青岛版八年级上册2.4《用公式法进行因式分解》ppt课件

合集下载

《公式法》因式分解PPT(第1课时)

《公式法》因式分解PPT(第1课时)

B.-m ²-n²的两平方项符号相同,不能用平方差公式进行因式分解;
C.-m ²+n ² 符合平方差公式的特点,能用平方差公式进行因式分解;
D. m ²-tn ²不符合平方差公式的特点,不能用平方差公式进行因式分解.
合作探究
探究点三 问题1:把下列各式分解因式: (1)9(m+n)²-(m-n)²; (2)2x³-8x. (3)x 4-1 解:(1)9(m+n)²-(m-n)²
4.3 公式法
第1课时
八年级下册
-.
学习目标 1 掌握用平方差公式分解因式的方法. 2 能综合运用提取公因式法、平方差公式法分解因式.
前置学习
1.填空
①25x²= (__5_x__)²
③0.49b²= (_0_._7_b_)²
⑤1
4
b²=
(__12_b__)²
②36a4 = (__6_a_²_)² ④64x²y²= (__8_x_y_)²
课堂小结
1.平方差公式运用的条件: (1)二项式 (2)两项的符号相反 (3)每项都能化成平方的形 式 2 .公式中的a和b可以是单项式,也可以是多项式 3.各项都有公因式,一般先提公因式,再进一步分解,直至不能再分解为止.
课后作业
1.对于任意整数n,多项式(n+7) ²-(n-3) ²的值都能( A )
随堂检测
1.判断正误 (1)x²+y²=(x+y)(x-y); (2)x²-y²= (x+y)(x-y); (3)-x²+y²=(-x+y)(-x-y); (4)-x²-y²=-(x+y)(x-y).
(✘) ( ✔) ( ✘) ( ✘)
随堂检测
2. 某同学粗心大意,分解因式时,把等式x4-■=(x ²+4)(x+2)(x-▲)中的

八年级数学上册-因式分解的方法汇总.ppt

八年级数学上册-因式分解的方法汇总.ppt

方法五、分组分解法
(1)形如:
am+an+bm+bn=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(a+b)(m+n)
(2)形如:
x2 y2 2x 1
(x2 2x 1) y 2
(x 1)2 y 2
(x y 1)(x y 1)
把多项式适当的分组,分组后能够有公因 式或能运用公式,这样的因式分解的方法
课堂练习:用你喜欢的方法分解下列 多项式。
(1) a2 b2 4a 2b 3 (2) 9x2 6x y2 4 y 3 (3) x2 5xy x 3y 6 y2
(4) (x 2)3 ( y 2)3 (x y)3 (5) x(x 1) y( y 1) 2xy (6) x3 5x2 3x 9
因式分解是多项式乘法的逆运算。在多项式乘法 运算时,整理、化简将几个同类项合并为一项, 或将两个仅符号相反的同类项相互抵消为零。在 对某些多项式分解因式时,需要恢复那些被合并 或相互抵消的项,即把多项式中的某一项拆成两 项或多项,或者在多项式中添上两个仅符号相反 的项,前者称为拆项,后者称为添项。
a4 b4 (a b)4 2(a2 ab b2 )2
(1)原式=
a2 4a 4 b2 2b 1 (a 2)2 (b 1)2 (a b 1)(a b 3)
(2)原式= x2 5xy 6 y2 (x 3y)
(x 3y)(x 2y) (x 3y)
(x 3y)(x 2 y 1)
= a2 2ab b2 1
(a b 1)(a b 1)
(4)原式= 1999x2 1999x2 x 1999
1999x(x 1999) (x 1999)

2.4《因式分解法》课件(共35张PPT)

2.4《因式分解法》课件(共35张PPT)
2、用适当方法解下列方程 ① -5x2-7x+6=0
② 2x2+7x-4=0
③ 4(t+2 3 )2=3
④ x2+2x-9999=0
(5) 3t(t+2)=2(t+2)
小结: 1、
ax2+c=0
====>
直接开平方法
ax2+bx=0 ====>
因式分解法
ax2+bx+c=0 ====>
因式分解法 公式法(配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
⑨ (x-2)2=2(x-2)
适合运用直接开平方法

