位置度公差测量方法

合集下载

三坐标测量位置度的方法及注意事项

三坐标测量位置度的方法及注意事项

三坐标测量位置度的方法及注意事项作者:申学利杨丽云来源:《中小企业管理与科技·上旬刊》2015年第08期摘要:位置度检测是机动车零部件检测中经常进行的一项常规检验。

所谓“位置度”是指对被评价要素的实际位置对理想位置变动量的指标进行限制。

在进行位置度检测时首先要很好地理解和消化图纸的要求,在理解的基础上选择合适的基准。

位置度的检测就是相对于这些基准,它的定位尺寸为理论尺寸。

关键词:三坐标;位置度1 位置度的三坐标测量方法1.1 计算被测要素的理论位置①根据不同零部件的功能要求,位置度公差分为给定一个方向、给定两个方向和任意方向三种,可以根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面,如XY平面、XZ平面、YZ平面。

②根据投影面和图纸要求正确计算被测要素在适当投影面的理论位置。

1.2 根据零部件建立合适的坐标系。

在PC-DMIS软件中,可以把基准用于建立零件坐标系,也可以使用合适的测量元素建立零件坐标系,建立坐标的元素和基准元素可以分开。

1.3 测量被测元素和基准元素。

在被测元素和基准元素取点拟合时,最好使用自动程序进行,以减少手动检测的误差。

1.4 位置度的评价。

①在PC-DMIS软件中,位置度的评价可以直接点击位置度图标。

②在位置度评价对话框中包含两个页面,特征控制框和高级,首先根据图纸要求设置相应的基准元素,在基准元素编辑窗口中只会出现在编辑当前光标位置以上的基准特征,如图1所示。

③基准元素设置完成,回到特征控制框选择被测元素,设置基准,输入位置度公差。

④在位置度评价的对话框中选择高级,在此对话框中可以设置特征控制框尺寸的信息输出方式和分析选项。

如图2的对话框,在标称值一栏中手动键入被测要素的理论位置值,点击评价。

1.5 在报告文本中刷新就可以看到所评价的位置度结果。

2 三坐标测量位置度的注意事项2.1 评价位置度的基准元素选择和建立坐标系的元素选择有相似之处,都要用平面或轴线作为A基准,用投影于第一个坐标平面的线作为B基准,用坐标系原点作为C基准。

三个孔位置度测试方法

三个孔位置度测试方法

三个孔位置度测试方法在制造业中,孔的位置度是一个重要的质量指标,尤其是在精密工程和机械加工领域。

三个孔的位置度测试是确保零部件质量的关键步骤。

本文将详细介绍三种常用的三个孔位置度测试方法。

### 三个孔位置度测试方法#### 1.三点法**适用范围:** 适用于三个孔的分布呈三角形或直线形的情况。

**测试步骤:**- 使用一个标准规或量棒,确保其尺寸精度符合要求。

- 将规或量棒的一个端点定位在一个孔的中心。

- 旋转规或量棒,使其另一端点分别对准另外两个孔的中心。

- 测量规或量棒第三个端点到第三个孔的距离,与规定的位置度公差比较。

**优点:** 操作简单,效率较高。

#### 2.对角线法**适用范围:** 主要用于三个孔呈等腰三角形分布的测试。

**测试步骤:**- 使用一把精确的卡尺或电子测距仪。

- 分别测量两个非共线孔之间的距离。

- 计算两条对角线的长度,并确保它们在规定的位置度公差内相等。

**优点:** 测试精度高,特别适用于对称布局的三个孔。

#### 3.量块和微米计法**适用范围:** 适用于对孔位置度要求非常高的精密测量。

**测试步骤:**- 准备一套精度等级合适的量块。

- 将量块放置在三个孔之间,确保量块平面与孔的轴线平行。

- 使用微米计或测高仪测量量块上表面到孔轴线的距离。

- 对三个孔重复上述步骤,并记录数据。

- 通过比较实际测量值与理论值之间的差异,判断孔的位置度是否合格。

**优点:** 测量精度高,可靠性强。

### 结语选择合适的孔位置度测试方法,不仅能够确保零部件的质量,还能提高生产效率。

在实际应用中,操作人员需结合具体情况和测量精度要求,选择最适宜的测试方法。

位置度公差测量方法

位置度公差测量方法


度 理論

测量

1. 2. 3. 理論 度

标 测量
测量步骤﹕ 1﹑对端子进行编号﹕
2﹑置中归零﹕先测出左柱宽 1.00﹐然后第一次置中归零(测量右柱宽也一样)﹐再测量 其到右 柱两边的 距离 14.25﹑ 14.95 ﹐进行第 二次置 中归零﹔
第一次置 中归零
第二次置 中归零
第一种标注方式﹕直接测量
第二种标注方式﹕间接测量
以上两种标注方式中﹐第一种直接对 124 根端子接触区域一一测量其位置度﹐由于端子 接触区域是包在主体内部﹐若采用这种方式﹐测量繁琐困难﹔对于第二种测量方式﹐由于端 子是下料成型﹐且插在主体插槽中﹐插槽控制了端子的平面度﹐因此只须控制 KEY 相对 POST 的位置度与端子锡脚相对 POST 的位置度﹐相应地也就控制了端子接触区域相对 KEY 的位置度﹐且其测量误差相对直接测量极其微小﹐建议采用此种标注方式。


