1-s2.0-S002230931100319X-main
basisrisk计算公式
basisrisk计算公式全文共四篇示例,供读者参考第一篇示例:基础风险是指金融市场或金融产品价格移动之间的不匹配,这种不匹配会导致交易者面临潜在的风险。
在金融市场中,基础风险是交易者必须面对的一种风险,而要准确评估和管理基础风险,就需要使用基础风险计算公式。
基础风险计算公式是通过统计和数学方法来衡量金融产品之间的价格移动关系,从而确定基础风险的大小。
计算基础风险的目的是帮助交易者更好地理解市场情况,降低风险并做出更明智的投资决策。
基础风险的计算公式一般包括两个主要部分:相关系数和标准差。
相关系数用来衡量两种金融产品价格之间的相关性,而标准差则用来衡量价格波动的大小。
通过这两个因素的结合,可以计算出基础风险的大小。
具体来说,基础风险的计算公式如下:\[ BasisRisk = \sqrt{(\rho \times \sigma_1 \times \sigma_2)^2 + ((1-\rho) \times \sigma_1 \times \sigma_2)^2} \]\rho表示两种金融产品价格的相关系数,取值范围为-1到1,\sigma_1和\sigma_2分别表示两种金融产品价格的标准差。
基础风险的计算公式表明,基础风险是由相关系数和标准差共同决定的,相关系数越高,基础风险越低;标准差越高,基础风险越高。
在实际的金融交易中,交易者可以利用基础风险计算公式来评估不同金融产品之间的相关性和波动性,从而选择合适的交易策略和组合。
通过准确计算基础风险,交易者可以更好地把握市场情况,规避潜在风险,实现更好的投资回报。
基础风险计算公式的应用不仅可以帮助交易者识别和评估风险,还可以帮助金融机构和监管部门监控市场风险,保障金融系统的稳定运行。
对基础风险计算公式的理解和应用是金融领域中非常重要和必要的一部分。
在实际操作中,基础风险计算公式的应用可能会受到一些限制和挑战,如数据不准确、参数选择不当等。
在使用基础风险计算公式时,交易者需要谨慎选择数据和参数,并结合实际情况进行修正和调整,以确保计算结果的准确性和可靠性。
银行外汇收支编码
211051 211052 211053 211054 211060 211070 211070 211070
211090
301010 302011
302012 302013
302021 302022 302023 302031
其他收入 新增 新增 新增 新增 新增 一年以下雇员汇款收入 利润汇回 新增 新增 建筑物租金收入 对母/子公司、附属及关联方贷款利息收入 新增 新增 股票投资收益收入 新增 债券投资收益收入 金融衍生工具收益收入 新增 贷款及其他债权利息收入 新增 新增 新增 新增 接受与固定资产无关的捐赠及无偿援助 接受与固定资产无关的捐赠及无偿援助 接受与固定资产无关的捐赠及无偿援助 保险赔偿收入 新增 新增 其他赔偿收入 税收收入(如所得税、财产税;社会福利;运输工 具注册费等) 罚款、追缴款收入(如行政执法部门的罚款、没收 追缴的财产等) 国际组织会费收入 一年以上雇员汇款收入 偶然性收入(如遗产、中奖、评比及比赛中的奖励 收入等) 其他收入 债务减免收入 接受与固定资产有关的捐赠及无偿援助 国外支付的赔偿(如原油泄露、爆炸、药物副作用 的损失赔偿等) 税收收入(如继承税、遗产税、赠与税及房地产契 税等) 移民的转移收入 其他收入 土地批租、租赁收入 商标、专利的所有权转让收入 商标、专利的所有权转让收入 其他无形资产的所有权转让收入
909010 909020 909030 909040 909050
新增 新增 在境内向境外投资者发行衍生金融工具 新增 境外投资者投资境内的投资基金 新增 清算资金汇入 证券经营机构清算备用金撤回 出口延期(应)收款收回 预付货款 新增 政府贷款本金的收回 对外非政府贷款本金的收回 国际金融租赁融资本金的收回 收回其他贷款 收回或调回存放境外存款本金 保证金调回 其他债权减少 进口延期付款 预收货款 新增 获得外国政府贷款本金 获得国际金融组织贷款本金 获得国外银行及其他金融机构贷款本金 获得买方信贷本金 获得国外企业及个人借款本金 国际金融租赁融资 获得其他贷款本金 境外存入款项 境外存入保证金 认缴非货币性国际组织股本金 借入其他债务 实物外债 转入出口押汇 转入进口押汇 代理进出口收入 外汇存款利息收入 现钞套汇收入 其他 新增 境内投资性公司投资款 中方外汇投资款 其他境内投资收入 获得国内银行及其他金融机构外汇贷款本金 获得委托贷款本金 委托贷款划回 获得其他贷款 新增 新增 同名账户资金转入 对外发生或有负债产生的收入 存入外币现钞 存入保证金 新增 集团公司成员间外汇往来划转收入
某房地产开发企业会计科目设置
权益 权益 权益 权益 权益 权益 成本 成本 成本
成本
成本
成本
成本
成本 成本 成本 成本 成本 成本
成本
成本
成本
成本
成本 成本 成本 成本 成本 成本
成本
成本
314104 提取储备基金
2
314105 提取企业发展基金
2
314106 提取职工奖励及福利基金
2
314107 利润归还投资
2
314108 提取任意盈余公积
1
1002 银行存款
2
100201 工商银行
2
100202 农业银行
3 10020201 高新园分理处
3 10020202 高新支行营业部
2
100203 中国银行
3 10020301 回生分理处
2
100204 建设银行
2
100205 交通银行
3 10020501 江津支行
2
100206 商业银行
2
100207 深圳发展银行
供应商往 来
成本
成本
成本
成本 成本 成本 成本
成本
项目客户 项目客户 项目客户 项目客户
部门核算 部门核算 部门核算 部门核算
负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债
负债
负债
负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债 负债
2301 长期借款 230101 银行长期借款 230197 其他长期借款
2311 应付债券 231101 债券面值 231102 债券溢价 231103 债券折价 231104 应计利息
二分位数的计算公式
二分位数的计算公式二分位数,又称中位数,是统计学中常用的一种描述数据集中趋势的指标。
它是将一组数据按大小顺序排列后,中间位置的数值。
在统计学和概率论中,二分位数是将数据集分为两个等分的数值,即有一半的数据小于等于它,另一半的数据大于等于它。
在实际应用中,二分位数常用于描述数据的中心位置,是一种比平均数更加稳健的统计指标。
下面我们将介绍二分位数的计算公式及其应用。
一、二分位数的计算公式。
1. 对于奇数个数据的情况,二分位数的计算公式为:二分位数 = (n+1)/2的观测值。
其中,n为数据的个数。
2. 对于偶数个数据的情况,二分位数的计算公式为:二分位数 = (n/2)和(n/2+1)的平均值。
其中,n为数据的个数。
以上就是二分位数的计算公式,通过这些公式我们可以很容易地计算出一个数据集的二分位数。
下面我们将通过一个实例来演示如何使用这些公式来计算二分位数。
假设我们有以下一组数据,12, 15, 18, 20, 22, 25, 28, 30, 32, 35。
首先,我们需要将这组数据按照大小顺序排列,12, 15, 18, 20, 22, 25, 28, 30, 32, 35。
数据的个数n为10,为偶数个数据,因此我们使用第二种计算公式来计算二分位数:二分位数 = (10/2)和(10/2+1)的平均值。
= (5+6)/2。
= 5.5。
因此,这组数据的二分位数为25。
二、二分位数的应用。
二分位数在实际应用中有着广泛的应用,特别是在描述数据的中心位置时。
与平均数相比,二分位数更加稳健,对于极端值的影响较小,因此在一些特殊情况下,二分位数更适合作为描述数据中心位置的指标。
1. 描述收入水平。
在经济学中,二分位数常被用来描述收入水平。
由于收入数据往往存在一些极端值,使用平均数来描述收入水平可能会受到极端值的影响,因此二分位数更适合用来描述收入水平的中心位置。
2. 描述房价水平。
在房地产领域,二分位数也常被用来描述房价水平。
中登接口基金
中国证券登记结算公司开放式基金数据接口规范中国证券登记结算公司开放式基金系统工作小组二○○三年六月二十三日目录1.引言 (2)2.数据类型定义 (2)3.数据处理 (3)4.加密 (3)5.数据接口 (3)5.1.管理信息格式 (3)5.2.业务数据 (5)5. 3 . 基本信息及部分汇总数据 (47)6.数据字典 (52)7.业务数据组织形式 (62)附录A:交易处理返回代码的取值及含义 (77)附录B:基金帐号编码 (97)附录C:销售人编码 (98)附录D:文件方式接口及通讯草案 (99)附录E:文件类型与业务类型对照表 (102)1.引言为了更好的适应开放式基金市场的需要,使更多的银行和券商顺利的加入到中国证券登记结算公司(以下简称“本公司”)的开放式基金登记结算系统中,推动中国开放式基金市场的发展,本公司以中国证监会制定的开放式基金业务数据接口规范的基础,结合目前主要银行实际应用的开放式基金系统和本公司的系统,制定出开放式基金系统数据接口规范(征求意见稿)。
本公司制定出的开放式基金数据接口规范,是一套应用接口标准,考虑到各家银行和券商系统还存在各自不同的差异,现将数据接口(征求意见稿)发送给各家银行和券商,希望银行和券商能够结合自身的系统特点和改动量,对本公司的数据接口提出宝贵的参考意见,以便本公司对该数据接口做进一步的修改。
本规范适用的当事人包括基金销售代理人,TA系统。
本规范由中国证券登记结算公司技术部开放式基金系统工作小组负责起草。
2.数据类型定义本规范使用的数据类型定义如下:3.数据处理本规范参照中国证券监督委员会开放式基金数据接口规范的数据组织和中国结算开放式基金业务的要求组织相关数据。
数据处理规则:(1)有申请,必须有确认。
(2)数字相关字段左补零右对齐,字符相关字段右补空格左对齐。
(3)字符不区分大小写。
(4)若以文件方式交换数据,则:1)以文本文件定长记录方式;2)每行一条完整记录;3)换行必须用换行(ODH)、回车(OAH)字符;4)带有小数点的数值型数据,传输时不传小数点,小数点在数据字典中指定,传送一默认字典中格式进行。
1-s2.0-S0306261907001742-main
Application of the Miller cycle to reduce NO x emissionsfrom petrol enginesYaodong Wang a,b,*,Lin Lin c ,Shengchuo Zeng b ,Jincheng Huang b ,Anthony P.Roskilly a ,Yunxin He b ,Xiaodong Huang b ,Shanping Li daThe Sir Joseph Swan Institute for Energy Research,Newcastle University,Newcastle upon Tyne,NE17RU,United KingdombMechanical Engineering College,Guangxi University,Nanning,Guangxi 530004,China cNanning College for Vocational Technology,Nanning,Guangxi 530003,ChinadGuangxi University of Technology,Liuzhou,545006,ChinaAccepted 26October 2007Available online 7February 2008AbstractA conceptual analysis of the mechanism of the Miller cycle for reducing NO x emissions is presented.Two versions of selected Miller cycle (1and 2)were designed and realized on a Rover ‘‘K ”series 16-valve twin-camshaft petrol engine.The test results showed that the application of the Miller cycle could reduce the NO x emissions from the petrol engine.For Miller cycle 1,the least reduction rate of NO x emission was 8%with an engine-power-loss of 1%at the engine’s full-load,compared with that of standard Otto cycle.For Miller cycle 2,the least reduction rate of NO x emission was 46%with an engine-power-loss of 13%at the engine’s full-load,compared with that of standard Otto cycle.Ó2007Elsevier Ltd.All rights reserved.Keywords:Petrol engine;Miller cycle;NO x emission1.IntroductionIt has been more than a century since petrol engines were first and widely used as primary movers for human activities,such as transportation and stand-by power generation.The technologies to design and to make petrol engines are well developed.But environmental concerns since the 1970s have made the control of engine emissions a challenge for the engine industry.Engineers and researchers have taken numerous mea-sures to reduce engine emissions and to comply with restrictions on the quality and quantity of emissions allowed in different applications.The need to meet the emissions legislation means that it is appropriate con-tinuously to investigate the ways of reducing emissions without compromising engine-efficiency or increasing the cost of manufacturing engines.0306-2619/$-see front matter Ó2007Elsevier Ltd.All rights reserved.doi:10.1016/j.apenergy.2007.10.009*Corresponding author.Address:Newcastle University,The Sir Joseph Swan Institute,Newcastle upon Tyne NE17RU,United Kingdom.Tel.:+4401912464934;fax:+4401912464961.E-mail address:y.d.wang@ (Y.Wang).Available online at Applied Energy 85(2008)463–474/locate/apenergyAPPLIED ENERGYThe main gaseous emissions from petrol engines are hydrocarbon (HC),carbon monoxide (CO),carbon dioxide (CO 2)and nitrogen oxides (NO x ,i.e.NO and NO 2).Among them,NO x is the most harmful gas that needs to be minimized.Currently there are two ways to reduce NO x emissions:one way is reducing NO x at source,such as exhaust-gas recirculation or homogenous combustion.This method is preferred from the view point of cost.Another way is after-treatment.This is an effective but expensive way to reduce NO x emissions.In order to reduce the NO x emissions at source,it is necessary to know the mechanism of NO x formation in the engine cylinder.The factors that influence the formation of NO x in engines are:(a)the peak flame-tem-perature during the combustion process,(b)the duration of the heat-release process,and (c)the air–fuel ratio.Among these factors,the peak flame-temperature in the cylinder is the key factor.If the highest temperature of the flame is reduced,the amount of NO x formed in the cylinder will be less.Consequently,the NO x emissions will be reduced.Thus,searching for a way to lower or to control the peak flame-temperature in the engine’s cylinder is one of the main aim for engine engineers and scientists.The Miller cycle was first proposed by ler in 1947.The proposal was for the use of early intake valve closing (EIVC)to provide internal cooling before compression so as to reduce the compression work [1].Miller further proposed increasing the boost of the inlet charge to compensate for the reduced inlet duration [2].The cycle that Miller proposed is a cold cycle which has allowed an increase in engine performance with an upraise of the knocking threshold.At that time,the Miller cycle was focused on improving the thermal efficiency of engine [3–10].This is still the aim [11–15].Since the Miller cycle is a cold cycle,there is the possibility to apply it to reduce the combustion temperatures in engines thus reducing the NO x formation and emissions.The objective of this study is to investigate experimentally the feasibility of the application of the Miller cycle in order to reduce NO x emissions from petrol engines.2.The concept of Miller cycle 2.1.Description of Miller cycleFor the Miller cycle,the expansion-ratio exceeds its compression-ratio [15],that is,the effective expansion stroke of the engine is longer than the compression stroke.A comparison of the standard Otto cycle with the Miller cycle is shown in Fig.1.Assuming the cylinder pressure at the starting point 0is P 0,the volume is V 0,the swept volume of cylinder for Otto cycle is V c and for Miller cycle is V 0c .As shown in Fig.1a,the work processes of Otto cycle are:intake process 0?1,compression process 1?2,combustion and expansion process 2?3?4,and exhaust process 4?1?0.For the cycle,theNotation M 1Miller cycle 1M 2Miller cycle 2n engine speed (r/min)P pressure in the cylinder (kPa)P 0ambient pressure (kPa)V volume of cylinder (m 3)V 0clearance volume (m 3)V c swept volume of Otto cycle (m 3)V 0c swept volume of Miller cycle (m 3)D Pe power difference between the Otto cycle and the Miller cycle (kW)D Tr exhaust-temperature difference between the Otto cycle and the Miller cycle (°C)e D NO x relative NO x emission difference between the Otto cycle and the Miller cycle e D Pe relative power difference of Otto cycle from that of the Miller cyclee D Trrelative exhaust-temperature difference between the Otto cycle and the Miller cycle464Y.Wang et al./Applied Energy 85(2008)463–474Y.Wang et al./Applied Energy85(2008)463–474465compression-ratio is identical to the expansion-ratio;a higher expansion-ratio causes a higher compression-ratio.However,the Miller cycle allows the compression-and expansion-ratios to be preset independently,as shown in Fig.1b.The work processes are:intake process0?1a?1;then an additional‘‘intake blow-back”process1?1a,which is the main difference between the Miller cycle and the Otto cycle;compression process 1a?2;combustion and expansion process2?3?4?4a;and exhaust process4a?1?1a?0.From the P–V diagram of the Miller cycle,it can be seen that a higher engine-efficiency is expected with an increased expansion-ratio because more heat is changed to mechanical power.This was the original idea behind the Miller cycle.466Y.Wang et al./Applied Energy85(2008)463–4742.2.Basic idea of the Miller cycle to reduce NO x emissionsAs mentioned above,NO x is one of the most harmful gases emitted from engines and the main cause of NO x formation is the peakflame-temperature in the engine cylinder during the combustion.The Miller cycle is a‘‘cold cycle”.The application of this‘‘cold”characteristic may reduce the temperature at the end of the compression process(at point2in the P–V diagram).Thus it reduces the temperature at the end of the com-bustion process(point3in the P–V diagram).Therefore,it reduces the NO x emissions.This is the basic idea of the application of the Miller cycle to reduce the NO x emission from petrol engines.Fig.2presents the P–V diagram for this concept.Cycle0?1?2?3?4?1?0is the standard Otto cycle.Cycle0?1?1a?2a?3a?4a?1?0is the Miller cycle.The intake valve is kept open during a portion of the compression stroke.Some of intake air into the cylinder is rejected.Thus the amount of intake air into the cylinder is relatively less than for the Otto cycle and this reduces the effective compression-ratio.At the end of the compression stroke,the pressure and temperature in the cylinder are lower than those of stan-dard Otto cycle.The combustion temperature is then lower;this may result in less NO x formation in the cyl-inder of engine.2.3.Main methods to realize the Miller cycleThere are three main methods to realize a Miller cycle in practice[5–8]:(a)installing a rotating valve between intake manifold and intake valve(on the cylinder head)to control the intake air quantity–early rotary-valve closing(ERVC);(b)closing the intake valve before the termination of the intake stroke–early intake valve closing(EIVC);and(c)keeping the intake valve open during a portion of the compression stroke, thus rejecting part of the charge and reducing the net compression-ratio–late intake valve closing(LIVC–as shown in Fig.2).For this experimental study,the LIVC version of the Miller cycle was selected.A schematic valve timing diagram of the LIVC is shown in Fig.3.Two versions of the LIVC Miller cycle were designed and tested; the detail parameters are presented in Section3.6.3.Experimental rig,instrumentation and test plan3.1.The engineA Rover‘‘K”series16-valve twin-camshaft petrol engine,type K-161400TBI,made by the Rover Group Ltd.in1991,shown Fig.4,was used for the experimental investigation.It has a1397cm3displacement,max-imum power70.8kW/6250r/min(torque106.7Nm),maximum torque124Nm/4000r/min,equipped for Rover200&400series cars.Y.Wang et al./Applied Energy85(2008)463–4744673.2.The dynamometer(see Fig.5)A Heenan Dynamatic Dynamometer MK1,made by Froude Consine Ltd.,was used to measure the engine performance:i.e.its torque,power and fuel consumption.3.3.Emission analyzersFour exhaust-gas analyzers,as shown in Fig.6,made by Analytical Development Company Ltd.(Hoddes-don,Hertfordshire,EN110DB,England),were used to analyze the exhaust emissions(carbon monoxide,car-bon dioxide,hydrocarbon and nitrogen oxides)from the engine.Prior to testing,the analyzers were calibrated separately by using the special sample gases supplied by BOC Ltd.3.4.Pressure and temperature measurementPressures were measured at the air-inlet manifold,for the engine oil at the outlet of the oilfilter,and the ambient-air pressure was measured by a barometer.Thermocouples type K (which have a temperature range from À200°C to 1200°C)were used to measure the temperature at the following positions on the engine:air-inlet,exhaust-gas,engine oil,and the engine’s cooling-water inlet andoutlet.Fig.5.Dynamometer.Fig.6.Emission analyzers.468Y.Wang et al./Applied Energy 85(2008)463–474Y.Wang et al./Applied Energy85(2008)463–474469 3.5.The test rigFig.7presents the schematic design of the test rig for the experimental study.Fig.8shows the completed test rig in the laboratory.470Y.Wang et al./Applied Energy85(2008)463–4743.6.Experimental planA test plan was designed to carry out the engine tests on the original Otto cycle and two Miller cycles.For comparison,the intake throttle wasfixed at the maximum open position for all the tests.There were no changes for the other engine systems,except for the intake valve timing.The running range of the engine was from2000r/min to6250r/min.Two versions of the Miller cycle were designed and tested as follows:ler1:the intake valve closed15°later than that of original Otto cycle;ler2:the intake valve closed30°later than that of original Otto cycle.The whole experimental plan was realized in two stages:(i)running engine on standard Otto cycle;and(ii) running engine on the two Miller cycles.Each test was repeated3times to make sure the data were reliable. The detailed test plan is listed in Table1.4.Test results and discussionThe test results of the engine-power output,brake specific fuel-consumption(BSFC),exhaust-gas temper-ature and the NO x emissions for the original Otto cycle and the two Miller cycles are shown in Figs.9–16.The engine’s brake engine-power outputs at different engine speeds from the three cycles are presented in Fig.9.The engine’s power outputs of Miller cycle1were almost the same as those of the Otto cycle;the Table1The experimental planEngine speed(r/min)Cycle testedOtto cycle Miller cycle1Miller cycle2Time tested2000Three Three Three3000Three Three Three3500Three Three Three4000Three Three Three4500Three Three Three5000Three Three Three5500Three Three Three6250Three Three ThreeY.Wang et al./Applied Energy85(2008)463–474471472Y.Wang et al./Applied Energy85(2008)463–474Y.Wang et al./Applied Energy85(2008)463–474473differences were from0.0to1.2kW.The differences between Miller cycle1and Otto cycle were from0%to 2%,as shown in Fig.10.For Miller cycle2,the engine-power outputs at different engine speeds were much less than those of original Otto cycle.The differences of power outputs were between4.7and10.8kW,as shown in Fig.9.The relative differences were from13%to22%for the Miller cycle2compared with those of Otto cycle.The results are also presented in Fig.10.The engine’s brake specific fuel-consumption related to the power outputs at different engine speeds for the three cycles are shown in Fig.11.For the Miller cycle1,the BSFCs were from2.5to28.2g/kWh,higher than those of the Otto cycle.The relative differences were under8%in all the cases.The results are shown in Fig.12.For the Miller cycle2,the BSFCs were also higher than those of the Otto cycle,i.e.from57.5to146.6g/ kWh,which are also presented in Fig.11.The relative differences were from17%to44%,as shown in Fig.12.The exhaust-gas temperatures at the outlet of the engine’s exhaust-manifold related to the power outputs at different engine speeds for the Otto cycle and the two Miller cycles are shown in Fig.13.The exhaust-gas tem-peratures for the Miller cycles at different engine speeds were all lower than those of Otto cycle.For the Miller cycle1,as shown in Fig.13,the differences of exhaust-gas temperatures were from20°C to 62°C,compared with those of Otto cycle.The relative differences were from2%to11%–see Fig.14.For the Miller cycle2,compared with that of the Otto cycle,the differences of exhaust-gas temperatures were between45°C and112°C.The relative differences were from6%to19%–see Fig.14.The results of NO x emissions from the three cycles at different engine speeds are presented in Fig.15.For the cycles tested,the NO x emissions from the Otto cycle were the highest;those from the Miller cycle1came second;and those from the Miller cycle2were the lowest.For the Miller cycle1,compared with the Otto cycle,the difference of NO x emissions ranged from130to 665ppm.The relative differences were from8%to51%.The results are shown in Figs.15and16.For the Miller cycle2,compared with the Otto cycle,the differences of NO x emissions were from360to 850ppm.The relative differences were from44%to69%.The results are also shown in Figs.15and16.From these results,it can be seen that the engine-power outputs of the Miller cycle1(M1)were nearly the same as those of the original Otto cycle;the exhaust-gas temperatures of M1were lower than those of the Otto cycle;and the NO x emissions were also lower than those of the Otto cycle.For the Miller cycle2(M2),the exhaust-gas temperatures were lower than those of M1and the Otto cycle; and the NO x emissions were much lower than those of the Otto cycle.The effect of the Miller cycle in reducing the NO x emission is obvious,although the engine power outputs were much lower than those of the Otto cycle.The reason for the power-loss is because the late intake valve closure during the compression stroke led to some of the mixture of air and fuel being pushed out of the cylinder;this resulted in the charge being less than that of original Otto cycle.As a result,the engine-power outputs were reduced.474Y.Wang et al./Applied Energy85(2008)463–4745.Conclusions and recommendationThe investigation of the feasibility of applying the Miller cycle to petrol engines to reduce NO x emissions was completed.The results showed that it was feasible to apply the Miller cycle to petrol engines in order to reduce NO x emissions.For the two versions of the Miller cycles tested,the NO x emissions were less than those of the original Otto cycle.Of the two versions of the Miller cycle tested,Miller2is the better,in terms of the reductions of NO x emis-sion only.Of the two versions of the Miller cycle tested,Miller1is the better,in terms of both the reductions of NO x emissions and the engine-power outputs.For the two Miller cycles tested,the engine-power outputs were all less than those of the Otto cycle.This is due to there being less charge in the engine cylinder,which is a characteristic of Miller cycle.In order to make up for the charge losses as well as to make up for the power-losses,it is necessary to carry out an investigation on the application of a supercharger with an inter-cooler added to the above Miller cycles.A better engine performance with NO x reduction may then be able to be achieved. AcknowledgementsThe authors wish to thank Mr.Ian Pinks who helped set up the test rig for the experiments.The support of the Faculty of Computing,Engineering and Technology of Staffordshire University,UK is greatly appreciated.References[1]Miller RH.Supercharging and internal cooling cycle for high output.Trans ASME1947;69:453–7.