适合运用因式分解法

适合运用公式法

适合运用配方法
.
我的发现
➢一般地,当一元二次方程一次项系数为0时 (ax2+c=0),应选用直接开平方法;
例3.解下列方程 :
(1)x(x 2) x 2 0;
(2)5x2 2x 1 x2 2x 3 .
4
4
可以试用 多种方法解 本例中的两
个方程 .
分解因式法解一元二次方程的步骤是: 1.将方程右边等于0; 2. 将方程左边因式分解为A×B; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
➢若常数项为0( ax2+bx=0),应选用因式分解法;
➢若一次项系数和常数项都不为0 (ax2+bx+c=0), 先化为一般式,看一边的整式是否容易因式分解, 若容易,宜选用因式分解法,不然选用公式法;

八年级数学上册-因式分解的方法汇总.ppt

八年级数学上册-因式分解的方法汇总.ppt
因式分解的方法
一、提公因式法; 二、公式法; 三、十字相乘法; 四、换元法; 五、分组分解法; 六、拆项、添项法; 七、配方法; 八、待定系数法。
方法一:提分因式法
这是因式分解的首选方法。也是最基本 的方法。在分解因式时一定要首先认真 观察等分解的代数式,尽可能地找出它 们的分因数(式)
方法二:公式法
(12)原式= a4 2a2b2 b4 2ab(a2 b2 ) a2b2
(a2 b2 )2 2ab(a2 b2 ) a2b2
(a2 ab b2)2
(13)证明:a4 2a2b2 b4 (a2 2ab b2 )2 2a2b2
(a2 b2 )2 (a2 b2 )2 4ab(a2 b2 ) 2a2b2 2[(a2 b2 )2 2ab(a2 b2 ) a 2b2 ] 2(a2 ab b2 )2
(3)原式=
x4 2x2 1 (x2 1) x2 (x2 1)2 2x(x2 1) x2 (x2 x 1)2
方法八:待定系数法
对所给的数学问题,根据已知条件和要求,先设出问题 的多项式表达形式(含待定的字母系数),然后利用已 知条件,确定或消去所设待定系数,使问题获解的这种 方法叫待定系数法,用待定系数法解题目的一般步骤是:
则原式=
(a 2)(a 3) 12 a2 5a 6
(a 6)(a 1)
(2)解: 原式= (x2 7x 6)( x2 5x 6) x2
(x2 6x 6 x)( x2 6x 6 x) x2
(x2 6x 6)2
(3)设x+y=a,xy=b,则原式 =a(a+2b)+(b+1)(b-1)
( y z)[x2 ( y z)x yz]
(y z)(x y)(x z)

2.4用公式法进行因式分解_课件2__(青岛版八年级上)

2.4用公式法进行因式分解_课件2__(青岛版八年级上)

⑸(2x+y)2-2(2x+y)+1
解:原式=(2x+y-1)2
你能把下列各式分解因式吗? ① 3x+x2-y2-3y
解:原式=(x2-y2)+(3x-3y) =(x+y)(x-y)+3(x-y) =(x-y)(x+y+3)
② x2-2x-4y2+1
解:原式=x2-2x+1-4y2 =(x-1)2-(2y)2 =(x-1+2y)(x-1-2y)
把下列各式分解因式:
(1) 4x2-16y2
解:原式=4(x2-4y2) =4(x+2y)(x-2y)
(2)
x2+2xy+y2.
解:原式 = (x2+2xy+y2)
= (x+y)2
⑶ -x3y3-2x2y2-xy
解:原式=-xy(x2y2+2xy+1) =-xy(xy+1)2
(4)81a4-b4
解:原式=(9a2+b2)(9a2-b2) =(9a2+b2)(3a+b)(3a-b)
=2n[25-10(x-y)+(x-y)2]
=2n[52-2×5(x-y)+(x-y)2] =2n[5-(x-y)]2=2n(5-x+y)2
=[(a-2b)+(2a+b)][(a-2b)-(2a+b)] =(3a-b))(-a-3b)
=(b-3a)(a+3b)
(3)(x-y)2 - 6x +6y+9
a2-b2= (a+b)(a-b)
注意:公式中的字 母不只是单项式, 也可以是多项式

2-4《因式分解法》课件(共35张PPT)

