01二次函数及幂函数

合集下载

二次函数与幂函数指数函数的比较与性质

二次函数与幂函数指数函数的比较与性质

二次函数与幂函数指数函数的比较与性质二次函数与幂函数、指数函数是高中数学中常见的函数类型。

本文将比较二次函数与幂函数、指数函数的特点与性质,从多个角度分析它们之间的差异和联系。

一、函数表达式与图像形态比较二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。

它的图像是一条抛物线,圆顶方向和开口方向取决于a的正负。

幂函数的一般形式为f(x) = ax^m,其中a为实数,m为常数且m ≠ 0。

它的图像形态根据m的值而定,当m > 1时为上升函数,m < 1时为下降函数。

指数函数的一般形式为f(x) = a^x,其中a > 0且a ≠ 1。

它的图像是一条递增或递减的曲线,斜率随x的增大而不断增大或减小。

通过比较函数表达式和图像形态,可以看出二次函数的图像是一条抛物线,幂函数的图像可以是直线、上升或下降的曲线,指数函数的图像是递增或递减的曲线。

二、增长速度与渐近性质比较二次函数的增长速度由a的值决定,当a > 0时随着x的增大,函数值快速增大;当a < 0时,随着x的增大,函数值快速减小。

二次函数没有水平渐近线,但存在一条对称轴。

幂函数的增长速度由m的值决定,当m > 1时,随着x的增大,函数值快速增大;当0 < m < 1时,随着x的增大,函数值快速减小。

幂函数没有水平渐近线。

指数函数的增长速度由底数a的值决定,当a > 1时,随着x的增大,函数值快速增大;当0 < a < 1时,随着x的增大,函数值快速减小。

指数函数存在一条水平渐近线,即x轴。

综合比较三种函数的增长速度和渐近性质,可以得出二次函数的增长速度相对较慢,幂函数的增长速度介于二次函数和指数函数之间,而指数函数的增长速度最快。

三、最值与极值比较对于二次函数,如果a > 0,则函数的最小值为c - b^2 / (4a),无最大值;如果a < 0,则函数的最大值为c - b^2 / (4a),无最小值。

二次函数与幂函数的关系

二次函数与幂函数的关系

二次函数与幂函数的关系二次函数和幂函数是数学中常见的两种函数,它们之间存在一定关系。

这篇文章将介绍二次函数和幂函数的定义、图像、特点以及它们之间的关系。

首先,我们来回顾一下二次函数和幂函数的定义。

二次函数是指函数的最高次项为二次的多项式函数。

它的一般形式可以表示为:f(x) = ax^2 + bx + c其中,a、b、c是实数且a不等于0。

在这个函数中,x是自变量,f(x)是因变量。

幂函数是指函数的自变量和因变量之间的关系式为 y = x^a,其中a 是实数。

幂函数的图像通常是一个曲线,并且根据a的不同取值,可以得到不同的曲线形状。

接下来,我们来分析二次函数和幂函数的图像。

对于二次函数,它的图像通常是一个抛物线。

根据二次函数的系数a 的正负和大小,可以得到不同类型的抛物线。

当 a 大于0时,抛物线开口向上;当 a 小于0时,抛物线开口向下。

我们可以根据开口方向和顶点的位置来确定抛物线的图像。

例如,当 a 大于0且顶点位于y轴上方时,抛物线开口向上且顶点为最低点;当 a 小于0且顶点位于y轴下方时,抛物线开口向下且顶点为最高点。

而幂函数的图像则由指数 a 的大小来决定。

当 a 大于1时,函数的图像呈现出上升的斜线;当 a 等于1时,函数的图像是一条直线;当 0 小于 a 小于 1 时,函数的图像呈现出下降的斜线。

与二次函数不同的是,幂函数的图像没有顶点或拐点。

然而,二次函数和幂函数并不是完全独立的。

实际上,我们可以将二次函数视为一种特殊的幂函数。

具体来说,二次函数 f(x) = ax^2 + bx + c 可以写成 f(x) = a(x - h)^2 + k 的形式,其中 h 和 k 是实数,代表了二次函数图像的平移。

