三角形的面积为 3 ,则此一次函数的解析式为 .三、解答题8、已知点0(P x ,0)y 和直线y kx b =+,则点P 到直线y kx b =+的距离d 可用公式d =计算.例如:求点(1,2)P -到直线37y x =+的距离. 解:因为直线37y x =+,其中3k =,7b =.所以点(1,2)P -到直线37y x =+的距离为d ===. 根据以上材料,解答下列问题: (1)点(1,1)P -到直线1y x =+的距离;(2)已知直线21y x =-+与26y x =-+平行,求这两条直线之间的距离。

《一次函数》典型例题解析与点评剖析

《一次函数》典型例题解析与点评剖析

《一次函数》典型例题解析与点评一次函数是初中数学中应用广泛、内容丰富的课题之一,通过学习一次函数,可有助于构造方程、深入理解函数的变化,使以后的学习、研究更加方便.本专题的基本要求是会根据已知条件,利用待定系数法确定一次函数的解析式;能用一次函数解决实际问题;会画一次函数的图像,并掌握其性质,所以我们从一些基础问题、最值问题、一次函数的应用、动点问题和定点问题这几个方面来阐述.例题1已知直线l 1:y =-3x +4与直线l 2:y =13x +4相交于点A ,其中直线l 1与x 轴交于点C ,现沿着x 轴将直线l 1在x 轴以下的部分向上翻折到x 轴的上半部,翻折后与直线l 2交于点B .(1)求射线l CB (不含端点)对应的函数解析式及定义域;(2)求点B 的坐标;(3)求△ABC 的面积.【解答】(1)由y =-3x +4知,C (43,0).【技巧】题中所求交点坐标是利用两个函数的解析式联立方程组求解,这种情况在“正反比例”中已做强调.而求面积的题目一般是通过构造特殊的图形,或者利用割补法来求解. 另外,以下知识点在一些教材需等高中才能讲授,作为本书阅读者可提前了解. 已知两直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2.(1)若l 1∥l 2,则k 1=k 2,或l 1、l 2两直线同时平行y 轴;反之亦然.(2)若l 1⊥l 2,则k 1×k 2=-1,或l 1、l 2中一条直线斜率为0,一条直线斜率不存在(两直线分别为平行于x 轴,y 轴);反之亦然.在本题中,l1、l2为互相垂直.例题2已知abc <0,a+b+c<0,且一次函数y=b cxa a的图像经过第一、二、三象限.求证:(1)a>0,b>0,c<0;(2)当x>0时,y>1.【解答】【技巧】本题考查的是一次函数的图像,根据图像所经过的象限判断出斜率和截距的情况,即b ÷a>0,(-c)÷a>0;再结合不等式的性质,推出a、b、c的大小,从而得证.反过来根据x的取值范围,再利用函数图像也能求出y的取值范围.例题3如图所示,在直角坐标系内,一次函数y=kx+b(kb>0,b<0)的图像分别与x轴、y轴和直线x=4相交于A、B、C三点,直线x=4与x轴交于点D,四边形OBCD的面积是10,若点A的横坐标是-0.5,求这个一次函数的解析式.【解答】【技巧】本题利用待定系数法和面积法构造二元一次方程组求解.要求一次函数的解析式,必须已知两个点,而本题只给出一个点的坐标,因此要从面积着手找出k与b之间的另一个关系.通过本题,可知解题还须熟记以下基本公式.(1)l :y =kx +b 与x 轴的交点为(-b k,0),与y 轴的交点为(0,b); (2)l 与x 轴、y 轴所围成的三角形面积为22b k. 例题4如图所示,在直角坐标平面内,函数y =m x(x>0,m 是常数)的图像经过点A(1,4),B(a ,b),其 中,过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连接AD 、DC 、CB .(1)若△ABD 的面积为4,求点B 的坐标;(2)求证:DC 平行于AB ;(3)当AD =BC 时,求直线AB 的函数解析式.【解答】(1)将点A 代入y =m x得:m =4,所以y =4x . 由△ABD 的面积为4,点B(a ,b)代入函数解析式得方程组:【技巧】注意斜率公式:k 1212y y x x -=-;两点间距离公式:d用待定系数法求出反比例函数关系式,然后通过已知条件的面积以及关于点B 的函数关系式找到两个等量关系,再构造方程组从而解出点B 的坐标,求证DC 与AB 的平行,由于在直角坐标系中本题完全可撇除通过平行的判定来证明,这里我们从直线的斜率上判断,原因在题1的技巧贴士中已经给出.第(3)问求函数关系式,选择待定系数法,通过AD =BC ,在直角坐标系中构造直角三角形,通过求边的长度找到等量关系.【点评】几何问题是一次函数中常见的题型,它经常以一次函数的翻折旋转、一次函数的性质定义、由面积求一次函数解析式等形式出现.在解题之前要熟记一次函数的定义、性质、特点等基本知识,特别是类似一次函数斜率k ≠0等问题.对于翻折旋转问题,还请了解以下内容.正因为如此,题1中l 1:y =-3x +4关于x 轴对称可直接表达为-y =-3x +4,当然也可以取l 1上一点(2,-2),则该点关于x 轴的对称点为(2,2),求出经点C (43,0)与(2,2)的解析式即l BC .这种“取点”方法间接解决了函数y =f(x)关于某点对称的函数y =g(x)的求法,即取y =f(x)上的一些点,这些点的对称点比较容易求出,并且这些点都在y =g(x)上,有了这些点,利用“待定系数法”等技巧可以表达出y =g(x).对于面积问题,通过题1、题3、题4的讲解我们知道,在一次函数中,要么用割补法,如题1,要么数形结合,直接用公式,如题4,以BD 为底,△ABD 的高为4-b .例题5已知f(x)是一次函数.(1)若f[f(x +1)]=4x +7,求函数f(x)的表达式;(2)若f(1)=1,且f[(2)]=2×4b k,求函数f(x)的表达式. 【解答】【技巧】首先设一次函数表达式为f(x)=kx +b(k ≠0),比较左右两边的系数构造方程组求解,先设出一次函数的表达式,通过两次代换得到一个新的函数,再利用两边对应项系数相等构造出方程组,从而解出k 和b 的值,如对于f(f(x)),现标记为f 1(f 2(x)),先计算出f 2(x),再将f 2(x)视为一个整体代入f 1(x).例题6在直角坐标系xOy ,x 轴上的动点M(x ,0)到定点P(5,5),Q(2,1)的距离分别为MP 和MQ ,那么当MP +MQ 取最小值时,求点M 的横坐标.【解答】如图所示,作点Q 关于x 轴的对称点Q'(2,-1).设直线PQ'的解析式为y =kx +b ,将点P(5,5),Q'(2,-1)代入解析式得5512k b k b =+⎧⎨-=+⎩,解得k =2,b =-5,则直线 PQ'的解析式为y =2x -5.令y =0,则x =2.5即为所求.下面证明点M(2.5,0)使MP +MQ 取最小值.在x 轴上任取点M ,连接MP 、MQ 、PQ'.因为点Q 关于x 轴的对称点为Q',所以x 轴为线段QQ'的垂直平分线.由此可得MQ =MQ',因为MP +MQ'≥PQ',两点间距离线段最短,所以MP +MQ 的最小值即MP +MQ'的最小值为PQ'.则PQ'与x 轴的交点即为所求点M .【技巧】本题关键在于将问题转换为求两定点距离之和的最小值,即利用“两点之间线段最短”,由于点P 、点Q 分布在x 轴的同侧,所以利用对称的知识首先将其中一点Q 找到它的对称点Q',因为M 点在x 轴上,那么我们可以理解其为直线PQ'与x 轴的交点.还请注意,找到了M 点,还需证明M 使MP +MQ 取最小值,因此本题分两步:首先找出M ,接着证明M 即为所求.例题7设f(x)=mx +1m(1-x ),其中m>0,记f(x)在0≤x ≤1的最小值为g(m),求g(m)及其最大值,并作y =g(m)的图像.【解答】所以g(m)在0<m≤1上为递增函数,g(m)在m≥1上为递减函数.故g(x)max=g(1)=1.【技巧】本题主要运用分类讨论的思想.先将f(x)整理成一次函数的常规形式,因x的系数是字母,不知道它的正负情况,因此要进行分类讨论.例题8某汽车出租公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由.(2)如每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,应选择以上哪种购买方案?【解答】(1)设要购买x辆轿车,那么面包车要购买(10-x)辆,由题意得7x+4(10-x)≤55,解得x≤5.