二次函数的图像和性质

合集下载

二次函数的图像及性质

二次函数的图像及性质

与对数函数的比较
值域:二次函数值域为全体实 数,而对数函数值域为实数加 一个常数
图像:二次函数图像为抛物线, 而对数函数图像为单调递增或 递减的曲线
定义域:二次函数定义域为全 体实数,而对数函数定义域为 正实数
性质:二次函数具有对称性, 而对数函数具有反函数性质
汇报人:
性质:二次函数有最小 值或最大值,反比例函 数在x>0时单调递减, 在x<0时单调递增。
应用:二次函数在数学、 物理等领域有广泛应用, 反比例函数在解决一些 实际问题时也很有用。
与指数函数的比较
开口方向:二次函数开口向上或向下,指数函数开口向右 顶点:二次函数有顶点,指数函数无顶点 函数值:二次函数有最大值或最小值,指数函数无最大值或最小值 图像:二次函数图像是抛物线,指数函数图像是指数曲线
开口变化规律
二次函数的开口方向由系数a决定,a>0时开口向上,a<0时开口向下。
二次函数的开口大小由系数a和b共同决定,a的绝对值越大,开口越小;b的绝对值越大,开口 越大。
二次函数的对称轴为x=-b/2a,对于开口向上的函数,对称轴左侧函数值随x的增大而减小;对 于开口向下的函数,对称轴左侧函数值随x的增大而增大。
图像的对称性
二次函数的对称中心是(k,0)
二次函数的顶点坐标是(h,k)
二次函数的对称轴是x=h
二次函数的开口方向由a决定, a>0向上开口,a<0向下开口
与一次函数的比较
函数表达式:二次函数的一般形式 为y=ax^2+bx+c,一次函数的一 般形式为y=kx+b
开口方向:二次函数的开口方向由 a的符号决定,一次函数的图像是 一条直线,没有开口方向

二次函数的图像和性质

二次函数的图像和性质

二次函数的图像和性质二次函数是数学中的一个重要概念,它在中学数学中占据着重要的地位。

本文将从二次函数的图像和性质两个方面进行论述,旨在帮助中学生和他们的父母更好地理解和应用二次函数。

一、二次函数的图像二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,a不等于0。

我们先来讨论二次函数的图像。

1. 开口方向二次函数的图像可以是开口向上的,也可以是开口向下的。

当a大于0时,二次函数的图像开口向上;当a小于0时,二次函数的图像开口向下。

例如,考虑函数f(x) = x^2 - 2x + 1和g(x) = -x^2 + 2x + 1,它们的图像分别如下所示:(插入图片:开口向上和开口向下的二次函数图像)2. 对称轴和顶点二次函数的图像总是关于一个垂直于x轴的直线对称的。

这条直线称为二次函数的对称轴,它的方程可以通过求解二次函数的x坐标的平方项系数的相反数除以2倍的平方项系数得到。

对称轴上的点称为二次函数的顶点,它的横坐标和纵坐标可以通过代入对称轴的方程求解得到。

例如,考虑函数f(x) = -2x^2 + 4x - 1,它的对称轴方程为x = -b/2a = -4/(2*(-2))= 1。

代入对称轴方程可以求得顶点的坐标为(1, -3)。

3. 判别式和根的性质二次函数的判别式可以通过求解一元二次方程的判别式得到,它的表达式为Δ = b^2 - 4ac。

判别式的正负决定了二次函数的根的性质。

当判别式大于0时,二次函数有两个不相等的实根;当判别式等于0时,二次函数有两个相等的实根;当判别式小于0时,二次函数没有实根,但有两个共轭复根。

例如,考虑函数f(x) = x^2 - 2x + 1,它的判别式为Δ = (-2)^2 - 4*1*1 = 0。

由于判别式等于0,该二次函数有两个相等的实根x = 1。

二、二次函数的性质除了图像外,二次函数还有一些重要的性质,我们将在下面进行讨论。

1. 单调性和极值点二次函数的单调性是由二次函数的开口方向决定的。

二次函数的图像与性质

二次函数的图像与性质

二次函数的图象与性质知识要点概述1、二次函数的定义:如果y=ax2+bx+c(a、b、c为常数,a≠0),那么y叫x的二次函数.2、二次函数的图象:二次函数y=ax2+bx+c的图象是一条抛物线.3、二次函数的解析式有下列三种形式:(1)一般式:y=ax2+bx+c(a≠0);(2)顶点式:y=a(x-h)2+k(a≠0);)(x-x2) (a≠0),这里x1,x2是抛物线与x轴两个交点的横坐标.(3)交点式:y=a(x-x1确定二次函数的解析式一般要三个独立条件,灵活地选用不同方法求出二次函数的解析式是解与二次函数相关问题的关键.4、抛物线y=ax2+bx+c中系数a、b、c的几何意义抛物线y=ax2+bx+c的对称轴是,顶点坐标是,其中a的符号决定抛物线的开口方向.a>0,抛物线开口向上,a<0,抛物线开口向下;a,b同号时,对称轴在y轴的左边;a,b异号时,对称轴在y轴的右边;c确定抛物线与y轴的交点(0,c)在x轴上方还是下方.5、抛物线顶点式y=a(x-h)2+k(a≠0)的特点(1)a>0,开口向上;a<0,开口向下;(2)x=h为抛物线对称轴;(3)顶点坐标为(h,k).依顶点式,可以很快地求出二次函数的最值.当a>0时,函数在x=h处取最小值y=k;当a<0时,函数在x=h处取最大值y=k.6、抛物线y=a(x-h)2+k与y=ax2的联系与区别抛物线y=a(x-h)2+k与y=ax2的形状相同,位置不同.前者是后者通过“平移”而得到.要想弄清抛物线的平移情况,首先将解析式化为顶点式.7、抛物线y=ax2+bx+c与x轴的两个交点为A、B,且方程ax2+bx+c=0的两根为x1,x2,则有A(x1,0),B(x2,0).典型剖析例1、已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①a+b+c<0;②a-b+c>0;③abc>0;④b=2a.其中正确结论的个数是()A.4B.3C.2D.1解:选A.令x=1及由图象知a+b+c<0,①正确;令x=-1及由图象a-b+c>0,②正确;由对称轴知,④正确;由④知a、b同号且抛物线与y轴的交点在x轴上方,即c>0,故③正确.所以选A.例2、二次函数y=x2+(a-b)x+b的图象如图所示.那么化简的结果是____________.解:原式=-1.∵图象与y轴交点在x轴上方,∴b>0.又∵图象的对称轴在y轴右边且二次项系数为1,一次项系数为a-b,例3、已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.(1)用配方法求顶点C的坐标(用含m的代数式表示);(2)若AB的长为,求抛物线的解析式.解:(1)∵y=x2-(2m+4)x+m2-10=[x-(m+2)] 2-4m-14,∴顶点C的坐标为(m+2,-4m-14).(2)∵A、B是抛物线y=x2-(2m+4)x+m2-10与x轴的交点且|AB|=,化简整理得:16m=-48,∴m=-3.当m=-3时,抛物线y=x2+2x-1与x轴有交点且AB=,符合题意.故所求抛物线的解析式为y=x2+2x-1.例4、如果抛物线y=-x2+2(m-1)x+m+1与x轴交于A、B两点,且A点在x轴的正半轴上,B点在x轴的负半轴上,OA的长是a,OB的长是b.(1)求m的取值范围;(2)若a︰b=3︰1,求m的值,并写出此时抛物线的解析式.解:(1)设A、B两点的坐标分别为(x1,0),(x2,0).∵A、B分处原点两侧,∴xx2<0,1即-(m+1)<0,得m>-1.又∵△=[2(m-1)]2-4×(-1)(m+1)=4m2-4m+8=4(m-)2+7>0,∴m>-1为m的取值范围.(2)∵a︰b=3︰1.设a=3k,b=k(k>0),=3k,x2=-k.则x1例5、已知某二次函数,当x=1时有最大值-6,且其图象经过点(2,-8).求此二次函数的解析式.解:∵二次函数当x=1时有最大值-6,∴抛物线的顶点为(1,-6),故设所求的二次函数解析式为y=a(x-1)2-6.由题意将点(2,-8)的坐标代入上式得:a(2-1)2-6=-8,∴a=-2,∴二次函数的解析式为y=-2(x-1)2-6,即y=-2x2+4x-8.例6、二次函数y=ax2+bx+c的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1).(1)请判断实数a的取值范围,并说明理由;(2)设此二次函数的图象与x轴的另一个交点为C.当△AMC的面积为△ABC面积的倍时,求a的值.解:(1)由图象可知:a<0,图象过点(0,1),∴c=1.图象过点(1,0),∴a+b+c=0,∴b=-(a+c)=-(a+1).由题意知,当x=-1时,应有y>0,∴a-b+c>0,∴a+(a+1)+1>0,∴a>-1,∴实数a的取值范围是-1<a<0.(2)此时函数为y=ax2-(a+1)x+1,与x轴两交点A、C之间的距离为例7、根据下列条件,求抛物线的解析式.(1)经过点(0,-1),(1,),(-2,-5);(2)经过点(-3,2),顶点是(-2,3);(3)与x轴两交点(-1,0)和(2,0)且过点(3,-6).分析:求解析式应用待定系数法,根据不同的条件,选用不同形式求二次函数的解析式,可使解题简捷.但应注意,最后的函数式均应化为一般形式y=ax2+bx+c.解:(1)设y=ax2+bx+c,把(0,-1),(1,),(-2,-5)代入得方程组∴解析式为y=+x-1.(2)设y=a(x+2)2+3,把(-3,2)代入得2=a(-3+2)2+3,解得a=-1.解析式为y=-x2-4x-1.(3)设y=a(x+1)(x-2),把(3,-6)代入得-6=a(3+1)(3-2),解得.∴解析式为y=(x+1)(x-2),即.。