这种表达方式可以让我们更好地理解二次函数和幂函数之间的关系。

当平移的值 h 和 k 分别等于0时,即 h = 0 且 k = 0 时,二次函数变为f(x) = ax^2,这就是一个幂函数。

高三数学复习(理):第4讲 二次函数与幂函数

高三数学复习(理):第4讲 二次函数与幂函数

第4讲 二次函数与幂函数[学生用书P23]1.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质 解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞) (-∞,+∞)值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞⎝⎛⎦⎥⎤-∞,4ac -b 24a 单调性在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递减; 在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递增 在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递增; 在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递减 对称性 函数的图象关于x =-b2a 对称常用结论一元二次不等式恒成立的条件(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0且Δ<0”;(2)“ax2+bx+c<0(a≠0)恒成立”的充要条件是“a<0且Δ<0”.2.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x 12,y=x-1.(2)五种幂函数的图象(3)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数y=2x 12是幂函数.()(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.()(3)当n<0时,幂函数y=x n是定义域上的减函数.()(4)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.()(5)二次函数y=ax2+bx+c,x∈R不可能是偶函数.()(6)在y=ax2+bx+c(a≠0)中,a决定了图象的开口方向和在同一直角坐标系中的开口大小.()答案:(1)×(2)√(3)×(4)×(5)×(6)√二、易错纠偏常见误区|K(1)二次函数图象特征把握不准; (2)二次函数单调性规律掌握不到位;(3)忽视对二次函数的二次项系数的讨论出错; (4)对幂函数的概念理解不到位.1.如图,若a <0,b >0,则函数y =ax 2+bx 的大致图象是________.(填序号)解析:由函数的解析式可知,图象过点(0,0),故④不正确.又a <0,b >0,所以二次函数图象的对称轴为x =-b2a >0,故③正确.答案:③2.若函数y =mx 2+x +2在[3,+∞)上是减函数,则m 的取值范围是________.解析:因为函数y =mx 2+x +2在[3,+∞)上是减函数, 所以⎩⎪⎨⎪⎧m <0,-12m ≤3,即m ≤-16. 答案:⎝ ⎛⎦⎥⎤-∞,-163.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是________. 解析:因为函数f (x )=ax 2+x +5的图象在x 轴上方,所以⎩⎪⎨⎪⎧a >0,Δ=12-20a <0,解得a >120.答案:⎝ ⎛⎭⎪⎫120,+∞4.当x ∈(0,1)时,函数y =x m 的图象在直线y =x 的上方,则m 的取值范围是________.答案:(-∞,1)[学生用书P24]幂函数的图象及性质(自主练透)1.幂函数y =f (x )的图象经过点(3,33),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是增函数 D .非奇非偶函数,且在(0,+∞)上是减函数解析:选C.设幂函数f (x )=x α,代入点(3,33),得33=3α,解得α=13,所以f (x )=x 13,可知函数为奇函数,在(0,+∞)上单调递增.2.若幂函数y =x -1,y =x m 与y =x n 在第一象限内的图象如图所示,则m 与n 的取值情况为( )A .-1<m <0<n <1B .-1<n <0<mC .-1<m <0<nD .-1<n <0<m <1解析:选D.幂函数y =x α,当α>0时,y =x α在(0,+∞)上为增函数,且0<α<1时,图象上凸,所以0<m <1;当α<0时,y =x α在(0,+∞)上为减函数,不妨令x =2,根据图象可得2-1<2n ,所以-1<n <0,综上所述,选D.3.若a =⎝ ⎛⎭⎪⎫1223,b =⎝ ⎛⎭⎪⎫1523,c =⎝ ⎛⎭⎪⎫1213,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <c <aD .b <a <c解析:选D.因为y =x 23在第一象限内是增函数,所以a =⎝ ⎛⎭⎪⎫1223>b =⎝ ⎛⎭⎪⎫1523,因为y =⎝ ⎛⎭⎪⎫12x是减函数,所以a =⎝ ⎛⎭⎪⎫1223<c =⎝ ⎛⎭⎪⎫1213,所以b <a <c .4.若(a +1)12<(3-2a )12,则实数a 的取值范围是________.解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数, 所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎢⎡⎭⎪⎫-1,23(1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.二次函数的解析式(师生共研)(一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【解】 方法一:(利用一般式) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7. 方法二:(利用顶点式) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12.所以m =12.又根据题意函数有最大值8,所以n =8,所以f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.方法三:(利用零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值8, 即4a (-2a -1)-a 24a =8.解得a =-4,所以所求函数的解析式为f (x )=-4x 2+4x +7.求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:1.已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R .都有f (1+x )=f (1-x )成立,则f (x )的解析式为____________.解析:由f (0)=3,得c =3, 又f (1+x )=f (1-x ),所以函数f (x )的图象关于直线x =1对称, 所以b2=1,所以b =2, 所以f (x )=x 2-2x +3. 答案:f (x )=x 2-2x +32.已知二次函数y =f (x )的顶点坐标为⎝ ⎛⎭⎪⎫-32,49,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________________.解析:设f (x )=a ⎝ ⎛⎭⎪⎫x +322+49(a ≠0),方程a ⎝ ⎛⎭⎪⎫x +322+49=0的两个根分别为x1,x2,则|x1-x2|=2-49a=7,所以a=-4,所以f(x)=-4x2-12x+40.答案:f(x)=-4x2-12x+40二次函数的图象与性质(多维探究)角度一通过图象识别二次函数如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的结论是()A.②④B.①④C.②③D.①③【解析】因为二次函数的图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确;对称轴为x=-1,即-b2a=-1,2a-b=0,②错误;结合图象,当x =-1时,y>0,即a-b+c>0,③错误;由对称轴为x=-1知,b=2a,又函数图象开口向下,所以a<0,所以5a<2a,即5a<b,④正确.故选B.【答案】 B确定二次函数图象应关注的三个要点一是看二次项系数的符号,它确定二次函数图象的开口方向.二是看对称轴和最值,它确定二次函数图象的具体位置.三是看函数图象上的一些特殊点,如函数图象与y轴的交点、与x轴的交点,函数图象的最高点或最低点等.从这三个方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.角度二 二次函数的单调性函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是单调递减的,则实数a 的取值范围是________.【解析】 当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足条件. 当a ≠0时,f (x )的对称轴为x =3-a 2a ,由f (x )在[-1,+∞)上单调递减知⎩⎨⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 【答案】 [-3,0]【迁移探究】 (变条件)若函数f (x )=ax 2+(a -3)x +1的单调递减区间是[-1,+∞),求a 为何值?解:因为函数f (x )=ax 2+(a -3)x +1的单调递减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a <0,a -3-2a=-1,解得a =-3.对于二次函数的单调性,关键是确定其图象的开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.角度三 二次函数的最值问题设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 【解】 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1.当t +1<1,即t <0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t >1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.角度四 一元二次不等式恒成立问题(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________.(2)已知函数f (x )=x 2+2x +1,f (x )>x +k 在区间[-3,-1]上恒成立,则k 的取值范围为____________.【解析】 (1)作出二次函数f (x )的草图,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.(2)由题意得x 2+x +1>k 在区间[-3,-1]上恒成立.设g (x )=x 2+x +1,x ∈[-3,-1],则g (x )在[-3,-1]上递减.所以g (x )min =g (-1)=1.所以k <1.故k 的取值范围为(-∞,1).【答案】 (1)⎝ ⎛⎭⎪⎫-22,0 (2)(-∞,1)由不等式恒成立求参数取值范围一般有两个解题思路:一是分离参数,二是不分离参数.两种思路都是将问题归结为求函数的最值,若不分离参数,则一般需要对参数进行分类讨论求解;若分离参数,则a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .1.已知abc >0,则二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D.A 项,因为a <0,-b 2a <0,所以b <0.又因为abc >0,所以c >0,而f (0)=c <0,故A 错.B 项,因为a <0,-b 2a >0,所以b >0.又因为abc >0,所以c <0,而f (0)=c >0,故B 错.C 项,因为a >0,-b 2a <0,所以b >0.又因为abc >0,所以c >0,而f (0)=c <0,故C 错.D 项,因为a >0,-b 2a >0,所以b <0,因为abc >0,所以c <0,而f (0)=c <0,故选D.2.函数f (x )=ax 2-2x +3在区间[1,3]上为增函数的充要条件是( )A .a =0B .a <0C .0<a ≤13D .a ≥1解析:选D.当a =0时,f (x )为减函数,不符合题意;当a ≠0时,函数f (x )=ax 2-2x +3图象的对称轴为x =1a ,要使f (x )在区间[1,3]上为增函数,则⎩⎪⎨⎪⎧a <0,1a≥3或⎩⎪⎨⎪⎧a >0,1a≤1,解得a ≥1.故选D. 3.已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________.解析:2ax 2+2x -3<0在[-1,1]上恒成立.当x =0时,-3<0,成立;当x ≠0时,a <32⎝ ⎛⎭⎪⎫1x -132-16, 因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12.综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12. 答案:⎝ ⎛⎭⎪⎫-∞,12[学生用书P26]思想方法系列4 分类讨论思想在二次函数问题中的应用已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值.【解】 (1)当a =0时,f (x )=-2x 在[0,1]上单调递减,所以f (x )min =f (1)=-2;(2)当a >0时,f (x )=ax 2-2x 的图象开口向上且对称轴为x =1a .①当0<1a ≤1,即a ≥1时, f (x )=ax 2-2x 的对称轴在(0,1]内,所以f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎝ ⎛⎦⎥⎤1a ,1上单调递增. 所以f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a =-1a ; ②当1a >1,即0<a <1时,f (x )=ax 2-2x 的对称轴在[0,1]的右侧,所以f (x )在[0,1]上单调递减.所以f (x )min =f (1)=a -2;(3)当a <0时,f (x )=ax 2-2x 的图象开口向下且对称轴x =1a <0,在y 轴的左侧,所以f (x )=ax 2-2x 在[0,1]上单调递减,所以f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1且a ≠0,-2,a =0,-1a ,a ≥1.二次函数是单峰函数(在定义域上只有一个最值点的函数),x =-b 2a 为其最值点的横坐标,在其两侧二次函数具有相反的单调性,当已知二次函数在某区间上的最值求参数时,要根据对称轴与已知区间的位置关系进行分类讨论确定各种情况的最值,建立方程求解参数.已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值.解:f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.[学生用书P281(单独成册)][A 级 基础练]1.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( )A .-1B .0C .1 D.-2解析:选D.函数f (x )=-x 2+4x +a 的对称轴为直线x =2,开口向下,f (x )=-x 2+4x +a 在[0,1]上单调递增,则当x =0时,f (x )的最小值为f (0)=a =-2.2.设函数f (x )=x 23,若f (a )>f (b ),则( )A .a 2>b 2B .a 2<b 2C .a <bD .a >b解析:选A.函数f (x )=x 23=(x 2)13,令t =x 2,易知y =t 13,在第一象限为单调递增函数.又f (a )>f (b ),所以a 2>b 2.故选A.3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一直角坐标系中的图象大致是( )解析:选C.若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b 2a <0,而二次函数的对称轴在y 轴的右侧,故可排除B.故选C.4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0解析:选A.由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b 2a =2,所以4a +b =0,又f (0)>f (1),f (4)>f (1),所以f (x )先减后增,于是a >0,故选A.5.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎢⎡⎦⎥⎤-254,-4,则m 的取值范围是( )A .[0,4]B .⎣⎢⎡⎦⎥⎤32,4 C.⎣⎢⎡⎭⎪⎫32,+∞ D.⎣⎢⎡⎦⎥⎤32,3 解析:选D.二次函数图象的对称轴为x =32,且f ⎝ ⎛⎭⎪⎫32=-254,f (3)=f (0)=-4,结合函数图象(如图所示)可得m ∈⎣⎢⎡⎦⎥⎤32,3.6.已知函数f (x )=(m 2-m -1)x m 2-2m -3是幂函数,且在x ∈(0,+∞)上递减,则实数m=________.解析:根据幂函数的定义和性质,得m2-m-1=1.解得m=2或m=-1,当m=2时,f(x)=x-3在(0,+∞)上是减函数,符合题意;当m=-1时,f(x)=x0=1在(0,+∞)上不是减函数,所以m=2.答案:27.已知二次函数的图象与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3),则它的解析式为________.解析:由题意知,可设二次函数的解析式为y=a(x-3)2,又图象与y轴交于点(0,3),所以3=9a,即a=13.所以y=13(x-3)2=13x2-2x+3.答案:y=13x2-2x+38.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是________.解析:由f(2+x)=f(2-x)可知,函数f(x)图象的对称轴为x=2+x+2-x2=2,又函数f(x)在[0,2]上单调递增,所以由f(a)≥f(0)可得0≤a≤4.答案:[0,4]9.已知函数f(x)=x2+(2a-1)x-3.(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.解:(1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],对称轴x=-32∈[-2,3],所以f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214, f (x )max =f (3)=15,所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤-214,15. (2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,所以6a +3=1,即a =-13满足题意;②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,所以-2a -1=1,即a =-1满足题意.综上可知,a =-13或a =-1.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解:(1)设f (x )=ax 2+bx +1(a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以2a =2且a +b =0,解得a =1,b =-1,因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立;即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1,所以m <-1.故实数m 的取值范围为(-∞,-1).[B 级 综合练]11.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析:选B.f (x )=⎝ ⎛⎭⎪⎫x +a 22-a 24+b ,①当0≤-a 2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b ,1+a +b },所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a 2<0时,f (x )在[0,1]上单调递增,所以M -m =f (1)-f (0)=1+a 与a 有关,与b 无关;③当-a 2>1时,f (x )在[0,1]上单调递减,所以M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关.故选B.12.已知函数f (x )=2ax 2-ax +1(a <0),若x 1<x 2,x 1+x 2=0,则f (x 1)与f (x 2)的大小关系是( )A .f (x 1)=f (x 2)B .f (x 1)>f (x 2)C .f (x 1)<f (x 2)D .与x 的值无关解析:选C.由题知二次函数f (x )的图象开口向下,图象的对称轴为x =14,因为x 1+x 2=0,所以直线x =x 1,x =x 2关于直线x =0对称,由x 1<x 2,结合二次函数的图象可知f (x 1)<f (x 2).13.定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是________.解析:因为函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,设x 0为均值点,所以f (1)-f (-1)1-(-1)=m =f (x 0),即关于x 0的方程-x 20+mx 0+1=m 在(-1,1)内有实数根,解方程得x 0=1或x 0=m -1.所以必有-1<m -1<1,即0<m <2,所以实数m 的取值范围是(0,2).答案:(0,2)14.已知幂函数f (x )=(m -1)2xm 2-4m +3(m ∈R )在(0,+∞)上单调递增.(1)求m 的值及f (x )的解析式;(2)若函数g (x )=-3f 2(x )+2ax +1-a 在[0,2]上的最大值为3,求实数a的值.解:(1)幂函数f (x )=(m -1)2xm 2-4m +3(m ∈R )在(0,+∞)上单调递增,故⎩⎪⎨⎪⎧(m -1)2=1,m 2-4m +3>0,解得m =0,故f (x )=x 3. (2)由f (x )=x 3,得g (x )=-3f (x )2+2ax +1-a =-x 2+2ax +1-a , 函数图象为开口方向向下的抛物线,对称轴为x =a .因为在[0,2]上的最大值为3,所以①当a ≥2时,g (x )在[0,2]上单调递增,故g (x )max =g (2)=3a -3=3,解得a =2.②当a ≤0时,g (x )在[0,2]上单调递减,故g (x )max =g (0)=1-a =3,解得a =-2.③当0<a <2时,g (x )在[0,a ]上单调递增,在[a ,2]上单调递减,故g (x )max =g (a )=a 2+1-a =3,解得a =-1(舍去)或a =2(舍去).综上所述,a =±2.[C 级 提升练]15.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值; (2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b 2a =-1,解得a =1,b =2,所以f (x )=(x +1)2.所以F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.所以F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意知f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2.所以-2≤b ≤0. 故b 的取值范围是[-2,0].。

