【浙教版】最新版八年级上:第5章《一次函数》单元测试卷(含答案)

合集下载

浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案

浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案

浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每题3分,共30分)1.下列函数中是正比例函数的是()2+1D.y=0.6x−5 A.y=−7x B.y=−7x C.y=2x2.已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为()A.B.C.D.3.水滴进玻璃容器(滴水速度相同)实验中,水的高度随滴水时间变化的情况(下左图),下面符合条件的示意图是()A.B.C.D.4.如图,小刚骑电动车到单位上班,最初以某一速度匀速行进,途中由于遇到火车挡道,停下等待放行,耽误了几分钟,为了按时到单位,小刚加快了速度,仍保持匀速行进,结果准时到单位.小刚行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,你认为正确的是()A.B.C.D.5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)之间有如下关系(其中x≤12)x kg⁄012345y/cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.所挂物体质量x每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为14.5cm6.如图,直线l1:y=x+3与l2:y=kx+b相交于点P(1,m),则方程组{y=x+3y=kx+b的解是()A.{x=4y=1B.{x=1y=4C.{x=1y=3D.{x=3y=17.一次函数y=(m-2)x+2-m和y=x+m在同一平面直角坐标系中的图象可能是()A.B.C.D.8.如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PC⊥x轴于点C,则△PCO周长的最小值为()A.2√2B.4+2√2C.4D.4+4√29.若A(x1,y1),B(x2,y2)是一次函数y=ax+2x−2图象上的不同的两点,记m=(x1−x2)(y1−y2),则当m>0时,a的取值范围是()A.a<0B.a>0C.a<−2D.a>−210.如图,已知点P(6,2),点M,N分别是直线l1:y=x和直线l2:y=12x上的动点,连接PM,MN.则PM+MN的最小值为()A.2B.2√5C.√6D.2√3二、填空题填空题(每题4分,共24分)11.函数y=√x−3中,自变量x的取值范围是.12.若函数y=x m−1+m是关于x的一次函数,则常数m的值是.13.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为.14.已知一次函数y=kx+b,当−2≤x≤3时−1≤y≤9,则k=.15.已知A(a,b),B(c,d)是一次函数y=kx−3x+2图象上不同的两个点,若(c−a)(d−b)<0,则k的取值范围是.16.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3),有下列结论:①图象经过点(1,−3);②关于x的方程kx+b=0的解为x=2;③关于x的方程kx+b=3的解为x=0;④当x>2时y<0.其是正确的是.三、综合题(17-21每题6分,22、23每题8分,共46分)17.如图,在平面直角坐标系xOy中,直线y=−2x+4与直线y=kx相交于点E(m,2).(1)求m,k的值;(2)直接写出不等式−2x+4≥kx的解集.18.如图,一次函数y=12x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.若△PQB的面积为3,求点M的坐标.19.如图,直线AB与x轴,y轴分别交于点A和点B,点A的坐标为(−1,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移3个单位长度,得到△A1O1B1,求线段OB1的长;(3)在(2)中△AOB扫过的面积是.20.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(m,4),与x轴交于点B.(1)求直线l2的解析式y=kx+b;(2)直接写出不等式0<kx+b<x+3的解集;(3)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.21.北京园博园是一个集园林艺术、文化景观、生态休闲、科普教育于一体的大型公益性城市公园.小田和小旭在北京园博园游玩,两人同时从永定塔出发,沿相同的路线游览到达国际展园,路线如图所示.记录得到以下信息:a.小田和小旭从永定塔出发行走的路程y1和y2(单位:km)与游览时间x(单位:min)的对应关系如下图:b.在小田和小旭的这条游览路线上,依次有4个景点,从永定塔到这4个景点的路程如下表:景点济南园忆江南北京园锦绣谷路程(km)12 2.53根据以上信息,回答下列问题:(1)在这条游览路线上,永定塔到国际展园的路程为km;(2)小田和小旭在游览过程中,除永定塔与国际展园外,在相遇(填写景点名称),此时距出发经过了min;(3)下面有三个推断:①小旭从锦绣谷到国际展园游览的过程中,平均速度是245km/min;②小旭比小田晚到达国际展园30min;③60min时,小田比小旭多走了23km.所有合理推断的序号是.22.已知直线l1:y1=x−3m+15;l2:y2=−2x+3m−9.(1)当m=3时,求直线l1与l2的交点坐标;(2)若直线l1与l2的交点在第一象限,求m的取值范围;(3)若等腰三角形的两边为(2)中的整数解,求该三角形的面积.23.如图,已知直线y=kx+b经过A(6,0),B(0,3)两点.(1)求直线y=kx+b的解析式;(2)若 C 是线段OA 上一点,将线段CB 绕点 C 顺时针旋转90∘得到CD ,此时点D 恰好落在直线AB 上①求点C 和点D 的坐标;②若点P 在y 轴上,Q 在直线AB 上,是否存在以C,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点Q 的坐标,否则说明理由.参考答案1-5.【答案】ADDDD6-10.【答案】BBBDB11.【答案】x≥312.【答案】213.【答案】x≤114.【答案】2或−215.【答案】k<316.【答案】②③④17.【答案】(1)解:将点E(m,2)代入y=−2x+4可得:2=−2m+4解得:m=1∴E(1,2)∵E(1,2)过直线y=kx∴k×1=2,即k=2∴直线OE的解析式为:y=2x即:k=2,m=1;(2)解:结合函数图象可知:不等式−2x+4≥2x的解集为:x≤1.18.【答案】(1)解:对于y=12x+3当y=0时0=12x+3,解得x=−6,∴A(−6,0)当x=0时y=3,∴B(0,3)∵点C与点A关于y轴对称∴点C(6,0)设直线BC 的解析式为y =kx +b(k ≠0)∴{6k +b =0b =3,解得:{k =−12b =3∴直线BC 的解析式为y =−12x +3;(2)解:设M(m,0),则点P(m,12m +3),Q(m,−12m +3)如图,过点B 作BD ⊥PQ 于点D则PQ =|−12m +3−(12m +3)|=|m|,BD =|m|∵△PQB 的面积为3∴12PQ ⋅BD =12m 2=3解得:m =±√6∴点M 的坐标为(√6,0)或(−√6,0).19.【答案】(1)解:∵点A 的坐标为(−1,0)∴OA =1 ∵2OA =OB ∴OB =2OA =2 ∴B(0,2)设直线AB 解析式为 y =kx +b将 A(−1,0) 和 B(0,2) 代入 y =kx +b 中{0=−k +b 2=b解得 {k =2b =2∴y =2x +2 ;故直线AB 解析式为 y =2x +2(2)解:∵将△AOB 向右平移3个单位长度,得到△A 1O 1B 1∴B 1(3,2)∴OB 1=√(3−0)2+(2−0)2=√13 (3)720.【答案】(1)解:把C(m,4)代入直线l 1:y =x +3得到4=m +3,解得m =1∴点C(1,4)设直线l 2的解析式为y =kx +b 把A 和C 的坐标代入 ∴{k +b =43k +b =0 解得{k =−2b =6∴直线l 2的解析式为y =−2x +6; (2)1<x <3;(3)解:当y =0时x +3=0,解得x =−3 ∴点B 的坐标为(−3,0)AB =3−(−3)=6设M(a,a +3),由MN ∥y 轴,得N(a,−2a +6)MN =|a +3−(−2a +6)|=AB =6解得a =3或a =−1 ∴M(3,6)或(−1,2).21.【答案】(1)4(2)忆江南(3)②③22.【答案】(1)解:将m =3代入直线l 1:y 1=x −3m +15,l 2:y 2=−2x +3m −9得y 1=x −9+15=x +6,y 2=−2x +9−9=−2x联立得{y =x +6y =−2x 解得{x =−2y =4∴直线l 1与l 2的交点坐标为(−2,4);(2)解:联立直线l 1与l 2得方程组{y =x −3m +15y =−2x +3m −9 解得{x =2m −8y =−m +7∴直线l 1与l 2的交点为(2m −8,−m +7)∵交点在第一象限∴{2m −8>0−m +7>0解得4<m <7即m 的取值范围为4<m <7 (3)解:∵4<m <7 ∴等腰三角形的两边为5,6①如图,当AB =AC =6,BC =5时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =52∴AD =√AB 2−BD 2=√62−(52)2=√1192∴S △ABC =12×5×√1192=5√1194;②如图,当AB =AC =5,BC =6时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =3 ∴AD =√AB 2−BD 2=√52−32=4∴S △ABC =12×6×4=12. 综上所述,该三角形的面积为5√1194或4.23.【答案】(1)解:将A(6,0),B(0,3)代入y =kx +b 得: {6k +b =0b =3解得{k =−12b =3∴直线AB 得表达式为y =−12x +3.(2)解:①过点D 作DE ⊥x 于点E∵∠BOC=∠BCD=∠CED=90°∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°∴∠BCO=∠CDE又BC=CD∴△BOC≅CED(ASA)∴OC=DE,BO=CE=3.设OC=DE=m,则点D得坐标为(m+3,m)∵点D在直线AB上∴m=−12(m+3)+3∴m=1∴点C得坐标为(1,0),点D得坐标为(4,1).②存在点Q得坐标为(3,32),(−3,92)或(5,12).理由如下:设点Q的坐标为(n,-12n+3).分两种情况考虑,如图2所示:当CD为边时∵点C的坐标为(1,0),点D的坐标为(4,1),点P的横坐标为0∴0-n=4-1或n-0=4-1∴n=-3或n=3∴点Q 的坐标为(3,32),点Q '的坐标为(-3,92); 当CD 为对角线时∵点C 的坐标为(1,0),点D 的坐标为(4,1),点P 的横坐标为0∴n+0=1+4∴n=5∴点Q″的坐标为(5,12). 综上所述:存在以C 、D 、P 、Q 为顶点的四边形是平行四边形,点Q 的坐标为(3,32),(-3,92)或(5,12)。

浙教版八年级上册数学 第五章 一次函数 单元测试卷(含答案)

浙教版八年级上册数学 第五章 一次函数 单元测试卷(含答案)

浙教版八年级上册数学第五章一次函数单元测试卷一、单选题1.下列各点在函数y=1-2x的图象上的是()A.(2,-1B.(0,2)C.(1,0)D.(1,-1)2.一次函数y=ax+b(a>0)与x轴的交点坐标为(m ,0),则一元一次不等式ax+b≤0的解集应为()A.x≤mB.x≤-mC.x≥mD.x≥-m3.若正比例函数的图像经过点(-1,2),则这个图像必经过点()A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)4.小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是()A.他离家8km共用了30minB.他等公交车时间为6minC.他步行的速度是100m/minD.公交车的速度是350m/mi5.一次函数y=a1x+b1与y=a2x+b2的图象在同一平面直角坐标系中的位置如图所示,小华根据图象写出下面三条信息:①a1>0,b1<0;②不等式a1x+b1≤a2x+b2的解集是x≥2;③方程组的解是,你认为小华写正确()A.0个B.1个C.2个D.3个6.若一次函数y=(m﹣3)x+(m+1)(其中m为常数)的图形经过第一、二、四象限,则m的取值范围是()A.﹣1≤m≤3B.m<3C.﹣1<m<3D.m>37.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P,Q两点同时停止运动.设P点运动的时间为t秒,△APQ的面积为S,则表示S与t之间的函数关系的图象大致是()A. B.C. D.8.下列函数(1)y=2πx;(2)y=-2x+6;(3)y= ;(4)y=x2+3;(5)y= ,其中是一次函数的是().A.4个B.3个C.2个D.1个9.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0B.2C.3D.410.“龟兔首次赛跑“之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米②兔子和乌龟同时从起点出发③乌龟在途中休息了10分钟④兔子在途中750米处追上乌龟其中说法正确的是()A.1个B.2个C.3个D.4个二、填空题11.若直线y=(k-2)x+2k-1与y轴交于点(0,1),则k的值等于________ .12.写一个图象经过第二、四象限的正比例函数:________13.某书定价为30元,如果一次购买20本以上,超过20本的部分打9折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系式为________14.函数y=+(x﹣2)0中,自变量x的取值范围是 ________.15.某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,则使不等式kx+30<x成立的x的取值范围是________。

