Simple Linear Regression 简单线性回归

合集下载

简单线性回归分析

简单线性回归分析

简单线性回归分析
简单线性回归分析是一种统计分析方法,用于研究两个变量之间的线性关系。

其中,一个变量被称为因变量或响应变量,另一个变量被称为自变量或解释变量。

简单线性回归通过拟合一条直线来描述两个变量之间的关系,并可以用这条直线来进行预测和推断。

分析简单线性回归模型首先需要进行模型的拟合。

通过拟合可以得到最优的回归系数。

一般使用最小二乘法来拟合模型,最小二乘法的目标是最小化观测值与模型预测值之间的差异的平方和。

拟合模型后,可以进行模型的评估。

评估模型的好坏可以使用各种统计指标,例如残差和决定系数。

残差是观测值与模型预测值之间的差异,用于评估模型对实际数据的拟合效果。

决定系数是评估模型解释观测变异能力的指标,其取值范围为[0,1],值越接近1,说明模型解释变异能力越好。

在模型评估的基础上,可以进行模型的推断。

模型推断包括对回归系数的置信区间估计和假设检验。

通过置信区间估计可以给出回归系数的估计范围,以及回归系数是否显著不等于0。

假设检验可以用于检验回归系数是否显著不等于0,即自变量是否对因变量有显著影响。

简单线性回归分析可以在实际情况中有很多应用。

例如,在市场营销中,可以使用简单线性回归模型来研究广告投入与销售额之间的关系,从而确定广告投入对销售额的影响。

在经济学中,可以使用简单线性回归模型来研究收入与消费之间的关系,从而了解收入对消费的影响。

总结起来,简单线性回归分析是一种重要的统计分析方法,用于研究两个变量之间的线性关系。

通过拟合模型、评估模型和进行推断,可以得到有关两个变量之间关系的重要信息,为实际问题的解决提供有力支持。

回归分析的基本方法

回归分析的基本方法

回归分析的基本方法回归分析是一种用于分析变量之间关系的统计方法,可以帮助我们预测一个变量如何随其他变量的变化而变化。

它可以用于描述变量之间的相互依赖关系,并据此进行预测和解释。

回归分析的基本方法有简单线性回归、多元线性回归和逻辑回归等。

简单线性回归是回归分析的最简单形式,用于探索两个变量之间的线性关系。

它假设两个变量之间存在一个直线关系,通过最小二乘法拟合一条直线来拟合这种关系。

简单线性回归模型的基本形式为:Y=β0+β1X+ε。

其中,Y是被解释变量,X是解释变量,β0和β1是回归系数,ε是误差项。

回归系数β0和β1可以通过最小二乘法估计得到,从而得到最佳拟合直线。

多元线性回归是在简单线性回归的基础上进行扩展,用于分析多个解释变量对一个被解释变量的影响。

它假设被解释变量与解释变量之间存在一个线性关系,通过最小二乘法拟合一个多元线性模型。

多元线性回归模型的基本形式为:Y=β0+β1X1+β2X2+...+βnXn+ε。

其中,Y是被解释变量,X1、X2、..、Xn是解释变量,β0、β1、β2、..、βn是回归系数,ε是误差项。

通过最小二乘法,我们可以估计出回归系数β0、β1、β2、..、βn,从而得到最佳拟合模型。

逻辑回归是一种常用于处理二分类问题的回归方法,它用于预测二分类变量的概率。

逻辑回归将线性回归模型的输出值转换为0和1之间的概率值,并根据概率值进行分类。

逻辑回归模型的基本形式为:P(Y=1,X)= 1 / (1+exp(-β0-β1X1-β2X2-...-βnXn))。

其中,P(Y=1,X)是当给定解释变量X时,被解释变量Y等于1的概率,β0、β1、β2、..、βn是回归系数。

在回归分析中,我们需要进行变量选择来判断哪些解释变量对被解释变量的影响最为显著。

常用的变量选择方法有前向选择、后向删除和逐步回归等。

此外,还可以通过检验回归系数的显著性和分析残差来评估回归模型的拟合程度和预测能力。

常用的检验方法包括t检验、F检验和R方等。

第12章简单回归分析2

第12章简单回归分析2
Y ˆ2.99+40.9 39X 73
假设检验