二次函数与幂函数

二次函数与幂函数

§2.6二次函数与幂函数考试要求 1.通过具体实例,了解幂函数及其图象的变化规律.2.掌握二次函数的图象与性质(单调性、对称性、顶点、最值等).知识梳理1.幂函数(1)幂函数的定义一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减;④当α为奇数时,y=xα为奇函数;当α为偶数时,y=xα为偶函数.2.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图象和性质函数y=ax2+bx+c(a>0) y=ax2+bx+c(a<0) 图象(抛物线)定义域R值域 ⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a对称轴 x =-b2a顶点坐标 ⎝⎛⎭⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝⎛⎦⎤-∞,-b2a 上单调递减; 在⎣⎡⎭⎫-b2a ,+∞上单调递增 在⎝⎛⎦⎤-∞,-b2a 上单调递增; 在⎣⎡⎭⎫-b2a ,+∞上单调递减思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =1212x 是幂函数.( × )(2)二次函数y =ax 2+bx +c 的图象恒在x 轴下方,则a <0且Δ<0.( √ ) (3)二次函数y =a (x -1)2+2的单调递增区间是[1,+∞).( × ) (4)若幂函数y =x α是偶函数,则α为偶数.( × ) 教材改编题1.已知幂函数f (x )的图象经过点⎝⎛⎭⎫5,15,则f (8)的值等于( ) A.14 B .4 C .8 D.18 答案 D解析 设幂函数f (x )=x α,因为幂函数f (x )的图象经过点⎝⎛⎭⎫5,15,所以f (5)=5α=15, 解得α=-1,所以f (x )=x -1,则f (8)=8-1=18.2.已知函数f (x )=-x 2-4x +5,则函数y =f (x )的单调递增区间为( ) A .(-∞,-2] B .(-∞,2] C .[-2,+∞) D .[2,+∞)答案 A解析 f (x )=-x 2-4x +5=-(x +2)2+9,故函数f (x )的对称轴为x =-2, 又函数f (x )的图象开口向下,故函数的单调递增区间为(-∞,-2]. 3.函数f (x )=-2x 2+4x ,x ∈[-1,2]的值域为( )A .[-6,2]B .[-6,1]C .[0,2]D .[0,1]答案 A解析 函数f (x )=-2x 2+4x 的对称轴为x =1, 则f (x )在[-1,1]上单调递增,在[1,2]上单调递减, ∴f (x )max =f (1)=2,f (x )min =f (-1)=-2-4=-6, 即f (x )的值域为[-6,2].题型一 幂函数的图象与性质例1 (1)若幂函数y =x m 与y =x n 在第一象限内的图象如图所示,则( )A .-1<n <0<m <1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1答案 B解析 由图象知,y =x m 在(0,+∞)上单调递增, 所以m >0,又y =x m 的图象增长得越来越慢, 所以m <1,y =x n 在(0,+∞)上单调递减, 所以n <0,又当x >1时,y =x n 的图象在y =x -1的下方, 所以n <-1.综上,n <-1,0<m <1.(2)(2023·德州模拟)幂函数f (x )=(m 2+m -5)225m m x +-在区间(0,+∞)上单调递增,则f (3)等于( )A .27B .9 C.19 D.127答案 A解析 由题意,得m 2+m -5=1, 即m 2+m -6=0,解得m =2或m =-3, 当m =2时,可得函数f (x )=x 3,此时函数f (x )在(0,+∞)上单调递增,符合题意; 当m =-3时,可得f (x )=x -2,此时函数f (x )在(0,+∞)上单调递减,不符合题意, 即幂函数f (x )=x 3,则f (3)=27.思维升华 (1)对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 跟踪训练1 (1)已知幂函数3py x =(p ∈Z )的图象关于y 轴对称,如图所示,则( )A .p 为奇数,且p >0B .p 为奇数,且p <0C .p 为偶数,且p >0D .p 为偶数,且p <0 答案 D解析 因为函数3p y x =的图象关于y 轴对称, 所以函数3p y x =为偶函数,即p 为偶数, 又函数3p y x =的定义域为(-∞,0)∪(0,+∞), 且在(0,+∞)上单调递减,所以p3<0,即p <0.(2)(多选)(2023·哈尔滨模拟)已知函数y =254m m x -+(m ∈Z )为偶函数且在区间(0,+∞)上单调递减,则实数m 的值可以为( ) A .1 B .2 C .3 D .4 答案 BC解析 因为函数在区间(0,+∞)上单调递减, 所以m 2-5m +4<0,解得1<m <4, 因为m ∈Z , 所以m =2或3,当m =2时,函数y =x -2为偶函数,符合题意; 当m =3时,函数y =x -2为偶函数,符合题意, 综上,m =2或m =3. 题型二 二次函数的解析式例2 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解 方法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎨⎧ 4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为 f (x )=-4x 2+4x +7.方法二 (利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12,所以m =12.又根据题意,函数有最大值8, 所以n =8,所以f (x )=a ⎝⎛⎭⎫x -122+8. 因为f (2)=-1,所以a ⎝⎛⎭⎫2-122+8=-1, 解得a =-4,所以f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 方法三 (利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-(-a )24a =8.解得a =-4.故所求函数的解析式为f (x )=-4x 2+4x +7. 思维升华 求二次函数解析式的三个策略: (1)已知三个点的坐标,宜选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式; (3)已知图象与x 轴的两交点的坐标,宜选用零点式.跟踪训练2 已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2,则二次函数的解析式为________.答案 y =12x 2+x -32或y =-12x 2-x +32解析 因为二次函数的图象过点(-3,0),(1,0), 所以可设二次函数为y =a (x +3)(x -1)(a ≠0),展开得,y =ax 2+2ax -3a , 顶点的纵坐标为-12a 2-4a 24a =-4a ,由于二次函数图象的顶点到x 轴的距离为2, 所以|-4a |=2,即a =±12,所以二次函数的解析式为y =12x 2+x -32或y =-12x 2-x +32.题型三 二次函数的图象与性质 命题点1 二次函数的图象例3 设abc >0,则二次函数f (x )=ax 2+bx +c 的图象可能是( )答案 D解析 因为abc >0,二次函数f (x )=ax 2+bx +c ,那么可知, 在A 中,a <0,b <0,c <0,不符合题意; B 中,a <0,b >0,c >0,不符合题意; C 中,a >0,b >0,c <0,不符合题意; D 中,a >0,b <0,c <0,符合题意. 命题点2 二次函数的单调性与最值例4 (2023·福州模拟)已知二次函数f (x )=ax 2-x +2a -1. (1)若f (x )在区间[1,2]上单调递减,求a 的取值范围;(2)若a >0,设函数f (x )在区间[1,2]上的最小值为g (a ),求g (a )的表达式. 解 (1)当a >0时,f (x )=ax 2-x +2a -1的图象开口向上,对称轴方程为x =12a,所以f (x )在区间[1,2]上单调递减需满足12a ≥2,a >0,解得0<a ≤14.当a <0时,f (x )=ax 2-x +2a -1的图象开口向下,对称轴方程为x =12a <0,所以f (x )在区间[1,2]上单调递减需满足a <0, 综上,a 的取值范围是(-∞,0)∪⎝⎛⎦⎤0,14. (2)①当0<12a <1,即a >12时,f (x )在区间[1,2]上单调递增, 此时g (a )=f (1)=3a -2. ②当1≤12a ≤2,即14≤a ≤12时,f (x )在区间⎣⎡⎦⎤1,12a 上单调递减,在区间⎣⎡⎦⎤12a ,2上单调递增, 此时g (a )=f ⎝⎛⎭⎫12a =2a -14a -1. ③当12a >2,即0<a <14时,f (x )在区间[1,2]上单调递减, 此时g (a )=f (2)=6a -3,综上所述,g (a )=⎩⎪⎨⎪⎧6a -3,a ∈⎝⎛⎭⎫0,14,2a -14a -1,a ∈⎣⎡⎦⎤14,12,3a -2,a ∈⎝⎛⎭⎫12,+∞.思维升华 二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.跟踪训练3 (1)(多选)(2022·茂名模拟)二次函数y =ax 2+bx +c 的图象如图所示,则下列说法正确的是( )A.2a+b=0B.4a+2b+c<0C.9a+3b+c<0D.abc<0答案ACD解析由二次函数图象开口向下知,a<0,对称轴为x=-b=1,即2a+b=0,故b>0.2a又因为f(0)=c>0,所以abc<0.f(2)=f(0)=4a+2b+c>0,f(3)=f(-1)=9a+3b+c<0.(2)(2022·镇江模拟)函数f(x)=x2-4x+2在区间[a,b]上的值域为[-2,2],则b-a的取值范围是____.答案[2,4]解析解方程f(x)=x2-4x+2=2,解得x=0或x=4,解方程f(x)=x2-4x+2=-2,解得x=2,由于函数f(x)在区间[a,b]上的值域为[-2,2].若函数f(x)在区间[a,b]上单调,则[a,b]=[0,2]或[a,b]=[2,4],此时b-a取得最小值2;若函数f(x)在区间[a,b]上不单调,且当b-a取最大值时,[a,b]=[0,4],所以b-a的最大值为4.所以b-a的取值范围是[2,4].课时精练1.已知p:f(x)是幂函数,q:f(x)的图象过点(0,0),则p是q的() A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 D解析f(x)=x-2是幂函数,但其图象不过点(0,0),故充分性不成立;f(x)=2x-1的图象过点(0,0),但其不是幂函数,故必要性不成立.所以p是q的既不充分也不必要条件.2.(2023·保定检测)已知a=432,b=233,c=1225,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b 答案 A解析由题意得b=224333342==a,a=432=234<4<5=1225=c,所以b<a<c.3.(2023·厦门模拟)函数y=ax+b和y=ax2+bx+c在同一平面直角坐标系内的图象可以是()答案 C解析若a>0,则一次函数y=ax+b为增函数,二次函数y=ax2+bx+c的图象开口向上,故可排除A,D;对于选项B ,由直线可知a >0,b >0,从而-b 2a<0,而二次函数的对称轴在y 轴的右侧,故应排除B.4.已知函数f (x )=x 2-2(a -1)x +a ,若对于区间[-1,2]上的任意两个不相等的实数x 1,x 2,都有f (x 1)≠f (x 2),则实数a 的取值范围是( )A .(-∞,0]B .[0,3]C .(-∞,0]∪[3,+∞)D .[3,+∞)答案 C解析 二次函数f (x )=x 2-2(a -1)x +a 图象的对称轴为直线x =a -1,∵对于任意x 1,x 2∈[-1,2]且x 1≠x 2,都有f (x 1)≠f (x 2),即f (x )在区间[-1,2]上是单调函数,∴a -1≤-1或a -1≥2,∴a ≤0或a ≥3,即实数a 的取值范围为(-∞,0]∪[3,+∞).5.(多选)幂函数f (x )=()22657m m m x --+在(0,+∞)上单调递增,则以下说法正确的是()A .m =3B .函数f (x )在(-∞,0)上单调递增C .函数f (x )是偶函数D .函数f (x )的图象关于原点对称答案 ABD解析 因为幂函数f (x )=()22657m m m x --+在(0,+∞)上单调递增,所以⎩⎪⎨⎪⎧ m 2-5m +7=1,m 2-6>0,解得m =3, 所以f (x )=x 3,所以f (-x )=(-x )3=-x 3=-f (x ),故f (x )=x 3为奇函数,函数图象关于原点对称,所以f (x )在(-∞,0)上单调递增.6.(多选)若二次函数f (x )=ax 2+2ax +1在区间[-2,3]上的最大值为6,则a 等于( )A .-13 B.13 C .-5 D .5答案 BC解析 显然a ≠0,有f (x )=a (x +1)2-a +1,当a >0时,f (x )在[-2,3]上的最大值为f (3)=15a +1,由15a +1=6,解得a =13,符合题意; 当a <0时,f (x )在[-2,3]上的最大值为f (-1)=1-a ,由1-a =6,解得a =-5,符合题意,所以a 的值为13或-5. 7.已知二次函数f (x )的图象经过点(4,3),且图象被x 轴截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )的解析式为________.答案 f (x )=x 2-4x +3解析 ∵f (2+x )=f (2-x )对任意x ∈R 恒成立,∴f (x )图象的对称轴为直线x =2,又∵f (x )的图象被x 轴截得的线段长为2,∴f (x )=0的两根为1和3,设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),∵f (x )的图象过点(4,3),∴3a =3,∴a =1,∴所求函数的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.8.(2022·人大附中质检)已知二次函数f (x )=ax 2+2x +c (x ∈R )的值域为[1,+∞),则1a +4c的最小值为________.答案 3解析 因为二次函数f (x )=ax 2+2x +c (x ∈R )的值域为[1,+∞),则a >0,所以f (x )min =4ac -44a =ac -1a=1,即ac -1=a ,可得a =1c -1>0,则c >1, 所以1a +4c =c +4c -1≥2c ·4c-1=3, 当且仅当c =2时,等号成立,因此1a +4c的最小值为3. 9.已知幂函数f (x )=(2m 2-m -2)242m x -(m ∈R )为偶函数.(1)求f (x )的解析式;(2)若函数g (x )=f (x )-2(a -1)x +1在区间[0,4]上的最大值为9,求实数a 的值.解 (1)由幂函数可知2m 2-m -2=1,解得m =-1或m =32, 当m =-1时,f (x )=x 2,函数为偶函数,符合题意; 当m =32时,f (x )=x 7,函数为奇函数,不符合题意, 故f (x )的解析式为f (x )=x 2.(2)由(1)得,g (x )=f (x )-2(a -1)x +1=x 2-2(a -1)x +1.函数的对称轴为x =a -1,开口向上,f (0)=1,f (4)=17-8(a -1),由题意得,在区间[0,4]上,f (x )max =f (4)=17-8(a -1)=9,解得a =2,经检验a =2符合题意, 所以实数a 的值为2.10.设二次函数f (x )满足:①当x ∈R 时,总有f (-1+x )=f (-1-x );②函数f (x )的图象与x轴的两个交点为A ,B ,且|AB |=4;③f (0)=-34. (1)求f (x )的解析式;(2)若存在t ∈R ,只要x ∈[1,m ](m >1),就有f (x +t )≤x -1成立,求满足条件的实数m 的最大值.解 (1)由题意知,函数f (x )的图象关于直线x =-1对称,且方程f (x )=0的两根为-3和1, 设f (x )=a (x +3)(x -1),又f (0)=-34,则f (0)=-3a =-34,解得a =14. 故f (x )=14x 2+12x -34. (2)只要x ∈[1,m ](m >1),就有f (x +t )≤x -1,即x 2+2(t -1)x +(t +1)2≤0,取x =1,t 2+4t ≤0,-4≤t ≤0;取x =m ,[m +(t -1)]2≤-4t ,即1-t -2-t ≤m ≤1-t +2-t , 由-4≤t ≤0得0≤-t ≤4,1-t +2-t ≤1+4+2×4=9,故当t =-4时,m ≤9;当m =9时,存在t =-4,只要x ∈[1,9],就有f (x -4)-(x -1)=14(x -1)(x -9)≤0成立,满足题意. 故满足条件的实数m 的最大值为9.11.已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图象分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b 等于( )A.12B .1 C. 2D .2答案 B解析 由题意,|AB |=|(m 2)a -(m 2)b |,|CD |=|m a -m b |,根据图象可知b >1>a >0,当0<m <1时,(m 2)a >(m 2)b ,m a >m b ,因为|AB |=|CD |,所以m 2a -m 2b =(m a +m b )(m a -m b )=m a -m b ,因为m a -m b >0,所以m a +m b =1.12.设关于x 的方程x 2-2mx +2-m =0(m ∈R )的两个实数根分别是α,β,则α2+β2+5的最小值为________.答案 7 解析 由题意有⎩⎪⎨⎪⎧α+β=2m ,αβ=2-m ,且Δ=4m 2-4(2-m )≥0,解得m ≤-2或m ≥1,α2+β2+5=(α+β)2-2αβ+5=4m 2+2m +1,令f (m )=4m 2+2m +1,而f (m )图象的对称轴为m =-14, 且m ≤-2或m ≥1,所以f (m )min =f (1)=7.13.已知函数f (x )=2ax 2-2 022x -2 023,对任意t ∈R ,在区间[t -1,t +1]上存在两个实数x 1,x 2,使|f (x 1)-f (x 2)|≥1成立,则a 的取值范围是( )A.⎣⎡⎦⎤-12,12 B .[-1,1]C .(-∞,-1]∪{0}∪[1,+∞)D.⎝⎛⎦⎤-∞,-12∪{0}∪⎣⎡⎭⎫12,+∞ 答案 D解析 存在两个实数x 1,x 2,使|f (x 1)-f (x 2)|≥1⇔f (x )max -f (x )min ≥1,当a =0时,f (x )=-2 022x -2 023,f (t -1)-f (t +1)=2×2 022>1,显然符合;当a ≠0时,f (x )=2ax 2-2 022x -2 023与y =2ax 2的图象完全“全等”,即可以通过平移完全重合.因为t -1≤x ≤t +1且t ∈R ,即用一个区间宽度为2的任意区间去截取函数图象, 使得图象的最高点与最低点间的纵坐标之差大于等于1,因此取纵坐标之差最小的状态为f (x )=2ax 2(-1≤x ≤1),当a >0时,此时f (x )max -f (x )min =2a -0≥1,故a ≥12; 当a <0时,此时f (x )max -f (x )min =0-2a ≥1,故a ≤-12, 综上,a 的取值范围是⎝⎛⎦⎤-∞,-12∪{0}∪⎣⎡⎭⎫12,+∞.14.已知函数f(x)=x2-4x+1,设1≤x1<x2<x3<…<x n≤4,若|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(x n-1)-f(x n)|≤M,则M的最小值为()A.3 B.4 C.5 D.6答案 C解析函数f(x)=x2-4x+1在[1,2]上单调递减,在(2,4]上单调递增.由绝对值的几何意义,∴|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(x n-1)-f(x n)|表示将函数f(x)在(x1,x n)上分成n-1段,取每段两端点函数值差的绝对值总和.又根据f(x)的单调性知原式最大值为|f(1)-f(2)|+|f(2)-f(4)|=f(1)-f(2)+f(4)-f(2)=5,∴M≥5,则M的最小值为5.。