二次函数的图像和性质(共48张PPT)

二次函数的图像和性质(共48张PPT)
C、对于直线 y=ax+b 来说,由图象可以判断,a>0,b>0;而对于抛物线 y=ax2﹣bx 来说,图象开口向上,对称轴 x= >0,应在 y 轴的右侧,故符合 题意; D、对于直线 y=ax+b 来说,由图象可以判断,a>0,b>0;而对于抛物线 y=ax2﹣bx 来说,图象开口向下,a<0,故不合题意,图形错误; 故选:C.
即当 x<-2ba时, 当 x<-2ba时,y 随 x y 随 x 的增大而减
的增大而增大;在对 小;在对称轴的右
称轴的右侧,即当 x 侧,即当 x>-2ba >-2ba时,y 随 x 的 时,y 随 x 的增大
增大而减小,简记为 而增大,简记为
“左增右减” “左减右增”
15
最值
抛物线有最 抛物线有最
1、二次函数的图像和性质
函数
二次函数 y=ax2+bx+c
(a,b,c 为常数,a≠0)
a<0
a>0
图象
13
开口 对称轴、顶点
抛物线开口向 抛物线开口向
上,并向上无限 下,并向下无限
延伸
延伸
对称轴是x=-
b 2a
,顶点坐标是
-2ba,4ac4-a b2
14
增减性
在对称轴的左侧, 在对称轴的左侧,即
低点,当 高点,当
x=-2ba时, x=-2ba时,
y 有最小值, y 有最大值,
y = 最小值
y = 最大值
4ac-b2 4a
4ac-b2 4a
16
2、二次函数y=ax2+bx+c的图象特征
与系数a,b,c的关系
项目 字母
字母的符号
图象的特征
a>0 a
a<0

二次函数的图像及其性质

二次函数的图像及其性质

单调性
二次函数的开口 方向由系数a决 定,a>0时开口 向上,a<0时开 口向下
二次函数的对称 轴为x=-b/a
二次函数的最值 在对称轴上取得, 即x=-b/2a时的 函数值y=cb^2/4a
二次函数在区间 (-∞,-b/2a)和(b/2a,+∞)上单 调性相反
最值点
二次函数的最值点为顶点 顶点的坐标为(-b/2a, f(-b/2a)) 当a>0时,函数在顶点处取得最小值 当a<0时,函数在顶点处取得最大值
开口大小与一次项 系数和常数项无关
开口变化趋势
二次函数的开口方向由二次项系数a决定,a>0时向上开口,a<0时向下开口。 二次函数的开口大小由二次项系数a和一次项系数b共同决定,a的绝对值越大,开口越小。 二次函数的对称轴为x=-b/2a,当a>0时,对称轴为x=-b/2a;当a<0时,对称轴为x=-b/2a。 二次函数的最值点为顶点,顶点的坐标为(-b/2a, c-b^2/4a)。
在物理领域的应用
二次函数在抛物线运动中的应用 二次函数在弹簧振荡中的应用 二次函数在单摆运动中的应用 二次函数在简谐振动中的应用
在其他领域的应用
二次函数在经济学中的应用, 例如计算成本、收益、利润等。
二次函数在生物学中的应用, 例如种群增长、药物疗效等。
二次函数在物理学中的应用, 例如弹簧振动、单摆运动等。
二次函数的应用
解决实际问题
二次函数在物理学中的应用,例如计算抛物线的运动轨迹 二次函数在经济学中的应用,例如计算商品价格与销售量的关系
二次函数在日常生活中的应用,例如计算最优化问题,如最小费用、最大效率等
二次函数在科学实验中的应用,例如模拟实验数据,预测实验结果