测量
对于 MINI PCI 4.0H﹐存在着两个位置度﹕一个是端子锡脚的位置度﹐此位置度以 POST 为基准﹐用于控制端子锡脚与与 PCB 板的配合﹐现其位置度公差 0.18﹔另一个是端子接触区 域的位置度﹐此位置度以 KEY 为基准﹐用于控制端子接触区域与对插件的配合﹐现其位置 度公差 0.3。 对于第一个位置度﹐其标注方式已统一﹔对于第二个位置度﹐有如下两种标注方 式﹕
此外﹐根据上面公式﹐我们还可以推出另一种测量方法﹐但我个人还是推荐采用上述方法 ﹐因为下面这种方法多了一次置中归零﹐置中归零不仅测量繁琐﹐而且会增加测量误差。 DE=abs(Da-Dt) =abs{(D1+D2)/2-Dt)} = abs{[(d1+ Dt) +( Dt-d2)]/2-Dt)} =abs[(d1-d2)/2] =abs[(0.12-0.08)/2] =0.02<0.05

位置度公差及其计算

位置度公差及其计算

位置度公差及其计算
一、位置公差
位置公差定义为衡量尺寸特性的容许偏差,其可以测量相对于指定的
位置尺寸偏差值,是用来检查零件尺寸上的不规则度。

位置公差是应用着
重于零件尺寸的位置关系的公差,是衡量零件尺寸前后位置的公差标准,
其指定取决于每个零件的设计要求。

二、计算位置公差
1、首先,根据设计要求,确定位置公差要达到的要求,包括容许偏差、最大偏差等,然后制定位置公差的相关要求。

2、根据上述设计要求,对位置公差要求进行适当的标准化。

具体可
以分为公差、基本公差、保护层等等,这样就能够有效地加以控制位置公
差要求。

3、在上述标准化基础上,进行公差调整,调整过程可能涉及到精度、工艺参数等,以满足位置公差的要求。

4、最后对调整后的位置公差进行核查,可以采用先进的仪器仪表,
对精密零件来说,采用电子测量仪,以确保核查结果的准确性。

三、优点
(1)位置公差具有高效性:因为位置公差的标准化,可以减少不必
要的错误,大大提高工作效率,有助于提高生产的效率。

(2)更好的保证质量:位置公差的标准化,采用先进的仪器仪表,
可以更好的检查零件的精度,保证零件质量。

位置度公差详解

位置度公差详解

位置度實例:sheet film
如何測量位置度 (5 of 5 pages)
A=11.54-11.50=0.04
11.54
B
C
11.50 =實際的測量結果
A
C=SQRT((A=0.04)^2+(B=0.05)^2)=0.064
<
=GD=C*2=0.064*2=0.128 0.128 = OK 0.2
如何用Werth自動影像測量儀計算位置度 3: 按圖紙將被測孔的實際幾何中心 測量.
4: 以手動輸入的方式將被測孔的理 論位置作出來(即在以理論的坐標 作圓).
理論圓(心)位置
實際的幾何中心 基準 A
實際的幾何位置
如何計算測量後其位置度公差的結果
基準 A
位置度的求法(一):
如何用Werth自動影像測量儀計算位置度 1: 以基位A,B孔連線建成Y軸,并將A孔 圓心定義為坐標原點.
2: 以A點為原點,使Y軸反時針方向 旋轉 28.16°,并設定為新的Y軸.
坐標點 point A
位置度的求法(一):
11.54
如何測量位置度 (3 of 5 pages)
6.92
Not OK
ø0.2
實際的幾何中心
基準 A
位置度實例:sheet film
如何測量位置度 (4 of 5 pages)
如何計算測量後其位置度公差的結果:
目標位置
實際位置
=位置度
B A
B=6.97-6.92=0.05
6.92 6.97 =實際的測量結果
1: 以基位A,B孔連線建成時針方向 旋轉 28.16°,并設定為新的Y軸.
坐標點 point A
位置度實例:sheet film

