09年大学2+2数学考试提纲
2009年浙江省普通高校“2+2”联考《高等数学》真题试卷
----------------------2009年浙江省普通高校“2+2”联考《高等数学》试卷-------------------第 页,共 12 页1 2009年浙江省普通高校“2 + 2”联考《 高等数学 》试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
一、填空题:(只需在横线上直接写出答案,不必写出计算过程,本题共有6个小题,每一小题4分,共24分)1.函数 11,,)1ln()(<≥++⋅⎩⎨⎧=x x eb x a x f x在 1=x 处可导 ,则 a = , b = .2.若函数 0)(≠x f 满足方程 1)(2)(02+=⎰xdt t f x f ,则 )(x f = .3 . 二阶常系数线性非齐次微分方程 x y y sin ''=+ 的通解是 . 4.设 ,,),,(αααT A c b a == *A 为 A 的伴随矩阵, 则 *A = .5.设 A 为 n 阶方阵,E E AA T,= 为 n 阶单位阵, 0<A , 则 =+E A .6. 袋中有6只红球4只黑球,今从袋中随机取出4只球,设取到一只红球得2分,取到一只黑球得1分,则得分不小于7的概率为 .二.选择题. (本题共有5个小题,每一小题4分,共20分,每个小题给出的选项中,只有一项符合要求)1.二元函数 y x y x y x f ln ln 22),(22--+= 在其定义域内 ( ) .(A ) 有极小值(B ) 有极大值 (C ) 既有极大值也有极小值 (D ) 无极值姓名:_____________准考证号:______________________报考学校 报考专业------------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------第 页,共 12 页2 2. R 为收敛半径的充分必要条件是 ( ) .(A )当 R x ≤ 时,∑+∞=1n nn x a 收敛,且当 R x > 时∑+∞=1n nn x a 发散(B ) 当 R x < 时,∑+∞=1n nn x a 收敛,且当 R x ≥ 时∑+∞=1n nn x a 发散(C )当 R x < 时,∑+∞=1n nn x a 收敛,且当 R x > 时∑+∞=1n nn x a 发散(D )当 R x R ≤<- 时,∑+∞=1n nn x a 收敛,且当 R x > 或 R x -≤ 时∑+∞=1n nn x a 发散3.已知二元函数 ),(y x f 在点 )0,0( 某邻域内连续 , 且 1),(lim223300=+++→→yx yx y x f y x ,则( ).(A ) 点 )0,0( 不是二元函数 ),(y x f 的极值点 (B ) 点 )0,0( 是二元函数 ),(y x f 的极大值点 (C ) 点 )0,0( 是二元函数 ),(y x f 的极小值点 (D ) 无法判断点 )0,0( 是否是二元函数 ),(y x f 的极值点 4.对于非齐次线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+⋅⋅⋅++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=+⋅⋅⋅++=+⋅⋅⋅++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********以下结论中 不正确 的是 ( ).(A) 若方程组无解, 则系数行列式 0=D (B) 若方程组有解, 则系数行列式 0≠D (C) 若方程组有解, 则或有唯一解, 或有无穷多解 (D) 0≠D 是方程组有唯一解的充分必要条件5. 某单位电话总机在长度为 t (小时) 的时间间隔内, 收到呼叫的次数服从参数为3t 泊松分布, 而与时间间隔的起点无关, 则在一天24小时内至少接到1次呼叫的概率为 ( ).第 页,共 12 页3 (A) 1-e (B) 41--e (C) 8-e (D) 8-1-e三.计算题:(计算题必须写出必要的计算过程,只写答案的不给分,本题共7个小题,每小题9分,共63分)1. 已知 )ln 2ln (2),(y x y x y x f z +⋅+== ,在计算点 )1,2( 处函数值时,如果自变量 x 和 y 分别发生误差 02.0-=∆x 和 01.0=∆y , 试用二元函数的微分来估计此时产生的函数值误差 z ∆ 的近似值 .2.设函数 )(x f 在点 0=x 的邻域内 连续,极限 ])1ln(2)(3[lim 2xx xx f A x ++-=→存在 ,(1)求 )0(f 的值; (2)若 1=A ,问:)(x f 在点 0=x 处是否可导? 如不可导,说明理由;如可导,求出 )0('f .第 页,共 12 页43. (1)已知广义积分dx ex2-+∞∞-⎰是收敛的,试利用初等函数 xe 的幂级数展开式推导出这个广义积分的值大于1 的结论 ,详细说明你的理由(4 分) ;(2) 利用(1) 的结论,试比较dx ex xx 222)2(+-+∞⋅-⎰与dx ex xx 2212)2(+-⋅-⎰的大小 ,详细说明你的理由 (5 分) .第 页,共 12 页54.已知定义在全平面上的二元函数 32),()1(),(),(2+⋅++⋅=⎰⎰⎰Dd y x f x dx y x x f y x f σ ,其中 D 是由直线 x y =, 1=y 和 y 轴所围成的封闭平面区域,求 ),(y x f 的解析表达式 .___________准考证号:______________________报考学校 报考专业:-------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------第 页,共 12 页6 5.计算行列式aa a a a a a a a --------111010000011000110001 的值 .第 页,共 12 页7 6.已知 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=20120031204312,10110001100011C B , 矩阵 A 满足 : E C B CE A TT=--)(1, E 为单位阵 , 求 A .第 页,共 12 页8 7.设随机变量 ),(Y X 的概率密度函数为 ⎩⎨⎧>>⋅=+-其它,00,0,),()(y x e A y x f y x ,求 : (1) 常数 A (2分) ; (2) ),(min Y X Z = 的概率密度函数 (4分) ;(3)),(Y X 落在以 x 轴 , y 轴及直线 22=+y x 所围成三角形区域D 内的概率 (3分).第 页,共 12 页9四.应用题: (本题共3个小题,每小题10分,共30分)1. 设工厂生产 A 、B 两种相同用途但不同档次的产品。
2009高考数学理科(全国2卷)
2009普通高等学样招生全国统一考试(二)理科数学参考公式如果事件A 、B 互斥,那么P (A+B )=P(A)+P(B)。
如果时间A 、B 相互独立,那么P (A 、B )=P (A)·P(B)。
如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2k kn k n n p k c p p k -=-=…,n)球的表面积公式24s R π= 其中R 表示球的半径球的体积公式343v R π=本卷本12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求的。
一、选择题 (1)102ii-= (A )-2+4i (B) -2-4i (c) 2+4i (D) 2-4i(2)设集合A={x x >}3,B=14x x x -⎧⎨-⎩<}0,则A ⋂B=(A ) ∅ (B )(3,4) (C )(-2,1) (D )(4,+∞)(3)已知⊿ABC 中,cos A =125-,则cos A = (A )1213 (B )1513 (C )-1513 (D )-1213(4) 曲线121y x =-在点(1,1)处的切线方程为:A.20x y --=B. 20x y +-=C.450x y --=D.450x y --=(5) 已知正四棱柱ABCD —1111A BC D 中,12AAAB =,E 为1AA 中点,则异面直线BE 与1CD 所成角的余炫值为A .1015310D. 35(6)已知向量a=(2,1),10,52,ab a b ⋅=+=则{}b =A. 510(7)设323log ,log 3,log 2,a b c π===则A a b c >> B. a c b >> C. b a c >> D. b c a >>(8) 若讲函数tan()(0)4y x πωω=->的图象向右平移6π个单位长度后,与函数tan()6y x πω=+的图象重合,则ω的最小值为A. 16B. 14C. 13D. 12(9) 已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交与A.B 两点,F 为C 的焦点。
2009—数二真题、标准答案及解析
工
( B ) ∫1 dx ∫x
2
f ( x, y )dy .
研
( C ) ∫1 dy ∫1
【答案】C 【解析】
4− y
f ( x, y )dx .
2 2
( D ) . ∫1 dy ∫y f ( x, y )dx
2
翔 考
∫
2
1
dx ∫ f ( x, y )dy + ∫ dy ∫ f ( x, y )dx 的积分区域为两部分:
( A ) 不是 f ( x, y ) 的连续点. ( C ) 是 f ( x, y ) 的极大值点.
【答案】 D 【解析】因 dz = xdx + ydy 可得
( B ) 不是 f ( x, y ) 的极值点. ( D ) 是 f ( x, y ) 的极小值点.
AC − B 2 = 1 > 0
故(0,0)为函数 z = f ( x, y ) 的一个极小值点.
sin 4 x
梦
飞
∫
1+ x )dx ( x > 0) . x
(17) (本题满分 10 分)
∂2 z . 设 z = f ( x + y , x − y, xy ) ,其中 f 具有 2 阶连续偏导数,求 dz 与 ∂x∂y
(18) (本题满分 10 分)设非负函数 y = y ( x
曲线 y = y ( x ) 过原点时, 其与直线 x = 1 及 y = 0 围成平面区域 D 的面积为 2, 求D绕 y轴 旋转所得旋转体体积.
.
16
∫ −∞e
+∞
kx
dx = 1 ,则 k =
.
