第26章(1)导 学 案
沪科版九年级下册数学第26章 概率初步 概率的计算
知识点 2 概率的计算
知2-讲
概率公式:
一般地,如果在一次试验中,有n种可能的结果,并
且这些结果发生的可能性相等,其中使事件A发生的结
果有m(m≤n)种,那么事件A发生的概率为
P(A)=
m.
n
知2-讲
概率与几何图形的面积:
设某几何图形的面积为S,其中事件A发生所在区
域的面积为S′,由于对这个几何图形内的每个点,事件
轴对称图形的概率是( )
B. 1
2
C. D53.
5 4
5
5
知2-练
5 (中考·呼和浩特)如图,△ABC是一块绿化带,将阴影 部分修建为花圃,已知AB=15,AC=9,BC=12, 阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将 随机落在这块绿化带上,则小鸟落在花圃上的概率为
()
B. 1
π
C. D6.
第26章概率初步
26.2等可能情形下的概率计算
第1课时概率的计算
1 课堂讲解 概率的范围
概率的计算
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
1.必然事件、不可能事件、随机事件、概率的概念? 2.口答 (1)投掷一枚均匀的硬币1次,则P(正面朝上)=____; (2)袋中有6个除颜色外完全相同的小球,其中2个白球, 2个黑球,1个红球,1个黄球,从中任意摸出1个球, 则P(白球)=_____;P(黑球)=_____; P(红球)=_____;P(黄球)=______.
32 42 5,
阴影部分的面积为5பைடு நூலகம்=25,
∵图形的总面积为(3+4)2=49, ∴飞镖落在阴影区域的概率是 25 .
49
知2-讲
仪陇县第九中学九年级数学下册 第26章 二次函数26.2 二次函数的图象与性质 1二次函数y=ax2
26.2 二次函数的图象与性质1. 二次函数y =ax 2的图象与性质1.能够利用描点法作出y =x 2的图象,并能根据图象认识和理解二次函数y =x 2的性质.2.能作出二次函数y =-x 2的图象,并能够比较与y =x 2的图象的异同,初步建立二次函数关系式与图象之间的联系.重点会画y =ax 2的图象,理解其性质.难点结合图象理解抛物线开口方向、对称轴、顶点坐标及基本性质,并归纳总结出来.一、创设情境,引入新课导语一 回忆一次函数和反比例函数的定义和图象特征,思考二次函数的图象又有何特征呢?导语二 展示(用课件或幻灯片)具有抛物线的实例让大家欣赏,议一议这与二次函数有何联系呢?导语三 用红色的乒乓球作投篮动作,观察乒乓球的运动路线,思考运动路线有何规律?怎样用数学规律来描述呢?二、探究问题,形成概念1.函数y =ax 2 的图象画法及相关名称【探究1】画y =x 2的图象学生动手实践、尝试画y =x 2的图象教师分析,画图像的一般步骤:列表→描点→连线教师在学生完成图象后,在黑板上示范性画出y =x 2的图象,如图1.【共同探究】该二次函数图像有何特征?特征如下:①形状是开口向上的抛物线;②图象关于y 轴对称;③有最低点,没有最高点.结合图象介绍下列名称:①顶点;②对称轴;③开口及开口方向.2.函数y =ax 2的图象特征及其性质【探究2】在同一坐标系中,画出y =12x 2,y =x 2,y =2x 2的图象. 学生自己完成此题.教师做个别指导,在学生(大部分)完成后,教师可示范性地画出两函数的图象.如图2.比较图中三个抛物线的异同.相同点:①顶点相同,其坐标都为(0,0);②对称轴相同,都为y 轴;③开口方向相同,它们的开口方向都向上.不同点:开口大小不同.【练一练】画出函数y =-x 2,y =-12x 2,y =-2x 2的图象.(分析:仿照探究2的实施过程)比较函数y =-x 2,y =-12x 2,y =-2x 2的图象.找出它们的异同点. 相同点:①形状都是抛物线;②顶点相同,其坐标都为(0,0);③对称轴相同,都为y 轴;④开口方向相同,它们的开口方向都向下.不同点:开口大小不同.【归纳】y =ax 2的图象特征:(1)二次函数y =ax 2的图象是一条抛物线;(2)抛物线y =ax 2的对称轴是y 轴,顶点是原点.当a>0时,抛物线开口向上,顶点是抛物线的最低点.当a<0时,抛物线开口向下,顶点是抛物线的最高点;(3)|a|越大,抛物线y =ax 2的开口越小.三、练习巩固1.已知函数y =(m -2)xm 2-7是二次函数,且开口向下,则m =________.2.已知抛物线y =ax 2经过点A(-2,-8).(1)求此抛物线的函数关系式;(2)判断点B(-1,-4)是否在此抛物线上.3.已知y =(k +2)xk 2+k -4是二次函数,且当x >0时,y 随x 的增大而增大.(1)求k 的值;(2)求顶点坐标和对称轴.4.已知正方形周长为C (cm ),面积为S (cm 2).(1)求S 和C 之间的函数关系式,并画出图象;(2)根据图象,求出S =1 cm 2时,正方形的周长;(3)根据图象,求出C 取何值时,S ≥4 cm 2.四、小结与作业小结1.抛物线y =ax 2 (a ≠0)的对称轴是y 轴,顶点是原点.2.当a >0时,抛物线y =ax 2的开口向上,顶点是抛物线的最低点,a 越大,抛物线的开口越小.3.当a <0时,抛物线y =ax 2的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大.作业1.布置作业:教材P7“练习”中第1,2,3题.2.完成同步练习册中本课时的练习.本节课的教学过程的设计符合新课程标准和课程改革的要求,通过教学情景创设和优化课堂教学设计,体现了在活动中学习数学,在活动中“做数学”的理念,并利用教具使教学内容形象、直观并具有亲和力,极大地调动了学生的学习积极性和热情,培养了学生学习数学的兴趣.教学过程始终坚持让学生自己去动脑、动手、动口,在分析、练习基础上掌握知识.整个教学过程都较好地落实了“学生的主体地位和教师的主导作用”,让学生体会到学习成功的乐趣.22.4 图形的位似变换图形在平面直角坐标系中的位似变换一、教学目标1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.二、重点、难点1.重点:用图形的坐标的变化来表示图形的位似变换.2.难点:把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.难点的突破方法(1)相似与轴对称、平移、旋转一样,也是图形之间的一个基本变换,因此一些特殊的相似(如位似)也可以用图形坐标的变化来表示..(2)带领学生共同探究出位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点..为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.(3)在平面直角坐标系中,用图形的坐标的变化来表示图形的位似变换的关键是要确定位似图形各个顶点的坐标,而不同方法得到的图形坐标是不同的.如:已知:△ABC三个顶点坐标分别为A(1,3),B(2,0),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,根据前面(2)总结的变化规律,点A的对应点A′的坐标为(1×2,3×2),即A′(2,6),或点A的对应点A′′的坐标为(1×(-2),3×(-2)),即A′′(-2,-6).类似地,可以确定其他顶点的坐标.(4)本节课的最后要给学生总结(或让学生自己总结)平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而图形放大或缩小(位似变换)之后是相似的.并让学生练习在所给的图案中,找出平移、轴对称、旋转和位似这些变换.三、例题的意图本节课安排了两个例题,例1是教材P63的例题,它是在引导学生寻找出位似变换中对应点的坐标的变化规律后的一个用图形的坐标的变化来表示图形的位似变换的题目,其目的是巩固新知识,帮助学生加深理解用图形的坐标的变化来表示图形的位似变换知识,此题目应让学生用不同方法作出图形.例2是教材P64的一个问题,它是“平移、轴对称、旋转和位似”四种变换的一个综合题目,所给的图案由于观察的角度不同,答案就会不同,因此应让学生自己来回答,并在顺利完成这个题目基础上,让学生自己总结出这四种变换的异同.四、课堂引入1.如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将△ABC 向左平移三个单位得到△A 1B 1C 1,写出A 1、B 1、C 1三点的坐标;(2)写出△ABC 关于x 轴对称的△A 2B 2C 2三个顶点A 2、B 2、C 2的坐标;(3)将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3、B 3、C 3三点的坐标.2.在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.3.探究:(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O 为位似中心,相似比为31,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现? (2)如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .五、例题讲解例1(教材P63的例题)分析:略(见教材P63的例题分析)解:略(见教材P63的例题解答)问:你还可以得到其他图形吗?请你自己试一试!解法二:点A 的对应点A′′的坐标为(-6×)21(-,6×)21(-),即A′′(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)例2(教材P64)在右图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?分析:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4∶3∶2∶1的位似图形,…….解:答案不惟一,略.六、课堂练习1. 教材P64.1、22. △ABO 的定点坐标分别为A(-1,4),B(3,2),O(0,0),试将△ABO放大为△EFO,使△EFO与△ABO的相似比为2.5∶1,求点E和点F 的坐标.3.如图,△AOB缩小后得到△COD,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比.七、课后练习1.教材P65.3, P66.5、82.请用平移、轴对称、旋转和位似这四种变换设计一种图案(选择的变换不限).3.如图,将图中的△ABC以A.为位似中心,放大到 1.5倍,请画出图形,并指出三个顶点的坐标所发生的变化.教学反思24.6 图形与坐标学前温故在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴,这就建立了平面____.通常把其中水平的一条数轴叫做______或______,取向右为正方向;铅直的数轴叫做______或____,取向上为正方向;两数轴的交点O叫做______.新课早知1.确定点的位置的方法有多种:①用______确定点的位置;②用角度和距离确定点的位置;③用棋盘坐标确定点的位置;④用经纬坐标确定点的位置,利用________来表示.2.平面直角坐标系中,图形中各点的坐标发生变化,则新旧图形的变化规律如下:(1)横坐标不变,纵坐标都乘以-1,图形关于____对称;(2)纵坐标不变,横坐标都乘以-1,图形关于____对称;(3)横、纵坐标均乘以-1,图形关于____对称;(4)如果一个图形的各个点的横坐标都加上(或减去)一个正数a,纵坐标不变,相应的新图形就是把原图形______平移a个单位长度;如果把它的各个点的纵坐标都加上(或减去)一个正数a,横坐标不变,相应的新图形就是把原图形______平移a个单位长度;(5)如果原图形上点的横、纵坐标保持不变,而另一个图形的横、纵坐标扩大或缩小一定倍数时,图形则相应地被________放大或缩小该倍数.3.