[2]Miller RH,Lieberherr HU.The Miller supercharging system for diesel and gas engines operating characteristics,CIMAC,1957.In:Proceedings of the4th international congress on combustion engines,Zurich.June15–22;1957.p.787–803.[3]Okamoto K,Zhang FR,Shimogata S,Shoji F,Kanesaka H,Sakai H.Study of a Miller-cycle gas-engine for co-generation systems–effect of a Miller cycle on the performance of a gas engine,vol.1171.1996:SAE Special Publications;1996,p.125–36.[4]Thring RH.Theflexible diesel engine.In:Proceedings of the international congress and exposition,Detroit,USA,1990.SAE PaperNo.900175.SAE Special Publications;1990,p.484–92.[5]Clarke D,Smith WJ.Simulation,implementation and analysis of the miller cycle using an inlet control rotary-valve,variable valveactuation and power boost,vol.1258(SAE,No.970336).SAE Special Publications;1997.p.61–70.[6]Shimogata S,Homma R,Zhang FR,Okamoto K,Shoji F.Study on Miller cycle gas engine for co-generation systems-numericalanalysis for improvement of efficiency and power.SAE Paper No.971709.SAE Special Publications;1997.p.61–67.[7]Franca ler cycle–outline and general considerations,Diesel Ricerche S.P.A.Technical report;1996.[8]Okamoto K,Zhang FR,Morimoto S,Shoji F.Development of a high-performance gas engine operating at a stoichiometric condition–effect of Miller cycle and EGR.In:Proceedings of CIMAC congress1998Copenhagen.1998.p.1345–60.[9]Stebler H,Weisser G,Horler H,Boulouchos K.Reduction of NO x emissions of D.I.diesel engines by application of the Millersystem:an experimental and numerical investigation.SAE Paper No.960844.SAE Special Publications;1996.p.1238–48.[10]Ueda N,Sakai H,Iso N,Sasaki J.A naturally aspirated Miller cycle gasoline engine–its capability of emission,power and fueleconomy.SAE Paper No.960589.SAE Special Publications;1996.p.696–703.[11]Hatamura Koichi,Hayakawa Motoo,Goto Tsuyoshi,Hitomi Mitsuo.A study of the improvement effect of the Miller-cycle on meaneffective pressure limit for high-pressure supercharged gasoline engines.JSAE Rev1997;18:101–6.[12]Hiroyuki Endo,Kengo Tanaka,Yoshitaka Kakuhama,Yasunori Goda,Takao Fujiwaka,Masashi Nishigaki.Development of thelean-burn Miller cycle gas engine(3-04).In:Proceedings of thefifth international symposium on diagnostics and modeling of combustion in internal combustion engines(COMODIA2001).Nagoya,Japan:July1–4;2001.p.374–81.[13]Fukuzawa Yorihiro,Shimoda Hiromi,Kakuhama Yoshitaka,Endo Hiroyuki,Tanaka Kengo.Development of a high efficiencyMiller cycle gas engine,Mitsubishi Heavy Industries Ltd..Tech Rev2001;38(3):146–50.[14]Wu Chih,Puzinauskas Paul V,Tsai Jung S.Performance analysis and optimization of a supercharged Miller cycle otto engine.ApplTherm Eng2003;23:511–21.[15]Al-Sarkhi A,Jaber JO,Probert SD.Efficiency of a Miller engine.Appl Energy2006;83:343–51.。
get_index_stocks参数
get_index_stocks参数一、概述本文档介绍了关于ge t_i nd ex_s to ck s函数的参数及使用方法。
g e t_in de x_st oc ks函数是一个常用于获取指数成分股的函数,在量化投资领域具有重要的应用。
通过了解该函数的参数及其含义,用户可以更加灵活地进行指数成分股的查询与使用。
二、函数介绍g e t_in de x_st oc ks是一个常用的函数,用于获取指定指数的成分股。
该函数的基本形式如下:g e t_in de x_st oc ks(i nd ex,d at e=No ne)函数参数说明如下:-`in de x`:要查询的指数代码或名称。
可以是字符串类型或数字类型,具体的指数代码请参考相关文档或指数数据源网站。
(例如,"000001.SH"表示上证指数)-`da te`:可选参数,表示查询指定日期的成分股数据。
如果不指定该参数,则默认返回最新日期的成分股数据。
日期的格式可以是字符串类型或日期类型。
三、使用示例下面通过几个使用示例来说明ge t_in dex_st oc ks函数的使用方法。
示例一:获取指定指数最新日期的成分股以下是一个示例代码,用于获取上证50指数最新日期的成分股:i m po rt jq da tas t oc ks=g et_i nd ex_s to ck s('000016.S H')p r in t(st oc ks)示例二:获取指定日期的成分股以下是一个示例代码,用于获取2019年1月1日的沪深300指数成分股:i m po rt jq da tad a te='2019-01-01's t oc ks=g et_i nd ex_s to ck s('000300.S H',da te)p r in t(st oc ks)四、注意事项-在使用ge t_in de x_s to ck s函数时,需要确保已经导入jq d at a模块。
友声收银系列电子秤使用说明书
是整机保修一年收银系列使用说明书适用型号TM-30A /TM-15A / TM-6AJB-30A / JB-15A / JB-6A2009年7月Version2.30A上海友声衡器有限公司 & 上海精函衡器有限公司沪制00000033号沪制00000319号地址:上海市闵行区莘庄工业区春光路99弄58号邮编:201108厂址:上海市崇明县庙镇经济开发区宏海公路349号邮编:202165 公司总机:(021)54831805/6/7/8 技术部总机:(021)54831858传真:(021)54831803 主页:指定代理与售后服务电话:联系人:感谢您使用上海精函有限公司的产品!在您开始使用本产品前,请务必仔细阅读《前言》中的内容,并严格遵守这些事项!1.1注意事项➢确保电源插头和电源线连接正常,使用三芯电源线进行连接,如果使用了拖线板,则拖线板的插口也要是三芯的,确保三芯的地线妥善的与建筑大地连接,以避免漏电的情况。
➢切勿用沾湿的手插拔电源插头,这样可能导致触电。
➢严禁将身体重力压在秤盘上,以免损坏称重传感器。
➢严禁撞击重压,或用重物冲击秤盘,以免损坏称重传感器,同时勿超过其最大称量范围。
➢严禁淋雨或用水冲洗;如不慎沾水,请用干布擦试干净;若秤体工作异常,请尽速送到经销商处,我们将竭诚为您服务。
➢严禁将条码秤置于极低温、高温或潮湿的场所,这样可能导致秤体工作异常甚至损坏。
➢严禁用有机化学溶剂擦拭外壳和面板。
➢严禁私自打开秤体,也不要让非专业的维修人员修理本秤。
➢严禁将手从打印机旋出位置伸入,该行为可能造成220V触电。
➢在有本公司专业维修人员指导下打开秤体时,请务必提前拔出220V的交流供电。
➢不要试图拆卸秤体内的开关电源,高压电容需要非常长时间才能完全放电,未放电的情况下拆卸可能导致触电。
➢建议使用本厂出售的热敏纸,本秤体对本厂出售的热敏纸进行过长时间的测试与优化,可以较好的保证头片的使用寿命。
《OS机代码表》(Word)
001:中国银联100:邮政储蓄银行102:工商银行103:农业银行104:中国银行105:建设银行301:交通银行302:中信实业银行303:中国光大银行304:华夏银行305:中国民生银行306:广东发展银行307:深圳发展银行308:招商银行309:兴业银行310:上海浦东发展银行403:北京银行418:北京农信北京市1100天津市1200山东省3700辽宁省2100山西省1400河北省1300吉林省2200黑龙江省2300陕西省6100甘肃省6200青海省6300宁夏区6400新疆区6500海南省4600香港区8100澳门区8200上海市2900重庆市5000广东省4400广西区4500湖南省4300湖北省4200江苏省3200浙江省3300内蒙古区1500安徽省3400福建省3500江西省3600四川省5100云南省5300西藏区5400台湾省7100表 1 商户类别代码表 (1)Q/CUP 004—2007II前言本标准对金融零售业务的商户类别代码做了规定.本标准由中国银联股份有限公司在中国人民银行组织制定的《银行卡联网联合技术规范》相关内容的基础上修订.本标准主要修订单位:中国银联技术管理部.本标准主要修订人:刘钟,孙平,黄发国,徐志忠,张爱民,蔡丽薇,徐静雯.Q/CUP 004—20071商户类别代码1 范围本标准规定了金融零售业务的商户类别代码.本标准适用于中国银联股份有限公司成员机构对商户进行分类.本标准中商户类别代码的维护机制参见正在制定的国家标准.2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款.凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本.凡是不注日期的引用文件,其最新版本适用于本标准.ISO 18245:2007 金融零售业务-商户类别代码3 术语和定义商户类别代码 Merchant Category Code根据商户业务,贸易和服务类型对商户进行分类,标识每一类别的代码称为商户类别代码.商户类别代码只对可能会发生金融零售业务的商户类别作了规定.4 商户类别代码规定表1列出了根据数字排序的商户类别代码.商户类别代码表范围代码描述0001-0499 ISO保留使用0500-0599 国家保留使用0000-0699保留使用0600-0699 行业保留使用0700-0741 ISO保留使用0742 兽医服务0743 葡萄酒生产商0744 香槟生产商0745-0762 ISO保留使用0763 农业合作0764-0779 ISO保留使用0780 景观美化和园艺服务0781-0819 ISO保留使用0820-0879 国家保留使用0700-0999农业服务0880-0999 行业保留使用1000-1499保留使用1000-1499 ISO保留使用Q/CUP 004—20072范围代码描述1500-1519 ISO保留使用1520 一般承包商—住宅和商业楼1521-1710 ISO保留使用1711 供暖,管道,空调承包商1712-1730 国家保留使用1731 电气承包商1732-1739 ISO保留使用1740 砖,石,瓦,石膏和绝缘工程承包商1741-1749 ISO保留使用1750 木工工程承包商1751-1760 ISO保留使用1761 屋顶,屋围,金属片(铁皮)安装工程承包商1762-1770 国家保留使用1771 混凝土工程承包商1772-1798 ISO保留使用1799 未列入其它代码的专项贸易承包商1800-2199 ISO保留使用2200-2740 行业保留使用2741 各种出版和印刷服务2742-2790 国家保留使用2791 排版,刻版及相关服务2792-2841 国家保留使用2842 专业清洁,抛光和卫生服务1500-2999承包服务2843-2999 国家保留使用3000-3999保留使用3000-3999 行业保留使用4000-4010 ISO保留使用4011 铁路运输4012-4110 ISO保留使用4111 本地和市郊通勤旅客运输(包括轮渡) 4112 铁路客运4113-4118 ISO保留使用4119 救护车服务4120 ISO保留使用4121 出租车和豪华轿车服务4122-4130 ISO保留使用4131 公共汽车4214 长短途机动车与卡车货运,搬运公司,仓储公司,本地专运公司4215 快递服务(空运,地面运输或海运)4216-4224 ISO保留使用4000-4799运输4225 公共仓储服务-农产品,冷冻品和家用产品Q/CUP 004—20073范围代码描述4226-4299 ISO保留使用4300-4410 国家保留使用4411 轮船及巡游航线服务4412-4456 行业保留使用4457 出租船只4458-4467 行业保留使用4468 船舶,海运服务和供给4469-4510 行业保留使用4511 航空公司4512-4581 行业保留使用4582 机场服务4583-4656 行业保留使用4657-4721 国家保留使用4722 旅行社和旅游服务4723-4783 行业保留使用4784 路桥通行费4789 未列入其它代码的运输服务4790-4799 国家保留使用4800-4811 ISO保留使用4812 通信设备和电话销售4813 行业保留使用4814 电信服务,包括本地和长途电话,信用卡电话,磁卡电话和传真4815 月结电话收费4816 计算机网络/信息服务4817-4820 ISO保留使用4821 电报服务4822-4828 国家保留使用4829 电汇和汇票服务4830-4895 ISO保留使用4896-4898 行业保留使用4899 有线和其它付费电视服务4900 公用事业(电力,煤气,自来水,清洁服务)4901-4974 行业保留使用4800-4999公共事业4975-4999 国家保留使用5000-5012 ISO保留使用5013 机动车供应及新零件5014-5020 ISO保留使用5021 办公及商务家俱5022-5038 ISO保留使用5000-5499零售商店5039 未列入其它代码的建筑材料Q/CUP 004—20074范围代码描述5040-5043 ISO保留使用5044 办公,摄影,影印及缩微摄影器材5045 未列入其它代码的计算机,计算机外围设备5046 未列入其它代码的商用器材5047 牙科/实验室/医疗/眼科医院器材和用品5048-5050 ISO保留使用5051 金属产品服务商和公司5052-5064 ISO保留使用5065 电器零件和设备5066-5071 ISO保留使用5072 五金器材及用品5073 ISO保留使用5074 管道和供暖设备5075-5084 ISO保留使用5085 未列入其它代码的工业用品5086-5093 ISO保留使用5094 宝石和贵金属,手表及珠宝5095-5098 ISO保留使用5099 未列入其它代码的耐用品5100-5110 ISO保留使用5111 文具,办公用品,复印纸和书写纸5112-5121 ISO保留使用5122 药品,药品经营者5123-5130 ISO保留使用5131 布料,缝纫用品和其他纺织品5132-5136 ISO保留使用5137 男女及儿童制服和服装5138 ISO保留使用5139 鞋类5140— 5168 国家保留使用5169 未列入其它代码的化学制品和相关产品5170-5171 ISO保留使用5172 石油和石油产品5173-5191 国家保留使用5192 书,期刊和报纸5193 花木栽种用品,苗木和花卉5194-5197 ISO保留使用5198 油漆,清漆用品5199 未列入其它代码的非耐用品5200 家庭用品大卖场5201-5210 ISO保留使用Q/CUP 004—20075范围代码描述5211 木材和建材卖场5231 玻璃,油漆涂料,壁纸商店5232-5250 ISO保留使用5251 五金商店5252-5260 ISO保留使用5261 草坪花园用品商店(包括苗圃) 5262-5270 ISO保留使用5271 活动房车经销商5272-5291 ISO保留使用5292-5299 行业保留使用5300 会员制批量零售店5301-5308 行业保留使用5309 免税商店5310 折扣商店5311 百货商店5312-5330 行业保留使用5331 杂货店5332-5398 行业保留使用5399 各类综合超市5400-5410 行业保留使用5411 食品杂货店和超级市场5412-5421 行业保留使用5422 冷藏和冷冻肉类供应商5423-5440 行业保留使用5441 糖果店5451 乳制品店5452-5461 行业保留使用5462 面包房5463-5498 行业保留使用5499 各类食品店—便利及专营店5500-5510 ISO保留使用5511 汽车和卡车经销商(新车和旧车)—销售,服务,修理, 零件和出租5512-5520 行业保留使用5521 轿车和卡车经销商(旧车)—销售,服务,维修,零件和出租5522-5530 行业保留使用5531 汽车和家庭用品店5532 汽车轮胎商店5533 汽车配件商店550-5599汽车和运输工具5534-5540 行业保留使用Q/CUP 004—20076范围代码描述5541 汽车服务站5542 自助加油站5543-5550 行业保留使用5551 船只经销商5552-5560 ISO保留使用5561 露营,娱乐和公共事业活动车经销商5571 摩托车商店和经销商5572-5591 国家保留使用5592 房车商5593-5597 国家保留使用5598 雪车商5599 未列入其它代码的各种机动车商,航空器材商和农具商5600-5610 ISO保留使用5611 男子和男童服装及用品商店5612-5620 ISO保留使用5621 妇女时装商店5622-5630 ISO保留使用5631 妇女用品商店5632-5640 国家保留使用5641 儿童婴儿服装商店5642-5650 行业保留使用5651 家庭服装商店5652-5654 国家保留使用5655 运动和马术服装商店5656-5660 国家保留使用5661 鞋店5662-5680 行业保留使用5681 皮货商店5682-5690 行业保留使用5691 男女服装店5697 裁缝,修补,改衣店5698 假发商店5600-5699服装商店5699 各种服装及饰物店5700-5711 ISO保留使用5712 家具,家庭摆品,家用设备销售,制造商(不包含电器)5713 地板铺设服务5714 帏帐,窗帘,室内装潢商店5715 酒精饮料批发商5700-5999各类商店5716-5717 