例: 用上例资料检验脐带血TSH水平对母血TSH水 平的直线关系是否成立?
Ho:β=0 即母血TSH水平与脐带血TSH水平之间 无线性关系
H1:β≠0 即母血TSH水平与脐带血TSH水平之间有 线性关系
α =0.05
方差分析表
已知 υ1=1, υ2=8,查F界值表,得P<0.05,按 α=0.05水准拒绝Ho,接受H1,故可以认为脐带血 TSH水平与母血TSH水平之间有线性关系
残差(residual)或剩余值,即实测值Y与假定回
归线上的估计值 Y ˆ 的纵向距离 Y Yˆ。
求解a、b实际上就是“合理地”找到一条能最好
地代表数据点分布趋势的直线。
原则:最小二乘法(least sum of squares),即可 保证各实测点至直线的纵向距离的平方和最小。
最小二乘法
两部分构成,即:
(yy)(y ˆy)+(yy ˆ)
上式两端平方,然后对所有的n点求和,则有
(yy)2 [(y ˆy)+(yy ˆ)2 ]
离差平方和的分解
(三个平方和的关系)
1. 从图上看有
y y y y ˆ+ y ˆ y
2. 两端平方后求和有
n
求X,Y,l XX,lYY,l XY X 15.79 8 2.00,Y 249.01 8 31.13
lXX 47.0315.972 8 15.15 lYY 8468.78 249.012 8 718.03
lXY 594.4815.97249.01 8 97.39
另一次抽样研究 50岁年龄组舒张压得总体均数估

h第十二章简单回归分析

h第十二章简单回归分析
➢ b>0,直线从左下方走向右上方,Y 随 X 增大而增大; ➢ b<0,直线从左上方走向右下方,Y 随 X 增大而减小; ➢ b=0,表示直线与 X 轴平行,X 与Y 无直线关系
b 的统计学意义是:X 每增加(减)一 个单位,Y 平均改变b个单位
16
回归模型的前提假设
线性回归模型的前提条件是:
18
19
回归参数的估计 ——最小二乘原则
➢ 残差(residual)或剩余值,即实测值Y与假定回 归线上的估计值 的Yˆ纵向距离 Y。Yˆ
➢ 求解a、b实际上就是“合理地”找到一条能 最好地代表数据点分布趋势的直线。
原则:最小二乘法(least sum of squares),即可 保证各实测点至直线的纵向距离的平方和最小
38
式中 F
SS回 SS残
回 残
MS回 MS残


1,

n2
MS回 为回归均方 MS残 为残差均方。 F 服从自由度为回、 残 的F 分布。
SS回
blXY
l
2 XY
lXX b2lXX
39
么么么么方面
Sds绝对是假的
t 检验
对 0 这一假设是否成立还可进行如下 t 检验
tb
b0 Sb
线性(linear) 独立(independent) 正态(normal) 等方差(equal variance)
17
公式(12-2)称为样本回归方程,它 是对两变量总体间线性关系的一个估计。 根据散点图我们可以假定,对于 X 各个取 值,相应Y 的总体均数 Y|X 在一条直线上
(图 12-2),表示为 Y|X X
水准同样得到总体回归系数不为 0 的结论,

各种线性回归模型原理

各种线性回归模型原理

各种线性回归模型原理线性回归是一种广泛应用于统计学和机器学习领域的方法,用于建立自变量和因变量之间线性关系的模型。

在这里,我将介绍一些常见的线性回归模型及其原理。

1. 简单线性回归模型(Simple Linear Regression)简单线性回归模型是最简单的线性回归模型,用来描述一个自变量和一个因变量之间的线性关系。

模型方程为:Y=α+βX+ε其中,Y是因变量,X是自变量,α是截距,β是斜率,ε是误差。

模型的目标是找到最优的α和β,使得模型的残差平方和最小。

这可以通过最小二乘法来实现,即求解最小化残差平方和的估计值。

2. 多元线性回归模型(Multiple Linear Regression)多元线性回归模型是简单线性回归模型的扩展,用来描述多个自变量和一个因变量之间的线性关系。