浙教版八年级上第5章一次函数单元检测试卷含答案

浙教版八年级上第5章一次函数单元检测试卷含答案

第5章一次函数检测卷一、选择题(每题2分,共20分)1.关于直线y=-2x,下列结论正确的是( )A.图象必过点(1,2)B.图象经过第一、三象限C.与y=-2x+1平行D.y随x的增大而增大2.平面直角坐标系上,一直线过(-3,4)和(-7,4)两点,则此直线会过的两象限是( ) A.第一象限和第二象限B.第一象限和第四象限C.第二象限和第三象限D.第二象限和第四象限3.若点A(-3,y1),B(2,y2),C(3,y3)是函数y=-x+2图象上的点,则( )A.y1>y2>y3B.y1<y2<y3C.y1<y3<y2D.y2>y1>y3第4题图4.(重庆中考)某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系.下列说法中错误的是( )A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟5.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m、n为常数,且mn≠0)的图象的是( )6.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A.1<m<7 B.3<m<4 C.m>1 D.m<47.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的若干信息.x …-1 1 2 …y …m 2 n …请你根据表格中的相关数据计算:m+2n=( )A.5 B.6 C.7 D.8第8题图8.如图1,在矩形ABCD中,动点P从点B出发,沿矩形的边由B→C→D→A运动,设点P运动的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图2所示,则△ABC的面积为( )A.10 B.16 C.18 D.20第9题图9.如图,直线y=-43x+8与x轴、y轴分别交于A、B两点,点M是OB上一点,若直线AB沿AM折叠,点B恰好落在x轴上的点C处,则点M的坐标是( )A.(0,4)B.(0,3) C.(-4,0)D.(0,-3)第10题图10.如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( )A.1 B.3 C.3(m-1) D. 32(m-2)二、填空题(每题3分,共30分)11.在圆的周长C=2πR中,常量是______.12.若点(m,m+3)在函数y=-x+2的图象上,则m=____.13.在一次函数y=2x-2的图象上,到x轴的距离等于1的点的坐标是____________.14.在函数x-2x-4中,自变量x的取值范围是____.15.已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则ab-5的值为__________.16.已知函数y=(2m-3)x+(3m+1)的图象经过第二、三、四象限,则m的取值范围是__________.17.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为___.第17题图第18题图第19题图第20题图18.如图,是在同一坐标系内作出的一次函数y 1、y 2的图象l 1、l 2,设y 1=k 1x +b 1,y 2=k 2x +b 2,则方程组⎩⎨⎧y1=k1x +b1,y2=k2x +b2的解是__________.19.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为________.20.如图,点M 是直线y =2x +3上的动点,过点M 作MN 垂直x 轴于点N ,y 轴上是否存在点P,使△MNP 为等腰直角三角形,请写出符合条件的点P 的坐标______________.三、解答题(共50分)21.(7分)已知y 1与x 成正比例,y 2与x +2成正比例,且y =y 1+y 2,当x =2时,y =4;当x =-1时,y =7,求y 与x 之间的函数关系式.22.(8分)已知一次函数y=kx+b的图象经过点A(-4,0),B(2,6)两点.第22题图(1)求一次函数y=kx+b的表达式;(2)在直角坐标系中,画出这个函数的图象;(3)求这个一次函数与坐标轴围成的三角形面积.23.(8分)某市生态公园计划在园内的坡地上造一片有A、B两种树的混合林,需要购买这两种树苗2000棵.种植A、B两种树苗的相关信息如表:品种树苗价格(元/棵)植树费用(元/棵)A 15 3B 20 4设购买A种树苗x棵,造这片林的总费用为y元.解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)如果要求A种树苗的数量不超过B种树苗数量的两倍,问造这片林最多能种多少棵A种树苗?24.(8分)如图,直线l1过点A(0,4),点D(4,0),直线l2:y=12x+1与x轴交于点C,两直线l1、l2相交于点B.第24题图(1)求直线l1的函数关系式;(2)求点B的坐标;(3)求△ABC的面积.25.(9分)某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)甲种 5 8乙种9 13(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?26.(10分)(丽水中考)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?第26题图参考答案第5章 一次函数检测卷一、选择题1.C 2.A 3.A 4.D 5.A 6.C 7.B 8.A 9.B 10.B 11.2,π 12.-0.513.(0.5,-1)或(1.5,1) 14.x ≥2且x ≠4 15.-1316.m <-1317.x >118.⎩⎨⎧x =-2,y =319.1620.(0,0),(0,1),(0,34),(0,-3)三、解答题21.设y 1=kx ,y 2=m(x +2),∵y =y 1+y 2,∴y =kx +m(x +2),当x =2时,y =4;当x =-1时,y =7,可得方程组:⎩⎨⎧4=2k +4m ,7=-k +m ,解得:k =-4,m =3,∴y 与x 之间的函数关系式为:y =-x +6. 22.(1)y =x +4 (2)图略 (3)823.(1)y =(15+3)x +(20+4)(2000-x)=-6x +48000 (2)由题意得,x ≤2(2000-x),解得x ≤133313,∵A 种树苗的棵数为整数,∴x 的最大值为1333,答:造这片林最多能种1333棵A 种树苗.24.(1)设l 1的函数关系式为y =kx +b ,根据题意得⎩⎨⎧b =4,4k +b =0,解得k =-1,所以l 1:y =-x +4.(2)由题意得⎩⎪⎨⎪⎧y =-x +4,y =12x +1,解得⎩⎨⎧x =2,y =2, 所以B(2,2).(3)把y =0代入l 2:y =12x +1,得x =-2,∴C(-2,0),∴S △ABC =S △ACD -S △BCD =12×6×4-12×6×2=6.25.(1)设购进甲种水果x 千克,则购进乙种水果(140-x)千克,根据题意可得: 5x +9(140-x)=1000, 解得:x =65, ∴140-x =75(千克),答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得:甲种水果每千克利润为:3元,乙种水果每千克利润为:4元, 设总利润为W ,由题意可得出:W =3x +4(140-x)=-x +560, 故W 随x 的增大而减小,则x 越小W 越大,因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍, ∴140-x ≤3x , 解得:x ≥35,∴当x =35时,W 最大=-35+560=525(元), 故140-35=105(kg ).答:当购进甲种水果35千克,乙种水果105千克时,此时利润最大为525元. 26.(1)甲行走的速度:150÷5=30(米/分); (2)补画的图象如图所示(横轴上对应的时间为50);第26题图(3)由函数图象可知,当t=12.5时,s=0.当12.5≤t≤35时,s=20t-250.当35<t≤50时,s=-30t+1500.∵甲、乙两人相距360米,即s=360,解得t1=30.5,t2=38. ∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.。

浙教版八年级上《第5章一次函数》单元测试含答案解析

浙教版八年级上《第5章一次函数》单元测试含答案解析

第5章一次函数一、解答题1.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.2.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.3.已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A,B两种型号,有关数据如下:设生产A型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y元.(1)求y与x之间的关系式,并指出x的取值范围;(2)当总费用y最小时,求相应的x值及此时y的值.4.有2条生产线计划在一个月(30天)内组装520台产品(每天产品的产量相同),按原先的组装速度,不能完成任务;若加班生产,每条生产线每天多组装2台产品,能提前完成任务.(1)每条生产线原先每天最多能组装多少台产品?(2)要按计划完成任务,策略一:增添1条生产线,共要多投资19000元;策略二:按每天能组装最多台数加班生产,每条生产线每天共要多花费350元;选哪一个策略较省费用?5.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按元收取;超过5吨的部分,每吨按元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?6.已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.7.已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?8.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.9.在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式;(2)求蜡烛从点燃到燃尽所用的时间.10.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:甲印刷社收费y(元)与印制数x(张)的函数关系如下表:乙印刷社的收费方式为:500张以内(含500张),按每张0.20元收费;超过500张部分,按每张0.10元收费.(1)根据表中规律,写出甲印刷社收费y(元)与印数x(张)的函数关系式;(2)若该小组在甲、乙两家印刷社共印制400张宣传单,用去65元,问甲、乙两家印刷社各印多少张?(3)活动结束后,市民反映良好,兴趣小组决定再加印800张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?11.在“黄袍山国家油茶产业示范园”建设中,某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同.(1)求甲、乙两种油茶树苗每株的价格;(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?12.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x 吨时,应交水费y 元.(1)分别求出0≤x ≤20和x >20时,y 与x 之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?13.在一条笔直的公路旁依次有A 、B 、C 三个村庄,甲、乙两人同时分别从A 、B 两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C 村,最终到达C 村.设甲、乙两人到C 村的距离y 1,y 2(km )与行驶时间x (h )之间的函数关系如图所示,请回答下列问题:(1)A 、C 两村间的距离为 km ,a= ;(2)求出图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km ?14.今年我市水果大丰收,A 、B 两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A 基地运往甲、乙两销售点的费用分别为每件40元和20元,从B 基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A 基地运往甲销售点水果x 件,总运费为W 元,请用含x 的代数式表示W ,并写出x 的取值范围;(2)若总运费不超过18300元,且A 地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.15.某景区的三个景点A、B、C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲第一次相遇?(2)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B步行到景点C的速度至少为多少?(结果精确到0.1米/分钟)16.绵州大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.第5章一次函数参考答案与试题解析一、解答题1.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.【考点】一次函数的应用;分式方程的应用.【专题】工程问题.【分析】(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【解答】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)设甲工程队做a天,乙工程队做b天根据题意得 a/15+b/30=1整理得b+2a=30,即b=30﹣2a所需费用w=4.5a+2.5b=4.5a+2.5(30﹣2a)=75﹣0.5a根据一次函数的性质可得,a 越大,所需费用越小,即a=15时,费用最小,最小费用为75﹣0.5×15=67.5(万元)所以选择甲工程队,既能按时完工,又能使工程费用最少.答:选择甲工程队,既能按时完工,又能使工程费用最少.【点评】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.2.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.【考点】一次函数的应用;一元一次方程的应用.【专题】行程问题;数形结合.【分析】(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a的值和m的值;(2)由分段函数当0≤x≤1,1<x≤1.5,1.5<x≤7由待定系数法就可以求出结论;(3)先求出乙车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.【解答】解:(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40,∴a=40.答:a=40,m=1;(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得40=k1,∴y=40x当1<x≤1.5时,y=40;当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得,解得:,∴y=40x﹣20.y=;(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得,解得:,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.=,.答:乙车行驶小时或小时,两车恰好相距50km .【点评】本题考出了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出一次函数的解析式是关键.3.已知某工厂计划用库存的302m 3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A ,B 两种型号,有关数据如下:设生产A 型桌椅x (套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y 元.(1)求y 与x 之间的关系式,并指出x 的取值范围;(2)当总费用y 最小时,求相应的x 值及此时y 的值.【考点】一次函数的应用.【专题】应用题;函数思想.【分析】(1)利用总费用y=生产桌椅的费用+运费列出函数关系,根据需用的木料不大于302列出一个不等式,两种桌椅的椅子数不小于学生数1250列出一个不等式,两个不等式组成不等式组得出x 的取值范围;(2)利用一次函数的增减性即可确定费用最少的方案以及费用.【解答】解:(1)设生产A 型桌椅x 套,则生产B 型桌椅的套数(500﹣x )套,根据题意得,, 解这个不等式组得,240≤x ≤250;总费用y=(100+2)x+(120+4)(500﹣x )=102x+62000﹣124x=﹣22x+62000,即y=﹣22x+62000,(240≤x ≤250);(2)∵y=﹣22x+62000,﹣22<0,∴y 随x 的增大而减小,∴当x=250时,总费用y取得最小值,此时,生产A型桌椅250套,B型桌椅250套,最少总费用y=﹣22×250+62000=56500元.【点评】本题考查了一次函数的应用,一元一次不等式组的应用,此类题目难点在于从题目的熟练关系确定出两个不等关系,从而列出不等式组求解得出x的取值范围.4.有2条生产线计划在一个月(30天)内组装520台产品(每天产品的产量相同),按原先的组装速度,不能完成任务;若加班生产,每条生产线每天多组装2台产品,能提前完成任务.(1)每条生产线原先每天最多能组装多少台产品?(2)要按计划完成任务,策略一:增添1条生产线,共要多投资19000元;策略二:按每天能组装最多台数加班生产,每条生产线每天共要多花费350元;选哪一个策略较省费用?【考点】一次函数的应用;一元一次不等式的应用.【专题】优选方案问题.【分析】(1)首先设小组原先生产x件产品,根据“不能完成任务”“提前完成任务”列出不等式组,解不等式组,根据x是整数可得出x的值;(2)由(1)中的数值,算出策略二的费用,进一步比较得出答案即可.【解答】解:(1)每条生产线原先每天最多能组装x台产品,即两条生产线原先每天最多能组装2x台产品,根据题意可得解得:6<x<8,∵x的值应是整数,∴x为7或8.答:每条生产线原先每天最多能组装8台产品.(2)策略一:增添1条生产线,共要多投资19000元;策略二:一共需要天数: =26天,共要投资26×350×2=18200元;所以策略二较省费用.【点评】此题考查一元一次不等式组的实际运用,需要注意台数与天数的取值为整数.5.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按 1.6 元收取;超过5吨的部分,每吨按 2.4 元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?【考点】一次函数的应用.【分析】(1)由图可知,用水5吨是8元,每吨按8÷5=1.6元收取;超过5吨的部分,每吨按(20﹣8)÷(10﹣5)=2.4元收取;(2)根据图象分x≤5和x>5,分别设出y与x的函数关系式,代入对应点,得出答案即可;(3)把y=76代入x>5的y与x的函数关系式,求出x的数值即可.【解答】解:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按1.6元收取;超过5吨的部分,每吨按2.4元收取;(2)当0≤x≤5时,设y=kx,代入(5,8)得8=5k,解得k=∴y=x;当x>5时,设y=kx+b,代入(5,8)、(10,20)得,解得k=,b=﹣4,∴y=x﹣4;综上所述,y=;(3)把y=代入y=x﹣4得x﹣4=,解得x=8,5×8=40(吨).答:该家庭这个月用了40吨生活用水.【点评】此题考查一次函数的实际运用,结合图形,利用基本数量关系,得出函数解析式,进一步利用解析式解决问题.6.已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.【考点】一次函数的应用;一元二次方程的应用.【专题】应用题.【分析】(1)设y关于x的函数关系式y=kx+b,代入(50,200)、(60,260)两点求得解析式即可;(2)把y=620代入(1)求得答案即可;(3)利用水费+污水处理费=600元,列出方程解决问题.【解答】解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴解得∴y关于x的函数关系式是y=6x﹣100;(2)由图可知,当y=620时,x>50,∴6x﹣100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x﹣100+(x﹣80)=600,化简得x2+40x﹣14000=0解得:x1=100,x2=﹣140(不合题意,舍去).答:这个企业2014年3月份的用水量是100吨.【点评】此题考查一次函数的运用,一元二次方程和一元一次方程的运用,注意理解题意,结合图象,根据实际选择合理的方法解答.7.已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是60 千米/时,乙车的速度是96 千米/时,点C的坐标为(,80);(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?【考点】一次函数的应用.【专题】数形结合.【分析】(1)由甲车行驶2小时在M地且M地距A市80千米,由此求得甲车原来的速度80÷2=40千米/小时,进一步求得甲车提速后的速度是40×1.5=60千米/时;乙车从出发到返回共用4﹣2=2小时,行车时间为2﹣=小时,速度为80×2÷=96千米/时;点C的横坐标为2++=,纵坐标为80;(2)设乙车返回时y与x的函数关系式y=kx+b,代入点C和(4,0)求得答案即可;(3)求出甲车提速后到达B市所用的时间减去乙车返回A市所用的时间即可.【解答】解:(1)甲车提速后的速度:80÷2×1.5=60千米/时,乙车的速度:80×2÷(2﹣)=96千米/时;点C的横坐标为2++=,纵坐标为80,坐标为(,80);(2)设乙车返回时y与x的函数关系式y=kx+b,代入(,80)和(4,0)得,解得,所以y与x的函数关系式y=﹣96x+384(≤x≤4);(3)(260﹣80)÷60﹣80÷96=3﹣=(小时).答:甲车到达B市时乙车已返回A市小时.【点评】此题考查一次函数的实际运用,结合图象,理解题意,正确列出函数解析式解决问题.8.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为560 千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.【考点】一次函数的应用.【专题】应用题.【分析】(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D,E点坐标,进而得出函数解析式.【解答】解:(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20,∴快车的速度是80km/h,慢车的速度是60km/h.(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240﹣3×60=60km,∴D(8,60),∵慢车往返各需4小时,∴E(9,0),设DE的解析式为:y=kx+b,∴,解得:.∴线段DE所表示的y与x之间的函数关系式为:y=﹣60x+540(8≤x≤9).【点评】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D,E点坐标是解题关键.9.在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式;(2)求蜡烛从点燃到燃尽所用的时间.【考点】一次函数的应用.【专题】应用题.【分析】(1)根据图象知,该函数是一次函数,且该函数图象经过点(0,24),(2,12).所以利用待定系数法进行解答即可;(2)由(1)中的函数解析式,令y=0,求得x的值即可.【解答】解:(1)由于蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.故设y与x之间的函数关系式为y=kx+b(k≠0).由图示知,该函数图象经过点(0,24),(2,12),则,解得.故函数表达式是y=﹣6x+24.(2)当y=0时,﹣6x+24=0解得x=4,即蜡烛从点燃到燃尽所用的时间是4小时.【点评】此题考查一次函数的实际运用,理解题意,结合图象,利用待定系数法求一次函数解析式是关键.10.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:甲印刷社收费y(元)与印制数x(张)的函数关系如下表:乙印刷社的收费方式为:500张以内(含500张),按每张0.20元收费;超过500张部分,按每张0.10元收费.(1)根据表中规律,写出甲印刷社收费y(元)与印数x(张)的函数关系式;(2)若该小组在甲、乙两家印刷社共印制400张宣传单,用去65元,问甲、乙两家印刷社各印多少张?(3)活动结束后,市民反映良好,兴趣小组决定再加印800张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?【考点】一次函数的应用.【专题】应用题.【分析】(1)设甲印刷社收费y(元)与印数x(张)的函数关系式为y=kx+b,由待定系数法求出其解即可;(2)设在甲印刷社印刷a张,则在乙印刷社印刷(400﹣a)张,由总费用为65元建立方程求出其解即可;(3)分别计算在两家印刷社印刷的费用,比较大小就可以得出结论.【解答】解:(1)设甲印刷社收费y(元)与印数x(张)的函数关系式为y=kx+b,由题意,得,解得:,∴y=0.15x.∴甲印刷社收费y(元)与印数x(张)的函数关系式为y=0.15x;(2)设在甲印刷社印刷a张,则在乙印刷社印刷(400﹣a)张,由题意,得0.15a+0.2(400﹣a)=65,解得:a=300,在乙印刷社印刷400﹣300=100张.答:在甲印刷社印刷300张,在乙印刷社印刷100张;(3)由题意,得在甲印刷社的费用为:y=0.15×800=120元.在乙印刷社的费用为:500×0.2+0.1(800﹣500)=130元.∵120<130,∴印刷社甲的收费<印刷社乙的收费.∴兴趣小组应选择甲印刷社比较划算.【点评】本题考查了单价×数量=总价的运用,待定系数法求一次函数的解析式的运用,列一元一次方程解实际问题的运用,解答时求出一次函数的解析式是关键.11.在“黄袍山国家油茶产业示范园”建设中,某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同.(1)求甲、乙两种油茶树苗每株的价格;(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【专题】应用题.【分析】(1)设甲、乙两种油茶树苗每株的价格分别为x元,y元,根据条件中树苗的数量与单价之间的关系建立二元一次方程组求出其解即可;(2)设购买甲种树苗a株,乙种树苗则购买(1000﹣a)株,根据两种树苗共用5600元建立方程求出其解即可;(3)设甲种树苗购买b株,则乙种树苗购买(1000﹣b)株,购买的总费用为W元,根据条件建立不等式和W与b的函数关系式,由一次函数的性质就可以得出结论.【解答】解:(1)设甲、乙两种油茶树苗每株的价格分别为x元,y元,由题意得,解得:.答:甲、乙两种油茶树苗每株的价格分别为5元,8元;(2)设甲购买了a株,乙购买了(1000﹣a)株,由题意得5a+8(1000﹣a)=5600,。