ISO保留使用Q/CUP 004—2007--------------------------------------------------------------------7范围代码描述5718 壁炉,壁炉防护网及配件商店5719 各种家庭装饰专营店5720-5721 ISO保留使用5722 家用电器商店5723-5731 ISO保留使用5732 电子设备商店5733 音乐商店—乐器,钢琴,乐谱5734 计算机软件商店5735 音像制品商店5811 宴会承包商5812 饭店,餐厅5813 饮品店(酒精饮料)—酒吧,酒馆,夜总会,鸡尾酒馆和迪斯科舞厅5814 快餐店5815-5820 ISO保留使用5820-5911 行业保留使用5912 药店,药房5913 未列入其它代码的批发类5914-5915 行业保留使用5915-5920 国家保留使用5921 瓶装酒小卖店(啤酒,果酒,白酒)5922-5930 国家保留使用5931 旧商品店,二手店5932 古玩店-销售,维修和修复服务5933 当铺5934 国家保留使用5935 海上船只遇难救助场5936 国家保留使用5937 古玩复制店5938-5939 国家保留使用5940 自行车商店—销售和服务5941 体育用品店5942 书店5943 文具,办公,学校用品商店5944 珠宝,手表,钟表和银器商店5945 玩具游戏店5946 照相器材店5947 礼品,卡片,装饰品,纪念品商店5948 箱包,皮具店5949 缝纫,刺绣,织物和布料商店5950 玻璃器具和水晶饰品商店Q/CUP 004—20078范围代码描述5951-5959 国家保留使用5960 直销-保险服务5961 国家保留使用5962 电话销售—旅行相关的服务5963 送货上门销售5964 直销—目录邮购商5965 直销—目录邮购与零售兼营的商户5966 直销—呼出型电话行销商5967 直销—接入型电话行销商5968 直销—长期定购或会员制商户5969 未列入其它代码的直销业务和直销商5970 工艺美术商店5971 艺术商和画廊5972 邮票和纪念币商店5973 宗教品商店5974 国家保留使用5975 助听器—销售,服务和用品5976 假肢店5977 化妆品商店5978 打字机商店—销售,服务和出租5979-5982 国家保留使用5983 燃料经销商—燃油,木材,煤炭和液化石油5984-5991 国家保留使用5992 花店5993 雪茄店5994 报亭,报摊5995 宠物商店,宠物食品及用品5996 游泳池—销售,供应和服务5997 电动剃刀商店—销售和服务5998 帐篷和遮阳篷商店5999 其它专营零售店6000-6009 国家保留使用6010 金融机构—人工现金支付6011 金融机构—自动现金支付6012 金融机构—购买商品和服务6013-6049 ISO保留使用6050 行业保留使用6051 非金融机构—外币兑换,非电子转帐的汇票,临时支付凭证和旅行支票6052-6210 ISO保留使用6211 证券公司—经纪人和经销商6000-7299服务提供商6212-6299 ISO保留使用Q/CUP 004—20079范围代码描述6300 保险销售,保险业和保险金6301-6528 ISO保留使用6529-6759 行业保留使用6760 储蓄6761-7010 行业保留使用7011 住宿服务(旅馆,酒店,汽车旅馆,度假村) 7012 分时使用的别墅或度假用房7013-7031 行业保留使用7032 运动和娱乐露营地7033 活动房车场及露营场所7034-7041 行业保留使用7042-7211 国家保留使用7210 洗衣服务7211 洗熨服务—家庭和商业7212-7215 国家保留使用7216 干洗店7217 室内清洁服务(地毯,沙发,家具表面) 7218-7220 国家保留使用7221 摄影工作室7222-7229 国家保留使用7230 美容理发店7231-7250 国家保留使用7251 修鞋店,擦鞋店,帽子清洗店7252-7260 国家保留使用7261 丧仪殡葬服务7262-7272 国家保留使用7273 婚姻介绍及陪同服务7274-7275 国家保留使用7276 交税准备服务7277 咨询服务—债务,婚姻和个人私事7278 购物服务及会所7279-7294 国家保留使用7295 家政服务7296 出租衣物—服装,制服和正式场合服装7297 按摩店7298 健身及美容室7299 未列入其它代码的其他个人服务7300-7310 ISO保留使用7311 广告服务7312-7320 ISO保留使用7300-7529商业服务7321 消费者信用报告机构Q/CUP 004—200710范围代码描述7322 债务催收机构7323-7332 ISO保留使用7333 商业摄影,工艺,绘图服务7334-7337 ISO保留使用7338 快速复印,复制及绘图服务7339 速记和秘书类服务7340-7341 ISO保留使用7342 灭虫(蝇等)及消毒服务7343-7348 ISO保留使用7349 清洁,保养,门卫服务7350-7360 ISO保留使用7361 职业中介,临时帮佣服务7362-7371 ISO保留使用7372 计算机编程,数据处理和系统集成设计服务7373-7374 ISO保留使用7375 信息检索服务7376-7378 ISO保留使用7379 未列入其它代码的计算机维护和修理服务7380-7391 ISO保留使用7392 管理,咨询和公共关系服务7393 侦探,保安,安全服务(包括防弹车和警犬) 7394 设备,工具,家俱和电器出租7395 照相洗印服务7396-7398 ISO保留使用7399 未列入其它代码的商业服务7400-7406 ISO保留使用7407-7487 行业保留使用7488-7510 国家保留使用7511 行业保留使用7512 汽车出租7513 卡车及拖车出租7514-7518 国家保留使用7519 房车和娱乐车辆出租7520-7522 国家保留使用7523 停车场及车库7524-7529 国家保留使用7530 ISO保留使用7531 车体维修店7532-7533 ISO保留使用7534 轮胎翻新,维修店7530-7799维修服务7535 汽车喷漆店Q/CUP 004—200711范围代码描述7536-7537 ISO保留使用7538 汽车服务商店(非经销商) 7539-7541 ISO保留使用7542 洗车7543-7548 ISO保留使用7549 拖车服务7550-7600 ISO保留使用7601-7606 国家保留使用7607-7621 行业保留使用7622 电器维修7623 空调及冷藏设备维修店7624-7628 国家保留使用7629 电气设备及小家电维修店7630 国家保留使用7631 手表,钟表和首饰维修店7632-7640 国家保留使用7641 家俱维修,翻新7642-7690 行业保留使用7691 国家保留使用7692 焊接维修服务7693-7698 国家保留使用7699 各类维修店及相关服务7700-7799 ISO保留使用7800-7828 ISO保留使用7829 电影和录像带制片,发行7830-7831 ISO保留使用7832 电影院7833-7840 ISO保留使用7841 出租录像带服务7842-7893 国家保留使用7894-7910 行业保留使用7911 歌舞厅,舞蹈工作室和学校7912-7921 行业保留使用7922 戏剧制片(不含电影),演出,票务7923-7928 行业保留使用7929 未列入其它代码的乐队,管弦乐队和各类演艺人员7930-7931 行业保留使用7932 台球,撞球场所7933 保龄球馆7934-7940 行业保留使用7800-7999娱乐场所7941 商业体育场馆,职业体育俱乐部,运动场和体育推广公司Q/CUP 004—200712范围代码描述7942-7959 行业保留使用7960-7990 国家保留使用7991 旅游,展览7992 公共高尔夫球场7993 电子游戏供给7994 大型游戏机和游戏场所7995 博彩业(包括彩票等)7996 游乐园,马戏团,嘉年华等7997 成员俱乐部(体育,娱乐,运动),乡村俱乐部和私人高尔夫球场7998 水族馆,海洋馆和海豚馆7999 未列入其它代码的其他娱乐服务8000-8010 ISO保留使用8011 未列入其它代码的医生和医师8012-8020 ISO保留使用8021 牙科医生,整牙医生8022-8030 ISO保留使用8031 正骨医生8032-8040 国家保留使用8041 按摩医生8042 验光配镜师,眼科医生8043 光学仪器商,光学产品和眼镜商8044-8048 国家保留使用8049 手足病医生8050 护理和照料服务8051-8061 ISO保留使用8062 医院8063-8070 ISO保留使用8071 医学和牙科实验室8072-8098 ISO保留使用8099 未列入其它代码的医疗保健服务8100-8110 ISO保留使用8111 法律服务和律师事务所8112-8210 ISO保留使用8211 小学和中校8212-8219 ISO保留使用8220 大学,学院,专科和职业学院8221-8240 ISO保留使用8241 函授学校8242-8243 ISO保留使用8244 商业和文秘学校8000-8999专业服务和成员服务8245-8248 ISO保留使用Q/CUP 004—200713范围代码描述8249 贸易和职业学校8250-8298 ISO保留使用8299 未列入其它代码的学校与教育服务8300-8350 ISO保留使用8351 儿童保育服务8352-8397 国家保留使用8398 慈善和社会公益服务组织8399-8492 ISO保留使用8493-8640 行业保留使用8641 公民社团和共济会8642-8650 国家保留使用8651 政治组织8652-8660 国家保留使用8661 宗教组织8662-8674 行业保留使用8675 汽车协会8676-8698 行业保留使用8699 未列入其它代码的会员组织8700-8733 行业保留使用8734 测试实验室(非医学)8735-8910 行业保留使用8911 建筑,工程和测量服务8912 装修,装潢,园艺8913-8930 行业保留使用8931 会计,审计,财务服务8932-8998 国家保留使用8999 未列入其它代码的其他专业服务9000-9199 ISO保留使用9200-9210 ISO保留使用9211 法庭费用,包括赡养费和子女抚养费9212-9221 ISO保留使用9222 罚款9223 保释金9224-9291 ISO保留使用9311 纳税9312-9388 行业保留使用9389-9398 国家保留使用9399 未列入其它代码的政府服务9400 使领馆收费9401 国家保留使用9200-9402政府服务9402 邮政服务—仅限政府Q/CUP 004—200714范围代码描述9403-9410 行业保留使用9411 政府贷款9412-9499 行业保留使用9500-9699 ISO保留使用9700-9799 行业保留使用9403-9999其它9800-9999 国家保留使用(注:文件素材和资料部分来自网络,供参考。
ABIS交易码
10开头:活期1)1038——(个人客户)活期取款转开定期存单/定期一本通2)1045——活期存款——转账存款3)1046——活期存款——转账取款4)1049——活期存款——内转5)1051——活期存款——现金存款6)1052——活期产品——现金取款7)1061——活期存款——现金开户8)1062——活期存款——现金销户9)1063——活期存款——转账开户10)1064——活期存款——转账销户11)1065——活期存款——冲正12)1068——活期存款——强制扣款11开头:国债1)1101——凭证式国债——现金开户2)1102——凭证式国债——现金销户3)1103——凭证式国债——转账开户4)1104——国债转账销户5)1158——国债销户转整整/活期/银行卡户6)1165——凭证式国债——资金划拨7)1168——国债强制扣款13开头:整存整取1)1361——整存整取现金开户2)1362——整存整取现金销户3)1363——整存整取转账开户4)1364——整存整取转账销户5)1366——整存整取现金部提6)1367——整存整取转账部提7)1368——整存整取——强制扣划15开头:零存整取1)1553——零整/教育现金续存2)1555——零整/教育转账续存3)1561——零整/教育现金开户4)1562——零整/教育现金销户5)1563——零整/教育转账开户6)1564——零整/教育转账销户7)1565——零整/教育产品冲正8)1568——零整/教育强制扣划18开头:定活两便1)1861——定活两便现金开户2)1862——定活两便现金销户3)1863——定活两便转账开户4)1864——定活两便转账销户5)1868——定活两便强制扣款19开头:通知存款1)1952——通知存款现金取款2)1954——通知存款转账取款3)1957——通知存款建立通知4)1961——通知存款现金开户5)1963——通知存款转账开户6)1968——通知存款强制扣划7)1994——双利丰个人通知存款——现金开户8)1995——双利丰个人通知存款——转账开户30开头:借记卡1)3000——借记卡现金开卡2)3003——借记卡——活期子账户过渡转入3)3004——借记卡——活期子账户过渡转出4)3005——借记卡卡内活期互转5)3010——借记卡活期子账户销户6)3011——借记卡——活期子账户存现7)3012——借记卡——活期子账户取现8)3027——借记卡——转账开卡9)3030——借记卡——转账销卡10)3032——借记卡——整整子账户现金部提11)3036——借记卡——整整子账户部提转主账户12)3048——借记卡换卡13)3049——借记卡挂失止付14)3051——借记卡解挂失15)3052——借记卡开副卡16)3057——借记卡重置密码17)3068——借记卡子账户转账销户18)3070——借记卡——整整子账户转账部提19)3073——借记卡——子账户移出20)3074——借记卡——子账户移入42开头:银行卡1)4210——银行卡转账存款2)4211——银行卡转账取款3)4212——银行卡现金存款4)4213——银行卡现金取款5)4254——银行卡卡卡转账44开头:定期一本通1)4451——定期一本通现金开折2)4452——定期一本通转账开折3)4456——整整现金销户转开新存单、活期一本通、定活、国债、零整4)4461——定期一本通现金开户5)4462——定期一本通现金销户6)4463——定期一本通转账开户7)4464——定期一本通转账销户8)4466——定期一本通现金部提9)4467——定期一本通转账部提10)4468——定期一本通强制扣划45开头:双利丰借记卡1)4511——双利丰借记卡客户签约1)4512——双利丰借记卡客户解约其他:1691——查询个人客户号和姓名3801——债券开户3851——基金业务开客户资料5285——客户基本信息增加。
ASCII码对照表
ASCII码对照表(全)2007-09-02 16:28目前网上最全,最完整,最简洁的html版ASCII码对照表,为方便大家网上查看而专门制作,本站原创ASCII table and descriptionASCII stands for American Standard Code for Information Interchange. Computers can only understand numbers, so an ASCII code is the numerical representation of a character such as 'a' or '@' or an action of some sort. ASCII was developed a long time ago and now the non-printing characters are rarely used for their original purpose. Below is the ASCII character table and this includes descriptions of the first 32 non-printing characters. ASCII was actually designed for use with teletypes and so the descriptions are somewhat obscure. If someone says they want your CV however in ASCII format, all this means is they want 'plain' text with no formatting such as tabs, bold or underscoring - the raw format that any computer can understand. This is usually so they can easily import the file into their own applications without issues. Notepad.exe creates ASCII text, or in MS Word you can save a file as 'text only'目前计算机中用得最广泛的字符集及其编码,是由美国国家标准局(ANSI)制定的ASCII码(American Standard Code for Information Interchange,美国标准信息交换码),它已被国际标准化组织(ISO)定为国际标准,称为ISO 646标准。
ASC2码
ascii编码Decimal Octal Hex Binary Value------- ----- --- ------ -----000 000 000 00000000 NUL (Null char.)001 001 001 00000001 SOH (Start of Header)002 002 002 00000010 STX (Start of Text)003 003 003 00000011 ETX (End of Text)004 004 004 00000100 EOT (End of Transmission)005 005 005 00000101 ENQ (Enquiry)006 006 006 00000110 ACK (Acknowledgment)007 007 007 00000111 BEL (Bell)008 010 008 00001000 BS (Backspace)009 011 009 00001001 HT (Horizontal Tab)010 012 00A 00001010 LF (Line Feed)011 013 00B 00001011 VT (Vertical Tab)012 014 00C 00001100 FF (Form Feed)013 015 00D 00001101 CR (Carriage Return)014 016 00E 00001110 SO (Shift Out)015 017 00F 00001111 SI (Shift In)016 020 010 ******** DLE (Data Link Escape)017 021 011 00010001 DC1 (XON) (Device Control 1)018 022 012 00010010 DC2 (Device Control 2)019 023 013 00010011 DC3 (XOFF)(Device Control 3)020 024 014 00010100 DC4 (Device Control 4)021 025 015 00010101 NAK (Negative Acknowledgement)022 026 016 00010110 SYN (Synchronous Idle)023 027 017 00010111 ETB (End of Trans. Block)024 030 018 00011000 CAN (Cancel)025 031 019 00011001 EM (End of Medium)026 032 01A 00011010 SUB (Substitute)027 033 01B 00011011 ESC (Escape)028 034 01C 00011100 FS (File Separator)029 035 01D 00011101 GS (Group Separator)030 036 01E 00011110 RS (Request to Send)(Record Separator)031 037 01F 00011111 US (Unit Separator)032 040 020 ******** SP (Space)033 041 021 ******** ! (exclamation mark)034 042 022 ******** " (double quote)035 043 023 ******** # (number sign)036 044 024 ******** $ (dollar sign)037 045 025 ******** % (percent)038 046 026 00100110 & (ampersand)039 047 027 ******** ' (single quote)040 050 028 ******** ( (left/opening parenthesis)041 051 029 ******** ) (right/closing parenthesis)042 052 02A 00101010 *(asterisk)043 053 02B 00101011 + (plus)044 054 02C 00101100 , (comma)045 055 02D 00101101 - (minus or dash)046 056 02E 00101110 . (dot)047 057 02F 00101111 / (forward slash)048 060 030 00110000 0049 061 031 00110001 1050 062 032 00110010 2051 063 033 00110011 3052 064 034 00110100 4053 065 035 00110101 5054 066 036 00110110 6055 067 037 00110111 7056 070 038 00111000 8057 071 039 00111001 9058 072 03A 00111010 : (colon)059 073 03B 00111011 ; (semi-colon)060 074 03C 00111100 <(less than)061 075 03D 00111101 = (equal sign)062 076 03E 00111110 > (greater than)063 077 03F 00111111 ? (question mark)064 100 040 01000000 @ (AT symbol)065 101 041 01000001 A066 102 042 01000010 B067 103 043 01000011 C068 104 044 01000100 D069 105 045 01000101 E070 106 046 01000110 F071 107 047 01000111 G072 110 048 01001000 H073 111 049 01001001 I074 112 04A 01001010 J075 113 04B 