在平面直角坐标系中,点A(3,4)、B(-4,3),以原点O为位似中心,相似比为2,将线段AB放大,则对应点A′、B′的坐标为( ).A.A′(6,8)、B′(-8,-6)B.A′(6,8)、B′(8,-6)C.A′(-6,-8)、B′(-8,6)D.A′(-6,-8)、B′(8,-6)答案:学前温故直角坐标系x轴横轴y轴纵轴坐标原点新课早知1.平面直角坐标系经纬度2.(1)x轴(2)y轴(3)原点(4)向右(或向左) 向上(或向下)(5)横向、纵向3.D位似变化【例题】如图,把△ABC以A为位似中心,放大1倍,并分别写出变化前后各对应顶点的坐标.分析:(1)运用网格法,延长AB、AC到B′、C′,运用相似三角形性质,相似比等于对应边的比,使AB′=2AB ,AC′=2AC ,连结B′C′,△AB′C′为所求三角形.(2)可运用相似三角形的性质求变化的坐标.解:如上图所示,网格法延长AB 至B′使AB′=2AB , ∵AB=32+32=18=32,则AB′=62,延长AC 至C′使AC′=2AC ,∵AC=52+1=26,则AC′=226,△AB′C′为所求三角形,AB′AB =B′C′BC =AC′AC=2, ∴B′(1,4)、C′(5,0).∴图形变化前后各对应顶点坐标为:A(-5,-2)、B(-2,1)、C(0,-1)、B′(1,4)、C′(5,0).点拨:(1)作位似图形时,也可反向延长,即反向延长BA 、CA 到B′、C′,使AB′=2AB ,AC′=2AC ,连结B′C′.(2)图形放大坐标变化:①用网格法易求点的坐标变化.②运用相似三角形性质求点的坐标变化,构建直角三角形,利用相似形入手求解.1.如图所示,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( ).A .点AB .点BC .点CD .点D2.已知△ABC 在直角坐标系中的位置如图所示,如果△ABC 与△A′B′C′关于y 轴对称,那么点A 的对应点A′的坐标为( ).A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2)3.线段AB 的两端点A(1,3)、B(2,-5).(1)把线段AB 向左平移2个单位,则点A′、B′的坐标为:A′______,B′_______.(2)线段AB 关于x 轴对称的线段A″B″,则其坐标为:A″_______,B″________.(3)把线段AB 向上平移2个单位得线段A 1B 1,A 1B 1关于y 轴对称的线段A 2B 2,那么点A 2的坐标为________,点B 2的坐标为________.4.如图所示是某城市几个景点的示意图(图中小方块是边长为1个单位长度的小正方形).请以某个景点坐标为原点,画出直角坐标系,并用坐标表示下列景点的位置.答案:答案:1.B 2.D3.(1)(-1,3) (0,-5)(2)(1,-3) (2,5)(3)(-1,5) (-2,-3)4.分析:(1)几个景点之中,只有“金凤广场”不在格点上.故选择原点时应避开金凤广场,这样就避免太多的点的坐标是分数.(2)选择湖心岛或者动物园作原点,则其他景点均在y轴的右方或者左方,选择动物园作为坐标原点,则所有点均在第三象限.解:选择动物园作为坐标原点建立直角坐标系,如图所示,则湖心岛的坐标为(-6,-2),光岳楼的坐标为(-5,-3),山峡会馆的坐标为(-1,-3),金凤广场的坐标为(-5.5,-5).。
第26章 反比例函数复习教案
第26章反比例函数复习(2课时)一、教学目标1.能画出反比例函数的图象,并根据图象和解析式掌握反比例函数的主要性质.2.反思在具体问题中探索数量关系和变化规律的过程,理解反比例函数的概念,领会反比例函数作为一种教学模型的意义.3.培养学生观察、分析、归纳的能力,感悟数形结合的数学思想方法,体会函数在实际问题中的应用价值.二、重难点1.重点:掌握反比例函数概念、图象和主要性质.2.难点:应用反比例函数、结合几何、代数知识解决综合性问题.三、教学过程(一)学法解析1.认知起点:在学习了一次函数,反比例函数的基础上进行知识的重温,•回顾.2.知识线索:3.学习方式:采取综合学习,分类归纳的方式,借助投影仪,•结合数形思想进行深入探究.(二)回顾交流,反思提炼①问题提出:1.反比例函数有哪些概念?试举例说明. 2.谈谈函数y=3x与y=-3x的图象的联系和区别.学生活动:归纳反比例函数的概念,一般地,y=k x(k 为常数,k ≠0)•叫做反比例函数.教师引导:(1)反比例函数的等价形式为y= k x⇔y=kx -1(k ≠0) xy=k (k ≠0)⇔变量y 与x 成反比例,比例系数为k .(2)判断两个变量是否是反比例函数关系有两种方法: 方法1,按照反比例函数定义判断; 方法2,看两个变量的乘积是否为定值. 3.课堂演练:(1)矩形面积是60cm 2,这时底ycm 和高xcm 之间的关系是反比例函数吗?[是,y=60x] (2)在匀速直线运动中,路程s 、时间t 、速度v 三者之间当路程s 一定时,•时间t 与速度v 的关系是怎样的关系?[反比例函数关系,t=s v(s 是常数)](3)下列函数中,反比例函数是(B ). A .y=-9.34xB y x=-C .y=-x+7D .y=-x 2-1 (4)设菱形的面积为48cm 2,两条对角线分别为xcm 和ycm , ①求y 与x 之间的函数关系式;(y=96x) ②求当其中一条对角线x=6cm ,另一条对角线y 的长.②问题提出:1.观察上述反比例函数(y=-3x ,y=3x)的图象,回答下面问题:(1)反比例函数图象是怎样的曲线?(双曲线) (2)画反比例函数的图象应注意什么?[①反比例函数的图象不是直线,“两点法”是不能画的;•②点选的越多画图越精确;③画图注意对称性、无限延伸] (3)反比例函数具有哪些性质? 2.课堂演练.(1)在函数y=21m x--(m 为常数)的图象上有三点(-1,y 1),(-14,y 2),(12,y 3),则函数值y 1,y 2,y 3的大小关系是(D ). A .y 2<y 3<y 1 B .y 3<y 2<y 1 C .y 1<y 3<y 2 D .y 3<y 1<y 2 (2)如图,A ,B 是函数y=1x的图象上交于原点O 对称的任意两点,AC ∥y 轴,BC•∥x 轴,△ABC 的面积S ,则选(C ). A .S=1 B .1<S<2 C .S=2 D .S>2 (三)综合应用,提升能力1.已知y=y 1+y 2,y 1与x+1成正比例,y 2与x 2成反比例,并且x=1时,y=1;x=3时,y 2=23+1,•求x=13时y 的值. (四)随堂练习,巩固深化2.如图,过双曲线y=2x上两点A 、B 分别作x 轴、y 轴的垂线,若矩形ADOC•与矩形BFOE 的面积分别为S 1、S 2,则S 1与S 2的关系是什么? (五)小结:谈谈你的收获(六)布置作业(七)板书设计四、教学反思:。
福建省石狮市九年级数学下册 第26章 二次函数 26.2 二次函数的图象与性质(5)学案(新版)华东
二次函数的图象(5)【学习目标】1.会画二次函数y =ax 2+bx+c 的图象.2.会应用二次函数y =ax 2+bx+c 的性质解题。
3.渗透数开结合的思想方法。
【重点】二次函数y =ax 2+bx+c 的图象和性质【难点】用二次函数y =ax 2+bx+c 的性质解题。
【使用说明与学法指导】先预习P3—P 4内容,勾画课文中的重点,然后独立完成导学案,疑惑随时记录在课本或预习案上,准备课上讨论质疑;预 习 案一、预习导学:1.如何求二次函数y =ax 2+bx+c 图象的顶点坐标?2.画二次函数图象时,必须选的点是哪一个点?3.把y =x 2-4x-4化成顶点式结果是 。
4.二次函数y =ax 2+bx+c 图象的顶点坐标,对称轴分别是什么?二、我的疑惑:导 学 案 装 订 线合作探究探究一:二次函数y =ax 2+bx+c 的图象与性质:例1:已知抛物线253212---=x x y ,(1)写出抛物线的开口方向,对称轴及顶点坐标。
(2)求抛物线与x 轴及y 轴交点的坐标。
(3)说明该函数图象有哪些性质。
探究二:画二次函数y =ax 2+bx+c 的图象例2:画出函数322-+=x x y 的图象。
小结:通常取五点来画二次函数图象:取抛物线的顶点、与x 轴的交点、与y 轴的交点及这个点关于对称轴对称的点。
二次函数y =ax 2+bx +c 的图象与性质4.不画出图象,直接说出函数y =-3x 2-6x +8的图象的开口方向、对称轴和顶点坐标.(提示:将-3x 2-6x +8配方,化为练习第3题中的形式) 例4 画出函数y =-21x 2+x -25的图象,并说明这个函数具有哪些性质. 分析 因为 y =-21x 2+x -25 =-21(x -1)2-2, 所以这个函数的图象开口向下,对称轴为x =1,顶点坐标为(1,-2).根据这些特点,我们容易画出它的图象.解 列表.画出的图象如图26.2.4.图26.2.4由图象不难得到这个函数具有如下性质:当x <1时,函数值y 随x 的增大而增大;当x >1时,函数值y 随x 的增大而减小;当x =1时,函数取得最大值,最大值y =-2.做一做(1) 请你按照上面的方法,画出函数y =21x 2-4x +10的图象,由图象你能发现这个函数具有哪些性质?(2) 通过配方变形,说出函数y =-2 x 2+8x -8的图象的开口方向、对称轴和顶点坐标.这个函数有最大值还是最小值?这个值是多少?思 考对于任意一个二次函数y =ax 2+bx +c (a ≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?练 习1. 说出下列抛物线的开口方向、对称轴及顶点坐标.(1) y =3(x +3)2+4; (2) y =-2(x -1)2-2;(3) y =21(x +3)2-2; (4) y =-32(x -1)2+0.6. 2. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标. (1) y =2x 2+4x ; (2) y =-2x 2-3x ;(3) y =-3x 2+6x -7; (4) y =21x 2-4x +5. 3. 先确定下列抛物线的开口方向、对称轴和顶点坐标,再描点画出图象.(1) y =-2(x -1)2+4; (2) y =21(x +2)2-5; (3) y =-31x 2-2x +1; (4) y =x 2-4x +7.。
人教版九年级数学下册第26章反比例函数PPT
知识点 1 反比例函数的定义
知1-导
问题
下列问题中,变量间具有函数关系吗?如果有,它 们的解析式有什么共同特点? (1)京沪线铁路全程为1 463 km,某次列车的平均速度
v(单位: km/h)随此次列车的全程运行时间t (单位:h) 的变化而变化;
知1-导
(2) 某住宅小区要种植一块面积为1 000 m2的矩形草坪, 草坪的长y (单位:m)随宽x (单位:m)的变化而变化;
(4)还原:写出反比例函数的解析式.
知2-讲
2.由于反比例函数的解析式中只有一个待定系数k, 因此求反比例函数的解析式只需一组对应值或一 个条件即可.
知2-讲
例2 已知y是x的反比例函数,并且当x=2时,y=6.
(1)写出y关于x的函数解析式;
(2)当x=4时,求y的值.
分析:因为y是x的反比例函数,所以设 y k .
5
①y=2x-1;②y=- ;③y=x2+8x-2;
3
1x
a
④y= x2 ; ⑤y= 2x ; ⑥y= x .