二次函数和幂函数知识点

二次函数和幂函数知识点

二次函数和幂函数知识点二次函数是形如y=ax²+bx+c的函数,其中a、b、c是常数且a≠0。

它的图像是一个抛物线,称为二次曲线。

而幂函数是形如y=axⁿ的函数,其中a是常数,n是实数且n≠0。

它的图像可以是一条直线、开口向上或向下的抛物线、以及其他形状,取决于指数n的值。

首先,我们来看二次函数。

二次函数的图像可以分为三种情况:开口向上的抛物线、开口向下的抛物线和一条直线。

当a>0时,二次函数的图像是开口向上的抛物线,对称轴是x=-b/2a,最低点坐标为:(-b/2a, -△/(4a)),其中△=b²-4ac是二次函数的判别式。

图像在对称轴上方递增,在对称轴下方递减。

当a<0时,二次函数的图像是开口向下的抛物线,对称轴、最高点坐标和递增递减性质与开口向上的情况相反。

当a=0时,二次函数变为一条直线y=bx+c。

这个直线与x轴平行,斜率为b。

接下来,我们来看幂函数。

幂函数的图像可以根据指数n的值分为几种情况。

当n>0时,幂函数的图像在原点右侧递增且没有上下界,图像随着x的增大而增大。

当n<0时,幂函数的图像在原点左侧递增且也没有上下界,图像随着x的增大而减小。

当n=1时,幂函数就变成了y=ax,它的图像是一条过原点的直线。

斜率a的正负决定了直线的倾斜方向。

当n=0时,幂函数就变成了y=a,它的图像是一条水平直线,与x轴平行。

根据常数a的值,直线的位置可以在y轴的任意位置。

当n是偶数且n≠0时,幂函数的图像在最高点或最低点有一个上下界,其余部分无上下界。

当n为偶数时,函数的值随着x的增大和减小而逐渐增大,形状类似于开口向上的抛物线。

当n为负偶数时,函数的值随着x的增大和减小而逐渐减小,形状类似于开口向下的抛物线。

当n是奇数时,幂函数图像没有上下界,且随着x的增大和减小而在原点两侧单调。

根据实数n的正负,函数的图像可能在原点两侧分别开口向上或向下。

总结起来,二次函数和幂函数都是常见的数学函数类型。

高中数学-幂函数与二次函数

高中数学-幂函数与二次函数

高中数学幂函数与二次函数【知识点、命题法及典型例题】考点一 二次函数1 二次函数解析式的三种形式 (1)一般式:y =ax 2+bx +c (a ≠0).(2)顶点式:y =a (x -h )2+k (a ≠0),其中(h ,k )为抛物线顶点坐标.(3)两点式:y =a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是抛物线与x 轴交点的横坐标. 2 二次函数的图象与性质函数y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象 (抛物线)续表函数 y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)定义域 R值域 ⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a对称轴 x =-b2a顶点 坐标 ⎝⎛⎭⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数 单调性在⎝⎛⎦⎤-∞,-b2a 上是减函数; 在⎣⎡⎭⎫-b2a ,+∞上是增函数 在⎝⎛⎦⎤-∞,-b2a 上是增函数; 在⎣⎡⎭⎫-b2a ,+∞上是减函数函数y =ax 2+bx +c (a >0) y =ax 2+bx +c (a <0)最值当x=-b2a时,y min=4ac-b24a当x=-b2a时,y max=4ac-b24a二次函数、一元二次方程和一元二次不等式统称为三个“二次”.它们常结合在一起,而二次函数又是其核心.因此,利用二次函数的图象数形结合是探求这类问题的基本策略.命题法二次函数的图象及性质的应用典例(1)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是()A.②④B.①④C.②③D.①③(2)已知对任意的a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值总大于0,则x的取值范围是()A.1<x<3 B.x<1或x>3C.1<x<2 D.x<2或x>3【解题法】二次函数问题的求解策略(1)二次函数的最值问题一般先配方,通过对称轴,开口方向等特征求得,有时需要讨论,如动轴定区间问题和定轴动区间问题.(2)与二次函数图象有关的问题采用数形结合的方法,需尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标轴的交点要标清楚.考点二幂函数1幂函数的定义一般地,形如y=xα(α∈R)的函数称为幂函数.2五种幂函数图象的比较3幂函数的性质比较注意点α的大小对幂函数图象的影响幂函数在第一象限的图象中,以直线x=1为分界,当0<x<1时,α越大,图象越低(即图象越靠近x轴,可记为“指大图低”);当x>1时,α越大,图象越高(即图象离x轴越远,不包含y=x0).命题法幂函数的图象及性质的应用典例(1)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()(2)若a =⎝⎛⎭⎫12 23 ,b =⎝⎛⎭⎫15 23 ,c =⎝⎛⎭⎫1213 ,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <aD .b <a <c【解题法】 幂函数的图象与性质问题的解题策略(1)关于图象辨识问题,关键是熟悉各类幂函数的图象特征,如过特殊点、凹凸性等.(2)关于比较幂值大小问题,结合幂值的特点利用指数幂的运算性质化成同指数幂,选择适当的幂函数,借助其单调性进行比较或应用.【补救练习】1.已知幂函数f (x )=(n 2+2n -2)x n 2-3n(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或22.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是( )3.幂函数f (x )=x α的图象过点(2,4),那么函数f (x )的单调递增区间是( ) A .(-2,+∞) B .[-1,+∞) C .[0,+∞)D .(-∞,-2)【巩固练习】4.若二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,则f(x)的表达式为()A.f(x)=-x2-x-1 B.f(x)=-x2+x-1C.f(x)=x2-x-1 D.f(x)=x2-x+15.已知二次函数图象的对称轴为x=-2,截x轴所得的弦长为4,且过点(0,-1),求函数的解析式.【拔高练习】6.当0<x<1时,函数f(x)=x1.1,g(x)=x0.9,h(x)=x-2的大小关系是________.7.是否存在实数a,使函数f(x)=x2-2ax+a的定义域为[-1,1]时,值域为[-2,2]?若存在,求a的值;若不存在,说明理由.。

第4节幂函数与二次函数

第4节幂函数与二次函数

第4节幂函数与二次函数幂函数和二次函数是数学中的两个重要概念,它们在不同的场景中起着不同的作用。

本文将介绍这两个函数的定义、性质以及它们的关系。

一、幂函数的定义与性质幂函数是指由x的正整数幂次构成的函数,其一般形式可以表示为f(x)=ax^n,其中a为非零实数,n为正整数。

幂数n决定了函数图像的性质,下面我们来看几个不同幂次的幂函数。

1. 当n=1时,幂函数就是一次函数,即f(x)=ax。

它的图像是一条斜率为a的直线。

2. 当n=2时,幂函数就是二次函数,即f(x)=ax^2、它的图像是一个开口向上或向下的抛物线。

3. 当n=3时,幂函数就是三次函数,即f(x)=ax^3、它的图像是一个类似于字母"S"形状的曲线。

幂函数的性质如下:1.当n为奇数时,函数图像关于y轴对称;当n为偶数时,函数图像关于原点对称。

2.当a>0时,函数递增;当a<0时,函数递减。

3.当n>1时,函数在原点附近增长或下降得非常快;当n=1时,函数图像为一条直线,增长或下降速度相对较慢。

二、二次函数的定义与性质二次函数是指由x的二次幂和一次幂构成的函数,其一般形式可以表示为f(x)=ax^2+bx+c,其中a、b、c为实数且a不为0。

二次函数的图像是一个开口向上或向下的抛物线。

二次函数的性质如下:1.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 抛物线的顶点坐标为(-b/2a, c-b^2/4a),其中b^2-4ac<0时,抛物线没有实根;b^2-4ac=0时,抛物线与x轴相切;b^2-4ac>0时,抛物线与x轴有两个交点。