第1讲 二次函数的图像及性质

第1讲 二次函数的图像及性质

第1讲二次函数的图形及性质题型1:二次函数的概念1.下列函数表达式中,一定为二次函数的是()A.y=5x−1B.y=ax2+bx+c C.y=3x2+1D.y=x2+1x题型2:利用二次函数定义求字母的值2.已知y=(m+1)x|m−1|+2m是y关于x的二次函数,则m的值为()A.−1B.3C.−1或3D.0题型3:二次函数的一般形式3.二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分別是()A.2、0、﹣3B.2、﹣3、0C.2、3、0D.2、0、3A.2B.﹣2C.﹣1D.﹣4题型4:根据实际问题列二次函数4.一个矩形的周长为16cm,设一边长为xcm,面积为y cm2,那么y与x的关系式是【变式4-1】如图,用长为20米的篱笆(AB+BC+CD=20),一边利用墙(墙足够长),围成一个长方形花圃.设花圃的宽AB为x米,围成的花圃面积为y米2,则y关于x的函数关系式是.【变式4-2】某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=(200﹣5x)(40﹣20+x)B.y=(200+5x)(40﹣20﹣x)C.y=200(40﹣20﹣x)D.y=200﹣5x题型5:自变量的取值范围5..若y=(a−2)x2−3x+4是二次函数,则a的取值范围是()A.a≠2B.a>0C.a>2D.a≠0【变式5-1】函数y=√x+2的自变量取值范围是()x−1A.x≥−2B.−2≤x<1C.x>1D.x≥−2且x≠1【变式5-2】若y=(m+1)x m2−2m−1是二次函数,则m=,其中自变量x的取值范围是.22.1.2二次函数y=ax2的图像和性质二次函数y=ax2(a≠0)的图象用描点法画出二次函数y=ax2(a≠0)的图象,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.二次函数y=ax2(a ≠0)的图象的画法用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值,这样的对应值选取越密集,描出的图象越准确.注意:用描点法画二次函数y=ax 2(a≠0)的图象,该图象是轴对称图形,对称轴是y 轴.画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.题型1:利用描点法作函数图像1.在直角坐标系中,画出函数y =2x 2的图象(取值、描点、连线、画图).【变式1-1】在如图所示的同一平面直角坐标系中,画出函数y =2x 2,y =x 2,y =﹣2x 2与y =﹣x 2的图象.x y =2x 2 y =x 2 y =﹣2x 2 y =﹣x 2x ya>0a<0题型2:二次函数y=ax2的图像2.在同一坐标系中画出y1=2x2,y2=﹣2x2,y3=x2的图象,正确的是()A.B.C.D.【变式2-1】下列图象中,是二次函数y=x2的图象的是()A.B.C.D.【变式2-2】如图,在同一平面直角坐标系中,作出函数①y=3x2;②y=;③y=x2的图象,则从里到外的三条抛物线对应的函数依次是()A.①②③B.①③②C.②③①D.③②①题型3:二次函数y=ax2的性质3.抛物线y=﹣3x2的顶点坐标为()A.(0,0)B.(0,﹣3)C.(﹣3,0)D.(﹣3,﹣3)【变式3-1】抛物线,y=x2,y=﹣x2的共同性质是:①都开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴.其中正确的个数有()A.0个B.1个C.2个D.3个【变式3-2】.对于函数y=4x2,下列说法正确的是()A.当x>0时,y随x的增大而减小B.当x>0时,y随x的增大而增大C.y随x的增大而减小D.y随x的增大而增大【变式3-3】二次函数y=﹣3x2的图象一定经过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限题型4:函数图像位置的识别4.已知a≠0,b<0,一次函数是y=ax+b,二次函数是y=ax2,则下面图中,可以成立的是()A.B.C.D.【变式4-1】函数y=ax2与y=ax+a,在第一象限内y随x的减小而减小,则它们在同一平面直角坐标系中的图象大致位置是()A.B.C.D.【变式4-2】在图中,函数y=﹣ax2与y=ax+b的图象可能是()A.B.C.D.题型5:函数值的大小比较5.二次函数y1=﹣3x2,y2=﹣x2,y3=5x2,它们的图象开口大小由小到大的顺序是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y3题型6:简单综合-三角形面积6.求直线y=3x+4与抛物线y=x2的交点坐标,并求出两交点与原点所围成的三角形面积.22.1.3二次函数y=a(x-h)²+k的图像和性质二次函数y=ax2+c(a≠0)的图象(1)(2)0 a>0 a<题型1:二次函数y=ax²+k的图象1.建立坐标系,画出二次函数y=﹣x2及y=﹣x2+3的图象.向上向下题型2:二次函数y=ax²+k的性质2.抛物线的开口方向是()A.向下B.向上C.向左D.向右【变式2-2】抛物线y=2x2+1的对称轴是()A.直线x=B.直线x=﹣C.直线x=2D.y轴题型3:二次函数y=a(x-h)²的图象3.画出二次函数(1)y=(x﹣2)2(2)y=(x+2)2的图象.课堂总结:题型4:二次函数y=a(x-h)²的性质4.对于二次函数y=﹣(x﹣1)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=1C.顶点坐标为(1,0)D.当x<1时,y随x的增大而减小题型5:二次函数y=a(x-h )²+k 的图象和性质5.对于二次函数y =﹣5(x +4)2﹣1的图象,下列说法正确的是( ) A .图象与y 轴交点的坐标是(0,﹣1) B .对称轴是直线x =4C .顶点坐标为(﹣4,1)D .当x <﹣4时,y 随x 的增大而增大 【变式5-1】再同一直角坐标系中画出下列函数的图象 (1)y =(x ﹣2)2+3 (2)y =(x +2)2﹣3【变式5-2】画函数y =(x ﹣2)2﹣1的图象,并根据图象回答: (1)当x 为何值时,y 随x 的增大而减小.(2)当x 为何值时,y >0.【变式5-3】写出下列二次函数图象的开口方向、对称轴和顶点坐标. (1)y =5(x +2)2﹣3;(2)y =﹣(x ﹣2)2+3;(3)y =(x +3)2+6.二次函数的平移 1.平移步骤:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: ()2y a x h k =-+()h k ,2y ax =()h k ,2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左h k加右减,上加下减”.题型6:二次函数几种形式之间的关系(平移)6.将抛物线y=(x﹣3)2﹣4先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的函数表达式为()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣2D.y=(x﹣4)2﹣2【变式6-1】将抛物线向上平移2个单位长度,再向右平移1个单位长度,能得到抛物线y =2(x﹣2)2+3的是()A.y=2(x﹣1)2+1B.y=2(x﹣3)2+1C.y=﹣2(x﹣1)2+1D.y=﹣2x2﹣1【变式6-2】将二次函数y=x2﹣3的图象向右平移3个单位,再向上平移5个单位后,所得抛物线的表达式是.题型7:利用增减性求字母取值范围7.抛物线y=(k﹣7)x2﹣5的开口向下,那么k的取值范围是()A.k<7B.k>7C.k<0D.k>0【变式7-1】已知点(x1,y1)、(x2,y2)是函数y=(m﹣3)x2的图象上的两点,且当0<x1<x2时,有y1>y2,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【变式7-2】二次函数y=(x﹣h)2+k(h、k均为常数)的图象经过P1(﹣3,y1)、P2(﹣1,y2)、P3(1,y3)三点.若y2<y1<y3,则h的取值范围是.题型8:识别图象位置8.如果二次函数y=ax2+c的图象如图所示,那么一次函数y=ax+c的图象大致是()A.B.C.D.【变式8-1】在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是()A.B.C.D.【变式8-2】已知m是不为0的常数,函数y=mx和函数y=mx2﹣m2在同一平面直角坐标系内的图象可以是()A.B.C.D.题型9:比较函数值的大小9.已知二次函数y=(x﹣1)2+h的图象上有三点,A(0,y1),B(2,y2),C(3,y3),则y1,y2,y3的大小关系为()A.y1=y2<y3B.y1<y2<y3C.y1<y2=y3D.y3<y1=y2题型10:简单综合问题10.已知抛物线y=(x﹣5)2的顶点为A,抛物线与y轴交于点B,过点B作x轴的平行线交抛物线于另外一点C.(1)求A,B,C三点的坐标;(2)求△ABC的面积;(3)试判断△ABC 的形状并说明理由.【变式10-1】如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y =x 2于点B 、C ,求BC 的长度.【变式10-2】在同一坐标系内,抛物线y =ax 2与直线y =x +b 相交于A ,B 两点,若点A 的坐标是(2,3).(1)求B 点的坐标;(2)连接OA ,OB ,AB ,求△AOB 的面积.22.1.4 二次函数y=ax 2+bx+c 的图象与性质二次函数一般式与顶点式之间的相互关系 1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式. 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++⎪⎝⎭代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.题型1:一般式化成顶点式-配方法1.将二次函数y=x2−4x+5用配方法化为y=(x−ℎ)2+k的形式,结果为()A.y=(x−4)2+1B.y=(x−4)2−1C.y=(x−2)2−1D.y=(x−2)2+1题型2:一般式化成顶点式-应用2.已知:二次函数y=x2﹣2x﹣3.将y=x2﹣2x﹣3用配方法化成y=a(x﹣h)2+k的形式,并求此函数图象与x轴、y轴的交点坐标.题型3:公式法求顶点坐标及对称轴3.已知二次函数 y =−12x 2+bx +3 ,当 x >1 时,y 随x 的增大而减小,则b 的取值范围是( ) A .b ≥−1B .b ≤−1C .b ≥1D .b ≤10a >0a <题型4:二次函数y=ax2+bx+c图像与性质4.若二次函数y=ax2+bx+c的图象如图所示,则下列说法不正确的是()A.当1<x<3时,y>0B.当x=2时,y有最大值C.图像经过点(4,−3)D.当y<−3时,x<0【变式4-2】二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是()A.y⩽9B.y⩽2C.y<2D.y⩽3 4题型5:利用二次函数的性质比较函数值5.函数y=﹣x2﹣2x+m的图象上有两点A(1,y1),B(2,y2),则()A.y1<y2B.y1>y2几种常考的关系式的解题方法题型6:二次函数y=ax2+bx+c图像与系数的关系6.已知二次函数y=ax2+bx+c(a≠0,a,b,c为常数),如果a>b>c,且a+b+c=0,则它的图象可能是()A.B.C.D.【变式6-1】已知函数y=ax2+bx+c(a≠0)的对称轴为直线x=−4.若x1,x2是方程ax2+bx+c=0的两个根,且x1<x2,1<x2<2,则下列说法正确的是A.x1x2>0B.−10<x1<−9C.b2−4ac<0D.abc>0【变式6-2】如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),,有下列结论:①b<0;②a+b>0;③4a+2b+3c<0;④无且对称轴为直线x=12,0).其中正确结论有()论a,b,c取何值,抛物线一定经过(c2aA.1个B.2个C.3个D.4个【变式6-3】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线x=−1,点B的坐标为(1,0),则下列结论:①AB=4;②b2−4ac>0;③b>0;④a−b+c<0,其中正确的结论有()个.A.1个B.2个C.3个D.4个7.二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32题型8:利用二次函数的性质求字母的范围8.已知二次函数y=x2+bx+1当0<x<12的范围内,都有y≥0,则b的取值范围是A.b≥0B.b≥﹣2C.b≥﹣52D.b≥﹣32a题型9:利用二次函数的性质求最值9.二次函数y=−x2+2x+4的最大值是.题型10:给定范围内的最值问题10.已知二次函数y=ax2+bx+1.5的图象(0≤x≤4)如图,则该函数在所给自变量的取值范围内,最大值为,最小值为.。