位置度公差及其计算

位置度公差及其计算

位置度公差及其计算位置度公差是工程设计中常用的一种公差类型,用于描述零件上对特定位置的要求。

它通常用于描述两个或多个特定表面的位置关系,包括平行度、垂直度和斜度等。

在实际工程中,位置度公差的计算是非常重要的,本文将详细介绍位置度公差的概念、计算方法和应用。

一、位置度公差的概念和表达方式位置度公差是指在一定的设计要求下,用来描述两个或多个特定表面或特征之间的位置关系的公差。

它反映了零件特定表面或特征与基准表面(通常为基座)之间的相对位置关系,使得零件能够与其他零件或装配体正确地定位和工作。

位置度公差通常用字母T(Positional Tolerance)表示。

1.最大材料条件(MMC):在设计中,零件的制造公差可能导致实际测量值偏离设计值,最大材料条件即指代测量值可能达到的最大极限状态。

在位置度公差中,最大材料条件表示与基准表面之间的最大距离或最大角度。

在图纸上用字母M表示。

2.最小材料条件(LMC):与最大材料条件相反,最小材料条件指代测量值可能达到的最小极限状态。

在位置度公差中,最小材料条件表示与基准表面之间的最小距离或最小角度。

在图纸上用字母L表示。

二、位置度公差的计算方法1.平行度公差(Parallelism):平行度公差用于描述两个平面或轴线之间的平行关系。

计算平行度公差时,需要根据实际测量值与设计值之间的偏差来确定公差范围。

该方法通常采用最大材料条件和最小材料条件之间的最大偏差来计算。

2.垂直度公差(Perpendicularity):垂直度公差用于描述两个平面或轴线之间的垂直关系。

计算垂直度公差时,也需要考虑最大材料条件和最小材料条件之间的最大偏差。

3.斜度公差(Angularity):斜度公差用于描述两个平面之间的倾斜关系。

计算斜度公差时,需要根据实际测量值与设计值之间的偏差来确定公差范围。

以上是几种常见的位置度公差计算方法,根据不同的设计要求,还可以使用其他的位置度公差计算方法。

位置度标注及测量

位置度标注及测量

THE END
THANKS!
谢谢观赏!
2020/11/5
31
公差注法
一.给定方向 A.一个方向 (平行.垂直)
公差帶是距离为公差值, 以理想位置为中心对称分布 的兩平行直线(或平面)间的 区域
公差注法
一.给定方向
B.二个方向
公差帶是正剖面为 公差值t1*t2,以理 想位置为中心对称 分布的一四棱柱区 域
公差注法
.平面上点的任意方向
公差帶是直徑為公差值t, 以理想位置為中心的圓 內的区域
位置度公差注法
准确定理想要素(或几何图框)的位置
(轮廓基准) 基准平面A确 定兩孔在垂直 方向上的理想 位置
公差為轴线在平行 A方向上到理想
位置(15&40)的最大 偏移的2倍为直徑的
圓柱
基准注法
准确定理想要素(或几何图框)的位置 (中心要素基准)
基准中心要素 確定兩孔的理 想位置
公差帶为到理想 位置(A&25)的圓柱 (最大偏移的2倍为直徑)
A.1 采用关联包容原则
在公差框格內采用 0 M (或0 L )形式 標注
A.采用相关原则的位置度公差注法
A.2 公差采用最大实体原则
A.3 基准要素采用最大实体原则 基准要素相对基准 公差相对被测要素
C.位置度公差混合注法
C. 位置度公差混合注法
位置度的评定与测量
1:点位置度的测量: 其是指包容被测实际点,由基准表面(或) 直线和理论正确尺寸确定的定位 最小包容 区域的直径。
公式:
∮f=2
(x2-x1)2+(y2-y1)2
2:线位置度的测量
其是指:包容被测实际直线(或轴线)对基 准直线(基准面)和理论正确尺寸所确定的

