离散数学傅彦答案
离散数学课后习题答案(第三章)
b)R1-R2;
c)R12;
d) r(R1-R2)(即R1-R2的自反闭包)。
解a)(A×A)-R1不是A上等价关系。例如:
A={a,b},R1={<a,a>,<b,b>}
A×A={<a,a>,<a,b>,<b,a>,<b,b>}
(A×A)-R1={<a,b>,<b,a>}
所以(A×A)-R1不是A上等价关系。
c)若R1是A上等价关系,则
<a,a>∈R1<a,a>∈R1○R1
所以R12是A上自反的。
若<a,b>∈R12则存在c,使得<a, c>∈R1∧<c,b>∈R1。因R1对称,故有
<b, c>∈R1∧<c,a>∈R1<b, a>∈R12
即R12是对称的。
若<a,b>∈R12∧<b, c>∈R12,则有
若c<0,则a<0u<0au>0
所以(a+bi)R(u+vi),即R在C*上是传递的。
关系R的等价类,就是复数平面上第一、四象限上的点,或第二、三象限上的点,因为在这两种情况下,任意两个点(a,b),(c,d),其横坐标乘积ac>0。
3-10.9设Π和Π是非空集合A上的划分,并设R和R分别为由Π和Π诱导的等价关系,那么Π细分Π的充要条件是RR。
证明:若Π细分Π。由假设aRb,则在Π中有某个块S,使得a,b∈S,因Π细分Π,故在Π中,必有某个块S,使SS,即a,b∈S,于是有aRb,即RR。
反之,若RR,令S为H的一个分块,且a∈S,则S=[a]R={x|xRa}
但对每一个x,若xRa,因RR,故xRa,因此{x|xRa}{x|xRa}即[a]R[a]R
<<x,y>,<u,v>>∈R∧<<u,v>,<w,s>>∈R
离散数学傅彦答案
离散数学傅彦答案【篇一:离散数学及其应用】txt>摘要:离散数学,又称为组合数学。
离散数学是计算机出现以后迅速发展起来的一门数学分支。
计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是离散数学。
离散数学的发展改变了传统数学中分析和代数占统治地位的局面。
它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。
通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。
关键词:离散数学电路设计软件技术人工智能应用等1、离散数学的相关介绍1.1离散数学的简介离散数学是现代数学的一个重要分支,是计算机类专业的重要课程。
它以研究离散量的结构及其相互间的关系为主要目标,其研究对象一般是有限个或可数个元素,因此离散数学可以充分描述计算机学科离散性的特点。
由于离散数学在计算机科学中的重要作用,国内外几乎所有大学的计算机类专业的教学计划中都将其列为核心课程进行重点建设,它是其他骨干课程,如数据结构、操作系统、人工智能、计算机网络、软件工程、编译原理等的先修课程,国内许多大学将其作为计算机专业类研究生入学考试的内容。
1.2离散数学的发展20世纪的计算机出现,带动了世界性的信息革命的伟大进程。
计算机科学在信息革命中的学科地位有如牛顿力学在工业革命中的学科地位一样,由计算机出现带动的信息革命当然计算机科学将起着主导的作用。
随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。
离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。
离散数学第四版课后答案(第2章)
离散数学课后答案第2章习题解答2.1 本题没有给出个体域,因而使用全总个体域. (1) 令x(是鸟F:)x(会飞翔.G:)xx命题符号化为xFx→∀.))G((x)((2)令x(为人.xF:)(爱吃糖G:)xx命题符号化为GxFx→⌝∀(x))()(或者xFx⌝∧∃(xG))(()(3)令xF:)(为人.xG:)(爱看小说.xx命题符号化为xF∃.Gx∧(x()))((4) x(为人.xF:)G:)(爱看电视.xx命题符号化为Fx⌝⌝∃.x∧(x))()G(分析 1°如果没指出要求什么样的个体域,就使用全总个休域,使用全总个体域时,往往要使用特性谓词。
(1)-(4)中的)(x F 都是特性谓词。
2° 初学者经常犯的错误是,将类似于(1)中的命题符号化为))()((x G x F x ∧∀即用合取联结词取代蕴含联结词,这是万万不可的。
将(1)中命题叙述得更透彻些,是说“对于宇宙间的一切事物百言,如果它是鸟,则它会飞翔。
”因而符号化应该使用联结词→而不能使用∧。
若使用∧,使(1)中命题变成了“宇宙间的一切事物都是鸟并且都会飞翔。
”这显然改变了原命题的意义。
3° (2)与(4)中两种符号化公式是等值的,请读者正确的使用量词否定等值式,证明(2),(4)中两公式各为等值的。
2.2 (1)d (a),(b),(c)中均符号化为)(x xF ∀其中,12)1(:)(22++=+x x x x F 此命题在)(),(),(c b a 中均为真命题。
(2) 在)(),(),(c b a 中均符号化为)(x xG ∃其中02:)(=+x x G ,此命题在(a )中为假命题,在(b)(c)中均为真命题。
(3)在)(),(),(c b a 中均符号化为)xH∃(x其中.1(ba中均为假命题,在(c)中为真H此命题在)(),xx5:)(=命题。
分析 1°命题的真值与个体域有关。
离散数学及其应用课后习题答案
离散数学及其应用课后习题答案【篇一:离散数学及其应用(课后习题)】出下列命题是原子命题还是复合命题。
(3)大雁北回,春天来了。
(4)不是东风压倒西风,就是西风压倒东风。
(5)张三和李四在吵架。
解:(3)和(4)是复合命题,(5)是原子命题。
习题1.21. 指出下列命题的真值:(1)若2?2?4,则太阳从西方升起。
解:该命题真值为t(因为命题的前件为假)。
(3)胎生动物当且仅当是哺乳动物。
解:该命题真值为f(如鸭嘴兽虽是哺乳动物,但不是胎生动物)。
2. 令p:天气好。
q:我去公园。
请将下列命题符号化。
(2)只要天气好,我就去公园。
(3)只有天气好,我才去公园。
(6)天气好,我去公园。
解:(2)p?q。
(3)q?p。
(6)p?q。
习题1.32. 将下列命题符号化(句中括号内提示的是相应的原子命题的符号表示):(1)我去新华书店(p),仅当我有时间(q)。
(3)只要努力学习(p),成绩就会好的(q)。
(6)我今天进城(p),除非下雨(q)。
(10)人不犯我(p),我不犯人(q);人若犯我,我必犯人。
解:(1)p?q。
(3)p?q。
(6)?q?p。
(10)(?p??q)?(p?q)。
习题1.41. 写出下列公式的真值表:(2)p?(q?r)。
解:该公式的真值表如下表:2. 证明下列等价公式:(2)(p?q)??(p?q)??(p?q)。
证明:?(p?q)??((p?q)?(?p??q))??(p?q)??(?p??q))??(p?q)?(p?q) ?(p ?q)??(p?q)(4)(p?q)?(p?r)?p?(q?r)。
证明:(p?q)?(p?r)?(?p?q)?(?p?r)??p?(q?r)?p?(q?r)3. 甲、乙、丙、丁4人参加考试后,有人问他们谁的成绩最好,甲说,不是我。
乙说:是丁。
丙说:是乙。
丁说:不是我。
已知4个人的回答只有一个人符合实际,问成绩最好的是谁?解:设a:甲成绩最好。
b:乙成绩最好。
离散数学课后答案详细
第一章命题逻辑基本概念课后练习题答案4.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.5.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.7.因为p与q不能同时为真.13.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
离散数学习题答案解析
离散数学习题答案解析(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语∧解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是p q(9)只有天下大雨,他才乘班车上班→解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是q p (11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是()∧→p q r 15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(4)()(())∧∧⌝↔⌝∨⌝→p q r p q r解:p=1,q=1,r=0,∧∧⌝⇔∧∧⌝⇔,p q r()(110)1p q r⌝∨⌝→⇔⌝∨⌝→⇔→⇔(())((11)0)(00)1∴∧∧⌝↔⌝∨⌝→⇔↔⇔()(())111p q r p q r19、用真值表判断下列公式的类型:(2)()→⌝→⌝p p q解:列出公式的真值表,如下所示:由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值: (4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。
习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式, 所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式, 所以成假赋值为100。
离散数学(第二版)课后全部习题答案详解
(1)符号化 : p q∨ ,其真值为 1. (2)符号化: p r ∨ ,其真值为 1.