因为x≥3,则x=3,4,5.所以购买方案有三种:①轿车3辆,面包车7辆;②轿车4辆,面包车6辆;③轿车5辆,面包车5辆.(2)方案①的日租金为:3×200+7×110=1370(元);方案②的日租金为:4×200+6×110=1460(元);方案③的日租金为:5×200+5×110=1550(元).为保证日租金不低于1500元,应选方案③,【技巧】解决本题的关键是要抓住题目中的关键词语“不超过”,“有几种方案”.首先根据已知条件列出不等式7x+4(10-x)≤55,并且要注意的是,本题为应用题,所以x的取值应该是正整数.结合实际意义找出相对应的解,确定出三种方案,再对各种方案求出各种租金进行比较.例题9已知某服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N 两种型号的时装共80套.已知做M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装x套,用这批布料生产两种型号的时装所获得的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;(2)当M型号的时装为多少套时,能使该厂获利润最大?最大利润是多少?【解答】(1)由题意得:y=50x+45(80-x)=5x+3600.因为两种型号的时装共用A 种布料70米,B 种布料52米,则有()()70 1.10.680,520.40.980,x x x x ⎧≥+-⎪⎨≥+-⎪⎩解得40≤x ≤44, 因x 为整数,所以x =40,41,42,43,44.所以y 与x 的函数关系式是y =5x +3600(x =40,41,42,43,44).(2)因为5>0,所以y 随x 的增大而增大,所以当x =44时,y max =3820,即生产M 型号的时装44套时,该厂利润最大,最大利润是3820元.【技巧】(1)求解自变量的取值范围的时候,我们要运用到题设中所给的条件“两种型号的时装共用A 种布料70米,B 种布料52米”,确定出两个不等关系,找出相应的范围,注意不等式是可以取得等号的.(2)通过5种方案分别计算求出利润并比较找出最大值,我们发现利润y 与x 的函数关系为y =5x +3600(x =40,41,42,43,44),y 随x 的增大而增大,因此x 取最大值的时候可以得到y max =3820.【点评】以上5题主要涉及函数的迭代问题、最值问题和实际应用问题.迭代问题,就是将里面的函数看成一个整体代入外面的函数中,从内到外,逐层推算.这就要考同学们对函数定义的理解了,将外面函数中的x 用里面函数的函数值代替再运算就可以了.再次强调对于f(f(x))的计算,现标记为f 1(f 2(x)),先计算出f 2(x),再将f 2(x)视为一个整体代入f 1(x),同理,f 1(f 2(f 3(x)))也是如此,从内到外,先算f 3,再将f 3作为整体代入计算f 2,最后将f 2作为整体代人f 1.最值问题分为两个方面,一个是两点间线段最短.另一个是分段函数,需要进行分类讨论,分析函数增减性,画出函数图像,得到在定义域中函数值取到的最大值或最小值. 题6的做法在专题6中还会出现,至于题7的最值则要在确定g(m)的基础上才能确定.对于题6,请千万牢记,本题要有两个步骤:首先找出M ,接着证明M 即为所求,第一个步骤是确定存在性,到底有没有满足条件的M 点,第二步则是证明唯一性.而实际应用问题,如题8和题9,这两题是一次函数与不等式相结合的应用问题.首先根据题目中的条件确定出不等关系,找出相应的自变量的范围,确定出几种方案,再对各种方案求出因变量进行比较,得出最佳方案.例题10 如图所示,在平面直角坐标系中,已知OA =12cm ,OB =6cm .点P 从点O 开始沿OA 边向点A 以1cm/s 的速度移动;点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动.如果点P 、点Q 同时出发,用t (秒)表示移动的时间(0≤t ≤6),则:(1)设△POQ 的面积为y ,求y 关于t 的函数解析式;(2)当△POQ 的面积最大时,将△POQ 沿直线PQ 翻折后得到△PCQ ,试判断点C 是否落在直线AB 上,并说明理由.【解答】(1)由题意得,BQ =t =OP ,CQ=6-t,所以y=-12t2+3t(0≤t≤6).(2)已知坐标A(12,0),B(0,6),所以直线AB为y=-12x+6.由(1)得,当y取最大值时,t=3,所以CQ=3,OP=3,即△POQ是等腰直角三角形.将△POQ沿直线PQ翻折,可得到边长为3的正方形OPCQ,得点C坐标(3,3),代入y=-12x+6不成立,即点C没有落在直线AB上,【技巧】本题是一个动点问题.(1)要求y关于t的函数解析式,只要求出OQ、OP的长度(包含未知数t)即可;(2)先求出当△POQ的面积最大时t的值,从而求得OQ=3和OP=3,然后不难求出C点的坐标是(3,3),代入一次函数y=-12x+6即可.例题11已知函数f(x)=(m-2)x+2m-3.(1)求证:无论m取何实数,这些函数的图像恒过某一定点.(2)当x在[1,2]内变化时,y在[4,5]内变化,求实数m的值.【解答】(1)令y=f(x)=(m-2)x+2m-3,则有(x+2)m-2x-3-y=0.【技巧】本题是一个定点问题.(1)由“无论m取何实数时,这些函数的图像恒过某一定点”可知,这个定点与m的取值无关.所以只需变换一次函数解析式,把含有m的项合并,转换成a.m=b,其中a=0,b=0即可.(2)对f(x)=(m-2)x+2m-3,还需讨论m-2的取值范围,确定一次函数是增函数还是减函数后,方可利用题设所给出的x、y范围的端点值代入一次函数的解析式,最终求得m.【点评】动点问题与定点问题是一次函数实际运用中最多也是最实用的两类问题,动点问题就是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.其中数形结合是解决动点问题最主要的方法,在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质.例如题10,其特点是有两个动点P 、Q ,而且它们分别在两条不同的射线上运动,解答问题的关键是认为点P 、Q 是“静止”的,不要被“运动”二字所迷惑,只要将△POQ 的面积表达出来即可. 要求面积最大,可利用配方法,即()2211933222y t t t =-+=--+,确定了点P 、Q 的坐标后进一步求出点C 的坐标.对于题10,再做以下几点说明,这些规律对于解题很有帮助,所以请牢记!(1)求最值问题,可能会涉及一元二次方程中的“配方法”(专题2中已作说明)以及函数的性质问题(如题7的分段函数).(2)在最值的情况下,题中所形成的图形往往是“特殊”的(如题11中等腰直角三角形POQ ,专题3题8技巧贴士中所提及的正方形).(3)本题也属于翻折情况.将本问题引申:若三角形POQ 是任意三角形(不一定是直角三角形),那经翻折后,C 点何时在直线AB 上呢?翻折的详细情况可见专题7中的“思维点评”.至于“定点问题”,这是在运动变化中寻找不变量的另外一个类型,这类问题常常会用到特殊与一般的数学思想,定点问题是数学思想与数学知识紧密结合的一类综合性试题,是中考考查能力的热点题型之一,定点问题一般分为两类:一类是直线过定点问题.如题11的第一个问题,具体解法技巧贴士中已给出;另一类是函数图像过定点问题,这类问题目前所学知识还未涉及,将在9年级“二次函数”专题中涉及.。

中考数学复习:专题3-4 一次函数考点分析及典型试题

中考数学复习:专题3-4 一次函数考点分析及典型试题

一次函数考点分析及典型试题【专题综述】一次函数的图象和性质正比例函数的图象和性质【方法解读】1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b 的图象是经过点()(0,,0)bkb -,的一条直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。

⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。

⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x 与y 的值,确定一次函数表达式,需要两对x 与y 的值。