2-4《因式分解法》课件(共35张PPT)
(1)提取公因式法: am+bm+cm=m(a+b+c).
(2)公式法:
a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2.
(3)十字相乘法:
1 a
x2+(a+b)x+ab= (x+a)(x+b). 1 b
实际问题
根据物理学规律,如果把一 个物体从地面 10 m/s 的速度竖 直上抛,那么经过 x s 物体离地 面的高度(单位:m)为
3. 分别解两个一元一次方程,它们的根就 是原方程的根.
AB = 0
A=0或B=0
( A、B 表示两个因式)
用因式分解法解一元二次方程的步骤
1. 方程右边化为_零_____。
2. 将方程左边分解成两个__一__次___因__式__的乘积。 3. 至少_有___一__个__因式为零,得到两个一元一次
⑴ 5x2-3 2 x=0 (运用因式分解法)
⑵ 3x2-2=0
(运用直接开平方法)
⑶ x2-4x=6
(运用配方法)
⑷ 2x2-x-3=0
(运用公式法)
⑸ 2x2+7x-7=0 (运用公式法)
② 公式法虽然是万能的,对任何一元二次方程都适用, 但不一定是最简单的,因此在解方程时我们首先考虑能 否应用“直接开平方法”、“因式分解法”等简单方法, 若不行,再考虑公式法(适当也可考虑配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0

因式分解公式法ppt课件

因式分解公式法ppt课件

10.(2010·眉山中考)把代数式
分解因式,下
列结果中正确的是(
A. B.

mx2 6mx 9m
C.
D.
m( x 3)2
m( x 3)( x 3)
m( x 4)2
m( x 3)2
【解析】选D .mx2 6mx 9m =m(x2-6x+9)=m(x-3)2. 11.(2010·黄冈中考)分解因式:2a2–4a+2 【解析】2a2–4a+2=2(a2–2a +1)=2(a–1)2 答案:2(a–1)2
2 【解析】原式是一个完全平方式,所以x2+6x+9= x 3
(3x y 2)(3x y 2).
答案: x 3 2
将一个正方形的一角剪去一个小 正方形,观察剪剩下的部分,你能在 只能剪一刀的情况下,将剩余部分重 新拼接成一个特殊四边形吗?
b
2 2 a -b
a
= (a+b) (a-b)
1 1 5 x x 原式 x 4 2 2 2 2 6 4 a 12 ab 9 b 原式 2a 3b
2
2
练习题:
1、下列各式中,能用完全平方公式 D 分解的是( ) A、a2+b2+ab B、a2+2ab-b2 C、a2-ab+2b2 D、-2ab+a2+b2 2、下列各式中,不能用完全平方公 C 式分解的是( ) A、x2+y2-2xy B、x2+4xy+4y2 C、a2-ab+b2 D、-2ab+a2+b2
(a+b)(a-b) = a²- b²

因式分解公式法ppt

因式分解公式法ppt

公式法
总结词
公式法是因式分解中最为普遍的方法之一,通过使用基本的数学公式来分解 多项式。
详细描述
公式法涉及到一系列基本的数学公式,如平方差公式、完全平方公式等。使 用这些公式可以将多项式分解为更简单的形式,便于进一步处理和分析。
十字相乘法
总结词
十字相乘法是一种适用于某些特定多项式的因式分解方法,通过将多项式分解为 两个部分交叉相乘的形式来找到因式。
因式分解的注意事项
对于相同字母的注意
识别相同字母
在因式分解中,识别并分组相同字母是关键步骤。观察多项式中哪些字母或 项具有相同的底数,并将其分为一组。
分配律的运用
运用分配律将相同字母分组后,可以更方便地进行因式分解。例如,对于 $a^2 + 2ab + b^2$,可以将 $a$ 和 $b$ 分为一组,然后利用完全平方公 式进行因式分解。
练习题
练习1
$4x^2+8x+4$
练习2
$5x^2+10x+5$
练习3
$6x^2+12x+6$
07
因式分解的思考与探究
更高级的因式分解方法
矩阵法
01
用于处理多个变量或复杂数学模型,通过建立矩阵来简化数据
,使其更易于操作和计算。
特征值法
02
通过找到矩阵的特征值和特征向量,将矩阵分解为多个小矩阵
的乘积,从而简化复杂数学问题。
在物理中的运用
力学
在物理中,因式分解被广泛应用于力学领域,例如在求解力的平衡问题、运 动问题等中,通过因式分解可以更方便地找到问题的解。
电磁学
在电磁学中,因式分解也经常被用来求解各种问题,例如在电场强度、磁场 强度等计算中,因式分解可以简化问题的求解过程。