导引:根据反比例函数的定义进行判断,看它是否满足反比例函数的三种
表现形式.①y=2x-1是一次函数;②y=- 5 是反比例函数;③y
3
x
=反=比xa2+例,8函x当-数a2≠关是0系时二;是次⑤反函y比数=例;2函1④x数y是=,反没x比2有例,此函y条与数件x,2成则可反不以比一写例定成,是y但反=y比与12x例x;不函⑥是y
(k≠0)的图象上,则k的值是( D )
A.10 B.5 C.-5 D.-10
3 若y与x-2成反比例,且当x=-1时,y=3,则y
与x之间的关系是( D )
A.正比例函数
人教版九年级下册26章新函数问题探究教学设计
(二)讲授新知
在讲授新知阶段,教师按照以下步骤进行:
1.引导学生理解函数的定义,强调函数是一种特殊的关系,它将每个输入值映射到唯一的输出值;
4.通过对函数性质的探究,使学生逐步形成逻辑思维,提高学生的推理能力;
5.注重练习的针对性和层次性,使学生能够循序渐进地掌握函数知识。
(三)情感态度与价值观
1.体会数学的严谨性和逻辑性,培养对数学的热爱和敬畏之情;
2.感受数学在现实生活中的广泛应用,增强学生运用数学知识解决实际问题的信心;
3.培养学生的团队合作意识,学会倾听、尊重他人,善于沟通交流;
人教版九年级下册26章新函数问题探究教学设计
一、教学目标
(一)知识与技能
1.理解并掌握函数的概念、函数的性质、函数图像的识别及运用;
2.学会使用数学语言描述函数问题,掌握函数的定义域、值域、单调性、奇偶性等基本概念;
3.能够运用一次函数、二次函数、反比例函数等基本初等函数解决实际问题;
4.掌握函数图像的平移、伸缩、翻转等变换规律,并能够运用这些变换解决具体问题;
(五)总结归纳
在总结归纳阶段,教师引导学生从以下几个方面进行总结:
1.本节课学习的函数定义、性质、图像及变换规律;
2.函数在实际生活中的应用;
3.解决函数问题时所使用的数学思想方法;
4.在小组讨论和课堂练习中,自己的收获和感悟。
五、作业布置
为了巩固学生对函数知识的掌握,提高学生的应用能力,特布置以下作业:
1.请同学们回顾课堂所学内容,整理函数的定义、性质、图像及变换规律的相关笔记,加深对函数知识体系的理解。
第26章 随机事件的概率(全章学案)
第26章 随机事件的概率26.1.1什么是概率 本章总第 1课时教学目标:1.理解概率的含义。
2.对于一些简单的问题,学会列出机会均等的结果以及其中所关注的结果,从而求出某一事件的概率。
3.培养实验操作能力。
教学重点、难点:1.某一具体事件的概率实验。
2.某一具体事件的概率值所表示的含义。
教学过程一、情境引入班级联欢会上举行抽奖活动:每个同学的名字都写在小纸条上投入抽奖箱,其中男生22名,女生20名。
老师闭上眼睛从搅匀的小纸条中抽出一张,恰好抽中男同学的概率大,还是抽中女同学的概率大?通过本节课的学习,相信你一定会做出判断的。
二、自学练习1.抛掷一枚硬币有 个可能的结果:“ ”和“ ”。
这两个结果出现的可能性 ,各占50% 的机会,50% 这个数表示事件“出现正面”发生的可能性的大小。
2.表示 ,叫做该事件的概率。
如,抛掷一枚硬币,“出现反面”的概率为21,可记为 =21 3.让我们一起回顾已经做过的几个实验及其结果,并完成课本表26.1.1,从中发现,几个动手实验观察到的频率值也可以开动脑筋分析出来,当然,最关键的有两点:(1)要清楚我们关注的是 结果;(2)要清楚 的结果。
4.(1)、(2)两种结果 就是关注的结果发生的概率,如p(掷得“6” )=61,读作:掷得 等于61. 5. 任意投掷均匀的骰子,4朝上的概率是_______三、合作交流1.掷得6的概率等于61表示什么意思?答 。
2.不是6(也就是1-5)的概率等于多少呢?这个概率值表示什么意思呢? 答 。
3.以下说法合理的是-------------------------------------( )A.小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率分别是30%B .抛掷一枚普通的正六面体骰子,出现点数6的概率是61的意思是每6次就有1次掷得6C.某彩票的中奖率是2%,那么如果买100张彩票一定会有2张中奖D.在一次实验中,甲、乙两组同学估计一枚硬币落地后,正面朝上的概率是0.48和0.514.气象台短期预报的准确率已达95%.现预报“明天本地阴转中雨”,那么说“明天下雨是必然事件”的是 的(填“对” 或“不对”),理由是 。
人教版第26章二次函数全章导学案
课题26.1 二次函数(1)九年级备课人:洪双桥审核:审批:班级:____________ 姓名:____________ 使用时间:2012年12月日导学目标知识点:1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。
2、理解二次函数的概念,掌握二次函数的一般形式;3、通过解决实际问题的过程总结建立数学模型的方法,培养与他人交流的意识和提取合理见解的能力。
课时:1课时导学方法:实验、整理、分析、归纳法导学过程:一、课前导学1、填表一次函数正比例函数反比例函数表达式图形形状2、探究(1).正方体六个面是全等的正方形,设正方形棱长为x ,表面积为y ,则y 关于x 的关系式为是什么?①(2).多边形的对角线数 d 与边数n 有什么关系?②n边形有个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可作条对角线。
因此,n 边形的对角线总数d = 。
(3).某工厂一种产品现在年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 的值而确定,y 与x 之间的关系应怎样表示?这种产品的原产量是20件,一年后的产量是 件,再经过一年后的产量是 件,即两年后的产量为 。
③二、合作探究探究:函数①②③有什么共同特点?你能举例说明吗?一般地,形如 的函数,叫做二次函数其中,是自变量,a 为 , b 为 ,c 为 , 做一做:1、下列函数中,哪些是二次函数?分别说出二次函数的二次项系数、一次项系数和常数项。
(1)(2)(3)(4))1(x x y -=(5))1)(1()1(2-+--=x x x y (6) 23712y x x =+--2、函数2y ax bx c =++,当a 、b 、c 满足什么条件时,(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?三、展示点评学习知识最好的途径就是自我发现四、课堂检测1.下列函数中,哪些是二次函数?(1)y=3x-1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2-2x+1; (5)y=x 2-x(1+x); (6)y=x -2+x.2.写出下列各函数关系,并判断它们是什么类型的函数(1)、长方形的长是宽的2倍,写出长方形的周长C 与宽a 之间的函数关系 , 是 的 函数。
【人教版】2012-2013学年九年级(全一册)数学小复习:第26章 二次函数 讲练课件
第26章讲练1 ┃ 试卷讲练
(8)a>0; (9)抛物线开口向上; b 1 (10)由 = ,得到 2a+3b=0; -2a 3 (11)a>0,b<0,c<0,得到 abc>0; (12)当 x=-1 时,y>0,得 a-b+c>0; (13)当 x=1 时,y<0,得 a+b+c<0 等.
第26章讲练1 ┃ 试卷讲练 2.二次函数y=ax2+bx+c(a≠0)的图象如图26-8所示,
图 26-15
第26章讲练2 ┃ 试卷讲练
3. 在同一平面直角坐标系中, 一次函数 y=ax+b 和二次函 数 y=ax2+bx 的图象可能为( A )
图 26-16
第26章讲练2 ┃ 试卷讲练 【针对第15题训练 】
1.抛物线 y=x2+x+a 与坐标轴有两个公共点,则 a= 1 0或 ________. 4
第26章讲练2 ┃ 试卷讲练 【针对第10题训练 】
1.抛物线 y=ax2+bx+c 的图象如图 26-12 所示,则 a+b+c 一次函数 y=-bx-4ac+b 与反比例函数 y= 在同 x
2
一坐标系内的图象大致为( D )
第26章讲练2 ┃ 试卷讲练
第26章讲练2 ┃ 试卷讲练
2.已知二次函数 y=ax2+bx+c 的图象如图 26-14 所示, a 则在同一坐标系中,一次函数 y=ax+c 和反比例函数 y= 的图 x 象大致是( D )
数学·新课标(RJ)
第26章讲练1┃ 试卷讲练
函数是初中数学知识的主线,而二次函数是这条主线上的高 潮.二次函数是中考命题的重点,主要考查二次函数的图象、性 质及关系式的确定,在填空题、选择题和解答题中都有出现,特 考查意 别喜欢与方程、几何等知识综合编拟压轴题. 图 二次函数的图象与性质是二次函数的重点内容,而与二次函数 的图象与性质密切相关的是图象的开口方向、对称轴、顶点坐标 、增减范围、对称性,这些内容是历年中考重点考查内容. 易 难易度 中 难 1,2,3,4,5,6,7,11,12,13,14,15,19,20 8,9,14,16,17,21,22 10,18,23,24
26.1反比例函数第一讲(易)教案
关于学生小组讨论,我觉得整体效果还是不错的,学生们能够提出自己的观点并与他人交流。但在引导和启发学生思考方面,我觉得自己还有待提高。今后,我将尝试提出更具启发性的问题,激发学生的思维。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x的函数,其中k为常数,k ≠ 0。它在描述一些变化规律时非常重要,如在物体距离与视角关系中的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过观察物体距离与视角的关系,了解反比例函数在实际中的应用,以及它如何帮助我们解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“反比例函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在上完这节反比例函数的课程后,我对自己教学过程中的优点和需要改进之处进行了思考。我发现学生们在理解反比例函数的定义和性质方面普遍感到较为困难,这让我意识到在今后的教学中,需要更加关注学生对基础概念的掌握。
首先,我发现在讲解反比例函数的定义时,用生活中的实例来引入,能让学生更容易理解抽象的数学概念。但在讲解过程中,可能还需进一步简化语言,用更直观的方式让学生感受到常数k对函数图像的影响。
第26章 肾上腺皮质激素类药物(药理学人民卫生出版社第8版)
4)心血管系统: 长期应用,由于钠、水潴留和血脂升高
可引起高血压和动脉粥样硬化。
5)骨质疏松、肌肉萎缩、伤口愈合迟缓 、自 发性骨折、延缓生长发育等。
6)中枢: 惊厥、癫痫、精神失常
111
库 欣 综 合 征 患 者
Moon-shaped face
7个月 ,8450g,114/52mmHg
Effets secondaires des Corticoïdes
【药理作用】
(1)抗炎作用 (2)免疫抑制作用与抗过敏作用 (3)抗休克作用
(4)对物质代谢的影响
(5)其它作用: 允许作用、血液与造血系统、中枢神经系统、
骨骼和骨骼肌、消化系统、退热作用等。
(1) 抗炎作用
①对抗各种原因所致炎症(物理、化学、生物、免疫等) ②炎症初期红、肿、热、痛症状减轻;
炎症后期延缓肉芽组织生成,防止瘢痕形成。 ③同时可降低机体的防御功能,导致感染扩散、阻碍创口愈合。
作用途径