类型1:正比例函数和一次函数的概念【例1】若函数(1)my m x =-是正比例函数,则该函数的图象经过第 象限.类型2:一次函数的图像【例2】(2017上海市)如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )类型3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k .确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b .解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标. 注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2017天津)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.52… 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.类型4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(bk-,0),与y 轴的交点坐标为(0,b );直线与两坐标轴围成的三角形的面积为S△=12|bk|·|b|=22||bk.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2017怀化)一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A.12B.14C.4D.8【例5】(2017浙江省台州市)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.类型5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【强化训练】1.(2017内蒙古呼和浩特市)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2017内蒙古赤峰市)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5B.y=2x+5C.y=2x+8D.y=2x﹣83. (2017枣庄)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)4.(2017山东省菏泽市)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣15.(2017山东省泰安市)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0 6. (2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.7. (2017吉林省长春市)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.8. (2017宁夏)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)A B购进所需费用(元)第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9. (2017黑龙江省龙东地区)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的18在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?10. (2017四川省广安市)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.。

一次函数知识点及其典型例题

一次函数知识点及其典型例题

一次函数知识点及其典型例题一次函数是数学中的基础概念之一。

其中,变量是在一个变化过程中可以取不同数值的量,而常量则是在一个变化过程中只能取同一数值的量。

例如,在匀速运动公式s=vt中,速度v和时间t是变量,路程s是常量。

在圆的周长公式C=2πr 中,周长C是常量,半径r是变量。

函数是指在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

判断y是否为x的函数,只需要看x取值确定的时候,y是否有唯一确定的值与之对应。

例如,y=πx、y=2x-1、y=-3x+2、y=x-1都是一次函数。

对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。

画一次函数图像的一般步骤是:第一步,列表(表中给出一些自变量的值及其对应的函数值);第二步,描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步,连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

函数的表示方法有三种:列表法、解析式法和图象法。

列表法一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法形象直观,但只能近似地表达两个变量之间的函数关系。

正比例函数是一种特殊的一次函数,其一般形式为y=kx(k是常数,k≠0)。

其中,k叫做比例系数。

当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小。

正比例函数必过点(0,0)和(1,k)。

1.若y=x+2-3b是正比例函数,则b的值是()A。

专题07一次函数的规律探究问题(解析版)

专题07一次函数的规律探究问题(解析版)

专题07一次函数的规律探究问题例1.如图,在平面直角坐标系中,点1A ,2A ,3A ,…,n A 在x 轴上,点1B ,2B ,…,n B 在直线33y x =上,若点1A 的坐标为(1,0),且112A B A ,223A B A ,…,1n n n A B A + 都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为1S ,2S ,..,n S ,则n S 可表示为()A.22B .22n -C .22n -D .22n -【答案】D【解析】∵112A B A △,223A B A △,…,1n n n A B A +△都是等边三角形,∴112233////////n n A B A B A B A B ⋅⋅⋅,1223341////////n n B A B A B A B A +⋅⋅⋅,∵直线3y x =与x 轴的成角1130B OA ∠=o ,11120OA B ∠=o,∴1130∠=︒OB A ,∴111OA A B =,∵()11,0A ,∴111A B =,同理2230OB A ∠=o ,…,30n n OB A ∠=o ,∴2222B A OA ==,334B A =,…,12n n n B A -=,易得1290OB A ∠=o,…,190n n OB A +∠=o,∴12B B =23B B =…,12n n B B +=∴11331224S =⨯⨯=,2122S =⨯=…,1212222n n n nS --=⨯⨯=;故选:D .例2如图,已知直线b 的解析式为y x =,在点)1A 作x 轴的垂直交直线b 于点1B ,以11A B 为边作第1个正在方形1112A B C A ,2A 在x 轴上,21A C 的延长线交直线b 于点2B ,以22A B 为边作第2个正在方形2223A B C A ,……;按此作法继续下去,则第2021个正在方形2021202120212022A B C A 的边长20212021A B 为________.【答案】20202【解析】由题意可知:点1B ,2B ,3B , ,n B 在直线y x =的图象上,即11121==A B A A OA ,22232==A B A A OA ,33343A B A A OA ==, ,1n n n n n A B A A OA +==,又∵点1A 的坐标为)1A ,∴111==OA A B222112A B OA OA A A ==+=+=23332232A B OA OA A A ==+=+==⋅;34443342A B OA OA A A ==+=+==⋅,22111222n n n n n n n n n A B OA OA A A -----==+=⋅+⋅=⋅,∴2021202121202002122-==A B ,故答案为:20202例3.如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【解析】如图,过点N 作NM ⊥x 轴于M ,将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°,∴1ON NM =∵1ON NM ⊥,∴11OM MM ==,∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0),同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0),∴2021M 的坐标为(20212,0)故答案为:(20212,0).例4.如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11AB O V 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11AB O V 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐标...为______.【答案】3875【解析】∵AB ⊥y 轴,点B (0,3),∴OB =3,则点A 的纵坐标为3,代入34y x =-,得:334x =-,得:x =-4,即A (-4,3),∴OB =3,AB =4,OA ,由旋转可知:OB =O 1B 1=O 2B 1=O 2B 2=…=3,OA =O 1A =O 2A 1=…=5,AB =AB 1=A 1B 1=A 2B 2=…=4,∴OB 1=OA +AB 1=4+5=9,B 1B 3=3+4+5=12,∴OB 21=OB 1+B 1B 21=9+(21-1)÷2×12=129,设B 21(a ,34a -),则OB 21=129=,解得:5165a =-或5165(舍),则335163874455a ⎛⎫-=-⨯-= ⎪⎝⎭,即点B 21的纵坐标为3875,故答案为:3875.课后训练1.如图,直线l 的函数表达式为y =x ﹣1,在直线l 上顺次取点A 1(2,1),A 2(3,2),A 3(4,3),A 4(5,4),…,A n (n +1,n ),构成形如”的图形的阴影部分面积分别表示为S 1,S 2,S 3,…,S n ,则S 2021=___.【答案】4044.【解析】根据题意,∵A 1(2,1),A 2(3,2),A 3(4,3),A 4(5,4),…,A n (n +1,n ),∴11135(12)1(23)142222S =⨯+⨯+⨯+⨯=+=,21157(23)1(34)162222S =⨯+⨯+⨯+⨯=+=,31179(34)1(45)182222S =⨯+⨯+⨯+⨯=+=,……∴22n S n =+;∴20212202124044S =⨯+=.故答案为:4044.2.如图,正方形111A B C O ,2221A B C C ,3332A B C C ,…按其所示放置,点1A ,2A ,3A ,…和1C ,2C ,3C ,…分别在直线1y x =+和x 轴上,则点2021B 的横坐标是______.【答案】202121-【解析】当x =0时,y =x +1=1,∴A (0,1),∴直线与x 轴的交点(-1,0),∵四边形111A OC B 是正方形,∴11111190OC C B OC B ==∠=︒,,∴B 1(1,1),易得112223334445A B A A B A A B A A B A ⋯⋯ 、、、均是等腰直角三角形,可得:每一个正方形的边长都是它前一个正方形边长的2倍,因此:B 2的横坐标为1+1×2=1+2=20+21=3=22-1,B 3的横坐标为1+1×2+2×2=1+2+4=20+21+22=7=23-1,B 4的横坐标为24-1,B 5的横坐标为25-1,……B 2021的横坐标为22021-1,故答案为:22021-1.3.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图象,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3,……依此类推,则正方形A 2B 2C 2D 2的面积为___________;正方形AnBnCnDn 的面积为__________.【答案】92(92)n −1,【解析】∵直线l 为正比例函数y =x 的图象,∴∠D 1OA 1=45°,∴D 1A 1=OA 1=1,∴正方形A 1B 1C 1D 1的面积=1=(92)1−1,由勾股定理得,OD 1,D 1A 2=22,∴A 2B 2=A 2O =2,∴正方形A 2B 2C 2D 2的面积=92=(92)2−1,同理,A 3D 3=OA 3=92,∴正方形A 3B 3C 3D 3的面积=814=(92)3−1,…由规律可知,正方形A n B n C n D n 的面积=(92)n −1,故答案是:92,(92)n −1.4.如图,在平面直角坐标系xOy 中,直线l :1y x =+交y 轴于点1A ,点2A ,3A ,…,n A 在直线l 上,点1B ,2B ,3B ,…,n B 在x 轴的正半轴上,若11OA B ,212A B B △,323A B B ,…,1n n n A B B -△,依次均为等腰直角三角形,点n B 的坐标是______.【答案】()21,0-n【解析】直线1y x =+与x 轴、y 轴的交点分别为(-1,0),(0,1),∴OA 1=1,∵△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3,…,依次均为等腰直角三角形,∴B 1(1,0),∴A 2(1,2),∴A 2B 1=2,∴B 2(3,0),A 3(3,4),∴A 3B 2=4,∴B 3(7,0),……B n (2n -1,0),5.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3(4,0)A 作x 轴的垂线,交直线2y x =于点3B 按此规律作下去,则2021B 的坐标为______.【答案】(22020,22021)【解析】∵11A B x ⊥轴交直线2y x =于1B ,且1(1,0)A ,∴1(1,2)B 同理,可分别得2(2,4)B ,3(4,8)B ,4(8,16)B ,一般地,可得:1(2,2)n n n B -当n =2021时,则2021B 的坐标为20202021(2,2)故答案为:20202021(2,2)6.如图,在平面直角坐标系中,直线l 为正比例函数y x =的图像,点1A 的坐标为(1,0),过点1A 作x 轴的垂线交直线l 于点1D ,以11A D 为边作正方形1111D C B A ;过点1C 作直线l 的垂线,垂足为2A ,交x 轴于点2B ,以22A B 为边作正方形2222A B C D ;过点2C 作x 轴的垂线,垂足为3A ,交直线l 于点3D ,以33A D 为边作正方形3333A B C D ,…,按此规律操作下所得到的正方形2021202120212021A B C D 的面积是______.【答案】202092⎛⎫ ⎪⎝⎭【解析】∵直线l 为正比例函数y =x 的图象,∴∠D 1OA 1=45°,∴D 1A 1=OA 1=1,∴正方形A 1B 1C 1D 1的面积=1=(92)1-1,由勾股定理得,OD 1,D 1A 2=2,∴A 2B 2=A 2O =322,∴正方形A 2B 2C 2D 2的面积=92=(92)2-1,同理,A 3D 3=OA 3=92,∴正方形A 3B 3C 3D 3的面积=814=(92)3-1,…由规律可知,正方形A n B n C n D n 的面积=(92)n -1,∴正方形2021202120212021A B C D 的面积是202092⎛⎫ ⎪⎝⎭.故答案为:202092⎛⎫ ⎪⎝⎭.7.如图,直线l 1:y =x +1与直线l 2:y =1122x +在x 轴上相交于点P (﹣1,0).直线l 1与y 轴交于点A .一动点C 从点A 出发,先沿平行于x 轴的方向运动,到达直线l 2上的点B 1处后,改为垂直于x 轴的方向运动,到达直线l 1上的点A 1处后,再沿平行于x 轴的方向运动,到达直线l 2上的点B 2处后,又改为垂直于x 轴的方向运动,到达直线l 1上的点A 2处后,仍沿平行于x 轴的方向运动,一照此规律运动,动点依次经过点B 1,A 1,B 2,A 2,B 3,A 3,…则当动点C 到达B 6处时,点B 6的坐标为_____.【答案】(63,32)【解析】 直线l 1为1y x =+,∴当0x =时,1y =∴A 点坐标为()0,1,则1B 点的纵坐标为1,设B 1()1x ,1,111122∴=+x ,解得11x =1B ∴点的坐标为()1,1;则1A 点的橫坐标为1,设()111,A y ,1112∴=+=y 1A ∴点的坐标为()1,2,则2B 点的纵坐标为2,设()22,2B x 211222∴=+x ,解得23x =,2B ∴点的坐标为()3,2,即()221,2-同理,可得B ()37,4,即()3221,2- ,B ∴n 的坐标为()n n 121,2--∴点6B 的坐标为()6521,2-,即6(63,B 32)故答案为(63,32).8.如图,直线y =x +4与y 轴交于A 1,按如图方式作正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…,点A 1,A 2,A 3…在直线y =x +4上,点C 1,C 2,C 3,…在x 轴上,图中阴影部分三角形的面积从左到右依次记为S 1,S 2,S 3…,S n ,则S n 的值为______(用含n 的代数式表示,n 为正整数).【答案】22n +1【解析】∵直线y =x +4的k =1,∴直线与x 轴的夹角为45°,∴直线与坐标轴相交构成的三角形是等腰直角三角形,当x =0时,y =4,所以,OA 1=4,即第一个正方形的边长为4,所以,第二个正方形的边长为4+4=8,第三个正方形的边长为8+8=16,…,第n 个正方形的边长为2n +1,∴S 1=12×4×4=422,S 2=12×8×8=622,S 3=12×16×16=822,…,S n =12×2n +1×2n +1=2222n +=22n +1.故答案为22n +1.。