(3)符号化: r t ∨ ,其真值为 0. (4)符号化: ? ∨?q s,其真值为 1. (5)符号化: ? ∨?r s,其真值为 0.
(p 1 0 1 1
0 0 0 0
1 1 1 1
0 0 1 1 1
1
0
1
1
1
1
此式为可满足式
(6)
p
q
0
0
0
0
0
1
0
1
1
0
1
0
1
1
1
1
此式为重言式
(7)
p
q
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
0
0
1
1
0
r
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
r
s
0
0
1
0
1
0
1
0
0
1
1
1
0
0
( 1) 5 是有理数 .
答:否定式: 5 是无理数 . p: 5 是有理数 .q: 5 是无理数 .其否定式 q 的真值
离散数学_傅彦_图论部分例题精选(可编辑)
第12~13章图论部分例题精选例 1 下列各组数中,哪些能构成无向图的度数序列?哪些能构成无向简单图的度数序列?1 1,1,1,2,32 2,2,2,2,23 3,3,3,34 1,2,3,4,5 5 1,3,3,3解根据握手定理,非负整数序列d1,d2,…,dn 能构成无向图的度数序列当且仅当d1+d2+…+dn 为偶数,即由推论知,d1,d2,…,dn中奇度数结点的个数为偶数个。
而1,2,3, 5分别有4个,0个,4个,4个奇度数结点,所以可以构成无向图的度数序列。
而(4)中有3个奇度数结点,因而不能构成无向图的度数序列。
但这些图并不一定是简单无向图。
其中,1,2,3为简单无向图,(5)不是简单无向图。
因为,在(5)中,若存在无向简单图,是v1,v2,v3,v4,是G中四个顶点,其中,degv11, degv23, degv33, degv43,则结点v1 仅能与v2, v3, v4,之一相邻,不妨设v1与v2相邻,则除v2能达到度数3外, v3, v4都不能达到度数3.因为,简单图要求两个结点之间至多一条边相联结,所以, v3和v4外分别至多和v2与v4, v2与v3相邻,即degv3, degv4至多为2,与已知矛盾,因此,5不是无向简单图. 对应的图如6.1所示,其中1,2,3分别对应a,b,c,5对应d例2 下列各无向图中有几个结点?(1)16条边,每个结点的度数均为2;(2)21条边,3个度数为4的结点,其余结点的度数均为3;(3)24条边,每个结点的度数均相同。
解设该图的结点数为n,则由握手定理可知:,由上式可得 n=16,即该图有16个结点;由上式可得 n =13,即该图有13个结点;.①如果k1,则n48;②如果k2,则n24;③如果k3,则n16;④如果k4,则n12;⑤如果k6,则n8; ⑥如果k8,则n6;⑦如果k12,则n4;⑧如果k16,则n3;⑨如果k24,则n2;⑩如果k48,则n1.例3 已知无向简单图G有m条边,各结点的度数均为3.1 若m3n-6,证明G在同构意义下唯一,并求m和n;2 若n6,证明G在同构意义下不唯一.北师大2000年考研试题分析在图论中,对于简单无向图和简单有向图,若涉及到边和结点的问题,握手定理是十分有用的.解 1 由于各结点的度数均为3,现在有n个结点和m条边,所以由握手定理知:.又因为m3n-6,故可得m6,n4.此时所得的无向图如图6-2所示.该图是简单无向图中边最多的图,即为无向完全图K4.对于4个结点的完全图,在同构意义下是唯一的.2 若n6,由握手定理:故m9.此时有n6,m9,且每个结点的度数为3,此时对于简单无向图,6个结点,9条边及每个结点的度数为3的有如图6-3所示的两个非同构的图.因此,n6,m9,度数为3的无向图G在同构意义下是不唯一的.例4 无向图G有21条边,12个3度数结点,其余结点的度数均为2,求G 的阶数n.北大2001年考研试题解由握手定理:从而,n15,即该图有15个结点,则G的阶数n为15 例5 证明若无向图G 是不连通的,则G的补图是连通的.西南交大1999年考研试题证明: 设不连通的无向图GV,E仅有两个不连通的分支.将点集划分为两个子集V1u1,u2,…,ur和V2v1,v2,…,vs.同属一个子集的两结点是连通的即其间有无向通路,分属不同子集的两结点是不连通的.这样的图,以结点数n4为例来证明G的补图V,Ek-E是连通的,其图如图6-4a所示.任取点集V中的两结点,分两种情况讨论:2 ,即这两个结点属于图G的同一个连通分支.不妨假,如图6-4a,假设它们.在另一连通分中任取一,对照图6-4c中的结.显然因为两两均不在同一连通分支内,所以. 按照1的证明可知: 和因此可通过无向路相连通.由此可知,无论1,2都有G的补图是连通的,所以,对任意不连通的图G,其补图都是连通的.例6 已知n阶简单图G中有m条边,各顶点的度数均为3,又2nm+3,试画出满足条件的所有不同构的G.西南交大2000年考研试题解又2nm+3,即m2n-3故3n2m22n-34n-6故n6m2n-32×6-39此时有n6,m9且每个结点的度数为3,则不同构的图有两个,如图6.5所示.。
离散数学课后习题答案 (2)
离散数学课后习题答案1. 第一章习题答案1.1 习题一答案1.1.1 习题一.1 答案根据题意,设集合A和B如下:Set A and BSet A and B在此情况下,我们可以得出以下结论:•A的幂集为{ {}, {a}, {b}, {a, b} };•B的幂集为{ {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} };•A和B的笛卡尔积为{ (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) }。
因此,习题一.1的答案为:•A的幂集为{ {}, {a}, {b}, {a, b} };•B的幂集为{ {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} };•A和B的笛卡尔积为{ (a, 1), (a, 2), (a, 3), (b, 1), (b,2), (b, 3) }。
1.1.2 习题一.2 答案根据题意,集合A和B如下所示:Set A and BSet A and B根据集合的定义,习题一.2要求我们判断以下命题的真假性:a)$A \\cap B = \\{ 2, 3 \\}$b)$\\emptyset \\in B$c)$A \\times B = \\{ (a, 2), (b, 1), (b, 3) \\}$d)$B \\subseteq A$接下来,我们来逐个判断这些命题的真假性。
a)首先计算集合A和B的交集:$A \\cap B = \\{ x\\,|\\, x \\in A \\, \\text{且} \\, x \\in B \\} = \\{ 2, 3 \\}$。
因此,命题a)为真。
b)大家都知道,空集合是任意集合的子集,因此空集合一定属于任意集合的幂集。
根据题意,$\\emptyset \\in B$,因此命题b)为真。
c)计算集合A和B的笛卡尔积:$A \\times B = \\{ (x, y) \\,|\\, x \\in A \\, \\text{且} \\, y \\in B \\} = \\{ (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) \\}$。