3.如果a>0,则抛物线的最小值为c-b^2/4a;如果a<0,则抛物线的最大值为c-b^2/4a。

三、幂函数与二次函数的关系从上面的定义与性质可以看出,二次函数是幂函数的一个特例,即二次函数是幂函数在幂次n=2时的情况。

二次函数与幂函数

二次函数与幂函数

二次函数与幂函数1.幂函数 (1)幂函数的定义形如y =x α(α∈R )的函数称为幂函数,其中x 是自变量,α为常数. (2)五种幂函数的图象(3)五种幂函数的性质定义域2.(1)二次函数的图象和性质(2)①一般式:y=ax2+bx+c(a≠0).②顶点式:y=a(x+h)2+k(其中a≠0,顶点坐标为(-h,k)).③两根式:y=a(x-x1)(x-x2)(其中a≠0,x1、x2是二次函数的图象与x轴的两个交点的横坐标).3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)函数f(x)=x2与函数f(x)=2x2都是幂函数.(×)(2)幂函数的图象都经过点(1,1)和点(0,0).(×)(3)幂函数的图象不经过第四象限.(√)(4)当α<0时,幂函数y=xα是定义域上的减函数.(×)(5)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.(×)(6)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.(×)(7)在y=ax2+bx+c(a≠0)中,a决定了图象的开口方向和在同一坐标系中的开口大小.(√)(8)当n>0时,幂函数y=x n是定义域上的增函数.(×)(9)若函数f(x)=(k2-1)x2+2x-3在(-∞,2)上单调递增,则k=±22.(×)(10)已知f(x)=x2-4x+5,x∈[0,3),则f(x)max=f(0)=5,f(x)min=f(3)=2.(×)考点一 二次函数解析式[例1]解析:由于f (x )有两个零点0和-2,所以可设f (x )=ax (x +2)(a ≠0), 这时f (x )=ax (x +2)=a (x +1)2-a , 由于f (x )有最小值-1, 所以必有⎩⎨⎧a >0,-a =-1.解得a =1.因此f (x )的解析式是f (x )=x (x +2)=x 2+2x . 答案:x 2+2x(2)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.解:法一:(利用一般式) 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎨⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二:(利用顶点式)设f (x )=a (x -m )2+n (a ≠0).∵f (2)=f (-1), ∴拋物线的对称轴为x =2+(-1)2=12. ∴m =12.又根据题意函数有最大值8,∴n =8.∴y =f (x )=a 2)21(-x +8.∵f (2)=-1,∴a 2)212(-+8=-1,解得a =-4,∴f (x )=-42)21(-x +8=-4x 2+4x +7.法三:(利用零点式)由已知f (x )+1=0两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1),即f (x )=ax 2-ax -2a -1.又函数有最大值y max =8,即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍).∴所求函数的解析式为f (x )=-4x 2+4x +7.[方法引航] 根据已知条件确定二次函数解析式,一般用待定系数法,规律如下:1.二次函数的图象过点(0,1),对称轴为x =2,最小值为-1,则它的解析式是________. 解析:设y =a (x -2)2-1,当x =0时,4a -1=1,a =12,∴y =12(x -2)2-1. 答案:y =12(x -2)2-12.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.解析:∵f (x )=bx 2+(ab +2a )x +2a 2是偶函数, ∴ab +2a =0(a ≠0),∴b =-2,当x =0时,2a 2=4,∴a 2=2,∴f (x )=-2x 2+4. 答案:-2x 2+4考点二 二次函数图象和性质[例2] 已知函数(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; 解:(1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.[方法引航] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解;(3)对于二次函数的综合应用,要综合应用二次函数与二次方程和二次不等式之间的关系进行转化.1.若本例已知条件不变,求f (x )的最小值. 解:f (x )=(x +a )2+3-a 2,关于x =-a 对称, ∵x ∈[-4,6].①当-a ≤-4,即a ≥4时,f (x )在[-4,6]上为增函数, ∴f (x )min =f (-4)=16-8a +3=19-8a②当-4<-a ≤6,即-6≤a <4时,只有当x =-a 时,f (x )min =3-a 2, ③当-a >6时,即a <-6时,f (x )在[-4,6]上为减函数, ∴f (x )min =f (6)=36+12a +3=39+12a . 综上,当a ≥4时,f (x )min =19-8a . 当-6≤a ≤4时,f (x )min =3-a 2. 当a <-6时,f (x )min =39+12a .2.若本例已知条件不变,f (x )=0在[-4,6]上有两个不相等实根,求a 的取值范围. 解:要使f (x )=0,在[-4,6]上有两个不等实根,需⎩⎨⎧f (-a )<0-4≤-a ≤6f (-4)≥0f (6)≥0即⎩⎨⎧3-a 2<0,-6≤a ≤4,19-8a ≥0,36+12a ≥0.解得,-134≤a <-3或3<a ≤198.3.若本例中f (x )>0在x ∈(0,6]上恒成立,求a 的取值范围. 解:x 2+2ax +3>0,在x ∈(0,6]上恒成立,即2a >-)3(x x +在x ∈(0,6]上恒成立,只需求u =-)3(xx +,x ∈(0,6]的最大值.∵x +3x ≥23,当且仅当x =3时,取等号.∴u max =-23, ∴2a >-23,∴a >- 3.考点三 幂函数图象与性质[例3] (1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )解析:∵幂函数y =f (x )的图象过点(4,2),∴f (x )=.答案:C(2)已知函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且x ∈(0,+∞)时,f (x )是增函数,则m 的值为( )A .-1B .2C .-1或2D .3 解析:∵函数f (x )=(m 2-m -1)·xm 2+m -3是幂函数, ∴m 2-m -1=1,解得m =-1或m =2. 又∵函数f (x )在(0,+∞)上为增函数, ∴m 2+m -3>0,∴m =2. 答案:B(3)已知f (x )=21x ,若0<a <b <1,则下列各式正确的是( )A .f (a )<f (b )<f )1(a <f )1(bB .f )1(a <f )1(b<f (b )<f (a )C .f (a )<f (b )<f )1(b <f )1(aD .f )1(a <f (a )<f )1(b<f (b )解析:∵0<a <b <1,∴0<a <b <1b <1a ,又f (x )=21x 为增函数, ∴f (a )<f (b )<f )1(b <f )1(a.答案:C[方法引航] (1)若幂函数y =x α(α∈R )是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断.(2)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.,(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.1.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图 象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c解析:选B.幂函数a =2,b =12,c =-13,d =-1的图象,正好和题目所给的形式相符合,在第一象限内,x =1的右侧部分的图象,图象由下至上,幂指数增大,所以a >b >c >d .故选B. 2.若3131)23()1(---<+a a ,则实数a 的取值范围是________.解析:不等式3131)23()1(---<+a a 等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a . 解得a <-1或23<a <32.答案:(-∞,-1)∪)23,32([规范答题] “三个二次”间的转化二次函数与一元二次方程、一元二次不等式统称为“三个二次”,它们常有机结合在一起,而二次函数是“三个二次”的核心,通过二次函数的图象将其贯穿为一体.因此,有关二次函数的问题,常利用数形结合法、分类讨论法转化为方程与不等式来解决. [典例] (本题满分12分)已知f (x )=ax 2-2x (0≤x ≤1) (1)求f (x )的最小值;(2)若f (x )≥-1恒成立,求a 的范围; (3)若f (x )=0的两根都在[0,1]内,求a 的范围.[规范解答] (1)①当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.②当a >0时,f (x )=ax 2-2x 的图象的开口方向向上,且对称轴为x =1a .2分ⅰ.当0<1a ≤1,即a ≥1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]内,∴f (x )在]1,0[a上递减,在]1,1[a上递增. ∴f (x )min =f )1(a=1a -2a =-1a .4分ⅱ.当1a >1,即0<a <1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2.6分③当a <0时,f (x )=ax 2-2x 的图象的开口方向向下, 且对称轴x =1a <0,在y 轴的左侧, ∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1,-1a ,a ≥1.8分(2)只需f (x )min ≥-1,即可.由(1)知,当a <1时,a -2≥-1,∴a ≥1(舍去); 当a ≥1时,-1a ≥-1恒成立,∴a ≥1.10分(3)由题意知f (x )=0时,x =0,x =2a (a ≠0), 0∈[0,1],∴0<2a ≤1,∴a ≥2.12分 [规范建议] (1)分清本题讨论的层次 第一层:函数类型a =0和a ≠0. 第二层:开口方向a >0和a <0.第三层:对称轴x =1a 与区间[0,1]的位置关系,左、内、右. (2)讨论后要有总结答案.[高考真题体验]1.(2016·高考全国丙卷)已知342=a ,323=b ,3125=c 则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b解析:选A.,323442==a ,3231525==c 而函数32x y =在(0,+∞)上单调递增,所以323232543<<,即b <a <c ,故选A.2.(2015·高考山东卷)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <c D .b <c <a解析:选C.由指数函数y =0.6x 在(0,+∞)上单调递减,可知0.61.5<0.60.6,由幂函数y =x 0.6在(0,+∞)上单调递增,可知0.60.6<1.50.6,所以b <a <c ,故选C.3.(2013·高考北京卷)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1x B .y =e -x C .y =-x 2+1 D .y =lg|x |解析:选C.A 中y =1x 是奇函数,A 不正确;B 中y =e -x =x e )1(是非奇非偶函数,B 不正确;C中y =-x 2+1是偶函数且在(0,+∞)上是单调递减的,C 正确;D 中y =lg|x |在(0,+∞)上是增函数,D 不正确.故选C.4.(2014·高考课标卷Ⅰ )设函数⎪⎩⎪⎨⎧≥<=-1,1,)(311x x x e x f x 则使得f (x )≤2成立的x 的取值范围是________.解析:f (x )≤2⇒⎩⎨⎧ x <1,e x -1≤2或⎪⎩⎪⎨⎧≤≥2131x x ⇒⎩⎨⎧ x <1,x ≤ln 2+1或⎩⎨⎧x ≥1,x ≤8⇒x <1或1≤x ≤8⇒x ≤8,故填(-∞,8].答案:(-∞,8]5.(2015·高考天津卷)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.解析:由已知条件得b =8a ,令f (a )=log 2a ·log 2(2b ),则f (a )=log 2a ·log 216a =log 2a (log 216-log 2a )=log 2a (4-log 2a )=-(log 2a )2+4log 2a =-(log 2a -2)2+4, 当log 2a =2,即a =4时,f (a )取得最大值. 答案:4课时规范训练 A 组 基础演练1.已知二次函数的图象如图所示,那么此函数的解析式可能是( )A .y =-x 2+2x +1B .y =-x 2-2x -1C .y =-x 2-2x +1D .y =x 2+2x +1解析:选C.设二次函数的解析式为f (x )=ax 2+bx +c (a ≠0),由题图象得:a <0,b <0,c >0.选C.2.若函数f (x )是幂函数,且满足f (4)=3f (2),则)21(f 的值为( )A.13B.12C.23D.43 解析:选A.设f (x )=x a, 又f (4)=3f (2),∴4a =3×2a ,解得a =log 23,∴)21(f =3log 2)21(3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )解析:选C.若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b 2a <0,而二次函数的对称轴在y 轴的右侧,故应排除B ,因此选C.4.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么( )A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2)C .f (2)<f (0)<f (-2)D .f (0)<f (2)<f (-2)解析:选D.由f (1+x )=f (-x )知f (x )的图象关于x =12对称,又抛物线开口向上,结合图象(图略)可知f (0)<f (2)<f (-2).5.若f (x )=x 2-ax +1有负值,则实数a 的取值范围是( )A .a ≤-2B .-2<a <2C .a >2或a <-2D .1<a <3解析:选C.∵f (x )=x 2-ax +1有负值,∴Δ=a 2-4>0,则a >2或a <-2.6.若方程x 2-11x +30+a =0的两根均大于5,则实数a 的取值范围是________. 解析:令f (x )=x 2-11x +30+a .结合图象有⎩⎨⎧ Δ≥0f (5)>0,∴0<a ≤14. 答案:0<a ≤147.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________.解析:由已知得⎩⎪⎨⎪⎧ a >0,4ac -164a=0,⇒⎩⎨⎧a >0,ac -4=0. 答案:a >0,ac =48.已知f (x )=4x 2-mx +5在[2,+∞)上是增函数,则实数m 的取值范围是________.解析:因为函数f (x )=4x 2-mx +5的单调递增区间为),8[+∞m ,所以m 8≤2,即m ≤16. 答案:(-∞,16]9.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值.解:函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,对称轴方程为x =a .(1)当a <0时,f (x )max =f (0)=1-a ,∴1-a =2,∴a =-1.(2)当0≤a ≤1时,f (x )max =a 2-a +1,∴a 2-a +1=2,∴a 2-a -1=0,∴a =1±52(舍).(3)当a >1时,f (x )max =f (1)=a ,∴a =2.综上可知,a =-1或a =2.10.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图象过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[-1,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解:(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a .因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0.所以4a 2-4a =0,所以a =1,所以b =2.所以f (x )=(x +1)2.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1=2)22(--k x +1-(k -2)24. 由g (x )的图象知:要满足题意,则k -22≥2或k -22≤-1,即k ≥6或k ≤0,∴所求实数k 的取值范围为(-∞,0]∪[6,+∞).B 组 能力突破1.若幂函数222)33(--⋅+-=m m x m m y 的图象不过原点,则m 的取值是( ) A .-1≤m ≤2 B .m =1或m =2 C .m =2 D .m =1解析:选B.由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.2.已知函数f (x )=x 2+x +c .若f (0)>0,f (p )<0,则必有( )A .f (p +1)>0B .f (p +1)<0C .f (p +1)=0D .f (p +1)的符号不能确定解析:选A.函数f (x )=x 2+x +c 的图象的对称轴为直线x =-12,又∵f (0)>0,f (p )<0,∴-1<p <0,p +1>0,∴f (p +1)>0.3.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的是( )A .②④B .①④C .②③D .①③解析:选B.由函数图象知,a <0,与x 轴有两个交点,∴b 2-4ac >0,即b 2>4ac .对称轴x =-b 2a=-1,∴2a -b =0. 当x =-1时,对应最大值,f (-1)=a -b +c >0.∵b =2a ,a <0,∴5a <2a ,即5a <b .4.已知幂函数f (x )=21-x ,若f (a +1)<f (10-2a ),则a 的取值范围是________.解析:∵f (x )=21-x =1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ), ∴⎩⎨⎧ a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎨⎧ a >-1,a <5,a >3,∴3<a <5.答案:(3,5) 5.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧ f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.解:(1)由已知c =1,a -b +c =0,且-b 2a =-1,解得a =1,b =2.∴f (x )=(x +1)2.∴F (x )=⎩⎨⎧(x +1)2,x >0,-(x +1)2,x <0. ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b≤1x-x且b≥-1x-x在(0,1]上恒成立.又1x-x的最小值为0,-1x-x的最大值为-2.∴-2≤b≤0.故b的取值范围是[-2,0].。