一次函数经典题型 习题(精华 含答案)

一次函数经典题型 习题(精华 含答案)

一次函数题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

全国高考数学复习微专题:定点定直线问题

全国高考数学复习微专题:定点定直线问题

定点定直线问题一、基础知识:1、处理定点问题的思路:(1)确定题目中的核心变量(此处设为k )(2)利用条件找到k 与过定点的曲线(),0F x y = 的联系,得到有关k 与,x y 的等式 (3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立。

此时要将关于k 与,x y 的等式进行变形,直至易于找到00,x y 。

常见的变形方向如下: ① 若等式的形式为整式,则考虑将含k 的项归在一组,变形为“()k ⋅”的形式,从而00,x y 只需要先让括号内的部分为零即可② 若等式为含k 的分式, 00,x y 的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去k 的式子变成常数(这两方面本质上可以通过分离常数进行相互转化,但通常选择容易观察到的形式) 2、一些技巧与注意事项:(1)面对复杂问题时,可从特殊情况入手,以确定可能的定点(或定直线)。

然后再验证该点(或该直线)对一般情况是否符合。

属于“先猜再证”。

(2)有些题目所求与定值无关,但是在条件中会隐藏定点,且该定点通常是解题的关键条件。

所以当遇到含参数的方程时,要清楚该方程为一类曲线(或直线),从而观察这一类曲线是否过定点。

尤其在含参数的直线方程中,要能够找到定点,抓住关键条件。

例如:直线:1l y kx k =+-,就应该能够意识到()11y k x =+-,进而直线绕定点()1,1--旋转二、典型例题:例1:椭圆()2222:10x y C a b a b +=>>的离心率为12,其左焦点到点()2,1P (1)求椭圆C 的标准方程(2)若直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。