离散数学课后习题答案(第二章)
习题 2-3 (1)令 P( x) 为“ x 是质数” ; E ( x) 为“ x 是偶数” ; O( x) 为“ x 是奇数” ; D( x, y ) 为“ x 除尽 y ” ,把以下各式翻译成汉语: 解: a) P(5) 。 解:5 是质数。 b) E (2) ∧ P(2) 。 解:2 是偶数且 2 是质数。 c) (∀x)( D(2, x) → E ( x)) 。 解:对所有的 x,若 x 能被 2 除尽,则 x 是偶数。 d) (∃x)( E ( x) ∧ D( x, 6)) 。 解:存在 x,x 是偶数,且 x 能除尽 6。 (即某些偶数能除尽 6) e) (∀x)(¬E ( x) → ¬D(2, x)) 。 解:对所有的 x,若 x 不是偶数,则 x 不能被 2 除尽。 f) (∀x)( E ( x) → (∀y )( D ( x, y ) → E ( y ),则对所有的 y,若 x 能除尽 y,则 y 也是偶数。 g) (∀x)( P( x) → (∃y)( E ( y ) ∧ D( x, y))) 。 解:对所有的 x,若 x 是质数,则存在 y,y 是偶数且 x 能除尽 y(即所有质数能 除尽某些偶数) 。 h) (∀x)(O ( x) → (∀y )( P( y ) → ¬D( x, y ))) 。 解:对所有的 x,若 x 是奇数,则对所有 y,y 是质数,则 x 不能除尽 y(即任何 奇数不能除尽任何质数) 。 (2)令 P( x), L( x), R( x, y, z ), E ( x, y ) 分别表示“x 是一个点” , “x 是一条直线” , “z 通过 x 和 y”和“x=y” 。符号化下面的句子。 对每两个点有且仅有一条直线通过该两点。 解: (x)(y)((P(x)∧P(y)∧┐E(x,y)→(!z)(L(z)∧R(x,y,z))) 或 (x) (y)((P(x)∧P(y)∧┐E(x,y)→(z)(L(z)∧R(x,y,z) ∧┐(u)(┐E(z,u) ∧L(u) ∧R(x,y,u)))) (3)利用谓词公式翻译下列命题。 A)如果有限个数的乘积为零,那么至少有一个因子等于零。 B)对于每一个实数 x,存在一个更大的实数 y。 C)存在实数 x,y 和 z,使得 x 与 y 之和大于 x 与 z 之积。 解:a) 设 N(x):x 是有限个数的乘积。 z(y):y 为 0。 P(x):x 的乘积为零。 F(y):y 是乘积中的一个因子。 则有 (x)((N(x)∧P(x)→(y)(F(y)∧z(y))) b) 设 R(x):x 是实数。Q(x,y):y 大于 x。 故(x)(R(x)→(y)(Q(x,y)∧R(y))) c) R(x):x 是实数。G(x,y):x 大于 y。 则(x)(y)(z)(R(x)∧R(y)∧R(z)∧G(x+y,x·z) (4)用谓词公式写出下式: 若 x < y 和 z < 0 ,则 xz > yz 。 解:设 G(x,y):x 大于 y。 则有(x)(y)(z)(G(y,x)∧G(0,z)→G(x·z,y·z)) (5)自然数一共三条公理: A)每个数都有唯一的一个数是它的后继数。 B)没有一个数使数 1 是它的后继数。 C)每个不等于 1 的数都是唯一的一个数是它的直接先行者。 用两个谓词表达上述三条公理。 解:设 N(x):x 是一个数。 S(x,y):y 是 x 的后继数。E(x,y):x=y.则 a) (x)(N(x)→(!y)(N(y)∧S(x,y))) 或(x)(N(x)→(y)(N(y)∧S(x,y) ∧┐(z)(┐E(y,z) ∧N(z)∧S(x,z)))) b)┐(x)(N(x)∧S(x,1)) c)(x)(N(x)∧┐S(x,2)→(!y)(N(y)∧S(y,x))) 或(x)(N(x)∧┐S(x,2)→(y)(N(y)∧S(y,x)∧┐(z)(┐E(y,z)∧N(z)∧S(z,x))))
离散数学第二版课后答案pdf
离散数学第二版课后答案pdf选择题:1. 以下哪个函数不是单射?A. f(x)=x+1B. f(x)=x²C. f(x)=sin(x)D. f(x)=|x|2. 设 A={1,2,3},B={2,3,4},则A∪B=?A. {1,2,3,4}B. {2,3}C. {1,2,3}D. {1,2,3,4,5}3. 若 5n+1 是完全平方数,则 n 的取值范围是?A. n 是任意自然数B. 1、3、11C. 2、3、7D. 0、2、84. 若 P(A)=0.4,P(B)=0.3,P(AB)=0.1,则P(A∪B)=?A. 0.2B. 0.3C. 0.4D. 0.55. 在一个 10 个点的完全图中,不同颜色的边有红、蓝、绿三色,其中红边有 3 条,蓝边有 2 条,绿边有 5 条,则将这 10 个点分成涂3 种颜色的三部分的方案数为?A. 6552B. 1260C. 3150D. 5040选择题答案:1. C2. D3. B4. A5. C填空题:1. 用 1,2,3,4,5 这 5 个数字,能组成多少个长度为 3 的无重复的数字串?答:602. 已知 a+b=7,a-b=3,则 a²-b²=?答:203. 一个无向图有 8 条边,则它的图的边数有多大范围?答:4≤边数≤284. 在一组含有 5 个正整数的数列中,最大值是最小值的 3 倍,则这5 个数中的最小值不能小于多少?答:55. 若 G 是一个有 n 个点的简单无向图,且 G 不是完全图,则 G 中边的数量最少是多少?答:n填空题答案:1. 602. 203. 4≤边数≤284. 55. n解答题:1. 一张简单无向图 G 有 10 个顶点和 20 条边,证明 G 中至少有 3 个度数为偶数的顶点。
答:设 G 中度数为奇数的点的个数为 x,度数为偶数的点的个数为 y,则 x+y=10,2x+4y=40,化简得 x=2y-10,由于每个点的度数都是偶数或奇数,所以 2x+20-y 是偶数,即 2(2y-10)+20-y=3y-10 是偶数,即 y 是奇数。
离散数学课后习题答案
1-1,1-2(1) 解:a) 是命题,真值为T。
b) 不是命题。
c) 是命题,真值要根据具体情况确定。
d) 不是命题。
e) 是命题,真值为T。
f) 是命题,真值为T。
g) 是命题,真值为F。
h) 不是命题。
i) 不是命题。
(2) 解:原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。
(3) 解:a) (┓P ∧R)→Qb) Q→Rc) ┓Pd) P→┓Q(4) 解:a)设Q:我将去参加舞会。
R:我有时间。
P:天下雨。
Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。
b)设R:我在看电视。
Q:我在吃苹果。
R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。
R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。
(5) 解:a) 设P:王强身体很好。
Q:王强成绩很好。
P∧Qb) 设P:小李看书。
Q:小李听音乐。