模型方程为:Y=α+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,X1,X2,...,Xn是自变量,α是截距,β1,β2,...,βn是自变量的系数,ε是误差。

多元线性回归模型的参数估计同样可以通过最小二乘法来实现,找到使残差平方和最小的系数估计值。

3. 岭回归(Ridge Regression)岭回归是一种用于处理多重共线性问题的线性回归方法。

在多元线性回归中,如果自变量之间存在高度相关性,会导致参数估计不稳定性。

岭回归加入一个正则化项,通过调节正则化参数λ来调整模型的复杂度,从而降低模型的过拟合风险。

模型方程为:Y=α+β1X1+β2X2+...+βnXn+ε+λ∑βi^2其中,λ是正则化参数,∑βi^2是所有参数的平方和。

岭回归通过最小化残差平方和和正则化项之和来估计参数。

当λ=0时,岭回归变为多元线性回归,当λ→∞时,参数估计值将趋近于0。

4. Lasso回归(Lasso Regression)Lasso回归是另一种用于处理多重共线性问题的线性回归方法,与岭回归不同的是,Lasso回归使用L1正则化,可以使得一些参数估计为0,从而实现特征选择。

简单线性回归模型

简单线性回归模型

几个术语
• 在y对x的简单线性回归中,通常称x为:
– 自变量(Independent Variable)或 – 解释变量(Explanatory Variable)或 – 回归量(元)(Regressor)或 – 协变量(Covariate)或 – 预测元(predictor variable) – 控制变量(Control Variables)
• 证明:方程y=b0+b1x+u中,在方程右边 同时加减 0,可得y=(0+b0)+b1x+(u0)。 令新的误差项为e=u0, 容易证明E(e)=0。 新的截距为 0 + b0, 但斜率依然为b1 。
关于u和x的关系的关键性假定
• 测度两个随机变量的关系的非常自然的方 法是相关系数 。如果u和x不相关,那么作 为随机变量,他们就没有线性关系。为了 界定方程(2.1)中的u和x没有关系而作出u和x 不相关(或没有相关关系)的假定,虽然迈出 了一大步,但还走得不够远。因为相关关 系只是度量u和x之间的线性相依性。而相 关关系有着与我们的直觉相违的性质,如: u与x不相关,但是却可能与x的函数比如说 x2相关。 对于大部分做回归的目的来说, 这种可能性是不可接受的,因为它会在解 释模型和推导统计学性质时出现问题。
(intercept parameter) b0 也有它的作用,但
很少被当作分析研究的主要部分。
• 例2.1 大豆产出和施肥量 • 假使大豆的产出由以下模型所决定:
bb • y ie ld01fe rtilize r u(2.3)
• y=产出而x=施肥量。农业研究者对其他 因素不变时化肥用量如何影响大豆产出
量 项u感包兴括趣了。诸影如响土的地效质果量由、b降1 给雨出量,等误因差素。 系 施数肥量b0对度产量出了量在的其影他响条:件不变的情况下

线性回归

线性回归

( X X )(Y Y ) 41.20 b 0.061 677 . 42 ( X X )
2
6
Y X
Y
n X n

99.2 31 534 31
3.2 17.23

a Y b X 3.2 0.06117.23 2.15
Y a bX 2.15 0.061 X
5
编号 (1)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
尿雌三醇 mg/24h (2) 17 25 27 15 15 15 16 19 18 17 18 20 22 25 24
产儿体重 kg (3) 3.2 3.2 3.4 3.4 3.4 3.5 3.5 3.4 3.5 3.6 3.7 3.8 4.0 3.9 4.3

17
18
19
R相关系数
20
b ANOVA
Model 1
Reg ression Residual Total
Sum of Squares 2.506 4.234 6.740
df 1 29 30
Mean Square 2.506 .146
F 17.162
Sig . .000a
a. Predic to rs: (Cons tant), 尿 雌三 醇 ( mg/24h ) b. Dep endent Variable: 产 儿体 重 (kg)
22
3.利用回归方程进行统计控制 利用回归方程进行逆估计,即要求因变 量y的容 许取值范围,逆向估计X的取值范围。
4.利用多重回归描述多因素的影响 在实际应用中,我们会发现,通常一个结果 的产生是由多种原因造成的。为了综合考虑这些 因素,可以用多重回归的方法来解决。