求证:直线l 过定点,并求出该定点的坐标解:(1)1::22c e a b c a ==⇒=,设左焦点()1,0F c -1PF ∴==1c =2,a b ∴==∴椭圆方程为22143x y +=(2)由(1)可知椭圆右顶点()2,0D设()()1122,,,A x y B x y ,Q 以AB 为直径的圆过()2,0DDA DB ∴⊥即DA DB ⊥u u u r u u u r0DA DB ∴⋅=u u u r u u u r()()11222,,2,DA x y DB x y =-=-u u u r u u u rQ()()()121212*********DA DB x x y y x x x x y y ∴⋅=--+=-+++=u u u r u u u r①联立直线与椭圆方程:223412y kx m x y =+⎧⇒⎨+=⎩()()222348430k x mkx m +++-= ()2121222438,4343m mkx x x x k k -∴+=-=++ ()()()2212121212y y kx m kx m k x x mk x x m ∴=++=+++()22222222438312434343k m mk mk m k m k k k -⋅-=-+=+++,代入到① ()222222438312240434343m mk m k DA DB k k k --⋅=+⋅++=+++u u u r u u u r 22222412161612312043m mk k m k k -++++-∴=+ ()()22716407220m mk k m k m k ∴++=⇒++= 27m k ∴=-或2m k =-当27m k =-时,22:77l y kx k k x ⎛⎫=-=- ⎪⎝⎭ l ∴恒过2,07⎛⎫ ⎪⎝⎭当2m k =-时,():22l y kx k k x =-=- l ∴恒过()2,0,但()2,0为椭圆右顶点,不符题意,故舍去l ∴恒过2,07⎛⎫⎪⎝⎭例2:已知椭圆()2222:10x y C a b a b +=>>经过点2-⎭,且椭圆的离心率为12e = (1)求椭圆的方程(2)过椭圆的右焦点F 作两条互相垂直的直线,分别交椭圆于,A C 和,B D ,设线段,AC BD 的中点分别为,P Q ,求证:直线PQ 恒过一个定点解:(1)12c e a ==::2a b c ∴= 2222143x y c c ∴+=代入2-⎭可得:2233111443c c c +⋅=⇒=2,a b ∴==∴椭圆方程为22143x y +=(2)由(1)可得:()1,0F当直线AC 斜率不存在时,:1,:0AC x BD y == 所以可得:()()1,0,0,0P Q PQ ∴为x 轴当AC 斜率存在时,设():1,0AC y k x k =-≠,则()1:1BD y x k=-- 设()()1122,,,A x y C x y ,联立方程可得:()()222222143841203412y k x k x k x k x y ⎧=-⎪⇒+-+-=⎨+=⎪⎩ 2122843k x x k ∴+=+()()()1212122611243ky y k x k x k x x k k ∴+=-+-=+-=-+ 212122243,,224343x x y y kk P k k ⎛⎫++-⎛⎫∴= ⎪ ⎪++⎝⎭⎝⎭同理,联立()22113412y x kx y ⎧=--⎪⎨⎪+=⎩,可得:22222114343,,3443114343k k k Q k k k k ⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭ ⎪∴== ⎪ ⎪++⎝⎭⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()222222337434344414334PQk k k k k k k k k k --++∴==--++ PQ ∴的方程为:()222374434341k k y x k k k ⎛⎫-=-- ⎪++-⎝⎭,整理可得: ()()()224744044740yk x k y y k k x +--=⇒-+-= 470x y ⎧=⎪∴⎨⎪=⎩时,直线方程对k R ∀∈均成立 ∴直线PQ 恒过定点4,07⎛⎫ ⎪⎝⎭而AC 斜率不存在时,直线PQ 也过4,07⎛⎫ ⎪⎝⎭∴直线PQ 过定点4,07⎛⎫⎪⎝⎭例3:如图,已知椭圆()2222:10x y C a b a b+=>>的左右焦点为12,F F ,其上顶点为A ,已知12F AF V 是边长为2的正三角形 (1)求椭圆C 的方程(2)过点()4,0Q -任作一动直线l 交椭圆C 于,M N 两点,记MQ QN λ=u u u u r u u u r,若在线段MN上取一点R 使得MR RN λ=-u u u r u u u r ,试判断当直线l 运动时,点R是否在某一定直线上运动?若在,请求出该定直线;若不在请说明理由解:(1)由椭圆方程可得()()()12,0,,0,0,F c F c A b -12F AF Q V 为边长是2的三角形122221FF c c ∴=⇒=⇒=OA b ==2224a b c ∴=+= 22143x y ∴+= (2)设():4MN y k x =+设()()1122,,,M x y N x y , ()()11224,,4,MQ x y QN x y =---=+u u u u r u u u r由MQ QN λ=u u u u r u u u r 可得:()()11224444x x x x λλ+--=+⇒=-+设()00,R x y ,则()()01012020,,,MR x x y y RN x x y y =--=--u u u r u u u r由MR RN λ=-u u u r u u u r可得:()0120x x x x λ-=-()()()112212121201122442441814x x x x x x x x x x x x x x x λλ++⋅+++-∴===+-++++ ① 联立方程组()2234124x y y k x ⎧+=⎪⎨=+⎪⎩,消去y 整理可得:()2222343264120k xk x k +++-=22121222326412,3434k k x x x x k k --∴+==++代入到①可得:22222022264123224243434341243283434k k k k k x k k k ---⋅+⋅+++===--+++ R ∴在定直线1x =-上例4:已知椭圆C 的中心在坐标原点,左,右焦点分别为12,F F ,P 为椭圆C 上的动点,12PF F V 的面积最大值为,以原点为中心,椭圆短半轴长为半径的圆与直线3450x y -+=相切(1)求椭圆的方程(2)若直线l 过定点()1,0且与椭圆C 交于,A B 两点,点M 是椭圆C 的右顶点,直线,AM BM 分别与y 轴交于,P Q 两点,试问以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由 解:(1)()1212max12PF F S F F b bc =⋅==V 因为圆与直线相切1O l d b b -∴==⇒=c ∴=2224a b c ∴=+=∴椭圆方程为:2214x y +=(2)当直线l 的斜率存在时,设():1l y k x =-,由椭圆方程可得点()2,0M设()()1122,,,A x y B x y ,联立方程可得:()22441x y y k x ⎧+=⎪⎨=-⎪⎩()2222148440k xk x k +-+-=22121222844,1414k k x x x x k k-∴+==++ 由()2,0M ,()()1122,,,A x y B x y 可得:()()1212:2,:222y yAM y x BM y x x x =-=---,分别令0x =,可得: 1212220,,0,22y y P Q x x ⎛⎫⎛⎫-- ⎪ ⎪--⎝⎭⎝⎭,设x 轴上的定点为()0,0N x若PQ 为直径的圆是否过()0,0N x ,则0PN QN ⋅=u u u r u u u r12001222,,,22y y PN x QN x x x ⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭u u u r u u u r Q∴问题转化为()()212124022y y x x x +=--恒成立即()212012124024y y x x x x x +=-++ ①由22121222844,1414k k x x x x k k -+==++及()1y k x =-可得:()()()2212121212111y y k x x k x x x x =--=-++⎡⎤⎣⎦22341k k -=+代入到①可得:2220222234410448241414k k x k k k k -⋅++=--+++2220212304k x x k-⇒+=-=解得:03x =± ∴圆过定点()3,0±当直线斜率不存在时,直线方程为1x =,可得PQ 为直径的圆223x y +=过点()3,0± 所以以线段PQ 为直径的圆过x 轴上定点()3,0±例5:如图,在平面直角坐标系xOy 中,离心率为22的椭圆()2222:10x y C a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点,当直线PQ 的斜率为22时,23PQ = (1)求椭圆C 的标准方程(2)试问以MN 为直径的圆是否过定点(与PQ 的斜率无关)?请证明你的结论解:(1)由22PQ k =可得:2:2PQ y x =002,2P x x ⎛⎫∴ ⎪ ⎪⎝⎭由对称性可知:132OP PQ ==0x ==)P∴由2c e a ==可得::a b c = ∴椭圆方程为222212x y b b +=代入)P,可得:222,4b a ==22:142x y C ∴+=(2)设()00,P x y 由对称性可知()00,Q x y --,由(1)可知()2,0A - 设():2AP y k x =+,联立直线与椭圆方程:()()22222222424y k x x k x x y ⎧=+⎪⇒++=⎨+=⎪⎩,整理可得: ()2222218840kx k x k +++-=2028421A k x x k -∴=+解得:2022421k x k -=+,代入()2y k x =+可得:202224422121k k y k k k ⎛⎫-=+= ⎪++⎝⎭ 222244,2121k k P k k ⎛⎫-∴ ⎪++⎝⎭ 从而222244,2121k k Q k k ⎛⎫--- ⎪++⎝⎭22222244012121822422121AQk k k k k k k k k k ⎛⎫-- ⎪+⎝⎭+∴===--⎛⎫---- ⎪++⎝⎭()1:22AQ y x k∴=-+,因为,M N 是直线,PA QA 与y 轴的交点 ()10,2,0,M k N k ⎛⎫∴- ⎪⎝⎭ ∴以MN 为直径的圆的圆心为2210,2k k ⎛⎫- ⎪⎝⎭,半径2212k r k += ∴圆方程为:22222212122k k x y k k ⎛⎫⎛⎫-++-= ⎪ ⎪⎝⎭⎝⎭,整理可得:222222222221212121222k k k k x y y x y y k k k k ⎛⎫⎛⎫--+-+-+=⇒+-= ⎪ ⎪⎝⎭⎝⎭所以令0y =,解得x =∴以MN为直径的圆恒过()例6:已知椭圆()2222:10x y C a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -+=相切,过点()4,0P 且不垂直x 轴的直线l 与椭圆C 相交于,A B 两点(1)求椭圆C 的方程(2)若B 点关于x 轴的对称点是E ,求证:直线AE 与x 轴相交于定点 解:(1)12c e a == 已知圆方程为:222x y b += 因为与直线相切d b b ∴==⇒=222212a a c b c a c=⎧-=⎧∴⇒⎨⎨==⎩⎩ ∴椭圆C 的方程为:22143x y += (2)设直线():4l y k x =-,()()1122,,,A x y B x y ()22,E x y ∴-联立方程可得:()221434x y y k x ⎧+=⎪⎨⎪=-⎩,消去y 可得: ()22234412x k x +-=()2222433264120k x k x k ∴+-+-=22121222326412,4343k k x x x x k k -∴+==++ 考虑直线:AE ()12121212AE y y y y k x x x x --+==--∴直线AE 的方程为:()121112y y y y x x x x +-=--令0y =可得:()()()112121y x x y y x x --=+-()122112x y x y x y y ∴+=+122112x y x y x y y +=+,而()()11224,4y k x y k x =-=-,代入可得:()()()()()1221121212124424448x k x x k x x x x x x k x k x x x -+--+==-+-+-,代入22121222326412,4343k k x x x x k k -+==++可得:2222222264123224244343431243284343k k k k k x kk k --⋅-⋅+++===--++ AE ∴与x 轴交于定点()1,0例7:在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>与直线():l x m m R =∈,四个点()()()(3,1,,3,1,---中有三个点在椭圆C 上,剩余一个点在直线l 上 (1)求椭圆C 的方程(2)若动点P 在直线l 上,过P 作直线交椭圆C 于,M N 两点,使得PM PN =,再过P 作直线'l MN ⊥,求证:直线'l 恒过定点,并求出该定点的坐标解:(1)因为四个点中有三点在椭圆上,由椭圆的对称性可知:()()3,1,3,1--必在椭圆上若()-在椭圆上,则为椭圆的左顶点。