59
梦飞翔考研工作室 友情提供 QQ:81321659
2009年(全国卷II)(含答案)高考理科数学
2009年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题一、选择题( 本大题共12 题, 共计60 分)1、=( )A.-2+4iB.-2-4iC.2+4iD.2-4i2、设集合A={x|x>3},B={x|},则A∩B=()A. B.(3,4) C.(-2,1) D.(4,+∞)3、已知△ABC中,,则cosA=( )A. B. C. D.4、曲线在点(1,1)处的切线方程为( )A.x-y-2=0B.x+y-2=0C.x+4y-5=0D.x-4y-5=05、已知正四棱柱ABCD—A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所成角的余弦值为( )A. B. C. D.6、已知向量a=(2,1),a·b=10,|a+b|=,则|b|=( )A. B. C.5 D.257、设a=log3π,,,则( )A.a>b>cB.a>c>bC.b>a>cD.b>c>a8、若将函数y=tan()(ω>0)的图象向右平移个单位长度后,与函数y=tan()的图象重合,则ω的最小值为…()A. B. C. D.9、已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点.若|FA|=2|FB|,则k=( )A. B. C. D.10、甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A.6种B.12种C.30种D.36种11、已知双曲线C:(a>0,b>0)的右焦点为F,过F且斜率为的直线交C于A、B两点.若,则C的离心率为( )A. B. C. D.12、纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“Δ”的面的方位是( )A.南B.北C.西D.下二、填空题( 本大题共 4 题, 共计20 分)13、()4的展开式中x3y3的系数为___________.14、设等差数列{a n}的前n项和为S n,若a5=5a3.则=___________.15、设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C,若圆C的面积等于,则球O的表面积等于______________.16、已知AC,BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,),则四边形ABCD的面积的最大值为_____________.三、解答题( 本大题共 6 题, 共计70 分)17、(10分) 设△ABC的内角A,B,C的对边长分别为a,b,c,cos(A-C)+cosB=,b2=ac,求B.18、(12分)如图,直三棱柱ABC—A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小.19、(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2.(Ⅰ)设b n=a n+1-2a n,证明数列{b n}是等比数列;(Ⅱ)求数列{a n}的通项公式.20、(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核. (Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21、(12分)已知椭圆C:(a >b >0)的离心率为,过右焦点F 的直线l与C 相交于A 、B 两点,当l 的斜率为1时,坐标原点O 到l 的距离为.(Ⅰ)求a,b 的值;(Ⅱ)C 上是否存在点P,使得当l 绕F 转到某一位置时,有成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.22、(12分)设函数=x 2+aln(1+x)有两个极值点x 1,x 2,且x 1<x 2.(Ⅰ)求a 的取值范围,并讨论的单调性;(Ⅱ)证明: ()21224In f x ->.2009年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题答案解析:一、选择题( 本大题共12 题, 共计60 分)1、(5分) A解析:.故选A.2、(5分) B解析:∵(x-1)(x-4)<0,∴1<x<4,即B={x|1<x<4},∴A∩B=(3,4).故选B.3、(5分) D解析:∵,∴A为钝角.又∵,∴.代入sin2A+cos2A=1,求得.故选D.4、(5分) B解析:∵,∴y′|x=1=-1.∴切线的斜率k=-1.∴切线方程为y-1=-(x-1),即x+y-2=0.故选B.5、(5分) C解析:如图所示,连接A1B,因A1D1BC,所以四边形A1BCD1为平行四边形,所以A1B∥D1C,则异面直线BE与CD1所成的角即为BE与BA1所成的角. 不妨设AB=1,则AA1=2,设∠ABE=α,∠ABA1=β,则,,,.∴cos(β-α)=cosβcosα+sinβsinα=.故选C. 6、(5分) C解析:设b=(x,y),由得解方程组得或则|b|=.故选C.7、(5分) A解析:∵a=log3π>log33=1,,.∴a>b>c.故选A.8、(5分) D解析:将函数y=tan()(ω>0)的图象向右平移个单位,得y=tan(),又因平移后函数的图象与y=tan()的图象重合,∴(k∈Z),即,∴当k=0时,,即ω的最小值为.故选D.9、(5分) D解析:设A(x1,y1),B(x2,y2),由题意得k2x2+(4k2-8)x+4k2=0,Δ=16(k2-2)2-4k2·4k2>0.得-1<k<1,即0<k<1,,x1x2=4.又∵|FA|=2|FB|,由抛物线定义,知F(2,0),抛物线的准线方程为x=-2,∴|FA|=x1+2,|FB|=x2+2,∴x1+2=2x2+4,即x1=2x2+2.代入x1·x2=4,得x22+x2-2=0,∴x2=1,或x2=-2(舍去,因x2>0).∴x1=2×1+2=4.∴.∴.又0<k<1,∴.故选D.10、(5分) C解析:由题意知甲、乙所选的课程有一门相同的选法为种,甲、乙所选的课程都不相同的选法有种,所以甲、乙所选的课程中至少有一门不相同的选法共有24+6=30种.故选C.11、(5分) A解析:设A(x1,y1),B(x2,y2),F(c,0),由, 得(c-x1,-y1)=4(x2-c,y2),∴y1=-4y2.设过F点斜率为的直线方程为, ∴则有∴将y1=-4y2分别代入①②得化简得∴.化简得16c2=9(3a2-b2)=9(3a2-c2+a2).∴25c2=36a2.∴,即.12、(5分) B解析:如右图所示正方体,要展开成要求的平面图,必须剪开棱BC,剪开棱D1C1使正方形DCC1D1向北的方向展平.剪开棱A1B1,使正方形ABB1A1向南的方向展开,然后拉开展平,则标“Δ”的面的方位则为北.故选B.二、填空题( 本大题共 4 题, 共计20 分)13、(5分) 6解析:设展开式中第r+1项为x3y3项,由展开式中的通项,得=.令,得r=2.∴系数为.14、(5分) 9解析:由a5=5a3,得,.15、(5分) 8π解析:如图所示,设球半径为R,球心O到截面圆的距离为d,在Rt△ONB 中,d2=R2-BN2.①又∵π·BN2=,∴.在△ONM中,d=OM·sin45°=,②将②代入①得,∴R2=2.=4πR2=8π.∴S球16、(5分) 5解析:如图所示,设|ON|=d1,|OP|=d2,则d12+d22=|OM|2=12+()2=3. 在△ONC中,d12=|OC|2-|CN|2=4-|CN|2,∴.同理在△OBP中,.S四边形=S△CAD+S△CAB====.当且仅当d1=d2时取等号,即d1=d2=时取等号.三、解答题( 本大题共 6 题, 共计70 分)17、(10分) 解:由cos(A-C)+cosB=及B=π-(A+C)得cos(A-C)-cos(A+C)=,cosAcosC+sinAsinC-(cosAcosC-sinAsinC)=,.又由b2=ac及正弦定理得sin2B=sinAsinC.故,或(舍去),于是或.又由b2=ac知b≤a或b≤c,所以.18、(12分) 解法一:(Ⅰ)取BC的中点F,连接EF,则EF,从而EF DA.连接AF,则ADEF为平行四边形,从而AF∥DE.又DE⊥平面BCC1,故AF⊥平面BCC1,从而AF⊥BC,即AF为BC的垂直平分线,所以AB=AC,(Ⅱ)作AG⊥BD,垂足为G,连接CG.由三垂线定理知CG⊥BD,故∠AGC为二面角A-BD-C的平面角.由题设知∠AGC=60°.设AC=2,则.又AB=2,,故.由AB·AD=AG·BD得,解得,故AD=AF.又AD⊥AF,所以四边形ADEF为正方形.因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF. 连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD.连接CH,则∠ECH为B1C与平面BCD所成的角.因ADEF为正方形,,故EH=1,又,所以∠ECH=30°,即B1C与平面BCD所成的角为30°.解法二:(Ⅰ)以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A—xyz,设B(1,0,0),C(0,b,0),D(0,0,c),则B1(1,0,2c),E(,,c).于是=(,,0),=(-1,b,0).由DE⊥平面BCC1知DE⊥BC,·=0,求得b=1,所以AB=AC.(Ⅱ)设平面BCD的法向量=(x,y,z),则·=0,·=0.又=(-1,1,0), =(-1,0,c).故令x=1,则y=1, , =(1,1,).又平面ABD的法向量=(0,1,0).由二面角A-BD-C为60°知,〈〉=60°,故·=||·||·cos60°,求得.于是=(1,1,), =(1,-1,),cos〈,〉=,〈,〉=60°,所以B1C与平面BCD所成的角为30°.19、(12分) 解:(Ⅰ)由已知有a1+a2=4a1+2,解得a2=3a1+2=5,故b1=a2-2a1=3,又a n+2=S n+2-S n+1=4a n+1+2-(4a n+2)=4a n+1-4a n;于是a n+2-2a n+1=2(a n+1-2a n),即b n+1=2b n.因此数列{b n}是首项为3,公比为2的等比数列.(Ⅱ)由(Ⅰ)知等比数列{b n}中b1=3,公比q=2,所以a n+1-2a n=3×2n-1,于是,因此数列{}是首项为,公差为的等差数列,,所以a n=(3n-1)·2n-2.20、(12分) 解:(Ⅰ)由于甲组有10名工人,乙组有5名工人,根据分层抽样原理,若从甲、乙两组中共抽取3名工人进行技术考核,则从甲组抽取2名工人,乙组抽取1名工人.(Ⅱ)记A表示事件:从甲组抽取的工人中恰有1名女工人,则.(Ⅲ)ξ的可能取值为0,1,2,3.A i表示事件:从甲组抽取的2名工人中恰有i名男工人,i=0,1,2.B表示事件:从乙组抽取的是1名男工人.A i与B独立,i=0,1,2.P(ξ=0)=P(A0·)=P(A0)·P()=,P(ξ=1)=P(A0·B+A1·)=P(A0)·P(B)+P(A1)·P()=,P(ξ=3)=P(A2B)=P(A2)·P(B)=,P(ξ=2)=1-[P(ξ=0)+P(ξ=1)+P(ξ=3)]=.