医学统计学名词解释总结归纳 考前必看笔记·

医学统计学名词解释总结归纳 考前必看笔记·

医学统计学名词解释ANOV A 方差分析:,又称变异数分析或F 检验,它是一种以F 值为统计量的计量资料的假设检验方法。

它是以总方差分解为两(多)个部分方差和总自由度分解成相应各部分自由度为手段,目的在于推断两组或多组的总体均数是否相同或检验两个或者多个样本均数间的差异是否具有与统计学意义。

average 平均数:常用于描述一批观察值分布集中位置的一组统计指标,常用的有算数均数、几何均数和中位数三种。

Censored data 删失数据:规定的观察期内,对某些观察对象,由于某种原因未能观察到病人的终点事件发生,并不知道其确切的生存时间,称为生存时间的删失数据。

complete data 完全数据:在规定的观察期内,对某些观察对象观察到了终点事件发生,从起点到终点事件所经历的时间,称为生存时间的完全数据。

coefficient of product-moment correlation 线性相关系数:又称Peaeson 积差相关系数,是定量描述两个变量间线性关系密切程度和相关方向的统计指标。

总体相关系数用ρ表示,样本相关系数用r 表示。

coefficient of variation CV 即变异系数:主要用于量纲不同的变量间,或均数相差较大的变量间的变异程度的比较。

Coefficient of determination 决定系数:即为复相关系数的平方,表示回归平方和回归SS 占总离均差平方和总SS 的比例。

即总回归SS 2SS R 。

用2R 可以定量评价在y 的变异中由x 变量组建立的线性回归方程所能解释的比例。

confidence interval CI 置信区间指按预先给定的概率确定的包含未知总体参数的可能范围。

确切含义是指随机变化的置信空间包含总体参数的可能性是1-a 。

homogeneity 同质:指被研究指标的影响因素相同,但在医学研究中有些影响因素往往是难以控制的甚至是未知的linear correlation 线性相关:两个随机变量X 、Y 之间呈线性趋势的关系称为线性相关,又称简单相关(simple correlation ),简称相关。

回归模型介绍

回归模型介绍

回归模型介绍回归模型是统计学和机器学习中常用的一种建模方法,用于研究自变量(或特征)与因变量之间的关系。

回归分析旨在预测或解释因变量的值,以及评估自变量与因变量之间的相关性。

以下是回归模型的介绍:•线性回归(Linear Regression): 线性回归是最简单的回归模型之一,用于建立自变量和因变量之间的线性关系。

简单线性回归涉及到一个自变量和一个因变量,而多元线性回归包含多个自变量。

线性回归模型的目标是找到一条最佳拟合直线或超平面,使得预测值与实际观测值的误差最小。

模型的形式可以表示为:Y=b0+b1X1+b2X2+⋯+b p X p+ε其中,Y是因变量, X1,X2,…X p 是自变量,b0,b1,…,b p 是回归系数,ε是误差项。

•逻辑回归(Logistic Regression): 逻辑回归是用于处理分类问题的回归模型,它基于逻辑函数(也称为S形函数)将线性组合的值映射到概率范围内。

逻辑回归常用于二元分类问题,例如预测是否发生某个事件(0或1)。

模型的输出是一个概率值,通常用于判断一个样本属于某一类的概率。

逻辑回归的模型形式为:P(Y=1)=11+e b0+b1X1+b2X2+⋯+b p X p其中P(Y=1)是事件发生的概率,b0,b1,…,b p是回归系数,X1,X2,…X p是自变量。