浙教版八年级上《第5章一次函数》单元测试含答案解析

浙教版八年级上《第5章一次函数》单元测试含答案解析

第5章一次函数一、解答题1.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.2.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.3.已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A,B两种型号,有关数据如下:设生产A型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y元.(1)求y与x之间的关系式,并指出x的取值范围;(2)当总费用y最小时,求相应的x值及此时y的值.4.有2条生产线计划在一个月(30天)内组装520台产品(每天产品的产量相同),按原先的组装速度,不能完成任务;若加班生产,每条生产线每天多组装2台产品,能提前完成任务.(1)每条生产线原先每天最多能组装多少台产品?(2)要按计划完成任务,策略一:增添1条生产线,共要多投资19000元;策略二:按每天能组装最多台数加班生产,每条生产线每天共要多花费350元;选哪一个策略较省费用?5.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按元收取;超过5吨的部分,每吨按元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?6.已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.7.已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?8.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.9.在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式;(2)求蜡烛从点燃到燃尽所用的时间.10.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:甲印刷社收费y(元)与印制数x(张)的函数关系如下表:乙印刷社的收费方式为:500张以内(含500张),按每张0.20元收费;超过500张部分,按每张0.10元收费.(1)根据表中规律,写出甲印刷社收费y(元)与印数x(张)的函数关系式;(2)若该小组在甲、乙两家印刷社共印制400张宣传单,用去65元,问甲、乙两家印刷社各印多少张?(3)活动结束后,市民反映良好,兴趣小组决定再加印800张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?11.在“黄袍山国家油茶产业示范园”建设中,某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同.(1)求甲、乙两种油茶树苗每株的价格;(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?12.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x 吨时,应交水费y 元.(1)分别求出0≤x ≤20和x >20时,y 与x 之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?13.在一条笔直的公路旁依次有A 、B 、C 三个村庄,甲、乙两人同时分别从A 、B 两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C 村,最终到达C 村.设甲、乙两人到C 村的距离y 1,y 2(km )与行驶时间x (h )之间的函数关系如图所示,请回答下列问题:(1)A 、C 两村间的距离为 km ,a= ;(2)求出图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km ?14.今年我市水果大丰收,A 、B 两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A 基地运往甲、乙两销售点的费用分别为每件40元和20元,从B 基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A 基地运往甲销售点水果x 件,总运费为W 元,请用含x 的代数式表示W ,并写出x 的取值范围;(2)若总运费不超过18300元,且A 地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.15.某景区的三个景点A、B、C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲第一次相遇?(2)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B步行到景点C的速度至少为多少?(结果精确到0.1米/分钟)16.绵州大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.第5章一次函数参考答案与试题解析一、解答题1.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.【考点】一次函数的应用;分式方程的应用.【专题】工程问题.【分析】(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【解答】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)设甲工程队做a天,乙工程队做b天根据题意得 a/15+b/30=1整理得b+2a=30,即b=30﹣2a所需费用w=4.5a+2.5b=4.5a+2.5(30﹣2a)=75﹣0.5a根据一次函数的性质可得,a 越大,所需费用越小,即a=15时,费用最小,最小费用为75﹣0.5×15=67.5(万元)所以选择甲工程队,既能按时完工,又能使工程费用最少.答:选择甲工程队,既能按时完工,又能使工程费用最少.【点评】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.2.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.【考点】一次函数的应用;一元一次方程的应用.【专题】行程问题;数形结合.【分析】(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a的值和m的值;(2)由分段函数当0≤x≤1,1<x≤1.5,1.5<x≤7由待定系数法就可以求出结论;(3)先求出乙车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.【解答】解:(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40,∴a=40.答:a=40,m=1;(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得40=k1,∴y=40x当1<x≤1.5时,y=40;当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得,解得:,∴y=40x﹣20.y=;(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得,解得:,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.=,.答:乙车行驶小时或小时,两车恰好相距50km .【点评】本题考出了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出一次函数的解析式是关键.3.已知某工厂计划用库存的302m 3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A ,B 两种型号,有关数据如下:设生产A 型桌椅x (套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y 元.(1)求y 与x 之间的关系式,并指出x 的取值范围;(2)当总费用y 最小时,求相应的x 值及此时y 的值.【考点】一次函数的应用.【专题】应用题;函数思想.【分析】(1)利用总费用y=生产桌椅的费用+运费列出函数关系,根据需用的木料不大于302列出一个不等式,两种桌椅的椅子数不小于学生数1250列出一个不等式,两个不等式组成不等式组得出x 的取值范围;(2)利用一次函数的增减性即可确定费用最少的方案以及费用.【解答】解:(1)设生产A 型桌椅x 套,则生产B 型桌椅的套数(500﹣x )套,根据题意得,,解这个不等式组得,240≤x ≤250;总费用y=(100+2)x+(120+4)(500﹣x )=102x+62000﹣124x=﹣22x+62000,即y=﹣22x+62000,(240≤x ≤250);(2)∵y=﹣22x+62000,﹣22<0,∴y 随x 的增大而减小,∴当x=250时,总费用y取得最小值,此时,生产A型桌椅250套,B型桌椅250套,最少总费用y=﹣22×250+62000=56500元.【点评】本题考查了一次函数的应用,一元一次不等式组的应用,此类题目难点在于从题目的熟练关系确定出两个不等关系,从而列出不等式组求解得出x的取值范围.4.有2条生产线计划在一个月(30天)内组装520台产品(每天产品的产量相同),按原先的组装速度,不能完成任务;若加班生产,每条生产线每天多组装2台产品,能提前完成任务.(1)每条生产线原先每天最多能组装多少台产品?(2)要按计划完成任务,策略一:增添1条生产线,共要多投资19000元;策略二:按每天能组装最多台数加班生产,每条生产线每天共要多花费350元;选哪一个策略较省费用?【考点】一次函数的应用;一元一次不等式的应用.【专题】优选方案问题.【分析】(1)首先设小组原先生产x件产品,根据“不能完成任务”“提前完成任务”列出不等式组,解不等式组,根据x是整数可得出x的值;(2)由(1)中的数值,算出策略二的费用,进一步比较得出答案即可.【解答】解:(1)每条生产线原先每天最多能组装x台产品,即两条生产线原先每天最多能组装2x台产品,根据题意可得解得:6<x<8,∵x的值应是整数,∴x为7或8.答:每条生产线原先每天最多能组装8台产品.(2)策略一:增添1条生产线,共要多投资19000元;策略二:一共需要天数: =26天,共要投资26×350×2=18200元;所以策略二较省费用.【点评】此题考查一元一次不等式组的实际运用,需要注意台数与天数的取值为整数.5.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按 1.6 元收取;超过5吨的部分,每吨按 2.4 元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?【考点】一次函数的应用.【分析】(1)由图可知,用水5吨是8元,每吨按8÷5=1.6元收取;超过5吨的部分,每吨按(20﹣8)÷(10﹣5)=2.4元收取;(2)根据图象分x≤5和x>5,分别设出y与x的函数关系式,代入对应点,得出答案即可;(3)把y=76代入x>5的y与x的函数关系式,求出x的数值即可.【解答】解:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按1.6元收取;超过5吨的部分,每吨按2.4元收取;(2)当0≤x≤5时,设y=kx,代入(5,8)得8=5k,解得k=∴y=x;当x>5时,设y=kx+b,代入(5,8)、(10,20)得,解得k=,b=﹣4,∴y=x﹣4;综上所述,y=;(3)把y=代入y=x﹣4得x﹣4=,解得x=8,5×8=40(吨).答:该家庭这个月用了40吨生活用水.【点评】此题考查一次函数的实际运用,结合图形,利用基本数量关系,得出函数解析式,进一步利用解析式解决问题.6.已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.【考点】一次函数的应用;一元二次方程的应用.【专题】应用题.【分析】(1)设y关于x的函数关系式y=kx+b,代入(50,200)、(60,260)两点求得解析式即可;(2)把y=620代入(1)求得答案即可;(3)利用水费+污水处理费=600元,列出方程解决问题.【解答】解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴解得∴y关于x的函数关系式是y=6x﹣100;(2)由图可知,当y=620时,x>50,∴6x﹣100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x﹣100+(x﹣80)=600,化简得x2+40x﹣14000=0解得:x1=100,x2=﹣140(不合题意,舍去).答:这个企业2014年3月份的用水量是100吨.【点评】此题考查一次函数的运用,一元二次方程和一元一次方程的运用,注意理解题意,结合图象,根据实际选择合理的方法解答.7.已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是60 千米/时,乙车的速度是96 千米/时,点C的坐标为(,80);(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?【考点】一次函数的应用.【专题】数形结合.【分析】(1)由甲车行驶2小时在M地且M地距A市80千米,由此求得甲车原来的速度80÷2=40千米/小时,进一步求得甲车提速后的速度是40×1.5=60千米/时;乙车从出发到返回共用4﹣2=2小时,行车时间为2﹣=小时,速度为80×2÷=96千米/时;点C的横坐标为2++=,纵坐标为80;(2)设乙车返回时y与x的函数关系式y=kx+b,代入点C和(4,0)求得答案即可;(3)求出甲车提速后到达B市所用的时间减去乙车返回A市所用的时间即可.【解答】解:(1)甲车提速后的速度:80÷2×1.5=60千米/时,乙车的速度:80×2÷(2﹣)=96千米/时;点C的横坐标为2++=,纵坐标为80,坐标为(,80);(2)设乙车返回时y与x的函数关系式y=kx+b,代入(,80)和(4,0)得,解得,所以y与x的函数关系式y=﹣96x+384(≤x≤4);(3)(260﹣80)÷60﹣80÷96=3﹣=(小时).答:甲车到达B市时乙车已返回A市小时.【点评】此题考查一次函数的实际运用,结合图象,理解题意,正确列出函数解析式解决问题.8.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为560 千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.【考点】一次函数的应用.【专题】应用题.【分析】(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D,E点坐标,进而得出函数解析式.【解答】解:(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20,∴快车的速度是80km/h,慢车的速度是60km/h.(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240﹣3×60=60km,∴D(8,60),∵慢车往返各需4小时,∴E(9,0),设DE的解析式为:y=kx+b,∴,解得:.∴线段DE所表示的y与x之间的函数关系式为:y=﹣60x+540(8≤x≤9).【点评】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D,E点坐标是解题关键.9.在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式;(2)求蜡烛从点燃到燃尽所用的时间.【考点】一次函数的应用.【专题】应用题.【分析】(1)根据图象知,该函数是一次函数,且该函数图象经过点(0,24),(2,12).所以利用待定系数法进行解答即可;(2)由(1)中的函数解析式,令y=0,求得x的值即可.【解答】解:(1)由于蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.故设y与x之间的函数关系式为y=kx+b(k≠0).由图示知,该函数图象经过点(0,24),(2,12),则,解得.故函数表达式是y=﹣6x+24.(2)当y=0时,﹣6x+24=0解得x=4,即蜡烛从点燃到燃尽所用的时间是4小时.【点评】此题考查一次函数的实际运用,理解题意,结合图象,利用待定系数法求一次函数解析式是关键.10.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:甲印刷社收费y(元)与印制数x(张)的函数关系如下表:乙印刷社的收费方式为:500张以内(含500张),按每张0.20元收费;超过500张部分,按每张0.10元收费.(1)根据表中规律,写出甲印刷社收费y(元)与印数x(张)的函数关系式;(2)若该小组在甲、乙两家印刷社共印制400张宣传单,用去65元,问甲、乙两家印刷社各印多少张?(3)活动结束后,市民反映良好,兴趣小组决定再加印800张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?【考点】一次函数的应用.【专题】应用题.【分析】(1)设甲印刷社收费y(元)与印数x(张)的函数关系式为y=kx+b,由待定系数法求出其解即可;(2)设在甲印刷社印刷a张,则在乙印刷社印刷(400﹣a)张,由总费用为65元建立方程求出其解即可;(3)分别计算在两家印刷社印刷的费用,比较大小就可以得出结论.【解答】解:(1)设甲印刷社收费y(元)与印数x(张)的函数关系式为y=kx+b,由题意,得,解得:,∴y=0.15x.∴甲印刷社收费y(元)与印数x(张)的函数关系式为y=0.15x;(2)设在甲印刷社印刷a张,则在乙印刷社印刷(400﹣a)张,由题意,得0.15a+0.2(400﹣a)=65,解得:a=300,在乙印刷社印刷400﹣300=100张.答:在甲印刷社印刷300张,在乙印刷社印刷100张;(3)由题意,得在甲印刷社的费用为:y=0.15×800=120元.在乙印刷社的费用为:500×0.2+0.1(800﹣500)=130元.∵120<130,∴印刷社甲的收费<印刷社乙的收费.∴兴趣小组应选择甲印刷社比较划算.【点评】本题考查了单价×数量=总价的运用,待定系数法求一次函数的解析式的运用,列一元一次方程解实际问题的运用,解答时求出一次函数的解析式是关键.11.在“黄袍山国家油茶产业示范园”建设中,某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同.(1)求甲、乙两种油茶树苗每株的价格;(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【专题】应用题.【分析】(1)设甲、乙两种油茶树苗每株的价格分别为x元,y元,根据条件中树苗的数量与单价之间的关系建立二元一次方程组求出其解即可;(2)设购买甲种树苗a株,乙种树苗则购买(1000﹣a)株,根据两种树苗共用5600元建立方程求出其解即可;(3)设甲种树苗购买b株,则乙种树苗购买(1000﹣b)株,购买的总费用为W元,根据条件建立不等式和W与b的函数关系式,由一次函数的性质就可以得出结论.【解答】解:(1)设甲、乙两种油茶树苗每株的价格分别为x元,y元,由题意得,解得:.答:甲、乙两种油茶树苗每株的价格分别为5元,8元;(2)设甲购买了a株,乙购买了(1000﹣a)株,由题意得5a+8(1000﹣a)=5600,。