二次函数与幂函数

二次函数与幂函数

二次函数与幂函数介绍:二次函数与幂函数是数学中重要的函数类型,它们在各个领域具有广泛的应用。

本文将从定义、图像、性质等方面介绍二次函数与幂函数,帮助读者全面了解这两种函数。

一、二次函数二次函数是指函数表达式中含有$x^2$项的函数,其一般形式为$f(x)=ax^2+bx+c$,其中$a \neq 0$,$a$、$b$、$c$为常数。

1. 定义二次函数可以通过改变系数$a$、$b$、$c$的值来改变函数的形状和特点。

其中,系数$a$决定二次函数的开口方向,若$a>0$,二次函数开口向上;若$a<0$,二次函数开口向下。

2. 图像二次函数的图像呈现抛物线的形状,称为二次曲线。

图像在平面$x$轴上对称,其中顶点为$(h, k)$,其中$h=-\frac{b}{2a}$,$k=c-\frac{b^2}{4a}$。

根据顶点的坐标,可以确定二次函数的平移和缩放变换。

3. 性质二次函数的性质包括:定义域、值域、奇偶性、单调性等。

其定义域为实数集,值域的范围取决于二次函数开口的方向。

奇偶性与二次函数的对称性相关,若$f(x)=-f(-x)$,则为奇函数;若$f(x)=f(-x)$,则为偶函数。

二次函数在开区间上可以是增函数或减函数。

二、幂函数幂函数是指函数表达式形式为$f(x)=ax^k$的函数,其中$a$和$k$为常数,$a \neq 0$,$k$为实数。

1. 定义幂函数以$x$的幂次为变量,其图像形状随参数$a$和$k$的取值而变化。

常见的幂函数有正幂函数($a>0$)、负幂函数($a<0$)和倒数函数($k=-1$)。

2. 图像幂函数的图像可以是直线、曲线或者曲线段。

具体的形状取决于参数$a$和$k$的取值。

幂函数的图像可在平面上进行平移、压缩和扭曲操作。

3. 性质幂函数的性质包括:定义域、值域、奇偶性、单调性等。

其定义域为正实数集或者整个实数集,取决于指数$k$的值。

值域的范围取决于参数$a$和$k$的正负。

高中数学归纳《一次函数、二次函数和幂函数》

高中数学归纳《一次函数、二次函数和幂函数》

【知识要点】一、在现实生活中有许多问题,往往隐含着量与量之间的关系,可通过建立变量之间的函数关系和对所得函数的研究,使问题得到解决.数学模型方法是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法;数学模型则是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时所得出的关于实际问题的数学描述.数学模型来源于实际,它是对实际问题抽象概括加以数学描述后的产物,它又要回到实际中去检验,因此对实际问题有深刻的理解是运用数学模型方法的前提.二、函数是描述客观世界变化规律的基本数学模型,不同的变化现象需要用不同的函数模型来描述,数学应用题的建模过程就是信息的获取、存储、处理、综合、输出的过程,熟悉一些基本的数学模型,有助于提高我们解决实际问题的能力.三、一次函数、二次函数和幂函数的图像和性质1、一次函数的一般形式为,y kx b =+当0k >时,函数单调递增,当0k <时,函数单调递减,当0k =时,函数是常数函数.2、二次函数的一般形式是2(0)y ax bx c a =++≠,当0a >时,函数的图像抛物线开口向上,顶点坐标为24(,)24b ac b a a --,函数在(,)2b a -∞-单调递减,在(,)2b a -+∞单调递增.当2bx a =-时,函数有最小值244ac b a -.当0a <时,函数的图像抛物线开口向下,顶点坐标为24(,)24b ac b a a --,函数在(,)2ba-∞-单调递增,在(,)2b a -+∞单调递减.当2bx a=-时,函数有最大值244ac b a -. 3、 幂函数的一般形式为(,ay xa R a x =∈是常数,是自变量),其特征是以幂的底为自变量,指数为常数,其定义域随着常数a 取值的不同而不同. 所有幂函数都在(0,)+∞有定义,并且图像都过点(1,1);0,a >幂函数在(0,)+∞是增函数,0a <,幂函数在(0,)+∞是减函数. 四、解决实际问题的解题过程1、对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;2、建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式;3、求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.这些步骤用框图表示:五、解应用题的一般程序1读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础;2建:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.熟悉基本数学模型,正确进行建“模”是关键的一关;3解:求解数学模型,得到数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程;4答:将数学结论还原给实际问题的结果.六、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、幂函数模型、分段函数模型、三角函数模型、数列函数、线性目标函数模型和综合函数模型等. 学科@网【方法讲评】【例1】某地区1995年底沙漠面积为95万公顷,为了解该地区沙漠面积的变化情况,进行了连续5年的观测,并将每年年底的观测结果记录如下表.根据此表所给的信息进行预测:(1)如果不采取任何措施,那么到2010年底,该地区的沙漠面积将大约变为多少万公顷;(2)如果从2000年底后采取植树造林等措施,每年改造0.6万公顷沙漠,那么到哪一年年底该地区沙漠面积减少到90万公顷?(2)设从1996年算起,第x年年底该地区沙漠面积能减少到90万公顷,由题意得+--=,x x950.20.6(5)90x=(年)解得20故到2015年年底,该地区沙漠面积减少到90万公顷.=+【点评】(1)由表观察知,沙漠面积增加数y与年份数x之间的关系图象近似地为一次函数y kx b 的图象,这是解题的切入点和关键点.(2)求一次函数的解析式一般利用待定系数法.【反馈检测1】某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台,现销售给A地10台,B 地8台,已知从甲地调运1台至A地、B地的运费分别为400元和800元,从乙地调运1台至A地、B地的运费分别为300元和500元.(1)设从乙地调运x台至A地,求总运费y关于x的函数关系式;(2)若总运费不超过9000元,问共有几种调动方案?(3)求出总运费最低的调运方案及最低的费用.【例2】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【点评】(1)在实际问题背景下,建立收益、利润的函数模型,一般是利润=收入-各项支出.(2)按照公司的月收益为:租出车辆⨯(月租金-维护费)-未租出车辆⨯维护费,将月收益视为月租金的函数,构造函数模型求解问题.【反馈检测2】某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为24880005xy x=-+,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品平均成本最低,并求最低成本.(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?【例3】有一片树林现有木材储蓄量为7100c m3,要力争使木材储蓄量20年后翻两番,即达到28400 c m3.(1)求平均每年木材储蓄量的增长率;(2)如果平均每年增长率为8%,几年可以翻两番?【点评】(1)增长率(降低率)的问题一般是指数或幂函数模型,如果已知时间求增长率(降低率),多是幂函数模型.(2)“翻两番”指现在是原来的4倍,“翻n番”指的是现在是原来的2n倍.【反馈检测3】(1)在1975年某市每公斤猪肉的平均价格是1.4元,而到了2005年,该市每公斤猪肉的平均价格是15元,假定这30年来价格年平均增长率相同,求猪肉价格的年平均增长率.(2)另一方面,1975年时该市职工月平均工资是40元,而到了2005年,该市职工月平均工资是860元,通过猪肉价格的增长和工资增长的对比,试说明人们的生活水平是日益提高,并计算若按这种速度,到2020年,估计该市职工月平均工资是多少元?高中数学常见题型解法归纳及反馈检测第09讲:函数(一次函数、二次函数和幂函数)模型及其应用参考答案【反馈检测1答案】(1)2008600(06,)y x x x z =+≤≤∈;(2)共有3种调运方案;(3)乙分厂的6 台机器全部调往B 地,从甲分厂调往A 地10 台,调往B 地2台,最小值是8600元.【反馈检测2答案】(1)年产量为200吨时,每吨平均成本最低为32万元;(2)年产量为210吨时,可获得最大利润1660万元.8000485x x-∴年产量为200吨时,每吨平均成本最低为32万元.680(0≤x ≤210),∵()R x 在[0,210]上是增函数, ∴210x =时,()R x 有最大值为-(210-220)2+1 680=1660,∴年产量为210吨时,可获得最大利润1 660万元. 【反馈检测3答案】(1)8.2%;(2)4000元.【反馈检测3详细解析】(1)设猪肉价格的年平均增长率是%x ,则有3015 1.4(1%)x =+.利用计算器可得8.2x =.(2)该市职工月工资和年平均增长率是%x ,则有3084040(1%)x =+,利用计算器可得10.8x =.因为10.88.2>,因此人们的生活水平是日益提高.照这样的速度到2020年,职工月平均工资是15860(110.8%)4000+≈元.。