•多项式回归(Polynomial Regression): 多项式回归是线性回归的扩展,允许模型包括自变量的高次项,以适应非线性关系。

通过引入多项式特征,可以更灵活地拟合数据,但也可能导致过拟合问题。

模型形式可以表示为:Y=b0+b1X+b2X2+⋯+b p X p+ε其中,X是自变量,X2,X3,…,X p是其高次项。

•岭回归(Ridge Regression)和Lasso回归(Lasso Regression): 岭回归和Lasso 回归是用于解决多重共线性问题的回归技术。

这些方法引入了正则化项,以减小回归系数的大小,防止模型过度拟合。

简单线性回归与多元线性回归

简单线性回归与多元线性回归

简单线性回归与多元线性回归简单线性回归与多元线性回归是统计学中两个常用的回归分析方法。

它们用于分析自变量与因变量之间的关系,并建立数学模型来预测或解释因变量的变化。

本文将对简单线性回归与多元线性回归进行详细介绍,并比较它们的不同之处。

一、简单线性回归简单线性回归是一种基本的回归分析方法,适用于只包含一个自变量和一个因变量的情况。

它基于以下线性模型:Y = β0 + β1X + ε其中,Y表示因变量,X表示自变量,β0和β1表示回归系数,ε表示误差项。

简单线性回归的目标是通过寻找最佳拟合直线来描述X和Y之间的关系。

常用的拟合方法是最小二乘法,即通过最小化观测值与拟合值之间的残差平方和来确定回归系数的估计值。

根据最小二乘法,可以得到回归方程的估计值:Ŷ = b0 + b1X其中,Ŷ表示Y的估计值,b0和b1表示回归系数的估计值。

简单线性回归的模型可以用来预测因变量Y的取值,以及解释自变量X对因变量Y的影响程度。

然而,它只适用于关系简单、因变量唯一受自变量影响的情况。

二、多元线性回归多元线性回归是一种扩展的回归分析方法,适用于包含多个自变量和一个因变量的情况。

它基于以下线性模型:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示误差项。

多元线性回归的目标是通过寻找最佳拟合超平面来描述X1、X2、...、Xn和Y之间的关系。

与简单线性回归类似,多元线性回归也采用最小二乘法来估计回归系数的取值。

根据最小二乘法,可以得到回归方程的估计值:Ŷ = b0 + b1X1 + b2X2 + ... + bnXn其中,Ŷ表示Y的估计值,b0、b1、b2、...、bn表示回归系数的估计值。

多元线性回归的模型可以用来预测因变量Y的取值,以及解释自变量X1、X2、...、Xn对因变量Y的影响程度。

英文文献 回归模型r语言

英文文献 回归模型r语言

英文文献回归模型r语言回归模型在统计学和机器学习中被广泛应用,而R语言作为一种流行的统计分析工具,也被用于实现各种回归模型。

在英文文献中,关于回归模型和R语言的结合有很多相关的研究和资料。

这些文献涵盖了从基础到高级的各种回归模型在R语言中的实现和应用。

首先,让我们从基础开始。

有一些文献专门介绍了如何在R语言中实现简单线性回归(simple linear regression)和多元线性回归(multiple linear regression)。

这些文献通常会讲解如何使用R中的lm()函数来拟合回归模型,以及如何解释和评估模型的结果。

一些经典的参考书籍如《An Introduction to Statistical Learning》和《Applied Regression Analysis》提供了丰富的案例和代码,可以帮助读者深入理解回归模型在R中的实现。

其次,针对特定领域的研究,有许多文献探讨了高级的回归模型在R语言中的应用。

比如,关于时间序列分析的文献会介绍如何使用R中的arima()函数来构建自回归(autoregressive)、移动平均(moving average)和ARIMA模型。

另外,关于广义线性模型(generalized linear model)和混合效应模型(mixed effects model)的文献也有很多,这些模型在R语言中有丰富的包和函数来支持。