用公式法进行因式分解ppt 济南版

用公式法进行因式分解ppt 济南版

1、聪明的人有长的耳朵和短的舌头。 ——弗莱格 2、重复是学习之母。 ——狄慈根 3、当你还不能对自己说今天学到了什么东西时,你就不要去睡觉。 ——利希顿堡 4、人天天都学到一点东西,而往往所学到的是发现昨日学到的是错的。 ——B.V 5、学到很多东西的诀窍,就是一下子不要学很多。 ——洛 克 6、学问是异常珍贵的东西,从任何源泉吸收都不可耻。 ——阿卜· 日· 法拉兹 7、学习是劳动,是充满思想的劳动。 ——乌申斯基 8、聪明出于勤奋,天才在于积累 --华罗庚 9、好学而不勤问非真好学者。 10、书山有路勤为径,学海无涯苦作舟。 11、人的大脑和肢体一样,多用则灵,不用则废 -茅以升 12、你想成为幸福的人吗?但愿你首先学会吃得起苦 --屠格涅夫 13、成功=艰苦劳动+正确方法+少说空话 --爱因斯坦 14、不经历风雨,怎能见彩虹 -《真心英雄》 15、只有登上山顶,才能看到那边的风光。 16只会幻想而不行动的人,永远也体会不到收获果实时的喜悦。 17、勤奋是你生命的密码,能译出你一部壮丽的史诗。 1 8.成功,往往住在失败的隔壁! 1 9 生命不是要超越别人,而是要超越自己. 2 0.命运是那些懦弱和认命的人发明的! 21.人生最大的喜悦是每个人都说你做不到,你却完成它了! 22.世界上大部分的事情,都是觉得不太舒服的人做出来的. 23.昨天是失效的支票,明天是未兑现的支票,今天才是现金. 24.一直割舍不下一件事,永远成不了! 25.扫地,要连心地一起扫! 26.不为模糊不清的未来担忧,只为清清楚楚的现在努力. 27.当你停止尝试时,就是失败的时候. 28.心灵激情不在,就可能被打败. 29.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 30.成功不是靠梦想和希望,而是靠努力和实践. 31.只有在天空最暗的时候,才可以看到天上的星星. 32.上帝说:你要什么便取什么,但是要付出相当的代价. 33.现在站在什么地方不重要,重要的是你往什么方向移动。 34.宁可辛苦一阵子,不要苦一辈子. 35.为成功找方法,不为失败找借口. 36.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 37.垃圾桶哲学:别人不要做的事,我拣来做! 38.不一定要做最大的,但要做最好的. 39.死的方式由上帝决定,活的方式由自己决定! 40.成功是动词,不是名词! 20、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。