故ξ的分布列为ξ0 1 2 3PEξ=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+3×P(ξ=3)=.21、(12分) 解:(Ⅰ)设F(c,0),当l的斜率为1时,其方程为x-y-c=0,O到l的距离为,故,c=1.由,得,.(Ⅱ)C上存在点P,使得当l绕F转到某一位置时,有成立,由(Ⅰ)知C的方程为2x2+3y2=6,设A(x1,y1),B(x2,y2),(ⅰ)当l不垂直于x轴时,设l的方程为y=k(x-1).C上的点P使成立的充要条件是P点的坐标为(x1+x2,y1+y2),且2(x1+x2)2+3(y1+y2)2=6,整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在C上,即2x12+3y12=6,2x22+3y22=6.故2x1x2+3y1y2+3=0.①将y=k(x-1)代入2x2+3y2=6,并化简得(2+3k2)x2-6k2x+3k2-6=0,于是,,y1·y2=k2(x1-1)(x2-1)=.代入①解得k2=2,此时,于是y1+y2=k(x1+x2-2)=,即P(,).因此,当时,P(,),l的方程为;当时,P(,),l的方程为.(ⅱ)当l垂直于x轴时,由=(2,0)知,C上不存在点P使成立,综上,C上存在点P(,)使成立,此时l的方程.22、(12分) 解:(Ⅰ)由题设知,函数的定义域是x>-1,,且f′(x)=0有两个不同的根x1,x2,故2x2+2x+a=0的判别式Δ=4-8a>0,即,且,.①又x1>-1,故a>0.因此a的取值范围是(0,).当x变化时,与f′(x)的变化情况如下表:x (-1,x1) x1(x1,x2) x2(x2,+∞) f′(x)+ 0 - 0 +极大值极小值因此在区间(-1,x1)和(x2,+∞)上是增函数,在区间(x1,x2)上是减函数. (Ⅱ)由题设和①知<x2<0,a=-2x2(1+x2),于是f(x2)=x22-2x2(1+x2)ln(1+x2).设函数g(t)=t2-2t(1+t)ln(1+t),则g′(t)=-2(1+2t)ln(1+t).当时,g′(t)=0;当t∈(,0)时,g′(t)>0,故g(t)在区间[,0)上是增函数.于是,当t∈(,0)时,.因此.。
2009—数二真题标准答案及解析
2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-.()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为( )()A . ()B .()C .()D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23O B A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . (10)已知+1k xe dx ∞=-∞⎰,则k = .(11)1n lime sin x nxdx -→∞=⎰.(12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .(13)函数2x y x =在区间(]01,上的最小值为 .(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,则T =βα .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.(16)(本题满分10 分)计算不定积分ln(1dx +⎰(0)x >. (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2z x y∂∂∂.(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点(的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式.(21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫⎪= ⎪ ⎪-⎝⎭. (Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.2009年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.【答案】C 【解析】()3s i n x x f x xπ-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. 【答案】A【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a axg x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除,B C . 另外201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排除D .所以本题选A.(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.【答案】 D【解析】因dz xdx ydy =+可得,z zx y x y∂∂==∂∂ 2222221,0,1z z z zA B C x x y y x y∂∂∂∂== === ==∂∂∂∂∂∂又在(0,0)处,0,0z zx y∂∂==∂∂ 210AC B -=>故(0,0)为函数(,)z f x y =的一个极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰【答案】C 【解析】222211(,)(,)xxdx f x y dy dy f x y dx +⎰⎰⎰⎰的积分区域为两部分:{}1(,)12,2D x y x x y =≤≤≤≤,{}2(,)12,4D x y y y x y =≤≤≤≤-将其写成一块{}(,)12,14D x y y x y =≤≤≤≤- 故二重积分可以表示为2411(,)ydy f x y dx -⎰⎰,故答案为C.(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.【答案】 B【解析】由题意可知,()f x 是一个凸函数,即''()0f x <,且在点(1,1)处的曲率322|''|(1('))y y ρ==+,而'(1)1f =-,由此可得,''(1)2f =-在[1,2] 上,'()'(1)10f x f ≤=-<,即()f x 单调减少,没有极值点. 对于(2)(1)'()1(1,2)f f f ζζ-=<- , ∈ , (拉格朗日中值定理)(2)0f ∴ <而 (1)10f =>由零点定理知,在[1,2] 上,()f x 有零点. 故应选(B ). (6)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为( )()A . ()B .()C .()D .【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征: ①[]0,1x ∈时,()0F x ≤,且单调递减. ②[]1,2x ∈时,()F x 单调递增. ③[]2,3x ∈时,()F x 为常函数.④[]1,0x ∈-时,()0F x ≤为线性函数,单调递增. ⑤由于F(x)为连续函数结合这些特点,可见正确选项为D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32OB A O ⎛⎫⎪⎝⎭()B .**23O B A O ⎛⎫⎪⎝⎭()C .**32O A BO ⎛⎫⎪⎝⎭()D .**23O A B O ⎛⎫⎪⎝⎭【答案】 B【解析】根据CC C E *=若111,C C C CC C*--*==分块矩阵00A B ⎛⎫⎪⎝⎭的行列式22012360A AB B ⨯=-=⨯=()即分块矩阵可逆 1111000066000100B BA A AB B BBAA A**---*⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭10023613002B B AA ****⎛⎫ ⎪⎛⎫== ⎪ ⎪ ⎪⎝⎭⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭【答案】 A【解析】122312312312100(,,)(,,)110(,,)(1)001Q E αααααααααα⎡⎤⎢⎥=+==⎢⎥⎢⎥⎣⎦,即:12121212122112(1)[(1)][(1)](1)[](1)100(1)010(1)002110100100210010010110110001002001002T T TT T Q PE Q AQ PE A PE E P AP E E E ===⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . 【答案】2y x =【解析】221222ln(2)22t dy t t t t dt t ==--⋅=--2(1)1(1)1t t dxe dt --==⋅-=- 所以 2dy dx= 所以 切线方程为2y x =.(10)已知+1k xe dx ∞=-∞⎰,则k = .【答案】2-【解析】1122lim bk xkxkxb e dx e dx e k +∞+∞-∞→+∞===⎰⎰因为极限存在所以0k <210k=-2k =-(11)1n lime sin x nxdx -→∞=⎰.【答案】0【解析】令sin sin cos x x xn I e nxdx e nx n e nxdx ---==-+⎰⎰2sin cos x xn e nx nenx n I --=---所以2cos sin 1xn n nx nx I e C n -+=-++即11020cos sin lim sin lim()1xx n n n nx nx e nxdx e n --→∞→∞+=-+⎰ 122cos sin lim()110n n n n ne n n -→∞+=-+++= (12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .【答案】3-【解析】对方程xy 1y e x +=+两边关于x 求导有''1y y xy y e ++=,得'1yyy x e -=+ 对''1y y xy y e ++=再次求导可得''''''22()0y y y xy y e y e +++=,得''2''2()yyy y e y x e +=-+ (*)当0x =时,0y =,'(0)0101y e -==,代入(*)得 ''20''032(0)((0))(0)(21)3(0)y y e y e +=-=-+=-+(13)函数2x y x =在区间(]01,上的最小值为 . 【答案】2ee-【解析】因为()22ln 2xy xx '=+,令0y '=得驻点为1x e =.又()22222ln 2xxy x x x x ''=++⋅,得21120e y e e -+⎛⎫''=> ⎪⎝⎭,故1x e=为2xy x =的极小值点,此时2e y e -=,又当10,x e ⎛⎫∈ ⎪⎝⎭时,()0y x '<;1,1x e ⎛⎤∈ ⎥⎝⎦时,()0y x '>,故y 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,1e ⎛⎫ ⎪⎝⎭上递增.