此外,还有一些文献专门讨论了回归诊断(regression diagnostics)和模型选择(model selection)在R语言中的实现。

这些内容涉及到如何检验回归模型的假设、识别异常值和影响点,以及利用交叉验证等方法选择最佳的模型。

最后,关于回归模型和R语言的文献还包括了一些实际案例和研究论文,这些文献通过具体的数据集和分析过程展示了回归模型在R中的应用。

这些案例可以帮助读者更好地理解如何将理论知识转化为实际研究中的解决方案。

各种线性回归模型原理

各种线性回归模型原理

各种线性回归模型原理线性回归是一种经典的统计学方法,用于建立自变量和因变量之间的线性关系。

在这个模型中,我们假设自变量和因变量之间存在一个线性函数关系,通过找到最佳的拟合直线,我们可以预测和解释因变量。

在线性回归中,我们通常使用以下三种模型:简单线性回归模型、多元线性回归模型和多项式回归模型。

1.简单线性回归模型:简单线性回归是最基本的线性回归模型。

它用于研究只有一个自变量和一个因变量之间的关系。

假设我们有一个自变量x和对应的因变量y。

简单线性回归模型可以表示为:y=β0+β1*x+ε其中,y是因变量,x是自变量,β0和β1是回归系数,ε是误差项。

我们的目标是找到最佳的回归系数,使得模型对观测数据的拟合最好。

2.多元线性回归模型:当我们需要考虑多个自变量对因变量的影响时,可以使用多元线性回归模型。

多元线性回归模型可以表示为:y = β0 + β1 * x1 + β2 * x2 + ... + βn * xn + ε其中,y是因变量,x1, x2, ..., xn是自变量,β0, β1,β2, ..., βn是回归系数,ε是误差项。

我们通过最小化误差项的平方和来估计回归系数。

3.多项式回归模型:多项式回归模型是在线性回归模型的基础上引入了多项式项的扩展。

在一些情况下,自变量和因变量之间的关系可能不是简单的线性关系,而是复杂的曲线关系。

多项式回归模型可以通过引入自变量的高次幂来建立非线性关系。

例如,二阶多项式回归模型可以表示为:y=β0+β1*x+β2*x^2+ε我们可以使用最小二乘法来估计回归系数,从而找到最佳的拟合曲线。

在以上三种线性回归模型中,我们以最小二乘法作为求解回归系数的方法。

最小二乘法通过最小化观测值与模型拟合值之间的残差平方和来选择最佳的回归系数。

通过最小二乘法,我们可以得到回归系数的闭式解,即可以明确得到回归系数的数值。

除了最小二乘法,还有其他求解回归系数的方法,例如梯度下降法和正规方程法。

你应该要掌握的7种回归分析方法

你应该要掌握的7种回归分析方法

你应该要掌握的7种回归分析方法回归分析是一种常用的数据分析方法,用于研究自变量与因变量之间的关系。

在实际应用中,有许多不同的回归分析方法可供选择。

以下是应该掌握的7种回归分析方法:1. 简单线性回归分析(Simple Linear Regression):简单线性回归是回归分析中最简单的方法之一、它是一种用于研究两个变量之间关系的方法,其中一个变量是自变量,另一个变量是因变量。