浙教版八年级上册 第5章 一次函数 单元测试题含答案

浙教版八年级上册 第5章 一次函数 单元测试题含答案

25.某厂家在甲、乙两家商场销售同一商品所获利润分别为 y 甲 , y 乙(单位:元),y 甲 , y 乙与销售量 x(单位:件)的函数关系如图所示,请你根据图象解决下列问题:
(1)分别求出 y 甲、y 乙与 x 的函数关系式; (2)现在厂家有商品 500 件,单独分配给甲商场或乙商场,分配给哪个商场,厂家获得的利润更高?请 说明理由并求出最大利润. (3)现在厂家有商品 1200 件,分配给甲商场和乙商场,如何分配,厂家获得的总利润最大? 26.如图,A、B 分别是 x 轴上位于原点左右两侧的两点,点 P(a,4)在第一象限内,一过原点的直线 y=2x 与直线 BD、直线 AC 同时过点 P,直线 BD 交 y 轴于点 D,且线段 AO=2.
∵点 P(a,4),则 PE=4,
∴S△AOP= OA•PE= ×2×4=4; (2)解:∵S△BOP=3S△AOP , ∴OB=3OA, ∴点 B 坐标为(6,0), 又∵点 P(a,4)在直线 y=2x 上, ∴2a=4,a=2, ∴P(2,4), 设直线 BD 解析式为 y=kx+b,


解得:k=﹣1.
代入得:

解得:k3=0.2,b=360, 所以 y 乙=0.2x+360;
即 y 乙=
(且 x 为正整数)
(2)解:∵当 x=500 时,y 甲=0.8×500=400(元), 当 x=500 时,y 乙=0.2×500+360=460(元), 故乙商场的利润更高为 460 元. (3)解:设分配给甲商场 a 件,则分配给乙商场(1200﹣a)件,根据题意可得: 当 a≥1000 时,总利 润为:0.8a+2(1200﹣a)=﹣1.2a+2400, 当 a<1000 时,总利润为:0.8a+0.2(1200﹣a)+360=0.6a+600, 当﹣1.2a+2400=0.6a+600 时, 解得:a=1000, 根据函数增减性可得:当 a=1000 时,总利润最大,为 1200 元, 即分配甲商场 1000 件,乙商场 200 件,所获利润最大,为 1200 元. 26.(1)解:(1)作 PE⊥x 轴于点 E,

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章一次函数数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、已知函数和,且,,则这两个一次函数图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限2、在函数y= 中,自变量x的取值范围是()A.x>0B.x≥﹣4C.x≥﹣4且x≠0D.x>0且x≠﹣13、下列图象中,y是x的函数的是()A. B. C. D.4、正比例函数y=kx(k≠0)的图像在第二、四象限,则一次函数y=x+k的图像大致是()A. B. C. D.5、若函数的图象如图所示,则关于的不等式的解集为( )A. B. C. D.6、直线的截距是()A.-3B.-1C.1D.37、下列表达形式中,能表示y是x的函数的是( )A.|y|=xB.y=±C.D.8、下列命题:①若是完全平方式,则;②若三点在同一直线上,则;③等腰三角形一边上的中线所在的直线是它的对称轴;④一个多边形的内角和是它的外角和的倍,则这个多边形是六边形.其中真命题个数是()A. B. C. D.9、已知直线y=mx﹣3与直线y=x+3m,当﹣2≤x<2时,两直线有交点,则m的取值范围是()A.m<﹣或m>﹣5B.﹣5≤m≤﹣C.﹣5<mD.m =﹣10、已知一次函数y=kx+b(k≠0)的草图如图所示,则下列结论正确的是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<011、在弹性限度内,弹簧挂上物体后会伸长,测得弹簧的长度 y(cm)与所挂物体的质量x(kg)之间有如下表关系:下列说法错误的是()A.y 随 x 的增大而增大B.所挂物体质量每增加 1kg弹簧长度增加0.5cm C.所挂物体为 7kg时,弹簧长度为 13.5cm D.不挂重物时弹簧的长度为 0cm12、已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是()A.(0,1)B.(﹣1,0)C.(0,﹣1)D.(1,0)13、小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1, v2, v3, v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()A. B. C.D.14、下列给出的四个点中,不在直线y=2x-3上的是()A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5)15、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地体息。

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章一次函数数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连接AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣2、一次函数y=kx+b的图象如图,则当0<x≤1时,y的范围是()A.y>0B.﹣2<y≤0C.﹣2<y≤1D.无法判断3、下列函数中,是一次函数的是()A. B. C.y=5x 2+x D.y=−84、在平面直角坐标系中,下列函数的图像经过原点的是( )A.y=-x+3B.C.y=2xD.y=-2x 2+x-75、已知y与x+1成正比,当x=2时,y=9;那么当y=-15时,x的值为().A.4B.-4C.6D.-66、函数y=kx﹣2与y=(k≠0)在同一坐标系内的图象可能是()A. B. C. D.7、在函数y=中,自变量x的取值范围是()A.x≥5B.x≤5C.x>5D.x<58、如图,正方形的边长为,点P是正方形的对角线上的一个动点(不与B、D重合),作于点E,作于点F,设的长为x,四边形的周长为y,能大致表示y与x之间的函数图象的是()A. B. C.D.9、如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.①②③④D.①③④⑤10、如图,直线y=kx+b交坐标轴于A、B两点,则不等式kx+b>0的解集是()A.x>﹣2B.x>3C.x<﹣2D.x<311、数学课上,老师提出问题:“一次函数的图象经过点,,由此可求得哪些结论?”小明思考后求得下列个结论:①该函数表达式为;②该一次函数的函数值随自变量的增大而增大;③点该函数图象上;④直线与坐标轴围成的三角形的面积为.其中正确的结论有()A. 个B. 个C. 个D. 个12、若一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b≥0的解集为()A.x≤2B.x≥1C.x≥2D.x≥013、某药品研究所开发一种抗新冠肺炎的新药,经大量动物实验,首次用于临床人体实验,测得成人服药后血液中药物浓度y(微g/毫升)与服药时间x小时之间的函数关系如图所示(当时,y与x成反比),若血液中药物浓度不低于4微g/毫升的持续时间不低于6.5小时,则称药物治疗有效.根据图象信息计算并判断下列选项错误的是()A.当血液中药物浓度上升时,y与x之间的函数关系式是.B.当血液中药物浓度下降时,y与x之间的函数关系式是.C.血液中药物浓度不低于4微g/毫升的持续时间为5个小时.D.这种抗菌新药不可以作为有效药物投入生产.14、如图,在平面直角坐标系中,直线y= x- 与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.3B.12C.6D.15、在直角坐标系中,函数y= 3x与y= -x2+1的图像大致是()A. B. C. D.二、填空题(共10题,共计30分)16、在函数y=中,自变量x的取值范围是________17、已知一次函数y=kx+2,若y随x的增大而减小,则它的图象不经过第________象限.18、如图,直线与轴交于点,则时,的取值范围是________。