诱导淋巴细胞核DNA降解 影响淋巴细胞的物质代谢 诱导淋巴细胞凋亡 抑制核转录因子NF-κB活性
2)抗过敏作用
在免疫过程中,由于抗原-抗体反应引起肥大细胞脱颗粒而释放组胺 、5-羟色胺、过敏性慢反应物质和缓激肽等,从而引起一系列过敏性反 应症状。糖皮质激素被认为能减少上述过敏介质的产生,抑制因过敏反 应而产生的病理变化,从而减轻过敏性症状。
心源性休克: 须结合病因治疗;
低血容量性休克: 补液补电解质等效果不佳时,合用超大剂
量皮质激素
4)替代疗法: 用于急、慢性肾上腺皮质功能不全者,脑垂体
前叶功能减退及肾上腺次全切除术后,皮质激素分泌不足的患者。
5)局部应用: 如接触性皮炎、湿疹、结膜炎、角膜炎、肛门搔
第26章随机事件的概率校本作业(L李善良)
第26章 随机事件的概率§26●1 概率的预测 课时一 什么是概率【学习目标】1. 了解概率的概念2. 会计算简单随机事件的概率,并能理解某一随机事件概率的含义。
【课前导习】1. 表示一个事件发生的_________________的这个数,叫做该事件的概率2. 抛掷一枚硬币,“出现反面”的概率为21,可记为____________ 3. 当实验次数很大时,事件发生的频率会___________________,因此,我们可以通过大数次的实验,用___________ 估计事件发生的概率4. 在“we like maths”这个句子中,字母e 出现的频率是________5. 从数字1、2、3中任意取两个不同的数字组成一个两位数,则这个两位数大于21的概率是__________【主动探究】投掷一个均匀的正八面体骰子,每个面上依次标有1、2、3、4、5、6、7和8(1) 掷得“7”的概率等于________?这个数表示___________________(2) 掷得的数小于或等于“6”的概率等于________,这个数表示_____________例题讲解例:在3○2○(-2)的两个○中任意填上“+”或“-”,使运算结果为3的概率是__________【当堂训练】1. 班级里有20个女同学,22个男同学,班上每个同学的名字都各自写在一张小纸条上,放入一个盒中搅匀.如果老师闭上眼睛随便从盒中取出一张纸条,那么抽到男同学名字的概率是P 1=______;抽到女同学名字概率是P 2=______ ;P 1 +P 2=_________2. 袋中装有大小相同的3个绿球、3个黑球和6个蓝球,闭上眼从袋中摸出1个球,求以下6个事件发生的概率.(1) P(摸出的球颜色为绿色)=_______(2) P(摸出的球颜色为白色) =_______(3) P(摸出的球颜色为蓝色) =_______(4) P(摸出的球颜色为黑色) =_______(5) P(摸出的球颜色为黑色或绿色) =_______(6) P(摸出的球颜色为蓝色、黑色或绿色) =_______3. 在一个布口袋里装着白、红、黑三种颜色的小球,它们除颜色之外没有任何其他区别,其中有白球5只、红球3只、黑球1只.袋中的球已经搅匀.(1)随机地从袋中取出1只球,取出的球是白球的概率是_______,取出的球是红球的概率是___(2)若取出的第1只球是红球,将它放在桌上, 从袋里余下的球中再随机地取出1只球,这时,取出白球的概率是__________;取出红球的概率是_________;取出黑球的概率是_________4. 在分别写有数字1到20的20张小卡片中,随机地抽出1张卡片.(1) 卡片上的数字是5的倍数的概率是_______(2) 卡片上的数字不是5的倍数概率是__________(3) 卡片上的数字是质数概率是______________ (4) 卡片上的数字不是质数概率是_______5. 投掷一枚普通正六面体骰子,将下列事件按照出现的概率从小到大排序:(1)点数大于2;(2)点数小于5;(3)点数小于7;(4)点数大于6;(5)点数为5或3._____________________________6.在一副洗好的52张扑克牌中(没有大小王),闭上眼睛,随机地抽出一张牌(1)抽到的牌是10的概率是___________ ;(2)抽到的牌是方块10的概率是___________(3)抽到的牌是红桃的概率是___________;(4)抽到的牌是黑色的(黑桃或梅花)的概率是___________ 【回学反馈】1.抛掷一个骰子,观察向上一个面的点数,求下列事件的概率(1)点数是偶数(2)点数大于2小于52.一次抽奖活动设置了如下的翻奖牌,如果你只能在9个数字中选中一个翻牌,试求以下事件的概率.(1)得到一架显微镜;(2)得到两张球票;(3)得到书籍;(4)什么奖励也没有得到;(5)得到奖励.课时二在复杂条件下例举所有机会均等的结果【学习目标】能运用树状图或列表的方法计算在复杂条件下随机事件的概率【课前导习】1.抛掷一枚普通的硬币1次,可能出现的结果有________________2.抛掷一枚普通的硬币2次,可能出现的结果有________________3.分别从写有A、B、C、D、E的5张卡片中,任取2张,这2张卡片上的字母恰好按字母顺序相邻的概率是__________4.从A地到B地共有4条路,从B到C地有3条路,则从A地到C地共有______种走法5.张老师有4件不同颜色的衬衣和4条不同颜色的领带,他将衬衣和领带搭配,不同的搭配方法有_____种6.有5条线段,长度分别是1、3、5、7、9,从中任取3条,能构成三角形的概率是_________【主动探究】抛掷一枚普通的硬币3次,可能出现的结果有________________例题讲解例:口袋中装有1个红球和2个白球,搅匀后从中摸出1个球,会出现哪些可能的结果?【当堂训练】1. 口袋中装有1个红球和2个白球,搅匀后从中摸出1个球, 摸出红球的概率是___________;摸出白球的概率是_______2. 口袋中装有1个红球和2个白球,搅匀后从中摸出1个球,将摸出的第一个球放回搅匀再摸出第二个球,两次摸到的球都是红球的概率是__________,两次摸到的球都是白球的概率是__________,摸到一红一白的概率是_______3. 两枚正四面体骰子,四个顶点上分别标有数字1、2、3、4,同时投掷两枚正四面体骰子,(1) 所得点数之和为偶数的概率是________(2) 所得点数之和为奇数的概率是________(3) 所得点数之和为质数的概率是________(4) 所得点数之和为3的倍数数的概率是________4. 随机抛两枚硬币,落地后出现“一正一反”的概率是( )A 、1B 、21C 、 31D 、41 5. 掷两枚普通的正六面体骰子,所得点数之和为偶数的概率是( )A 、1B 、101 C 、 21 D 、81 6. 掷两枚普通的正六面体骰子,所得点数之积为偶数的概率是( ) A 、1 B 、361 C 、 43 D 、21 7. 甲乙两人在玩“石头、剪刀、布”的游戏,甲获胜的概率是A 、81B 、92C 、 31D 、41 【回学反馈】 1. 有人说:“投掷两个普通的正方体骰子,掷得两个6的概率应是61的一半,也就是121.”请用树状图或列表说明为什么这一说法是错误的.2. 取三枚硬币: 在第一枚的正面贴上红色标签,反面贴上蓝色标签;在第二枚的正面贴上蓝色标签,反面贴上黄色标签;在第三枚的正面贴上黄色标签,反面贴上红色标签.同时抛掷三枚硬币,硬币落地后,求下列事件出现的概率:(1) 颜色各不相同;(2) 两黄一红;(3) 都是红色;(4) 两红一蓝;(5) 两黄一蓝3. 在电视台的选秀比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待定”或“通过”的结论(1) 写出三位评委给出A 选手的所有可能的结果(2) 对选手A ,只有甲、乙两位评委给出相同结论的概率§26●2模拟实验 【学习目标】1. 了解应用替代物进行模拟实验的方法2. 能用恰当的方法计算随机事件概率【课前导习】1. 在“抛掷一枚均匀硬币”的实验中,如果没有硬币,可以用____________________代替硬币2. 在“投掷一颗均匀骰子”的实验中,如果没有骰子,可以用____________________代替骰子3. 抽屉里有尺码相同的2双黑袜子和1双白袜子(不分左右),混放在一起,在夜晚不开灯的情况下,你随意拿出2只恰好是一双的概率是__________4. 从2、3、4这三个数中任取两个数相加,则和为奇数的可能性比和为偶数的可能性______5. 四张完全相同的卡片上,分别画上圆、矩形、等腰三角形、等边三角形,现随机抽取两张,全部是中心对称图形的概率是__________6. 从一副去掉大小王的52张扑克牌中,任意取出一张,这张牌的点数是9的概率是__________7. 从1到10这十个自然数中,任意取出两个数,它们的积大于10的概率是__________【主动探究】在下列实验中,如果没有相应的实物,该怎么办?尽可能多地说说你的方法.(1) “抛掷两枚均匀硬币”的实验;(2) “投掷两颗均匀骰子”的实验.例题讲解例 抽屉里有尺码相同的3双黑袜子和1双白袜子,混放在一起,在夜晚不开灯的情况下,随意拿出2只(不分左右),它们恰好是一双的概率是多少?【当堂训练】1. 在抛一枚硬币的实验中,如果没有硬币,则下列不能作为替代物的是( )A 、 一枚质地均匀的正方体骰子B 、 图钉C 、 两张分别写有数字1和2的质地相同的卡片D 、 两张扑克牌2. 从两双颜色不同的皮鞋中任意取出两只,恰好是同一双的概率是( )A 、31B 、32C 、 41D 、21 3. 在用计算器模拟“投骰子”的实验中,研究出现“2的倍数”的概率,则要在1到8的范围内产生随机数,那么产生的随机数是_____________时,代表出现了2的倍数,否则不是。
九年级(人教版)集体备课导学案:第26章 二次函数 学案(三)
二次函 数(1)一.导入:用长为20cm 的铁丝围成一个矩形,设矩形的一边长为x cm ,面积为y 2cm . 求:y 与x 的函数关系式.二.二次函数:形如c bx ax y ++=2(其中b 、c 为常数,且0≠a )的函数叫做x 的二次函数. 注:0≠a ,若0=b 可化为c ax y +=2;0≠a ,若0=c 可化为bx ax y +=2三.例题与练习:1.下列各式中:①2x y =,②012=-+y x ,③122=-y x ,④1212-+-=x xy ,⑤1+=x y ,⑥012=--x y ,其中y 是x 的二次函数的是 .练习:下列各式中,y 是x 的二次函数的是( )A .12=+x xy B.0222=-+y x C.22-=-ax y D.012=++y x2.若函数()22++-=x x m y m 是二次函数,则m 的值为 .练习:若函数()13112+-+=+x x m y m 是二次函数,则m 的值为 .3.若二次函数12++=mx x y 的图象经过点(2,1),则m 的值为 .练习:若二次函数()32122--+++=m m x x m y 图象经过原点,则m 的值为 .4.若二次函数c bx ax y ++=2满足1=++c b a ,则此二次函数的图象必经过点 ;若满足0=+-c b a ,则此二次函数的图象必经过点 .练习:若二次函数c bx ax y ++=2满足024=+-c b a ,则此二次函数的图象必经过点 .5.将函数3822--=x x y 化成 练习:将函数1632+--=x x y 化成 ()k h x a y +-=2的形式 ()k h x a y +-=2的形式7.将进货单价为30元的故事书按40元售出时,就能卖出500本书,已知这种书每本每涨价1元,其销售量就会减少10本.设销售单价为x 元,销售总利润为y 元.⑴写出y 与x 的函数关系式; ⑵求当销售单价为多少元时,销售总利润最大?