《运用公式法》分解因式PPT课件2

《运用公式法》分解因式PPT课件2

2
2
回顾 & 思考 ☞ 一、公式法
2±2ab+b2=(a±b)2 a 2、完全平方公式 有三项 ①左边 两个数的平方和 特 (完全平方式) 这两个数的积的两倍 点 ②右边 两数的和与差的平方 可形象表示为
首 2 首 尾 尾 首 尾
2 2
2
因式分解的一般步骤:
① 对任意多项式分解因式,都必须首先考虑提取
2 2
=( x y)( a b)( a b)
返回
2、分解因式:
( x 2)2 16( x 1)2
解:原式 16(].[4( x 1) ( x 2)]
(4 x 4 x 2)(4 x 4 x 2)
2 因为 x+y= , xy 2 3 2 所以 原式=-2X( ) 2 4 X (2) 2 3 8 16 9 8 16 9
返回
1、不要做刺猬,能不与人结仇就不与人结仇,谁也不跟谁一辈子,有些事情没必要记在心上。 2、相遇总是猝不及防,而离别多是蓄谋已久,总有一些人会慢慢淡出你的生活,你要学会接受而不是怀念。 3、其实每个人都很清楚自己想要什么,但并不是谁都有勇气表达出来。渐渐才知道,心口如一,是一种何等的强大! 4、有些路看起来很近,可是走下去却很远的,缺少耐心的人永远走不到头。人生,一半是现实,一半是梦想。 5、没什么好抱怨的,今天的每一步,都是在为之前的每一次选择买单。每做一件事,都要想一想,日后打脸的时候疼不疼。 6、过去的事情就让它过去,一定要放下。学会狠心,学会独立,学会微笑,学会丢弃不值得的感情。 7、成功不是让周围的人都羡慕你,称赞你,而是让周围的人都需要你,离不开你。 8、生活本来很不易,不必事事渴求别人的理解和认同,静静的过自己的生活。心若不动,风又奈何。你若不伤,岁月无恙。 9、与其等着别人来爱你,不如自己努力爱自己,对自己好点,因为一辈子不长,对身边的人好点,因为下辈子不一定能够遇见。 10、你迷茫的原因往往只有一个,那就是在本该拼命去努力的年纪,想得太多,做得太少。 11、有一些人的出现,就是来给我们开眼的。所以,你一定要禁得起假话,受得住敷衍,忍得住欺骗,忘得了承诺,放得下一切。 12、不要像个落难者,告诉别人你的不幸。逢人只说三分话,不可全抛一片心。 13、人生的路,靠的是自己一步步去走,真正能保护你的,是你自己的选择。而真正能伤害你的,也是一样,自己的选择。 14、不要那么敏感,也不要那么心软,太敏感和太心软的人,肯定过得不快乐,别人随便的一句话,你都要胡思乱想一整天。 15、不要轻易去依赖一个人,它会成为你的习惯,当分别来临,你失去的不是某个人,而是你精神的支柱;无论何时何地,都要学会独立行走 ,它会让你走得更坦然些。 16、在不违背原则的情况下,对别人要宽容,能帮就帮,千万不要把人逼绝了,给人留条后路,懂得从内心欣赏别人,虽然这很多时候很难 。 17、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭 18、不要太高估自己在集体中的力量,因为当你选择离开时,就会发现即使没有你,太阳照常升起。 19、时间不仅让你看透别人,也让你认清自己。很多时候,就是在跌跌拌拌中,我们学会了生活。 20、命运要你成长的时候,总会安排一些让你不顺心的人或事刺激你。 21、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 22、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。 23、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。 24、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给 时间来定夺。 25、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。 26、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡 慕那些总能撞大运的人,你必须很努力,才能遇上好运气。 27、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的 生命才真正开始。 28、每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。 29、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要 在路上,就没有到不了的地方。 30、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者,也不要做安于现状的平凡人。 31、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 32、知人者智,自知者明。胜人者有力,自胜者强。——老子

因式分解公式法ppt课件PPT课件

因式分解公式法ppt课件PPT课件

D. -(2a+1) (2a-1)
2. 把下列各式分解因式: 1)18-2b² 2) x4 –1 第6页/共140)页原式=2(3+b)(3-b)
2)原式=(x²+1)(x+1)(x-
完全平方公式
ab 2 a2 2abb2
ab 2 a2 2abb2
第7页/共40页
现在我们把这个公式反过来
感谢您的观看。
第40页/共40页
=(2x)²- (mn)²
第4页/共40=页(2x+mn)(2xmn)
例2.把下列各式因解式: 分解
1)( x + z )²- ( y + 4z.原)²式=[(x+y+z)+(x-y-z)]
×[(x+y+z)- (x-y-
2)4解(:a + b)²- 25(az)-] c)²
1.原式=[(x+z)+(y+z)][(x+z=)-2 x ( 2 y + 2 z)
5、把 1 x2 3xy 9 y分2 解因式得
4
( B)
A、
1 4
x
3y
2
B、
1 2
x
3y
2
6、把
4 9
x2
y2
4 3
xy(分解因A 式得)
A、
2 3
x
y
2
B、
第19页/共40页
4 3
x
2
y
7、如果100x2+kxy+y2可以分解为
(10x-y)2,那么k的值是( B )
第28页/共40页
10.(2010·眉山中考)把代数mx式2 6mx 9m 下列结果中正确的是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档