而()11y =,()()002022ln limlim11lim 222ln 00lim lim 1x x x xx x xx xxx x x y x e eee++→→+→++--+→→======,所以2xy x =在区间(]01,上的最小值为21ey e e -⎛⎫= ⎪⎝⎭.(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫ ⎪⎪ ⎪⎝⎭,则T =βα .【答案】2【解析】因为T αβ相似于200000000⎛⎫⎪⎪ ⎪⎝⎭,根据相似矩阵有相同的特征值,得到T αβ得特征值是2,0,0而T βα是一个常数,是矩阵T αβ的对角元素之和,则T 2002βα=++=三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )lim sin x x x x x→--+.【解析】()[][]244001ln(1tan )1cos ln(1tan )2lim lim sin sin x x x x x x x x x x→→-+--+= 22201ln(1tan )lim 2sin sin x x x x x x→-+=201ln(1tan )1lim 2sin 4x x x x →-+== (16)(本题满分10 分)计算不定积分ln(1dx +⎰(0)x >. 【解析】t =得22212,1(1)tdtx dx t t -= =--2221ln(1ln(1)1ln(1)11111dx t d t t dt t t t +=+-+=---+⎰⎰⎰而22111112()11411(1)111ln(1)ln(1)2441dt dtt t t t t t t C t =---+-++--++++⎰⎰所以2ln(1)111ln(1ln1412(1)1ln(1211ln(122t tdx Ct t tx Cx x C+++=+-+--+=++-+=+++⎰(17)(本题满分10分)设(),,z f x y x y xy=+-,其中f具有2阶连续偏导数,求dz与2zx y∂∂∂.【解析】123123zf f yfxzf f xfy∂'''=++∂∂'''=-+∂12312321112132122233313233 31122331323()()1(1)1(1)[1(1)]()()z zdz dx dyx yf f yf dx f f xf dyzf f f x f f f x f y f f f xx yf f f xyf x y f x y f∂∂∴=+∂∂''''''=+++-+∂''''''''''''''''''' =⋅+⋅-+⋅+⋅+⋅-+⋅++⋅+⋅-+⋅∂∂'''''''''''=+-++++-(18)(本题满分10分)设非负函数()y y x= ()0x≥满足微分方程20xy y'''-+=,当曲线()y y x= 过原点时,其与直线1x=及0y=围成平面区域D的面积为2,求D绕y轴旋转所得旋转体体积.【解析】解微分方程20xy y'''-+=得其通解212122,y C x C x C C=++其中,为任意常数又因为()y y x=通过原点时与直线1x=及0y=围成平面区域的面积为2,于是可得1C=111223222002()(2)()133C Cy x dx x C x dx x x==+=+=+⎰⎰从而23C=于是,所求非负函数223(0)y x x x=+ ≥又由223y x x=+ 可得,在第一象限曲线()y f x=表示为11)3x=(于是D 围绕y 轴旋转所得旋转体的体积为15V V π=-,其中5522100511)9(2393918V x dy dyy dy ππππ==⋅=+-=⎰⎰⎰395117518186V ππππ=-==. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.【解析】由22(1)(1)2x y -+-≤得2(sin cos )r θθ≤+,32(sin cos )4()(cos sin )04Dx y dxdy d r r rdr πθθθθθπ+∴-=-⎰⎰⎰⎰332(sin cos )14(cos sin )034r d πθθθθθπ⎡+⎤=-⋅⎢⎥⎣⎦⎰ 2384(cos sin )(sin cos )(sin cos )34d πθθθθθθθπ=-⋅+⋅+⎰3384(cos sin )(sin cos )34d πθθθθθπ=-⋅+⎰3344438814(sin cos )(sin cos )(sin cos )3344d πππθθθθθθπ=++=⨯+⎰83=-.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点(的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式. 【解析】由题意,当0x π-<<时,'xy y =-,即ydy xdx =-,得22y x c =-+,又(y =代入22y x c =-+得2c π=,从而有222x y π+=当0x π≤<时,''0y y x ++=得 ''0y y += 的通解为*12cos sin y c x c x =+ 令解为1y Ax b =+,则有00Ax b x +++=,得1,0A b =-=, 故1y x =-,得''0y y x ++=的通解为12cos sin y c x c x x =+- 由于()y y x =是(,)ππ-内的光滑曲线,故y 在0x =处连续于是由1(0),(0)y y c π-=± += ,故1c π=±时,()y y x =在0x =处连续 又当 0x π-<<时,有22'0x y y +⋅=,得'(0)0xy y-=-=, 当0x π≤<时,有12'sin cos 1y c x c x =-+-,得2'(0)1y c +=- 由'(0)'(0)y y -+=得210c -=,即 21c =故 ()y y x =的表达式为0cos sin ,0x y x x x x πππ⎧-<<=⎨-+-≤<⎪⎩或0cos sin ,0x y x x x x πππ-<<=+-≤<⎪⎩,又过点,22ππ⎛⎫- ⎪⎝⎭,所以0cos sin ,0x y x x x x πππ-<<=+-≤<⎪⎩.(21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.【解析】(Ⅰ)作辅助函数()()()()()()f b f a x f x f a x a b aϕ-=----,易验证()x ϕ满足:()()a b ϕϕ=;()x ϕ在闭区间[],a b 上连续,在开区间(),a b 内可导,且''()()()()f b f a x f x b aϕ-=--.根据罗尔定理,可得在(),a b 内至少有一点ξ,使'()0ϕξ=,即'()f ξ'()()0,()()()()f b f a f b f a f b a b aξ--=∴-=--(Ⅱ)任取0(0,)x δ∈,则函数()f x 满足;在闭区间[]00,x 上连续,开区间()00,x 内可导,从而有拉格朗日中值定理可得:存在()()000,0,x x ξδ∈⊂,使得()0'00()(0)x f x f fx ξ-=-……()*又由于()'lim x f x A +→=,对上式(*式)两边取00x +→时的极限可得:()()000000'''0000()00lim lim ()lim ()0x x x x x f x f f f f A x ξξξ++++→→→-====- 故'(0)f +存在,且'(0)f A +=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭(Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关. 【解析】(Ⅰ)解方程21A ξξ=()1111111111111,111100000211042202110000A ξ---------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()2r A =故有一个自由变量,令32x =,由0Ax =解得,211,1x x =-= 求特解,令120x x ==,得31x =故21101021k ξ⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中1k 为任意常数解方程231A ξξ=2220220440A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭()21111022012,2201000044020000A ξ-⎛⎫ ⎪-⎛⎫ ⎪ ⎪=--→⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭故有两个自由变量,令21x =-,由20A x =得131,0x x ==求特解21200η⎛⎫ ⎪ ⎪= ⎪ ⎪⎪⎝⎭故 321121000k ξ⎛⎫⎪⎛⎫ ⎪⎪=-+ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭ ,其中2k 为任意常数.(Ⅱ)证明:由于12121212122111121112(21)()2()(21)222210k k k k k k k k k k k k k -+--=+++-+-+-+102=≠ 故123,,ξξξ 线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+- (Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值. 【解析】(Ⅰ) 0101111a A aa ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭0110||01()1111111aaaE A aa a a λλλλλλλλ-----=-=---+---+222()[()(1)1][0()]()[()(1)2]()[22]19(){[(12)]}24()(2)(1)a a a a a a a a a a a a a a a a a λλλλλλλλλλλλλλλλ=---+--+-=---+-=--++--=-+--=--+--123,2,1a a a λλλ∴==-=+(Ⅱ) 若规范形为2212y y +,说明有两个特征值为正,一个为0.则 1) 若10a λ==,则 220λ=-< ,31λ= ,不符题意2) 若20λ= ,即2a =,则120λ=>,330λ=>,符合3) 若30λ= ,即1a =-,则110λ=-< ,230λ=-<,不符题意 综上所述,故2a =.。
2009-数二真题、标准答案及解析
(6)设函数 y = f ( x) 在区间−1,3 上的图形为:
则函数 F ( x) = x f (t ) dt 的图形为 0
( A)
(B)
(C)
(D)
【答案】 D
【解析】此题为定积分的应用知识考核,由 y = f (x) 的图形可见,其图像与 x 轴及 y 轴、
x = x0 所围的图形的代数面积为所求函数 F (x) ,从而可得出几个方面的特征:
a
a3 = −6b ,故排除 B,C .
另外,
lim
x→0
1− a cos ax −3bx2
存在,蕴含了1−
a
cos
ax
→
0
(
x
→
0)
,故
a
=
1.
排除
D
.
所以本题选 A .