最大利润为多少?练习:某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为每千克30元,物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60kg ,单价每降低1元,日均多售出2kg ,在销售过程中,每天还要支出其他费用500元(天数不足一天,俺整天计算).设销售单价为x 元,日均获利为y 元.⑴求y 与x 的函数关系式,并注明x 的取值范围; ⑵求单价定为多少时,日均获利最多?最多为多少?课 后 作 业(1)1.下列各式中,y 是x 的二次函数的是( )A .0212=-+x yB.022=+y x C.22-=-x x D.0422=+-y x 2.若函数()4331-++=-x xm y m 是二次函数,则m 的值为( ) A .3或3- B.3 C.3- D.2或2-3.对于二次函数2432+-=x x y ,当1-=x 时,y 的值为( )A .9 B.1 C.3 D.3-4.二次函数c bx ax y ++=2,若2-=x 时,0=y ,则下列式子成立的是( )A .024=++c b a B.024=+-c b a C.024=++-c b a D.024=+--c b a5.二次函数42-=x y 与x 轴交点的坐标为( )A .(0,4-) B.(2,0) C.(2,0)和(2-,0) D.(2-,0)6.二次函数4322-+=x x a y 经过点(2,6),则a 的值为( )A .1 B.1- C.1或1- D.2或2-7.将下列二次函数化成一般形式.⑴()()232+--=x x y ⑵()2423--=x x y8.将下列二次函数化成()k h x a y +-=2的形式⑴51222+-=x x y ⑵342---=x x y9.求下列二次函数与x 轴、y 轴的交点坐标.⑴x x y 642-= ⑵542--=x x y10.某零售商购进一批单价为16元的玩具,销售一段时间后,为了获得更多的利润,商店决定提高销售价格,经过试验发现,当销售单价为20元时最多能销售360件,在这基础上每提高1元每月就少销售30件.设销售单价为x (元/件),每月的销售利润为y (元).⑴写出y 与x 的函数关系式; ⑵求当销售单价为多少元时,每月销售利润最大?最大利润为多少? 二 次 函 数(2)二次函数的图象与性质:一.例题与练习:1.二次函数2x y =⑴_______=a ,_______=b ,_______=c⑵当____=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:练习1:二次函数2x y -=⑴_______=a ,_______=b ,_______=c⑵当____=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:2. 相关知识: ⑴二次函数的图象为 ;⑵二次函数的图象为 图形; ⑶开口方向 ;⑷顶点坐标 ;⑸对称轴为 . ⑹增减性: . 练习2:在同一直角坐标系中画出二次函数22x y =与22x y -=的图象22x y =⑴列表:⑵描点,画出图象22x y -=⑴列表:⑵描点,画出图课 后 作 业(2)1.将二次函数()()x x y 323--=化为一般形式为 .2.对于二次函数6432---=x x y 来说,a = ,b = ,c = .3.若二次函数()21x m y -=的图象的开口方向向上,则m 的取值范围为 .4.二次函数241x y -=的顶点坐标为 ,对称轴为 . 5.若点A (2,8)与点B (2-,m )都在二次函数2ax y =的图象上,则m 的值为 . 6.已知点(m ,4-)在二次函数221x y -=的图象上,则m 的值为 . 7.请你写出一个顶点为原点,且开口方向向下的二次函数表达式为: .8.若二次函数()23x m y -=在对称轴右边的图象上,y 随x 的增大而减小,则m 的取值范围为 . 9.二次函数2ax y =的图象必经过的一点的坐标为 .10.若点A (4-,n )与点B (m ,8-)都在二次函数2ax y =的图象上,且关于对称轴对称,则n m +的值为 .11. 将函数下列各函数化成()k h x a y +-=2的形式⑴42212--=x x y ⑵2134322+--=x y12.在同一直角坐标系中画出下列函数的图象:⑴23x y = ⑵231x y -=13.请你利用上题中的直角坐标系和函数23x y =⑴画出23x y =向右平移3个单位的图象;⑵观察新得到的抛物线图象回答:顶点坐标为 ,对称轴为 ,与y 轴交点为 .※⑶请你试求出变换后的二次函数的解析式.二 次 函 数(3)二次函数的图象与性质:一.例题与练习:1.二次函数12+=x y⑴_______=a ,_______=b ,_______=c⑵当____=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:相关结论:⑴开口方向 ;⑵顶点坐标 ;⑶与2x y =的图象的关系 ;⑷对称轴为 ;⑸其图象是由2x y =的图象经过怎样的图形变换得到的?2.二次函数12--=x y⑴_______=a ,_______=b ,_______=c⑵当____=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:相关结论:⑴开口方向 ;⑵顶点坐标 ;⑶与2x y -=的图象的关系 ; ⑷对称轴为 ;⑸其图象是由2x y -=的图象经过怎样的图形变换得到的?练习:1.二次函数52-=x y 的图象是由2x y =的图象经过怎样的图形变换得到的?⑴开口方向 ;⑵顶点坐标 ;⑶对称轴为 . 2.练习:二次函数422--=x y 的图象是由22x y -=的图象经过怎样的图形变换得到的?⑴开口方向 ;⑵顶点坐标 ;⑶对称轴为 .3.练习:将二次函数23x y =的图象沿y 轴向上平移3个单位长度得到的函数解析式为 ,再沿y 轴向下平移7个单位长度得到的函数解析式为 .课 后 作 业(3)1.下列二次函数的开口方向向上的是( )A .132+-=x yB .32-=ax yC .2312-=x y D .()512--=x a y 2.若二次函数()1632--=x m y 的开口方向向下,则m 的取值范围为( ) A .2>m B .2<m C .2≠m D .2->m3.若二次函数1211-=x a y 与二次函数3222+=x a y 图象的形状完全相同,则1a 与2a 的关系为( )A .1a =2aB .1a =2a -C .1a =2a ±D .无法判断4.将二次函数22x y -=的图象向下平移5个单位,得到的抛物线的解析式为( )A .522+=x yB .522--=x yC .522+-=x yD .522-=x y5.若二次函数()2622--=x m y 由二次函数25x y -=平移得到的,则m 的值为( )A .1B .1-C .1 或1-D .0或1-6.二次函数3312--=x y 图象的顶点坐标为( ) A .(0,3) B .(0,3-) C .(31-,3) D .(31-,3-) 7.将二次函数122--=x y 图象向下平移5个单位得到的抛物线的顶点坐标为( )A .(0,6-)B .(0,4)C .(5,1-)D .(2-,6-)8.将二次函数12+-=x y 图象向左平移3个单位得到的抛物线的对称轴为( )A .直线0=xB .直线4=xC .直线3-=x D .直线3=x9.二次函数22x y =⑴将其向下平移2个单位得到的抛物线解析式为 .⑵通过列表,描点,画出⑴中抛物线的图象;⑶求⑵中抛物线与x 轴的交点坐标,并求出顶点与x 轴的交点所组成三角形的面积;⑷若点A (1x ,m )、B (2x ,n )在⑵中抛物线的图象上,且021<<x x ,则m 与n 的大小关系为 .※⑸若将二次函数22x y =图象沿x 轴翻折,再向上平移5个单位得到的抛物线的解析式为 .※⑹求直线1-=x y 与⑵中抛物线的交点坐标.二 次 函 数(4) 二次函数的图象与性质: 一.例题与练习: 1.二次函数()21+=x y⑴将此函数化成一般形式为 ,其中_______=a ,_______=b ,_______=c⑵当__________=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:相关结论:⑴开口方向 ;⑵顶点坐标 ;⑶与2x y =的图象的关系 ;⑷对称轴为 ;⑸其图象是由2x y =的图象经过怎样的图形变换得到的?⑹猜想:二次函数()25-=x y 的图象是由2x y =的图象经过怎样的图形变换得到的?1.二次函数()21--=x y⑴将此函数化成一般形式为 ,其中_______=a ,_______=b ,_______=c ⑵当__________=x 时,函数值y 有最 (填大或小)值为⑶列表:⑷描点,画出图象相关结论:⑴开口方向 ;⑵顶点坐标 ;⑶与2x y -=的图象的关系 ; ⑷对称轴为 ;⑸其图象是由2x y -=的图象经过怎样的图形变换得到的? 练习:1.二次函数()26-=x y 的图象是由2x y =的图象经过怎样的图形变换得到的?⑴开口方向 ;⑵顶点坐标 ;⑶对称轴为 .2.练习:二次函数()232+-=x y 的图象是由22x y -=的图象经过怎样的图形变换得到的?⑴开口方向 ;⑵顶点坐标 ;⑶对称轴为 .3.练习:将二次函数23x y =的图象沿y 轴向上平移3个单位长度得到的函数解析式为 ,再沿x 轴向左平移7个单位长度得到的函数解析式为 .课 后 作 业(4) 1.对于二次函数4232-+-=x x y 来说,_______=a ,_______=b ,_______=c .2.抛物线322+-=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .3.将抛物线231x y =沿y 轴向下平移2个单位得到的抛物线的解析式为 ,再沿y 轴向上平移3个单位得到的抛物线的解析式为 .4.把抛物线c ax y +=2沿y 轴向下平移7个单位得到的抛物线的解析式为432-=x y ,则=a , =c .5.抛物线()232+-=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .6.将抛物线25x y -=沿x 轴向左平移6个单位长度得到的新的二次函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .7.把抛物线()2h x a y -=沿x 轴向右平移3个单位长度得到的新的二次函数解析式为()255--=x y ,则=a , =h .8.把抛物线221x y =向左平移3个单位,再向上平移2个单位,得到的抛物线的解析式为 ,此时抛物线的开口方向 ,顶点坐标为 ,对称轴为 .9.二次函数1422--=x x y⑴将其化成()k h x a y +-=2的形式;⑵说明⑴中抛物线是由22x y =的图象经过怎样的图形变换得到的?⑶写出⑴中抛物线的顶点坐标,对称轴.⑷求⑴中抛物线与x 轴、y 轴的交点坐标.10.二次函数()222--=x y⑴将此函数化成一般形式为 ,其中_______=a ,_______=b ,_______=c⑵当__________=x 时,函数值y 有最 (填大或小)值为⑶列表:⑷描点,画出图象⑸将该函数图象向右平移5个单位,再向下平移3个单位得到的抛物线的解析式为 ,此时抛物线的顶点坐标为 ,对称轴为 .