01001011 K076 114 04C 01001100 L077 115 04D 01001101 M078 116 04E 01001110 N079 117 04F 01001111 O080 120 050 01010000 P081 121 051 01010001 Q082 122 052 01010010 R083 123 053 01010011 S084 124 054 01010100 T085 125 055 01010101 U086 126 056 01010110 V087 127 057 01010111 W088 130 058 01011000 X089 131 059 01011001 Y090 132 05A 01011010 Z091 133 05B 01011011 [ (left/opening bracket)092 134 05C 01011100 \ (back slash)093 135 05D 01011101 ] (right/closing bracket)094 136 05E 01011110 ^ (caret/cirumflex)095 137 05F 01011111 _ (underscore)096 140 060 01100000 `097 141 061 01100001 a098 142 062 01100010 b099 143 063 01100011 c100 144 064 01100100 d 101 145 065 01100101 e 102 146 066 01100110 f 103 147 067 01100111 g 104 150 068 01101000 h 105 151 069 01101001 i 106 152 06A 01101010 j 107 153 06B 01101011 k 108 154 06C 01101100 l 109 155 06D 01101101 m 110 156 06E 01101110 n 111 157 06F 01101111 o 112 160 070 01110000 p 113 161 071 01110001 q 114 162 072 01110010 r 115 163 073 01110011 s 116 164 074 01110100 t 117 165 075 01110101 u 118 166 076 01110110 v 119 167 077 01110111 w 120 170 078 01111000 x 121 171 079 01111001 y122 172 07A 01111010 z123 173 07B 01111011 { (left/opening brace)124 174 07C 01111100 | (vertical bar)125 175 07D 01111101 } (right/closing brace)126 176 07E 01111110 ~ (tilde)127 177 07F 01111111 DEL (delete)前32个控制字符的详细解释:NUL (null)SOH (start of heading)STX (start of text)ETX (end of text)EOT (end of transmission) - Not the same as ETBENQ (enquiry)ACK (acknowledge)BEL (bell) - Caused teletype machines to ring a bell. Causes a beepin many common terminals and terminal emulation programs.BS (backspace) - Moves the cursor (or print head) move backwards (left)one space.TAB (horizontal tab) - Moves the cursor (or print head) right to the nexttab stop. The spacing of tab stops is dependenton the output device, but is often either 8 or 10.LF (NL line feed, new line) - Moves the cursor (or print head) to a newline. On Unix systems, moves to a new lineAND all the way to the left.VT (vertical tab)FF (form feed) - Advances paper to the top of the next page (if theoutput device is a printer).CR (carriage return) - Moves the cursor all the way to the left, but does not advance to the next line.SO (shift out) - Switches output device to alternate character set.SI (shift in) - Switches output device back to default character set. DLE (data link escape)DC1 (device control 1)DC2 (device control 2)DC3 (device control 3)DC4 (device control 4)NAK (negative acknowledge)SYN (synchronous idle)ETB (end of transmission block) - Not the same as EOTCAN (cancel)EM (end of medium)SUB (substitute)ESC (escape)FS (file separator) GS (group separator) RS (record separator) US (unit separator)。
运筹学第3版熊伟编著习题答案
运筹学(第3版)习题答案第1章线性规划 P36第2章线性规划的对偶理论 P74 第3章整数规划 P88 第4章目标规划 P105第5章运输与指派问题P142 第6章网络模型 P173 第7章网络计划 P195 第8章动态规划 P218 第9章排队论 P248 第10章存储论P277 第11章决策论P304第12章 多属性决策品P343 第13章博弈论P371 全书420页第1章 线性规划1.1工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.表1-23产品 资源 A B C 资源限量 材料(kg) 1.5 1.2 4 2500 设备(台时) 3 1.6 1.2 1400 利润(元/件)101412根据市场需求,预测三种产品最低月需求量分别是150、260和120,最高月需求是250、310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 1.2建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:表1-24 窗架所需材料规格及数量型号A 型号B 每套窗架需要材料长度(m ) 数量(根)长度(m) 数量(根)A 1:2 2B 1:2.5 2 A 2:1.53 B 2:23需要量(套)300400问怎样下料使得(1)用料最少;(2)余料最少. 【解】 第一步:求下料方案,见下表。
方案 一 二 三 四 五 六 七 八 九 十 需要量 B1 2.5 2 1 1 1 0 0 0 0 0 0 800 B2 2 0 1 0 0 2 1 1 0 0 0 1200 A1 2 0 0 1 0 0 1 0 2 1 0 600 A21.5120 2 3 900 余料(m) 0 0.5 0.5 1 1 1 010.5第二步:建立线性规划数学模型设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩1.3某企业需要制定1~6月份产品A 的生产与销售计划。
支付系统-银行返回码V2.0
网关商户MASTERCARD卡每日交易笔数超过上限
3229
网关商户MASTERCARD卡每日交易累计金额超过上限
3326
商户JCB卡每日交易笔数超过上限
3327
商户JCB卡每日交易累计金额超过上限
3328
网关商户JCB卡每日交易笔数超过上限
3329
网关商户JCB卡每日交易累计金额超过上限
3350
99XX
沒法支持交易
99YX
Card Bin not allow DCC transaction
99YY
Card Bin allow DCC transaction
99YZ
YZ 雙幣卡拒付
99N7
CSC校验错误
9905
不予承兌
9907
特殊條件下沒收卡
9912
無效交易
9913
無效金額
9914
無效卡號
9915
無此發卡行
9919
重新輸入交易
9930
格式錯誤
9933
過期的卡
9934
有作弊嫌疑
9935
商戶需與收單行保安部門聯系
9936
受限制的卡
9937
商戶呼收單行保安部門
9938
超過允許的PIN試輸入
9939
無此信用卡賬戶
9941
挂失卡
9943
被窃卡
9951
無足够的存款
9954
過期的卡
9955
不正確的PIN
9957
不允許持卡人進行的交易
9958
不允許終端進行的交易
9959
有作弊嫌疑
9960
商戶與保安部聯系
21各数的原码原码
2.227/64=00011011/01000000=0.0110110=0.11011×2-1=101,011011000规格化浮点表示为:[27/64]原[27/64]反=110,011011000[27/64]补=111,011011000同理:--27/64=--0.11011×2-1=101,111011000规格化浮点表示为:[27/64]原[27/64]反=110,100100111[27/64]补=111,1001010002.3 模为:29=10000000002.4 不对,8421码是十进制的编码2.5浮点数的正负看尾数的符号位是1还是0浮点数能表示的数值范围取决于阶码的大小。
浮点数数值的精确度取决于尾数的长度。
2.61)不一定有N1>N2 2)正确2.7 最大的正数:0111 01111111 十进制数:(1-2-7)×27最小的正数:1001 00000001 十进制数:2-7×2-7最大的负数:1001 11111111 十进制数:--2-7×2-7最小的负数:0111 10000001 十进制数:--(1-2-7)×272.81)[x]补=00.1101 [y]补=11.0010[x+y]补=[x]补+[y]补=11.1111无溢出x+y= -0.0001[x]补=00.1101 [--y]补=00.1110[x-y]补=[x]补+[--y]补=01.1011 正向溢出2)[x]补=11.0101 [y]补=00.1111[x+y]补=[x]补+[y]补=00.0100 无溢出x+y= 0.0100[x]补=11.0101 [--y]补=11.0001[x-y]补=[x]补+[--y]补=10.0110 负向溢出3) [x]补=11.0001 [y]补=11.0100[x+y]补=[x]补+[y]补=10.0101 负向溢出[x]补=11.0001 [--y]补=00.1100[x-y]补=[x]补+[--y]补=11.1101 无溢出X-y=-0.00112.91)原码一位乘法|x|=00.1111 |y|=0.1110部分积乘数y n00.0000 0.1110+00.000000.0000→00.00000 0.111+00.111100.11110→00.011110 0.11+00.111101.011010→00.1011010 0.1+00.111101.1010010→00.11010010P f=x f⊕y f=1 |p|=|x|×|y|=0.11010010所以[x×y]原=1.11010010补码一位乘法[x]补=11.0001 [y]补=0.1110 [--x]补=11.0001部分积y n y n+100.0000 0.11100→00.00000 0.1110+00.111100.11110→00.011110 0.111→00.0011110 0.11→00.00011110 0.1+11.000111.00101110[x×y]补=11.001011102)原码一位乘法|x|=00.110 |y|=0.010部分积乘数y n00.000 0.010+00.00000.000→00.0000 0.01+00.11000.1100→00.01100 0.0+00.00000.01100 0→00.001100P f=x f⊕y f=0 |p|=|x|×|y|=0.001100所以[x×y]原=0.001100补码一位乘法[x]补=11.010 [y]补=1.110 [--x]补=00.110部分积y n y n+100.000 1.1100→00.0000 1.110+00.11000.1100→00.01100 1.11→00.001100 1.1所以[x×y]补=0.0011002.101)原码两位乘法|x|=000.1011 |y|=00.0001 2|x|=001.0110部分积乘数c000.0000 00.00010+000.1011000.1011→000.001011 0.000→000.00001011 00.0P f=x f⊕y f=1 |p|=|x|×|y|=0.00001011所以[x×y]原=1.00001011补码两位乘法[x]补=000.1011 [y]补=11.1111 [--x]补=111.0101部分积乘数y n+1000.0000 11.11110+111.0101111.0101→111.110101 11.111→111.11110101 11.1所以[x×y]补=111.11110101 x×y=--0.000010112)原码两位乘法|x|=000.101 |y|=0.111 2|x|=001.010 [--|x| ]补=111.011部分积乘数c000.000 0.1110+111.011111.011→111.11011 0.11+001.010001.00011→000.100011P f=x⊕y f=0 |p|=|x|×|y|=0.100011所以[x×y]原=0.100011补码两位乘法[x]补=111.011 [y]补=1.001 [--x]补=000.101 2[--x]补=001.010部分积乘数y n+1000.000 1.0010+111.011111.011→111.111011 1.00+001.010001.00011→000.100011所以[x×y]补=0.1000112.111) 原码不恢复余数法|x|=00.1010 |y|=00.1101 [--|y| ]补=11.0011部分积商数00.1010+11.00111101101 0←11.1010+00.110100.0111 0.1←00.1110+11.001100.0001 0.11←00.0010+11.001111.0101 0.110←01.1010+00.110111.0111 0.1100+00.110100.0100所以[x/y]原=0.1100 余数[r]原=0.0100×2—4补码不恢复余数法[x]补=00.1010 [y]补=00.1101 [--y]补=11.0011部分积商数00.1010+11.001111.1101 0←11.1010+00.110100.0111 0.1←00.1110+11.001100.0001 0.11←00.0010+11.001111.0101 0.110←10.1010+00.110111.0111 0.1100+00.110100.0100所以[x/y]补=0.1100 余数[r]补=0.0100×2—42)原码不恢复余数法|x|=00.101 |y|=00.110 [--|y| ]补=11.010部分积商数00.101+11.01011.111 0←11.110+00.11000.100 0.1←01.000+11.01000.010 0.11←00.100+11.01011.110 0.110+00.11000. 100所以[x/y]原=1.110 余数[r]原=1.100×2—3补码不恢复余数法[x]补=11.011 [y]补=00.110 [--y]补=11.010部分积商数11.011+00.11000.001 1←00.010+11.01011.100 1.0←11.000+00.11011.110 1.00←11.100+00.11000.010 1.001+11.01011.100所以[x/y]补=1.001+2—3=1.010 余数[r]补=1.100×2—32.121)[x]补=21101×00.100100 [y]补=21110×11.100110=21110×00.010010小阶向大阶看齐:[x]补21110×(00.010010+11.100110)=21110×11.111000求和:[x+y]补=[x-y]补=21110×(00.010010+00.011010)=21110×00.10110021011×11.000000 浮点表示:1011,11.000000规格化:[x+y]补=21110×00.101100 浮点表示:1110,0.101100规格化:[x-y]补=2)[x]补=20101×11.011110 [y]补=20100×00.010110=20101×00.001011小阶向大阶看齐:[y]补20101×(11.011110+00.001011)=20101×11.101001求和:[x+y]补=[x-y]补=20101×(11.011110+11.110101)=20101×00.01001121010×11.010010 浮点表示:1010,11. 010010规格化:[x+y]补=21010×00.100110 浮点表示:1010,00.100110规格化:[x-y]补=2.13见教材:P702.141)1.0001011×262)0.110111*×2-62.151)串行进位方式C1=G1+P1C0G1=A1B1,P1=A1⊕B1C2=G2+P2C1G2=A2B2,P2=A2⊕B2C3=G3+P3C2G3=A3B3,P3=A3⊕B3C4=G4+P4C3G4=A4B4,P4=A4⊕B42)并行进位方式C1=G1+P1C0C2=G2+P2G1+P2P1C0C3=G3+P3G2+P3P2G1+P3P2P1C0C4= G4+P4G3+P4P3G2+P4P3P2G1+P4P3P2P1C02.16参考教材P62 32位两重进位方式的ALU和32位三重进位方式的ALU 2.17“1”A3B3A2 B2 A1 B1 A0 B0-。
DB2的常见SQLCODE所表示负数的含义
DB2的常见SQLCODE所表示负数的含义SQL0007 SQLCODE -07 SQLSTATE 42601Explanation: Character &1 (HEX &2) not valid in SQL statement. SQL0010 SQLCODE -10 SQLSTATE 42603Explanation: String constant beginning &1 not delimited.SQL0029 SQLCODE -29 SQLSTATE 42601Explanation: INTO clause missing from embedded SELECT statement. SQL0051 SQLCODE -51 SQLSTATE 3C000Explanation: Cursor or procedure &1 previously declared.SQL0060 SQLCODE -60 SQLSTATE 42815Explanation: Value &3 for argument &1 of &2 function not valid. SQL0078 SQLCODE -78 SQLSTATE 42629Explanation: Parameter name required for routine &1 in &2.SQL0080 SQLCODE -80 SQLSTATE 42978Explanation: Indicator variable &1 not SMALLINT type.SQL0084 SQLCODE -84 SQLSTATE 42612Explanation: SQL statement not allowed.SQL0090 SQLCODE -90 SQLSTATE 42618Explanation: Host variable not permitted here.SQL0097 SQLCODE -97 SQLSTATE 42601 Explanation: Use of data typenot valid.SQL0099 SQLCODE -99 SQLSTATE 42992 Explanation: Operator in join condition not valid.SQL0101 SQLCODE -101 SQLSTATE 54001, 54010, 54011 Explanation: SQL statement too long or complex.SQL0102 SQLCODE -102 SQLSTATE 54002 Explanation: String constant beginning with &1 too long. SQL0103 SQLCODE -103 SQLSTATE 42604 Explanation: Numeric constant &1 not valid.SQL0104 SQLCODE -104 SQLSTATE 42601 Explanation: Token &1 was not valid. Valid tokens: &2. SQL0105 SQLCODE -105 SQLSTATE 42604 Explanation: Mixed or graphic string constant not valid. SQL0106 SQLCODE -106 SQLSTATE 42611 Explanation: Precision specified for FLOAT column not valid.SQL0107 SQLCODE -107 SQLSTATE 42622Explanation: &1 too long. Maximum &2 characters.SQL0109 SQLCODE -109 SQLSTATE 42601Explanation: &1 clause not allowed.SQL0110 SQLCODE -110 SQLSTATE 42606Explanation: Hexadecimal constant beginning with &1 not valid.SQL0112 SQLCODE -112 SQLSTATE 42607Explanation: Argument of function &1 is another function.SQL0113 SQLCODE -113 SQLSTATE 28000, 2E000, 42602 