(3) 设函数 z = f ( x, y) 的全微分为 dz = xdx + ydy ,则点 (0, 0)
( A) 不是 f ( x, y) 的连续点 ( B) 不是 f ( x, y) 的极值点
【解析】1 =
+ ek x dx = 2 + ekxdx = 2 lim 1 ekx b
−
0
k b→+
0
【答案】 −2
因为极限存在所以 k 0 1=0− 2
k k = −2
(11) lim 1e−x sin nxdx = n→ 0
【答案】0
【解析】令 In = e−x sin nxdx = −e−x sin nx + n e−x cos nxdx
y = t2 ln(2 − t2 )
【答案】 y = 2x
【解析】
2009—数二真题、标准答案及解析
2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-= (3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为则函数()()0x F x f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫ ⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭ ()C .**32O A BO ⎛⎫⎪⎝⎭()D .**23O A BO ⎛⎫⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且100010002T P AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( )()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . (10)已知+1k xe dx ∞=-∞⎰,则k = . (11)1n lime sin x nxdx -→∞=⎰.(12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .(13)函数2xy x =在区间(]01,上的最小值为 .(14)设αβ,为3维列向量,T β为β的转置,若矩阵Tαβ相似于200000000⎛⎫⎪ ⎪ ⎪⎝⎭,则T =βα .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.(16)(本题满分10 分)计算不定积分ln(1dx +⎰(0)x >. (17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2z x y∂∂∂.(18)(本题满分10分)设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点(的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式.(21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫⎪= ⎪ ⎪-⎝⎭.(Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.2009年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.(1)函数()3sin x x f x nx-=的可去间断点的个数为( )()A 1.()B 2. ()C 3.()D 无穷多个.【答案】C 【解析】()3s i n x x f x xπ-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. 【答案】A【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a axg x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除,B C . 另外201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排除D .所以本题选A.(3)设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.【答案】 D【解析】因dz xdx ydy =+可得,z zx y x y∂∂==∂∂ 2222221,0,1z z z zA B C x x y y x y∂∂∂∂== === ==∂∂∂∂∂∂又在(0,0)处,0,0z zx y∂∂==∂∂ 210AC B -=>故(0,0)为函数(,)z f x y =的一个极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰【答案】C 【解析】222211(,)(,)xxdx f x y dy dy f x y dx +⎰⎰⎰⎰的积分区域为两部分:{}1(,)12,2D x y x x y =≤≤≤≤,{}2(,)12,4D x y y y x y =≤≤≤≤-将其写成一块{}(,)12,14D x y y x y =≤≤≤≤- 故二重积分可以表示为2411(,)ydy f x y dx -⎰⎰,故答案为C.(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.【答案】 B【解析】由题意可知,()f x 是一个凸函数,即''()0f x <,且在点(1,1)处的曲率322|''|(1('))y y ρ==+而'(1)1f =-,由此可得,''(1)2f =-在[1,2] 上,'()'(1)10f x f ≤=-<,即()f x 单调减少,没有极值点. 对于(2)(1)'()1(1,2)f f f ζζ-=<- , ∈ , (拉格朗日中值定理)(2)0f ∴ <而 (1)10f =>由零点定理知,在[1,2] 上,()f x 有零点. 故应选(B ). (6)设函数()y f x =在区间[]1,3-上的图形为则函数()()0x F x f t dt =⎰的图形为( )()A .()B .()C .()D .【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征: ①[]0,1x ∈时,()0F x ≤,且单调递减. ②[]1,2x ∈时,()F x 单调递增. ③[]2,3x ∈时,()F x 为常函数.④[]1,0x ∈-时,()0F x ≤为线性函数,单调递增. ⑤由于F(x)为连续函数结合这些特点,可见正确选项为D .(7)设A ,B 均为2阶矩阵,**A B ,分别为A ,B 的伴随矩阵.若23A B ==,,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**32O B A O ⎛⎫⎪⎝⎭()B .**23OB A O ⎛⎫⎪⎝⎭()C .**32O A BO ⎛⎫ ⎪⎝⎭()D .**23OA B O ⎛⎫⎪⎝⎭【答案】 B【解析】根据CC C E *=若111,C C C CC C*--*==分块矩阵00A B ⎛⎫⎪⎝⎭的行列式22012360A AB B ⨯=-=⨯=()即分块矩阵可逆11110066000100B BA A AB B BBAA A **---*⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭10023613002B B AA ****⎛⎫ ⎪⎛⎫== ⎪ ⎪ ⎪⎝⎭⎪⎝⎭(8)设A P ,均为3阶矩阵,T P 为P 的转置矩阵,且100010002TP AP ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若1231223P Q ααααααα==+(,,),(,,),则TQ AQ 为( )()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭【答案】 A【解析】122312312312100(,,)(,,)110(,,)(1)001Q E αααααααααα⎡⎤⎢⎥=+==⎢⎥⎢⎥⎣⎦,即:12121212122112(1)[(1)][(1)](1)[](1)100(1)010(1)002110100100210010010110110001002001002T T TT T Q PE Q AQ PE A PE E P AP E E E ===⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 . 【答案】2y x =【解析】221222ln(2)22t dy t t t t dt t ==--⋅=--2(1)1(1)1t t dxe dt --==⋅-=- 所以 2dydx=所以 切线方程为2y x =.(10)已知+1k xe dx ∞=-∞⎰,则k = . 【答案】2-【解析】1122lim bk xkxkxb e dx e dx e k +∞+∞-∞→+∞===⎰⎰因为极限存在所以0k <210k =-2k =-(11)1n lime sin x nxdx -→∞=⎰.【答案】0 【解析】令sin sin cos xx x n I enxdx e nx n e nxdx ---==-+⎰⎰2sin cos x x n e nx ne nx n I --=---所以2cos sin 1xn n nx nx I e C n -+=-++即11020cos sin lim sin lim()1xx n n n nx nx e nxdx e n --→∞→∞+=-+⎰ 122cos sin lim()110n n n n ne n n -→∞+=-+++= (12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则22x yx=∂=∂ .【答案】3-【解析】对方程xy 1ye x +=+两边关于x 求导有''1y y xy y e ++=,得'1yyy x e-=+ 对''1yy xy y e ++=再次求导可得''''''22()0y yy xy y e y e +++=,得''2''2()yyy y e y x e +=-+ (*)当0x =时,0y =,'(0)0101y e-==,代入(*)得 ''20''032(0)((0))(0)(21)3(0)y y e y e +=-=-+=-+(13)函数2xy x =在区间(]01,上的最小值为 .【答案】2ee-【解析】因为()22ln 2xy xx '=+,令0y '=得驻点为1x e=. 又()22222ln 2xxy x x x x ''=++⋅,得21120e y e e -+⎛⎫''=> ⎪⎝⎭,故1x e=为2xy x =的极小值点,此时2e y e -=,又当10,x e ⎛⎫∈ ⎪⎝⎭时,()0y x '<;1,1x e ⎛⎤∈ ⎥⎝⎦时,()0y x '>,故y 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,1e ⎛⎫ ⎪⎝⎭上递增.而()11y =,()()002022ln limlim11lim 222ln 00lim lim 1x x x xx x xx xxx x x y x e eee++→→+→++--+→→======,所以2xy x =在区间(]01,上的最小值为21e y e e -⎛⎫= ⎪⎝⎭.(14)设αβ,为3维列向量,T β为β的转置,若矩阵Tαβ相似于200000000⎛⎫ ⎪ ⎪ ⎪⎝⎭,则T =βα .【答案】2【解析】因为T αβ相似于200000000⎛⎫⎪ ⎪⎪⎝⎭,根据相似矩阵有相同的特征值,得到T αβ得特征值是2,0,0而Tβα是一个常数,是矩阵Tαβ的对角元素之和,则T2002βα=++=三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+.【解析】()[][]244001ln(1tan )1cos ln(1tan )2lim limsin sin x x x x x x x x x x→→-+--+= 22201ln(1tan )lim 2sin sin x x x x x x →-+=201ln(1tan )1lim 2sin 4x x x x →-+== (16)(本题满分10 分)计算不定积分ln(1dx +⎰(0)x >. 【解析】t =得22212,1(1)tdtx dx t t -= =--2221ln(1ln(1)1ln(1)11111dx t d t t dt t t t +=+-+=---+⎰⎰⎰而22111112()11411(1)111ln(1)ln(1)2441dt dtt t t t t t t C t =---+-++--++++⎰⎰所以2ln(1)111ln(1ln1412(1)1ln(1211ln(122t tdx Ct t tx Cx x C+++=+-+--+=++-=+++⎰(17)(本题满分10分)设(),,z f x y x y xy=+-,其中f具有2阶连续偏导数,求dz与2zx y∂∂∂.【解析】123123zf f yfxzf f xfy∂'''=++∂∂'''=-+∂12312321112132122233313233 31122331323()()1(1)1(1)[1(1)]()()z zdz dx dyx yf f yf dx f f xf dyzf f f x f f f x f y f f f xx yf f f xyf x y f x y f∂∂∴=+∂∂''''''=+++-+∂''''''''''''''''''' =⋅+⋅-+⋅+⋅+⋅-+⋅++⋅+⋅-+⋅∂∂'''''''''''=+-++++-(18)(本题满分10分)设非负函数()y y x= ()0x≥满足微分方程20xy y'''-+=,当曲线()y y x= 过原点时,其与直线1x=及0y=围成平面区域D的面积为2,求D绕y轴旋转所得旋转体体积.【解析】解微分方程20xy y'''-+=得其通解212122,y C x C x C C=++其中,为任意常数又因为()y y x=通过原点时与直线1x=及0y=围成平面区域的面积为2,于是可得1C=111223222002()(2)()133C Cy x dx x C x dx x x==+=+=+⎰⎰从而23C=于是,所求非负函数223(0)y x x x=+ ≥又由223y x x=+ 可得,在第一象限曲线()y f x=表示为11)3x=(于是D围绕y轴旋转所得旋转体的体积为15V Vπ=-,其中5522100511)9(2393918V x dy dyy dyππππ==⋅=+-=⎰⎰⎰395117518186V ππππ=-==. (19)(本题满分10分)计算二重积分()Dx y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x =-+-≤≥.【解析】由22(1)(1)2x y -+-≤得2(sin cos )r θθ≤+,32(sin cos )4()(cos sin )04Dx y dxdy d r r rdr πθθθθθπ+∴-=-⎰⎰⎰⎰332(sin cos )14(cos sin )034r d πθθθθθπ⎡+⎤=-⋅⎢⎥⎣⎦⎰ 2384(cos sin )(sin cos )(sin cos )34d πθθθθθθθπ=-⋅+⋅+⎰3384(cos sin )(sin cos )34d πθθθθθπ=-⋅+⎰3344438814(sin cos )(sin cos )(sin cos )3344d πππθθθθθθπ=++=⨯+⎰83=-.(20)(本题满分12分)设()y y x =是区间-ππ(,)内过点(的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=.求()y x 的表达式.