二 次 函 数(5)二次函数的图象与性质:一.探究:1.将二次函数22x y -=的图象沿y 轴向上平移5个单位长度,再沿x 轴向左平移3个单位长度得到的函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .2.猜想二次函数()2122+-=x y 的图象顶点坐标为 ,对称轴为 ,是由22x y =的图象经过怎样的图形变换得到的? 3.将二次函数()2122+-=x y 化为一般形式为 .二.例题与练习1.二次函数4422+-=x x y⑴将其化为()k h x a y +-=2的形式⑵通过列表、描点画出该函数图象;⑶此函数的开口方向 ;顶点坐标为 ,意义为 ;对称轴为 .⑷其图象是由22x y =的图象经过怎样的图形变换得到的?⑷若将此图象沿y 轴向上平移5个单位长度,再沿x 轴向左平移2个单位长度得到的新的二次函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .2.相关规律:二次函数322+-=x x y 图象的画法⑴利用配方法将一般形式化为()k h x a y +-=2的形式即顶点式 顶点坐标为(h ,k ),对称轴为h x = ⑵列表:中间列分别为顶点的横坐标与纵坐标,共选7对有序实数对,⑶描点,画出图象3. 对于二次函数1632---=x x y⑴利用配方法将一般形式化为顶点式⑵通过列表、描点画出该函数图象;⑶此函数的开口方向 ;顶点坐标为 ,意义为 ;对称轴为 .⑷其图象是由22x y =的图象经过怎样的图形变换得到的?⑸若将此图象沿y 轴向上平移5个单位长度,再沿x 轴向左平移2个单位长度得到的新的二次函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .课 后 作 业(5)1.对于二次函数4222+-=x x y 来说,_______=a ,_______=b ,_______=c .2.抛物线2212--=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .3.将抛物线22x y -=沿y 轴向下平移5个单位得到的抛物线的解析式为 ,再沿y 轴向上平移2个单位得到的抛物线的解析式为 .4.把抛物线c ax y +=2沿y 轴向下平移4个单位得到的抛物线的解析式为432-=x y ,则=a , =c . 5.抛物线()2221--=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .6.将抛物线24x y =沿x 轴向左平移3个单位长度得到的新的二次函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .7.把抛物线()2h x a y -=沿x 轴向右平移3个单位长度得到的新的二次函数解析式为()255--=x y ,则=a , =h .8.把抛物线221x y =向左平移3个单位,再向上平移2个单位,得到的抛物线的解析式为 ,此时抛物线的开口方向 ,顶点坐标为 ,对称轴为 .9.二次函数3422+--=x x y⑴利用配方法将一般形式化为顶点式⑵此函数的开口方向 ;顶点坐标为 ,意义为 ;对称轴为 .⑶其图象是由22x y -=的图象经过怎样的图形变换得到的?⑷画出该函数的图象⑸在所提供的图中,画出该图象关于x 轴的对称图形,并直接写出所得新的抛物线的解析式.二 次 函 数(6)一.二次函数的性质:1.表达式:①一般式:c bx ax y ++=2(0≠a ); ②顶点式:()k h x a y +-=2(0≠a )2.顶点坐标:①(ab 2-,a b ac 442-) ②(h ,k ) 3.意义:①当ab x 2-=时,0>a ,y 有最小值为a b ac 442-;0<a ,y 有最大值为a b ac 442- ②当h x =时,0>a ,y 有最小值为k ;0<a ,y 有最大值为k4.a 的意义:0>a ,图象开口向上;0<a ,图象开口向下;21a a ±=说明两函数图象大小形状相同.5.对称轴:①ab x 2-=;②h x = 6.对称轴位置分析:①0=b ,对称轴为y 轴; ②0<ab ,对称轴在y 轴的右侧;③0>ab ,对称轴在y 轴的左侧;(左同右异)7.增减性:①0>a ,a b x 2->时,y 随x 的增大而增大;ab x 2-<时,y 随x 的增大而减小 ②0<a ,a b x 2->时,y 随x 的增大而减小;ab x 2-<时,y 随x 的增大而增大 8.与y 轴的交点为(0,c ) 9.与x 轴的交点:02=++c bx ax①042=-=∆ac b ,有一个交点; ②042>-=∆ac b ,有两个交点; ③042<-=∆ac b ,没有交点10.平移:化成顶点式()k h x a y +-=2,上加下减:m k ±;左加右减:m h ±二.练习:1.已知抛物线c bx ax y ++=2的图象如图,判断下列式子与0的关系.(填“<”“>”“=”) ①0____a ; ②0_____b ; ③0____c ; ④0____c b a ++;⑤0____c b a +-; ⑥0_____42ac b -; ⑦0____2b a +; ⑧0____2b a -;2.若二次函数b ax y +=2(0≠⋅b a ),当x 取1x 、2x 时,函数的值相等,则当x取21x x +时,函数值为 .3.若(5-,0)是抛物线c ax ax y ++=22与x 轴的一个交点,则另一交点坐标为 .4.已知抛物线322--=x x y⑴求此抛物线与x 轴的交点A 、B 两点的坐标,与y 轴的交点C 的坐标.⑵求ABC ∆的面积.⑶在直角坐标系中画出该函数的图象⑷根据图象回答问题:①当0>y 时,x 的取值范围?②当0<x 时,y 的取值范围?③当______x 时,y 随x 的增大而增大;当______x 时,y 随x 的增大而减小;课 后 作 业(6)1.已知二次函数()12322--+=x x m y 的图象的开口方向向上,则m 的取值范围为( )A .23>mB .23->mC .32->m D .23-<m 2.二次函数c bx ax y ++=2的图象如图,则下列结论错误的是( )A .0>aB .0<bC .0>abD .0=c3.将二次函数22x y -=向右平移2个单位,在向下平移3个单位得到的二次函数的解析式为( )A .()3222+--=x yB .()2322---=x yC .()3222---=x yD .()3222-+-=x y4.二次函数()k h x a y +-=2,当2-=x 时,y 有最大值为5,则下列结论错误的是( )A .0<aB .顶点坐标为(2-,5)C .对称轴为直线2-=xD .2=h5.抛物线c bx ax y ++=2的对称轴为直线0=x ,则下列结论一定正确的是( )A .0<aB .0=bC .0=cD .0>c6.下列点在二次函数42--=x y 的图象上的是( )A .(1,3-)B .(1-,3-)C .(1-,5-)D .(0,4)7.二次函数11211c x b x a y ++=与22222c x b x a y ++=的图象关于x 轴对称,则1a 与2a 的关系为( )A .相等B .互为相反数C .互为倒数D .相等或互为相反数8.已知点A (2,m )与点B (3,n )在二次函数()312+--=x y 的图象上,则m 与n 的关系为( )A .n m >B .n m =C .n m <D .无法判断9.已知二次函数c bx ax y ++=2的图象如图.⑴请你写出一元二次方程02=++c bx ax 的根;⑵请你写出不等式02>++c bx ax 的解集;⑶请你再写出3条从图象中得出的结论.10.已知二次函数12212--=x x y . ⑴求该抛物线的顶点坐标和对称轴;⑵通过列表、描点画出该函数图象;⑶求该图象与坐标轴的交点坐标.11.某商店经销一种销售成本为每千克40元的农产品,所市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减小10千克,设每千克农产品的销售价格为x (元),月销售总利润为y (元).⑴求y 与x 的函数关系式;⑶当销售价定为多少元时,月获利最大,最大利润是多少?二 次 函 数(7)二次函数解析式的确定: 一般形式:c bx ax y ++=2(0≠a )一.例题与练习:例题1.已知二次函数32++=bx ax y 的图象经过点(1,6)和点(1-,2),求此函数的解析式练习1.已知二次函数c bx x y ++=221的图象经过点(3-,6)和点(1-,0),求此函数的解析式 练习2.已知二次函数c x ax y +-=52的图象如图,求此函数的解析式例题2.已知二次函数的图象与x 轴的交点为(1-,0)和(3,0),且交y 轴于(0,4),求此函数的解析式练习1.已知二次函数与x 轴的交点为(2,0)和(6-,0),且经过点(3,9),求此函数的解析式练习2.已知二次函数的图象如图,求此函数的解析式练习3.已知二次函数的图象经过点(0,4)、(1,1)和(2,4),求此函数的解析式课 后 作 业(7)1.已知二次函数12+=ax y 经过点(1,2),则a 的值为 .2.已知二次函数c ax y +=2经过点(1-,3),则c a +的值为 .3.已知二次函数c bx ax y ++=2的图象经过点(1,4)、(0,3)和(2-,5-).⑴求该函数的解析式⑵利用配方法求出顶点坐标和对称轴⑶列表、画图⑷求出该函数与坐标轴的交点坐标,并求出以各交点为顶点的三角形的面积⑸当x 为何值时,y 随着x 的增大而增大?当x 为何值时,y 随着x的增大而减小?⑹分别写出0>y 和0<y 时,x 的取值范围.4.已知二次函数32++=bx ax y 的图象经过点(1,6)和点(1-,2),求此函数的解析式5.已知二次函数c bx ax y ++=2的图象经过点(3-,6)、(1-,0)和,求此函数的解析式6.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 若日销售量y 是销售价x 的一次函数。
2021春华师版九年级数学下册 第26章 用二次函数解决实际中“抛物线”型的最值应用
∴y=a(x-4)2+3.
知2-讲
把A
0,
解得a=
5 3
的坐标代入上式得:
1 .
5 3
=a(0-4)2+3,
Байду номын сангаас
12
∴抛物线对应函数的表达式为
y= 1 (x-4)2+3,即y= 1 x2+ 2 x+ 5 .
12
12 3 3
当x=7时,y= 1 ×72+ 2 ×7+ 5 =2.25.
12
3
3
1 5
x2
+3.5的一部分(如图),若命中篮圈中心,则他与篮底
的水平距离l是( )
A.3.5 m
B.4 m
C.4.5 m
D.4.6 m
本节课你有什么收获?与同学们分享.
1.必做:完成教材中习题 2.补充: 请完成《典中点》剩余部分习题
为坐标原点时抛物线对应的函数表达式是
y=- 1 (x-6)2+4,则选取点B为坐标原点时抛物线 9
对应的函数表达式是____________________.
知2-讲
知识点 2 建立坐标系解抛物线形运动问题
活动问题: (1)运动中的距离、时间、速度问题,这类问题多根 据运动规律中的公式求解. (2)物体的运动路线(轨迹)问题,解决这类问题的 思想方法是利用数形结合思想和函数思想,合理建立 直角坐标系,根据已知数据,运用待定系数法求出运 动轨迹(抛物线)对应的函数表达式,再利用二次函 数的性质去分析、解决问题.