公差测量方式及实例

公差测量方式及实例

一、基本形位公差1.直线度检测直线度,能确保零件在机械装配和运作中保持最佳性能和寿命,避免因不合格导致的功能失效和额外成本。

——[推荐量具]——①直尺:用于初步测量和检查。

②千分尺:用于局部直线度的精确测量。

③塞尺:用于测量间隙和不平度。

④平尺和塞规:用于检测较长零件的直线度。

——[测量过程]——①使用直尺沿零件表面移动,初步检查直线度,标记不平整区域。

②将平尺放在零件表面上,确保充分接触。

③使用塞尺在平尺和零件表面之间测量间隙,记录不同位置的间隙值。

——[实战案例]——假设需要测量一根轴的直线度,首先将轴固定在工作台上,准备平尺和塞尺。

用直尺沿轴的长度方向初步检查直线度并标记弯曲区域。

接着将平尺放在轴表面,与轴长度方向平行,用塞尺在平尺和轴表面之间每隔50mm测量一次并记录间隙值,最大间隙值如为0.03mm。

最后比较记录的间隙值,确定轴的直线度,如果最大间隙值不超过0.05mm,则轴的直线度误差在可接受范围内。

2.平面度检测平面度,能确保零件在机械装配和运作中保持最佳性能和寿命,避免因不合格导致的功能失效和额外成本。

——[推荐量具]——①平尺:用于初步测量和平面检查。

②千分表:用于局部平面度的精确测量。

③塞尺:用于测量间隙和不平度。

④平板:用于检测较大平面的平面度。

——[测量过程]——①使用平尺沿零件表面移动,初步检查平面度,标记不平整区域。

②将平板放在零件表面上,确保充分接触。

③使用塞尺在平板和零件表面之间测量间隙,记录不同位置的间隙值。

——[实战案例]——假设需要测量一个底板的平面度,首先将底板固定在工作台上,准备平尺和塞尺。

用平尺沿底板的表面初步检查平面度并标记不平区域。

接着将平板放在底板表面,与底板平行,用塞尺在平板和底板表面之间每隔50mm测量一次并记录间隙值,最大间隙值如为0.02mm。

最后比较记录的间隙值,确定底板的平面度,如果最大间隙值不超过0.03mm,则底板的平面度误差在可接受范围内。

形位公差之位置度详解课件

形位公差之位置度详解课件
位置度公差带的计算
位置度公差带的计算需要考虑基准体系的选择、公差值的确定以及被 测要素的形状和大小等因素。
03
位置度的实际应用
孔的位置度
01
02
03
孔的位置度定义
孔的位置度是描述孔中心 与基准之间相对位置的形 位公差。
孔的位置度的应用
在机械加工中,孔的位置 度对于保证零件的装配精 度、功能要求和平衡性等 方面具有重要意义。
某传动部件中,轴的位置度标注不符合标准,导致运转过程中出现异常声音和振 动,增加维护成本和缩短设备使用寿命。
案例三:面的位置度标注对产品外观的影响
总结词
标注不准确影响外观质量、导致客户投诉。
详细描述
某产品外壳加工过程中,面的位置度标注不准确,导致产品外观不平整、有明显凸起或凹陷,影响整体美观度, 最终客户投诉。
THANKS
感谢观看
06
参考文献与考文献 • Barber E J W. 机械制造中的几何量公差[M]. 北京:中国计量出版社, 1991. • 吴拓. 互换性与测量技术基础[M]. 北京:机械工业出版社, 2005. • 王伯平. 互换性与测量技术实验指导[M]. 北京:机械工业出版社, 2004.
形位公差之位置度详解课件
目录
• 位置度的基本概念 • 位置度的原理与计算方法 • 位置度的实际应用 • 位置度的案例分析 • 位置度的总结与展望 • 参考文献与资料来源
01
位置度的基本概念
位置度的定义
01
位置度是指一个特定点相对于基 准坐标系的位置的精确度。
02
位置度常用于机械、工程和制造 领域,以确保组件的正确对齐和 定位。
统计分析法
对于复杂的形状和位置,需要采用统 计分析法来确定位置度。这需要对大 量的测量数据进行统计和处理。

用三坐标测量位置度的方法

用三坐标测量位置度的方法

位置度功能:用于控制被测要素(点、线、面)对基准的位置误差。

根据零件的功能要求,位置度公差分为给定一个方向、给定两个方向、任意方向三种。

分类:按照被测要素的性质(点、直线、平面)位置度可分为三种情况:点的位置度、线的位置度、面的位置度。

点的位置度:其公差带为圆心位于理论正确位置的圆内的区域或球心位于理论正确位置的球面内的区域。

操作步骤:计算绝对位置度1.根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向建立坐标系,使该坐标系的某两轴方向平行于理论正确尺寸的方向,基准点为原点并保存。

2.根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面(XY 平面、XZ平面、YZ平面)。

3.然后点击位置公差工具条中的位置度图标按钮。

4.弹出界面后去掉基准元素前的勾后显示如(图2)。

(图2)5.如果被测元素结果是XYZ显示,选择被测元素后,理论尺寸显示XYZ并将结果名义值读入到理论尺寸中,投影面自动变为空间如(图3),如果理论尺寸不对可进行修改。

设置名称、公差、输出、公差规则。

(图3)6.如果被测元素结果是极坐标显示,选择被测元素后,理论尺寸按结果极坐标显示并将结果名义值读入到理论尺寸中,投影面自动变为结果所在投影面如(图4),如果理论尺寸不对可进行修改。

设置名称、公差、输出、公差规则。

(图4)说明:(1)需要进行直角坐标系或极坐标系评定位置度,在测量时就在对应的坐标系下进行测量。

(2)直角坐标系下的结果,拖入位置度界面,投影面自动为空间,显示XYZ可用;选择XY投影面,XY可用;选择XZ投影面,XZ可用;选择YZ投影面,YZ可用。

(3) 极坐标系XY投影面的结果RAH,拖入位置度界面,投影面自动为XY,显示RA可用;选择XZ投影面,名义值自动转换为RHA,RA可用;选择YZ投影面,名义值自动转换为HRA,RA可用;选择空间,名义值自动转换为XYZ,XYZ可用。

(4)极坐标系XZ投影面的结果RHA,拖入位置度界面,投影面自动为XZ,显示RA可用;选择XY投影面,名义值自动转换为RAH,RA可用;选择YZ投影面,名义值自动转换为HRA,RA可用;选择空间,名义值自动转换为XYZ,XYZ可用。

位置度测量方法

位置度测量方法

位置度∮t:(每个)被测轴线必须位于直径为公差值∮t,由以对于基准的理论正确尺寸所确定的理想位置为轴线的圆柱面内。

例法兰螺钉孔位置度:(1)用V型铁支承距离最远两端主轴颈(A-B),将螺纹检轴紧密旋入螺纹孔中,曲轴销孔中心旋转至X(水平)方向,用带有杠杆百分表的高度游标卡尺,将基准中心调整至等高(同时,将位置度检具某一平面调整水平后,固定)。