Explanation: Name &1 not allowed.SQL0114 SQLCODE -114 SQLSTATE 42961Explanation: Relational database &1 not the same as current server &2. SQL0115 SQLCODE -115 SQLSTATE 42601Explanation: Comparison operator &1 not valid.SQL0117 SQLCODE -117 SQLSTATE 42802Explanation: Statement inserts wrong number of values.SQL0118 SQLCODE -118 SQLSTATE 42902Explanation: Table &1 in &2 also specified in a FROM clause.SQL0119 SQLCODE -119 SQLSTATE 42803 Explanation: Column &1 in HAVING clause not in GROUP BY. SQL0120 SQLCODE -120 SQLSTATE 42903 Explanation: Use of column function &2 not valid.SQL0121 SQLCODE -121 SQLSTATE 42701 Explanation: Duplicate column name &1 in INSERT or UPDATE. SQL0122 SQLCODE -122 SQLSTATE 42803 Explanation: Column specified in SELECT list not valid.SQL0125 SQLCODE -125 SQLSTATE 42805 Explanation: ORDER BY column number &1 not valid.SQL0128 SQLCODE -128 SQLSTATE 42601 Explanation: Use of NULL is not valid.SQL0129 SQLCODE -129 SQLSTATE 54004 Explanation: Too many tables in SQL statement.SQL0130 SQLCODE -130 SQLSTATE 22019, 22025 Explanation: Escape character &1 or LIKE pattern not valid. SQL0131 SQLCODE -131 SQLSTATE 42818Explanation: Operands of LIKE not compatible or not valid.SQL0132 SQLCODE -132 SQLSTATE 42824Explanation: LIKE predicate not valid.SQL0133 SQLCODE -133 SQLSTATE 42906Explanation: Operator on correlated column in SQL function not valid.SQL0134 SQLCODE -134 SQLSTATE 42907Explanation: Argument of function too long.SQL0136 SQLCODE -136 SQLSTATE 54005Explanation: ORDER BY or GROUP BY columns too long.SQL0137 SQLCODE -137 SQLSTATE 54006Explanation: Result too long.SQL0138 SQLCODE -138 SQLSTATE 22011Explanation: Argument &1 of SUBSTR function not valid.SQL0144 SQLCODE -144 SQLSTATE 58003Explanation: Section number not valid.SQL0145 SQLCODE -145 SQLSTATE 55005Explanation: Recursion not supported for an application server other than the AS/400 system. SQL0150 SQLCODE -150 SQLSTATE 42807。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Effect of acid,water and alcohol ratios on sol-gel preparation of antire flective amorphous SiO 2coatingsÖmer Kesmez a ,b ,1,Esin Burunkaya a ,b ,1,Nadir Kiraz a ,b ,1,H.Erdem Çamurlu c ,d ,⁎,Meltem Asiltürk e ,2,Ertu ğrul Arpaça ,b ,1aAkdeniz University,Faculty of Science and Art,Department of Chemistry 07058Antalya,Turkey bNANOen R&D Ltd.,Antalya Technopolis,Akdeniz University Campus,07058Antalya,Turkey cAkdeniz University,Department of Mechanical Engineering,07058,Antalya,Turkey dMattek Advanced Materials Ltd.,Antalya Technopolis,Akdeniz University Campus,07058Antalya,Turkey eİnönüUniversity,Prof.Dr.Hikmet Say ılkan Research and Development Laboratory for Advanced Materials,44280,Malatya,Turkeya b s t r a c ta r t i c l e i n f o Article history:Received 7November 2010Received in revised form 4May 2011Available online 31May 2011Keywords:Sol-gel processes;Nanometric SiO 2particle;Nanometric film;Acid catalysis;Antire flective filmVarying amounts of nitric acid catalyst,water and ethyl alcohol were used in the preparation of SiO 2sols by hydrolysis and condensation reactions of tetraethyl orthosilicate in a one step acid catalysis process.Hydrolysis of TEOS was followed by FT-IR analyses.Size of SiO 2particles was seen to vary in 8–41nm range with respect to changing HNO 3and water amounts in the sols.Gelation occurred in some systems.Surfaces of films were examined by FESEM and AFM,after coating on glass substrates by dip coating.Thicknesses of the films were measured to be in the range of 80–120nm.5.6±0.2%point increase in light transmittance was obtained when HNO 3/TEOS (mol/mol)ratio of 4.74×10−4and H 2O/TEOS (mol/mol)ratio of 9.08were utilized.Sols were found to be stable for months and coatings prepared after 45days still provided 5.2±0.2%point increase in light transmittance.©2011Elsevier B.V.All rights reserved.1.IntroductionAntire flective (AR)coatings have attracted technological and scienti fic attention due to their ef ficiency enhancement bene fits in many applications such as solar panels,video display screens,eyeglasses,windows,etc.[1,2].Various materials and techniques have been utilized for obtaining AR surfaces.Chemical etching of glass [3,4],and formation of a coating layer on glass surface [5–11]are the two common methods for obtaining AR surfaces.It was shown that re flective losses can be canceled out if a layer with a thickness of a quarter of the wavelength of incident light is present on the substrate and if the refractive index (n )of this layer is equal to square root of the refractive index of the substrate.For an ordinary glass with an n of 1.52,required n is 1.23[6,12].Thus,both of the mentioned methods rely on the principle that refractive index of glass decreases with increasing porosity [5–12].A porous layer with a lower refractive index than the glass substrate can be formed on the glass surface bythe etching process.However,utilization of hazardous chemicals in this method requires waste water treatment [3,4].In the methods of forming an additional layer on glass surface,the aim is to obtain a coating with a low or adjustable refractive index and with controlled thickness [5,6].Various techniques such as CVD,sputtering and sol-gel dip,spin or spray coatings are employed for preparing an AR coating on glass.Dip-coating of the sol-gel synthesized colloidal solutions appears to be more convenient among the other techniques.It is possible to control the pore size,distribution and volume fraction of porosity in the formed coating by altering the parameters of sol-gel process.Additionally,sol-gel process utilizes chemicals that are harmless to the environment such as water,ethanol and silica particulates.It has scale-up possibility,ease of coating complex shapes,and lower equipment cost as compared to other methods [5,13,14].In most of the studies,porous silica has been utilized for obtaining AR films on the glass surface with a controlled refractive index,thanks to its environmental stability and durability [5].Focus of investiga-tions was on control of pore size and volume fraction for adjusting the refractive index of the SiO 2films.In the sol-gel colloidal SiO 2coating process,porosity is related to particle size and distribution of the SiO 2sol from which the film is obtained [7],as well as to the curing temperature of the coating on glass [5,8,13,15].Size distribution of oxide nanocrystals was reported to have a crucial affect on enhancing various properties [16].SiO 2particles were mostly formed throughJournal of Non-Crystalline Solids 357(2011)3130–3135⁎Corresponding author at:Makine Mühendisli ği Bölümü,Akdeniz Üniversitesi,Dumlup ınar Bulvar ı,Kampüs,07058Antalya,Türkiye.Tel.:+902423106346;fax:+902423106306.E-mail address:erdemcamurlu@ (H.E.Çamurlu).1FEF Kimya Bölümü,Akdeniz Üniversitesi,Dumlup ınar Bulvar ı,Kampüs,07058Antalya,Türkiye.2İnönüÜniversitesi FEF Kimya Bölümü,44280,Malatya,Türkiye.0022-3093/$–see front matter ©2011Elsevier B.V.All rights reserved.doi:10.1016/j.jnoncrysol.2011.05.003Contents lists available at ScienceDirectJournal of Non-Crystalline Solidsj ou r n a l h o me pa g e :ww w.e l s ev i e r.c o m/l oc a t e /j no n c r ys o lhydrolysis and condensation of alkoxysilanes such as tetramethy-lorthosilicate (TMOS)[8]or tetraethyl orthosilicate (TEOS)[9,10,15]with addition of water,alcohol and acid or base catalyst.In order to adjust the porosity and therefore the refractive index of SiO 2particulate film,factors such as type and amount of catalyst and aging duration of sol [5,7,15,17–19],alkoxide to water ratio [20],type of alcohol [21],type of acid [15],baking temperature of the film [8]have been investigated.Effect of pH was investigated by Brinker et al.and a two-step method was suggested.In this method initially acid catalyzed TEOS,water,ethanol system was prepared and then base (NH 4OH)-water mixture was added [22].Addition of basic catalyst into acid catalyzed system was suggested to increase the rate of condensation.Condensation kinetics is faster than hydrolysis kinetics when base catalysts are used.Acid catalysis was proposed to form linear or randomly branched chains.On the other hand,formation of a network of uniform particles takes place as a result of base catalysis [23].Two-step catalysis reactions based on similar route proposed by Brinker et al.were employed commonly [7,23,24].Vincent et al.reported that increasing the base catalyst amount enhances the growth of SiO 2particles [24].Acid catalyst resulted in the smallest particle size of SiO 2among the investigated systems.Effects of different acid types on SiO 2sols and films were investigated by Fardad [15].Films obtained from H 2SO 4and H 3PO 4catalyzed sols exhibited different behavior than those obtained from HCl,HNO 3and C 2H 2O 4catalyzed sols,in terms of refractive index,volume fraction of porosity and thickness of the films.The difference was attributed to the change in hydrolysis and condensation rates with respect to type of acid [15].Kesmez et al.investigated the effect of different base catalysts and effect of aging duration in acid and base catalyzed sols [7].It was shown that not only pH,but also type of the catalyst is effective in controlling the hydrolysis and condensation kinetics [7,23].It was reported that base catalysis provided a very fast SiO 2particle growth and that the increase in the light transmittance provided by the obtained films presented a fluctuating character with respect to aging duration of the sols.Due to the high growth rate of SiO 2particles,thickness of the obtained films increased and light transmittance initially decreased by increasing aging duration of the sols.Further increase in SiO 2particle size and film thickness resulted in a re-increase in transmittance.Obtained sols were seen to be useful for 1–3days after preparation,indicating their very short shelf-life.On the other hand,films prepared from solely acid catalyzed sols presented stable and enhanced light transmittance values,in the investigated aging duration of 22days [7].Shelf life of the SiO 2sol is an important issue for industrial applications.Present study focuses on preparation of sols with long shelf life,from which films having enhanced light