P∧Qc) 设P:气候很好。
Q:气候很热。
P∨Qd) 设P: a和b是偶数。
Q:a+b是偶数。
P→Qe) 设P:四边形ABCD是平行四边形。
Q :四边形ABCD的对边平行。
PQf) 设P:语法错误。
Q:程序错误。
R:停机。
(P∨ Q)→ R(6) 解:a) P:天气炎热。
Q:正在下雨。
P∧Qb) P:天气炎热。
R:湿度较低。
P∧Rc) R:天正在下雨。
S:湿度很高。
R∨Sd) A:刘英上山。
B:李进上山。
A∧Be) M:老王是革新者。
N:小李是革新者。
M∨Nf) L:你看电影。
M:我看电影。
┓L→┓Mg) P:我不看电视。
Q:我不外出。
R:我在睡觉。
P∧Q∧Rh) P:控制台打字机作输入设备。
Q:控制台打字机作输出设备。
P∧Q1-3(1)解:a) 不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b) 是合式公式c) 不是合式公式(括弧不配对)d) 不是合式公式(R和S之间缺少联结词)e) 是合式公式。
离散数学(第二版)最全课后习题答案详解
习题一1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明.答:此命题是简单命题,其真值为 1.(2)5是无理数.答:此命题是简单命题,其真值为 1.(3)3是素数或4是素数.答:是命题,但不是简单命题,其真值为 1.(4)2x+ <3 5答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2与3是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的面积等于半径的平方乘以π .答:此命题是简单命题,其真值为 1.(11)只有6是偶数,3才能是2的倍数.答:是命题,但不是简单命题,其真值为0.(12)8是偶数的充分必要条件是8能被3整除.答:是命题,但不是简单命题,其真值为0.(13)2008年元旦下大雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四大发明.(2)p:是无理数.(7)p:刘红与魏新是同学.(10)p:圆的面积等于半径的平方乘以π.(13)p:2008年元旦下大雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5是有理数.答:否定式:5是无理数. p:5是有理数.q:5是无理数.其否定式q的真值为 1.(2)25不是无理数.答:否定式:25是有理数. p:25不是无理数. q:25是有理数.其否定式q的真值为1.(3)2.5是自然数.答:否定式:2.5不是自然数. p:2.5是自然数. q:2.5不是自然数.其否定式q的真值为1.(4)ln1是整数.答:否定式:ln1不是整数. p:ln1是整数. q:ln1不是整数.其否定式q的真值为1.4.将下列命题符号化,并指出真值.(1)2与5都是素数答:p:2是素数,q:5是素数,符号化为p q∧,其真值为1.(2)不但π是无理数,而且自然对数的底e也是无理数.答:p:π是无理数,q:自然对数的底e是无理数,符号化为p q∧,其真值为 1.(3)虽然2是最小的素数,但2不是最小的自然数.答:p:2是最小的素数,q:2是最小的自然数,符号化为p q∧¬,其真值为1.(4)3是偶素数.答:p:3是素数,q:3是偶数,符号化为p q∧,其真值为0.(5)4既不是素数,也不是偶数.答:p:4是素数,q:4是偶数,符号化为¬ ∧¬p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2或3是偶数.(2)2或4是偶数.(3)3或5是偶数.(4)3不是偶数或4不是偶数.(5)3不是素数或4不是答: p:2是偶数,q:3是偶数,r:3是素数,s:4是偶数, t:5是偶数偶数.(1)符号化: p q∨,其真值为 1.(2)符号化:p r∨,其真值为1. (3)符号化:r t∨,其真值为0.(4)符号化:¬ ∨¬q s,其真值为 1.(5)符号化:¬ ∨¬r s,其真值为0.6.将下列命题符号化.(1)小丽只能从筐里拿一个苹果或一个梨.答:p:小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨,符号化为: p q∨ .(2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:p:刘晓月选学英语,q:刘晓月选学日语,符号化为: (¬ ∧ ∨ ∧¬p q)(p q) .7.设p:王冬生于1971年,q:王冬生于1972年,说明命题“王冬生于1971年或1972年”既可以化答:列出两种符号化的真值表:p q0 0 1 1 01111111根据真值表,可以判断出,只有当p与q同时为真时两种符号化的表示才会有不同的真值,但结合命题可以发现,p与q不可能同时为真,故上述命题有两种符号化方式.8.将下列命题符号化,并指出真值.,就有(1)只要(2)如果(3)只有(4)除非(5)除非(6);,则;,才有,才有,否则;;;仅当.,则: ;设q: ,则:答:设p:.符号化真值(1)(2)(3)(4)(5)1 1 0 0 0(6) 19.设p:俄罗斯位于南半球,q:亚洲人口最多,将下面命题用自然语言表述,并指出其真值:(1)(2);;;(3)(4);;(5)(6)(7);;.答:根据题意,p为假命题,q为真命题.自然语言真值(1)(2)(3)(4)(5)(6)(7)只要俄罗斯位于南半球,亚洲人口就最多只要亚洲人口最多,俄罗斯就位于南半球11111 只要俄罗斯不位于南半球,亚洲人口就最多只要俄罗斯位于南半球,亚洲人口就不是最多只要亚洲人口不是最多,俄罗斯就位于南半球只要俄罗斯不位于南半球,亚洲人口就不是最多只要亚洲人口不是最多,俄罗斯就不位于南半球10.设p:9是3的倍数,q:英国与土耳其相邻,将下面命题用自然语言表述,并指出真值:(1)(2)(3)(4);;;.答:根据题意,p为真命题,q为假命题.自然语言真值(1)(2)(3)9是3的倍数当且仅当英语与土耳其相邻9是3的倍数当且仅当英语与土耳其不相邻9不是3的倍数当且仅当英语与土耳其相邻11(4)9不是 3的倍数当且仅当英语与土耳其不相邻 011.将下列命题符号化,并给出各命题的真值: (1)若 2+2=4,则地球是静止不动的; (2)若 2+2=4,则地球是运动不止的; (3)若地球上没有树木,则人类不能生存;(4)若地球上没有水,则是无理数. 答:命题 1命题 2符号化真值 (1) (2) (3) (4)p:2+2=4 q:地球是静止不动的 q:地球是静止不动的 q:人类能生存0 p:2+2=4 1 1 1p:地球上有树木 p:地球上有树木q:人类能生存12.将下列命题符号化,并给出各命题的真值: (1)2+2=4当且仅当 3+3=6; (2)2+2=4的充要条件是 3+36;(3)2+2 4与 3+3=6互为充要条件;(4)若 2+2 4,则 3+3 6,反之亦然. 答:设p:2+2=4,q:3+3=6. 符号化 真值 (1) (2) (3) (4)1 0 0 113.将下列命题符号化,并讨论各命题的真值: (1)若今天是星期一,则明天是星期二; (2)只有今天是星期一,明天才是星期二;(3)今天是星期一当且仅当明天是星期二;(4)若今天是星期一,则明天是星期三.