二次函数与幂函数的关系与性质

二次函数与幂函数的关系与性质

二次函数与幂函数的关系与性质二次函数和幂函数是高中数学中重要的概念,它们在数学中有着广泛的应用。

本文将重点讨论二次函数与幂函数之间的关系与性质。

一、二次函数的定义和性质二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为实数且a ≠ 0。

二次函数的图像通常是一条U形曲线,被称为抛物线。

1. 零点和解析式二次函数的零点是指使函数值等于零的x值,即f(x) = 0的解。

二次函数的求解可以使用配方法、因式分解或求根公式来进行。

2. 对称轴和顶点二次函数的对称轴是指抛物线的对称轴线,它与抛物线的顶点重合。

二次函数的对称轴的方程为x = -b/2a,顶点的坐标为(-b/2a, f(-b/2a))。

3. 函数的增减性当a > 0时,二次函数是开口向上的,即函数的图像在对称轴的两侧递增;当a < 0时,二次函数是开口向下的,即函数的图像在对称轴的两侧递减。

4. 函数的最值当a > 0时,二次函数的最小值为f(-b/2a);当a < 0时,二次函数的最大值为f(-b/2a)。

二、幂函数的定义和性质幂函数是指形如f(x) = ax^b的函数,其中a为非零实数,b为实数。

幂函数的特点是具有不同的增长速度和变化趋势。

1. 底数和指数幂函数中的x称为底数,b称为指数。

不同的底数和指数会导致幂函数的图像形状和性质的差异。

2. 增减性与奇偶性当b > 0时,幂函数是递增的;当b < 0时,幂函数是递减的。

当b为偶数时,幂函数的图像关于y轴对称;当b为奇数时,幂函数的图像不对称。

3. 渐近线和极限当b > 1时,幂函数的图像会趋近于x轴正半轴;当b < 1时,幂函数的图像会趋近于x轴负半轴。

幂函数在x = 0处的极限取决于指数b的正负性。

三、二次函数与幂函数的关系二次函数其实可以看作是幂函数的一种特殊情况,即当指数b为2时。

因此,二次函数可以被视为幂函数的一种扩展形式,二次函数的性质也可以通过幂函数的性质进行类比和推导。

二次函数与幂函数

二次函数与幂函数

二次函数与幂函数一、二次函数1. 定义二次函数是指形如f(x)=ax2+bx+c的函数,其中a eq0,a、b和c为常数,x为自变量。

2. 基本性质•二次函数的图像是一个抛物线,开口方向由二次项的系数a决定:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

•二次函数的对称轴是一个直线,其方程为 $x = -\\frac{b}{2a}$。

•二次函数的顶点是对称轴上的点,坐标为 $\\left(-\\frac{b}{2a}, f\\left(-\\frac{b}{2a}\\right)\\right)$。

•当a>0时,二次函数的最小值为 $f\\left(-\\frac{b}{2a}\\right)$;当a<0时,二次函数的最大值为 $f\\left(-\\frac{b}{2a}\\right)$。

3. 图像变换对二次函数进行平移、伸缩和翻转等操作,可以得到不同形状的图像。

•平移:设二次函数为f(x)=x2,当向右平移ℎ个单位,得到f(x−ℎ)=(x−ℎ)2;当向上平移k个单位,得到f(x)+k=x2+k。

•伸缩:设二次函数为f(x)=x2,当横坐标伸缩为原来的m倍,纵坐标伸缩为原来的n倍,得到 $f\\left(\\frac{x}{m}\\right) \\cdot n =\\left(\\frac{x}{m}\\right)^2 \\cdot n = \\frac{n}{m^2}x^2$。

•翻转:设二次函数为f(x)=x2,当横坐标翻转,得到f(−x)= (−x)2=x2;当纵坐标翻转,得到−f(x)=−x2。

二、幂函数1. 定义幂函数是指形如f(x)=ax b的函数,其中a eq0,a和b为常数,x为自变量。

2. 基本性质•幂函数的图像形状取决于指数b的正负和大小。

当b>0且a>0时,幂函数图像在第一象限上递增;当b>0且a<0时,幂函数图像在第一象限上递减;当b<0时,幂函数图像在第一象限上有一个水平渐近线y=0。

高中 幂函数与二次函数知识点+例题+练习 含答案

高中 幂函数与二次函数知识点+例题+练习 含答案

教学内容幂函数与二次函数教学目标了解幂函数与二次函数的形式重点幂函数与二次函数难点幂函数与二次函数教学准备教学过程幂函数与二次函数知识梳理1.幂函数(1)幂函数的定义形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象2.二次函数(1)二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.(2)二次函数的三种常见解析式①一般式:f(x)=ax2+bx+c(a≠0);②顶点式:f(x)=a(x-m)2+n(a≠0),(m,n)为顶点坐标;③两根式:f(x)=a(x-x1)(x-x2)(a≠0)其中x1,x2分别是f(x)=0的两实根.教学效果分析教学过程(3)二次函数的图象和性质函数二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象a>0a<0定义域R R值域y∈⎣⎢⎡⎭⎪⎫4ac-b24a,+∞y∈⎝⎛⎦⎥⎤-∞,4ac-b24a对称轴x=-b2a顶点坐标⎝⎛⎭⎪⎫-b2a,4ac-b24a奇偶性b=0⇔y=ax2+bx+c(a≠0)是偶函数递增区间⎝⎛⎭⎪⎫-b2a,+∞⎝⎛⎭⎪⎫-∞,-b2a递减区间⎝⎛⎭⎪⎫-∞,-b2a⎝⎛⎭⎪⎫-b2a,+∞最值当x=-b2a时,y有最小值y min=4ac-b24a当x=-b2a时,y有最大值y max=4ac-b24a辨析感悟1.对幂函数的认识(1)函数f(x)=x2与函数f(x)=2x2都是幂函数.( )(2)幂函数的图象都经过点(1,1)和(0,0).( )(3)幂函数的图象不经过第四象限.( )2.对二次函数的理解(4)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.( )(5)(教材习题改编)函数f(x)=12x2+4x+6,x∈[0,2]的最大值为16,最小值为-2.( )教学效果分析教学过程[感悟·提升]三个防范一是幂函数的图象最多出现在两个象限内,一定会经过第一象限,一定不经过第四象限,若与坐标轴相交,则交点一定是原点,但并不是都经过(0,0)点,如(2)、(3).二是二次函数的最值一定要注意区间的限制,不要盲目配方求得结论,如(5)中的最小值就忽略了函数的定义域.考点一幂函数的图象与性质的应用【例1】(1)(2014·济南模拟)已知幂函数y=f(x)的图象过点⎝⎛⎭⎪⎫12,22,则log4f(2)的值为________.(2)函数y=13x的图象是________.规律方法(1)幂函数解析式一定要设为y=xα(α为常数)的形式;(2)可以借助幂函数的图象理解函数的对称性、单调性;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.【训练1】比较下列各组数的大小:⑴121.1,120.9,1;⑵2322⎛⎫- ⎪⎝⎭,23107-⎛⎫- ⎪⎝⎭,()431.1-.教学效果分析教学过程考点二二次函数的图象与性质【例2】(2013·浙江七校模拟)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是________.规律方法解决二次函数的图象问题有以下两种方法:(1)排除法,抓住函数的特殊性质或特殊点;(2)讨论函数图象,依据图象特征,得到参数间的关系.【训练2】(2012·山东卷改编)设函数f(x)=1x,g(x)=-x2+bx,若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则x1+x2________0,y1+y2________0(比较大小).教学效果分析教学过程1.对于幂函数的图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x=1,y=1,y=x分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.二次函数的综合应用多涉及单调性与最值或二次方程根的分布问题,解决的主要思路是等价转化,多用到数形结合思想与分类讨论思想.3.对于与二次函数有关的不等式恒成立或存在问题注意等价转化思想的运用.答题模板2——二次函数在闭区间上的最值问题【典例】(12分)(经典题)求函数f(x)=-x(x-a)在x∈[-1,1]上的最大值.[反思感悟] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.(2)部分学生易出现两点错误:①找不到分类的标准,无从入手;②书写格式不规范,漏掉结论答题模板第一步:配方,求对称轴.第二步:分类,将对称轴是否在给定区间上分类讨论.第三步:求最值.第四步:下结论.【自主体验】已知函数f(x)=-4x2+4ax-4a-a2在区间[0,1]内有一个最大值-5,求a的值.教学效果分析。