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章一次函数数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、函数y=的自变量x的取值范围是( )A.x≠0B.x≠2C.x>2D.x<22、下列说法错误的是()A.抛物线y=﹣x 2+x的开口向下B.角平分线上的点到角两边的距离相等 C.一次函数y=﹣x+1的函数值随自变量的增大而增大 D.两点之间线段最短3、如图,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,小球从点A到点B的时间是().A.1秒B.2秒C.3秒D.4秒4、正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定5、在一次函数y=(k﹣2)x﹣中,y随x的增大而增大,则k的可能值为()A.1B.C.2D.46、如图,在平面直角坐标系xOy中,如果一个点的坐标可以用来表示关于x、y的二元一次方程组的解,那么这个点是()A.MB.NC.ED.F7、如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t 的大致图象为()A. B. C. D.8、若正比例函数y=mx的图象经过(﹣1,﹣2),(m,b)两点,则b的值为()A.0B.﹣4C.4D.﹣129、“科学用眼,保护视力”是青少年珍爱生命的具体表现.科学证实:近视眼镜的度数y (度)与镜片焦距x(m)成反比例.如果500度近视眼镜片的焦距为0.2m,则表示y与x 函数关系的图象大致是()A. B. C. D.10、矩形ABCD中,AD=8cm,AB=6cm,动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动,E点运动到B点停止,F 点继续运动,运动到点D停止.如图可得到矩形CFHE,设F点运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是如图中的()A. B. C. D.11、一次函数+b 中,随的增大而减小,b> 0, 则这个函数的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限12、下列一次函数中,y随x值的增大而减小的是()A.y=3﹣2xB.y=3x+1C.y= x+6D.y=(﹣2)x13、如图所示,已知点C(2,0),直线与两坐标轴分别交于A、B两点,D、E分别是AB、OA上的动点,当的周长取最小值时,点D的坐标为()A.(2,1)B.(3,2)C.(,2)D.(,)14、如图,已知一次函数y=kx+2的图象与x轴,y轴分别交于点A,B,与正比例函数y =x交于点C,已知点C的横坐标为2,下列结论:①关于x的方程kx+2=0的解为x=3;②对于直线y=kx+2,当x<3时,y>0;③对于直线y=kx+2,当x>0时,y>2;④方程组的解为,其中正确的是()A.①②③B.①②④C.①③④D.②③④15、函数y=|x-1|+|x-2|的最小值是()A.3B.2C.1D.0二、填空题(共10题,共计30分)16、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,当∣BC-AC∣最大时,点C的坐标是________.17、若正比例函数y=(1﹣2m)x的图象经过点A(3,y1)和点B(5,y2),且y1>y2,则m的取值范围是________.18、若正比例函数y=kx(k为常数,且k≠0)的函数值y随着x的增大而减小,则k的值可以是________ .(写出一个即可)19、在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终到达C港,设甲乙两船行驶的时间为x(h),与B港的距离为y (km),它们间的函数关系如图所示,若两船的距离不超过10km时能够相互望见,则甲乙两船可以互相望见的时间共有________小时.20、写出直线y=﹣2x﹣3关于y轴对称的直线的解析式________.21、已知点,是一次函数图象上的两点,则________ .(填“>”、“<”或“=”)22、在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.一根弹簧不挂物体时长15cm;当所挂物体的质量为5kg时,弹簧长20cm.所挂物体质量为8kg时弹簧的长度是________cm.23、已知直线y1=x,y2= x+1,y3=﹣x+5的图象如图所示,若无论x取何值,y总取y1, y2, y3中的最小值,则y的最大值为________.24、为了做到合理用药,使药物在人体内发挥疗效作用,该药物的血药浓度应介于最低有效浓度与最低中毒浓度之间.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如图:根据图中提供的信息,下列关于成人患者使用该药物的说法中:①首次服用该药物1单位约10分钟后,药物发挥疗效作用;②每间隔4小时服用该药物1单位,可以使药物持续发挥治疗作用;③每次服用该药物1单位,两次服药间隔小于2.5小时,不会发生药物中毒.所有正确的说法是________.25、若函数y=kx+b中k+b=﹣5,kb=6,则这个函数的图象不经过第________象限.三、解答题(共5题,共计25分)26、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.27、如图,已知,直线y=2x+3与直线y=﹣2x﹣1,求△ABC的面积.28、如图,某一次函数图象经过点,且与正比例函数的图象交于点,求的值和此一次函数的表达式.29、写出下列问题中的常量与变量:将一根长60厘米的铁丝折成一个矩形框架,矩形的长y用关于宽x的代数式表示为y=(60﹣2x).30、一水库水位h(m)与月份x的变化情况如下表.该水库水位h是月份x的函数吗?x/月份 1 2 3 4 5 6 7 8 9 10 11 1280 85 90 100 110 120 160 140 130 120 110 85 水库水位h/m参考答案一、单选题(共15题,共计45分)1、B2、C3、C5、D6、C7、A8、C9、B10、A11、C12、A13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

浙教版八年级数学上册 第5章 一次函数 单元检测试题(含答案)

浙教版八年级数学上册 第5章 一次函数 单元检测试题(含答案)

第5章一次函数单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 把直线y=−x+l沿y轴向上平移一个单位,得到新直线的关系式是()A.y=−xB.y=−x+2C.y=−x−2D.y=−2x2. 下列函数关系式中,y不是x的函数的是()A.y=−xB.|y|=2xC.y=|2x|D.y=2x2+43. 如图,一次函数的图象经过A,B两点,则这个一次函数的解析式是()A.y=32x−2 B.y=12x−2 C.y=12x+2 D.y=32x+24. y与x成正比,当x=2时,y=8,那么当y=16时,x为()A.4B.−4C.3D.−35. 下列函数中,自变量x的取值不是全体实数的是()A.y=2x−1B.y=2xC.y=2xD.y=x26. 已知方程kx+b=0的解是x=3,则一次函数y=kx+b的图象可能是()A. B. C. D.7. 在同一坐标系中,函数y=kx与y=x2−k的图象大致是()A. B.C. D.8. 已知不等式ax +b <0的解集是x <−2,下列有可能是直线y =ax +b 的图象是( )A. B.C. D.9. 在平面直角坐标系内,已知点A 的坐标为(−6, 0),直线l:y =kx +b 不经过第四象限,且与x 轴的夹角为30∘,点P 为直线l 上的一个动点,若点P 到点A 的最短距离是2,则b 的值为( )A.23√3 或103√3B.103√3C.2√3D.2√3或10√3二、 填空题 (本题共计 9 小题 ,每题 3 分 ,共计27分 , )10. 已知一次函数的图象与直线y =−x +1平行,且过点(8, 2),那么此一次函数的解析式为________.11. 已知方程组{y =ax +2y =bx −1的解{x =1y =2适合一次函数y =kx +1,则a +b +k =________.12. 有一棵树苗,刚栽下去时,树高2.1m,以后每年长0.5m,则小树的高y(m)与所栽年数x的函数关系为________.13. 若函数y=(k+2)x+(k2−4)是正比例函数,则k=________.x+m的图象恰有两个公共点,则实数m的取值范围是________.14. 函数y=|x|与y=1215. 将直线y=2x−4向右平移5个单位后,所得直线的表达式是________.16. 如图,直线y=kx+b与x轴相交于点A(−4, 0),则当y>0时,x的取值范围是________.17. 如图,点A、B、C在一次函数y=−2x+m的图象上,它们的横坐标依次为−1、1、2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积的和是________.18. 某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1t,加油飞机的加油油箱余油量为Q2t,加油时间为t min,Q1,Q2与t之间的函数图象如图所示,结合图象回答下列问题:(1)加油飞机的加油油箱中装载了________吨油.(2)将这些油全部加给运输飞机需________分钟.(3)求加油过程中,运输飞机的余油量Q(t)与时间t(min)的函数关系式________.(4)运输飞机加完油后,以原速继续飞行,需10ℎ到达目的地,油料是否够用________(请填“够用”或“不够用”)三、解答题(本题共计7 小题,共计66分,)19. 已知y−3与x+2成正比例,且x=2时,y=7,求y与x之间的函数关系式.20. 已知一次函数y=(2−k)x−2k+6,(1)k满足何条件时,它的图象经过原点;(2)k满足何条件时,它的图象平行于直线y=−x+1;(3)k满足何条件时,y随x的增大而减小;(4)k满足何条件时,图象经过第一、二、四象限;(5)k满足何条件时,它的图象与y轴的交点在x轴的上方.21. 如图,周长为24的五边形ABCDE,被对角线BE分为等腰三角形ABE及矩形BCDE,且AB=BC.设AB长为x,CD为y,求y与x之间的函数关系,写出自变量的取值范围.22. 已知正比例函数图象上一个点A到x轴的距离为4,这个点A的横坐标为−2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数经过哪几个象限?(3)这个正比例函数的函数值y是随着x增大而增大?还是随着x增大而减小?23. 已知一次函数y=(a−2)x+3a2−12.(1)a为何值时,这个一次函数的图象经过原点.(2)a为何值时,这个一次函数的图象与y轴交于点(0, −9).24. 某工厂今年年产值是20万元,计划以后每年年产值增加2万元.(1)设x年后年产值为y(万元),写出y与x之间的表达式;(2)用表格表示当x从1变化到6(每次增加1)y的对应值;(3)求8年后的年产值.25. 已知A、B两地相距6千米,上午8:00,甲从A地出发步行到B地;8:20后,乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.(1)求甲步行的速度是多少?(2)求甲、乙二人相遇的时刻?(3)求乙到达A地的时刻?参考答案与试题解析一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )1.【答案】B【解答】解:∵ 直线y =−x +1沿y 轴向上平移1个单位长度,∴ 所得直线的函数关系式为:y =−x +2.故选B2.【答案】B【解答】解:A 、y =−x 对于x 的每一个取值,y 都有唯一确定的值,符合函数的定义,故本选项错误;B 、|y|=2x 对于x 的每一个取值,y 有两个值,不符合函数的定义,故本选项正确;C 、y =|2x|对于x 的每一个取值,y 都有唯一确定的值,符合函数的定义,故本选项错误;D 、y =2x 2+4对于x 的每一个取值,y 都有唯一确定的值,符合函数的定义,故本选项错误.故选B .3.【答案】A【解答】解:设一次函数的解析式是y =kx +b ,∵ 一次函数的图象经过A(2, 1),B(0, −2)两点,∴ {2k +b =1b =−2, 解得{b =−2k =32.则这个一次函数的解析式是y =32x −2. 故选A .4.【答案】A【解答】解:设y =kx ,当x =2时,y =8,则8=2k,解得,k=4.∴函数解析式为y=4x,把y=16代入可得:16=4x,解得:x=4,故选:A.5.【答案】C【解答】解:A、B、D、中的函数都属于整式函数,自变量x的取值为全体实数;C、中的函数属于分式函数,x≠0,故选C.6.【答案】A【解答】解:方程kx+b=0的解是x=3,则函数y=kx+b与x轴的交点坐标是(3, 0).满足条件的只有A.故选A.7.【答案】B【解答】解:根据图象知:第二个函数一次项系数为正数,故图象必过一、三象限,而y=kx必过一三或二四象限,A、k<0,−k<0.解集没有公共部分,所以不可能,故此选项错误;B、k<0,−k>0.解集有公共部分,所以有可能,故此选项正确;C、正比例函数的图象不对,所以不可能,故此选项错误;D、正比例函数的图象不对,所以不可能,故此选项错误.故选B.8.【答案】C【解答】解:∵不等式ax+b<0的解集是x<−2,∴当x<−2时,函数y=ax+b的函数值为负数,即直线y=ax+b的图象在x轴下方.故选C .9.【答案】A【解答】(2)同理可求得AD =4,OD =OA +AD =10,在Rt △DOE 中,∠EDO =30∘,∴ OE =tan 30∘×OD =10√33,即:b =10√33(1)故选:A .二、 填空题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )10.【答案】y =−x +10【解答】设一次函数解析式为y =kx +b ,∵ 一次函数的图象与直线y =−x +1平行,∴ k =−1,把(8, 2)代入y =−x +b 得−8+b =2,解得b =10,∴ 一次函数解析式为y =−x +10.11.【答案】4【解答】解:∵ 方程组{y =ax +2y =bx −1的解{x =1y =2适合一次函数y =kx +1, ∴ a +2=2,b −1=2,k +1=2,∴ a =0,a =3,a =1,∴ a +a +a =0+3+1=4.故答案为4.12.【答案】a=0.5a+2.1【解答】解:依题意有:a=0.5a+2.1.13.【答案】2【解答】解:由题意得:a+2≠0,a2−4=0,∵a≠−2,∴a=2.故填2.14.【答案】a>0【解答】解:由图像可知,当a>0时,两个函数有两个公共点.故答案为:a>0.15.【答案】a=2a−14【解答】解:由“左加右减”的原则可知,将直线a=2a−4向右平移5个单位后,所得直线的表达式是a=2(a−5)−4,即a=2a−14.故答案为a=2a−14.16.【答案】a>−4【解答】解:由函数图象可知,当a >−4时,a >0.故答案为:a >−4.17.【答案】3【解答】解:如图所示,将a 、a 、a 的横坐标代入到一次函数中;解得a (−1, a +2),a (1, a −2),a (2, a −4).由一次函数的性质可知,三个阴影部分三角形全等,底边长为2−1=1,高为(a −2)−(a −4)=2,可求的阴影部分面积为:a =12×1×2×3=3.所以应填:3.18.【答案】解:(1)由图象知,加油飞机的加油油箱中装载了30a 油,全部加给运输机需10min .(3)设a 1=aa +a ,把(0, 40)和(10, 69)代入,得:{40=a 69=10a +a ,解得{a =2.9a =40所以a 1=2.9a +40,(0≤a <10).(4)根据图象可知,运输飞机10分钟耗油1a ,则运输飞机的耗油量为每分钟0.1a , 所以10a 耗油量为10×60×0.1=60(a )<69(a ).所以油料够用.【解答】解:(1)由图象知,加油飞机的加油油箱中装载了30a 油,全部加给运输机需10min .(3)设a 1=aa +a ,把(0, 40)和(10, 69)代入,得:{40=a 69=10a +a ,解得{a =2.9a =40所以a 1=2.9a +40,(0≤a <10).(4)根据图象可知,运输飞机10分钟耗油1a ,则运输飞机的耗油量为每分钟0.1a ,所以10a耗油量为10×60×0.1=60(a)<69(a).所以油料够用.三、解答题(本题共计7 小题,每题10 分,共计70分)19.【答案】解:∵a−3与a+2成正比例,∴设a−3=a(a+2),代入a=2,a=7,得4=4a,解得a=1,∴a−3=a+2,即a=a+5.【解答】解:∵a−3与a+2成正比例,∴设a−3=a(a+2),代入a=2,a=7,得4=4a,解得a=1,∴a−3=a+2,即a=a+5.20.【答案】解:(1)∵一次函数a=(2−a)a−2a+6的图象过原点,∴−2a+6=0,解得a=3;(2)∵一次函数a=(2−a)a−2a+6的图象平行于直线a=−a+1,∴2−a=−1且−2a+6≠1,解得a=3;(3)∵一次函数a=(2−a)a−2a+6的图象a随a的增大而减小,∴2−a<0,解得a>2;(4)∵该函数的图象经过第一、二、四象限,∴2−a<0,且−2a+6>0,解得2<a<3;(5)∵a=(2−a)a−2a+6,∴当a=0时,a=−2a+6,由题意,得−2a+6>0且2−a≠0,∴a<3且a≠2.【解答】解:(1)∵一次函数a=(2−a)a−2a+6的图象过原点,∴−2a+6=0,解得a=3;(2)∵一次函数a=(2−a)a−2a+6的图象平行于直线a=−a+1,∴2−a=−1且−2a+6≠1,解得a=3;(3)∵一次函数a=(2−a)a−2a+6的图象a随a的增大而减小,∴2−a<0,解得a>2;(4)∵该函数的图象经过第一、二、四象限,∴2−a<0,且−2a+6>0,解得2<a<3;(5)∵a=(2−a)a−2a+6,∴当a=0时,a=−2a+6,由题意,得−2a+6>0且2−a≠0,∴a<3且a≠2.21.【答案】解:由题意可得:4a+2a=24,则a=−2a+12,由三角形三边关系得出:2a>a,即2a>−2a+12,解得:a>3,4a<24,解得:a<6,故自变量的取值范围:3<a<6.【解答】解:由题意可得:4a+2a=24,则a=−2a+12,由三角形三边关系得出:2a>a,即2a>−2a+12,解得:a>3,4a<24,解得:a<6,故自变量的取值范围:3<a<6.22.【答案】解:(1)∵正比例函数图象上一个点a到a轴的距离为4,这个点a的横坐标为−2,∴a(−2, 4),(−2, −4),设解析式为:a=aa,则4=−2a,−4=−2a,解得a=−2,a=2,故正比例函数解析式为;a=±2a;(2)当a=2a时,图象经过第一、三象限;当a=−2a时,图象经过第二、四象限;(3)当a=2a时,函数值a是随着a增大而增大;当a=−2a时,函数值a是随着a增大而减小.【解答】解:(1)∵正比例函数图象上一个点a到a轴的距离为4,这个点a的横坐标为−2,∴a(−2, 4),(−2, −4),设解析式为:a=aa,则4=−2a,−4=−2a,解得a=−2,a=2,故正比例函数解析式为;a=±2a;(2)当a=2a时,图象经过第一、三象限;当a=−2a时,图象经过第二、四象限;(3)当a=2a时,函数值a是随着a增大而增大;当a=−2a时,函数值a是随着a增大而减小.23.【答案】解:(1)∵一次函数a=(a−2)a+3a2−12的图象经过原点,∴3a2−12=0,a−2≠0解得:a=−2,∴当a=−2时,一次函数的图象经过原点;(2)∵一次函数a=(a−2)a+3a2−12的图象与a轴交于点(0, −9),∴3a2−12=−9,解得:a=±1,∴当a=±1时,一次函数的图象与a轴交于点(0, −9).【解答】解:(1)∵一次函数a=(a−2)a+3a2−12的图象经过原点,∴3a2−12=0,a−2≠0解得:a=−2,∴当a=−2时,一次函数的图象经过原点;(2)∵一次函数a=(a−2)a+3a2−12的图象与a轴交于点(0, −9),∴3a2−12=−9,解得:a=±1,∴当a=±1时,一次函数的图象与a轴交于点(0, −9).24.【答案】8年后的年产值是36万元.【解答】解:(1)a与a之间的表达式为:a=2a+20;(2)列表:=36,答:8年后的年产值是36万元.25.【答案】甲步行的速度是0.1千米/分钟;(2)3÷0.1=30分,∴甲、乙两人相遇的时刻为8:30;(3)乙的速度为:3÷(30−20)=0.3,6÷0.3=20分,∴20+20=40分,∴乙到达a地的时刻8:40.【解答】解:(1)6÷60=0.1千米/分钟;答:甲步行的速度是0.1千米/分钟;(2)3÷0.1=30分,∴甲、乙两人相遇的时刻为8:30;(3)乙的速度为:3÷(30−20)=0.3,6÷0.3=20分,∴20+20=40分,∴乙到达a地的时刻8:40.。