二次函数的图像与性质

二次函数的图像与性质

二次函数的图像与性质二次函数的性质二次函数()02≠++=a c bx ax y 的顶点坐标是(-a b 2,a b ac 442-),对称轴直线x=-a b 2,二次函数y=ax 2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax 2+bx+c(a≠0)的开口向上,x<-a b 2时,y 随x 的增大而减小;x>-a b 2时,y 随x 的增大而增大;x=-a b 2时,y 取得最小值a b ac 442-,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax 2+bx+c(a≠0)的开口向下,x<-a b 2时,y 随x 的增大而增大;x>-a b 2时,y 随x 的增大而减小;x=-a b 2时,y 取得最大值a b ac 442-,即顶点是抛物线的最高点.③抛物线y=ax 2+bx+c(a≠0)的图象可由抛物线y=ax 2的图象向右或向左平移a b 2个单位,再向上或向下平移ab ac 442-个单位得到的.二次函数上点坐标的特征二次函数y=ax 2+bx+c(a≠0)的图象是抛物线,顶点坐标是(-a b 2,ab ac 442-).①抛物线是关于对称轴x=-a b 2成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.②抛物线与y 轴交点的纵坐标是函数解析中的c 值.③抛物线与x 轴的两个交点关于对称轴对称,设两个交点分别是(x 1,0),(x 2,0),则其对称轴为x=221x x +【例1】已知()()212232m x m x m m y m m +-+-=--是关于x 的二次函数,求出它的解析式,并写出其二次项系数、一次项系数及常数项.【例2】下列各式中,一定是二次函数的有()①y=2x 2﹣4xz +3;②y=4﹣3x +7x 2;③y=(2x ﹣3)(3x ﹣2)﹣6x 2;④y=21x﹣3x +5;⑤y=ax 2+bx +c (a ,b ,c 为常数);⑥y=(m 2+1)x 2﹣2x ﹣3(m 为常数);⑦y=m 2x 2+4x ﹣3(m 为常数).A .1个B .2个C .3个D .4个【例3】(2017•东莞市一模)在同一坐标系中,一次函数y=ax+b 与二次函数y=bx 2+a 的图象可能是()A.B.C.D.【例4】(2017•辽阳)如图,抛物线y=x 2﹣2x﹣3与y 轴交于点C,点D 的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD 是以CD 为底边的等腰三角形,则点P 的横坐标为()A.1+2B.1﹣2C.2﹣1D.1﹣2或1+2【例5】(2017•唐河县三模)如图,在平面直角坐标系中,抛物线y=31x 2经过平移得到抛物线y=ax 2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为38,则a、b 的值分别为()A.31,34B.31,﹣38C.31,﹣34D.﹣31,34【例6】(2016•北仑区一模)如图,抛物线y=﹣x 2+5x﹣4,点D 是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD 的面积的最大值是多少?1、(2011秋•无锡期末)下列函数中,(1)y ﹣x 2=0,(2)y=(x +2)(x ﹣2)﹣(x ﹣1)2,(3)x x y 12+=,(4)322-+=x x y ,其中是二次函数的有()A .4个B .3个C .2个D .1个2、(2015秋•五指山校级月考)函数y=(m ﹣n )x 2+mx +n 是二次函数的条件是()A .m 、n 是常数,且m ≠0B .m 、n 是常数,且m ≠nC .m 、n 是常数,且n ≠0D .m 、n 可以为任何常数3、(2014•葫芦岛二模)在同一直角坐标系中,函数y=mx +m 和函数y=mx 2+2x +2(m 是常数,且m ≠0)的图象可能是()A .B .CD .4、(2017•扬州)如图,已知△ABC 的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x 2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b 的取值范围是()A.b≤﹣2B.b<﹣2C.b≥﹣2D.b>﹣25、(2012秋•高安市期末)把抛物线y=﹣2x 2﹣4x﹣6经过平移得到y=﹣2x 2﹣1,平移方法是()A.向右平移1个单位,再向上平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向左平移1个单位,再向下平移3个单位6、(2017•泸州)已知抛物线y=41x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线y=41x 2+1上一个动点,则△PMF 周长的最小值是()A .3B .4C .5D .67、(2016•陕西校级模拟)如图,已知点A(8,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=6时,这两个二次函数的最大值之和等于()A.5B.358C.10D.528、(2010秋•西城区校级期中)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,抛物线经过点(1,0),则下列结论:①ac>0;②方程ax2+bx+c=0的两根之和大于0;③y随x的增大而增大;④a﹣b+c<0,其中正确的是.9、(2017•孝感模拟)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确的结论有(填序号).10、(2016•黄冈校级自主招生)方程2x﹣x 2=x 2的正实数根有个.11、(2011•路南区一模)已知二次函数y=(x﹣3a)2﹣(3a+2)(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.图中分别是当a=﹣1,a=﹣31,a=1时二次函数的图象.则它们的顶点所满足的函数关系式为.12、(2015•泗洪县校级模拟)若直线y=m (m 为常数)与函数y=的图象恒有三个不同的交点,则常数m 的取值范围是.13、(2017春•昌江区校级期中)记实数x 1,x 2中的最小值为min{x 1,x 2},例如min{0,﹣1}=﹣1,当x 取任意实数时,则min{﹣x 2+4,3x}的最大值为.14、(2016•锡山区一模)二次函数y=﹣x 2﹣2x 图象x 轴上方的部分沿x 轴翻折到x 轴下方,图象的其余部分保持不变,翻折后的图象与原图象x 轴下方的部分组成一个“M”形状的新图象,若直线y=21x+b 与该新图象有两个公共点,则b 的取值范围为.15、(2017春•平南县月考)抛物线238942++-=x x y 与y 轴交于点A,顶点为B.点P 是x 轴上的一个动点,当点P 的坐标是时,|PA﹣PB|取得最小值.16、(2014•上城区二模)已知当x=2m+n+2和x=m+2n 时,多项式x 2+4x+6的值相等,且m﹣n+2≠0,则当x=6(m+n+1)时,多项式x 2+4x+6的值等于.17、(2017•港南区二模)二次函数y=(a﹣1)x 2﹣x+a 2﹣1的图象经过原点,则a 的值为.18、(2017•西华县二模)已知y=﹣41x 2﹣3x+4(﹣10≤x≤0)的图象上有一动点P,点P 的纵坐标为整数值时,记为“好点”,则有多个“好点”,其“好点”的个数为.19、(2017•鄂州)已知正方形ABCD 中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m 个单位(m>0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是.20、作出下列函数的图象:(1)y=x 2﹣4x +3;(2)y=x 2﹣4|x |+3;(3)y=|x 2﹣4|x |+3|.21、(2017•海安县一模)在平面直角坐标系xOy 中,直线y=﹣41x+n 经过点A(﹣4,2),分别与x,y 轴交于点B,C,抛物线y=x 2﹣2mx+m 2﹣n 的顶点为D.(1)求点B,C 的坐标;(2)①直接写出抛物线顶点D 的坐标(用含m 的式子表示);②若抛物线y=x 2﹣2mx+m 2﹣n 与线段BC 有公共点,求m 的取值范围.22、(2011•泰州)已知二次函数y=x 2+bx ﹣3的图象经过点P (﹣2,5)(1)求b 的值并写出当1<x ≤3时y 的取值范围;(2)设P 1(m ,y 1)、P 2(m +1,y 2)、P 3(m +2,y 3)在这个二次函数的图象上,①当m=4时,y 1、y 2、y 3能否作为同一个三角形三边的长?请说明理由;②当m 取不小于5的任意实数时,y 1、y 2、y 3一定能作为同一个三角形三边的长,请说明理由.23、(2017•邵阳县模拟)(1)已知函数y=2x+1,﹣1≤x≤1,求函数值的最大值.(2)已知关于x的函数y=(m≠0),试求1≤x≤10时函数值的最小值.(3)己知直线m:y=2kx﹣2和抛物线y=(k2﹣1)x2﹣1在y轴左边交于A、B两点,直线l 过点P(﹣2、0)和线段AB的中点M,求直线1与y轴的交点纵坐标b的取值范围.24、(2015秋•长兴县月考)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=5,点E在CB边上,以每秒1个单位的速度从点C向点B运动,运动时间为t(s),过点E作AB的平行线,交AC边于点D,以DE为边向上作等边△DEF,设△ABC与△DEF重叠部分的面积为S.(1)当点F恰好落在AB边上时,求t的值;(2)当t为何值时,S有最大值?最大值是多少?。