专题06 一次函数图像的五种考法(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

专题06 一次函数图像的五种考法(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

专题06一次函数图像的五种考法类型一、图像的位置关系问题例.直线y kx k =-与直线y kx =-在同一坐标系中的大致图像可能是()A .B .C .D .【答案】A【分析】根据直线y kx k =-与直线y kx =-图像的位置确定k 的正负,若不存在矛盾则符合题意,据此即可解答.【详解】解:A 、y kx =-过第二、四象限,则0k >,所以y kx k =-过第一、三、四象限,所以A 选项符合题意;B 、y kx =-过第二、四象限,则0k >,所以y kx k =-过第一、三、四象限,所以B 选项不符合题意;C 、y kx =-过第一、三象限,则0k <,所以y kx k =-过第二、一、四象限,所以C 选项不符合题意;D 、y kx =-过第一、三象限,则0k <,所以y kx k =-过第二、一、四象限,所以D 选项不符合题意.故选A .【点睛】本题主要考查了一次函数的图像:一次函数0y kx b k =+≠()的图像为一条直线,当0k >,图像过第一、三象限;当0k <,图像过第二、四象限;直线与y 轴的交点坐标为()0b ,.【变式训练1】在同一坐标系中,直线1l :()3y k x k =-+和2l :y kx =-的位置可能是()A .B ...【答案】B【分析】根据正比例函数和一次函数的图像与性质,对平面直角坐标系中两函数图像进行讨论即可得出答案.k>,故由一次函数图像与【详解】A、由正比例函数图像可知0,即0点的上方,故选项A不符合题意;....【答案】B【分析】先根据直线1l,得出k然后再判断直线2l的k和b的符号是否与直线.B...【答案】C【分析】根据一次函数的图象性质判断即可;ab>,【详解】∵0同号,A .B .C .D .【答案】A【分析】分别分析四个选项中一次函数和正比例函数m 和n 的符号,即可进行解答.【详解】解:A 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn <,符合题意;B 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn >,不符合题意;C 、由一次函数图象得:0,0m n >>,由正比例函数图象得:0mn <,不符合题意;D 、由一次函数图象得:0,0m n ><,由正比例函数图象得:0mn >,不符合题意;故选:A .【点睛】本题主要考查了一次函数和正比例函数的图象,解题的关键是掌握一次函数和正比例函数图象与系数的关系.类型二、图像与系数的关系则13k≥或3k≤-,故答案为:【点睛】本题考查了一次函数的图象与性质,熟练掌握数形结合思想是解题关键.类型三、图像的平移问题例.将直线y kx b =+向左平移2个单位,再向上平移4个单位,得到直线2y x =,则()A .2k =,8b =-B .2k =-,2b =C .1k =,4b =-D .2k =,4b =【答案】A【分析】根据直线y kx b =+向左平移2个单位,变为()2y k x b =++,再向上平移4个单位,变为()24y k x b =+++,然后结合得到直线2y x =,即可解出k 和b 的值.【详解】解:直线y kx b =+向左平移2个单位,变为()2y k x b =++,再向上平移4个单位,变为()24y k x b =+++,得到直线2y x =,2k ∴=,240k b ++=,2k ∴=,8b =-,故选:A .【点睛】本题考查了一次函数图像平移变换,熟练掌握图象左加右减,上加下减的变换规律是解答本题的关键.【变式训练1】对于一次函数24y x =-+,下列结论错误的是().A .函数的图象与x 轴的交点坐标是(0,4)B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数值随自变量的增大而减小【答案】A【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A 选项:当0y =时,2x =,所以函数的图象与x 轴的交点坐标是(2,0),故A 选项错误;B 选项:函数的图象经过第一、二、四象限,不经过第三象限,故B 选项正确;C 选项:函数的图象向下平移4个单位长度,得到函数244y x =-+-,即2y x =-的图象,故C 选项正确;D 选项:由于20k =-<,所以函数值随x 的增大而减小,故D 选项正确.故选:C【点睛】本题考查一次函数的图象及性质,函数图象平移的法则,熟练运用一次函数的图象及性质进行判断是解题的关键.【变式训练2】把直线3y x =-先向右平移2个单位长度,再向下平移3个单位长度,平移后的新直线与x 轴的交点为()0m ,,则m 的值为()A .3B .1C .1-D .3-【答案】B【分析】由题意知,平移后的直线解析式为()32333y x x =---=-+,将()0m ,代入得033m =-+,计算求解即可.【详解】解:由题意知,平移后的直线解析式为()32333y x x =---=-+,将()0m ,代入得033m =-+,解得1m =,故选:B .【点睛】本题考查了一次函数图象的平移,一次函数与坐标轴的交点.解题的关键在于熟练掌握图象平移:左加右减,上加下减.类型四、规律性问题例.在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示,依次作正方形111A B C O ,正方形2221A B C C ,…,正方形1n n n n A B C C -,使得点1A ,2A ,3A ,….在直线l 上,点1C ,2C ,3C ,…,在y 轴正半轴上,则点2023B 的坐标为()A .()202220232,21-B .()202320232,2C .()202320242,21-D .()202220232,21+【答案】A【分析】根据一次函数图象上点的坐标特征结合正方形的性质可得出点11A B 、的坐标,同理可得出2A 、3A 、4A 、5A …及2B 、3B 、4B 、5B …的坐标,根据点的坐标变化可找出变化规律()12,21n n n B --(n 为正整数),依此规律即可得出结论.【详解】解:当0y =时,由10x -=,解得:1x =,∴点1A 的坐标为()1,0,111A B C O 为正方形,()11,1B ∴,同理可得:()22,1A ,()34,3A ,()48,7A ,()516,15A ,…,∴()22,3B ,()34,7B ,()48,15B ,()516,31B ,…,【答案】20222022(21,2)-【分析】先求出1A 、2A 、3A 、4A 的坐标,找出规律,即可得出答案.【详解】解: 直线1y x =+和y 轴交于1A ,1A ∴的坐标()0,1,即11OA =,四边形111C OA B 是正方形,111OC OA ∴==,【答案】()20222,0【分析】根据1A 的坐标和函数解析式,即可求出点34,A A 探究规律利用规律即可解决问题.【详解】∵直线3y x =,点1A 的坐标为∴()11,3B 在11Rt OA B △中,11131,OA A B ==,类型五、增减性问题.B...A .()15,53B .()15,63C .()17,53D 【答案】D【答案】40432【分析】根据已知先求出2OA ,3OA ,33A B ,44A B ,然后分别计算出1S ,2S 【详解】解:∵11OA =,212OA OA =,∴22OA =,∵322O A O A =,∴34OA =,∵432OA OA =,。