transmittance can be obtained.For this purpose,sols were prepared with single step acid catalysis (HNO 3),by altering the amounts of HNO 3and water.Size distribution of the SiO 2particles and light transmittance of the films which were composed of the prepared particles were evaluated,andeffects of water and acid catalyst amount on SiO 2particle size,on film thickness and on light transmittance properties were explored.2.Experimental procedureSiO 2sols were prepared by hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS,Fluka Chemicals,N 98%)in the presence of nitric acid (HNO 3,Merck Chemicals,65%).Sample codes,amounts of acid catalysts and water used in the systems are presented in Table 1.For the preparation of AR1sol,0.132mol TEOS was mixed with 1.167mol EtOH and the mixture was heated at 70°C.In another beaker,6.26×10−4mol HNO 3was mixed with 1.364mol H 2O and this acid solution was added dropwise into the TEOS-EtOH mixture.Same amount of TEOS (0.132mol)was used in all the systems.The mixture was stirred at 70°C in re flux for 20h.The formed nano SiO 2colloidal sol was diluted with EtOH at a ratio of 1:3.74(w/w SiO 2/EtOH).Consequently,a sol with a SiO 2content of 1.58wt SiO 2%was obtained.The other systems given in Table 1were prepared similarly.Fourier transformed infrared spectrophotometer (ATR-FTIR;Var-ian 1000model)was used to characterize the TEOS hydrolysis.Measurements were analyzed by signal averaging 16scans at a resolution of 4cm −1.Particle size distributions of the SiO 2sols were determined by a particle size analyzer (Zetasizer Nano-ZS,Malvern Instruments).In order to investigate the optical properties,2mm thick,5×10cm soda-lime glass substrates were coated by dipping them into the SiO 2colloidal sol.Various withdrawal speeds in the range of 100–250mm/min were tested for acid catalyzed system and it was seen that the highest light transmittance was obtained when the glass substrates were withdrawn at a speed of 200mm/min from the SiO 2sol.Therefore,all of the samples were prepared at the same withdrawal speed.The coated glass samples were dried in air at room temperature and then they were calcined at 450°C for 30min.Glass samples containing nanometric SiO 2films were subjected to optical and morphological analyses.Light transmittance was measured by a hazemeter at 550nm (Haze-Guard Plus,BYK Gardner)and percent light transmittance increases provided by the SiO 2films were determined.Percent light transmittance was calculated by subtracting the light transmittance of the uncoated glass measured at 550nm by the hazemeter,from that of the SiO 2coated glasses.The percent re flection (%R)of all thin films was measured using a Varian Cary 5000model UV –Vis –NIR spectropho-tometer which was combined with diffuse re flectance apparatus (DRA)with a focusing mirror.Field emission scanning electron microscopy (FESEM)analyses were performed with a FEI Nova Nanosem unit.A PSIA XE-100E unit was utilized for atomic force microscopy (AFM)analyses.Root mean square (rms)surface roughness was evaluated from the AFM line pro file data by XEI software (PSIA Inc.).Film thicknesses were determined by Filmetrics F20-HC thin film measurement system,precision of which was speci fied as 1nm.Surface hardness tests andTable 1Amounts and ratios of HNO 3,H 2O and EtOH in the prepared sols.Specimen HNO 3(moles)TEOS (moles)H 2O (moles)EtOH (moles)HNO 3/TEOS H 2O/TEOS EtOH/TEOS H 2O/EtOH AR1 6.26×10−40.132 1.364 1.167 4.74×10−310.338.84 1.17AR2 6.26×10−50.132 1.710 1.167 4.74×10−412.958.84 1.47AR3 6.26×10−60.132 1.710 1.167 4.74×10−512.958.84 1.47AR4 6.26×10−70.132 1.710 1.167 4.74×10−612.958.84 1.47AR5 6.26×10−40.132 1.980 1.060 4.74×10−3158.03 1.87AR6 6.26×10−40.132 2.2530.954 4.74×10−317.077.23 2.36AR7 6.26×10−80.132 1.710 1.167 4.74×10−712.958.84 1.47AR8 6.26×10−50.132 1.029 1.433 4.74×10−47.8010.860.72AR9 6.26×10−50.132 2.3910.900 4.74×10−418.11 6.82 2.66AR10 6.26×10−50.132 1.199 1.366 4.74×10−49.0810.350.88AR116.26×10−40.1321.0271.4334.74×10−37.7810.860.723131Ö.Kesmez et al./Journal of Non-Crystalline Solids 357(2011)3130–3135adhesion tests of the films were carried out by an Erichsen Hardness Test Pencil 318and an Erichsen Type 295multi-cross cutter,respectively.The results of the tests were evaluated according to the ASTM D 3359protocol [25].3.Results3.1.Sol and SiO 2particle characterizationFT-IR analyses were performed during hydrolysis of TEOS in predetermined durations and it was seen that hydrolysis was almost completed in 20h.Results of FT-IR analyses performed at t=0and at t=20h are given in Fig.1.The intensity of the characteristic peak of TEOS at 964cm −1belonging to C –H rocking (CH 3in TEOS)decreases in 20h.This indicates the decrease in the amount of TEOS as a result of hydrolysis [26].The peak at 1087cm −1,which also decreases,is due to Si –O –Si symmetric stretching in linear structures and C –O asymmetric stretching (TEOS).The stretching at 1049cm −1arises from C –O symmetrical stretching in EtOH and that at 879cm −1is due to CH 3or CH 2in EtOH [27].The peak at 2300cm −1is due to CO 2which is present in the ambient atmosphere during sample preparation before ATR-FTIR measurements.Initial experiments were performed with HNO 3/TEOS (mol/mol)ratio of 4.74×10−3,by altering the H 2O/TEOS ratio in the sols as shown in Table 2.It was seen that the SiO 2particle size increased from 9±2.0nm to 17±1.5nm when H 2O/TEOS ratio was increased from 7.80to 10.33,keeping the HNO 3/TEOS ratio constant at 4.74×10−3.Particle size distribution plots of representative systems are presented in Fig.2.When the H 2O/TEOS ratio was further increased to 18.11,particle size decreased to 13±2.6nm.Experiments were continued by keeping the H 2O ratio constant at 12.95,and by altering the HNO 3ratio.It was seen that gelation of the sols took place when HNO 3ratios of 4.74×10−4M and 4.74×10−5were utilized.Further decrease in the acid ratio to 4.74×10−6or4.74×10−7resulted in formation of SiO 2particles with about 40±1.5nm average particle size.Further experiments were conducted by keeping the HNO 3ratio at 4.74×10−4and by changing the H 2O ratio.First,H 2O/TEOS ratio was increased to 18.11from 12.95and gelation still occurred as shown in Table 2.Then,when H 2O ratio was decreased to 9.08,monomodal SiO 2particle size distribution was observed with 30nm average particle size.Further decreasing the H 2O ratio to 7.80with 4.74×10−4HNO 3ratio resulted in formation of SiO 2particles having bimodal particle size distribution.80vol.%of the particles had 20±2.0nm size,and 20vol.%of them had 300±5.0nm size.Particle size of AR10system was measured as prepared and after 45days of preparation.The SiO 2particle size only slightly changes in 45days of aging as can be seen in the particle size distribution plots given in Fig.3.Average SiO 2particle size was measured as 34±2.6nm after 45days.This result indicates that the prepared sols have quite a long shelf life and they can be used after long durations of their preparation.SiO 2nanoparticles obtained by the employed synthesis method have amorphous structure [30].3.2.Film characterizationAverage particle size of the sols which were prepared with various HNO 3and H 2O amounts is presented in Table 3,together with the thickness values of the films obtained from these sols.In some of the solutions,gel formation was observed to occur during preparation of the sols while mixing under re flux.Particle size and thicknesses were not reported for these systems in Tables 2and 3.The films were obtained by employing a withdrawal speed of 200mm/min.Samples were cured at 450°C for ½h.Formed films are expected to have amorphous structure due to low curing temperature.Thicknesses of the prepared films were measured to be generally in 80–90nm range.Only the film,which was prepared from the sol havingbimodalFig.1.FT-IR spectra of sol (a)as prepared,(b)after 20h duration.Table 2Variation of SiO 2particle size with respect to HNO 3/TEOS and H 2O/TEOS ratios.HNO 3/TEOS/H 2O/TEOS 4.74×10−3 4.74×10−4 4.74×10−5 4.74×10−6 4.74×10−77.809±2.0nm%80:20±2.0nm/%20:300±5.0nm 9.0830±2.1nm 10.3317±1.5nm12.95GelationGelation41±3.0nm40±1.5nm1516±2.5nm 18.1113±2.6nmGelationFig.2.Particle size distribution plots of representative systems.3132Ö.Kesmez et al./Journal of Non-Crystalline Solids 357(2011)3130–3135particle size distribution,had about 120nm of thickness.This behavior was observed in previous studies [7].Sols having larger particles result in thicker films as compared to sols having smaller particles,on the condition that the withdrawal speed is kept constant [7].Pencil hardnesses of the films were in 6H –9H range,as presented in Table 3.These results indicate that the hardnesses of the films were quite high and that the films can withstand mechanical environmen-tal effects.In addition,the films did not peel off or only slightly peeled off in adhesion tests.Along with these results,adhesion of the films was classi fied as 5B or 4B according to ASTM D 3359standard.Light transmittance increase values of the films are presented in Table 3.SiO 2films provided a light transmittance increase in the range of 4.6–5.6%.Light transmittance of the sample prepared after 45days aging of AR10sol was measured in order to investigate the effect of aging duration on transmittance.It was seen that the film provided 5.2±0.2%increase in transmittance,as compared to bare glass substrate.Before aging,transmittance increase was 5.6±0.2%.This result can be expected since particle size distribution of the sol did not present a major change with aging duration,as shown in Fig.3.Average particle size of SiO 2increased to 34±0.6nm from 30±2.1nm after 45days of aging.It was seen in SEM examinations that the formed AR films were crack free and they had a uniform structure.SEM micrograph of AR10sample is presented in Fig.4.SiO 2particles can be discerned in this high magni fication micrograph.Size of SiO 2particles observed in SEM micrographs was seen to be in accord with the results of particle size measurements performed from SiO 2sols.AFM image of AR10is presented in Fig.5.Uniform structure of the films was veri fied by AFM analyses (Fig.5inset).RMS roughness of the