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章一次函数数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、在平面直角坐标系中,直线与轴、轴分别交于、,己知抛物线经过点,且顶点在直线的上方,则的取值范围是().A. B. 且 C. 且 D.2、直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB 的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为().A.(-3,0)B.(-6,0)C.(-,0)D.(-,0)3、已知A,B两地相距120千米,甲乙两人沿同一条公路匀速行驶,甲骑自行车以20千米/时从A地前往B地,同时乙骑摩托车从B地前往A地,设两人之间的距离为s(千米),甲行驶的时间为t(小时),若s与t的函数关系如图所示,则下列说法错误的是()A.经过2小时两人相遇B.若乙行驶的路程是甲的2倍,则t=3C.当乙到达终点时,甲离终点还有60千米D.若两人相距90千米,则t=0.5或t=4.54、一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=35、一个函数的图象如图,给出以下结论:①当x=0时,函数值最大;②当0<x<2时,函数y随x的增大而减小;③存在0<x0<1,当x=x0时,函数值为0.其中正确的结论是()A.①②B.①③C.②③D.①②③6、在同一坐标系内,一次函数y=ax+b 与二次函数 y=ax2+8x+b 的图象可能是()A. B. C. D.7、下列函数中,是一次函数的有()(1)y=πx (2)y=2x-1 (3)y= (4)y=2-3x (5)y=x2﹣1.A.4个B.3个C.2个D.1个8、已知点P(a,-b)在第一象限,则直线y=ax+b经过的象限为( )A.第一、二、三象限B.第一、三、四象限C.第二、三、四象限 D.第一、二、四象限9、小明放学后从学校乘轻轨回家,他从学校出发,先匀速步行至轻轨车站,等了一会儿,小明搭轻轨回到家,下面能反映在此过程中小明与家的距离y与x的函数关系的大致图象是().A. B. C. D.10、如果点A(m,n)、B(m﹣1,n﹣2)均在一次函数y=kx+b(k≠0)的图象上,那么k 的值为()A.2B.1C.﹣1D.﹣211、学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是()新鞋码(y)225 245 (280)原鞋码(x)35 39 (46)A.270B.255C.260D.26512、函数y= 中自变量x的取值范围是()A.x≥0B.x>﹣1C.x≥﹣1D.x≥113、小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,判断下列说法中错误的是()A.小明从家步行到学校共用了20分钟B.小明从家步行到学校的平均速度是90米/分C.当t<8时,s与t的函数解析式是s=120tD.小明从家出发去学校步行15分钟时,到学校还需步行360米14、如图,在Rt△ABO中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得的阴影部分的面积为S,则S与t之间的函数关系式为()A.S=t(0<t≤3)B.S= t 2(0<t≤3)C.S=t 2(0<t≤3) D.S= t 2-1(0<t≤3)15、直线y=2x-4,向()平移2个单位将经过点(4,0).A.上B.下C.左D.右二、填空题(共10题,共计30分)16、当时,不论k取任何实数,函数的值为3,所以直线一定经过定点;同样,直线一定经过的定点为________.17、如图,在平面直角坐标系中,A(1,4),B(3,2),点C是直线y=﹣4x+20上一动点,若OC恰好平分四边形OACB的面积,则C点坐标为________18、如果函数的图象经过第一、二、四象限,那么的取值范围为________.19、已知一次函数y=ax+b(a<0)的图象与x的交点坐标是(3,0),那么关于x的方程ax+b=0的解是 ________,关于x的不等式ax+b>0的解集是________ .20、函数的自变量x的取值范围是________.21、函数y=2x和y=ax+4的图象相交于点A(m,3),则方程2x=ax+4的解为________.22、如图,一次函数y=-2x+b与反比例函数y= (x>0)的图象交于A,B两点,连结OA,过B作BD⊥x轴于点D,交OA于点C,若CD:CB=1:8,则b=________.23、已知一次函数y=kx﹣1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第________ 象限.24、如图,点A的坐标为(﹣4,0),直线y= x+n与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为________.25、若函数是正比例函数,则________.三、解答题(共5题,共计25分)26、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.27、本题为选项做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.甲:直线l:y=(m﹣3)x+n﹣2(m,n为常数)的图象如图1所示,化简:|m﹣n|﹣;乙:已知:如图2,在边长为a的正方形ABCD中,M是边AD的中点,能否在边AB上找到点N(不含A、B),使得△MAN相似?若能,请给出证明;若不能,请说明理由.28、若y+2与x-1成正比例,且当x=2时,y=3,求y与x之间的函数表达式.29、已知一次函数y=a x+b的图象经过点A(2,0)与B(0,4).求此一次函数的解析式,并在直角坐标系内画出这个函数的图象.30、已知关于x的正比例函数,求这个正比例函数的解析式.参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、A5、C6、C7、B8、B9、D10、A11、D12、C13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章一次函数数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.下列说法中正确的有()个①学校离家的距离为2000米;②修车时间为15分钟;③到达学校时共用时间20分钟;④自行车发生故障时离家距离为1000米A.1个B.2个C.3个D.4个2、如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A. B. C. D.3、函数y= 中,自变量x的取值范围()A.x>﹣4B.x>1C.x≥﹣4D.x≥14、如图,已知一次函数y=kx+2的图象与x轴,y轴分别交于点A,B,与正比例函数y=x交于点C,已知点C的横坐标为2,下列结论:①关于x的方程kx+2=0的解为x=3;②对于直线y=kx+2,当x<3时,y>0;③对于直线y=kx+2,当x>0时,y>2;④方程组的解为,其中正确的是()A.①②③B.①②④C.①③④D.②③④5、直线y=kx+b在坐标系中的位置如图,则( )A. B. C. D.6、如图,一次函数的图象经过点(2,0),则下列结论正确的是()A. B.关于方程的解是 C. D.y 随x的增大而增大7、若一个正比例函数的图象经过不同象限的两点A(﹣2,m),B(n,3),那么一定有()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<08、已知点(-5,y1),(1,0),(6,y2)都在一次函数y=kx-2的图象上,则y1,y2, 0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y19、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A.7:20B.7:30C.7:45D.7:5010、函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A. B. C. D.11、点A(1,m)在函数y=2x的图象上,则m的值是()A.1B.2C.D.012、若双曲线经过第二、四象限,则直线经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限13、关于一次函数的图象,下列说法正确的是()A.图象经过第一、二、三象限B.图象经过第一、三、四象限C.图象经过第一、二、四象限D.图象经过第二、三、四象限14、若直线经过一、二、四象限,则直线的图象只能是图中的( )A. B. C. D.15、下列各点在函数y=1-2x的图象上的是()A. B. C. D.二、填空题(共10题,共计30分)16、在全民健身环城越野赛中,甲、乙两名选手的行程y(千米)随时间x(时)变化的图象如图所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有________(填序号).17、同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为________℃.18、已知与成正比例,且当时,则与的函数关系式为________19、如图,直线与轴、轴分别交于,将△沿过点的直线折叠,使点落轴正半轴的点,折在痕与轴交于点,则折痕所在直线的解析式为________.20、在平面直角坐标系中,有两点,现另取一点,当________时,的值最小.21、在函数中,自变量的取值范围是________.22、当m=________时,函数y=(2m-1)x3m-2是正比例函数.23、若一次函数、的图象相交于,则关于x、y的方程组的解为________.24、函数y= 的自变量x的取值范围是________.25、已知一次函数的图象经过,两点,则________(填“”“”或“”).三、解答题(共5题,共计25分)26、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.27、已知一次函数y=(m+2)x+m+3的图象与y轴交点在x轴上方,且y随x的增大而减小,求m的取值范围.28、小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.29、正比例函数y=kx中,当x增加2时,y增加3,求该正比例函数的解析式.30、某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4kg,乙种材料1kg;生产一件B产品需甲、乙两种材料各3kg.经测算,购买甲、乙两种材料各1kg共需资金60元;购买甲种材料2kg和乙种材料3kg共需资金155元.(1)甲、乙两种材料每kg分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、B5、B6、B7、C8、B9、A10、D11、B12、C13、D14、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

浙教版八年级数学上册《第5章一次函数》单元测试题含答案

浙教版八年级数学上册《第5章一次函数》单元测试题含答案

浙教版八年级数学上册《第5章一次函数》单元测试题含答案第Ⅰ卷(选择题共30分)一、选择题(本题共10小题,每小题3分,共30分)1.函数y=某-1的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.函数y=某-1中,自变量某的取值范围是()某-3A.某≥1且某≠3B.某≥1C.某≠3D.某>1且某≠33.已知函数y=(1-2k)某是正比例函数,且y随某的增大而减小,那么k的取值范围是()A.k<B.k>C.k>0D.k<14.已知点(-1,y1),(4,y2)在一次函数y=3某-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y15.一水池蓄水20m,打开阀门后每小时流出5m,放水后池内剩余的水量Q(m)与放水时间t(时)的函数关系用图象表示为()3331212y=k1某+b1,6.如图所示,若一次函数y=k1某+b1的图象l1与y=k2某+b2的图象l2相交于点P,则方程组y=k2某+b2的解是()某=-2,y=3某=3,某=2,某=-2,B.C.D.y=-2y=3y=-3A.7.若kb>0,则函数y=k某+b的图象可能是()8.小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:①他们都行驶了20km;②小陆全程共用了1.5h;③小李与小陆相遇后,小李的速度小于小陆的速度;④小李在途中停留了0.5h.其中正确的有()A.4个B.3个C.2个D.1个9.在同一平面直角坐标系中,对于函数:①y=-某-1;②y=某+1;③y=-某+1;④y=-2(某+2)的图象,下列说法正确的是()A.经过点(-1,0)的是①③B.交点在y轴上的是②④C.相互平行的是①③D.交点在某轴上的是②④10.如图所示,点A,B,C在一次函数y=-2某+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作某轴与y轴的垂线,则图中阴影部分的面积之和是()A.3(m-1)B.(m-2)C.1D.3第Ⅱ卷(非选择题共90分)二、填空题(本题共6小题,每小题4分,共24分)11.已知正比例函数y=k某的图象经过点A(-1,2),则正比例函数的表达式为________.12.一次函数y=k某+b(k<0)的图象如图所示,当y>0时,某的取值范围是________.3213.已知函数y=3某的图象经过点A(-1,y1),B(-2,y2),则y1________y2(填“>”“<”或“=”).14.腰长为某,底边长为y的等腰三角形的周长为12,则y与某的函数表达式为____________,自变量某的取值范围为____________.15.一次函数y=k某+b(k,b都是常数,且k≠0)的图象如图所示,根据图象信息可求得关于某的方程k某+b=4的解为________.16.如图所示,射线OA,BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中,t分别表示行驶路程和时间,则这两人骑自行车的速度相差________km/h.三、解答题(本题共8小题,共66分)17.(6分)已知一次函数y=k某+2,当某=-1时,y=1,求此函数的表达式,并在平面直角坐标系中画出此函数的图象.18.(6分)已知一次函数y=k某+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数的图象与某轴的交点为A(a,0),求a的值.19.(6分)已知一次函数y=k某+b的图象与某轴交于点A(-2,0),与y轴交于点B.若△AOB的面积为8,求一次函数的表达式.20.(8分)已知一次函数y1=2某-3,y2=-某+6在同一直角坐标系中的图象如图所示,它们的交点坐标为C(3,3).(1)根据图象指出某为何值时,y1>y2;某为何值时,y1<y2.(2)求这两条直线与某轴所围成的△ABC的面积.。