第26章 二次函数
26.3 实践与探索
第1课时 用二次函数解决实际中“抛 物线”型的最值应用
1 课堂讲解 建立坐标系解抛物线形建筑问题
建立坐标系解抛物线形运动问题
新人教版数学九年级下册第二十六章 反比例函数教案
新人教版数学九年级下册第二十六章反比例函数教案第26章反比例函数26.1.1反比例函数的意义【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。
从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。
因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。
【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定26.1.2 反比例函数的图象和性质知能准备【学习目标】1、画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质.2、能用反比例函数的定义和性质解决实际问题.【学情分析】前面已经学习了一次函数和二次函数,对研究函数有了一定的方法;即画出图像并根据图像研究其性质【学思指导】教法:讲授法、对比法学法:类比法、数形结合法学科素养:通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征.【【课前预习】1.若y=(21)(1)n nx-+是反比例函数,则n必须满足条件 n≠12或n≠-1 .2.用描点法画图象的步骤简单地说是列表、描点、连线. 3.试用描点法画出下列函数的图象:(1)y=2x;(2)y=1-2x.设计意图:通过回忆,学会用描点法画函数的图象课堂引讨——【展示互动】问题:我们已知道,一次函数y=kx+b(k≠0)的图象是一条直线,•那么反比例函数y=k x(k为常数且k≠0)的图象是什么样呢?[尝试]用描点法来画出反比例函数的图象.画出反比例函数y=6x和y=-6x的图象.解:列表思考:取什么值更易描出来x …-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …y=6x-1 -1.5 -2 -6 3 1y=-6x1 1.23 6 -1.5(请把表中空白处填好)描点,以表中各对应值为坐标,在直角坐标系中描出各点.连线,用平滑的曲线把所描的点依次(从大到小或从小到大的顺序)连接起来探究反比例函数y=6x和y=-6x的图象有什么共同特征?它们之间有什么关系?做一做把y=6x和y=-6x的图象放到同一坐标系中,观察一下,看它们是否对称.归纳:反比例函数y=6x和y=-6x的图象的共同特征:(1)它们都由两条曲线组成.(2)随着x的不断增大(或减小),曲线越来越接近坐标轴(x轴、y轴).(3)反比例函数的图象属于双曲线.此外,y=6x的图象和y=-6x的图象关于x轴对称,也关于y轴对称.做一做在平面直角坐标系中画出反比例函数y=3x和y=-3x的图象.交流两个函数图象都用描点法画出?【分析】由y=6x和y=-6x的图象及y=3x和y=-3x的图象知道,(1)它们有什么共同特征和不同点?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y随x的变化而如何变化?猜想反比例函数y=kx(k≠0)的图象在哪些象限由什么因素决定?•在每一个象限内,y随x的变化情况如何?它可能与坐标轴相交吗?【归纳】(1)反比例函数y=kx(k为常数,k≠0)的图象是双曲线.(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y•值随x值的增大而减小.(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y•值随x值的增大而增大.设计意图:通过画图并研究:得到反比例函数图像的形状及其增减性精编精练例题指出当k>0时,下列图象中哪些可能是y=kx与y=kx(k≠0)在同一坐标系中的图象()【分析】对于y=kx来说,当k>0时,图象经过一、三象限,当k<0时,图象经过二、四象限;对于y=kx来说,当k>0时,图象在一、三象限,当k<0时,图象在二、四象限,所以应选B.备选例题1.请你写出一个反比例函数的解析式,使它的图象在第一、三象限.2.如图所示的函数图象的关系式可能是(• )A.y=x B.y=1xC.y=x2 D.y=1||x设计意图:通过具体的习题使学生加深对本部分知识的理解能解决具体问题。
第26章 反比例函数导学案
第26章反比例函数一教材分析函数是在探索具体问题中数量关系和变化规律的基础上抽象出的重要数学概念,是研究现实世界变化的重要内容和数学模型,学生曾经学过一次函数等内容,对函数有了初步认识,在此基础上讨论反比例函数及其图像和性质可以进一步领悟函数的概念并积累研究函数性质的方法及用函数观点处理实际问题的经验,为了后继学习打下基础。
本单元通过对具体情境的分析,概括出发比例函数的解析式,明确反比例函数的概念,通过例子和学生列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义,结合实例经历列表、描点作图等活动,理解函数的三种表示方法,逐步明确研究函数的一般要求,反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维的空间,通过对反比例函数的图象全面观察和比较,发现函数自身的规律,进行语言表述,在相互交流中发展从函数中获取信息的能力,同时可以使学生更牢固地掌握由他们自己发现的反比例函数的性质。
本单元最后讨论了反比例函数的某些应用,包括在实际中的应用和在数学内部的应用,在这些数学活动中,注意用函数观点来处理问题和对问题的解决用函数作出某种解释,用以加深对函数的认识,并突出知识之间的内在联系。
二:教学目标1﹒知识与技能会画出反比例函数的图象,,根据图象和解析式探索并理解反比例函数的主要性质,能依据已知条件确定反比例函数,领悟用函数观点解决某些实际问题的基本思路。
2.过程和方法经历在具体问题中探索数量关系和变化规律的过程,抽象出反比例函数的概念,并结合具体情境领会反比例函数作为一种数学模型的意义。
3.情感、态度、价值观逐步提高观察和归纳分析能力,体验数形结合思想,感悟其应用价值。
三;重难点和关键1.重点;掌握反比例函数的图象及其性质,依据已知条件确定反比例函数。
2难点;理解反比例函数性质。
3关键;充分利用观察比较发现反比例函数的自身规律,结合数形来突破难点。
四课时划分26 1 反比例函数 3课时26 2 实际问题和反比例函数 2课时复习与交流 1课时九年级数学下册教案备课人:例2.(补充)如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定分析:从反比例函数xky =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==,由此可得S 1=S 2 =21,故选B随堂练习1.已知反比例函数xky -=3,分别根据下列条件求出字母k 的取值范围 (1)函数图象位于第一、三象限(2)在第二象限内,y 随x 的增大而增大 2.函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为 课后练习1.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,则m 的取值范围是2.反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ;当x >-2时;y 的取值范围是3. 已知反比例函数y a x a=--()226,当x >0时,y 随x 的增大而增大,求函数关系式九年级数学下册教案备课人:难点构建反比例函数的数学模型.教学准备教师准备课件或导学案是否需要课件是学生准备学案教学过程设计(一)创设情境,导入新课一位司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用6•小时到达目的地.(1)当他按原路匀速反回时,汽车的速度v与时间t有怎样的函数关系?(2)若该司机必须在4个小时内回到甲地,则返程的速度不能低于多少?(二)合作交流,解读探究探究(1)原路返回,说明路程不变,则80×6=480千米,因而速度v和时间t满足:vt=480或v=480t的反比例函数关系式.(2)若要在4小时内回到甲地(原路),则速度显然不能低于4804=120(千米/时).归纳常见的与实际相关的反比例(1)面积一定时,矩形的长与宽成反比例;(2)面积一定时,三角形的一边长与这边上的高成反比例;(3)体积一定时,柱(锥)体的底面积与高成反比例;(4)工作总量一定时,工作效率与工作时间成反比例;(5)总价一定时,单价与商品的件数成反比例;(6)溶质一定时,溶液的浓度与质量成反比例.(三)应用迁移,巩固提高例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1 000度近视眼镜镜片的焦距.【分析】把实际问题转化为求反比例函数的解析式的问题.解:(1)设y=kx,把x=0.25,y=400代入,得400=0.25k,所以,k=400×0.25=100,即所求的函数关系式为y=100x.(2)当y=1 000时,1000=100x,解得=0.1m.例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?留白:(供教师个性化设计)【分析】当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,•所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(2)因为此函数为反比例函数,所以解析式为:V=48000t;(3)若要6h排完水池中的水,那么每小时的排水量为:V=480006=8000(m3);(4)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t=480006=8000(m3)备选例题(中考·四川)制作一种产品,需先将材料加热到达60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x•成反比例关系(如图所示).已知该材料在操作加工前的温度为15℃,加热5•分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1)将材料加热时的关系式为:y=9x+15(0≤x≤5),•停止加热进行操作时的关系式为y=300x(x>5);(2)20分钟.(四)总结反思,拓展升华1.学会把实际问题转化为数学问题,•充分体现数学知识来源于实际生活又服务于实际生活这一原理.2.能用函数的观点分析、解决实际问题,•让实际问题中的量的关系在数学模型中相互联系,并得到解决.备课人:九年级数学下册教案教学过程设计(一)创设情境,导入新课公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡.也可这样描述:阻力×阻力臂=动力×动力臂.为此,他留下一句名言:给我一个支点,我可以撬动地球!(二)合作交流,解读探究问题:小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,•分别是1200N 和0.5m.(1)动力F和动力臂L有怎样的函数关系?当动力臂为1. 5m时,•撬动石头至少要多大的力?(2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少?【分析】(1)由杠杆定律有FL=1200×0.5,即F=600l,当L=1.5时,F=6001.5=400.(2)由(1)及题意,当F=12×400=200时,L=600200=3(m),∴要加长3-1.5=1.5(m).思考你能由此题,利用反比例函数知识解释:为什么使用撬棍时,•动力臂越长越省力?联想物理课本上的电学知识告诉我们:用电器的输出功率P(瓦)两端的电压U(伏)、用电器的电阻R(欧姆)有这样的关系PR= u2,也可写为P=2uR.(三)应用迁移,巩固提高例1在某一电路中,电源电压U保持不变,电流I(A)与电阻R(Ω)之间的函数关系如图所示.(1)写出I与R之间的函数解析式;(2)结合图象回答:当电路中的电流不超过12A时,电路中电阻R•的取值范围是什么?【分析】由物理学知识我们知道:当电压一定时,电流强度与电阻成反比例关系.