一次函数恒过定点的问题

一次函数恒过定点的问题

一次函数恒过定点的问题一次函数是初中数学中的一个重要概念,它描述的是数学中的直线。

当我们学习一次函数的时候,我们会遇到一个经典问题:“一次函数是否能恒过一个定点?”本文将围绕这个问题详细阐述,并提供解决方案。

一、什么是一次函数?在数学中,一次函数也叫线性函数,它表示为y=kx+b,其中k和b是常数,x是自变量,y是因变量。

这个函数的图像是一条直线,k表示这条直线的斜率,b表示y轴截距,当k为0时,直线的斜率为0,此时表示一条水平直线,当b为0时,直线穿过原点。

二、能否恒过定点?一个一次函数能否恒过一个定点实际上就是在问这条直线与y轴的交点是否固定。

如果能恒过一个点,那么这个“定点”就是这条直线与y 轴的交点。

那么,一次函数恒过定点的条件是什么呢?具体来说,我们可以解方程y=kx+b得到恒过一个点的条件:kx+b=y,当x=0时,y=b。

通过解方程可以得出,只要这条直线与y轴的截距b是定值,那么这条直线就能恒过一个定点,这个点就是(0,b)。

三、结论因此,我们可以得出结论:只要一次函数的y轴截距是一个定值,那么这条直线就能恒过一个定点。

比如说,y=x+3这条直线的截距是3,所以这条直线恒过(0,3)这个点。

四、探究如果我们进一步探究一次函数恒过定点的情况,不难发现,这个定点与这个一次函数的斜率有关。

如果这个函数的斜率为0,则这个函数一定恒过y轴的截距点,反之,如果这个函数的斜率不为0,则这个函数一定不恒过y轴截距点。

这个结论可以通过将y=kx+b变形得到。

因此,我们可以得出一个简单的结论:一次函数要想恒过定点,就必须是一条水平直线。

五、总结总之,一次函数恒过定点需要满足截距为定值的条件,这个定值就是这条直线与y轴的交点。

当斜率为0时,这个截距就是一条水平直线与y轴的交点。

因此,我们可以通过这个定理更好地理解一次函数,也可以帮助我们更好地解决各种数学问题。

高中数学解题方法系列:解析几何中的定点定线定值

高中数学解题方法系列:解析几何中的定点定线定值

高中数学解题方法系列:解析几何中的定点定线定值1.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【标准答案】(I)由题意设椭圆的标准方程为22221(0)x y a b a b +=>>3,1a c a c +=-=,22,1,3a c b ===221.43x y ∴+=(II)设1122(,),(,)A x y B x y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340k m +->.212122284(3),3434mk m x x x x k k -⇒+=-⋅=++22221212121223(4)()()().34m k y y kx m kx m k x x mk x x m k-⋅=+⋅+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ⋅=-,1212122y yx x ∴⋅=---,(最好是用向量点乘来)1212122()40y y x x x x +-++=,2222223(4)4(3)1640343434m k m mkk k k --+++=+++,2271640m mk k ++=,解得1222,7km k m =-=-,且满足22340k m +->.当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0).7综上可知,直线l 过定点,定点坐标为2(,0).72.已知椭圆)0(1:2222>>=+b a by a x C 过点)23,1(,且离心率21=e 。

一次函数过定点的求法

一次函数过定点的求法

求一次函数过定点是一类新题型,这类问题通常给出一个解析式中含有字母的一次函数,然后让确定一次函数必然经过的一个确定的点的坐标.
例题:无论m 取任何实数,一次函数(1)y m x m =-+必过一定点,此定点坐标为( )
A.(—1,1)
B.(1,1)
C.(0,1)
D.(1,—1)
解法一:推理式
已知条件中,m 取任何实数,一次函数必过一定点,也就是说此定点与m 的取值无关.故设法把解析式中的m 消去即可.观察此解析式,当1x =-时, (1)(1)11m m m m -⨯-+=-++=,所以选A
解法二:特殊值法
由于定点不受m 的影响,所以可以对m 取两个简单的数值,如2m =,1m =-,分别代入原解析式,得到方程组
2
21y x y
x =+⎧⎨=--⎩
解此方程组,得到1,1x y =-=,所以选A.
【迁移点拨】:确定点的方法通常用两条直线相交而得.。

初一数学过定点问题

初一数学过定点问题

初一数学过定点问题一、直线过定点问题直线过定点问题一般涉及一次函数和反比例函数,需要利用斜率、截距或两点式方程来求解。

解决此类问题时,首先要明确所求直线方程的形式,然后根据题目条件列出方程组,解出未知数即可。

二、一次函数图象过定点问题对于一次函数y=kx+b,当其图象过定点时,可以将点的坐标代入方程中求出k和b的值,从而确定函数的解析式。

例如,一次函数y=x+1的图象经过点(2,3),将x=2, y=3代入方程中,可以求出k=1, b=1。

三、二次函数图象过定点问题对于二次函数y=ax^2+bx+c,当其图象过定点时,同样可以将点的坐标代入方程中求出a、b、c的值。

例如,二次函数y=x^2+2x+3的图象经过点(1,4),将x=1, y=4代入方程中,可以求出a=1, b=2, c=0。

四、反比例函数图象过定点问题对于反比例函数y=k/x,当其图象过定点时,同样可以将点的坐标代入方程中求出k的值。

例如,反比例函数y=2/x的图象经过点(2,1),将x=2, y=1代入方程中,可以求出k=2。

五、三角形、四边形过定点问题三角形和四边形的问题通常涉及到角度、边长等几何量,需要利用几何定理和代数方法进行求解。

对于三角形,可以借助三角形相似性质进行推导;对于四边形,可以借助对角线性质进行求解。

在解决此类问题时,需要仔细分析图形和条件,选择合适的解题方法。

六、圆过定点问题圆过定点问题需要利用圆的方程和几何性质进行求解。

对于给定的圆方程和点坐标,可以将其代入圆的方程中求解未知数。

在解决此类问题时,需要明确圆心和半径的几何意义,并选择合适的解题方法。

七、综合类过定点问题综合类过定点问题通常涉及到多个知识点和解题方法,需要综合运用所学知识进行求解。

在解决此类问题时,需要仔细分析题目条件和要求,选择合适的解题方法。

难点突破专题- 次函数与定点、定直线

难点突破专题- 次函数与定点、定直线

难点突破专题-次函数与定点、定直线
难点突破一直线过定点
1.直线y=kx一定经过点;若一次函数的图象经过原点,那么该-次丽数的解析式可设为
2.直线y=kx+1一定经过点;若一次函数的图象经过点(0,-1),那么该一次函数的解析式可设为
3.直线y=kx- 2k+3一定经过点;若一次函数的图象经过点(- 2,3),该一次函数的解析式可设为
难点突破二过定点的直线的应用
4.已知一次函数y=kx-k+2.
(1)其图象过定点
(2)直线y=kx- k+2和直线y=2x的交点是_
(3)若0<k<2,不等式kx- k+2≤2x的解集是_
(4)当x=2时,y<0,则k的取值范围是
(5)若点A(2,3),B(5, -2),该一-次函数的图象与线段AB有交点,则k的取值范围是_
难点突破三利用坐标判断点在定直线上
5.点P(a,-3)一定在直线_ 上;
6.点P(a,a+2)一定在直线上;
7.点P(a+1,2a-3)一定在直线上;
难点突破四点在定直线上的应用
8.如图,A(4,0),B(0,4),点P在AB上运动,△OPQ 为等腰直角三角形,∠OPQ=90°.求证:点Q在某一确定的直线上.
9.如图,直线y=2x+4交x轴于点A,交y轴于点B,C(1,0),P为直线AB上一点,将线段PC绕点C 顺时针旋转90°得CQ.
(1)若点P的横坐标为-1,则点Q的坐标为_
(2)若点P的横坐标为m,用含m的式子表示点Q的坐标为
(3)当点P在直线AB.上运动时,点Q总在直线l上运动,求直线l的解析式.。