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章一次函数数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、若(a,y1)、(a+1,y2)在直线y=kx+2上,且y1>y2,则该直线所经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限2、某科研小组在网上获取了音在空气中传播的速度y(米/秒)与气温x(℃)之间有如下关系:y= x+331,下列说法错误的是( )A.在这个变化中,自变量是温度,因变量是声速.B.温度越高,声速越快.C.当空气温度为20℃时,声音5s可以传播1740m.D.当温度每升高10℃,声速增加6m/s.3、下列函数中,随增大而减小的是()A. B. C. D.4、一个正比例函数的图象经过点,它的表达式为()A. B. C. D.5、将一次函数y=2x-3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x-5B.y=2x+5C.y=2x+8D.y=2x-86、一次函数与二次函数在同一直角坐标系中的图象可能是()A. B. C. D.7、已知两点M(3,5),N(1,-1),点P是x轴上一动点,若使PM+PN最短,则点P 的坐标应为().A.(,-4)B.(,0)C.(,0)D.(,0)8、如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论①k<0;②a>0;③当x<3时,kx+b<x+a中,正确的个数是()A.0B.1C.2D.39、若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A. B. C. D.10、当时一次函数和的值相同,那么和的值分别为()A.1,11B.-1,9C.5,11D.3,311、将直线y=2x﹣4向上平移6个单位,所得直线是()A.y=2x+6B.y=2x﹣10C.y=2x+2D.y=2x12、直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2D.y=2x+213、一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2B.y=x+2C.y=x-2D.y=-x-214、将直线y=x+5向下平移2个单位,得到的直线是()A.y=x﹣2B.y=x+2C.y=x+3D.y=x+715、若一次函数y=(m+1)x+m的图象过第一、三、四象限,则函数y=mx2﹣mx()A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣二、填空题(共10题,共计30分)16、函数与的图象如图所示,这两个函数的图象交点在y轴上,则使得的值都大于零的x的取值范围是________.17、一列火车以60千米/时的速度行驶,它驶过的路程s(千米)是所用时间t(时)的函数,这个函数关系式可表示为 ________ .18、李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x (千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是________ 升.19、已知关于x的一次函数的图象不经过第二象限但经过点(0,﹣2).你认为符合要求的一次函数的表达式可以是________(写一个函数即可).20、已知a是整数,一次函数y=10x+a的图象与两坐标轴所围成的三角形的面积数为质数,则这个质数等于________.21、已知正比例函数:y = (3m-2)x的图像上两点A(x1, y1),B(x2, y2),当x1 < x2时,有y1 >y2那么m的取值范围是________.22、如图,已知长方形ABCD顶点坐标为A(1,1),B(3,1),C(3,4),D(1,4),一次函数y=2x+b的图像与长方形ABCD的边有公共点,则b的变化范围是________.23、一个有进水管与出水管的容器,从某时刻开始的4分内只进水不出水,在随后的若干分内既进水又出水,之后只有出水不进水,每分钟的进水量和出水量是两个常数,容器内的水量(单位:升)与时间(单位:分)之间的关系如图所示,则进水速度是________升/分,出水速度是________升/分,的值为________.24、如图,平面直角坐标系中,已知直线y=x上一点P(2,2),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q,当△OPC≌△ADP时,则C 点的坐标是________,Q点的坐标是________.25、把直线向上平移后得到直线,若直线经过点,且,则直线的表达式为________.三、解答题(共5题,共计25分)26、已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.27、在平面直角坐标系xOy中,直线y=﹣x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标.28、已知直线与直线平行,且过点(-2,4),求k,b的值.29、如图,一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,求这次越野跑的路程为多少米?30、在平面直角坐标系中,已知A(1,0)、B(1,2)、C(3,4)、D(3,2).若在这四点中任取两点,设M为连接这两点所得线段的中点,请用画树状图法或列表法求出点M 在一次函数y=2x-1的图象上的概率.参考答案一、单选题(共15题,共计45分)1、B2、C3、D4、C5、B6、B7、C8、B9、C11、C12、C13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、29、。

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章一次函数数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、下列函数中,是一次函数的有()个.①y=x;②y=;③y=+6;④y=3﹣2x;⑤y=3x2.A.1B.2C.3D.42、如图,直线y1=kx+2与直线y2=mx相交于点P(1,m),则不等式mx<kx+2的解集是()A.x<0B.x<1C.0<x<1D.x>13、下列图象中,y是x的函数的是()A. B. C. D.4、下列函数的图象,一定经过原点的是()A.y=x 2-1B.y=3x 2-2xC.y=2x+1D.y=5、函数y= 的自变量x的取值范围是( )A.x>-1B.x≠-1C.x≠1D.x<-16、如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A. B.x<3 C. D.x>37、下列函数关系式:①y=-x;②y=2x+11;③y=x2+x+1;④y=.其中一次函数的个数是()A.4个B.3个C.2个D.1个8、圆的周长公式为C=2πr,下列说法正确的是()A.π是自变量B.π和r都是自变量C.C是π的自变量D.C是r的自变量9、李师傅一家开车去旅游,出发前查看了油箱里有50升油,出发后先后走了城市路、高速路、山路,最终到达旅游地点,下面的两幅图分别描述了行驶里程及耗油情况,下列描述错误的是( )A.此车一共行驶了210公里B.此车高速路用了12升油C.此车在城市路和山路的平均速度相同D.以此车在这三个路段的综合油耗判断50升油可以行驶约525公里10、已知整数x满足-5≤x≤5,=x+1,=-2x+4,对任意一个x,m都取,中的较小值,则m的最大值是()A.1B.2C.24D.-911、已知一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数的图象在()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限.12、一次函数y=-2x+2的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限13、圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量14、下列说法中,不正确的是()A.一次函数不一定是正比例函数B.正比例函数是一次函数的特例C.不是正比例函数就不是一次函数D.不是一次函数就不是正比例函数15、在平面直角坐标系中,已知一次函数y=kx+b的图像大致如图所示,则下列结论正确是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0二、填空题(共10题,共计30分)16、甲、乙两人在一次赛跑中,路程与时间的关系如图所示,那么可以知道:(1)这是一次________米赛跑;(2)乙在这次赛跑中的速度为________米/秒.17、园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积s与工作时间t的函数关系如图所示,则休息后园林队每小时绿化面积为________平方米18、已知等腰三角形的周长为60cm,若底边长为cm,一腰长为cm.则与的函数关系式为________自变量的取值范围是________19、已知函数y=2x+1和y=﹣x﹣2的图象交于点P,点P的坐标为(﹣1,﹣1),则方程组的解为________.20、函数中,自变量x的取值范围是________.21、如图,在平面直角坐标系xoy中,A(﹣3,0),B(0,1),形状相同的抛物线C n (n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为________;抛物线C8的顶点坐标为________.22、如图,已知直线与的交点的横坐标为-2,则关于的不等式的解集为________.23、小高从家门口骑车去单位上班,先走平路到达点,再走上坡路到达点,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是________分钟.24、已知一次函数的图象过点与(-4, -9),那么这个函数的解析式是________,则该函数的图象与轴交点的坐标为________.25、如图,平面直角坐标系中,正方形OBAC的顶点A的坐标为(8,8),点D,E分别为边AB,AC上的动点,且不与端点重合,连接OD,OE,分别交对角线BC于点M,N,连接DE,若∠DOE=45°,以下说法正确的是________(填序号).①点O到线段DE的距离为8;②△ADE的周长为16;③当DE∥BC时,直线OE的解析式为y=x;④以三条线段BM,MN,NC为边组成的三角形是直角三角形.三、解答题(共5题,共计25分)26、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.27、如图,一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,求这次越野跑的路程为多少米?28、某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该种水果的进价为8元/kg,下面是他们在活动结束后的对话:小丽:如果以10元/kg的价格销售,那么每天可售出300kg.小强:如果以13元/kg的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(kg)与销售单价x(元)之间存在一次函数关系.求y(kg)与x(元)(x>0)的函数关系式.29、若与x+1成正比例,且x=1时y=5,求y与x的函数表达式.30、小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min的速度从邮局沿同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为 S1 m,小明爸爸与家之间的距离为S2 m,图中折线OABD,线段EF分别是表示S1、S2与t之间函数关系的图像.(1)求S2与t之间的函数关系式:(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、B5、B6、A7、C8、D9、C11、C12、C13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、30、。

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章一次函数数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的图象大致为()A. B. C. D.2、如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A. B. C. D.3、如图,直线与轴交于点(-4,0),直线与轴交于点(3,0),则不等式组的解集是()A. B. C. D.4、已知关于x的函数y=k(x+1)和y=﹣(k≠0)它们在同一坐标系中的大致图象是()A. B. C. D.5、一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的有()A.0个B.1个C.2个D.3个6、球的体积V(m3)与球的半径R(m)之间的关系式为V=πR3,当球的大小发生变化时,关于π、R的说法中,最准确的是( )A.R是常量B.π是变量C.R是自变量D.R是因变量7、若方程2x=4的解使关于x的一次不等式(a-1)x<a+5成立,则a的取值范围是()A. a≠1B. a>7C. a<7D.a<7且a≠18、如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A. B. C.D.9、在函数y=中,自变量x的取值范围是()A.x≤1B.x≥1C.x<1D.x 110、抛物线图象如图所示,则下面一次函数与反比例函数在同一平面直角坐标系内的图象大致为()A. B. C. D.11、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10%B.15%C.20%D.25%12、如图,菱形对角线,相交于点,点,分别在线段,上,且.以为边作一个菱形,使得它的两条对角线分别在线段,上,设,新作菱形的面积为,则反映与之间函数关系的图象大致是()A. B. C. D.13、杆秤是我国传统的计重工具.如图,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的质量.称重时,若秤砣到秤纽的水平距离为x(单位:cm)时,秤钩所挂物重为y(单位:kg),则y是x的一次函数.下表记录了四次称重的数据,其中只有一组数据记录错误,它是()组数1 2 3 4x/cm 1 2 4 7y/kg 0.80 1.05 1.65 2.30C.第3组D.第4组14、下列图形中,表示一次函数与正比例函数(、是常数且)图象是().A. B. C. D.15、二元一次方程组的解为,则一次函数y=5﹣x与y=2x﹣1的交点坐标为()A.(2,3)B.(3,2)C.(﹣2,3)D.(2,﹣3)二、填空题(共10题,共计30分)16、已知A地在B地的正南方3km处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(km)与所行时间t(h)之间的函数关系如图所示,当他们行驶3h 时,他们之间的距离为________km.17、如图,在平面直角坐标系中,点A,B,D的坐标为(1,0),(3,0),(0,1),点C在第四象限,∠ACB=90°,AC=BC.若△ABC与△A'B'C'关于点D成中心对称,则点C'的坐标为________.18、某正比例函数图象经过点(1,2),则该函数图象的解析式为________19、在直角坐标系内,已知A,B两点的坐标分别为A(-1,1),B(2,3),若M为x轴上的一点,且MA+MB最小,则M的坐标是________.20、在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是________.21、若一次函数的图像不经过第三象限,则k的取值范围是________.22、如图,直线与轴、轴分别相交于点A,B,四边形ABCD是正方形,曲线在第一象限经过点D,则=________.23、对于函数y=(m﹣2)x+1,若y随x的增大而增大,则m的取值范围________.24、已知一次函数y=2x+1的图象与x轴、y轴分别交于A、B两点,将这条直线进行平移后交x轴、y轴分别交于C、D,要使A、B、C、D围成的四边形面积为4,则直线CD的解析式为________.25、已知函数y=(m﹣2)x|m﹣1|+2是关于x的一次函数,则m=________三、解答题(共5题,共计25分)26、若函数y=(2k-5)x+(k-25)为正比例函数,求的值.27、已知直线过点, A是直线图像上的点,若过A向x轴作垂线,垂足为B,且,求点A的坐标.28、一次越野跑中,当李明跑了1600米时,小刚跑了1450米,此后两人匀速跑的路程s (米)与时间t(秒)的关系如图,结合图象解答下列问题:Ⅰ.请你根据图象写出二条信息;Ⅱ.求图中S1和S0的位置.29、如图,一次函数的图象与反比例函数(x>0)的图象交于点P,PA⊥x 轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、点D,且S△=27,.DBP(1)求点D的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?30、已知y=y1y2,其中y1=(k为非0的常数),y2与x2成正比例,求证:y与x也成正比例参考答案一、单选题(共15题,共计45分)1、D2、C3、C4、A5、B6、C7、D8、B9、D11、C12、C13、C14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章一次函数数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,直线过点和点,则方程的解是()A. B. C. D.2、两个一次函数它们在同一坐标系中的图象可能是()A. B. C. D.3、如图,抛物线的部分图象如图所示,若,则x的取值范围是()A. B. C. 或 D.或4、在平面直角坐标系中,一次函数y=-2x+1的图象经过P1(-1,y1)、P2(2,y2)两点,则( )A.y1>y2B.y1<y2C.y1=y2D.y1≥y25、甲、乙两人分别从,两地相向而行,他们距地的距离与时间的关系如图所示,下列说法错误的是()A.甲的速度是B.甲出发4.5小时后与乙相遇C.乙比甲晚出发2小时D.乙的速度是6、两地相距,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离地的距离与时间的关系,结合图象,下列结论错误的是()A. 是表示甲离地的距离与时间关系的图象B.乙的速度是C.两人相遇时间在D.当甲到达终点时乙距离终点还有7、已知关于x的多项式x2-kx+1是一个完全平方式,则一次函数经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限8、如图,已知直线l1:y=3x+1和直线l2:y=mx+n交于点P(a,﹣8),则关于x的不等式3x+1<mx+n的解集为()A.x>﹣3B.x<﹣3C.x<﹣8D.x>﹣89、下列函数中,是的一次函数的是()A. B. C. D.10、如图,函数y=kx和y=﹣x+4的图象相交于点A(3,m)则不等式kx≥﹣x+4的解集为()A.x≥3B.x≤3C.x≤2D.x≥211、已知直线y=kx+k,那么该直线一定经过点在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴12、一次函数y=4x﹣2的图象可以由正比例函数y=4x的图象()得到.A.向上平移2个单位B.向下平移4个单位C.向下平移2个单位 D.向上平移4个单位13、下列函数中,y随x的增大而减小的是()A.y=-3xB.y=3x-4C.y=-D.y=14、一辆客车从霍山开往合肥,设客车出发t(h)后与合肥的距离为S(km),则下列图象中能大致反映S与t之间的函数关系是()A. B. C.D.15、对于函数y=-2x+1,下列结论正确的是( )A.它的图象必经过点(-1,3)B.它的图象经过第一、二、三象限C.当x> 时,y>0D.y值随x值的增大而增大二、填空题(共10题,共计30分)16、小明家、文具店、学校在一条直线上,小明家到学校的路程为.一天,小明在上学途中到文具店买了学习用品,然后以原速的倍继续匀速步行到学校,图中的折线反映了这天小明从家步行到学校所走的路程与时间之间的函数关系,这天小明上学途中共用的时间是________17、若一次函数y=kx﹣(2k+1)是正比例函数,则k的值为________18、已知抛物线(如图)和直线.我们规定:当x取任意一个值时,x对应的函数值分别为和.若,取和中较大者为M;若,记.①当时,M的最大值为4;②当时,使的x的取值范围是;③当时,使的x的值是,;④当时,M随x的增大而增大.上述结论正确的是________(填写所有符合题意结论的序号)19、摩托车油箱中有8升油,行驶时每小时耗油2升,在不加油的情况下,求余油量Q (升)与行驶时间t(小时)之间的函数关系式为________,这里的时间t的取值范围为________.20、如图,直线l1, l2交于点A,观察图象,点A的坐标可以看作方程组________的解.21、已知y与x成正比,且当x=-1时,y=-6,则y与x之间的函数关系式为________。