答:设p:今天是星期一,q:明天是星期二,r:明天是星期三.符号化真值讨论(1)(2)(3)(4)不会出现前句为真,后句为假的情况不会出现前句为真,后句为假的情况必然为1若p为真,则真值为0;若p为假,则真值为114.将下列命题符号化:(1)刘晓月跑得快,跳得高;(2)老王是山东人或者河北人;(3)因为天气冷,所以我穿了羽绒服;(4)王欢与李乐组成一个小组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他一面吃饭,一面听音乐;(8)如果天下大雨,他就乘班车上班;(9)只有天下大雨,他才乘班车上班;(10)除非天下大雨,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2与4都是素数,这是不对的;(13)“2或4是素数,这是不对的”是不对的.答: 命题1 命题2命题3符号化(1)(2)(3)(4)(5)p:刘晓月跑得快q:刘晓月跳得高-p:老王是山东人p:天气冷q:老王是河北人----q:我穿羽绒服p:王欢与李乐组成p:王欢与李乐组成一个--一个小组小组p:李辛与李末是兄p:李辛与李末是兄弟弟(6)(7) p:王强学过法语p:他吃饭q:刘威学过法语q:他听音乐q:他乘车上班q:他乘车上班q:他乘车上班q:路滑--(8) p:天下大雨p:天下大雨p:天下大雨p:下雪-(9) -(10)(11)(12)(13)-r:他迟到了p:2是素数p:2是素数q:4是素数--q:4是素数15.设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q真值为1,r真值为0.(1)0,(2)0,(3)0,(4)116.当p,q的真值为0,r,s的真值为1时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下面一段论述是否为真:“是无理数.并且,如果3是无理数,则外,只有6能被2整除,6才能被4整除.”也是无理数.另解:p:是无理数q: 3是无理数r:是无理数s: 6能被2整除t:6能被4整除符号化为: ,该式为重言式,所以论述为真。
离散数学课后答案
离散数学课后答案第一章离散数学基础题目1问题:证明集合A和集合B的笛卡尔积的基数等于集合A 和集合B的基数的乘积。
答案:设集合A的基数为|A|,集合B的基数为|B|。
我们要证明集合A和集合B的笛卡尔积的基数等于集合A和集合B的基数的乘积,即|(A x B)| = |A| * |B|。
首先,我们可以将集合A x B表示为{(a, b) | a∈A, b∈B}。
由于A和B是两个集合,集合A x B中的元素可以看作是将A 中每个元素与B中每个元素组成的有序对。
因此,集合A x B 中的元素个数等于A中元素的个数乘以B中元素的个数,即|(A x B)| = |A| * |B|。
题目2问题:对任意两个集合A和B,证明A∩(A∪B) = A。
答案:要证明A∩(A∪B) = A,首先我们需要理解集合的交和并的定义。
- 集合的交:集合A∩B表示同时属于集合A和集合B的元素组成的集合。
- 集合的并:集合A∪B表示属于集合A或集合B的元素组成的集合。
现在,我们开始证明。
首先,根据集合的并的定义,A∪B 表示属于集合A或集合B的元素组成的集合。
因此,任意属于集合A的元素也一定属于A∪B,即A⊆A∪B。
其次,根据集合的交的定义,A∩(A∪B)表示同时属于集合A和集合A∪B的元素组成的集合。
由于A⊆A∪B,所以A中的元素一定属于A∪B,因此A∩(A∪B) = A。
综上所述,对任意两个集合A和B,A∩(A∪B) = A成立。
第二章命题逻辑题目1问题:证明合取命题的真值表达式。
答案:合取命题的真值表达式表示命题P和命题Q同时为真时合取命题为真,否则为假。
假设命题P和命题Q的真值分别为真(T)或假(F),那么合取命题的真值可以通过以下真值表得出:P Q P∧QT T TT F FF T FF F F从上述真值表可以看出,只有P和Q都为真时,合取命题才为真。
如果其中一个或两个命题为假,则合取命题为假。
题目2问题:证明命题的等价关系。
离散数学傅彦课后习题答案
离散数学傅彦课后习题答案离散数学傅彦课后习题答案离散数学是计算机科学中的一门重要课程,它涵盖了许多基础的数学概念和理论,为我们理解和应用计算机科学提供了坚实的基础。
在学习离散数学的过程中,我们经常会遇到许多习题,这些习题旨在帮助我们巩固所学的知识,并提高我们的问题解决能力。
本文将为大家提供一些离散数学中常见的习题答案,希望能对大家的学习有所帮助。
1. 集合论习题:证明集合A和它的幂集P(A)的基数不相等。
解答:首先,我们知道一个集合的基数表示该集合中元素的个数。
对于集合A 来说,它的基数为n。
而它的幂集P(A)中的元素是A的所有子集,即包含0到n个元素的集合。
因此,P(A)的基数为2的n次方。
由于n和2的n次方是不相等的,所以集合A和它的幂集P(A)的基数也是不相等的。
2. 图论习题:证明在任意一个简单图中,度数为奇数的顶点的个数一定是偶数个。
解答:假设图中度数为奇数的顶点个数为奇数个,记为n。
那么这n个顶点的度数之和为奇数。
但是,图中每条边都会贡献两个顶点的度数,因此度数之和必须是偶数。
这与前提矛盾,所以假设不成立。
因此,度数为奇数的顶点的个数一定是偶数个。
3. 逻辑与命题演算习题:判断以下命题是否为永真式:(p∨q)→(¬p→q)解答:我们可以通过真值表的方法来判断该命题是否为永真式。
首先列出命题中的所有原子命题,即p和q。
然后根据原子命题的取值情况,计算整个命题的取值。
最后,观察整个命题在所有情况下的取值是否都为真。
如果是,则说明该命题为永真式;如果存在一种情况使得命题的取值为假,则说明该命题不是永真式。
根据真值表的计算,可以得出该命题为永真式。
4. 树与图习题:证明一棵有n个顶点的树有n-1条边。
解答:首先,我们知道一棵树是一个连通且无环的图。
当树的顶点数为1时,显然边数为0,命题成立。
假设当树的顶点数为n时,边数为n-1,即命题成立。
现在考虑树的顶点数为n+1的情况。
我们可以将这棵树的一个叶子节点去掉,得到一棵有n个顶点的树。
离散数学第四版课后答案(第4章)
第4章 习题解答4.1 A :⑤; B :③; C :①; D :⑧; E :⑩4.2 A :②; B :③; C :⑤; D :⑩; E :⑦4.3 A :②; B :⑦; C :⑤; D :⑧; E :④分析 题4.1-4.3 都涉及到关系的表示。
先根据题意将关系表示成集合表达式,然后再进行相应的计算或解答,例如,题4.1中的}2,2,1,2,2,1,1,1{},2,2,1,1{><><><><=><><=s s E I};2,2,2,1,1,1{><><><=s I而题4.2中的}.1,4,4,3,1,2,4,1,1,1{><><><><><=R为得到题4.3中的R 须求解方程123=+y x ,最终得到}.1,9,2,6,3,3{><><><=R求R R 有三种方法,即集合表达式、关系矩阵和关系图的主法。
下面由题4.2的关系分别加以说明。
1°集合表达式法将ranR ran domR domR,, 的元素列出来,如图4.3所示。