一次函数定点定线问题

一次函数定点定线问题

专题:一次函数与等腰直角三角形例1:点的旋转问题(1)将点A(-2,1)绕原点顺时针旋转90°所得的点为;(2)将点A(a, b)绕原点顺时针旋转90°所得的点为;(3)将直线y=-2x绕原点旋转90°所得直线;(4)直线y=kx-4k垂直于直线y=-2x,则k= 。

例2.已知点A(-1,1),B(1,5),直线了过A点且与AB垂直,求l的解析式。

例3 平面直角坐标系中,直线y=-2x+4交y轴于A点,交x轴于B点,∠PAB=45°,求直线AP解析式。

例4.如图,A(1,1),B是x轴上一动点,(1)将AB绕A逆时针旋转90°得AD,则D点在一条定直线上,试说明理由,并求这条直线的解析式。

(2)如图,B,C分别位于两坐标轴负半轴上,∠BAC=45°,求S△BOC专题:一次函数与定点定线的问题例1:直线过定点(1)直线y=kx过定点,过原点的直线可设为;(2)直线y=kx+2过定点,过(0,4)的直线可设为;(3)直线y=kx-2x+1过定点,过(-2,4)的直线可设为。

例2:已知一次函数y=2kx-k+2(1)该直线过定点;(2)该直线与y=4x的交点为;(3)若0<k<2,不等式2kx-k+2≤4x解集;(4)若A(1.5, 3),B(4, -3),该一次函数图像与线段AB有交点,则k的取值范围是。

例3.直线y=k(x-1)+3k-4与x轴交于A,与y轴交于B,则O到该直线距离最大值是。

例4.(2017江岸区期末)已知直线a: y=(x+1)k+1与x轴交于点P,与y轴交于点Q;(1)直线a经过定点A,则点A的坐标为:;(2)直线b:y=(k-1)x+k与y轴交于点M,与直线a交于点B,求证:无论k取何值,△BQM 面积为定值;(3)如图过点Q在第二象限内作线段CQ⊥PQ,且CQ=AQ,连接AC,取AC中点D,当k 的值从3逐步变化到1时,求点D的运动路径长。

(完整word版)一次函数的定点问题

(完整word版)一次函数的定点问题

一次函数中的定点问题知识架构1. 判断点P (a,a+2)不在第几象限,并说明理由。

归纳:若点是以单参数表示的横、纵坐标,可“设元消参”来确定这点在哪条线上。

2. 如图,直线AB 与y 轴交于点A ,与x 轴交于点B ,点A 的纵坐标、点B 的横坐标如图所示。

(1) 求直线AB 的解析式(2) 过原点O 的直线把ΔABO 分成面积相等的两部分,直接写出这条直线的解析式。

归纳:三角形中线所在直线平分三角形的面积。

变式1.已知平面上点O (0,0),A (3,2),B (4,0),直线y=mx-3m+2将ΔOAB 分成面积相等的两部分,求m 的值。

变式2.如图,在平面直角坐标系中,A (1,4),B (3,2),C (m,-4m+20),若OC 恰好平分四边形OACB 的面积,求点C 的坐标。

归纳:若四边形一条对角线平分四边形的面积,则这条对角线必经过另一条对角线的中点。

3. 如图,在平面直角坐标系中,ABCDA (0,0),C (10,4),直线y=ax-2a-1分成面积相等的两部分,求a 的值。

归纳:平分中心对称图形面积的直线必经过对称中心。

变式:如图,在平面直角坐标系中,多变形OABCDE 的顶点坐标分别是0(0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,求直线l 的函数解析式。

例题分析1. 在平面直角坐标系中,点P 的坐标(0,2),点M 的坐标为⎪⎭⎫ ⎝⎛---4943,1m m (其中m 为实数).当PM 的长最小时,求m 的值2. 已知在平面直角坐标系中,四边形OABC 的顶点分别为O (0,0),A (5,0),B (m,2),C(m-5,2).(1) 问:是否存在这样的m ,使得在BC 边上总存在点P ,使∠OPA=90°?若存在,求出m 的取值范围;若不存在,请说明理由。

一次函数一定过定点的题目

一次函数一定过定点的题目

一次函数一定过定点的题目?
答:1、已知直线$l$过点$P(3,2)$,且与$x$轴、$y$轴的正半轴分别交于$A,B$两点,$\bigtriangleup OAB$的面积最小为____.
2、已知直线 l:y = kx + 1 与圆 O:x^2 + y^2 = 1 相交于 A,B 两点,则 "k = 1" 是 "△OAB 的面积为 1" 的_______.
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
3、已知函数 f(x) = x^2 + ax + b (a,b ∈ R),g(x) = 2x^2 - 4x - 16.
(1) 求不等式 g(x) < 0 的解集;
(2) 若 |f(x)| ≤ |g(x)| 对 x ∈ R 恒成立,求 a,
b 的值.
4、已知函数 f(x) = (a + 1)lnx + ax^2 + 1.
(1) 讨论函数 f(x) 的单调性;
(2) 若 a < -1,试问过点 (0,1) 可作几条直线与曲线y = f(x) 相切?请说明理由.
5、已知函数 f(x) = x^2 + ax + b (a < 0, b > 0) 有两个不同的零点 x₁, x₂,-2 和 x₁, x₂三个数适当排序后又可成为等比数列 { xₙ } 的前三项。

(1) 求 f(x) 的解析式;
(2) 在平面直角坐标系中,是否存在点 P(m, n),使得过点 P 的直线 l₁,l₂与曲线 C:y = f(x) 都只有一个公共点,且 l₁⊥ l₂?若存在,求出所有符合条件的点 P 的坐标;若不存在,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:一次函数与等腰直角三角形
例1:点的旋转问题
(1)将点A(-2,1)绕原点顺时针旋转90°所得的点为;
(2)将点A(a, b)绕原点顺时针旋转90°所得的点为;
(3)将直线y=-2x绕原点旋转90°所得直线;
(4)直线y=kx-4k垂直于直线y=-2x,则k= 。

例2.已知点A(-1,1),B(1,5),直线了过A点且与AB垂直,求l的解析式。

例3 平面直角坐标系中,直线y=-2x+4交y轴于A点,交x轴于B点,∠PAB=45°,求直线AP解析式。

例4.如图,A(1,1),B是x轴上一动点,
(1)将AB绕A逆时针旋转90°得AD,则D点在一条定直线上,试说明理由,并求这条直线的解析式。

(2)如图,B,C分别位于两坐标轴负半轴上,∠BAC=45°,求S△BOC
专题:一次函数与定点定线的问题
例1:直线过定点
(1)直线y=kx过定点,过原点的直线可设为;
(2)直线y=kx+2过定点,过(0,4)的直线可设为;
(3)直线y=kx-2x+1过定点,过(-2,4)的直线可设为。

例2:已知一次函数y=2kx-k+2
(1)该直线过定点;
(2)该直线与y=4x的交点为;
(3)若0<k<2,不等式2kx-k+2≤4x解集;
(4)若A(1.5, 3),B(4, -3),该一次函数图像与线段AB有交点,则k的取值范围是。

例3.直线y=k(x-1)+3k-4与x轴交于A,与y轴交于B,则O到该直线距离最大值是。

例4.(2017江岸区期末)已知直线a: y=(x+1)k+1与x轴交于点P,与y轴交于点Q;
(1)直线a经过定点A,则点A的坐标为:;
(2)直线b:y=(k-1)x+k与y轴交于点M,与直线a交于点B,求证:无论k取何值,△BQM 面积为定值;
(3)如图过点Q在第二象限内作线段CQ⊥PQ,且CQ=AQ,连接AC,取AC中点D,当k 的值从3逐步变化到1时,求点D的运动路径长。

相关文档
最新文档