【解析】由题意,当0x π-<<时,'x y y =-,即ydy xdx =-,得22y x c =-+,又(y =代入22y x c =-+得2c π=,从而有222x y π+=当0x π≤<时,''0y y x ++=得 ''0y y += 的通解为*12cos sin y c x c x =+令解为1y Ax b =+,则有00Ax b x +++=,得1,0A b =-=, 故1y x =-,得''0y y x ++=的通解为12cos sin y c x c x x =+- 由于()y y x =是(,)ππ-内的光滑曲线,故y 在0x =处连续于是由1(0),(0)y y c π-=± += ,故1c π=±时,()y y x =在0x =处连续 又当 0x π-<<时,有22'0x y y +⋅=,得'(0)0xy y-=-=, 当0x π≤<时,有12'sin cos 1y c x c x =-+-,得2'(0)1y c +=- 由'(0)'(0)y y -+=得210c -=,即 21c =故 ()y y x =的表达式为0cos sin ,0x y x x x x πππ⎧-<<=⎨-+-≤<⎪⎩或0cos sin ,0x y x x x x πππ-<<=+-≤<⎪⎩,又过点,22ππ⎛⎫- ⎪⎝⎭,所以0cos sin ,0x y x x x x πππ-<<=+-≤<⎪⎩.(21)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(),a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-;(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.【解析】(Ⅰ)作辅助函数()()()()()()f b f a x f x f a x a b aϕ-=----,易验证()x ϕ满足:()()a b ϕϕ=;()x ϕ在闭区间[],a b 上连续,在开区间(),a b 内可导,且''()()()()f b f a x f x b aϕ-=--.根据罗尔定理,可得在(),a b 内至少有一点ξ,使'()0ϕξ=,即'()f ξ'()()0,()()()()f b f a f b f a f b a b aξ--=∴-=--(Ⅱ)任取0(0,)x δ∈,则函数()f x 满足;在闭区间[]00,x 上连续,开区间()00,x 内可导,从而有拉格朗日中值定理可得:存在()()000,0,x x ξδ∈⊂,使得()0'00()(0)x f x f fx ξ-=-……()*又由于()'lim x f x A +→=,对上式(*式)两边取00x +→时的极限可得:()()000000'''0000()00lim lim ()lim ()0x x x x x f x f f f f A x ξξξ++++→→→-====- 故'(0)f +存在,且'(0)f A +=.(22)(本题满分11分设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭(Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ;(Ⅱ)对(Ⅰ)中的任一向量23,ξξ,证明:123,,ξξξ线性无关. 【解析】(Ⅰ)解方程21A ξξ=()1111111111111,111100000211042202110000A ξ---------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()2r A =故有一个自由变量,令32x =,由0Ax =解得,211,1x x =-= 求特解,令120x x ==,得31x =故21101021k ξ⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中1k 为任意常数解方程231A ξξ=2220220440A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭()21111022012,2201000044020000A ξ-⎛⎫ ⎪-⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭故有两个自由变量,令21x =-,由20A x =得131,0x x ==求特解21200η⎛⎫⎪ ⎪= ⎪ ⎪⎪⎝⎭故 321121000k ξ⎛⎫ ⎪⎛⎫ ⎪ ⎪=-+ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭ ,其中2k 为任意常数.(Ⅱ)证明:由于12121212122111121112(21)()2()(21)22221k k k k k k k k k k k k k -+--=+++-+-+-+102=≠ 故123,,ξξξ 线性无关.(23)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+- (Ⅰ)求二次型f 的矩阵的所有特征值;(Ⅱ)若二次型f 的规范形为2212y y +,求a 的值.【解析】(Ⅰ) 0101111a A aa ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭0110||01()1111111aaaE A aa a a λλλλλλλλ-----=-=---+---+222()[()(1)1][0()]()[()(1)2]()[22]19(){[(12)]}24()(2)(1)a a a a a a a a a a a a a a a a a λλλλλλλλλλλλλλλλ=---+--+-=---+-=--++--=-+--=--+--123,2,1a a a λλλ∴==-=+(Ⅱ) 若规范形为2212y y +,说明有两个特征值为正,一个为0.则1) 若10a λ==,则 220λ=-< ,31λ= ,不符题意 2) 若20λ= ,即2a =,则120λ=>,330λ=>,符合3) 若30λ= ,即1a =-,则110λ=-< ,230λ=-<,不符题意 综上所述,故2a =.。
大学《《高等数学Ⅱ》考试大纲汇总
大学《《高等数学Ⅱ》考试大纲汇总第一部分:总要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。
应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
第二部分:考试内容一、函数、极限与连续(一)函数1.知识范围(1)函数的概念:函数的定义、函数的表示法、分段函数、隐函数。
(2)函数的简单性质:单调性、奇偶性、有界性、周期性。
(3)反函数:反函数的定义,反函数的图象。
(4)函数的四则运算与复合运算。
(5)基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。
(6)初等函数2. 要求(1)理解函数的概念,会求函数的定义域、表达式及函数值。
了解分段函数的概念。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数)(x f y =与其反函数)(1x f y -=之间的关系(定义域、值域、图象),会求单调函数的反函数。
(4)理解和掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的简单性质及其图象。
(6)了解初等函数的概念。
(7)会建立简单实际问题的函数关系。
(二)极限1.知识范围(1)数列极限的概念:数列,数列的极限。
(2)数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列的极限存在定理。
(3)函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
大学高等数学第二册复习资料
大学高等数学第二册复习资料第一章一元函数微分学1. 函数的极限1.1 无穷大与无穷小在微积分中,我们常常需要研究函数在某一点附近的变化情况。
为此,引入了极限的概念。
在这一小节中,我们将学习无穷大与无穷小的定义以及它们之间的关系。
1.2 极限的定义极限的定义是微积分的基础,我们通过一些具体的例子来介绍极限的概念和求解方法。
1.3 一些重要的极限在微积分的应用中,有一些特殊的极限需要我们掌握。
这些极限在求解一些复杂问题时经常会出现,并且在证明一些定理时也起到关键作用。
2. 导数与微分2.1 导数的概念导数是一元函数微分学中的重要概念,它描述了函数在某一点的变化率。
2.2 导数的计算我们将介绍一些计算导数的方法,例如使用定义计算导数、使用基本导数公式以及利用导数的运算法则等。
2.3 高阶导数和隐函数求导在实际问题中,我们常常需要求解高阶导数或者对隐函数进行求导。
这些都是导数计算的一些扩展应用。
3. 微分学的基本定理与应用3.1 微分学的基本定理微分学的基本定理是微积分中的一些重要定理,它们建立了微积分的基础和框架。
3.2 微分学的应用微积分的应用非常广泛,例如在物理学、工程学、经济学等领域,都会用到微积分的相关概念和方法。
第二章一元函数积分学1. 不定积分与积分的定义1.1 不定积分的概念不定积分是微积分的重要内容,它是导数运算的逆运算。
1.2 积分的定义与性质我们将介绍积分的几何意义、定义和一些基本性质,例如积分的线性性、积分中值定理等。
2. 定积分2.1 定积分的概念定积分是微积分中的重要工具,在实际问题中有着广泛的应用。
2.2 定积分的计算我们将介绍一些定积分的计算方法,例如分部积分法、换元积分法、定积分的性质等。
2.3 定积分的应用定积分在几何学、物理学等领域有着广泛的应用,例如计算曲线的长度、面积等。
3. 微积分基本定理与应用3.1 微积分基本定理微积分基本定理是微积分中的重要定理,它将微积分的导数和积分联系起来。
2009届高考数学第二轮重点板块专题复习
2009届高考数学第二轮重点板块专题复习一.集合、简易逻辑一.考试内容集合、子集、补集、交集、并集、逻辑联结词、四种命题、充分条件和必要条件.二.考试要求 (1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.三.基础回顾1. 元素与集合的关系,.2.德摩根公式.3.包含关系4.容斥原理5.集合的子集个数共有 个;真子集有–1个;非空子集有 –1个;非空的真子集有–2个.6.真值表pq非pp或qp且q真真假真真真假假真假假真真真假假假真假假7.常见结论的否定形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有()个小于不小于至多有个至少有()个对所有,成立存在某,不成立或且对任何,不成立存在某,成立且或8.四种命题的相互关系9.充要条件(1)充分条件:若,则是充分条件.(2)必要条件:若,则是必要条件.(3)充要条件:若,且,则是充要条件.四.基本方法和数学思想1.必须弄清集合的元素是什么,是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ;2.数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;3.一个语句是否为命题,关键要看能否判断真假,陈述句、反诘问句都是命题,而祁使句、疑问句、感叹句都不是命题;4.判断命题的真假要以真值表为依据。
原命题与其逆否命题是等价命题,逆命题与其否命题是等价命题,一真俱真,一假俱假,当一个命题的真假不易判断时,可考虑判断其等价命题的真假;5.判断命题充要条件的三种方法:(1)定义法;(2)利用集合间的包含关系判断,若,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;(3)等价法:即利用等价关系判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法;6.(1)含n个元素的集合的子集个数为2n,真子集(非空子集)个数为2n-1;(2)(3)五.典型高考题1.设为全集,是的三个非空子集,且,则下面论断正确的是(A)(B)(C)(D)2.把下面不完整的命题补充完整,并使之成为真命题:若函数的图象与的图象关于对称,则函数= 。
【专升本】2009年高等数学(二)及参考答案
2009年成人高等学校专升本招生全国统一考试高等数学(二)答案必须答在答题卡上的指定位置,答在试卷上无效.......。
一、 选择题:1~10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上.............。
1. 2tan(1)lim 1x x x →-=-A. 0B. tan1C. 4πD. 22. 设2sin ln 2y x x =++,则y '=A. 2sin x x +B. 2cos x x +C.12cos 2x x ++ D. 2x3. 设函数()ln x f x e x =,则(1)f '=A. 0B. 1C. eD.2e4. 函数()f x 在[0,2]上连续,且在(0,2)内()0f x '>,则下列不等式成立的是A. (0)(1)(2)f f f >>B. (0)(1)(2)f f f <<C. (0)(2)(1)f f f <<D. (0)(2)(1)f f f >>5. (2)x x e dx +=⎰A. 2x x e C ++B. 22x x e C ++C. 2x x xe C ++D. 22x x xe C ++6. A.B. C. 4π D. 07. 若22()x x f x e dx e C =+⎰,则()f x =A. 2xB. 2xC. 2x eD. 18. 设函数tan()z xy =,则zx ∂=∂ A. 2cos ()xxy - B. 2cos ()xxy C. 2cos ()y xy D.2cos ()yxy -9. 设函数()z f u =,22u x y =+且()f u 二阶可导,则2zx y ∂=∂∂A. 4()f u ''B. 4()xf u ''C. 4()yf u ''D.4()xyf u ''10. 任意三个随机事件,,A B C 中至少有一个发生的事件可表示为A. A B CB. A B CC. A B CD.A B C二、 填空题:11~20小题,每小题4分,共40分。
2009年普通高等学校招生全国统一考试数学(理科)考试大纲的说明(广东卷)
2009年普通高等学校招生全国统一考试数学(理科)考试大纲的说明(广东卷)Ⅰ.命题指导思想坚持“有助于高校科学公正地选拔人才,有助于推进普通高中课程改革,实施素质教育”的基本原则,适当体现普通高中课程标准的基本理念,以能力立意,将知识、能力和素质融为一体,全面检测考生的数学素养、发挥数学作为主要基础学科的作用,考察考生对中学数学的基础知识、基本技能的掌握程度,考查考生对数学思想方法和数学本质的理解水平,以及进入高等学校继续学习的潜能。
Ⅱ.考试内容与要求一、考核目标与要求1. 知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能。
各部分知识的整体要求以及其定位参照《课程标准》相应模块的有关说明。
对知识的要求依次是了解、理解、掌握三个层次。
(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关问题中识别和认识它。
(2)理解:要求对所列知识内容有较深刻的理性认识,知道之所见的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力。
(3)掌握:要求能对所列的知识内容能够推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。
这一层次涉及的主要行为动词有:描述,说明,表达,推测,想象,比较,判别,初步应用等。
2. 能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能以及应用意识和创新意识。
(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地解释揭示问题的本质。
2009年高考全国卷II数学(理科)试题及参考答案
e. 询问法
23
观察法
案例:奇怪的客人 一次,一个美国家庭住进了一位日本客人。奇怪的 是,这位日本人每天都在做笔记,记录美国人居家生活 的各种细节,包括吃什么食物,看什么电视节目等。一 个月后,日本人走了。不久丰田公司推出了针对当今美 国家庭需求而设计的物美价廉的旅行车。如美国男士喜 欢喝玻璃瓶装饮料而非纸盒装的饮料,日本设计师就专 门在车内设计了能冷藏并能安全防止玻璃瓶破碎的柜子。 直到此时,丰田公司才在报纸上刊登了他们对美国家庭 的研究报告,同时向收留日本人的家庭表示感谢。
调查 什么?