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章 一次函数数学八年级上册-单元测试卷-浙教版(含答案)

第5章一次函数数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、把直线向上平移个单位长度,再向左平移个单位长度,得到的直线的表达式为()A. B. C. D.2、直线y=x-1不经过( )A.第一象限B.第二象限C.第三象限D.第四象限3、已知一次函数y=kx﹣k,若y随x的增大而减小,则该函数的图象经过()A.第一,二,三象限B.第一,二,四象限C.第二,三,四象限 D.第一,三,四象限4、有一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信息给出下列说法:①每分钟进水5升;②当4≤x≤12时,容器中水量在减少;③若12分钟后只放水,不进水,还要8分钟可以把水放完;④若从一开始进出水管同时打开需要24分钟可以将容器灌满.以上说法中正确的有( )A.1个B.2个C.3个D.4个5、下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B. C. D.6、如果直线y=2x+m与两坐标轴围成的三角形面积等于4,则m的值是()A.±3B.3C.±4D.47、已知一次函数y=x+b的图象经过一、二、三象限,则b的值可以是( )A.-2B.-1C.0D.28、如图,直线过点A(0,5),B(-4,0),则关于x的方程的解是( )A. B. C. D.9、关于一次函数y=2x﹣1的图象,下列说法正确的是()A.图象经过第一、二、三象限B.图象经过第一、三、四象限C.图象经过第一、二、四象限D.图象经过第二、三、四象限10、一次函数不经过第三象限,则下列正确的是()A.k<0,b>0B.k<0,b≥0C.k<0,b<0D.k<0,b≤011、如图,在△ABC中,∠ACB=Rt∠,AC=2,点D是边AB上的一个动点,以CD为直径作⊙O交AB的另一点于F,交AC的另一点于E,将点E绕点F按逆时针方向旋转120°得到点E',当点D在线段BF上时,点E'始终在⊙O上,则点D由B出发,运动到与点F重合停止,点E'所经过的路径的长是()A. B. C. D.12、两个一次函数y=2x﹣与y=﹣x+ 的图象交点坐标为()A.(,)B.(,)C.(,﹣)D.(,)13、如图,点的坐标为(3,4),轴于点,是线段上一点,且,点从原点出发,沿轴正方向运动,与直线交于,则的面积()A.逐渐变大B.先变大后变小C.逐渐变小D.始终不变14、在平面直角坐标系中,将直线y=kx﹣6沿x轴向左平移3个单位后恰好经过原点,则k的值为()A.﹣2B.2C.﹣3D.315、在利用太阳能热水器加热水的过程中,热水器的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器二、填空题(共10题,共计30分)16、如图,函数和的图象相交于点A(m,6),则关于的不等式的解集为________.17、如图,直线y=x+2于x、y轴分别交于点A、B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C移动的距离为________.18、一次函数与x轴的交点坐标为________ .19、三角形的面积公式中S=ah其中底边a保持不变,则常量是________ ,________ ,变量是________ ,________20、如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x,y的二元一次方程组的解是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章一次函数检测卷
一、选择题(每题2分,共20分)
1.关于直线y=-2x,下列结论正确的是( )
A.图象必过点(1,2)B.图象经过第一、三象限
C.与y=-2x+1平行D.y随x的增大而增大
2.平面直角坐标系上,一直线过(-3,4)和(-7,4)两点,则此直线会过的两象限是( ) A.第一象限和第二象限B.第一象限和第四象限
C.第二象限和第三象限D.第二象限和第四象限
3.若点A(-3,y1),B(2,y2),C(3,y3)是函数y=-x+2图象上的点,则( ) A.y1>y2>y3B.y1<y2<y3
C.y1<y3<y2D.y2>y1>y3
第4题图
4.(重庆中考)某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系.下列说法中错误的是( ) A.小强从家到公共汽车站步行了2公里
B.小强在公共汽车站等小明用了10分钟
C.公共汽车的平均速度是30公里/小时
D.小强乘公共汽车用了20分钟
5.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m、n为常数,且mn≠0)的图象的是( )
6.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( )
A .1<m <7
B .3<m <4
C .m >1
D .m <4 7.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的若干信息.
请你根据表格中的相关数据计算:m +2n =( )
A .5
B .6
C .7
D .8
第8题图
8.如图1,在矩形ABCD 中,动点P 从点B 出发,沿矩形的边由B →C →D →A 运动,设点P 运动的路程为x ,△ABP 的面积为y ,把y 看作x 的函数,函数的图象如图2所示,则△ABC 的面积为( )
A .10
B .16
C .18
D .20
第9题图
9.如图,直线y =-4
3x +8与x 轴、y 轴分别交于A 、B 两点,点M 是OB 上一点,若
直线AB 沿AM 折叠,点B 恰好落在x 轴上的点C 处,则点M 的坐标是( )
A .(0,4)
B .(0,3)
C .(-4,0)
D .(0,-3)
第10题图
10.如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( )
A.1 B.3 C.3(m-1) D. 3
2(m-2)
二、填空题(每题3分,共30分)
11.在圆的周长C=2πR中,常量是______.
12.若点(m,m+3)在函数y=-x+2的图象上,则m=____.
13.在一次函数y=2x-2的图象上,到x轴的距离等于1的点的坐标是____________.
14.在函数
x-2
x-4
中,自变量x的取值范围是____.
15.已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则a
b-5
的值为__________.16.已知函数y=(2m-3)x+(3m+1)的图象经过第二、三、四象限,则m的取值范围是__________.
17.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为___.
第17题图
第18题图
第19题图
第20题图
18.如图,是在同一坐标系内作出的一次函数y 1、y 2的图象l 1、l 2,设y 1=k 1x +b 1,y 2
=k 2x +b 2,则方程组⎩
⎪⎨⎪⎧y 1=k 1x +b 1,
y 2=k 2x +b 2的解是__________.
19.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为________.
20.如图,点M 是直线y =2x +3上的动点,过点M 作MN 垂直x 轴于点N ,y 轴上是否存在点P ,使△MNP 为等腰直角三角形,请写出符合条件的点P 的坐标______________.
三、解答题(共50分)
21.(7分)已知y 1与x 成正比例,y 2与x +2成正比例,且y =y 1+y 2,当x =2时,y =4;当x =-1时,y =7,求y 与x 之间的函数关系式.
22.(8分)已知一次函数y =kx +b 的图象经过点A (-4,0),B (2,6)两点.
第22题图
(1)求一次函数y =kx +b 的表达式; (2)在直角坐标系中,画出这个函数的图象; (3)求这个一次函数与坐标轴围成的三角形面积.
23.(8分)某市生态公园计划在园内的坡地上造一片有A 、B 两种树的混合林,需要购买这两种树苗2000棵.种植A 、B 两种树苗的相关信息如表:
设购买A 种树苗x 棵,造这片林的总费用为y 元.解答下列问题: (1)写出y (元)与x (棵)之间的函数关系式;
(2)如果要求A 种树苗的数量不超过B 种树苗数量的两倍,问造这片林最多能种多少棵A 种树苗?
24.(8分)如图,直线l 1过点A (0,4),点D (4,0),直线l 2:y =1
2x +1与x 轴交于点C ,
两直线l 1、l 2相交于点B.
第24题图
(1)求直线l 1的函数关系式; (2)求点B 的坐标;
(3)求△ABC的面积.
25.(9分)某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:
(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?
(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?
26.(10分)(丽水中考)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.
(1)求甲行走的速度;
(2)在坐标系中,补画s关于t的函数图象的其余部分;
(3)问甲、乙两人何时相距360米?
第26题图
参考答案
第5章 一次函数检测卷
一、选择题
1.C 2.A 3.A 4.D 5.A 6.C 7.B 8.A 9.B 10.B 11.2,π 12.-0.5
13.(0.5,-1)或(1.5,1) 14.x ≥2且x ≠4 15.-13
16.m <-1
3
17.x >1
18.⎩
⎪⎨⎪⎧x =-2,y =3 19.16
20.(0,0),(0,1),(0,3
4),(0,-3)
三、解答题
21.设y 1=kx ,y 2=m(x +2),∵y =y 1+y 2,∴y =kx +m(x +2),当x =2时,y =4;当x =-1时,y =7,可得方程组:

⎪⎨⎪⎧4=2k +4m ,7=-k +m ,解得:k =-4,m =3,∴y 与x 之间的函数关系式为:y =-x +6. 22.(1)y =x +4 (2)图略 (3)8
23.(1)y =(15+3)x +(20+4)(2000-x)=-6x +48000
(2)由题意得,x ≤2(2000-x),解得x ≤13331
3,∵A 种树苗的棵数为整数,∴x 的最大值
为1333,答:造这片林最多能种1333棵A 种树苗.
24.(1)设l 1的函数关系式为y =kx +b ,根据题意得⎩
⎪⎨⎪⎧b =4,
4k +b =0,解得k =-1,
所以l 1:y =-x +4.
(2)由题意得⎩⎪⎨⎪⎧y =-x +4,y =12
x +1,解得⎩⎪⎨⎪⎧x =2,
y =2, 所以B(2,2).
(3)把y =0代入l 2:y =12x +1,得x =-2,∴C(-2,0),∴S △ABC =S △ACD -S △BCD =1
2×6
×4-1
2
×6×2=6.
25.(1)设购进甲种水果x 千克,则购进乙种水果(140-x)千克,根据题意可得: 5x +9(140-x)=1000, 解得:x =65, ∴140-x =75(千克),
答:购进甲种水果65千克,乙种水果75千克;
(2)由图表可得:甲种水果每千克利润为:3元,乙种水果每千克利润为:4元, 设总利润为W ,由题意可得出:W =3x +4(140-x)=-x +560, 故W 随x 的增大而减小,则x 越小W 越大,
因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍, ∴140-x ≤3x , 解得:x ≥35,
∴当x =35时,W 最大=-35+560=525(元), 故140-35=105(kg ).
答:当购进甲种水果35千克,乙种水果105千克时,此时利润最大为525元. 26.(1)甲行走的速度:150÷5=30(米/分); (2)补画的图象如图所示(横轴上对应的时间为50);
第26题图
(3)由函数图象可知,当t =12.5时,s =0. 当12.5≤t ≤35时,s =20t -250. 当35<t ≤50时,s =-30t +1500.
∵甲、乙两人相距360米,即s =360,解得t 1=30.5,t 2=38.
∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.。

相关文档
最新文档