二次函数的图像和性质总结

二次函数的图像和性质总结

二次函数的图像和性质1.二次函数的图像与性质:解析式a 的取值开口方向函数值的增减顶点坐标对称轴图像与y轴的交点y = ax2当a0时;开口向上;在对称轴的左侧y随x的增大而减小,在对称轴的右侧 y 随 x 的增大而增大。

当a0时;开口向下;在对称轴的左侧y随 x 的增大而增大,在对称轴的右侧 y 随 x 的增大而减小。

(0,0)x=0(0,0)y = ax2+ k(0,c)x =0 (0,k)y = a( x + h)2(- h,0)x = - h(0,ah2)y=a(x+h)2+k(- h,k)x = - h(0,ah2+ k)y = ax2+bx+c b 4ac - b2 (- , )2a4a b x=-2a(0,c)2.抛物线的平移法则:(1)抛物线y = ax2+ k的图像是由抛物线y = ax2的图像平移k个单位而得到的。

当k 0时向上平移;当k0时向下平移。

(2)抛物线y = a(x + h)2的图像是由抛物线y = ax2的图像平移h个单位而得到的。

当h0时向左平移;当h0时向右平移。

(3)抛物线的y = a(x + h)2+ k图像是由抛物线y = ax2的图像上下平移k个单位,左右平移h个单位而得到的。

当k0时向上平移;当k0时向下平移;当h0时向左平移;当h0 时向右平移。

3.二次函数的最值公式:形如y =ax + bx + c的二次函数。

当a0时,图像有最低点,函数有最小值4ac-b24ac-b2y最小值=4a;当a0时,图像有最高点,函数有最大值,y最大值=4a;4.抛物线y =ax + bx + c与y轴的交点坐标是(0,c)5.抛物线的开口大小是由a决定的,a越大开口越小。

6.二次函数y =ax + bx + c的最值问题:(1)自变量的取值范围是一切实数时求最值的方法有配方法、公式法、判别式法。

(2)自变量的取值范围不是一切实数:b 自变量的取值范围不是一切实数时,应当抓住对称轴x = -2a ,把他与取值范围相比较,再进行求最值。

二次函数的图像与性质

二次函数的图像与性质

06
二次函数与一元二次方程的关 系
一元二次方程的基本概念
1 2
一元二次方程的标准形式
ax² + bx + c = 0,其中a、b、c是系数,且a≠0 。
判别式
Δ = b² - 4ac,用于判断一元二次方程的实数根 的个数。
3
根的求解
通过配方或公式法求解,若Δ > 0,方程有两个 实数根,若Δ = 0,方程有一个实数根,若Δ < 0 ,方程没有实数根。
顶点式
表达式
$y = a(x - h)^{2} + k$
描述
顶点式表示二次函数的顶点坐标,其中$(h, k)$是顶点坐标,$a$是二次项系数。
焦点式
表达式
$y = a\sqrt{x^{2} + 2ax + b}$
描述
焦点式主要用于描述二次函数的 焦点位置和形状,其中$a$和$b$ 分别是二次项和一次项的系数。
05
二次函数的应用
求最值问题
定义
设f(x)=ax2+bx+c(a,b,c是常数, a≠0),当a>0时,函数f(x)的图像是 一个开口向上的抛物线;当a<0时, 函数f(x)的图像是一个开口向下的抛物 线。
顶点
极值点
当a>0时,二次函数f(x)的图像在x=b/2a处取得最小值f(-b/2a);当a<0 时,二次函数f(x)的图像在x=-b/2a处 取得最大值f(-b/2a)。
对称
二次函数图像的对称主要改变函数的单调性。如果一个二次函数图像关于y轴对 称,那么它的单调性将发生改变;如果一个二次函数图像关于x轴对称,那么它 的单调性不变。
04
二次函数的解析式