然后检查R 的每个有序对,若R y x >∈<,,则从domR 中的x 到ranR 中的y 画一个箭头。
若danR 中的x 经过2步有向路径到达ranR 中的y ,则R R y x >∈<,。
由图4.3可知}.1,3,4,2,1,2,4,4,1,44,1,1,1{><><><><>><<><=R R如果求G F ,则将对应于G 中的有序对的箭头画在左边,而将对应于F 中的有序对的箭头画在右边。
对应的三个集合分别为ranF domF ran domG ,, ,然后,同样地寻找domG 到ranF 的2步长的有向路径即可。
离散数学(第二版)课后习题答案详解(完整版)
离散数学(第⼆版)课后习题答案详解(完整版)习题⼀1.下列句⼦中,哪些是命题?在是命题的句⼦中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四⼤发明.答:此命题是简单命题,其真值为 1.(2)5 是⽆理数.答:此命题是简单命题,其真值为 1.(3)3 是素数或 4 是素数.答:是命题,但不是简单命题,其真值为1.(4)2x+ <3 5 答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2 与3 是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的⾯积等于半径的平⽅乘以π.答:此命题是简单命题,其真值为 1.(11)只有6 是偶数,3 才能是2 的倍数.答:是命题,但不是简单命题,其真值为0.(12)8 是偶数的充分必要条件是8 能被3 整除.答:是命题,但不是简单命题,其真值为0.(13)2008 年元旦下⼤雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四⼤发明.(2)p: 是⽆理数.(7)p:刘红与魏新是同学.(10)p:圆的⾯积等于半径的平⽅乘以π.(13)p:2008 年元旦下⼤雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5 是有理数.答:否定式:5 是⽆理数. p:5 是有理数.q:5 是⽆理数.其否定式q 的真值为1.(2)25 不是⽆理数.答:否定式:25 是有理数. p:25 不是⽆理数. q:25 是有理数. 其否定式q 的真值为1.(3)2.5 是⾃然数.答:否定式:2.5 不是⾃然数. p:2.5 是⾃然数. q:2.5 不是⾃然数. 其否定式q 的真值为1.(4)ln1 是整数.答:否定式:ln1 不是整数. p:ln1 是整数. q:ln1 不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值.(1)2 与5 都是素数答:p:2 是素数,q:5 是素数,符号化为p q∧,其真值为 1.(2)不但π是⽆理数,⽽且⾃然对数的底e 也是⽆理数.答:p:π是⽆理数,q:⾃然对数的底e 是⽆理数,符号化为p q∧,其真值为1.(3)虽然2 是最⼩的素数,但2 不是最⼩的⾃然数.答:p:2 是最⼩的素数,q:2 是最⼩的⾃然数,符号化为p q∧? ,其真值为1.(4)3 是偶素数.答:p:3 是素数,q:3 是偶数,符号化为p q∧,其真值为0.(5)4 既不是素数,也不是偶数.答:p:4 是素数,q:4 是偶数,符号化为? ∧?p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2 或3 是偶数.(2)2 或4 是偶数.(3)3 或5 是偶数.(4)3 不是偶数或4 不是偶数.(5)3 不是素数或4 不是偶数.答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数(1)符号化: p q∨,其真值为1.(2)符号化:p r∨,其真值为1.(3)符号化:r t∨,其真值为0.(4)符号化:? ∨?q s,其真值为1.(5)符号化:? ∨?r s,其真值为0.6.将下列命题符号化.(1)⼩丽只能从筐⾥拿⼀个苹果或⼀个梨.答:p:⼩丽从筐⾥拿⼀个苹果,q:⼩丽从筐⾥拿⼀个梨,符号化为: p q∨ .(2)这学期,刘晓⽉只能选学英语或⽇语中的⼀门外语课.答:p:刘晓⽉选学英语,q:刘晓⽉选学⽇语,符号化为: (? ∧∨∧?p q)(p q) .7.设p:王冬⽣于1971 年,q:王冬⽣于1972 年,说明命题“王冬⽣于1971 年或1972年”既可以化答:列出两种符号化的真值表:合命题可以发现,p 与q 不可能同时为真,故上述命题有两种符号化⽅式.8.将下列命题符号化,并指出真值., 就有;(1)只要, 则;, 才有;(3)只有, 才有;(4)除⾮, 否则;(5)除⾮(6)仅当.答:设p: , 则: ; 设q: , 则: .(1);(2);;(3);(4);(5);(6);(7).答:根据题意,p 为假命题,q 为真命题.(1);(2);(3);(4).答:根据题意,p 为真命题,q 为假命题.(1)若2+2=4,则地球是静⽌不动的;(2)若2+2=4,则地球是运动不⽌的;(3)若地球上没有树⽊,则⼈类不能⽣存;(4)若地球上没有⽔,则是⽆理数.12.将下列命题符号化,并给出各命题的真值:(1)2+2=4 当且仅当3+3=6;(2)2+2=4 的充要条件是3+3 6;(3)2+2 4 与3+3=6 互为充要条件;(4)若2+2 4,则3+3 6,反之亦然.答:设p:2+2=4,q:3+3=6.(1)若今天是星期⼀,则明天是星期⼆;(2)只有今天是星期⼀,明天才是星期⼆;(3)今天是星期⼀当且仅当明天是星期⼆;(4)若今天是星期⼀,则明天是星期三.答:设p:今天是星期⼀,q:明天是星期⼆,r:明天是星期三.(1)刘晓⽉跑得快,跳得⾼;(2)⽼王是⼭东⼈或者河北⼈;(3)因为天⽓冷,所以我穿了⽻绒服;(4)王欢与李乐组成⼀个⼩组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他⼀⾯吃饭,⼀⾯听⾳乐;(8)如果天下⼤⾬,他就乘班车上班;(9)只有天下⼤⾬,他才乘班车上班;(10)除⾮天下⼤⾬,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2 与4 都是素数,这是不对的;(13)“2 或 4 是素数,这是不对的”是不对的.答:q:⼤熊猫产在中国.r:太阳从西⽅升起. 求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q 真值为1,r 真值为0.(1)0,(2)0,(3)0,(4)116.当p,q 的真值为0,r,s 的真值为1 时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下⾯⼀段论述是否为真:“ 是⽆理数.并且,如果3 是⽆理数,则也是⽆理数.另外,只有6 能被2 整除,6 才能被4 整除.”解:p: 是⽆理数q: 3 是⽆理数r:是⽆理数s: 6 能被2 整除t:6 能被 4 整除符号化为: ,该式为重⾔式,所以论述为真。
离散数学课后习题答案第四章
第十章部分课后习题参考答案4.判断以下集合对所给的二元运算是否封闭: (1) 整数集合Z 和普通的减法运算。