幂函数与二次函数

幂函数与二次函数

幂函数与二次函数知识梳理1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象(3)常见的5种幂函数的性质(1)二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.(2)二次函数的图象和性质例1、已知幂函数y=f(x)的图象经过点,则的值是()A.﹣B.1C.D.﹣1例2、若函数f(x)=(m2﹣2m﹣2)x m﹣1是幂函数,且y=f(x)在(0,+∞)上单调递增,则f(2)=()A.B.C.2D.4例3、已知幂函数g(x)=(2a﹣1)x a+1的图象过函数f(x)=m x﹣b﹣(m>0,且m≠1)的图象所经过的定点,则b的值等于()A.±B.±C.2D.±2答案:A D B练习1、已知幂函数y=f(x)的图象过点(2,8),则的值为()A.﹣2B.C.D.﹣22、若函数f(x)=(m2﹣2m﹣2)x m﹣1是幂函数,则m=()A.3B.﹣1C.3或﹣1D.3、函数y=x a,y=x b,y=x c的大致图象如图所示,则实数a,b,c的大小关系是()A.c<b<a B.a<b<c C.b<c<a D.c<a<b4、已知幂函数f(x)=(m2﹣3)x m在(0,+∞)上为减函数,则f(3)=()A.B.9C.D.35、已知幂函数y=f(x)的图象过点,则下列结论正确的是()A.y=f(x)的定义域为[0,+∞)B.y=f(x)在其定义域上为减函数C.y=f(x)是偶函数D.y=f(x)是奇函数6、已知幂函数f(x)=(m2﹣5m+5)•x m+1为奇函数,则m=()A.1B.4C.1或4D.27、已知幂函数f(x)=(a2﹣2a﹣2)•x a在区间(0,+∞)上是单调递增函数,则a的值为()A.3B.﹣1C.﹣3D.18、已知函数f(x)=(m2﹣m﹣1)x是幂函数,且其图象与两坐标轴都没有交点,则实数m=()A.﹣1B.2C.3D.2或﹣1要点二、幂函数的综合应用例4、已知函数f(x)=(m2+m﹣1)x m是幂函数,且在(0,+∞)上是减函数.(1)求实数m的值;(2)请画出f(x)的草图.(3)若f(2a﹣1)>f(a),a∈R成立,求a的取值范围.【解答】解:(1)由函数f(x)是幂函数,则m2+m﹣1=1,解得m=﹣2或m=1,又因为f(x)在(0,+∞)上是减函数,所以m=﹣2;(2)由(1)知,f(x)=x﹣2,则f(x)的大致图象如图所示:(3)由(2)知,f(x)的图象关于y轴对称,且在(0,+∞)上递减,则由f(2a﹣1)>f(a),得|2a﹣1|<|a|,即(2a﹣1)2<a2,可得(a﹣1)(3a﹣1)<0,解得<a<1,又a≠,∴a的取值范围为(,)∪(,1).练习9、已知幂函数(m∈N*)的图象经过点.(1)试求m的值并写出该函数的解析式;(2)试求满足f(1+a)>f(4﹣2a)的实数a的取值范围.10、已知幂函数f(x)=(m2﹣m﹣1)•x﹣2m﹣1在(0,+∞)上单调递增,又函数g(x)=2x.(1)求实数m的值,并说明函数g(x)的单调性;(2)若不等式g(1﹣3t)+g(1+t)≥0恒成立,求实数t的取值范围.要点三、二次函数的综合应用例5、函数f(x)=x2﹣(4a﹣1)x+5,在[﹣1,2]上不单调,则实数a的取值范围是(B)A.B.C.D.例6、对a,b∈R,记,则函数f(x)=max{x+1,x2+2x+1}的最小值是(D)A.4B.2C.1D.0例7、已知函数(m∈Z)为偶函数.(1)若f(3)<f(5),求f(x);(2)在(1)的条件下,求g(x)=f(x)﹣ax在[2,3]上的最小值h(a)【解答】解:(1)因为f(x)为偶函数,所以﹣2m2+m+3为偶数,又f(3)<f(5),所以<,即,所以﹣2m2+m+3>0,解得,又m∈Z,所以m=0或m=1;当m=0时,﹣2m2+m+3=3,舍去;当m=1时,﹣2m2+m+3=2,成立;所以f(x)=x2;(2)由(1)知,g(x)=x2﹣ax,当a≤4时,g(x)在[2,3]上单调递增,函数g (x )的最小值为h (a )=g (2)=4﹣2a ;当4<a <6时,g (x )在[2,]上单调递减,(,3]上单调递增, 所以函数g (x )的最小值为h (a )=g ()=﹣;当a ≥6时,g (x )在[2,3]上单调递减, 函数g (x )的最小值为h (a )=g (3)=9﹣3a ;综上,ha )=.练习11、已知函数f (x )=2x 2+kx ﹣1在区间[1,2]上是单调函数,则实数k 的取值范围( ) A .(﹣∞,﹣8]∪[﹣4,+∞) B .[﹣8,﹣4] C .(﹣∞,﹣4]∪[﹣2,+∞)D .[﹣4,﹣2]12、函数f (x )=﹣x 2+2(a ﹣1)x +2在(﹣∞,﹣4)上是增函数,则a 的范围是( ) A .[5,+∞)B .[﹣3,+∞)C .(﹣∞,﹣3]D .(﹣∞,﹣5]13、给定函数f (x )=x 2,g (x )=x +2,对于∀x ∈R ,用M (x )表示f (x ),g (x )中较大者,记为M (x )=max {f (x ),g (x )},则M (x )的最小值为( ) A .﹣1B .1C .2D .414、已知函数2()21f x x ax =++, (1)求()f x 在区间[]1,2-的最小值()g a15、已知函数()y f x =是二次函数,且满足(0)3f =,(1)(3)0f f -== (1)求()y f x =的解析式;(2)若[,2]x t t ∈+,试将()y f x =的最大值表示成关于t 的函数()g t .答案:1、B 2、C 3、A 4、A 5、B 6、B 7、A 8、A 9、f (x )==a 的取值范围为(1,2].10、(1)m =﹣1 单调递减 (2)t ≤111、A 12、B 13、A14()222,11,1252,2a a g a a a a a -<-⎧⎪∴=-+-≤≤⎨⎪+>⎩15、(1)2()23f x x x =-++;(2)2223(1)()4(11)23(1)t t t g t t t t t ⎧--+≤-⎪=-<<⎨⎪-++≥⎩。

高考数学——二次函数与幂函数考点复习

高考数学——二次函数与幂函数考点复习

5
A. c < b < a C. c < a < b
B. a < b < c D. a < c < b
典例 3

a
=
(3)
2 5
,
b
=
(2)
3 5
,
c
=
(
2)
2 5
,则
a, b, c
的大小关系是
5
5
5
A.a>c>b
B.a>b>c
C.c>a>b
D.b>c>a
【答案】A
【解析】因为
y
=
x
2 5

(0,+∞)
.
|a|
(3) 当 a > 0 且 ∆ < 0 ( ∆ ≤ 0 ) 时 , 恒 有 f(x)>0( f (x) ≥ 0 ) ; 当 a < 0 且 ∆ < 0 ( ∆ ≤ 0 ) 时 , 恒 有
f(x)<0( f (x) ≤ 0 ).学!
二、幂函数
1.幂函数的概念 一般地,形如 y=xα(α∈R)的函数称为幂函数,其中底数 x 为自变量,α 为常数.
>
0
,且
a

1
)在区间
1 2
,
+∞
上单调递增,则函数
2
调递增 在[0, +∞) 上单调递增 调递增
调递增
过定点
过定点 (0, 0), (1,1)
3.常用结论
(1)幂函数在 (0, +∞) 上都有定义.
(2)幂函数的图象均过定点 (1,1) .

第4讲-幂函数、二次函数及基本不等式

第4讲-幂函数、二次函数及基本不等式

幂函数与二次函数学习目标1、了解幂函数的概念及其性质,尤其是几个特殊幂函数的图像、单调性等基本性质2、进一步了解一元二次函数的相关性质3、掌握几个基本不等式及其应用1.幂函数的定义一般地,形如y x α=(R α∈)的函数称为幂函数,其中底数x 是自变量,α为常数. 2.幂函数的图象在同一平面直角坐标系下,幂函数12312,,,,y x y x y x y x y x -=====的图象分别如右图.上面五个函数是学习和研究幂函数性质(图像、单调性、 对称性、奇偶性等)的代表,需熟练掌握。

3.幂函数的性质(1)所有幂函数y x α=的图像均过定点(1,1)(2)如0α>,所有幂函数的图像均过原点,且在[0,)+∞上单调递增 (3)如0α<,所有幂函数在(0,)+∞上都单调递减。

4.一元二次函数及其性质定义:形如2()(0)f x ax bx c a =++≠的函数,叫一元二次函数。

其图像如下xyO xyO2b x a=-2b x a=-一元二次函数的性质(续) 对称轴顶点开口方向及最值2b x a=-24(,)24b ac ba a --0a >时开口向上 2min 44ac by a-=0a <时开口向下2max 44ac b y a-=如0a >,则2b x a >-(对称轴右边)时单调递增,2bx a <-(对称轴左边)时单调递减。

如0a <,则2b x a <-(对称轴左边)时单调递增,2bx a>-(对称轴右边)时单调递减。

【注意】求解二次函数2()(0)f x ax bx c a =++≠在闭区间[,]m n 上的最值,要分析对称轴2bx a=-是否经过此区间,然后用函数的单调性解决。

5.一元二次不等式的解集 不妨设0a >,则20ax bx c ++>的解集如下(1)如0∆<,其解集为(,)-∞+∞;(2)如0∆≥,其解集为12(,)(,)x x -∞⋃+∞,其中12,x x 为20ax bx c ++=之二根,且12x x ≤20ax bx c ++<的解集如下(1)如0∆<,则其解集为∅;(2)如0∆≥,则其解集为12(,)x x ,其中12,x x 为20ax bx c ++=之二根,且12x x ≤开口向下的情况可参照上面的解法求解,也可转化为开口向上的情况求解。

一次函数、二次函数与幂函数

一次函数、二次函数与幂函数
性质
二次函数的图像是一个抛物线,其开口方向由系数$a$决定, 当$a>0$时,开口向上;当$a<0$
顶点
二次函数的图像有一个顶
点,其坐标为$(-
frac{b}{2a},
f(-
frac{b}{2a}))$。
对称轴
二次函数的图像关于直线 $x = -frac{b}{2a}$对称。
工程设计
在工程设计中,幂函数可以用于描 述材料强度、电阻等物理量随尺寸 变化的关系。
数据分析
在数据分析中,幂函数可以用于拟 合某些特定的数据集,例如网络流 量、销售数据等。
04 三种函数的比较
定义域与值域
一次函数
定义域为全体实数,值域也为全 体实数。
二次函数
定义域为全体实数,值域取决于 开口方向和顶点位置。
凹凸性
当n>0时,幂函数的图像是凹的;当n<0时,幂函数的图 像是凸的。
渐近线
当x趋向于正无穷或负无穷时,幂函数的图像会趋近于y轴 。
顶点
当n为偶数时,幂函数的图像有一个对称轴;当n为奇数 时,幂函数的图像有一个对称中心。
应用实例
科学计算
幂函数在科学计算中有着广泛的 应用,例如计算复利、人口增长
等。
幂函数
定义域为除零外的全体实数,值 域也为全体实数。
单调性
一次函数
单调递增或递减,取决于斜率。
二次函数
开口向上时,在对称轴左侧单调递减,右侧单调递增;开口向下时, 在对称轴左侧单调递增,右侧单调递减。
幂函数
当指数大于0时,单调递增;当指数小于0时,单调递减。
最值问题
一次函数:无最值。
幂函数:当指数为偶 数时,存在最小值; 当指数为奇数时,无 最值。

第八讲一次函数二次函数幂函数

第八讲一次函数二次函数幂函数

第八讲一次函数二次函数幂函数第八讲:一次函数、二次函数、幂函数本讲将介绍三种重要的函数类型:一次函数、二次函数和幂函数。

这些函数在数学和实际问题中都有广泛应用,因此我们有必要对其进行详细了解。

一、一次函数一次函数也称为线性函数,其一般形式为 f(x) = ax + b,其中 a 和 b 是常数,且a ≠ 0。

这里的 a 称为函数的斜率,表示函数图像的倾斜程度;b 称为函数的截距,表示函数图像与 y 轴的交点。

一次函数的图像为直线,具有以下特点:1.斜率:斜率为正的一次函数图像向右上方倾斜,斜率为负的一次函数图像向右下方倾斜,斜率为零的一次函数图像平行于x轴。

2.截距:截距决定了一次函数图像与y轴的交点,也就是函数图像在y轴上的值。

3.零点:一次函数的零点即为函数图像与x轴的交点,可以通过解方程f(x)=0来求得。

4.线性关系:一次函数是自变量x和因变量y之间的线性关系,可以用直线模型来描述。

5.单调性:一次函数具有唯一的单调性,即当a>0时,函数递增;当a<0时,函数递减。

一次函数的应用非常广泛,例如在物理学中用于描述匀速直线运动、经济学中用于表示成本和收入关系等。

二、二次函数二次函数是一种二次多项式函数,其一般形式为f(x) = ax² + bx + c,其中 a、b 和 c 是常数,且a ≠ 0。

二次函数的图像是抛物线,具有以下特点:1.抛物线开口方向:当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

2.零点:二次函数的零点是函数图像与x轴的交点,可以通过解方程f(x)=0来求得。

注意到二次函数可能有零、一个或两个零点。

3.顶点:二次函数的顶点即为抛物线的最高(或最低)点,可以通过求解顶点坐标的方式来找到。

4.对称轴:二次函数的对称轴是抛物线的中线,可以通过求解对称轴的方程来找到。

5.函数值:二次函数的函数值可以通过直接代入x值计算,也可以通过顶点等特殊点的性质来判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档