二次函数的基本性质和图像

二次函数的基本性质和图像

二次函数的基本性质和图像二次函数是高中数学中的一种重要函数,它的图像形状为抛物线。

在学习二次函数之前,我们需要了解一些基本性质和图像特征。

本文将介绍二次函数的基本性质和图像特点,帮助读者更好地理解和掌握这一概念。

一、二次函数的标准形式二次函数的标准形式为:f(x) = ax² + bx + c其中,a、b、c为实数,且a≠0。

二、二次函数的图像特点1. 开口方向二次函数的开口方向由二次项的系数a的正负确定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 最值点当二次函数的开口方向向上时,函数的最值点为抛物线的顶点,记作(h,k),其中h为顶点的横坐标,k为顶点的纵坐标。

当二次函数的开口方向向下时,函数的最值点为抛物线的谷点。

3. 对称轴二次函数的对称轴是通过抛物线的最值点和对称轴的直角中点所得直线。

对称轴与x轴垂直,并且通过抛物线的顶点。

4. 零点二次函数的零点即函数的根,可以通过求解二次方程ax² + bx + c = 0来得到。

二次函数的零点可以有0个、1个或2个零点,取决于二次方程的判别式b²-4ac 的值。

三、二次函数的图像画法和变换1. 平移变换对于二次函数f(x) = ax² + bx + c,当x平移h个单位和y平移k 个单位时,变换后的函数表达式为f(x-h)+k。

2. 垂直方向的伸缩变换对于二次函数f(x) = ax² + bx + c,当a变为ka(k≠0)时,函数的图像在y轴方向上发生伸缩。

当a>1时,抛物线变瘦高;当0<a<1时,抛物线变粗矮;当a<0时,抛物线变为开口向下。

3. 水平方向的伸缩变换对于二次函数f(x) = ax² + bx + c,当b变为kb(k≠0)时,函数的图像在x轴方向上发生伸缩。

当b>1时,抛物线朝y轴正方向平移;当0<b<1时,抛物线朝y轴负方向平移;当b<0时,抛物线左右翻转。

二次函数的图像和性质PPT课件

二次函数的图像和性质PPT课件
顶点形式
二次函数的顶点形式是f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。
二次函数图像的性质
对称轴
二次函数的对称轴是x = -最大值。
开口方向
二次函数开口向上当且仅当a > 0,开口向下当且仅当a < 0。
二次函数的变换
导数
二次函数的导数是一条直线,表示了函数的变化率。
凹性质
二次函数的凹性质取决于a的值,a > 0时函数向上凹,a < 0时函数向下凹。
凸性质
二次函数的凸性质取决于a的值,a > 0时函数向上凸,a < 0时函数向下凸。
二次函数的非负和非正性质
1 非负性质
2 非正性质
当a > 0时,二次函数的图像位于x轴以上。
建筑
物理
二次函数的图像和性质可应用 于建筑设计,优化结构和形状。
P物理实验中,二次函数可以 用于描述运动曲线和力学模型。
总结和展望
通过本课程,我们深入了解了二次函数的图像和性质,掌握了解析和图像求 解的方法,并应用于实际领域。希望你喜欢这次学习!继续思考和探索,创 造性地应用二次函数。
1
平移
平移变换可通过改变顶点来实现,横向平移表示为f(x ± h),纵向平移表示为f(x) ± k。
2
缩放
缩放变换可通过改变a的值来实现,a > 1时函数变窄,0 < a < 1时函数变宽。
3
反转
反转变换可通过改变a的符号来实现,a > 0时函数朝上,a < 0时函数朝下。
二次函数的导数和凹凸性质
二次函数的图像和性质
欢迎来到二次函数的图像和性质课程!通过本课程,您将学习二次函数的定 义和表达形式,并探索其图像的性质和变换。让我们开始吧!

二次函数的图像和性质分析

二次函数的图像和性质分析

二次函数图像的平移和变换
向上平移:增加常数项b的值 向下平移:减小常数项b的值 向左平移:增加x的系数a的值 向右平移:减小x的系数a的值
二次函数的性质
二次函数的开口方向
开口方向与二次项系数a有关,当 a>0时,开口向上;当a<0时,开 口向下。
开口方向与一次项系数b和常数项c 无关。
添加标题
二次函数与一元二次方程的关系
二次函数与一 元二次方程的
根的关系
ห้องสมุดไป่ตู้
二次函数与一 元二次方程的
图像关系
二次函数与一 元二次方程的
系数关系
二次函数与一 元二次方程在 实际问题中的
应用
二次函数与三角函数的关系
二次函数与三角函数图像的相 似性
二次函数与三角函数的周期性
二次函数与三角函数的对称性
二次函数与三角函数的极值点
添加标题
添加标题
添加标题
开口大小与二次项系数a的绝对值有 关,|a|越大,开口越小;|a|越小, 开口越大。
二次函数的开口方向与对称轴的位 置有关,对称轴在y轴左侧时,开口 向上;对称轴在y轴右侧时,开口向 下。
二次函数的对称轴
二次函数图像的对称轴是x=-b/2a
对称轴的性质:当a>0时,抛物线开口向上,对称轴为x=-b/2a;当a<0时,抛物线开口向下, 对称轴为x=-b/2a
计算梯形面积:利用二次函数表示梯形的上底、 下底和高,进而求出面积
计算圆和椭圆面积:将圆和椭圆看作是无 数个小的等腰三角形,利用二次函数表示 这些三角形的面积,进而求出整个圆或椭 圆的面积
计算抛物线形物体面积:利用二次函数表示抛物 线形物体的面积,进而求出其表面积或体积

二次函数的图像和性质总结

二次函数的图像和性质总结

二次函数的图像和性质总结二次函数(Quadratic Function)是高中数学中重要的一个部分,是指一种形式为y=ax²+bx+c(a≠0)的函数。

二次函数的图像是一条抛物线,其性质包括:开口方向、顶点、对称轴、最值、零点、增减性等。

下面将对二次函数的图像和性质进行详细总结。

一、图像特征:1.开口方向:-当a>0时,抛物线开口向上;-当a<0时,抛物线开口向下。

2.顶点:-对于抛物线开口向上的情况,顶点是抛物线的最低点;-对于抛物线开口向下的情况,顶点是抛物线的最高点。

3.对称轴(y轴):- 对于一般的二次函数y=ax²+bx+c,其对称轴的方程为x=-b/2a;-对于抛物线开口向上的情况,对称轴是抛物线的最低点;-对于抛物线开口向下的情况,对称轴是抛物线的最高点。

4.最值:-对于抛物线开口向上的情况,最小值为顶点的纵坐标;-对于抛物线开口向下的情况,最大值为顶点的纵坐标。

5.零点:- 零点是指二次函数y=ax²+bx+c与x轴的交点;-二次函数可能有0个、1个或2个零点;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。