简单线性回归可以用来预测因变量的值,基于自变量的值。

2. 多元线性回归分析(Multiple Linear Regression):多元线性回归是在简单线性回归的基础上发展起来的一种方法。

它可以用来研究多个自变量与一个因变量之间的关系。

多元线性回归分析可以帮助我们确定哪些自变量对于因变量的解释最为重要。

3. 逻辑回归(Logistic Regression):逻辑回归是一种用于预测二分类变量的回归分析方法。

逻辑回归可以用来预测一个事件发生的概率。

它的输出是一个介于0和1之间的概率值,可以使用阈值来进行分类。

4. 多项式回归(Polynomial Regression):多项式回归是回归分析的一种扩展方法。

它可以用来研究变量之间的非线性关系。

多项式回归可以将自变量的幂次作为额外的变量添加到回归模型中。

5. 岭回归(Ridge Regression):岭回归是一种用于处理多重共线性问题的回归分析方法。

多重共线性是指自变量之间存在高度相关性的情况。

岭回归通过对回归系数进行惩罚来减少共线性的影响。

6. Lasso回归(Lasso Regression):Lasso回归是另一种可以处理多重共线性问题的回归分析方法。

与岭回归不同的是,Lasso回归通过对回归系数进行惩罚,并使用L1正则化来选择最重要的自变量。

7. Elastic Net回归(Elastic Net Regression):Elastic Net回归是岭回归和Lasso回归的结合方法。

线性回归分析

线性回归分析
系数(或判定系数),用r2表示,显然,0≤r2≤1。
r 2 SSR / SST 1 SSE / SST L2xy Lxx Lyy

两个变量之间线性相关的强弱可以用相关系数r(Correlation
coefficient)度量。
❖ 相关系数(样本中 x与y的线性关系强度)计算公式如下:
❖ 统计学检验,它是利用统计学中的抽样理论来检验样本 回归方程的可靠性,具体又可分为拟合程度评价和显著 性检验。
1、拟合程度的评价
❖ 拟合程度,是指样本观察值聚集在估计回归线周围的紧密 程度。
❖ 评价拟合程度最常用的方法是测定系数或判定系数。 ❖ 对于任何观察值y总有:( y y) ( yˆ y) ( y yˆ)
当根据样本研究二个自变量x1,x2与y的关系时,则有
估计二元回归方程: yˆ b0 b1x1 b2 x2
求估计回归方程中的参数,可运用标准方程如下:
L11b1+L12b2=L1y
L12b1+L22b2=L2y b0 y b1 x1 b2 x2
例6:根据表中数据拟合因变量的二元线性回归方程。
21040
x2
4 36 64 64 144 256 400 400 484 676
2528
练习3:以下是采集到的有关女子游泳运动员的身高(英寸)和体
重(磅)的数据: a、用身高作自变量,画出散点图 b、根据散点图表明两变量之间存在什么关系? c、试着画一条穿过这些数据的直线,来近似身高和体重之间的关 系
测定系数与相关系数之间的区别
第一,二者的应用场合不同。当我们只对测量两个变量之间线性关系的 强度感兴趣时,采用相关系数;当我们想要确定最小二乘直线模型同数据符 合的程度时,应用测定系数。

一元线性回归公式

一元线性回归公式

一元线性回归公式一元线性回归(SimpleLinearRegression)是一种简单的回归分析方法,用于研究两个定量变量之间的关系。

一元线性回归是指一个定量变量Y和一个自变量X之间的线性回归模型,它有一个参数β,用来表示X对Y的影响程度。

一元线性回归的公式如下:Y =0 +1X其中,β0表示Y的偏移量或均值,是X=0时Y的值;β1表示X对Y的影响程度,是X的系数。

一元线性回归的原理是通过拟合一条线来求解X和Y的关系,并计算出X对Y的影响程度。

通常,我们需要用到两个原则:最小二乘法(Least Squares)和最大似然估计(Maximum Likelihood)。

最小二乘法是一种优化方法,其目标是最小化残差的平方和。

残差是Y实际值与拟合模型计算值的差,残差的平方和就是拟合的均方差(Mean Squared Error,MSE)。

因此,最小二乘法的目标是最小化拟合均方差。

最大似然估计是一种概率模型估计方法,其目标是最大化模型似然函数。

似然函数是模型参数取某一特定值时,样本出现的概率,因此,最大似然估计的目标是最大化似然函数。

一元线性回归公式的应用非常广泛,可用于检测两个变量之间的因果关系,或者对比不同变量对另一变量的影响程度,或者预测变量值。

比如,在多重回归中,可以用一元线性回归来研究某一变量的影响程度;在财务分析中,可以用它来预测股票价格;在销售分析中,可以用它来预测某一产品的销售量;在投资分析中,可以利用它来估计投资回报率;在决策分析中,可以利用它来估计某一政策的收益;以及在其他应用中也可以利用它来预测变量值。

此外,一元线性回归还可以用于检验变量之间的关系,比如,用相关分析来检验两个变量之间的关系或使用显著性检验来检验X对Y 的影响是否有效。

对于一元线性回归而言,可以通过以下步骤来建模:首先,分析变量间的关系,看看X是否和Y有线性关系;其次,计算拟合系数β1和β0;最后,检验拟合模型的精度。

Simple Linear Regression

Simple Linear Regression
response per unit increase in X.
Regression Line
If the scatter plot of our sample data suggests a linear relationship between two variables i.e.
y 0 1x
Point Estimation of Mean Response
Fitted values for the sample data are obtained by substituting the x value into the estimated regression function.
Example
The weekly advertising expenditure (x) and weekly
sales (y) are presented in the following table.
y
x
1250
41
1380
54
1425
63
1425
54
1450
48
1300
46
1400
62
b1