如何 调查?
知道调查什么比知道如何调查更重要
16
大学生网购现状与购买决策风险 实证研究
大学生毕业后会成为消费的 中坚力量,研究高校学生的网上 购买行为及其感知风险,对于企 业制定网络营销策略及战略营销 规划,具有一定的参考价值。
17
中法奢侈品消费者行为比较分析 与实证研究
结合中法两国奢侈品消费市场的现状, 从分析奢侈品本身的存在和消费的社会意义 入手,通过对中国社会文化历史的溯源和更
是 非 法
多 项 选 择 法
李 克 量 表 法
语 义 极 差 法
重 要 量 表 法
34
开放式问卷:
自 由 格 式
填 充 式
联 想 式
图 示 式
35
• 你喜欢什么品牌的mp3?
• 你喜欢的mp3品牌是---------------三星 索尼 歌美 纽曼 爱国者
• 你看到美特斯邦威能想起什么?
36
你喜欢喜之郎果冻吗?
31
五、调查问卷设计
32
问卷构成
1、问卷的开头 • 问候语 • 填表说明 • 问卷编号 2、问卷的正文 • 搜集资料部分 • 被调查者的有关背景资料 • 编码设计 3、问卷的结尾 • 可以设置开放题,征询被调查者的意见、感受, 或是记录调查情况,也可以是感谢语以及其他补 充说明。
2009数学二考纲
2009数学二大纲高等数学一. 函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin 1lim 1,lim (1)x x x xe x x →→∞=+=函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2. 了解函数的有界性、单调性、周期性和奇偶性。
3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4. 掌握基本初等函数的性质及其图形,了解初等函数的概念。
5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系。
6. 掌握极限的性质及四则运算法则。
7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
二. 一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2009年普通高校招生统一考试全国2卷——数学(文)全解全析
2009年普通高校招生统一考试全国2卷——数学(文)全解全析1.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7} 则U C M N ⋃=()A {5,7}B {2,4}C {2,4,8}D {1,3,5,7} 解析:集合的并补运算 答案:C2.函数0)y x =≤的反函数是A 2(0)y x x =≥B 2(0)y x x =-≥C 2(0)y x x =≤D 2(0)y x x =-≤ 解析:反函数概念 答案:B 3.函数22log 2xy x-=+的图像 A 关于原点对称 B 关于直线y x =-对称 C 关于y 轴对称 D 关于直线y x =对称 解析:函数奇偶性及对数式定义域及运算 答案:A4.3.已知 ABC 中,cotA=125-,则cosA= (A )1213 (B )513 (C )513- (D)1213-解析:同角三角函数基本关系并注意所在象限的符号 答案:D5.已知正四棱柱1111ABCD A B C D -中,12AA AB =,E 为1AA 中点,则异面直线BE 与1CD 所成角的余弦值为(A (B) 15 (C) (D) 35解析:平移成三角形用余弦定理解,或建立坐标系解,注意线线角不大于900答案:C6.已知向量(2,1)a =,10a b ∙=,||a b +=则b =(A (B) (C) 5 (D) 25答案:C解析:将||a b +=平方即可7.2lg ,(lg ),a e b e c ===(A) a >b >c (B) a >c >b (C) c >a >b (D) c >b >a解析:将lg lg 20.3e =看作判断即可 答案:B8.双曲线22163x y -=的渐近线与圆222(3)(0)x y r r -+=>相切,则r=AB 2C 3D 6解析:联立消y 得x 的一元二次方程,由判别式为0,得 答案:A9.若将函数tan()(0)4y x πωω=+>的图像向右平移6π个单位长度后,与函数 tan()6y x πω=+的图像重合,则ω的最小值为(A )16 (B) 14 (C) 13 (D) 12解析:由646x x k πππωωπ-+=++()可得答案:D10.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有(A )6种 (B )12种 (C )30种 (D )36种解析:由222444c c c -得 答案:C11.已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若2FA FB =,则k=(A )13 (B) 3(C) 23 (D) 3 解析:由一元二次根系关系出1212,x x x x +,由抛物线定义出1222(2)x x +=+,三式联立得k答案:D12.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标 ∆“”的面的方位是(A )南 (B )北 (C )西 (D ) 解析:空间想象几何体还原能力 答案:B13.设等比数列{}n a 的前n 项和为n s .若163,41,4a S S ===则a . 解析:由条件得q 3=3,所以4133a =⨯= 答案:314.4(的展开式中33x y 的系数为 .解析:224(1)c -答案:615.已知圆O :225x y +=和点A (1,2),过点A 且与圆O 相切的直线与两坐标轴围成的三角形的面积为解析:由切线方程 得横、纵截距分别为5和52,得面积为15255224⨯⨯= 答案:25416.设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45角的平面截球O 的表面得到圆C.若圆C 的面积等于74π,则球O 的表面积等于 . 解析:由小圆面积得小圆的274r =,由222()2()2R Rr =-得22R =,所以248S R ππ==答案:8π17.17.(本小题满分10分) (注意:在试题卷上作答无效.........) 等差数列{}n a 中,374616,0a a a a =-+=,求数列{}n a 的前n 项和S n32461111116,0d,(2)(6)16884022a a a a a d a d a a a d d d =-+=++=-=-=⎧⎧⎧⎨⎨⎨+===-⎩⎩⎩解:由,设公差为则解得或122*(1)2S 9S 9)n n n n n S na d n n n n n N -=+=-=-+∈所以由得或(18.(本小题满分12分) (注意:在试题卷上作答无效.........) 设ABC 的内角A 、B 、C 的对边长分别为a 、b 、c 23cos()cos ,2A CB b ac -+==求B 答案:0602220sin sin sin cos()cos cos sin sin cos()cos cos sin sin 3cos()cos 2sin sin 2sin 2sin 3cos B cos A-C 02B B 60b ac B AC A C A C A C A C A C A C A C B A C B B =⇒=-=+⎧⎨+=-⎩⇒-+===⇒==-=解:由又()〉故为锐角,所以19.本小题满分12分)(注意:在试题卷上作答无效.........) 如图,直三棱柱ABC —A 1B 1C 1 中,AB AC ⊥,D 、E 分别为AA 1、BC 1的中点DE ⊥平面1BCC证明:AB=AC(1) 设二面角A-BD-C 为600,求1B C 与平面BCD 所成角的大小1111011BC F EF AF WEI ADEFDE BCC AF BCC AF BC BF=CF AB=AC (2)AC=AB 1AA 2x AG BD G,CA ABB CG CG BD ACCGA 60tan AGAA 2A CGA x ⊥⊥⊥==⊥⊥⊥∠==∠===()证明:取中点,连、, 依题意有矩形 因为面,所以面 所以,又,所以解:设, 作于则 依题意有面,连,则 所以,由得 解得所以以为11AB AC AA BD -10BC -110n BD x z 0n x,y,z),,2n BC x y 0n CB 1-1==⎧⋅=-+=⎪=⎨⎪⋅=-+=⎩==坐标原点,、、分别为x 、y 、z 轴正方向建系,则(,(,,)设(且取又(,011011cos n,CB n,CB 60,2B C BCD 30<>=<>= 于是可得,所以其余角即为所求,所以与面所成的角的大小为 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省2009年普通高校“2 + 2 ”选拔联考科目考试大纲《高等数学》考试大纲考试要求适用专业:“2 + 2 ”招生文理各专业《高等数学》考试大纲包含微积分、线性代数和概率论三个部分。
考试的具体要求依次为了解、理解和掌握、灵活和综合运用三个层次。
了解:要求对所列知识的含义有基本的认识,知道这一知识内容是什么,并在有关的问题中识别它。
理解和掌握:要求对所列知识内容有较深刻的理论认识,能够利用知识解决有关问题。
灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题。
大纲内容《微积分》部分一、函数、极限、连续考试内容:函数的概念及其表示法/函数的有界性、单调性、周期性和奇偶性/反函数、复合函数、隐函数、分段函数/基本初等函数的性质及图形/初等函数/应用问题的函数关系的建立/数列极限与函数极限的概念/函数的左极限和右极限/无穷小和无穷大的概念及其关系/无穷小的基本性质及无穷小的比较/极限四则运算/两个重要极限/函数连续的概念/函数间断点的类型/初等函数的连续性/闭区间上连续函数的性质考试要求:1.理解函数的概念,掌握函数的表示法,会建立应用问题中的函数关系式。