6.增减性:-当a>0时,抛物线开口向上,函数在对称轴两侧递增;-当a<0时,抛物线开口向下,函数在对称轴两侧递减。

二、性质总结:1.函数的解析式:- 二次函数的解析式一般形式为y=ax²+bx+c,其中a、b、c为常数,a≠0;-通过解析式可以得到函数的图像特征。

2.零点:-零点是指函数与x轴的交点;- 零点可以通过解二次方程ax²+bx+c=0来求解;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。

二次函数的图形和性质

二次函数的图形和性质

二次方程的根和焦点
实根和焦点
对于一个有两个实根的二次方程,它的焦点是抛物 线的顶点。
虚根和焦点
对于一个没有实根的二次方程,它的焦点并不存在。
二次方程的求最值
定义
通过将二次方程化为顶点形式,求出顶点的函数值,即可得到函数的最大值最大化收益、最小化代价等。
性质
可通过完成平方来将标准形式转换为顶点形式。
3
性质
顶点为y的最小值或最大值,轴对称于顶点,开口方向由a的正负号决定。
二次方程的因式分解
定义
将二次方程表示为两个一次因式的乘积的形式,可通过因式分解来求出方程的解。
方法
通过观察二次项系数和常数项的乘积,来判断如何分解。
应用
方便求解复杂的二次方程,还可以用于其他数学问题的求解。
二次方程的图像
正抛物线
开口向上的抛物线在顶点的函数值最小,是一个最 小值。
负抛物线
开口向下的抛物线在顶点的函数值最大,是一个最 大值。
平的抛物线
当判别式Δ=0时,顶点坐标为(-b/2a, c-b²/4a)。
顶点形式的二次方程
1
定义
顶点形式的二次方程为y=a(x-h)²+k,(h,k)为顶点。
2
转换方法
二次函数的图形和性质
二次函数是一类重要的函数,它的图形成为一条抛物线,并具有很多性质。 在这个演示中,我们将学习如何理解和应用二次函数。
标准形式的二次方程
定义
二次方程是一个形如ax²+bx+c=0的方程。
方程的解
可以通过解方程ax²+bx+c=0来求出。
判别式
二次方程的判别式为Δ=b²-4ac,可以判断方程有几个实根。

二次函数的图像与性质

二次函数的图像与性质

在数学其他领域的应用
二次函数在经济学中的应用,例如最优化问题、供需关系等。 二次函数在物理学中的应用,例如抛物线运动、弹簧振动等。 二次函数在计算机科学中的应用,例如算法设计、数据拟合等。 二次函数在工程学中的应用,例如建筑设计、机械运动等。
在物理和工程中的应用
抛物线运动:描述 物体在垂直方向上 的运动轨迹

对称轴的证明
证明方法:利用 二次函数的对称 性,通过代入法 证明对称轴的存 在
证明过程:通过 计算二次函数在 x轴上的交点, 推导出对称轴的 方程
证明结论:二次 函数的图像关于 对称轴对称,且 对称轴的方程为 x=-b/2a
证明意义:理解 二次函数图像的 对称性质,有助 于解决与二次函 数相关的数学问 题
与坐标轴交点坐标的证明
证明方法:通过令二次函数等于0,解出x的值,得到与y轴交点的坐标
证明过程:将二次函数的一般形式代入x=0,得到y的值,即为与y轴的交点坐标
证明结果:当x=0时,y的值即为与y轴的交点坐标 证明结论:通过以上步骤,可以证明二次函数与y轴的交点坐标为(0,c)
汇报人:XX
调递增
添加标题
应用:二次函数在 数学、物理等领域 有广泛的应用,如 求最值、解决实际 问题等;反比例函 数在物理、工程等 领域也有应用,如 计算电容量、电流

添加标题
与指数函数的比较
表达式:二次函数的一般形式为y=ax^2+bx+c,指数函数的一般形式为y=a*x^n,其中n>0且 n≠1
图像:二次函数的图像是一个抛物线,而指数函数的图像则是一条单调递增或递减的曲线
与反比例函数的比较
函数形式:二次 函数的一般形式
为 y=ax^2+bx+c,

二次函数的图像和性质

二次函数的图像和性质

二次函数的图像和性质一、二次函数的一般形式二次函数是一种形式为f(x)=ax2+bx+c的函数,其中a、b、c是实数且a eq0。

二、二次函数的图像1.抛物线二次函数的图像是一条抛物线。

当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

2.判别法利用二次函数的判别式 $\\Delta = b^2 - 4ac$ 的正负性可以确定二次函数的图像开口方向和与x轴的交点情况。

3.最值点二次函数的顶点为抛物线的最值点,当a>0时,最小值在顶点处取得;当a<0时,最大值在顶点处取得。

顶点的横坐标为 $-\\frac{b}{2a}$,纵坐标为 $f\\left(-\\frac{b}{2a}\\right)$。

三、二次函数的性质1.对称轴二次函数的对称轴为直线 $x = -\\frac{b}{2a}$,即抛物线关于对称轴对称。

2.单调性当a>0时,二次函数在对称轴左侧递增,在对称轴右侧递减;当a<0时,二次函数在对称轴左侧递减,在对称轴右侧递增。

3.零点二次函数的零点为方程f(x)=0的解,可以利用求根公式 $x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$ 求得。