封闭,不满足交换律和结合律,无零元和单位元 (2) 非零整数集合普通的除法运算。
不封闭(3) 全体n n ⨯实矩阵集合(R )和矩阵加法与乘法运算,其中n2。
封闭 均满足交换律,结合律,乘法对加法满足分配律; 加法单位元是零矩阵,无零元;乘法单位元是单位矩阵,零元是零矩阵;(4)全体n n ⨯实可逆矩阵集合关于矩阵加法与乘法运算,其中n 2。
不封闭(5)正实数集合和运算,其中运算定义为:不封闭 因为 +∉-=--⨯=R 1111111 (6)n关于普通的加法和乘法运算。
封闭,均满足交换律,结合律,乘法对加法满足分配律 加法单位元是0,无零元;乘法无单位元(1>n ),零元是0;1=n 单位元是1 (7)A = {},,,21n a a a n运算定义如下:封闭 不满足交换律,满足结合律, (8)S =关于普通的加法和乘法运算。
封闭 均满足交换律,结合律,乘法对加法满足分配律 (9)S = {0,1},S 是关于普通的加法和乘法运算。
加法不封闭,乘法封闭;乘法满足交换律,结合律 (10)S =,S 关于普通的加法和乘法运算。
加法不封闭,乘法封闭,乘法满足交换律,结合律5.对于上题中封闭的二元运算判断是否适合交换律,结合律,分配律。
见上题7.设 * 为+Z 上的二元运算+∈∀Z y x ,,X * Y = min ( x ,y ),即x 和y 之中较小的数.(1)求4 * 6,7 * 3。
4, 3(2)* 在+Z 上是否适合交换律,结合律,和幂等律? 满足交换律,结合律,和幂等律(3)求*运算的单位元,零元与+Z 中所有可逆元素的逆元。
单位元无,零元1, 所有元素无逆元8.Q Q S ⨯=Q 为有理数集,*为S 上的二元运算,<a,b>,<x,y >S 有< a ,b >*<x ,y> = <ax ,ay + b>(1)*运算在S 上是否可交换,可结合?是否为幂等的? 不可交换:<x,y>*<a,b >= <xa ,xb +y>≠< a ,b >*<x ,y>可结合:(<a,b >*<x,y>)*<c,d>=<ax ,ay + b>*<c,d>=<axc ,axd +(ay+b) > <a,b >*(<x,y>*<c,d>)=<a, b>*<xc,xd+y>=<axc ,a(xd +y)+b > (<a,b >*<x,y>)*<c,d>=<a,b >*(<x,y>*<c,d>) 不是幂等的(2)*运算是否有单位元,零元? 如果有请指出,并求S 中所有可逆元素的逆元。
离散数学第四版课后标准答案
离散数学第四版课后标准答案离散数学第四版课后答案第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析⾸先应注意到,命题是陈述句,因⽽不是陈述句的句⼦都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句⼦是陈述句,但它表⽰的判断结果是不确定。
⼜因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因⽽作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,⽽(13)是由联结词“且”联结起来的复合命题。
这⾥的“且”为“合取”联结词。
在⽇常⽣活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,⽽且……”、“⼀⾯……,⼀⾯……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,⽽不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2 (1)p: 2是⽆理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三⾓形有三条边。
由于p与q都是真命题,因⽽p→q为假命题。
(7)p→q,其中,p:雪是⿊⾊的,q:太阳从东⽅升起。
由于p为假命题,q为真命题,因⽽p→q为假命题。
(8)p:2000年10⽉1⽇天⽓晴好,今⽇(1999年2⽉13⽇)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道⽽已。
(9)p:太阳系外的星球上的⽣物。
它的真值情况⽽定,是确定的。
1(10)p:⼩李在宿舍⾥. p的真值则具体情况⽽定,是确定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学傅彦答案【篇一:离散数学及其应用】txt>摘要:离散数学,又称为组合数学。
离散数学是计算机出现以后迅速发展起来的一门数学分支。
计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是离散数学。
离散数学的发展改变了传统数学中分析和代数占统治地位的局面。
它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。
通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。
关键词:离散数学电路设计软件技术人工智能应用等1、离散数学的相关介绍1.1离散数学的简介离散数学是现代数学的一个重要分支,是计算机类专业的重要课程。
它以研究离散量的结构及其相互间的关系为主要目标,其研究对象一般是有限个或可数个元素,因此离散数学可以充分描述计算机学科离散性的特点。
由于离散数学在计算机科学中的重要作用,国内外几乎所有大学的计算机类专业的教学计划中都将其列为核心课程进行重点建设,它是其他骨干课程,如数据结构、操作系统、人工智能、计算机网络、软件工程、编译原理等的先修课程,国内许多大学将其作为计算机专业类研究生入学考试的内容。
1.2离散数学的发展20世纪的计算机出现,带动了世界性的信息革命的伟大进程。
计算机科学在信息革命中的学科地位有如牛顿力学在工业革命中的学科地位一样,由计算机出现带动的信息革命当然计算机科学将起着主导的作用。
随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。
离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。
1.3离散数学的内容离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。
离散数学课程主要介绍离散数学的各个分支的基本概念、基本理论和基本方法。
这些概念、理论以及方法大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程中;同时,该课程所提供的训练十分有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,十分有益于学生严谨、完整、规范的科学态度的培养。
2、离散数学在其他学科的应用2.1 数理逻辑在人工智能中的应用人工智能是计算机学科中一个非常重要的方向,离散数学在人工智能中的应用主要是数理逻辑部分在人工智能中的应用。
数理逻辑包括命题逻辑和谓词逻辑,命题逻辑就是研究以命题为单位进行前提与结论之间的推理,而谓词逻辑就是研究句子内在的联系。
大家都知道,人工智能共有两个流派,连接主义流派和符号主义流派。