2.理解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数、反函数、隐函数和分段函数的概念。
4.掌握基本初等函数的性质及其图形,理解初等函数的概念。
5.了解数列极限和函数极限(包括左、右极限)的概念以及函数极限与左、右极限之间的关系。
6.掌握极限存在时函数的性质与函数极限的四则运算和复合运算法则。
掌握利用两个重要极限求极限的方法。
7.理解无穷小、无穷大的概念和基本性质,掌握无穷小的阶的比较方法。
8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值与最小值定理和介值定理)并掌握应用这些性质进行相关证明题论证的方法。
二、一元函数微分学考试内容导数和微分的概念/导数的几何意义/函数的可导性与连续性之间的关系/导数的四则运算法则/基本初等函数的导数/复合函数的求导法则/反函数和隐函数的求导法则/高阶导数/某些简单函数的n 阶导数/微分中值定理及其应用/洛必达法则/函数单调性/函数的极值/函数图形的凹凸性、拐点/函数斜渐近线和铅直渐近线/函数图形的描绘/函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义,会求平面曲线的切线方程。
2. 掌握用定义法求函数导数值;熟练掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;熟练掌握反函数与隐函数求导法则以及对数求导法则。
3.了解高阶导数的概念,会求二阶、三阶导数及简单函数的n 阶导数。
4.会求分段函数在分段点上的一阶导数值。
5.理解微分的概念,导数与微分之间的关系。
6.理解罗尔中值定理、拉格朗日中值定理、柯西中值定理的条件和结论,掌握这三个定理的应用及相关证明题论证的方法。
8.熟练掌握洛必达法则求不定式极限的方法。
9. 熟练掌握函数单调性的判别方法及其应用,熟练掌握函数极值、最大值和最小值的求法(含应用题)。
10. 熟练掌握函数曲线凹凸性和拐点的判别方法,以及函数曲线的斜渐近线和铅直渐近线的求法。
11.掌握函数作图的基本步骤和方法,会作某些简单函数的图形。
三、一元函数积分学考试内容原函数与不定积分的概念/不定积分的基本性质/基本积分公式/不定积分的换元积分法和分部积分法/定积分的概念和基本性质/积分中值定理/变上限积分函数及其导数/牛顿一莱布尼茨公式/定积分的换元积分法和分部积分法/广义积分的概念和计算/定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式;熟练掌握计算不定积分的换元积分法和分部积分法。
2.了解定积分的概念和基本性质。
熟练掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法。
熟练掌握变上限积分函数的求导公式和含有此类函数的复合求导公式。
4.掌握利用定积分计算平面图形的面积和绕x轴、绕y轴而成的旋转体体积的方法,会利用定积分计算函数的平均值。
5.了解广义积分收敛与发散的概念和条件,掌握计算广义积分的换元积分法和分部积分法。
四、多元函数微积分学考试内容多元函数的概念/二元函数的几何意义/二元函数的极限和连续的概念/多元函数偏导数和全微分/全微分存在的必要条件和充分条件/多元复合函数、隐函数的求导法/二阶偏导数/二元函数的二阶泰勒公式/多元函数极值和条件极值/拉格朗日乘数法/多元函数的最大值和最小值问题及其简单应用/二重积分的概念及性质/二重积分的计算考试要求1、理解多元函数的概念,理解二元函数的几何意义。
2、理解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。
3、理解多元函数偏导数和全微分的概念,会求全微分。
4、熟练掌握多元复合函数一阶、二阶偏导数的求法。
5、掌握二元隐函数的求导法则。
6、了解二元函数的二阶泰勒公式。
7、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件和充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单二元函数的最大值和最小值,熟练掌握求解无条件最值或条件最值应用问题的方法。
8、理解二重积分的概念,了解二重积分的性质。
9、熟练掌握二重积分的计算方法(直角坐标、极坐标)。
五、无穷级数考试内容常数项级数的收敛与发散的概念/收敛级数的概念/级数和的概念/级数的基本性质与收敛的必要条件/几何级数与P级数及其收敛性/正项级数收敛性的判别法/交错级数与莱布尼茨定理/任意项级数的绝对收敛与条件收敛/函数项级数的收敛域与和函数的概念/函数及其收敛半径、收敛区间(指开区间)和收敛域/幂级数的和函数/幂级数在其收敛区间内的基本性质/简单幂级数的和函数的求法/初等函数的幂级数展开式。
考试要求1、理解常数项级数收敛、发散以及收敛级数的和概念,掌握级数的基本性质及收敛的必要条件。
2、掌握几何级数与P级数的收敛与发散的条件。
3、掌握正项级数收敛性的比较判别法和比值判别法。
4、掌握交错级数的莱布尼茨判别法。
5、掌握任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与收敛的关系。
6、了解函数项级数的收敛域及和函数的概念。
7、理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。
8、了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在收敛区间内的和函数,并由此求出常数项级数的和。
9、了解函数展开为泰勒级数的必要条件。
10、掌握α的麦克劳林展开式。
会用它们将一些简单函数间接展开成幂级数。
六、常微分方程考试内容常微分方程的基本概念/变量可分离的微分方程/齐次微分方程/一阶线性微分方程/伯努方程/线性微分方程解的性质及解的结构定理/二阶常系数齐次线性微分方程/简单的二阶常系数非齐次线性微分方程/微分方程的简单应用。
考试要求1、了解微分方程及其解、阶、通解、初始条件和特解等概念。
2、掌握变量可分离的微分方程及一阶线性微分方程的解法。
3、掌握齐次微分方程、伯努利方程的解法。
4、理解线性微分方程解的性质及解的结构定理。
5、掌握二阶常系数齐次线性微分方程的解法。
6、会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程。
《线性代数》部分一、行列式考试内容行列式的概念和基本性质/ 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质。
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式。
二、矩阵考试内容矩阵的概念/ 矩阵的线性运算/ 矩阵的乘法/ 方阵的幂/ 方阵乘积的行列式/ 矩阵的转置/ 逆矩阵的概念和性质/ 矩阵可逆的充分必要条件/ 伴随矩阵/ 矩阵的初等变换/ 初等矩阵/ 矩阵的秩/ 矩阵的等价/ 分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质。
2.掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式。
3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
4.掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,熟练掌握用初等变换求矩阵的秩和逆矩阵的方法。
5.了解分块矩阵及其运算。
三、向量考试内容向量的概念/ 向量的线性组合和线性表示/ 向量组的线性相关与线性无关/ 向量组的极大线性无关组/ 等价向量组/ 向量组的秩/ 向量组的秩与矩阵的秩之间的关系/ 线性无关向量组的正交规范化方法/ 规范正交基/ 正交矩阵及其性质考试要求理解n维向量、向量的线性组合与线性表示的概念。
理解向量组线性相关、线性无关的定义,理解向量组线性相关、线性无关的有关性质并会对向量组进行线性相关、线性无关的判别。
了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。
了解向量组等价的概念,以及向量组的秩与矩阵秩的关系。
掌握线性无关向量组正交规范化的施密特方法。
了解正交矩阵的概念,以及它们的性质。
四、线性方程组考试内容线性方程组的克莱姆法则/ 齐次线性方程组有非零解的充分必要条件/ 非齐次线性方程组有解的充分必要条件/ 线性方程组解的性质和解的结构/ 齐次线性方程组的基础解系和通解/ 非齐次线性方程组的通解考试要求会用克莱姆法则。
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。
3.理解齐次线性方程组的基础解系、通解的概念,熟练掌握齐次线方程组的基础解系和通解的求法。
4.理解非齐次线性方程组解的结构及通解的概念,熟练掌握非齐次线方程组通解的求法。
5.掌握用初等行变换求解线性方程组的方法。
五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质/ 相似变换、相似矩阵的概念及性质/ 矩阵可相似对角化的充分必要条件及相似对角矩阵/ 实对称矩阵的特征值、特征向量及相似对角矩阵考试要求理解矩阵的特征值和特征向量的概念及性质,掌握求矩阵的特征值和特征向量的方法。
理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为与之相似的对角矩阵的方法。
了解实对称矩阵的特征值和特征向量的性质。
六、二次型考试内容二次型及其矩阵表示/ 合同变换与合同矩阵/ 二次型的秩/ 惯性定理/二次型的标准型和规范形/ 用正交变换和配方法化二次型为标准形/ 二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换和合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理。