分别测量各螺纹检轴中心线与基准中心线在X(水平)方向的误差值即:Fx。

曲轴销孔中心旋转至Y(垂直)方向(同时位置度检具原垂直面为水平),此时测量各螺纹检轴中心线与基准中心线在Y方向的误差值即:Fy。

位置度误差为:ΔF=2(Fx2+ fy2)1/2。

(2)用V型铁支承距离最远两端主轴颈(A-B),将螺纹检轴紧密旋入螺纹孔中,曲轴连杆轴颈基准(C)旋转至X(水平)方向,用带有杠杆百分表的高度游标卡尺,将基准中心调整至等高(同时,将位置度检具某一平面调整水平后,固定)。

分别测量各螺纹检轴中心线与基准中心线在X(水平)方向的误差值即:Fx;曲轴连杆轴颈基准(C)旋转至Y (垂直)方向(使位置度检具原垂直面为水平),此时测量各螺纹检轴中心线与基准中心线在Y(垂直)方向的误差值即:Fy。

螺纹孔位置度误差为:ΔF =2(Fx2+ Fy2)1/2。

取各螺纹检轴位置度误差最大值,作为评定的依据。

例定位销孔位置度1、大柴:(1)销孔对基准平面的位置度(水平方向): 用V型铁支承距离最远的两个主轴颈(A-B)且调至等高,把检轴紧密插入销孔,慢慢调整曲轴,用带有杠杆百分表的高度游标卡尺将基准轴线调至等高后(同时,将位置度检具水平方向平面调整等高后,固定)。

测量销孔中心与基准轴线高度差的二倍,即为销孔位置度误差。

(2) 销孔轴线对主轴颈轴线的位置度(垂直方向):用V型铁支承距离最远的两个主轴颈(A-B)且调至等高,把检轴紧密插入销孔,慢慢调整曲轴,连杆轴颈基准(C)调整至 Y (垂直)方向(即位置度检具原垂直面为水平),并用带有杠杆百分表的高度游标卡尺,测量销孔中心线到基准轴线的数值与理论正确尺寸之差的二倍。

位置度(Position)说明

位置度(Position)说明

位置度(Position)说明位置度是表示零件上的点、线、面等要素,相对其理想位置的准确状况。

位置度公差是被测要素的实际位置相对于理想位置所允许的最大变动量。

三要素:基准,理想位置,位置度公差示例:公差带前加注记号Φ时、公差带是直径0.3mm的圆内区域。

圆公差带的中心点的位置是相对于基准A、B及C的理论正确尺寸。

公差带(以理想位置为中心的对称区域)公差带计算1.点的位置度公差如公差值前加注Φ,公差带是直径为公差值t的圆内的区域。

圆公差带的中心点的位置由相对于基准A和B的理论正确尺寸确定。

两个中心线的交点必须位于直径为公差值0.3的圆内,该圆的圆心位于由相对基准A和B(基准直线)的理论正确尺寸所确定的点的理想位置上。

如公差值前加注SΦ,公差带是直径为公差值t的球内的区域。

球公差带的中心点的位置由相对于基准A、B、和C的理论正确尺寸确定。

被测球的球心必须位于直径为公差值的0.3的球内。

该球的球心位于由相对基准A、B、C的理论正确尺寸所确定的理想位置上。

2.线位置度公差公差带是距离为公差值t且以线的理想位置为中心线对称配置的两平行直线之间的区域。

中心线的位置由相对于基准A的理论正确尺寸确定,此位置度公差仅给定一个方向。

每根刻线的中心线必须位于距离为公差值0.05且由相对于基准A的理论正确尺寸所确定的理想位置对称的诸两平行直线之间。

公差带是两对互相垂直的距离为t1和t2且以轴线的理想位置为中心对称配置的两平行平面之间的区域。

轴线的理想位置是由相对于三基面体系的理论正确尺寸确定的,此位置度公差相对于基准给定互相垂直的两个方向。

各个被测孔的轴线必须分别位于两对互相垂直的距离为公差值0.05和0.2,由相对于C、A、B基准表面(基准平面)理论正确尺寸所确定的理想位置对称配置的两平行平面之间。