其中在符号主义流派里,他们认为现实世界的各种事物可以用符号的形式表示出来,其中最主要的就是人类的自然语言可以用符号进行表示。
语言的符号化就是数理逻辑研究的基本内容,计算机智能化的前提就是将人类的语言符号化成机器可以识别的符号,这样计算机才能进行推理,才能具有智能。
由此可见数理逻辑中重要的思想、方法及内容贯穿到人工智能的整个学科。
2.2 图论在数据结构中的应用离散数学在数据结构中的应用主要是图论部分在数据结构中的应用,树在图论中占着重要的地位。
树是一种非线性数据结构,在现实生活中可以用树来表示某一家族的家谱或某公司的组织结构,也可以用它来表示计算机中文件的组织结构,树中二叉树在计算机科学中有着重要的应用。
二叉树共有三种遍历方法:前序遍历法、中序遍历法和后序遍历法。
前序遍历法:如果二叉树为空,则返回。
否则(1)访问根节点(2)前序遍历左子树(3)前序遍历右子树,得到前序序列。
中序遍历法:如果二叉树为空,则返回。
否则(1)中序遍历左子树(2)访问根节点(3)中序遍历右子树,得到中序序列。
后序遍历法:如果二叉树为空,则返回。
否则(1)后序遍历左子树(2)后序遍历右子树(3)访问根节点,得到后序序列。
通过访问不同的遍历序列,可以得到不同的节点序列,通常在计算机中利用不同的遍历方法读出代数表达式,以便在计算机中对代数表达式进行操作。
2.3 离散数学在生物信息学中的应用生物信息学是现代计算机科学中一个崭新的分支,它是计算机科学与生物学相结合的产物。
目前,在美国有一个国家实验室sandia国家实验室,主要进行组合编码理论和密码学的研究,该机构在美国和国际学术界有很高的地位。
另外,由于dna是离散数学中的序列结构,美国科学院院士,近代离散数学的奠基人rota教授预言,生物学中的组合问题将成为离散数学的一个前沿领域。
而且,ibm公司也将成立一个生物信息学研究中心。
在1994年美国计算机科学家阿德勒曼公布了dna计算机的理论,并成功地运用dna计算机解决了一个有向哈密尔顿路径问题,这一成果迅速在国际产生了巨大的反响,同时也引起了国内学者的关注。
dna计算机的基本思想是:以dna碱基序列作为信息编码的载体,利用现代分子生物学技术,在试管内控制酶作用下的dna序列反应,作为实现运算的过程;这样,以反应前dna序列作为输入的数据,反应后的dna序列作为运算的结果,dna计算机几乎能够解决所有的np完全问题。
2.4离散数学在门电路设计中的应用在数字电路中,离散数学的应用主要体现在数理逻辑部分的使用。
在数字电路中广于使用的逻辑代数即为布尔代数。
逻辑代数中的逻辑运算与、或、非、异或与离散数学中的合取,析取、否定、异或(排斥或)相对应。
数字电路的学习重点在于掌握电路设计技术,在设计门电路时,要求设计者根据给出的具体逻辑问题,求出实现这一逻辑功能的逻辑电路。
一般的设计过程为如下:首先,进行逻辑抽象.分析给定的逻辑问题,确定输入、输出变量,一般把引起事件的原因作为输入变量,把事件的结果作为输出变量。
再以二值逻辑的0、1两种状态分别代表变量的两种不同状态,并根据给定的因果关系列出逻辑真值表。
于是,这个实际的逻辑问题被抽象成一个逻辑函数了,而且这个逻辑函数是以真值表形式给出的。
然后根据真值表写出逻辑函数式。
在这一步的主要工作为对逻辑函数进行化简和变换,此时采用的方法一般为使用逻辑代数公式,即离散数学中的命题演算公式将命题公式直接进行化简;或者用卡诺图法进行化简;或者同时采用两种方法,互相验证结果是否最简。
但在一般情况下,在真值表中变量较多,逻辑函数式较为复杂时,我们采用卡诺图法更为方便快捷,且出错率更低。
在得到最简逻辑函数式后,选定器件类型,开始构建实际电路。
在对所用器件种类有所限制或使用中规模集成电路构建设计好的电路时,需要把函数式变换为适当的形式。
此时,我们将采用命题等值演算对函数式进行变换,变换的结果通常为合取范式和析取范式,以便使用最少的器件和最简单的连线。
2、总结总之,离散数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。
所以离散数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。
现在我国每一所大学的计算机专业都开设离散数学课程,正因为离散数学在计算机科学中的重要应用,可以说没有离散数学就没有计算机理论,也就没有计算机科学。
所以,应努力学习离散数学,推动离散数学的研究,使它在计算机中有着更为广泛的应用。
参考文献:【1】离散数学耿素云、屈婉玲、张立昂编著清华大学出版社【2】离散数学及其应用(美)kenneth h.rosen著袁崇义屈婉玲王捍贫刘田译【3】《离散离散数学及其应用》【4】百度百科“离散数学”词条傅彦著学出版社电子科技大【篇二:离散关系的复合】合训练项目报告书课程名称离散数学及应用项目名称关系的复合和逆运算专业班级组别成员任课教师目录【篇三:总结离散数学和概率论的应用】txt>马涛2901312017摘要:离散数学、概率论是工科基础课程,它们都是后续课程的准备课程,而且各自在实际的生产生活中都有着重要的应用。
总结各门课程各部分在实际生活中的应用,指出它们在相关领域的重要性。
关键词:离散数学、概率论0引言离散数学是现代数学的一个重要分支,也是计算机科学与技术的理论基础,所以又称为计算机数学。
首先它是数据结构,软件技术基础,操作系统,人工智能等计算机科学专业的准备课程;其次,离散数学还是计算机科学的重要研究工具。
概率论作为数学重要的一个分支,在生活及经济领域有重要作用,而且是学习随机信号分析,信息论等课程前的必修课程。
1离散数学的应用1.1在计算机学科中的应用离散数学把计算机科学中所涉及到的研究离散量的数学综合在一起,进行较系统的、全面的论述,为研究计算机科学的相关问题提供了有力的工具。
计算机要解决一个具体问题,必须运用数据结构知识。
对于问题中所处理的数据,必须首先从具体问题中抽象出一个适当的数学模型,然后设计一个解此数学模型的算法,最后编出程序,进行测试、调整直至得到问题的最终解答。
而寻求数学模型就是数据结构研究的内容。
寻求数学模型的实质是分析问题,从中提取操作的对象,并找出这些操作对象之间含有的关系,然后用数学的语言加以描述。
数据结构中将操作对象间的关系分为四类:集合、线性结构、树形结构、图状结构或网状结构。
数据结构研究的主要内容是数据的逻辑结构,物理存储结构以及基本运算操作。
其中逻辑结构和基本运算操作来源于离散数学中的离散结构和算法思考。
离散数学中的集合论、关系、图论、树四个章节就反映了数据结构中四大结构的知识。
1.2在通信领域的应用代数系统在计算机中的应用广泛,例如有限机,开关线路的计数等方面。
但最常用的是在纠错码方面的应用。
在计算机和数据通信中,经常需要将二进制数字信号进行传递,这种传递常常距离很远,所以难免会出现错误。
通常采用纠错码来避免这种错误的发生,而设计的这种纠错码的数学基础就是代数系统。
纠错码中的一致校验矩阵就是根据代数系统中的群概念来进行设计的,另外在群码的校正中,也用到了代数系统中的陪集。
1.3在人工智能中的应用人工智能是计算机学科中一个非常重要的方向,离散数学在人工智能中的应用主要是数理逻辑部分在人工智能中的应用。
数理逻辑包括命题逻辑和谓词逻辑,命题逻辑就是研究以命题为单位进行前提与结论之间的推理,而谓词逻辑就是研究句子内在的联系。