4.图像的平移如f(x)=a(x−ℎ)2+k,其中(ℎ,k)为平移后的顶点坐标,抛物线上下平移,方向与a的正负有关。

四、应用二次函数在几何、物理、经济等领域有着广泛的应用。

例如几何问题中的抛物线轨迹、物体自由落体运动方程、经济学中的成本、收益关系等均可用二次函数描述。

结语二次函数作为高中数学中重要的函数类型,在图像和性质上有着独特的表现,通过对其图像和性质的深入理解,可以更好地应用于解决实际问题。

希望本文的介绍能帮助读者更好地掌握二次函数的知识。

二次函数的图像和性质

二次函数的图像和性质

二次函数的图像和性质二次函数是高中数学中常见的一种函数类型,其图像呈现出特定的形状和性质。

本文将介绍二次函数的图像特点,探讨二次函数的性质以及解释这些性质的意义。

一、二次函数的图像特点1. 平移和伸缩:二次函数的图像可以通过平移和伸缩来改变其位置和形状。

一般二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b、c为常数。

当a>0时,图像开口向上,当a<0时,图像开口向下。

参数b控制了二次函数图像的水平位置,参数c则控制了图像的垂直位置。

2. 对称性:二次函数的图像具有关于直线x = -b / (2a)的对称性。

这条直线称为二次函数的对称轴。

对称轴将图像分成两个完全对称的部分。

3. 顶点:二次函数图像的最高点或最低点称为顶点。

对于开口向上的二次函数,顶点是图像的最低点,对于开口向下的二次函数,顶点是图像的最高点。

顶点的坐标为(-b / (2a), f(-b / (2a)))。

4. 零点:二次函数与x轴交点的坐标称为零点。

零点是二次函数的解,即f(x) = 0的解。

二次函数可以有两个、一个或零个零点,取决于判别式D = b^2 - 4ac的值。

二、二次函数的性质1. 单调性:开口向上的二次函数在对称轴的两侧是单调递增的,开口向下的二次函数在对称轴的两侧是单调递减的。

对于开口向上的二次函数,当x趋于正无穷时,函数值也趋于正无穷;当x趋于负无穷时,函数值也趋于负无穷。

对于开口向下的二次函数,情况相反。

2. 极值:二次函数的最小值(开口向上)或最大值(开口向下)即为顶点的纵坐标,其横坐标为对称轴的横坐标。

3. 范围和值域:对于开口向上的二次函数,其值域为[y, +∞),其中y为顶点的纵坐标;对于开口向下的二次函数,其值域为(-∞, y],其中y为顶点的纵坐标。

4. 最大值或最小值:当a>0时,开口向上的二次函数不存在最小值;当a<0时,开口向下的二次函数不存在最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一对一辅导教案学生姓名性别年级学科授课教师上课时间 年 月 日第( )次课 共( )次课课时:3课时教学课题二次函数的图像和性质教学目标1.学会分析二次函数图像的性质2. 利用二次函数的顶点式求最值3. 二次函数图像的平移教学重点与难点1. 求顶点坐标2. 二次函数的参数确定3.二次函数的增减性教学过程:一:二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 【例1】 函数y=(m +2)x 22-m +2x -1是二次函数,则m= .【例2】 下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=21x+x .A .1个B .2个C .3个D .4个【变式练习】 某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x ,请你得出每天销售利润y 与售价的函数表达式.二、二次函数表达式二次函数是初中数学的一个重要内容,熟练地求出二次函数的解析式是解决二次函数问题的重要保证。

二次函数的解析式有三种基本形式: 1、一般式:y=ax 2+bx+c (a ≠0)2、顶点式:y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点,对称轴为x=h3、交点式:y=a(x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标三:二次函数的图像1二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点 2、二次函数图像的画法 五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

二次函数的性质函数二次函数)0,,(2≠++=acbacbxaxy是常数,图像a>0 a<0y0 xy0 x性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=ab2-,顶点坐标是(ab2-,abac442-);(3)在对称轴的左侧,即当x<ab2-时,y随x的增大而减小;在对称轴的右侧,即当x>ab2-时,y随x的增大而增大,简记左减右增;(4)抛物线有最低点,当x=ab2-时,y有最小值,abacy442-=最小值(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=ab2-,顶点坐标是(ab2-,abac442-);(3)在对称轴的左侧,即当x<ab2-时,y随x的增大而增大;在对称轴的右侧,即当x>ab2-时,y随x的增大而减小,简记左增右减;(4)抛物线有最高点,当x=ab2-时,y有最大值,abacy442-=最大值【例3】在同一直角坐标系中画出y=2x2 y=-2x2 的图像【例4】已知a <-1,点(a -1,y 1)、(a ,y 2)、(a +1,y 3)都在函数y=x 2的图象上,则( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 1<y 3【变式练习】1.函数y=x 2的顶点坐标为 .若点(a ,4)在其图象上,则a 的值是 . 2.若点A (3,m )是抛物线y=-x 2上一点,则m= .3.函数y=x 2与y=-x 2的图象关于 对称,也可以认为y=-x 2,是函数y=x 2的图象绕 旋转得到.4.若二次函数y=ax 2(a≠0),图象过点P (2,-8),则函数表达式为 .四:二次函数图象的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2③平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.【例5】 二次函数247y x x =--的顶点坐标是( ) A.(2,-11) B.(-2,7) C.(2,11) D. (2,-3)【例6】 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+B. 22(1)y x =--C. 221y x =-+ D.221y x =-- 【例7】抛物线4)3(2-+=x y 可以由抛物线2y x =平移得到,则下列平移过程正确的是( ) A.先向左平移3个单位,再向上平移4个单位B.先向左平移3个单位,再向下平移4个单位C.先向右平移3个单位,再向下平移4个单位D.先向右平移3个单位,再向上平移4个单位【变式练习】1.二次函数2241y x x =--的图象是由22y x bx c =++的图象向左平移1个单位,再向下平移2个单位得到的, 求b , c【例8】.抛物线1822-+-=x x y 的图象的开口方向是_____, 顶点坐标是______ 【 例9.】若抛物线232)1(2-++-=m mx x m y 的最低点在x 轴上,则m 的值为 【变式练习】1.已知抛物线y=-2(x+3)²+5,如果y 随x 的增大而减小,求x 的取值范围。

1.抛物线y=-2x 2+6x -1的顶点坐标为 ,对称轴为 .2.如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )3.已知二次函数y=41x 2-25x +6,当x= 时,y 最小= ;当x 时,y 随x 的增大而减小.4.抛物线y=2x 2向左平移1个单位,再向下平移3个单位,得到的抛物线表达式为. 5.二次函数y=ax 2+bx +c 的图象如图所示,则ac 0.(填“>”、“<”或“=”=)。

6.已知点(-1,y 1)、(-321,y 2)、(21,y 3)在函数y=3x 2+6x +12的图象上,则y 1、y 2、y 3的大小关系是( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 2>y 3>y 1D .y 3>y 1>y 27.二次函数y=-x 2+bx +c 的图象的最高点是(-1,-3),则b 、c 的值是( ) A .b=2,c=4 B .b=2,c=-4 C .b=-2,c=4 D .b=-2,c=-48.如图,坐标系中抛物线是函数y=ax 2+bx +c 的图象,则下列式子能成立的是( ) A .abc >0 B .a +b +c <0 C .b <a +c D .2c <3b9.下列函数中,当x >0时y 值随x 值增大而减小的是( ). A .y = x 2B .y = x -1C . y = 34xD .y = -2x10.二次函数223y x x =--的图象如图所示.当y <0时,自变量x 的取值范围是( ).A .-1<x <3B .x <-1C . x >3D .x <-1或x >311、如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是 ( )A .a +b =-1B . a -b =-1C . b <2aD . ac <012、如图,抛物线y = x 2 + 1与双曲线y = k x 的交点A 的横坐标是1,则关于x 的不等式 k x+ x 2+ 1 < 0的解集是 ( )A .x > 1B .x < −1C .0 < x < 1D .−1 < x < 013、若二次函数y=ax 2+bx+c 的x 与y 的部分对应值如下表:X -7 -6 -5 -4 -3 -2 y-27-13-3353则当x =1时,y 的值为( )A.5B.-3C.-13D.-2714、已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示x …… 0 1 2 3 4 …… y……4114……点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当112,x <<234x <<时,1y 与2y 的大小关系正确的是( ) A . B .C . 12y y ≥D . 12y y ≤1.如图,二次函数y=ax 2+bx +c (a ≠0)的图象经过点(﹣1,2),且与X 轴交点的横坐标分别为x 1,x 2,其中﹣2<x 1<﹣1, 0<x 2<1,下列结论:①4a ﹣2b +c <0;②2a ﹣b <0;③a +c <1;④b 2+8a >4ac , 其中正确的有( )(第12题)xyAA.1个B.2个C.3个D.4个2.二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个3.已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab 的值为()A.或1 B.或1 C.或D.或4.抛物线y=,y=x2,y=﹣x2的共同性质是:①都是开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴;④都关于x轴对称.其中正确的个数有()A.1个B.2个C.3个D.4个5.函数y=ax2+bx+a+b(a≠0)的图象可能是()A .B .C .D .1.对于抛物线2y x =与2y x =-下列命题中错误的是( )A .两条抛物线关于x 轴对称B .两条抛物线关于原点对称C .两条抛物线各自关于y 轴对称D .两条抛物线没有公共点2.函数y=ax 2+bx +c 和y=ax +b 在同一坐标系中,如图所示,则正确的是( )3.抛物线y=-b 2x +3的对称轴是___,顶点是___。

相关文档
最新文档