如在公差值前加注Φ,则公差带是直径为t的圆柱面内的区域。

公差带的轴线的位置由相对于三基面体系的理论正确尺寸确定。

被测轴线必须位于直径为公差值Φ0.08且以相对于C、A、B基准表面(基准平面)的理论正确尺寸所确定的理想位置为轴线的圆柱面内。

位置度标注及测量演示文稿

位置度标注及测量演示文稿

基准注法
一.ห้องสมุดไป่ตู้出一个基准(确定理想要素的方向)
确定平行关系 公差为轴线在平行
A方向上到理想 位置的最大偏移的2倍
為直徑的圓柱 几何图框可平行于
基准在9.5~10.5mm
之間上下浮动,
(轴线方向确定)
三孔孔组 几何图框
位置度公差注法
一.注出一個基准确定理想要素(或几何图框)的位置
(轮廓基准) 基准平面A确 定兩孔在垂直 方向上的理想 位置
由于其是一个定位误差。因而分为以下三种方式
(1)用理论正确尺寸定位 (2)用尺寸公差定位 (3)用复合位置度定位
位置度公差基本原则
位置度公差是各实际要素相互之間或它們相 对一个或多个基准位置允许的变动全量
在位置度公差标注中用理论正确尺寸及位置 度公差限制各实际要素相互之間或它們相对一 个或多个基准位置,位置度公差相对理想位置为
公差為轴线在平行 A方向上到理想
位置(15&40)的最大 偏移的2倍为直徑的
圓柱
基准注法
2.注出一個基准确定理想要素(或几何图框)的位置 (中心要素基准)
基准中心要素 確定兩孔的理 想位置
公差帶为到理想 位置(A&25)的圓柱 (最大偏移的2倍为直徑)
基准注法
一.注出一個基准确定理想要素(或几何图框)的位置
对称分布 位置度公差可用于单个的被测要素,也可用于 成组的被测要素,当用于成组的被测要素,位置度 公差应同时限定成组的被测要素中的每一个被
测要素
位置度误差测量条件
测量条件:标准测量力为零 标准测量溫度20度
由於偏离标准条件而引起较大测量误差 时,应进行测量误差估算
位置度公差评定原则
最小条件:被测实际要素對理想要素的最大变 动量最小

任意方向位置度的测量方法和计算

任意方向位置度的测量方法和计算

任意方向位置度的测量方法和计算位置度的测量方法主要包括孔位测量和极坐标标注法。

孔位测量时,会在孔的边缘位置取至少三个点,然后在孔所在的面上取至少三个点(此时取得三个点,就评价了Z向面的偏差),然后形成了孔位的位置度的偏差,偏差会呈现出X向偏差为多少,Y向偏差为多少,Z向偏差为多少。

所以,一般都理解为了位置度同时都控制了X/Y/Z三个方向的偏差。

这个认知是和位置度的计算方式相违背的。

极坐标标注法是位置度计算公式(x1理论值,x2实测值,y1理论值,y2实测值,z1理论值,z2实测值):实际计算位置度,首先分析被评价或管控的元素位置变动是几个方向。

假设位置度偏差两个方向(如上图一),位置度公差0.1,套用一元二次方程求根公式得出其理论尺寸公差约为14+/-0.035;20+/-0.035。

这里就不一一求解了(感兴趣的朋友可以使用科学计算器)。

由此推理:位置度为一个方向,其理论尺寸公差是位置度公差/2;位置度为两个方向,其理论尺寸公差是位置度公差/3;位置度为三个方向(球径),其理论尺寸公差是位置度公差/3.5。

通常情况下图纸中理论尺寸是不需要申请公差(包括尺寸报告),但实际生产加工过程中就需分析图纸位置度公差并快速推断出加工的线性公差,从而满足图纸要求;这种方法就特别实用。

如果想要了解更多信息,建议咨询测量专家或查阅相关文献资料。

位置度﹑平面度的定义﹑标注及测量

位置度﹑平面度的定义﹑标注及测量

二﹑公差基礎知識
基准符號﹑形位公差符號的放置﹕ 2﹑形體的延長線 3﹑尺寸的延長線
尺寸線的延長 線
形體的延長線
二﹑公差基礎知識
(三)公差的分類 1﹑尺寸公差﹕控制形體大小 2﹑形狀公差﹕包括直線度﹑平面度﹑圓度﹑ 圓柱度﹑線輪廓度﹑曲面輪廓度 3﹑位置公差﹕包括定位公差(位置度﹑對稱 度﹑同心度)﹑定向公差(傾斜度﹑平行 度﹑垂直度)﹑跳動公差(圓跳動﹑全跳 動)
三﹑位置度的標注與測量
(二)位置度的三要素 1.基准﹔ 2.理論位置值﹔ 3.位置度公差
三﹑位置度的標注與測量
(三)位置度公差帶 位置度公差帶是一以理論位置為中心對稱的區域。
位置度公差帶
三﹑位置度的標注與測量
(四)位置度的標注與測量 4-1.0.6 B-T-B CONN W/POST(M) 40P位置度標注 與測量
二﹑公差基礎知識
2-2.最小实体原则﹕测量时取被测要素的最小 实体的公差原则﹔
二﹑公差基礎知識
2-3.包容原则﹕使实际要素处处位于理想形状的 包容面之内的公差原则。应用包容原则时﹐其形 位公差数值随着实际形体尺寸的变化而变化。 以0.6 B-T-B CONN W/POST 40P(M)的孔规设 计为例﹐其端子公差如下所示﹕
BASE
D1
D2ቤተ መጻሕፍቲ ባይዱ
Da
Dt
T
判定
2
3
4
5
三﹑位置度的標注與測量
4-2.IDE 44P垂直位置度標注與測量
如圖﹐IDE 44P端子在垂直方向上具有以下特點﹕排 數少(只有兩排)﹐每排端子數量多(達22PIN)﹐ 長度值為端子材厚值﹐對于不同的端子﹐其值差異 極小﹐因此我們可把上排端子和下排端子分別看成 兩個整體。下面以下排端子為例介紹其測量方法。