AR10film was determined as 0.8nm.Diffuse re flectance analysis (DRA)results presented in Fig.6indicate the anti-re flective character of the obtained films.DRA analyses are generally in accord with the %increase in transmittance results of the samples given in Table 3,which were measured at 550nm with a hazemeter.The re flectance of the uncoated sample is seen to be quite high (about 10–11%)as compared to the coated samples.The coated samples have a re flectance of 6–7%at 400nm,which is seen to decrease to 4.3–5.5%at 550–600nm,indicating the antire flective property provided by the coatings.The lowest re flec-tance is obtained by the sample AR10,with a re flectance of about 4.3±0.1%at 550nm.These results point out that coatings obtained with one step acid catalysis provide about 6%increase in transmittance of the glass in the visible region,which was also veri fied by transmittance measurements.4.DiscussionSiO 2particle size was seen to increase when H 2O/TEOS ratio was increased from 7.80to 10.33,keeping the HNO 3/TEOS ratio constant at 4.74×10−3.Growth of SiO 2particles with increase in H 2O amount can be suggested to be a result of increase in hydrolysis and condensation rates.When the H 2O/TEOS ratio was further increased to 18.11,particle size decreased.The decrease in the particle size may be attributed to the hydrolytic depolymerization reaction,which is the reverse reaction of condensation,as a result of increase in the excess H 2O amount in the system [28].Gelation occurred when HNO 3/TEOS ratios of 4.74×10−4M and 4.74×10−5were utilized at H 2O/TEOS ratio of 12.95.When acid ratios of 4.74×10−6and 4.74×10−7were employed,formation of the SiO 2particles may be attributed to the decrease in the condensation rate as a result of decreasing HNO 3ratio.High rate of the reaction which leads to gelation decreases,providing the formation of SiO 2particles [28].Increase in the particle size can be expected when lower acid ratios were utilized (4.74×10−6or 4.74×10−7)since lower acid ratio results in initiation of polymerization from fewer points,leading to larger particle size,as compared to high acid ratio (4.74×10−4).RateFig.3.Particle size distribution plots of SiO 2sols (AR10system)when prepared and after 45days of aging.Table 3SiO 2average particle size in the sols,thicknesses and pencil hardnesses of the prepared films and %T increases provided by the films.Sample No Particle size (nm)Film thickness (nm)%T increase (%points)Pencil hardness and adhesion test results AR117±1.584.3±5.14.6±0.1N 9H/5B AR2***AR3***AR441±3.089.5±3.0 5.0±0.27H/4B AR516±2.591.7±1.4 4.6±0.19H/5B AR613±2.688.2±0.8 4.6±0.19H/4B AR740±1.580.9±2.2 5.0±0.27H/4B AR8%80:20±2.0%20:300±5.0122.6±5.2 4.8±0.16H/3B AR9***AR1030±2.1(34±0.6+)89.0±2.6 5.6±0.2(5.2±0.2+)8H/4B AR119±2.075.5±1.34.7±0.19H/4B*Gel formation occurred during synthesis.+Measured after 45days.Fig.4.SEM micrograph of AR10sample.3133Ö.Kesmez et al./Journal of Non-Crystalline Solids 357(2011)3130–3135of hydrolysis and condensation reactions of silicon alkoxides was suggested to be altered by utilizing acid catalysts [15,28].Pope and Mackenzie reported that variations on porosity,shrinkage and gelation duration can be obtained by altering the catalyst in hydrolysis and condensation of TEOS [29].Gelation time was found to decreaseto almost one-tenth of non-catalyzed system,when 5×10−2M HCl was added to TEOS-ethanol mixture [5].The ratio of H 2O to EtOH may also be signi ficant.EtOH,which was used as the solvent in the prepared sols,forms hydrogen bonds with H 2O molecules.This may reduce the available free H 2O which is required for the hydrolysis of TEOS.Ratio of H 2O to EtOH is presented in Table 1.It was seen that when this ratio falls below 1,abnormal particle size distribution is obtained such as bimodal distribution (Sample AR8)and 9nm average particle size (Sample AR11).These results indicate that it is possible to control the SiO 2particle size by altering the H 2O and HNO 3ratios.However,the growth behavior of SiO 2particles is complex and shows alterations with respect to changes in H 2O/TEOS and HNO 3/TEOS parameters.Indeed,as proposed by Hench and West [18],numerous factors affect hydrolysis and condensation rates,and the course of events is more complex than just simple hydrolysis and condensation reactions.Additionally,hydrolysis and condensation takes place simultaneously.As it was reported in the previous section,acid-water ratio has an in fluence on the size of the SiO 2particles.Size of the SiO 2particles varied in the range of 9–40nm as a result of the change in the acid –water ratio.However,light transmittance results reveal that the change in the SiO 2particle size in this range only slightly affects the antire flective property of the film.Therefore,acid –water ratio in the sols has a slight in fluence on the light transmittance of the obtained films.Increase in the transmittance provided by the films can be correlated with the average size of SiO 2particles in films.Sols and obtained films from these solscanFig.5.AFM figure of sampleAR10.Fig.6.Diffuse re flectance plots of bare glass and coated glass samples.3134Ö.Kesmez et al./Journal of Non-Crystalline Solids 357(2011)3130–3135be divided into3groups as a function of particle size and%T increase.In thefirst group,light transmittance increase is between4.6and4.8±0.1%, while the sols have average SiO2particle size of b20nm.On the other hand in the second group,thefilms obtained from sols with particle size of about40nm provided transmittance increase of5±0.2%.Sol having average SiO2particle size between20and30nm(sample AR10)was seen to increase transmittance5.6±0.2%.It can be inferred from these results that the pore size and volume ratio of pores in AR10film are more appropriate for reducing reflective losses than the other investigated systems.It was seen during high magnification SEM investigations that the SiO2particles on thefilms formed cluster-like structures,among which there were gaps.These gaps,which can be seen as black,curved lines in Fig.4are not cracks,since cracks infilms follow a straight path with brittle nature.The gaps are believed to form from clustering of the SiO2particles most probably during drying and baking of thefilms, as a result of densification and shrinkage.Nevertheless,as can be inferred from the cross-cutter test and pencil hardness test results, mechanical properties of thefilms are quite good and they appear not to be deteriorated by the presence of these gaps.5.ConclusionEffects of HNO3and water amount on size of SiO2nano-particles in sols and on light transmittance of the obtainedfilms from these sols have been investigated.SiO2particle sizefirst increased and then decreased with increasing H2O ratio,when4.74×10−3HNO3/TEOS ratio was used.The decrease in the particle size with increasing H2O/ TEOS ratio was attributed to the hydrolytic depolymerization reaction, which is the reverse reaction of condensation.Control of the SiO2 particle size was seen to be possible by altering the H2O/TEOS and HNO3/TEOS ratios,although SiO2particle growth behavior is complex and show alterations with respect to changes in H2O and HNO3ratios. Obtainedfilms are generally80–90nm in thickness and they have high hardness and high adherence to the glass substrate.A light transmit-tance increase of5.6±0.2%was provided by thefilm which had an average SiO2particle size of30±2.1nm.Particle size distribution of this sol presented a slight change in45days(34±0.6nm),indicating that the sols were stable for long durations and that they had long shelf life.Thefilm obtained from45day aged sol provided a light transmittance increase of5.2±0.2%.AcknowledgementsAuthors thank Akdeniz University Research Fund forfinancial support.Technical andfinancial support of NANOen and Mattek is gratefully acknowledged.Help of Prof.Dr.TayfurÖztürk(METE/METU) for FESEM analyses is acknowledged.References[1]S.Lien,D.Wuu,W.Yeh,J.Liu,Sol.Energ.Mat.Sol C90(2006)2710–2719.[2]K.Abe,Y.Sanada,T.Morimoto,J Sol-Gel Sci Technol22(2001)151–166.[3]Lin J-H(Zuel),US Patent6929861,16August2005.[4] C.Schelle,M.Mennig,H.Krug,G.Jonschker,H.Schmidt,Journal of Non-CrystallineSolids218(1997)163–168.[5] C.J.Brinker,G.W.Scherer,Sol-Gel Science,,Academic Press,San Diego,1990.[6] B.G.Prevo,Y.Hwang,O.D.Velev,Chem Mater17(2005)3642–3651.[7]Ö.Kesmez,N.Kiraz,E.Burunkaya,H.E.Çamurlu,M.Asiltürk,E.Arpaç,J Sol-Gel SciTechnol(2010),doi:10.1007/s10971-010-2290-x.[8]Ö.Kesmez,H.E.Çamurlu,E.Burunkaya,E.Arpaç,Ceram Int.36(2010)391–394.[9]Ö.Kesmez,H.E.Çamurlu, E.Burunkaya, E.Arpaç,Sol Energ Mat93(2009)1833–1839.[10] E.Burunkaya,Ö.Kesmez,N.Kiraz,H.E.Çamurlu,M.Asiltürk,E.Arpaç,Mater ChemPhys120(2010)272–276.[11]K.Koc, F.Z.Tepehan,G.G.Tepehan,Journaşof materials scince40(2005)1363–1366.[12]G.R.Fowles,Introduction to Modern Optics,Dover Publications,New York,1989.[13] D.Chen,Sol Energ Mat Sol C68(2001)313–336.[14]P.Nostell,A.Ross,B.Karlsson,Thin Solid Films351(1999)170–175.[15]M.A.Fardad,J Mater Sci35(2000)1835–1841.[16]I.V.Kityk,J.Ebothe,Q.Liu,Z.Sun,J.Fang,Nanotechnology17(2006)1871–1877.[17]H-S Tong,C-M Hu,US Patent5582859,10December1996.[18]L.L.Hench,J.K.West,Chem.Rev90(1990)33–72.[19]H.Schmidt,H.Scholze,A.Kaiser,Journal of Non-Crystalline Solids63(1984)1–11.[20]BE(Churchill)Yoldas,DP(Wilkinsburg)Partlow,US Patent4535026,13August1985.[21]I.A.Rahman,M.Jafarzadeh,C.S.Sipaut,Ceram Int35(2009)1883–1888.[22] C.J.Brinker,K.D.Keefer,D.W.Schaefer,R.A.Assink,B.D.Kay,C.S.Ashley,J Non-Cryst Solids63(1984)45–59.[23] A.S.Dorcheh,M.H.Abbasi,J Mater Process Tech199(2008)10–26.[24] A.Vincent,S.Babu,E.Brinley,A.Karakoti,S.Deshpande,S.Seal,J Phys Chem C111(2007)8291–8298.[25]New Test Method for Optical Imaging Evaluation of Adhesion by Tape TestSpecimens,ASTM D3359WK97.[26]G.Wu,J.Wang,J.Shen,T.Yang,Q.Zhang,B.Zhou,Z.Deng,B.Fan,D.Zhou,F.Zhang,Mater Sci Eng B78(2000)135–139.[27] F.Rubio,J.Rubio,J.L.Oteo,Spectrosc Lett31(1998)199–219.[28] C.J.Brinker,J Non-Cryst Solids100(1988)31–50.[29] E.J.A.Pope,J.D.Mackenzie,J Non-Cryst Solids87(1986)185–198.[30]S.Tabatabaei,A.Shukohfar,R.Aghababazadeh,A.Mirhabibi,J.Phys.Conf.Ser.26(2006)371–374.3135Ö.Kesmez et al./Journal of Non-Crystalline Solids357(2011)3130–3135。