n xy x y n x2 ( x)2

10(818755) (564)(14365) 10(32604) (564)2
10.8
b0 1436 .5 10.8(56.4) 828
Point Estimation of Mean Response
The estimated regression function is:
160
find a functional relation 140
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The Y-intercept is 25. That is, if you never go to the gym (X = 0), your total cost is £25. And the slope of the line (b) is 2: Every time you go to the gym, it costs you another £2. Putting this another way, every time there is an increase of 1 on the X-axis, there is an increase of 2 on the Yaxis. 4.4 The best fitting regression line: Least squares criterion When the relationship between X and Y is perfect, one can use the method shown above for calculating the slope (b), and then calculate the Y-intercept (a) by substituting known values for X and Y and solving for a. The method shown above does not work, however, when the relationship between X and Y is imperfect. Therefore, we need to calculate the slope (b) and Yintercept (a) by some other means. The most frequently used method is the least squares method. And the formula for the least squares regression line is:
bY =
SP SS X
(4.4)
The “Y” subscript on bY indicates that this is the slope for the regression of Y on X—that is for the equation that allows prediction of Y-values from X-values. In case anyone has forgotten, SS is shorthand for the sum of the squared deviations about the mean. The “X” subscript indicates that it is the “sum of squares” for the X-scores that we need. The conceptual formula for SSX is:
4.4.1 How to calculate the slope
There will be a few formulae in this section, but many of them should already be familiar. Please bear with me. The most common version of the formula for the slope constant in least squares regression is:
B. Weaver (27-Jul-2004)
Simple Linear Regression ...
2
Perhaps an example will help to clarify what this means. Imagine that you have decided to start working out at a gym. The annual membership fee is £25, and in addition to that, you must pay £2 every time you go to the gym.1 If we let X = the number of times you go to the gym, and Y = the total cost, we would find that:
B. Weaver (27-Jul-2004)
Simple Linear Regression ...
1
Chapter 4: Simple Linear Regression 4.1 Linear regression and prediction Linear regression uses the relationship between distributions of scores in making predictions. If there is a relationship between two distributions, it is possible to predict a person's score in one distribution on the basis of their score in the other distribution (e.g., using a score on an aptitude test to predict actual job performance). Simple regression refers to the situation where there are only two distributions of scores, X and Y. By convention, X is the predictor variable, and Y the criterion (or predicted) variable. Multiple regression, which we will address later, refers to situations with a single criterion (Y), but more than one predictor (X1, X2, etc). 4.2 Definitions a) A scatterplot is a graph of paired X and Y values b) A linear relationship is one in which the relationship between X and Y can best be represented by a straight line. c) A curvilinear relationship is one in which the relationship between X and Y can best be represented by a curved line. d) A perfect relationship exists when all of the points in the scatter plot fall exactly on the line (or curve). An imperfect relationship is one in which there is a relationship, but not all points fall on the line (or curve). e) A positive relationship exists when Y increases as X increases (i.e., when the slope is positive). f) A negative relationship exists when Y decreases as X increases (i.e., when the slope is negative). 4.3 Equation for a straight line The equation for a straight line is usually written as:
B. Weaver (27-Jul-2004)
Simple Linear Regression ...
3
SS X = ∑ ( X − X ) 2 =∑ ( X − X )( X − X )
(4.5)
SP stands for “sum of products”. Its conceptual formula is shown in equation 4.6. The product for each (X,Y) pair is obtained by multiplying the ( X − X ) difference by the (Y − Y ) difference. SP = the sum of these products.
1
This method of charging for gym memberships is common in the UK. I was living there when I wrote the first version of these notes—hence the reference to Pounds Sterling rather than dollars.
SP = ∑ ( X − X )(Y − Y )
(4.6)
4.4.2 How to calculate the Y intercept (aY) It is a fact that the least squares regression line passes through the point ( X , Y ) . Therefore, we can substitute these two means into the equation for a straight line, and solve for a:
相关文档
最新文档