位置度的介绍及测量方法

位置度的介绍及测量方法

位置度的介绍及测量方法一、位置度的定义是指被测实际要素对其具有理想位置的理想要素的变动量注:理想要素的理想位置由基准和理论尺寸确定(即由几何图框及其位置确定)二、位置度的三要素基准;理论位置值;位置度公差位置度公差带是一以理论位置为中心对称的区域,位置度是限制被测要素的实际位置对理想位置变动量的指标。

它的定位尺寸为理论正确尺寸。

位置度公差在评定实际要素位置的正确性, 是依据图样上给定的理想位置。

位置度包括点的位置度、线的位置度和面的位置度。

点的位置度:如公差带前加S¢,公差带是直径为公差值t的球内的区域,球公差带的中心点的位置由理论正确尺寸确定。

线的位置度:如公差带前加¢,公差带是直径为公差值t的圆柱面内的区域,公差带的轴线的位置由理论正确尺寸确定。

一般来说我们算位置度都是X.Y两个值的偏差量去换算以基准A、B、C建立坐标系,看具体的位置关系选择使用直角或极坐标,一般采用直角坐标,测出被测点到基准的X、Y尺寸,采用公式2乘以SQRT(平方根)((x2-x1)平方+(y2-y1) 平方)就行,x2是实际尺寸,x1是图纸设计尺寸,计算出的结果就是:实际位置相对于设计的理想位置的偏移量,因为位置度是一个偏移范围¢,所以要乘以2 这个常见的公式三、位置度公差基本原则位置度公差是各实际要素相互之間或它們相对一个或多个基准位置允许的变动全量在位置度公差标注中用理论正确尺寸及位置度公差限制各实际要素相互之間或它們相对一个或多个基准位置,位置度公差相对理想位置为对称分布位置度公差可用于单个的被测要素,也可用于成组的被测要素,当用于成组的被测要素,位置度公差应同时限定成组的被测要素中的每一个被测要素四、位置度公差评定原则最小条件:被测实际要素對理想要素的最大变动量最小五、位置度的评定与测量1、点位置度的测量:其是指包容被测实际点,由基准表面(或)直线和理论正确尺寸确定的定位最小包容区域的直径。