解:(1)设,根据题目条件知,当I=6时,R=6,所以,所以K=36,所以I与R的关系式为:I=36R.(2)电流不超过3A,即I=36R≥12,所以R≥3(Ω).注意因为R>0,所以由36R≤12,可得R≥3612.留白:(供教师个性化设计)例2某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气球体积V(m3)的反比例函数,其图象如图所示(•千帕是一种压强单位).(1)写出这个函数的解析式;(2)当气球体积为0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了完全起见,•气球的体积应不小于多少?【分析】在此题中,求出函数解析式是关键.解:设函数的解析式为P=kV,把点A(1.5,64)的坐标代入,得k=96,•所以所求的解析式为P=96V;(2)V=0.8m3时,P=960.8=120(千帕);(3)由题意P≤144(千帕),所以96V≤144,所以V≥96144=23(m3)即气体的体积应不小于23m3.备选例题1.(中考变式·荆州)在某一电路中,电流I、电压U、电阻R三者之间满足关系I=UR.(1)当哪个量一定时,另两个量成反比例函数关系?(2)若I和R之间的函数关系图象如图,试猜想这一电路的电压是______伏.2.(中考·扬州)已知力F对一个物体作的功是15焦,则力F•与此物体在力在方向上移动的距离S之间的函数关系式的图象大致是()【答案】1.(1)当电压U一定时,电流I与电阻R成反比例函数关系,(2)10;2.B(四)总结反思,拓展升华1.把实际问题中的数量关系,通过分析、转化为数学问题中的数量关系.2.利用构建好的数学模型、函数的思想解决这类问题.3.注意学科之间知识的渗透.反比例函数复习教案学科: 任课教师: 授课时间: 年 月 日 时到 时 学生姓名: 年级: 学管师:教学目标 知识点:1.反比例函数意义;反比例函数 反比例函数图象; 考点: 2.反比例函数性质;方法 : 3. 待定系数法确定函数解析式.重点难点教学内容1.反比例函数的概念反比例函数y=k x 中的k x 是一个分式,自变量x ≠0,函数与x 轴、y 轴无交点,y=k x也可写成y=kx -1(k ≠0),注意自变量x 的指数为-1, 在解决有关自变量指数问题时应特别注意系数k ≠0这一限制条件. 2.反比例函数的图象在用描点法画反比例函数y=kx的图象时,应注意自变量x 的取值不能为0,应从1或-1开始对称取点. 3.反比例函数y=kx中k 的意义 注意:反比例函数y=k x (k ≠0)中比例系数k 的几何意义,即过双曲线y=kx(k ≠0)上任意一点引x 轴、y轴垂线,所得矩形面积为│k │.1. 反比例函数的图象和性质k 的符号k >0 k <0 图像的大致位置经过象限 第 象限 第 象限性质在每一象限内y 随x 的增大而在每一象限内y 随x 的增大 而oyxyxo2.k 的几何含义:反比例函数y =kx(k ≠0)中比例系数k 的几何意义,如图17-37所示,若点A (x ,y )为反比例函数ky x=图象上的任意一点,过A 作AB ⊥x 轴于B ,作AC ⊥y 轴于C ,则 S △AOB =S △AOC =12S 矩形ABOC =1||2k .考点一:反比例函数的概念、图像和性质【例题1】已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 . 【例题2】已知点(,)P a b 在反比例函数2y x=的图象上,若点P 关于y 轴对称的点在反比例函数 ky x=的图象上,则k 的值为 . 【例题3】点A (2,1)在反比例函数y kx=的图像上,当1﹤x ﹤4时,y 的取值范围是 .【例题4】点A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3)都在反比例函数3y=x-的图象 上,且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系是 【 】 A .y 3<y 1<y 2 B .y 1<y 2<y 3 C .y 3<y 2<y 1 D .y 2<y 1<y 3 【例题5】函数y = 2|x |的图象是 【 】【例题6】过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =k x(x >0)的图像与△ABC 有公共点,则k 的取值范围是 【 】 A .2≤k ≤9 B .2≤k ≤8 C .2≤k ≤5 D .5≤k ≤8 考点二:关于k 的几何意义【例题7】如图,点A 、B 在反比例函数)0,0(>>=x k xky 的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM=MN=NC,△AOC 的面积为6,则k 的值为________.O O O O x x x xyyyyA .B .C .D .ABCOxy 例题6图例题9图【例题8】如图,□ABCD 的顶点A 、B 的坐标分别是A(-1,0),B(0,-2),顶点C 、D 在双曲线y=xk上,边AD 交y 轴于点E,且四边形BCDE 的面积是△ABE 面积的5倍,则k=__________【例题9】(2011•陕西)如图,过y 轴上任意一点P ,作x 轴的平行线,分别与反比例函数xy 4-=和 xy 2=错误!未找到引用源。
华师版九年级下册数学第26章 二次函数 二次函数y=a(x-h)2的图象与性质
26.2 二次函数的图象与性质
第3课时 二次函数y=a(x-h)²
的图象与性质
1 课堂讲解 y=a( x-h) 2 的图象与性质
二次函数y=a(x-h)2与y=ax2之间的关系
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
通过上节课的学习我们知道,抛物线y=ax2+c可 以通过沿y轴平移y=ax2得到,那么y=a(x-h)2型的抛物 线能否通过平移得到呢?
A.y1<y2<0
B.0<y1<y2
C.0<y2<y1
D.y2<y1<0
知3-讲
知识点 3 二次函数y=a(x-h)2+c与y=ax2之间的关系
知3-讲
例2 将抛物线y=-x2向左平移2个单位后,得到的抛
物线对应的函数关系式是( A )
A.y=-(x+2)2
B.y=-x2+2
C.y=-(x-2)21, 2来自所以应选D.总结
知1-讲
本题运用了性质判断法和数形结合思想,运用二 次函数的性质,画出图象进行判断.
知1-练
1 抛物线y=-5(x-2)2的顶点坐标是( )
A.(-2,0)
B.(2,0)
C.(0,-2)
D.(0,2)
2 (中考·兰州)在下列二次函数中,其图象的对称轴为
直线x=-2的是( )
D.y=-x2-2
导引:本题依据“左加右减”解题,即抛物线向左平移几
个单位,x就加几,抛物线向右平移几个单位,x
就减几.
总结
知3-讲
y=ax2的图象左右平移时,顶点的横坐标发生变 化.平移的方向决定加减,平移的距离决定加减的数 值.
知3-练
1 试说明:分别通过怎样的平移,可以由抛物线y =
2020春华师版九年级数学下册 第26章 全章学案
二次函数【学习目标】了解二次函数的有关概念;会确定二次函数关系式中各项的系数;确定实际问题中二次函数的关系式。
【学习重点】二次函数的表达式. 【学习难点】二次函数的判断.【读书思考】阅读课本,思考:1.什么是二次函数,二次函数在课本上是从形式上定义的,特别要注意二次项系数不为0. 2.根据实际意义如何列出二次函数的表达式.【学习过程】(类比一次函数来学习二次函数,注意知识结构的建立。
) 一、知识链接:1、若在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的 ,x 叫做 。
2、形如___________y =0)k ≠(的函数是一次函数,当______0=时,它是 函数。
二、自主学习:1、如果改变正方体的棱长x ,那么正方体的表面积y 会随之改变,y 与x 的函数关系式为 。
2、思考:然后填空:①在问题1中,每个队要比赛 场,n 个队共比赛 场,因甲队对乙队的比赛与乙队对甲队的比赛是同一场,所以比赛的场次数是 m= ;整理得:②在问题2中,原产量是 ,一年后的产量是 ,两年后的产量是 。
把y =20 (1+x)2 整理得:③问题1、2的函数关系式分别是 ; 3、上述函数关系式有哪些共同之处?它们与一次函数关系式有什么不同?4、归纳:一般地,形如 ,(,,a b c a 是常数,且 )的函数为二次函数。
其中x 是自变量,a 是__________,b 是___________,c 是_____________.5、思考:二次函数y= , (1)二次项系数a 为什么不等于0? 。
(2)一次项系数b 和常数项c 可以为0吗? 三、典题解析例1.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数. (1)y =1-3x 2(2)y =3x 2+2x(3)y =x (x -5)+2(4)y =3x 3+2x 2(5)y =x +1x例2.已知y=(m -4)x m2-3m-2+2x -3是二次函数,求m 的值四、巩固练习1.观察:①26y x =;②235y x =-+;③y =200x 2+400x +200;④32y x x =-;⑤213y x x=-+;⑥()221y x x =+-.这六个式子中二次函数有 。
第26章重组药物
3、组成工艺的各技术、步骤之间及设备间要能相 互适应和协调,且高效,收率高,易操作,对设 备条件要求低,能耗低,并尽可能少用试剂,以 免增加分离纯化步骤或干扰产品质量。
第四节 重组药物的质量控制
重组药物与其它传统方法生产的药品有许多不同 之处,它利用活细胞作为表达系统,并具有复杂的分子 结构。
它的生产涉及到生物材料和生物学过程,如:发 酵、细胞培养、分离纯化目的产物,这些过程有其固有 的易变性。同时由于重组技术所获得的蛋白质产品往往 在极微量下就可产生显著效应,任何药物性质或剂量上 的偏差,都可能贻误病情甚至造成严重危害。
在培养过程的质量控制上,要求种子克隆纯而 且稳定,在培养过程中工程菌不应出现突变或质粒 丢失现象。生产重组药物应有种子批系统,并证明 种子批不含致癌因子,无细菌、病毒、真菌和支原 体等污染,并由原始种子批建立生产用工作细胞库。 原始种子批需确证克隆基因DNA序列,详细叙述种 子批来源、方式、保存及预计使用期,保存与复苏 时宿主载体表达系统的稳定性。对菌种最高允许的
对其生物活性需采用国际或国家参考品,或经过 国家鉴定机构认可的参比品,以体内或细胞法测定制 品的生物学活性,并标明其活性单位;在安全性上需 按照“中国生物制品规程”进行无菌试验、热原试验、 毒性和安全试验。
由于蛋白质结构十分复杂,可能同时存在多种降 解途径,因此须在实际条件下长期观测稳定性,对产 品一致性、纯度、分子特征和生物效价等多方面的 变化情况加以综合评价,确定产品的贮藏条件和使用 期限等。
外源蛋白的复性是利用包涵体获得外源蛋白 最关键也是最复杂的一步。重组蛋白的复性操作 主要有两种方法:一种是将溶液稀释,导致变性 剂的浓度降低,促进蛋白质复性。 如果蛋白质以胞内可溶表达形式存在,则收集菌 体后破壁,离心取上清液,然后用亲和层析或离 子交换法进行纯化。在纯化过程中还常采取适当 的保护措施,如低温、加入保护剂、尽量缩短纯 化工艺及时间等措施来防止产物的降解和破坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新店乡中心学校自主高效课堂导学案八年级班级科目生物教师王朝娟课时 1 教导处审批
第二十六章珍爱生命
第一节远离烟酒
一、学习目标:
1、说明酗酒对人体健康的危害
2、说明吸烟对人体健康的危害
3、养成良好的生活习惯
二、自学点拨与课堂展示
1、教师根据学生学习情况侧重讲解。
2、本节内容小结
四、课堂检测
1、吸烟对人体的危害有:()
A、易引发肺癌
B、易引发高血压
C、易引起冠心病
D、前三者都正确
2、禁止酒后驾车的原因是过量的酒精抑制人的:()
A、运动系统
B、神经系统
C、内分泌系统
D、循环系统
3、世界卫生组织将“世界无烟日”定在每年的:()
A、4月31日
B、 5月31日
C、 6月31日
D、 4月25日
4、香烟燃烧产生的烟雾中,含有的有害的致癌物质主要是:( )
A.二氧化碳
B.尼古丁
C.氮气
D.氧气
5、酒精中毒(醉酒)的主要原因是,过量的酒精会麻痹人的: ( )
A. 消化系统
B. 呼吸系统
C. 循环系统
D. 中枢神经系统
五、堂清、日清记录
堂清日清
今日事今日毕日积月累成大器。