公式:2、线位置度的测量其是指:包容被测实际直线(或轴线)对基准直线(基准面)和理论正确尺寸所确定的定位最小包容的宽度或直径。

位置度标注及测量

位置度标注及测量
(1)用理论正确尺寸定位 (2)用尺寸公差定位 (3)用复合位置度定位
位置度公差基本原则
位置度公差是各实际要素相互之间或它们相对一个或多个基准位置允许的变动 全量 在位置度公差标注中用理论正确尺寸及位置度公差限制各实际要素相互之间或 它们相对一个或多个基准位置,位置度公差相对理想位置为对称分布 位置度公差可用于单个的被测要素,也可用于成组的被测要素,当用于成组的被测 要素,位置度公差应同时限定成组的被测要素中的每一个被测要素
位置度误差测量条件
测量条件: 标准测量力为零 标准测量温度20度
由于偏离标准条件而引起较大测量误差 时,应进行测量误差估算
位置度公差评定原则
最小条件:被测实际要素对理想要素的最 大变 动量最小
理论正确尺寸的标注
1.确定成组要素中各要素间的 理论正确位置 2.确定各要素之间及相对基准 的理论正确位置
基准注法
2.注出一个基准确定理想要素(或几何图框)的位置 (中心要素基准)
基准中心要素确 定两孔的理想位 置
公差带为到理想位置(A&25) 的圆柱(最大偏移的2倍为直 径)
基准注法
一.注出一个基准确定理想要素(或几何图框)的位置 (圆周方向基准)
基准平面A确定 四孔在圆周方向 上的理想位置
基准注法
基准注法
一.注出一个基准确定理想要素的方向) 确定垂直关系
公差值为轴线上.下 圆心到理想位置的 最大偏移的2倍
几何图框轴线 方向与平面上两 基准无关,可以 有利公差最小考量
三孔孔组组成 的几何图框
基准注法
一.注出一个基准(确定理想要素的方向)
确定平行关系 公差为轴线在平行A方向 上到理想位置的最大偏移 的2倍为直径的圆柱
基准标注总结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
‫މ‬零ᇞp‫ࠋ͍͜ڕ‬ୌ໮f
此外﹐根据上面公式﹐我们还可以推出另一种测量方法﹐但我个人还是推荐采用上述方法 ﹐因为下面这种方法多了一次置中归零﹐置中归零不仅测量繁琐﹐而且会增加测量误差。
DE=abs(Da-Dt) =abs{(D1+D2)/2-Dt)} = abs{[(d1+ Dt) +( Dt-d2)]/2-Dt)} =abs[(d1-d2)/2] =abs[(0.12-0.08)/2] =0.02<0.05
其到右
柱两边的
距离
14.25﹑
14.95
﹐进行第
二次置
中归零﹔
第一次置 中归零
第二次置 中归零
3﹑以中心线左边第二根端子为例﹐测出实际尺寸 D1(0.82)﹑D2(1.02)﹐根据位置度公差 定义﹐ DE=abs(Da-Dt) =abs{(D1+D2)/2-Dt)} =abs[(0.85+1.00)/2-0.90}] =0.025<0.05 其中﹐DE 表示实际偏差 abs 表示绝对值 Da 表示实际位置尺寸 Dt 表示理论位置尺寸﹐对于不同的端子﹐它们的理论位置尺寸是不同的﹐ 测量时测量者须自行计算 注意﹕ Зໄ度ӚϞ͍ࠋʘʱpШίϤ‫މ‬ਜйՉ˙Σp公式中的 D1﹑D2﹑Dt ˸ਿࡘ
̬
Зໄ度ٙՉ̴标‫ء‬᝺测量
ϤЗໄ度ٙʮࢨ੭݊˸理論Зໄ‫މ‬ʕːٜٙࢰ‫ މ‬0.30 ٙ෥f࿁ɲӊ࣬၌ɿp಻̈Չ ˥̻Зໄ度 Th ձٜۧЗໄ度 Tv Χp඲Ύ᜕൛Չ݊щတԑʮό Th²+Tv²Ù²f
四﹑制作位置度公差表
PIN
BASE
D1
1
2
3
4
5
D2
Da=(D1+D2)/2 Dt
ɚ
q*%&1 ٜۧЗໄ度ٙ标‫ء‬᝺测量
DE
判定
如图﹐IDE 44P 端子在垂直方向上具有以下特点﹕排数少(只有两排)﹐每排端子数量 多(达 22PIN)﹐长度值为端子材厚值﹐对于不同的端子﹐其值差异极小﹐因此我们可把上 排端子和下排端子分别看成两个整体。下面以下排端子为例介绍其测量方法。
ɓe测出角柱垂直方向上Φ 的实际尺寸﹐然后置中归零﹔ ɚe往下偏移 ﹐然后归零﹔ ɧe分别找出位置向上和向下偏离最大的端子﹐测出其端子上下表面的距离﹐并测出端
子实际材厚值﹕
DE1=d1-T/2=0.15-0.20/2=0.05 DE2=d2-T/2=0.17-0.20/2=0.07 下排端子的位置度最大偏差为﹕max(DE1﹐DE2)=0.07<0.10
第一种标注方式﹕直接测量
第二种标注方式﹕间接测量
以上两种标注方式中﹐第一种直接对 124 根端子接触区域一一测量其位置度﹐由于端子 接触区域是包在主体内部﹐若采用这种方式﹐测量繁琐困难﹔对于第二种测量方式﹐由于端 子是下料成型﹐且插在主体插槽中﹐插槽控制了端子的平面度﹐因此只须控制 KEY 相对 POST 的位置度与端子锡脚相对 POST 的位置度﹐相应地也就控制了端子接触区域相对 KEY 的位置度﹐且其测量误差相对直接测量极其微小﹐建议采用此种标注方式。
ɧeቤተ መጻሕፍቲ ባይዱ Зໄ度ʮࢨ੭
Зໄ度ʮࢨ੭݊ɓ˸理論Зໄ‫މ‬ʕː࿁၈ٙਜਹf

Зໄ度ʮࢨ੭

̬e Зໄ度ٙᅺ‫ء‬ၾ಻量˙‫ج‬
ɓ
q#5#$0//81045.1 Зໄ度ٙ标‫ء‬᝺测量
测量步骤﹕ 1﹑对端子进行编号﹕
2﹑置中归零﹕先测出左柱宽 1.00﹐然后第一次置中归零(测量右柱宽也一样)﹐再测量
ɧ
q.*/*1$*) Зໄ度ٙ标‫ء‬᝺测量
对于 MINI PCI 4.0H﹐存在着两个位置度﹕一个是端子锡脚的位置度﹐此位置度以 POST 为基准﹐用于控制端子锡脚与与 PCB 板的配合﹐现其位置度公差 0.18﹔另一个是端子接触区 域的位置度﹐此位置度以 KEY 为基准﹐用于控制端子接触区域与对插件的配合﹐现其位置 度公差 0.3。对于第一个位置度﹐其标注方式已统一﹔对于第二个位置度﹐有如下两种标注方 式﹕
Зໄ度່֛ٙq标‫ء‬᝺测量
ɓe Зໄ度່֛ٙ
Зໄ度່֛uɓҖ᜗ٙൿᇞ‫א‬ʕː̻ࠦʪ஢ІॆЗໄᜊਗٙߪఖpуɓҖ᜗ٙൿᇞ‫א‬ ʕː̻ࠦٙྼყЗໄ޴࿁理論Зໄٙʪ஢ᜊਗߪఖf່֛ൿᇞ‫א‬ʕːϜࠦٙจ່ίɲ ᒒකҖ᜗ˉʂٙᅂᚤf
ɚe Зໄ度ٙɧࠅ९
1. ਿࡘt 2. 理論Зໄ࠽t 3. Зໄ度ʮࢨ
相关文档
最新文档